(完整word版)2018广东一模文科数学试卷与答案,推荐文档

合集下载

2018年广州市普通高中毕业班综合测试(一)文科试题及答案

2018年广州市普通高中毕业班综合测试(一)文科试题及答案

2018届广州市普通高中毕业班综合测试(一)数学(文科)本试卷共5页,23小题.满分考试用时120分钟*注意事项:1.答卷前,着生务必将自己的姓名和考生号、试室号、殛位号填写在答题卡上,用2B 笔在答題卡的相应位置壞涂考生号,并将试基类型(A〉填涂在答题卡相应位置上。

2.作答选挣题时’选出每小题答案后,用铅笔在答题卡上对应题目选项的寥案信息点涂黑]如需改动,用祿皮擦干净后,再逸潦算他答案。

答案不能答在试卷上。

3.非逸择题必须用黑莒字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位査上;如需改动*先划掉原来的答案,然后再写上新尊案;不准使用勰笔和漆改液円不按以上要求作答无效口4.考生蛊须僅证答题卡的整洁纽考试结朿后’将试卷和答题卡一并丸回。

一、选择题:本题共12小题,每小题5分,共测分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.设复数乞満足刃= (1-i)S则复数E的共规复数云二仏-2 B. 2 C.-2i D. 2i2.设集合川二{0丄2,3,4,5,6] + B={*=2耳』w/},则/D/ =A. {0,2,4}B. {2,4,6}C. {0,2,4,6}D. {0,2,4,6,8.10,12)3.己知向量03-(2?2)t OB =(5,3),则网—丽卜A” 10B, TlO C 血D, 24.等差数列{陽}的各项均不为零.其前用项和为若a n+l ~ a tt+2 + a n * 则$亦1=A. 4社+ 2 B* 4丹 C. 2n+ ) D. 2/15.执行如图所示的程序框图,则输出的S二□42 9A, — B. - C- - D.—-20 9 9 40J在四面体A BCD中,E, F分别为AD 的中点,AB二CD *HR丄CD,则异面直线EF与/百所成角的大小为A. - B, - C. - D.-6 4 3 21L 己知数列{%}满足“严2, 2^+|=^ + 1,设瓦=纟匚二则数列{*}是暫+ 1如图,在梯形ABCD 中,已^\AB\^2\CD\t AE^-AC,双曲线过C, D, £三点,且以",0为焦点,则双曲线的离心率为A+ 41 B. 2^2D. J1O7.已划某个函数的部分图象如图所示,则这个函数的解析式可能是B + y = xlnx-x4-l D. y- lux 4-x-lx8.椭圆y + ^=l± 一动点P 到定点A/(1,O )的距离的議小值为D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为A. 10 + 4V2 + 2V3 C. 44-4V2+2V3吐14 + 4运D, 4A.A.常数列B.摆动数列C.递增数列D.递减数列12. C. 310.己知函数f(x) =上单调递增,则血的取值范围为「I『侧:本题共4小题,每小题5分,共2U分.匚L⑷咯IQI」小学学生人数如图所示.为了解该区学生参加某项社会实践活动的盘I;施拥采用分层抽样的方法来进行调查.若高中需抽取20名学生,聊小学9初中共需抽取的学生人数为_______ 名.2工-y + 3W0,4.y满足约束条件JY-IW0,则2二-x + y的绘小值为_______y-GO,I"15.我国南宋数学家杨辉所著的《详解九章算术》一书中,用图①的数表列出了一些正整数在汀"形中的一种几何排列,俗称“杨辉三角形”’该数表的规律是每行首尾数字均为1,从①三行开始,其余的数字是它“上方”左右两个数字之和.现将畅辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第川行各数字的和为如^=1,绩=2, E=2, 54=4f……,则S垃二________________________________________ .I II 0 I1 J i I10 0 0 1110 0】10 10 10图②图①g(x) = x'-2兀一4.设0为实数,若存在实数a,hi(x + 2), x^-L使得/何+号何=1成立”则b的取值范围为____________乙解答题:共70分.解答应写岀文字说明、证明过程或演算步骤.第17-21题为必考题, 每个试题考生都必须做答+第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17.(本小题满分12分)△ ABC的内角, C1的对边分别为口,b , c,已知口二历,c-b = \ , £\ABC 的外接圆半径为J7-(1)求角虫的值:(2)求的面积.U,(本小题满分]2分)某地!TO岁男童年龄%(岁)与身高的中位数兀(cm)卩匸1,2*…,10)如下表:JC (岁)i2456 f 78-------,101 y (cm)76.588396,8io4a111.3117.7124,0150.0135.4140 2对上表的数据作初步处理,得到下面的散点图及~些统计量的值.4 y(cm)140130120H01009080,70j r 工f2 3 4 5 6 7r y如)25.5 |112曲82.503947.71566.85(O求y关于x的线性回归方程(回归方程系数精确到o.oi):(2)某同学认为,y^px2+qx + r更适宜作为p关于工的回归方程类型,他求得的回归方程是7 = -0、30# + 10」4 + 6&0匸经调查,该地11岁男重身高的中位数145.3cm.与(I)中的线性回归方程比较,哪个回归方程的拟合效果更好?附:回归方程y = a^rbx中的斜率和截距的最小二乘估计公式分别为:19.(本小题满分门分)如图,四棱锥尸-/1BCD中,底面ABCD为矩形,(J)求证:AE=PE;(2》若是等边三角形,AB^2AD. 平面只4D丄平面彳BCD,四棱锥P-4BCD的体积为gJL求点F到平面0CD的距裔.20.(本小题满分12分)已知两个定点A/(L0)和N(2,0),动点P满足\PN\ = ^2\PM\rU)求动点P的轨迹C的方程;(2)若B为(1)中轨迹C上两个不同的点.O为坐标原点+设直线0/1, OB, AB 的斜率分别为耐,k2t k,当k.k2=3时,求jt的取值范围.2L (本小题满分12分)已知函数/*(X)= e r - ax + a -1.(1)若fO)的极值为e —1,求。

2018届广州市普通高中毕业班综合测试(一)(文数试题) 含答案

2018届广州市普通高中毕业班综合测试(一)(文数试题) 含答案

4 4 4 4 $ & + &4 7 $ ( ( +4 -. 3 % " & *, & % ! % ! %
!
!
4 & " " %
% ! 4 4 # ! # (' 3 (' O3$ %+ & + 4& % % % !
!

! (' (' (+ # # 槡 +1 3$ 3 % & " "4 &# ' ! # '
+ ( & $ " , ! ) ! # $ ' " %
( ( , # ' 7;' %6 ¦Ef(§^+ (" ($" 8+ ' 8 7+'& " * ! !
+ Y X ¨ © ( ª i j / « i j ( ! ¬' - . %$ ( !
-
! ! !' ! ! c±+ =' %6 ­$ =+ 3 ' ®¯°(\j <' !+ ! !' 6 ;+ 槡 % +!槡 )' = +" !槡 )&=# ," !槡 !# & ! 槡 ) 槡
!!=>?@
!"#$%&'()*("+,-. /0.12"+3!"#45 6789:2; # " <.=>?@ABCDEFGHI2BCJK" LMN: O.12"#PQ'R%STUV /0WXYC2"#Z[\]:2>? ! " ^_` 6abc2d`efWXYC2$C g4hij]YCkl"#IhCm2 'n /0WXYC2"#opqr2TU s4t$C" "#uvwxCm yz.1kl{|}'RIh2~Cm" ) " $mCm :4$ C" % "

广州一模文科数学试题及答案

广州一模文科数学试题及答案

试卷类型:A2018年广州市普通高中毕业班综合测试(一)数学(文科)2018.3本试卷共4页,21小题,满分150分.考试用时120分钟注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数y =A .(],1-∞-B .(),1-∞-C .[)1,-+∞D .()1,-+∞2.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为A .2-B .1-C .0D .2 3.如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的最小正周期为2π,则ω的值为 A .1B .2 C .4D .84.在△ABC 中,60ABC ∠=,2AB =,3BC =,在BC 上任取一点D ,使△ABD 为钝角三角形的概率为 A .16B .13C .12D .235.如图1是一个空间几何体的三视图,则该几何体的侧面积...为 A.C .8D .126.在平面直角坐标系中,若不等式组20,20,x y x y x t +-⎧⎪-+⎨⎪⎩≥≥≤表示的平面区域的面积为4,则实数t 的值为 A .1B .2 C .3D .4 7.已知幂函数()22657m y m m x-=-+在区间()0,+∞上单调递增,则实数m 的值为A .3B .2C .2或3D .2-或3-8.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =,()0,2b =,则⨯a b 的值为A .8-B .6-C .6D .89.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件10.已知圆O :222x y r +=,点()P a b ,(0ab ≠)是圆O 内一点,过点P 的圆O 的最短弦所在的直线为1l ,直线2l 的方程为20ax by r ++=,那么 A .12l l ∥,且2l 与圆O 相离B .12l l ⊥,且2l 与圆O 相切 C .12l l ∥,且2l 与圆O 相交D .12l l ⊥,且2l 与圆O 相离二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.若函数()()2ln 1f x x ax =++是偶函数,则实数a 的值为.12.已知集合{}13A x x =≤≤,{}3B x a x a =+≤≤,若A B ⊆,则实数a 的取值范围为.图1俯视图正(主)视图侧(左)视图13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a=,第2个五角形数记作25a=,第3个五角形数记作312a=,第4个五角形数记作422a=,…,若按此规律继续下去,则5a=,若145na=,则n=.(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图3,圆O的半径为5cm,点P是弦AB的中点,3OP=cm,弦CD过点P,且13CPCD=,则CD的长为cm.15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l与曲线C的参数方程分别为l:1,1x sy s=+⎧⎨=-⎩(s为参数)和C:22,x ty t=+⎧⎨=⎩(t为参数),若l与C相交于A、B两点,则AB=.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数()tan34f x xπ⎛⎫=+⎪⎝⎭.(1)求9fπ⎛⎫⎪⎝⎭的值;(2)若234fαπ⎛⎫+=⎪⎝⎭,求cos2α的值.17.(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)50,40,[)60,50,…,[]100,90后得到如图4的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级5 121 22图2图3期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[)40,50与[]90,100两个分数段内的学 生中随机选取两名学生,求这两名学生的数学成绩之差 的绝对值不大于10的概率.18.(本小题满分14分)如图5所示,在三棱锥ABC P -中,AB BC ==⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3CD =,2=PD . (1)求三棱锥ABC P -的体积; (2)证明△PBC 为直角三角形.19.(本小题满分14分)已知等差数列{}n a 的公差0d ≠,它的前n 项和为n S ,若570S =,且2a ,7a ,22a 成等比数列. (1)求数列{}n a 的通项公式; (2)设数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:1368n T <≤.20.(本小题满分14分)已知函数32()f x x ax b =-++(),a b ∈R .(1)求函数()f x 的单调递增区间;(2)若对任意[]3,4a ∈,函数()f x 在R 上都有三个零点,求实数b 的取值范围.21.(本小题满分14分)已知椭圆2214y x +=的左、右两个顶点分别为A 、B .曲线C 是以A 、B两点为顶点,离心率为P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T .图5PAD(1)求曲线C 的方程;(2)设点P 、T 的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设TAB ∆与POB ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且PA PB uu r uu rg ≤15,求2212S S -的取值范围广州2018一模文科数学解读1、D 解读:01>+x 1x ⇒>-;2、D 解读:11,1a bi i a b +=+⇒==;3、C 解读:242T ππωω==⇒=4、B 解读:当90ADB ∠=时,c o s 2c o s 60B D A BA B C =∠==;所以1(90)3BD P ADB BC ∠>== 5、C 该几何体为正四棱锥,正三角形的边为棱锥的侧面高,故侧面积为142282⨯⨯⨯=; 6、B 作图可知该区域为三角形,则面积为1[(2)(2)]4,02t t t t +--=>,解得2t =; 7、A 由幂函数定义知25712,3m m m m -+=⇒==,当2m =时,2y x -=递减,不满足条件,舍去;当3m =时,3y x =递增,可取; 8、 C 由于30424c o s 525a b a bθ-⨯+⨯===⨯,所以3s i n 5θ=,故35265a b ⨯=⨯⨯=;9、B 121212()()(21)(21)2f x f x x x x x a -=---=-<,即122ax x -<,此可推出12x x a -<,故 为必要不充分条件; 10、A 由题意可知,11l OP ak k b=-=-,又过点(,)P a b ,故用点斜式可得1l 方程为22ax by a b +=+,与22:l a xb y r+=平行;因圆心到2l 的距离22222()d r a b r =>=+<,故2l 与圆相离。

2018年广东省高考数学一模试卷(文科)

2018年广东省高考数学一模试卷(文科)

2018年广东省高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z满足(1+i)z=1,则复数z的虚部为()A.1 2iB.12C.−12i D.−122. 已知集合A={x|x>0},B={x|x2<1},则A∪B=()A.(0, +∞)B.(0, 1)C.(−1, +∞)D.(−1, 0)3. “常数m是2与8的等比中项”是“m=4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4. 如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.3 20B.3π25C.325D.π205. 已知F是双曲线C:x2a2−y2b2=1(a>0, b>0)的一个焦点,点F到C的一条渐近线的距离为2a,则双曲线C的离心率为( )A.2√2B.√3C.√5D.26. 等差数列log3(2x),log3(3x),log3(4x+2),…的第四项等于()A.3B.4C.log318D.log3247. 如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()),则下列结论正确的是()8. 已知曲线C:y=sin(2x−π3A.把C向左平移5π个单位长度,得到的曲线关于原点对称12B.把C向右平移π个单位长度,得到的曲线关于y轴对称12C.把C向左平移π个单位长度,得到的曲线关于原点对称3D.把C向右平移π个单位长度,得到的曲线关于y轴对称69. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入()A.n是偶数,n≥100B.n是奇数,n≥100C.n是偶数,n>100D.n是奇数,n>10010. 已知函数f(x)在其定义域上单调递减,则函数f(x)的图象可能是()eA.C.D.11. 已知抛物线C:y 2=x ,M 为x 轴负半轴上的动点,MA ,MB 为抛物线的切线,A ,B 分别为切点,则MA →⋅MB →的最小值为( )A.−14B.−18C.−116D.−1212. 设函数f(x)={|2x −1|,x ≤2−x +5,x >2,若互不相等的实数a ,b ,c 满足f(a)=f(b)=f(c),则2a +2b +2c 的取值范围是( )A.(16, 32)B.(18, 34)C.(17, 35)D.(6, 7)二、填空题(每题5分,满分20分,将答案填在答题纸上)已知单位向量e 1→,e 2→的夹角为30∘,则|e 1→−√3e 2→|=________.设x ,y 满足约束条件{x −y ≤64x +5y ≤65x +4y ≥3,则z =x +y 的最大值为________.已知数列{a n }的前n 项和为S n ,且S n =32n 2+12n ,则a 5=________.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O ,E ,F ,G ,H 为圆O 上的点,△ABE ,△BCF ,△CDG ,△ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起△ABE ,△BCF ,△CDG ,△ADH ,使得E ,F ,G ,H 重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b2+c2=a(√33bc+a).(1)证明:a=2√3cosA;(2)若A=π3,B=π6,求△ABC的面积.“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为“评定类型与性别有关”;附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行数在3001∼6000的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.如图,在直角梯形ABCD中,AD // BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,得到如下的立体图形.(1)证明:平面AEFD⊥平面EBCF;(2)若BD⊥EC,求点F到平面ABCD的距离.已知椭圆C:x2a +y2b=1(a>b>0)的离心率为√32,且C过点(1,√32).(1)求椭圆C的方程;(2)若直线l与椭圆C交于P,Q两点(点P,Q均在第一象限),且直线OP,l,OQ的斜率成等比数列,证明:直线l的斜率为定值.已知函数f(x)=e x−x2−ax.(1)证明:当a≤2−2ln2时,函数f(x)在R上是单调函数;(2)当x>0时,f(x)≥1−x恒成立,求实数a的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]在直角坐标系xOy中,圆C1:(x−2)2+(y−4)2=20,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,C2:θ=π3(ρ∈R).(1)求C1的极坐标方程和C2的平面直角坐标系方程;(2)若直线C3的极坐标方程为θ=π6(ρ∈R),设C2与C1的交点为O,M,C3与C1的交点为O,N,求△OMN的面积.[选修4-5:不等式选讲]已知函数f(x)=3|x−a|+|3x+1|,g(x)=|4x−1|−|x+2|.(1)求不等式g(x)<6的解集;(2)若存在x1,x2∈R,使得f(x1)和g(x2)互为相反数,求a的取值范围.参考答案与试题解析2018年广东省高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【考点】复数的运算【解析】把已知等式变形,再利用复数代数形式的乘除运算化简得答案.【解答】由(1+i)z=1,得z=11+i=1−i(1+i)(1−i)=12−12i,则复数z的虚部为−12.2.【答案】C【考点】并集及其运算【解析】先求出集合A,B,由此能求出A∪B.【解答】∵集合A={x|x>0},B={x|x2<1}={x|−1<x<1},∴A∪B={x|x>−1}=(−1, +∞).3.【答案】B【考点】必要条件、充分条件与充要条件的判断【解析】利用等比中项公式求解.【解答】∵m是两个正数2和8的等比中项,∴m=±√2×8=±4.故m=±4是m=4的必要不充分条件,4.【答案】A【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型)根据几何概型的定义分别求出满足条件的面积,作商即可.【解答】解:根据题意可得,黑色部分的面积为S1=π(42−1)=15π,圆靶的面积为S=102π=100π,由题意此点取自黑色部分的概率是:P=15π100π=320.故选A.5.【答案】C【考点】双曲线的离心率双曲线的特性【解析】根据题意,由双曲线的几何性质,分析可得b=2a,进而可得c=√a2+b2=√5a,由双曲线的离心率公式计算可得答案.【解答】解:根据题意,F是双曲线C:x2a2−y2b2=1(a>0, b>0)的一个焦点,若点F到C的一条渐近线的距离为2a,则b=2a,则c=√a2+b2=√5a,则双曲线C的离心率e=ca=√5.故选C.6.【答案】A【考点】等差数列的通项公式【解析】由等差数列的性质得log3(2x)+log3(4x+2)=2log3(3x),求出x=4,等差数列的前三项分别是log38,log312,log318,由此能求出第四项.【解答】∵等差数列log3(2x),log3(3x),log3(4x+2),…,∴log3(2x)+log3(4x+2)=2log3(3x),∴x(x−4)=0,又2x>0,∴x=4,∴等差数列的前三项分别是log38,log312,log318,d=log312−log38=log332,∴第四项为log318+log332=log327=3.7.B【考点】由三视图求体积【解析】由三视图可得,该几何体是长方体截去两个半圆柱,即可求解表面积.【解答】由题意,该几何体是长方体截去两个半圆柱,∴ 表面积为:4×6×2+2(4×6−4π)+2×2π×4=96+8π,8.【答案】B【考点】函数y=Asin (ωx+φ)的图象变换【解析】直接利用三角函数的图象平移逐一核对四个选项得答案.【解答】把C 向左平移5π12个单位长度,可得函数解析式为y =sin[2(x +5π12)−π3]=sin(2x +π2)=cos2x ,得到的曲线关于y 轴对称,故A 错误;把C 向右平移π12个单位长度,可得函数解析式为y =sin[2(x −π12)−π3]=sin(2x −π2)=−cos2x ,得到的曲线关于y 轴对称,故B 正确;把C 向左平移π3个单位长度,可得函数解析式为y =sin[2(x +π3)−π3]=sin(2x +π3),取x =0,得y =√32,得到的曲线既不关于原点对称也不关于y 轴对称,故C 错误; 把C 向右平移π6个单位长度,可得函数解析式为y =sin[2(x −π6)−π3]=sin(2x −23π), 取x =0,得y =−√32,得到的曲线既不关于原点对称也不关于y 轴对称,故D 错误. ∴ 正确的结论是B .9.【答案】D【考点】程序框图【解析】模拟程序的运行过程,结合退出循环的条件,判断即可.【解答】n =1,s =0,n=3,s=4,…,n=99,s=992−12,n=100,s=10022,n=101>100,结束循环,10.【答案】A【考点】函数的图象变化【解析】由题意可得[f(x)e ]′=f′(x)−f(x)e≤0,但不恒等于0,结合选项即可得到所求图象.【解答】函数f(x)e x在其定义域R上单调递减,可得[f(x)e ]′=f′(x)−f(x)e≤0,但不恒等于0,即f(x)≥f′(x)恒成立,对于A,f(x)>0恒成立,且f′(x)≤0,则f(x)≥f′(x)恒成立;对于B,由f(x)与x轴的交点设为(m, 0),(m>0),可得f(m)=0,f′(m)>0,f(x)≥f′(x)不成立;对于C,可令f(x)=t(t<0),f′(x)=0,f(x)≥f′(x)不成立;对于D,f(x)在x>0时的极小值点设为n,则f(n)<0,f′(n)=0,f(x)≥f′(x)不成立.则A可能成立,11.【答案】C【考点】抛物线的性质【解析】设切线MA的方程为x=ty+m,代入抛物线方程得y2−ty−m=0,由直线与抛物线相切可得△=t2+4m=0,分别求出A,B,M的坐标,根据向量的数量积和二次函数的性质即可求出【解答】设切线MA的方程为x=ty+m,代入抛物线方程得y2−ty−m=0,由直线与抛物线相切可得△=t2+4m=0,则A(t24, t2),B(t24, −t2),∴ M(−t 24, 0), ∴ MA →⋅MB →=(t 22, t 2)⋅(t 22, −t 2)=t 44−t 24=14(t 2−12)2−116,则当t 2=12,即t =±√22时,MA →⋅MB →的最小值为−116 12.【答案】B【考点】分段函数的应用【解析】不妨设a <b <c ,利用f(a)=f(b)=f(c),结合图象可得a ,b ,c 的范围,即可1求出【解答】互不相等的实数a ,b ,c满足f(a)=f(b)=f(c),可得a ∈(−∞, 0),b ∈(0, 1),c ∈(4, 5),则0<2a <1,0<2b <1,16<2c <32,2a +2b +2c ∈(18, 34)二、填空题(每题5分,满分20分,将答案填在答题纸上)【答案】1【考点】平面向量数量积的性质及其运算律【解析】根据单位向量e 1→,e 2→的夹角为30∘即可求出e 1→∗e 2→的值,从而可求出(e 1→−√3e 2→)2的值,进而得出|e 1→−√3e 2→|的值.【解答】单位向量e 1→,e 2→的夹角为30∘;∴ e 1→∗e 2→=cos30∘=√32,e 1→2=e 2→2=1; ∴ (e 1→−√3e 2→)2=e 1→2−2√3e 1→∗e 2→+3e 2→2=1−2√3×√32+3=1; ∴ |e 1→−√3e 2→|=1.【答案】2【考点】简单线性规划【解析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最大值即可.【解答】x ,y 满足约束条件{x −y ≤64x +5y ≤65x +4y ≥3的可行域如图,则z =x +y 经过可行域的A 时,目标函数取得最大值,由{x −y =64x +5y =6解得A(4, −2),【答案】14【考点】等差数列的前n项和【解析】利用a5=S5−S4即可得出.【解答】a5=S5−S4=32×52+12×5−(32×42+12×4)=14,【答案】500√3π27【考点】球的体积和表面积【解析】根据题意,设正方形ABCD的边长为x,E,F,G,H重合,得到一个正四棱锥,四棱锥的侧面积是底面积的2倍时,即可求解x,从而求解四棱锥的外接球的体积.【解答】连接OE交AB与I,E,F,G,H重合为P,得到一个正四棱锥,设正方形ABCD的边长为x.则OI=x2,IE=6−x2.由四棱锥的侧面积是底面积的2倍,可得4∗x2(6−x2)=2x2,解得:x=4.设外接球的球心为Q,半径为R,可得OC=2√2,OP=√42−22=2√3,R2= (2√3−R)2+(2√2)2.∴R=√3该四棱锥的外接球的体积V=43πR3=500√3π27.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.【答案】在△ABC中,角A,B,C所对的边分别为a,b,c,b2+c2=a(√33bc+a),则:b2+c2=√33abc+a2,整理得:b2+c2−a2=√33abc,由于:b2+c2−a2=2bccosA,则:2bccosA=√33abc,即:a=2√3cosA.由于:A=π3,所以:a=2√3cosA=√3.由正弦定理得:asinA =bsinB,解得:b=1.C=π−A−B=π2,所以:S△ABC=12absinC=√32.【考点】三角形求面积【解析】(1)直接利用已知条件和余弦定理求出结论.(2)利用(1)的结论,进一步利用正弦定理求出结果.【解答】在△ABC中,角A,B,C所对的边分别为a,b,c,b2+c2=a(√33bc+a),则:b2+c2=√33abc+a2,整理得:b2+c2−a2=√33abc,由于:b2+c2−a2=2bccosA,则:2bccosA=√33abc,即:a=2√3cosA.由于:A=π3,所以:a=2√3cosA=√3.由正弦定理得:asinA =bsinB,解得:b=1.C=π−A−B=π2,所以:S△ABC=12absinC=√32.【答案】根据题意,由频率分布表分析可得:则K2=50×(20×10−10×10)230×20×30×20≈1.389<2.706,则没有90%的把握认为“评定类型与性别有关”;根据题意,设步行数在3001∼6000的男性为1、2,女性为a、b、c,从中任选3人的选法有(1, 2, a),(1, 2, b),(1, 2, c),(1, a, b),(1, a, c),(1, b, c),(2, a, b),(2, a, c),(2, b, c),(a, b, c);共10种情况,其中男性人数超过女性人数的情况有:(1, 2, a),(1, 2, b),(1, 2, c),共3种,则选中的人中男性人数超过女性人数的概率P=310.【考点】独立性检验【解析】(1)根据题意,由频率分布表分析可得2×2列联表,由独立性检验计算公式计算K2的值,结合独立性检验的意义可得答案;(2)根据题意,设步行数在3001∼6000的男性为1、2,女性为a、b、c,由列举法分析可得从中任选3人和男性人数超过女性人数的情况数目,由古典概型计算公式计算可得答案.【解答】根据题意,由频率分布表分析可得:则K2=50×(20×10−10×10)230×20×30×20≈1.389<2.706,则没有90%的把握认为“评定类型与性别有关”;根据题意,设步行数在3001∼6000的男性为1、2,女性为a、b、c,从中任选3人的选法有(1, 2, a),(1, 2, b),(1, 2, c),(1, a, b),(1, a, c),(1, b, c),(2, a, b),(2, a, c),(2, b, c),(a, b, c);共10种情况,其中男性人数超过女性人数的情况有:(1, 2, a),(1, 2, b),(1, 2, c),共3种,则选中的人中男性人数超过女性人数的概率P=310.【答案】∵在直角梯形ABCD中,AD // BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,∴EF // AD,∴AE⊥EF,又AE⊥CF,且EF∩CF=F,∴AE⊥平面EBCF,∵AE⊂平面AEFD,∴平面AEFD⊥平面EBCF.如图,过点D作DG // AE,交EF于点G,连结BG,则DG⊥平面EBCF,DG⊥EC,又BD⊥EC,BD∩DG=D,∴EC⊥平面BDG,EC⊥BG,由题意△EGB∽△BEC,∴EGEB =EBBC,∴EB=√BC∗EG=√4×2=2√2,设点F到平面ABCD的距离为ℎ,∵V F−ABC=V A−BCF,∴S△ABC⋅ℎ=S△BCF⋅AE,AB=4,S△ABC=12×4×4=8,又BC⊥AE,BC⊥EB,AE∩EB=E,∴BC⊥平面AEB,故AB⊥BC,∵S△BCF=12×4×2√2=4√2,AE=EB=2√2,∴ℎ=4√2×2√28=2,∴点F到平面ABCD的距离为2.【考点】平面与平面垂直点、线、面间的距离计算【解析】(1)推导出EF // AD,AE⊥EF,AE⊥CF,从而AE⊥平面EBCF,由此能证明平面AEFD⊥平面EBCF.(2)过点D作DG // AE,交EF于点G,连结BG,则DG⊥平面EBCF,DG⊥EC,设点F到平面ABCD的距离为ℎ,由V F−ABC=V A−BCF,能求出点F到平面ABCD的距离.【解答】∵在直角梯形ABCD中,AD // BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,∴EF // AD,∴AE⊥EF,又AE⊥CF,且EF∩CF=F,∴AE⊥平面EBCF,∵AE⊂平面AEFD,∴平面AEFD⊥平面EBCF.如图,过点D作DG // AE,交EF于点G,连结BG,则DG⊥平面EBCF,DG⊥EC,又BD⊥EC,BD∩DG=D,∴EC⊥平面BDG,EC⊥BG,由题意△EGB∽△BEC,∴EGEB =EBBC,∴EB=√BC∗EG=√4×2=2√2,设点F到平面ABCD的距离为ℎ,∵V F−ABC=V A−BCF,∴S△ABC⋅ℎ=S△BCF⋅AE,AB=4,S△ABC=12×4×4=8,又BC⊥AE,BC⊥EB,AE∩EB=E,∴BC⊥平面AEB,故AB⊥BC,∵S△BCF=12×4×2√2=4√2,AE=EB=2√2,∴ℎ=4√2×2√28=2,∴点F到平面ABCD的距离为2.【答案】由题意可得{ca =√321 a2+34b2=1a2=b2+c2,解得a =2,b =1,c =√3, 故椭圆C 的方程为x 24+y 2=1,证明::设P(x 1, y 1),Q(x 2, y 2).由题意可设直线l 的方程为:y =kx +t(t ≠0). 联立{y =kx +tx 2+4y 2=4, 化为(1+4k 2)x 2+8ktx +4t 2−4=0.△=64k 2t 2−4(4t 2−4)(1+4k 2)>0,化为1+4k 2>t 2. ∴ x 1+x 2=−8kt 1+4k 2,x 1x 2=4t 2−41+4k 2,∴ y 1y 2=(kx 1+t)(kx 2+t)=k 2x 1x 2+kt(x 1+x 2)+t 2, ∵ 直线OP ,l ,OQ 的斜率成等比数列,∴ y 1x 1⋅y2x 2=k 2,即k 2x 1x 2+kt(x 1+x 2)+t 2=kx 1x 2, ∴−8k 2t 21+4k 2+t 2=0,∵ t ≠0, ∴ 4k 2=1,结合图形可知k =−12, ∴ 直线l 的斜率为定值为−12. 【考点】 椭圆的离心率 【解析】(1)由题意可得{ c a =√321a +34b =1a 2=b 2+c 2,解得即可;(2)设P(x 1, y 1),Q(x 2, y 2).由题意可设直线l 的方程为:y =kx +t(t ≠0).与椭圆的方程联立可得(1+4k 2)x 2+8ktx +4t 2−4=0.由△>0,可得1+4k 2>t 2.得到根与系数的关系.可得y 1x 1⋅y2x 2=k 2,直线OP ,l ,OQ 的斜率成等比数列,化为4k 2=1,即可证明 【解答】由题意可得{ ca =√321a 2+34b 2=1a 2=b 2+c 2 ,解得a =2,b =1,c =√3, 故椭圆C 的方程为x 24+y 2=1,证明::设P(x 1, y 1),Q(x 2, y 2).由题意可设直线l 的方程为:y =kx +t(t ≠0).联立{y =kx +tx 2+4y 2=4, 化为(1+4k 2)x 2+8ktx +4t 2−4=0.△=64k 2t 2−4(4t 2−4)(1+4k 2)>0,化为1+4k 2>t 2. ∴ x 1+x 2=−8kt 1+4k 2,x 1x 2=4t 2−41+4k 2,∴ y 1y 2=(kx 1+t)(kx 2+t)=k 2x 1x 2+kt(x 1+x 2)+t 2, ∵ 直线OP ,l ,OQ 的斜率成等比数列,∴ y 1x 1⋅y2x 2=k 2,即k 2x 1x 2+kt(x 1+x 2)+t 2=kx 1x 2, ∴−8k 2t 21+4k 2+t 2=0,∵ t ≠0, ∴ 4k 2=1,结合图形可知k =−12, ∴ 直线l 的斜率为定值为−12.【答案】(1)证明:f′(x)=e x −2x −a ,令g(x)=e x −2x −a ,则g′(x)=e x −2, 则当x ∈(−∞, ln2)时,g′(x)<0, x ∈(ln2, +∞)时,g′(x)>0,故函数g(x)在x =ln2时取最小值g(ln2)=2−2ln2−a , 当a ≤2−2ln2时,g(x)≥0.故f′(x)≥0,即函数f(x)在R 上单调递增; (2)解:当x >0时,e x −x 2−ax ≥1−x , 即a ≤e x x−x −1x +1,令ℎ(x)=e x x−x −1x +1(x >0),则ℎ′(x)=(x−1)(e x −x−1)x 2,令φ(x)=e x −x −1,(x >0), 则φ′(x)=e x −1>0,x ∈(0, +∞)时,φ(x)单调递增,φ(x)>φ(0)=0, x ∈(0, 1)时,ℎ′(x)<0,所以ℎ(x)单调递减, x ∈(1, +∞)时,ℎ′(x)>0,所以ℎ(x)单调递增, 故ℎ(x)min =ℎ(1)=e −1, 故a ∈(−∞, e −1]. 【考点】利用导数研究不等式恒成立问题 利用导数研究函数的单调性 【解析】(1)求出函数的导数,求出函数的单调区间,得到函数的最小值,从而证明结论;(2)问题转化为a≤e xx −x−1x+1,令ℎ(x)=e xx−x−1x+1(x>0),根据函数的单调性求出ℎ(x)的最小值,从而求出a的范围.【解答】(1)证明:f′(x)=e x−2x−a,令g(x)=e x−2x−a,则g′(x)=e x−2,则当x∈(−∞, ln2)时,g′(x)<0,x∈(ln2, +∞)时,g′(x)>0,故函数g(x)在x=ln2时取最小值g(ln2)=2−2ln2−a,当a≤2−2ln2时,g(x)≥0.故f′(x)≥0,即函数f(x)在R上单调递增;(2)解:当x>0时,e x−x2−ax≥1−x,即a≤e xx −x−1x+1,令ℎ(x)=e xx −x−1x+1(x>0),则ℎ′(x)=(x−1)(e x−x−1)x2,令φ(x)=e x−x−1,(x>0),则φ′(x)=e x−1>0,x∈(0, +∞)时,φ(x)单调递增,φ(x)>φ(0)=0,x∈(0, 1)时,ℎ′(x)<0,所以ℎ(x)单调递减,x∈(1, +∞)时,ℎ′(x)>0,所以ℎ(x)单调递增,故ℎ(x)min=ℎ(1)=e−1,故a∈(−∞, e−1].(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]【答案】解:(1)∵圆C1的普通方程为x2+y2−4x−8y=0,把x=ρcosθ,y=ρsinθ代入方程得ρ2−4ρcosθ−8ρsinθ=0,故C1的极坐标方程是ρ=4cosθ+8sinθ,C2的平面直角坐标系方程是y=√3x;(2)分别将θ=π3,θ=π6代入ρ=4cosθ+8sinθ,得ρ1=2+4√3,ρ2=4+2√3,S△OMN=12×(2+4√3)×(4+2√3)×sin(π3−π6)=8+5√3.【考点】直线的极坐标方程圆的极坐标方程极坐标刻画点的位置【解析】此题暂无解析【解答】解:(1)∵ 圆C 1的普通方程为x 2+y 2−4x −8y =0,把x =ρcosθ,y =ρsinθ代入方程得ρ2−4ρcosθ−8ρsinθ=0, 故C 1的极坐标方程是ρ=4cosθ+8sinθ, C 2的平面直角坐标系方程是y =√3x ;(2)分别将θ=π3,θ=π6代入ρ=4cosθ+8sinθ, 得ρ1=2+4√3,ρ2=4+2√3,S △OMN =12×(2+4√3)×(4+2√3)×sin(π3−π6)=8+5√3.[选修4-5:不等式选讲] 【答案】g(x)=|4x −1|−|x +2|.g(x)={−3x +3,x ≤2−5x −1,2<x <14−3x −3,x ≥14,不等式g(x)<6,x ≤−2时,4x −1−x −2<6,解得:x >−1,不等式无解; −2<x <14时,1−4x −x −2<6,解得:−75<x <14,x ≥14时,4x −1−x −2<6,解得:3>x ≥14, 综上,不等式的解集是(−75, 3);因为存在x 1∈R ,存在x 2∈R ,使得f(x 1)=−g(x 2)成立,所以{y|y =f(x), x ∈R}∩{y|y =−g(x), x ∈R}≠⌀,又f(x)=3|x −a|+|3x +1|≥|(3x −3a)−(3x +1)|=|3a +1|, 故g(x)的最小值是−94,可知−g(x)max =94,所以|3a +1|≤94,解得−1312≤a ≤512, 所以实数a 的取值范围为[−1312, 512]. 【考点】函数与方程的综合运用绝对值不等式的解法与证明 绝对值三角不等式 【解析】(1)通过讨论x 的范围,求出不等式的解集即可;(2)问题转化为{y|y =f(x), x ∈R}∩{y|y =−g(x), x ∈R}≠⌀,求出f(x)的最小值和g(x)的最小值,得到关于a 的不等式,解出即可. 【解答】g(x)=|4x −1|−|x +2|.g(x)={−3x +3,x ≤2−5x −1,2<x <14−3x −3,x ≥14 ,不等式g(x)<6,x≤−2时,4x−1−x−2<6,解得:x>−1,不等式无解;−2<x<14时,1−4x−x−2<6,解得:−75<x<14,x≥14时,4x−1−x−2<6,解得:3>x≥14,综上,不等式的解集是(−75, 3);因为存在x1∈R,存在x2∈R,使得f(x1)=−g(x2)成立,所以{y|y=f(x), x∈R}∩{y|y=−g(x), x∈R}≠⌀,又f(x)=3|x−a|+|3x+1|≥|(3x−3a)−(3x+1)|=|3a+1|,故g(x)的最小值是−94,可知−g(x)max=94,所以|3a+1|≤94,解得−1312≤a≤512,所以实数a的取值范围为[−1312, 512].。

2018届广东省广州市普通高中毕业班综合测试(一)文科数学试题 及答案 精品

2018届广东省广州市普通高中毕业班综合测试(一)文科数学试题 及答案 精品

试卷类型:A 2018年广州市普通高中毕业班综合测试(一)数学(文科)2018.3 本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用2B铅笔在“考生号”处填涂考生号。

用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

图174321098784.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式Sh V31=,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知全集{}1,2,3,4,5U =, 集合{}3,4,5M =,{}1,2,5N =, 则集合{}1,2可以表示为A .M NB .()U M Nð C .()U M N ðD .()()U U M N 痧2.已知向量()3,4a =,若5λ=a ,则实数λ的值为A .15B .1C .15±D .1±3. 若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图1),其中茎为十位数, 叶为个位数,则这组数据的中位数是 A. 91 B. 91.5 C. 92 D. 92.54.已知i 为虚数单位,复数i z a b =+(),a b ∈R 的虚部b 记作Im ()z ,则Im 11i ⎛⎫=⎪+⎝⎭A .12- B .1- C .12D .15. 设抛物线:C 24y x =上一点P 到y 轴的距离为4,则点P 到抛物线C 的焦点的距离是A .4B .5C .6D .76. 已知△ABC的三边,,a b c所对的角分别为,,A B C,且sin sin 2B A ab=, 则cos B 的值为A. 2B. 12C. 12-D. 2-7. 已知数列{}n a 为等比数列,若4610a a +=,则()713392a a a a a ++的值为A.10B. 20C.100D. 2008. 若直线3y x =上存在点(),x y 满足约束条件40,280,,x y x y x m ++≥⎧⎪-+≥⎨⎪≤⎩则实数m 的取值范围是A. [)1,-+∞B. ()1,-+∞C. (],1-∞-D. (),1-∞-9. 已知某锥体的正视图和侧视图如图2,图2A. B. C.D.10.已知圆O的圆心为坐标原点,半径为1,直线:(l y kx t k=+为常数,0)t≠与圆O相交于,M N两点,记△MON的面积为S,则函数()S f t=的奇偶性为A.偶函数 B.奇函数C.既不是偶函数,也不是奇函数 D.奇偶性与k的取值有关二、填空题:本大题共5小题,考生作答4小题,每小题5图3分,满分20分. (一)必做题(11~13题)11. 函数()()ln 2f x x =-的定义域为 .12. 已知e 为自然对数的底数,则曲线2y =e x 在点()1,2e 处的切线斜率为 . 13. 已知函数()11f x x =+,点O为坐标原点, 点()(),(n A n f n n ∈N *), 向量()0,1=i , n θ是向量nOA与i 的夹角,则201512122015cos cos cos sin sin sin θθθθθθ+++ 的值为 .(二)选做题(14~15题,考生只能从中选做一题) 14. (坐标系与参数方程选做题)在直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为cos sin ,(cos sin x y θθθθθ=+⎧⎨=-⎩为参数)和2,(x t t y t=-⎧⎨=⎩为参数).以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,则曲线1C 与2C 的交点的极坐标...为 . 15. (几何证明选讲选做题)如图3,BC 是圆O 的一条弦,延长BC 使得22BC CE ==,过E 作圆O 的切线,BAC ∠的平分线AD 交BC 于点D ,则DE 的长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()sin cos 6f x x x π⎛⎫=-+ ⎪⎝⎭.(1)求函数()f x 的最小正周期;(2)若α是第一象限角,且435f πα⎛⎫+= ⎪⎝⎭,求tan 4πα⎛⎫- ⎪⎝⎭的值.17.(本小题满分12分)从广州某高校男生中随机抽取100名学生,测得他们的身高(单位: cm)情况如表1:表1(1)求,,a b c的值;(2)按表1的身高组别进行分层抽样, 从这100名学生中抽取20名担任广州国际马拉松志愿者, 再从身高不低于175cm的志愿者中随机选出2名担任迎宾工作, 求这2名担任迎宾工作的志愿者中至少有1名的身高不低于180cm的概率.图4O FEDCBA图5FEPODBA18.(本小题满分14分) 如图4,在边长为4的菱形ABCD 中,60DAB ︒∠=,点E ,F 分别是边CD ,CB 的中点,AC EF O = .沿EF 将△CEF 翻折到△PEF ,连接PA,PB,PD ,得到如图5的五棱锥P ABFED -,且PB (1)求证:BD ⊥平面POA ; (2)求四棱锥P BFED -的体积.19.(本小题满分14分)已知数列{}n a 的前n项和为nS ,且满足11a =,()()1112n n n n nS n S ++-+=, n ∈N *.(1)求2a 的值;(2)求数列{}n a 的通项公式;(3)是否存在正整数k ,使k a ,2k S , 4k a 成等比数列? 若存在,求k 的值; 若不存在,请说明理由.20.(本小题满分14分)已知椭圆1C 的中心在坐标原点,两焦点分别为双曲线222:12x C y -=的顶点,直线0=x 与椭圆1C 交于A ,B 两点,且点A 的坐标为(1),点P 是椭圆1C 上异于点A ,B 的任意一点,点Q 满足0AQ AP ⋅= ,0BQ BP ⋅=,且A ,B ,Q 三点不共线.(1) 求椭圆1C 的方程; (2) 求点Q 的轨迹方程;(3) 求ABQ ∆面积的最大值及此时点Q 的坐标.21.(本小题满分14分)已知t 为常数,且01t <<,函数()()1102t g x x x x -⎛⎫=+> ⎪⎝⎭的最小值和函数()h x =()32f x x ax bx =-++(,a b ∈R )的零点.(1)用含a 的式子表示b ,并求出a 的取值范围; (2)求函数()f x 在区间[]1,2上的最大值和最小值.2018年广州市普通高中毕业班综合测试(一)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11. ()2,+∞ 12. 2e 13. 2015201614. 4π⎫⎪⎭说明: 第14题答案可以是2,4k k ππ⎫+∈⎪⎭Z. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数图象的周期性、同角三角函数的基本关系、三角恒等变换等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:()sin cos 6f x x x π⎛⎫=-+ ⎪⎝⎭sin coscos sincos 66x x xππ=-+ …………………………1分1cos 2x x =+ …………………………2分sin coscos sin66x x ππ=+ …………………………3分sin 6x π⎛⎫=+ ⎪⎝⎭. …………………………4分 ∴函数()f x 的最小正周期为2π. …………………………5分 (2)解:∵435f πα⎛⎫+=⎪⎝⎭, ∴4sin 365ππα⎛⎫++= ⎪⎝⎭. (6)分∴ 4sin 25πα⎛⎫+= ⎪⎝⎭.∴4cos 5α=. …………………………7分∵ α是第一象限角, ∴3sin 5α==. …………………………8分 ∴sin 3tan cos 4ααα==. …………………………9分 ∴tan tan4tan 41tan tan 4παπαπα-⎛⎫-=⎪⎝⎭+⋅ …………………………10分3143114-=+⨯ …………………………11分17=-. …………………………12分17. (本小题满分12分)(本小题主要考查古典概型、分层抽样等基础知识,考查化归与转化的数学思想方法,以及数据处理能力与应用意识) (1)解:由0.050.350.200.10 1.00c ++++=,得0.30c =. …………………………1分由0.30100a=,得30a =, (2)分 由5303510100b ++++=,得20b =. (3)分(2)解:依据分层抽样的方法,抽取的20名志愿者中身高在区间[)175,180上的有0.20204⨯=名,记为,,,A B C D ; (5)分而身高在区间[)180,185上的有0.10202⨯=名,记为,E F . (7)分记“这2名担任迎宾工作的志愿者中至少有1名的身高不低于180cm ”为事件M ,从身高不低于175cm 的志愿者中随机选出2名担任迎宾工作,共有15种不同取法:P{,},{,},{,},{,},{,}A B A C A D A E A F ,{,},{,},{,},{,}B C B D B E B F , {,},{,},{,}C D C E C F ,{,},{,}D E D F ,{,}E F . (9)分事件M 包含的基本事件有9种:{,},{,}A E A F ,{,},{,}B E B F ,{,},{,}C E C F{,},{,}D E D F ,{,}E F . …………………………11分∴()P M =93155=为所求. …………………………12分18.(本小题满分14分)(本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明:∵点E ,F 分别是边CD ,CB 的中点,∴BD ∥EF . …………………………1分 ∵菱形ABCD 的对角线互相垂直,∴BD AC ⊥. …………………………2分∴EF AC ⊥. …………………………3分∴EF AO ⊥,EF PO ⊥. …………………………4分∵AO ⊂平面POA ,PO ⊂平面POA ,AO PO O = , ∴EF ⊥平面POA . …………………………5分 ∴BD ⊥平面POA . …………………………6分 (2)解:设AO BD H = ,连接BO , ∵60DAB ︒∠=,∴△ABD 为等边三角形. …………………………7分∴4BD =,2BH =,HA =,HO PO ==……………………8分在R t△BHO中,BO = (9)分在△PBO中,22210+==BO PO PB , (10)分∴PO BO ⊥. …………………………11分∵PO EF ⊥,EF BO O = ,EF ⊂平面BFED ,BO ⊂平面BFED ,∴PO ⊥平面BFED . …………………………12分 梯形BFED的面积为()12S EF BD HO =+⋅=,………………………13分∴四棱锥P BFED-的体积11333V S PO =⋅=⨯=.………………14分19.(本小题满分14分)(本小题主要考查等差数列、等比数列等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识)(1)解:∵11a =, ()()1112n n n n nS n S ++-+=,∴2112212S S ⨯-==. …………………………1分∴21112123S S a =+=+=. …………………………2分∴2212a S a =-=. …………………………3分 (2)解法1: 由()()1112n n n n nS n S ++-+=, 得1112n n S S n n +-=+. ……………………4分∴ 数列n S n ⎧⎫⎨⎬⎩⎭是首项为111S =, 公差为12的等差数列. ∴()()1111122n S n n n =+-=+. …………………………5分 ∴()12n n n S +=. …………………………6分 当2n ≥时,1n n n a S S -=- …………………………7分()()1122n n n n+-=-n =. …………………………8分而11=a 适合上式, ∴n a n =. …………………………9分解法2: 由()()1112n n n n nS n S ++-+=, 得()()112n n n n n n S S S ++--=,∴()112n n n n na S ++-=. ① …………………………4分当2n ≥时,()()1112n n n n n a S ----=,②①-②得()()()()1111122n n n n n n n n na n a S S +-+-----=-,∴1n n na na n +-=. …………………………5分∴11n n a a +-=.…………………………6分∴ 数列{}n a 从第2项开始是以22a =为首项, 公差为1的等差数列. ………7分 ∴()22n a n n =+-=.…………………………8分而11=a 适合上式, ∴n a n =. …………………………9分(3)解:由(2)知n a n =, ()12n n n S +=.假设存在正整数k , 使k a , 2k S , 4k a 成等比数列, 则224k k k S a a =⋅. …………………………10分 即()222142k k k k+⎡⎤=⋅⎢⎥⎣⎦. …………………………11分∵ k 为正整数, ∴()2214k +=. 得212k +=或212k +=-, (12)分解得12k =或32k =-, 与k为正整数矛盾. …………………………13分∴ 不存在正整数k , 使k a , 2k S , 4k a 成等比数列. …………………………14分20.(本小题满分14分)(本小题主要考查椭圆的方程、双曲线的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解法1: ∵ 双曲线222:12x C y -=的顶点为1(0)F ,20)F , (1)分∴ 椭圆1C 两焦点分别为1(0)F ,20)F .设椭圆1C 方程为12222=+by a x ()0a b >>,∵ 椭圆1C 过点A (1),∴1224a AF AF =+=,得2a =. (2)分∴2222b a =-=. ………………………3分∴椭圆1C 的方程为22142x y +=. ………………………4分 解法2: ∵ 双曲线222:12x C y -=的顶点为1(0)F ,20)F , (1)分∴ 椭圆1C 两焦点分别为1(0)F ,20)F .设椭圆1C 方程为12222=+by a x ()0a b >>,∵ 椭圆1C 过点A (1),∴22211a b +=.① ………………………2分 .∵222a b =+,② ………………………3分由①②解得24a =, 22b =. ∴椭圆1C 的方程为22142x y +=. ………………………4分(2)解法1:设点),(y x Q ,点),(11y x P ,由A (1)及椭圆1C 关于原点对称可得B 1)-,∴(1)AQ x y =-,11(1)AP x y =- ,(1)BQ x y =+,11(1)BP x y =+ .由AQ AP ⋅= ,得11((1)(1)0x x y y +--=, (5)分即11((1)(1)x x y y =---. ①同理, 由BQ BP ⋅= , 得11((1)(1)x x y y =-++.② ……………6分 ①⨯②得222211(2)(2)(1)(1)x x y y --=--.③ ………………………7分由于点P 在椭圆1C 上, 则2211142x y +=,得221142x y =-,代入③式得 2222112(1)(2)(1)(1)y x y y ---=--.当2110y -≠时,有2225x y +=, 当2110y -=,则点(1)P -或P ,此时点Q 对应的坐标分别为或(1)- ,其坐标也满足方程2225x y +=. (8)分当点P 与点A 重合时,即点P (1),由②得3y =-,解方程组2225,3,x y y ⎧+=⎪⎨=-⎪⎩ 得点Q的坐标为)1-或2⎫-⎪⎪⎝⎭. 同理, 当点P 与点B 重合时,可得点Q的坐标为()或2⎛⎫⎪ ⎪⎝⎭. ∴点Q的轨迹方程为2225x y +=, 除去四个点)1-,2⎫-⎪⎪⎝⎭, (),2⎛⎫ ⎪ ⎪⎝⎭.………………………9分 解法2:设点),(y x Q ,点),(11y x P ,由A (1)及椭圆1C 关于原点对称可得B 1)-,∵0AQ AP ⋅= ,0BQ BP ⋅=,∴AQ AP ⊥,BQ BP ⊥.∴1=-(1x ≠,① ……………………5分1=-(1x ≠.② ……………………6分①⨯② 得12222111122y y x x --⨯=--.(*) ………………………7分∵ 点P 在椭圆1C 上, ∴ 2211142x y +=,得221122x y =-,代入(*)式得2212211112122x y x x --⨯=--,即2211122y x --⨯=-, 化简得 2225x y +=.若点(1)P -或P , 此时点Q对应的坐标分别为或(1)- ,其坐标也满足方程2225x y +=. (8)分当点P 与点A 重合时,即点P (1),由②得3y =-,解方程组2225,3,x y y ⎧+=⎪⎨=-⎪⎩ 得点Q的坐标为)1-或,22⎛⎫- ⎪⎪⎝⎭. 同理, 当点P 与点B 重合时,可得点Q的坐标为()或22⎛⎫- ⎪ ⎪⎝⎭. ∴点Q的轨迹方程为2225x y +=, 除去四个点)1-,2⎫-⎪⎪⎝⎭, (),22⎛⎫- ⎪⎪⎝⎭.………………………9分(3) 解法1:点Q(),x y到直线:AB0x=.△ABQ的面积为S=10分x==………………………11分而222(2)42yx x=⨯⨯≤+(当且仅当2x=时等号成立)∴S==2=. ……12分当且仅当2x=, 等号成立.由22225,xx y⎧=⎪⎨⎪+=⎩解得2,xy⎧=⎪⎨⎪=⎩或22.xy⎧=-⎪⎨⎪=-⎩………………………13分∴△ABQ的面积最大值为2, 此时,点Q的坐标为22⎛⎫⎪⎪⎝⎭或2⎛⎫- ⎪ ⎪⎝⎭.…14分解法2:由于AB=,故当点Q 到直线AB的距离最大时,△ABQ的面积最大. ………………………10分设与直线AB 平行的直线为0x m +=,由220,25,x m x y ⎧++=⎪⎨+=⎪⎩消去x ,得225250y c ++-=, 由()223220250m m ∆=--=,解得2m =±. (11)分若m =,则2y =-,x=;若m =,则2y =,x =. …12分故当点Q 的坐标为2⎫⎪⎪⎝⎭或2⎛⎫- ⎪ ⎪⎝⎭时,△ABQ 的面积最大,其值为12S AB ==. ………………………14分21. (本小题满分14分)(本小题主要考查函数的最值、函数的导数、函数的零点与单调性等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识)(1)解: 由于01t <<,x >,则()11122t g x x x -⎛⎫=+≥⨯= ⎪⎝⎭ 当且仅当1tx x-=,即x =时,()min g x =⎡⎤⎣⎦. …………………1分()h x ==,当1x =时,()min h x =⎡⎤⎣⎦.………………………2分 ∵01t <<, ∴101<.由于()32f x x ax bx =-++()2x x ax b =-++,结合题意,可知,方程20x ax b -++=的两根是,, ………………………3分故a=,b =-. (4)分∴2222a b =+=-.∴2112b a =-. ………………………5分而方程20x ax b -++=的一个根在区间(上,另一个根在区间()0,1上.令()2x x ax b ϕ=-++, 则()()00,110,20.b a b b ϕϕϕ⎧=<⎪⎪=-++>⎨⎪=-+<⎪⎩………………………6分即222110,21110,21210.2a a a a ⎧-<⎪⎪⎪-++->⎨⎪⎪-++-<⎪⎩解得02,a a a a ⎧<>⎪<<⎨⎪≠⎩ ………………………7分∴2a <<. ………………………8分 ∴2112b a =-2a <<.求a 的取值范围的其它解法: 另法1:由a =,得22a =+ ………………………6分∵01t <<,∴224a <<. ………………………7分 ∵a =0>,∴2a <<.………………………8分 另法2:设()t ϕ=01t <<,则()0t ϕ'==<, ………………………6分故函数()t ϕ在区间()0,1上单调递减. ∴())2t ϕ∈.………………………7分 ∴2a <<.………………………8分(2)解:由(1)得()322112f x x ax a x ⎛⎫=-++-⎪⎝⎭, 则()2213212f x x ax a '=-++-. ………………………9分2a <<,∴二次函数()2213212f x x ax a '=-++-的开口向下,对称轴233a x =<. 故函数()f x '在区间[]1,2上单调递减. ………………………10分 又()()221113212022f a a a '=-++-=--<, ………………………11分∴当[]1,2x ∈时,()()10f x f ''≤<. ∴函数()f x 在区间[]1,2上单调递减. ………………………12分∴函数()f x 的最大值为()2112f a a =-,最小值为()2246f a a =-+-.………………………14分。

2018届广东广州1模(文科)(试卷+答案)

2018届广东广州1模(文科)(试卷+答案)

绝密 ★ 启用前2018年广州市普通高中毕业班综合测试(一)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1、设复数z 满足2)1(i zi -=,则复数z 的共轭复数=z ( )A. 2-B. 2C. i 2-D. i 22、设集合}6,5,4,3,2,1,0{=A ,},2{A n n x x B ∈==,则=B A ( ) A. }4,2,0{ B. }6,4,2{ C. }6,4,2,0{ D. }12,10,8,6,4,2,0{3、已知向量)2,2(=OA ,)3,5(=OB =-( )A. 10B.10 C. 2 D. 24、等差数列}{n a 的各项均不为零,其前n 项和为n S ,若n n n a a a +=++221,则=+12n S ( )A. 24+nB. n 4C. 12+nD. n 25、执行如图所示的程序框图,则输出的=S ( )A. 209B. 94C. 92D. 1096、在四面体ABCD 中,E 、F 分别为AD 、BC 的中 点,CD AB =,CD AB ⊥,则异面直线EF 与AB 所 成角的大小为( )A.6π B. 4π C. 3π D. 2π7、已知某个函数的部分图像如图所示,则这个函数 的解析式可能是( )A. x x y ln =B. 1ln +-=x x x yC. 11ln -+=xx y D. 1ln -+-=x xxy 8、椭圆14922=+y x 上一动点P 到定点)0,1(M 的距离的最小值为( ) A. 2 B.554 C. 1 D. 552 9、如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为( )A. 322410++B. 2414+C. 32244++D. 410、已知函数)0)(6sin()(>+=ωπωx x f 在区间]32,4[ππ-上单调递增,则ω的取值范围为( )A. ]38,0(B. ]21,0(C. ]38,21[D. ]2,83[ 11、已知数列}{n a 满足21=a ,1221+=+n n n a a a ,设11+-=n n n a a b ,则数列}{n b 是( ) A.常数列 B.摆动数列 C.递增数列 D.递减数列 12、如图,在梯形ABCD 中,已知CD AB 2=,52=,双曲线过C 、D 、E 三点,且以A 、B 为焦点,则双曲线的离心率为( )A. 7B. 22C. 3D. 10第Ⅱ卷本卷包括必考题和选考题两部分。

2018年广州市一测数学答案(文科)

2018年广州市一测数学答案(文科)

因为 ABCD 为矩形,所以 CD⊥AD. 因为平面 PAD⊥平面 ABCD, 平面 PAD 所以 CD⊥平面 PAD. 因为 CD 平面 PCD,所以平面 PCD⊥平面 PAD. 作 EG⊥PD 于 G,则 EG⊥平面 PCD, 所以 EG 是点 E 到平面 PCD 的距离. 平面 ABCD=AD,
数学(文科)答案 A
第 2 页 共 9 页
19.(1)证明:连接 AC,设 AC∩BD=O,连接 EO. 因为 ABCD 为矩形,所以 O 为 AC 的中点. 因为 PC∥平面 BDE,PC 平面 PAC, 平面 PAC∩平面 BDE=EO,所以 PC∥EO. 因为 O 为 AC 的中点,所以 E 为 PA 的中点. 所以 AE = PE.
绝密 ★ 启用前
2018 年广州市普通高中毕业班综合测试(一) 文科数学试题答案及评分参考
评分说明: 1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内 容比照评分参考制订相应的评分细则. 2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度, 可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答 有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分. 一.选择题 题号 答案 二.填空题 13. 85 三、解答题 17.解:(1)因为 a 14. 2 15. 32 16. , 2 2 1 A 2 C 3 C 4 A 5 D 6 B 7 D 8 B 9 A 10 B 11 D 12 A
2 ,即 21 c b bc ,所以 bc 20 】 3

2018年广东省高考一模数学试卷(文科)【解析版】

2018年广东省高考一模数学试卷(文科)【解析版】

2018年广东省高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数z满足(1+i)z=1,则复数z的虚部为()A.B.C.D.2.(5分)已知集合A={x|x>0},B={x|x2<1},则A∪B=()A.(0,+∞)B.(0,1)C.(﹣1,+∞)D.(﹣1,0)3.(5分)“常数m是2与8的等比中项”是“m=4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.B.C.D.5.(5分)已知F是双曲线C:﹣=1(a>0,b>0)的一个焦点,点F 到C的一条渐近线的距离为2a,则双曲线C的离心率为()A.2B.C.D.26.(5分)等差数列log3(2x),log3(3x),log3(4x+2),…的第四项等于()A.3B.4C.log318D.log3247.(5分)如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.48+8πB.96+8πC.96+16πD.48+16π8.(5分)已知曲线,则下列结论正确的是()A.把C向左平移个单位长度,得到的曲线关于原点对称B.把C向右平移个单位长度,得到的曲线关于y轴对称C.把C向左平移个单位长度,得到的曲线关于原点对称D.把C向右平移个单位长度,得到的曲线关于y轴对称9.(5分)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入()A.n是偶数,n≥100B.n是奇数,n≥100C.n是偶数,n>100D.n是奇数,n>10010.(5分)已知函数在其定义域上单调递减,则函数f(x)的图象可能是()A.B.C.D.11.(5分)已知抛物线C:y2=x,M为x轴负半轴上的动点,MA,MB为抛物线的切线,A,B分别为切点,则的最小值为()A.B.C.D.12.(5分)设函数,若互不相等的实数a,b,c满足f(a)=f(b)=f(c),则2a+2b+2c的取值范围是()A.(16,32)B.(18,34)C.(17,35)D.(6,7)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知单位向量,的夹角为30°,则|﹣|=.14.(5分)设x,y满足约束条件,则z=x+y的最大值为.15.(5分)已知数列{a n}的前n项和为S n,且,则a5=.16.(5分)如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD 的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH 分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知.(1)证明:;(2)若,求△ABC的面积.18.(12分)“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为“评定类型与性别有关”;附:(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行数在3001~6000的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.19.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,且BC =2AD =4,E ,F 分别为线段AB ,DC 的中点,沿EF 把AEFD 折起,使AE ⊥CF ,得到如下的立体图形.(1)证明:平面AEFD ⊥平面EBCF ;(2)若BD ⊥EC ,求点F 到平面ABCD 的距离.20.(12分)已知椭圆的离心率为,且C过点.(1)求椭圆C的方程;(2)若直线l与椭圆C交于P,Q两点(点P,Q均在第一象限),且直线OP,l,OQ的斜率成等比数列,证明:直线l的斜率为定值.21.(12分)已知函数f(x)=e x﹣x2﹣ax.(1)证明:当a≤2﹣2ln2时,函数f(x)在R上是单调函数;(2)当x>0时,f(x)≥1﹣x恒成立,求实数a的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,圆C1:(x﹣2)2+(y﹣4)2=20,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,C2:θ=.(1)求C1的极坐标方程和C2的平面直角坐标系方程;(2)若直线C3的极坐标方程为θ=,设C2与C1的交点为O、M,C3与C1的交点为O、N,求△OMN的面积.[选修4-5:不等式选讲]23.已知函数f(x)=3|x﹣a|+|3x+1|,g(x)=|4x﹣1|﹣|x+2|.(1)求不等式g(x)<6的解集;(2)若存在x1,x2∈R,使得f(x1)和g(x2)互为相反数,求a的取值范围.2018年广东省高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数z满足(1+i)z=1,则复数z的虚部为()A.B.C.D.【解答】解:由(1+i)z=1,得,则复数z的虚部为.故选:D.2.(5分)已知集合A={x|x>0},B={x|x2<1},则A∪B=()A.(0,+∞)B.(0,1)C.(﹣1,+∞)D.(﹣1,0)【解答】解:∵集合A={x|x>0},B={x|x2<1}={x|﹣1<x<1},∴A∪B={x|x>﹣1}=(﹣1,+∞).故选:C.3.(5分)“常数m是2与8的等比中项”是“m=4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵m是两个正数2和8的等比中项,∴m=±=±4.故m=±4是m=4的必要不充分条件,故选:B.4.(5分)如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()A.B.C.D.【解答】解:由题意此点取自黑色部分的概率是:P==,故选:A.5.(5分)已知F是双曲线C:﹣=1(a>0,b>0)的一个焦点,点F 到C的一条渐近线的距离为2a,则双曲线C的离心率为()A.2B.C.D.2【解答】解:根据题意,F是双曲线C:﹣=1(a>0,b>0)的一个焦点,若点F到C的一条渐近线的距离为2a,则b=2a,则c==a,则双曲线C的离心率e==,故选:C.6.(5分)等差数列log3(2x),log3(3x),log3(4x+2),…的第四项等于()A.3B.4C.log318D.log324【解答】解:∵等差数列log3(2x),log3(3x),log3(4x+2),…,∴log3(2x)+log3(4x+2)=2log3(3x),∴x(x﹣4)=0,又2x>0,∴x=4,∴等差数列的前三项分别是log38,log312,log318,d=log312﹣log38=,∴第四项为=log327=3.故选:A.7.(5分)如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.48+8πB.96+8πC.96+16πD.48+16π【解答】解:由题意,该几何体是长方体截去两个半圆柱,∴表面积为:4×6×2+2(4×6﹣4π)+2×2π×4=96+8π,故选:B.8.(5分)已知曲线,则下列结论正确的是()A.把C向左平移个单位长度,得到的曲线关于原点对称B.把C向右平移个单位长度,得到的曲线关于y轴对称C.把C向左平移个单位长度,得到的曲线关于原点对称D.把C向右平移个单位长度,得到的曲线关于y轴对称【解答】解:把C向左平移个单位长度,可得函数解析式为y=sin[2(x+)﹣]=sin(2x+)=cos2x,得到的曲线关于y轴对称,故A错误;把C向右平移个单位长度,可得函数解析式为y=sin[2(x﹣)﹣]=sin(2x﹣)=﹣cos2x,得到的曲线关于y轴对称,故B正确;把C向左平移个单位长度,可得函数解析式为y=sin[2(x+)﹣]=sin(2x+),取x=0,得y=,得到的曲线既不关于原点对称也不关于y轴对称,故C错误;把C向右平移个单位长度,可得函数解析式为y=sin[2(x﹣)﹣]=sin (2x﹣),取x=0,得y=﹣,得到的曲线既不关于原点对称也不关于y轴对称,故D 错误.∴正确的结论是B.故选:B.9.(5分)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入()A.n是偶数,n≥100B.n是奇数,n≥100C.n是偶数,n>100D.n是奇数,n>100【解答】解:n=1,s=0,n=2,s=2,n=3,s=4,…,n=99,s=,n=100,s=,n=101>100,结束循环,故选:D.10.(5分)已知函数在其定义域上单调递减,则函数f(x)的图象可能是()A.B.C.D.【解答】解:函数在其定义域R上单调递减,可得[]′=≤0,但不恒等于0,即f(x)≥f′(x)恒成立,对于A,f(x)>0恒成立,且f′(x)≤0,则f(x)≥f′(x)恒成立;对于B,由f(x)与x轴的交点设为(m,0),(m>0),可得f(m)=0,f′(m)>0,f(x)≥f′(x)不成立;对于C,可令f(x)=t(t<0),f′(x)=0,f(x)≥f′(x)不成立;对于D,f(x)在x>0时的极小值点设为n,则f(n)<0,f′(n)=0,f(x)≥f′(x)不成立.则A可能成立,故选:A.11.(5分)已知抛物线C:y2=x,M为x轴负半轴上的动点,MA,MB为抛物线的切线,A,B分别为切点,则的最小值为()A.B.C.D.【解答】解:设切线MA的方程为x=ty+m,代入抛物线方程得y2﹣ty﹣m=0,由直线与抛物线相切可得△=t2+4m=0,则A(,),B(,﹣),将点A的坐标代入x=ty+m,得m=﹣,∴M(﹣,0),∴=(,)•(,﹣)=﹣=(t2﹣)2﹣,则当t2=,即t=±时,的最小值为﹣故选:C.12.(5分)设函数,若互不相等的实数a,b,c满足f(a)=f(b)=f(c),则2a+2b+2c的取值范围是()A.(16,32)B.(18,34)C.(17,35)D.(6,7)【解答】解:互不相等的实数a,b,c满足f(a)=f(b)=f(c),可得a∈(﹣∞,﹣1),b∈(﹣1,0),c∈(4,5),对应的函数值接近1时,函数趋向最小值:1+1+24=18,当函数值趋向0时,表达式趋向最大值:1+1+25=34.故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知单位向量,的夹角为30°,则|﹣|=1.【解答】解:单位向量的夹角为30°;∴,;∴=;∴.故答案为:1.14.(5分)设x,y满足约束条件,则z=x+y的最大值为2.【解答】解:x,y满足约束条件的可行域如图,则z=x+y经过可行域的A时,目标函数取得最大值,由解得A(4,﹣2),所以z=x+y的最大值为:2.故答案为:2.15.(5分)已知数列{a n}的前n项和为S n,且,则a5=14.【解答】解:a5=S5﹣S4=﹣=14,故答案为:14.16.(5分)如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD 的中心为O,E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH 分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为.【解答】解:连接OE交AB与I,E,F,G,H重合为P,得到一个正四棱锥,设正方形ABCD的边长为x.则OI=,IE=6﹣.由四棱锥的侧面积是底面积的2倍,可得,解得:x=4.设外接球的球心为Q,半径为R,可得OC=,OP=,.∴.该四棱锥的外接球的体积V=.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知.(1)证明:;(2)若,求△ABC的面积.【解答】证明:(1)在△ABC中,角A,B,C所对的边分别为a,b,c,,则:,整理得:,由于:b2+c2﹣a2=2bc cos A,则:2bc cos A=,即:a=2cos A.解:(2)由于:A =,所以:.由正弦定理得:,解得:b=1.C =,所以:.18.(12分)“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为“评定类型与性别有关”;附:(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行数在3001~6000的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.【解答】解:(1)根据题意,由频率分布表分析可得:则K2=≈1.389<2.706,则没有90%的把握认为“评定类型与性别有关”;(2)根据题意,设步行数在3001~6000的男性为1、2,女性为a、b、c,从中任选3人的选法有(1,2,a),(1,2,b),(1,2,c),(1,a,b),(1,a,c),(1,b,c),(2,a,b),(2,a,c),(2,b,c),(a,b,c);共10种情况,其中男性人数超过女性人数的情况有:(1,2,a),(1,2,b),(1,2,c),共3种,则选中的人中男性人数超过女性人数的概率P=.19.(12分)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,得到如下的立体图形.(1)证明:平面AEFD⊥平面EBCF;(2)若BD⊥EC,求点F到平面ABCD的距离.【解答】证明:(1)∵在直角梯形ABCD中,AD∥BC,AB⊥BC,且BC=2AD =4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AE⊥CF,∴EF∥AD,∴AE⊥EF,又AE⊥CF,且EF∩CF=F,∴AE⊥平面EBCF,∵AE⊂平面AEFD,∴平面AEFD⊥平面EBCF.解:(2)如图,过点D作DG∥AE,交EF于点G,连结BG,则DG⊥平面EBCF,DG⊥EC,又BD⊥EC,BD∩DG=D,∴EC⊥平面BDG,EC⊥BG,由题意△EGB∽△BEC,∴,∴EB===2,设点F到平面ABCD的距离为h,∵V F﹣ABC =V A﹣BCF,∴S△ABC•h=S△BCF•AE,AB=4,=8,又BC⊥AE,BC⊥EB,AE∩EB=E,∴BC⊥平面AEB,故AB⊥BC,∵=4,AE=EB=2,∴h==2,∴点F到平面ABCD的距离为2.20.(12分)已知椭圆的离心率为,且C过点.(1)求椭圆C的方程;(2)若直线l与椭圆C交于P,Q两点(点P,Q均在第一象限),且直线OP,l,OQ的斜率成等比数列,证明:直线l的斜率为定值.【解答】解:(1)由题意可得,解得a=2,b=1,c=,故椭圆C的方程为+y2=1,证明:(2):设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx+t(t≠0).联立,化为(1+4k2)x2+8ktx+4t2﹣4=0.△=64k2t2﹣4(4t2﹣4)(1+4k2)>0,化为1+4k2>t2.∴x1+x2=﹣,x1x2=,∴y1y2=(kx1+t)(kx2+t)=k2x1x2+kt(x1+x2)+t2,∵直线OP,l,OQ的斜率成等比数列,∴•=k2,即k2x1x2+kt(x1+x2)+t2=kx1x2,∴+t2=0,∵t≠0,∴4k2=1,结合图形可知k=﹣,∴直线l的斜率为定值为﹣.21.(12分)已知函数f(x)=e x﹣x2﹣ax.(1)证明:当a≤2﹣2ln2时,函数f(x)在R上是单调函数;(2)当x>0时,f(x)≥1﹣x恒成立,求实数a的取值范围.【解答】解:(1)证明:f′(x)=e x﹣2x﹣a,令g(x)=e x﹣2x﹣a,则g′(x)=e x﹣2,则x∈(﹣∞,ln2]时,g′(x)<0,x∈(ln2,+∞)时,g′(x)>0,故函数g(x)在x=ln2时取最小值g(ln2)=2﹣2ln2﹣a≥0,故f′(x)≥0,即函数f(x)在R递增;(2)当x>0时,e x﹣x2﹣ax≥1﹣x,即a≤﹣x﹣+1,令h(x)=﹣x﹣+1(x>0),则h′(x)=,令φ(x)=e x﹣x﹣1,(x>0),则φ′(x)=e x﹣1>0,x∈(0,+∞)时,φ(x)递增,φ(x)>φ(0)=0,x∈(0,1)时,h′(x)<0,h(x)递减,x∈(1,+∞)时,h′(x)>0,h(x)递增,故h(x)min=h(1)=e﹣1,故a∈(﹣∞,e﹣1].(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,圆C1:(x﹣2)2+(y﹣4)2=20,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,C2:θ=.(1)求C1的极坐标方程和C2的平面直角坐标系方程;(2)若直线C3的极坐标方程为θ=,设C2与C1的交点为O、M,C3与C1的交点为O、N,求△OMN的面积.【解答】解:(1)∵圆C1的普通方程为x2+y2﹣4x﹣8y=0,把x=ρcosθ,y=ρsinθ代入方程得ρ2﹣4ρcosθ﹣8ρsinθ=0,故C1的极坐标方程是ρ=4cosθ+8sinθ,C2的平面直角坐标系方程是y =x;(2)分别将θ=,θ=代入ρ=4cosθ+8sinθ,得ρ1=2+4,ρ2=4+2,则△OMN 的面积为×(2+4)×(4+2)×sin (﹣)=8+5.[选修4-5:不等式选讲]23.已知函数f(x)=3|x﹣a|+|3x+1|,g(x)=|4x﹣1|﹣|x+2|.(1)求不等式g(x)<6的解集;(2)若存在x1,x2∈R,使得f(x1)和g(x2)互为相反数,求a的取值范围.【解答】解:(1)g(x)=|4x﹣1|﹣|x+2|.g(x )=,不等式g(x)<6,x≤﹣2时,4x﹣1﹣x﹣2<6,解得:x>﹣1,不等式无解;﹣2<x <时,1﹣4x﹣x﹣2<6,解得:﹣<x <,x ≥时,4x﹣1﹣x﹣2<6,解得:3>x,综上,不等式的解集是(﹣,3);(2)因为存在x1∈R,存在x2∈R,使得f(x1)=﹣g(x2)成立,所以{y|y=f(x),x∈R}∩{y|y=﹣g(x),x∈R}≠∅,又f(x)=3|x﹣a|+|3x+1|≥|(3x﹣3a)﹣(3x+1)|=|3a+1|,故g(x )的最小值是﹣,可知﹣g(x)max =,所以|3a+1|≤,解得﹣≤a ≤,所以实数a的取值范围为[﹣,].第21页(共21页)。

2018年广东省广州市一测数学试题文科数学试题

2018年广东省广州市一测数学试题文科数学试题

秘密★启用前 试卷类型: A2018年广州市普通高中毕业班综合测试(一)文科数学2018.3本试卷共5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,用2B 铅笔在答题卡的相应位置填涂考生号,并将试卷类型(A)填涂在答题卡相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足()2i =1i z -,则复数z 的共轭复数z =A.2-B.2C.2i -D.2i2.设集合{}=0,1,2,3,4,5,6A ,{}=2,B x x n n A =∈,则A B =IA.{}0,2,4B.{}2,4,6C.{}0,2,4,6D.{}0,2,4,6,8,10,123.已知向量()2,2OA =uu r ,()5,3OB =uu u r ,则OA AB =-uuu r uuu rA.10D.24.等差数列{}n a 的各项均不为零,其前n 项和为n S ,若212n n n a a a ++=+,则21=n S + A.42n +B.4nC.21n +D.2n5.执行如图所示的程序框图,则输出的S =A.920B.49C.29D.9406.在四面体ABCD 中,E F ,分别为AD BC ,的中点,AB CD =, A B C D^,则异面直线EF 与AB 所成角的大小为 A.π6 B.π4 C.π3 D.π27.已知某个函数的部分图象如图所示,则这个函数的解析式可能是A.ln y x x =B.ln 1y x x x =-+C.1ln 1y x x =+-D.ln 1xy x x=-+- 8.椭圆22194x y +=上一动点P 到定点()1,0M 的距离的最小值为A.2C.19.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为A.10+B.14+C.4+D.410.已知函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>在区间43π2π⎡⎤-⎢⎥⎣⎦,上单调递增,则ω的取值范围为 A.80,3⎛⎤ ⎥⎝⎦B.10,2⎛⎤ ⎥⎝⎦C.18,23⎡⎤⎢⎥⎣⎦D.3,28⎡⎤⎢⎥⎣⎦11.已知数列{}n a 满足12a =,2121n n n a a a +=+,设11n n n a b a -=+,则数列{}n b 是 A.常数列B.摆动数列C.递增数列D.递减数列12.如图,在梯形ABCD 中,已知2AB CD =,2=5AE AC uu u r uuu r,双曲线过C ,D ,E 三点,且以A ,B 为焦点,则双曲线的离心率为B.C.3D C ABE图②图① 二、填空题:本题共4小题,每小题5分,共20分.13.已知某区中小学学生人数如图所示.为了解该区学生参加某项社会实践活动的意向,拟采用分层抽样的方法来进行调查.若高中需抽取20名学生, 则小学与初中共需抽取的学生人数为 名.14.若x ,y 满足约束条件230,10,10x y x y -+--⎧⎪⎨⎪⎩≤≤≥,则z x y =-+的最小值为 .15.我国南宋数学家杨辉所著的《详解九章算术》一书中,用图①的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为n S ,如11S =,22S =,32S =,44S =,……,则32S = .16.已知函数()()21,1,ln 2,1x x xf x x x +⎧<-⎪=⎨⎪+-⎩≥,()224g x x x =--.设b 为实数,若存在实数a ,使得()()1f a g b +=成立,则b 的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. (一)必考题:共60分. 17.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知21=a,1=-b c ,△ABC 的外(1)求角A 的值; (2)求△ABC 的面积.18.(本小题满分12分)某地1~10岁男童年龄i x (岁)与身高的中位数i y ()cm ()1,2,,10i =L 如下表:对上表的数据作初步处理,得到下面的散点图及一些统计量的值.(1)求y 关于x 的线性回归方程(回归方程系数精确到0.01);(2)某同学认为,2y px qx r =++更适宜作为y 关于x 的回归方程类型,他求得的回归方程是20.3010.1768.07y x x=-++.经调查,该地11岁男童身高的中位数为145.3cm .与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?附:回归方程y a bx =+$$$中的斜率和截距的最小二乘估计公式分别为: ,a y bx =-$$.19.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,点E 在线段PA 上,PC P 平面BDE . (1)求证:AE PE =;(2)若△PAD 是等边三角形,2AB AD =, 平面PAD ⊥平面ABCD ,四棱锥P ABCD -的 体积为求点E 到平面PCD 的距离.()()()121nx x y yi i i b n x x i i =--∑=-∑=$20.(本小题满分12分)已知两个定点()1,0M 和()2,0N ,动点P满足PN =.(1)求动点P 的轨迹C 的方程;(2)若A ,B 为(1)中轨迹C 上两个不同的点,O 为坐标原点.设直线OA ,OB ,AB 的斜率分别为1k ,2k ,k .当123k k =时,求k 的取值范围. 21.(本小题满分12分)已知函数()e 1x f x ax a =-+-. (1)若()f x 的极值为e 1-,求a 的值;(2)若),[+∞∈a x 时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知过点(),0P m 的直线l的参数方程是,1,2x m y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 交于A ,B 两点,且2PA PB ⋅=,求实数m 的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数()f x =23x a x b ++-.(1)当1a =,0b =时,求不等式()31f x x +≥的解集; (2)若0a >,0b >,且函数()f x 的最小值为2,求3a b +的值.。

广东省2018年高考文科数学试题及答案汇总(word解析版)

广东省2018年高考文科数学试题及答案汇总(word解析版)

绝密★启用前广东省2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={0,2},B={ -2,-1,0,1,2},则A∩B=A. {0,2}B. {1,2}C. {0}D. {-2,-1,0,1,2}2,设z=,则∣z∣=A. 0B.C. 1D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为A.B.C.D.5.已知椭圆的上、下底面的中心分别为O₁,O₂,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. 12πB. 12πC. 8πD. 10π6.设函数f(x)=x ³+(a-1)x ²+ax。

若f(x)为奇函数,则曲线y= f(x)在点(0,0)处的切线方程为A. y=-2xB. y=-xC. y=2x7.在∆ABC中,AD为BC边上的中线,E为AD的中点,则=A. -B. -C. +D. +8.已知函数f(x)=2cos ²x-sin ²x+2,则A. f(x)的最小正周期为π,最大值为3B. 不f(x)的最小正周期为π,最大值为4C. f(x)的最小正周期为2π,最大值为3D. D. f(x)的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图。

2018广州一模文科数学试题

2018广州一模文科数学试题

2018年广州市普通高中毕业班综合测试(一)文科数学2018.3一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足()2i =1i z -,则复数z 的共轭复数z =A .2-B .2C .2i -D .2i2.设集合{}=0,1,2,3,4,5,6A ,{}=2,B x x n n A =∈,则A B =IA .{}0,2,4B .{}2,4,6C .{}0,2,4,6D .{}0,2,4,6,8,10,123.已知向量()2,2OA =uu r ,()5,3OB =uu u r,则OA AB =-uuu ruuu rA .10B .10C .2D .24.等差数列{}n a 的各项均不为零,其前n 项和为n S ,若212n n n a a a ++=+,则21=n S +A .42n +B .4nC .21n +D .2n5.执行如图所示的程序框图,则输出的S =A .920B .49C .29D .9406.在四面体ABCD 中,E F ,分别为AD BC ,的中点,AB CD =, AB CD ^,则异面直线EF 与AB 所成角的大小为A .π6B .π4C .π3D .π27.已知某个函数的部分图象如图所示,则这个函数的解析式可能是A .ln y x x=B .ln 1y x x x =-+是 否开始结束输出S 19?n ≥2,0n S ==2n n =+()1+2S S n n =+C.1ln 1y x x =+-D .ln 1xy x x=-+- 8.椭圆22194x y +=上一动点P 到定点()1,0M 的距离的最小值为A .2B .455C .1D .9.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为A .104223+B .1442+C .44223+D .410.已知函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>在区间43π2π⎡⎤-⎢⎥⎣⎦,上单调递增,则ω的取值范围为 A .80,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦11.已知数列{}n a 满足12a =,2121n n n a a a +=+,设11n n n a b a -=+,则数列{}n b 是 A .常数列B .摆动数列C .递增数列D .递减数列12.如图,在梯形ABCD 中,已知2AB CD =,2=5AE AC uu u r uuu r,双曲线过C ,D ,E 三点,且以A ,B为焦点,则双曲线的离心率为A 7B .22C .3D 10二、填空题:本题共4小题,每小题5分,共20分.13.已知某区中小学学生人数如图所示.为了解该区学生参加某项社会实践活动的意向,拟采用分层抽样的方法来进行调查.若高中需抽取20名学生,则小学与初中共需抽取的学生人数为名.14.若x,y满足约束条件230,10,10x yxy-+--⎧⎪⎨⎪⎩≤≤≥,则z x y=-+的最小值为.15.我国南宋数学家杨辉所著的《详解九章算术》一书中,用图①的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为1,从第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n行各数字的和为n S,如11S=,22S=,32S=,44S=,……,则32S=.16.已知函数()()21,1,ln 2,1x x xf x x x +⎧<-⎪=⎨⎪+-⎩≥,()224g x x x =--.设b 为实数,若存在实数a ,使得()()1f a g b +=成立,则b 的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. (一)必考题:共60分. 17.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知21=a ,1=-b c ,△ABC 的外接圆半径为7.(1)求角A 的值; (2)求△ABC 的面积.18.(本小题满分12分)某地1~10岁男童年龄i x (岁)与身高的中位数i y ()cm ()1,2,,10i =L 如下表:x (岁)1 2 3 4 5 6 7 8 9 10y()cm76.588.596.8104.1 111.3 117.7 124.0 130.0 135.4 140.2对上表的数据作初步处理,得到下面的散点图及一些统计量的值.xy()1021x x i i ∑-= ()1021y y i i ∑-= ()()101x x y y i i i ∑--=5.5 112.45 82.50 3947.71 566.85(1)求y 关于x 的线性回归方程(回归方程系数精确到0.01); (2)某同学认为,2y px qx r =++更适宜作为y 关于x 的回归方程类型,他求得的回归方程是20.3010.1768.07y x x=-++.经调查,该地11岁男童身高的中位数为145.3cm.与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?附:回归方程y a bx=+$$$中的斜率和截距的最小二乘估计公式分别为:,a y bx=-$$.19.(本小题满分12分)如图,四棱锥P ABCD-中,底面ABCD为矩形,点E在线段PA上,PC P平面BDE.(1)求证:AE PE=;(2)若△PAD是等边三角形,2AB AD=,平面PAD⊥平面ABCD,四棱锥P ABCD-的体积为93,求点E到平面PCD的距离.20.(本小题满分12分)已知两个定点()1,0M和()2,0N,动点P满足2PN=.(1)求动点P的轨迹C的方程;(2)若A,B为(1)中轨迹C上两个不同的点,O为坐标原点.设直线OA,OB,AB的斜率分别为1k,2k,k.当123k k=时,求k的取值范围.21.(本小题满分12分)已知函数()e1xf x ax a=-+-.(1)若()f x的极值为e1-,求a的值;()()()121nx x y yi iib nx xii=--∑=-∑=$(2)若),[+∞∈a x 时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知过点(),0P m 的直线l的参数方程是,1,2x m y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 交于A ,B 两点,且2PA PB ⋅=,求实数m 的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数()f x =23x a x b ++-.(1)当1a =,0b =时,求不等式()31f x x +≥的解集;(2)若0a >,0b >,且函数()f x 的最小值为2,求3a b +的值.数学文答案1-5:ACCAD 6-10:BDBAB 11-12:DA13、85 14、0 15、32 16、[-32,72]17、18、19、20、21、22、23、。

(完整word版)广州市2018届高三第一学期第一次调研测试文科数学Word版

(完整word版)广州市2018届高三第一学期第一次调研测试文科数学Word版

秘密★启用前 2018届广州市高三年级调研测试 文科数学2017. 12本试卷共5页,23小题,满分150分。

考试用时120分钟。

注意事项:1•本试卷分第I 卷(选择题)和第H 卷(非选择题)两部分。

答卷前,考生务必将自己的姓 名和考生号、试室号、座位号填写在答题卡上,并用 2B 铅笔在答题卡的相应位置填涂考生号。

2.作答第I 卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑; 如需改动,用橡皮擦干净后,再选涂其他答案。

写在本试卷上无效。

3 •第n 卷必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4 •考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

、选择题:本题共 12小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目 要求的.1.设集合 A = {—1,0,1,2,3 }, B={xx 2—3x^0},则 A“ B =2x - y 乞 0,5.已知变量x , y 满足“x—2y+3^0,贝V z = 2x + y 的最大值为J 芒0,B . 4C . 6试卷类型:AA . ;、-VB . I -1,0/2•若复数z 满足(1 —i )z = 1 +2i ,则z5 3A .B .—223.已知为锐角, cos :(则tan :■51A.1B . 3'3C . ^-1,3?D . ^-1,0,3?C .-246 D .241C . _ —3D . _34 .设命题p : - x 1, x 21,命题q :> 0 , 2^ > —,则下列命题中是真命题的是 X 。

B . (一P ) qC . P (一q )D . (一P )(一数学(文科)试题A 第1页共13页数学(文科)试题 A 第2页共13页如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,直角三角形中较小的锐角.若在该大正方形区域内随机地取一点,则该点落在中间小正方形内的概率是67.9. △ ABC的内角A , B , C所对的边分别为 a , b , c,已知舒, c=4 ,的面积等于A. 3 .7 C. 9在如图的程序框图中, 输出的结果是A. sinxC. —sinx f i(x)为f i(x)的导函数,若f o(x)二sin x,则B. cosxD. - cosx正方体ABCD - AB1C1D1的棱长为2,点M为CC i的中点,点N为线段DD i上靠近D i的三等分点,平面BMN交AA i于点Q,则AQ的长为10.将函数Jl I Ky =2sin l x cos x 的图象向左平移>0个单位,.3 . 3所得图象对应的函数恰为奇函数,则的最小值为兀A .12兀D.-3数学(文科)试题 A 第4页共13页2 2笃一爲=1(a . 0,b . 0)的右焦点,P 为双曲线C 的右支a bC .312.如图,网格纸上正方形小格的边长为 1,图中粗线画出的是某三棱锥11 A .2C . 11 二已知数列满足可+4a 2+42a 3+L +4匕“ =n (n^ N ).上一点,且△ OPF 为正三角形,则双曲线 C 的离心率为11.在直角坐标系xOy 中,设F 为双曲线C :D . 2.3的三视图,则该三棱锥的外接球的表面积为二、填空题:共 20 分.13.已知向量 a = x, x 2 , b= 3,4 , 若a //b ,则向量a 的模为14.已知函数f(x) 2a 为奇函数, 2x —115.已知直线y 二kx 「2与曲线y=xlnx 相切,则实数k 的值为16.在直角坐标系xOy 中,已知直线x • Jy -2、、2 =0与椭圆C :2x _ 2 a=1 a b 0相切,且椭c圆C 的右焦点F c,0关于直线yx 的对称点E 在椭圆C 上, b则厶OEF 的面积为 三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤. 生都必须做答. 第 22、23题为选考题,考生根据要求做答.(一)必考题:共60 分.17.(本小题满分 12 分)第17〜21题为必考题,每个试题考4 (1)求数列「a n?的通项公式;4门2n 1(2 )设b n = - a[,求数列' b n b n■/的前n项和T n.数学(文科)试题A 第5页共13页如图,已知多面体PABCDE的底面ABCD是边长为2的菱形,PA _ 底面ABCD,ED. PA,且PA=2ED=2 .(1)证明:平面PAC _平面PCE ;A弋(2)若.ABC =60°,求三棱锥P - ACE的体积.19.(本小题满分12 分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜. 过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周•根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料X (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y与x的关系?请计算相关系数r并加以说明(精确到0. 01).(若|r | ■ 0.75,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X限制,并有如下关系:周光照量X (单位:小时)30cX £5050兰X兰70X >70光照控制仪最多可运行台数321若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元•若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.n _ _乞(X -x)(y j _y)_ _附:相关系数公式r= n n ,参考数据-0.^ 0.55 , . 0.9 0.95 .、(X i -X)2(y i - y)2i d i i =1数学(文科)试题A 第6页共13页已知抛物线C:y2 =2px p 0的焦点为F,抛物线C上存在一点E 2,t到焦点F的距离等于3 .(1 )求抛物线C的方程;(2)过点K -1,0的直线I与抛物线C相交于A,B两点(A,B两点在x轴上方),点A关于x 轴的对称点为D,且FA _ FB,求△ ABD的外接圆的方程.21.(本小题满分12分)已知函数f x 二a In x • x b a = 0 .(1 )当b =2时,讨论函数f x的单调性;(2)当a b =0, b 0时,对任意x「F,e,有f x辽e -1成立,求实数b的取值范围.(二)选考题:共10分•请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4 —4:坐标系与参数方程(x = cosx ,在直角坐标系xOy中,曲线G的参数方程为(〉为参数),将曲线G经过伸缩变换y = 2si n ax* = 2xQ '后得到曲线C2.在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为y =y「cos v - :?sin : -10=0 .(1 )说明曲线C2是哪一种曲线,并将曲线C2的方程化为极坐标方程;(2)已知点M是曲线C2上的任意一点,求点M到直线l的距离的最大值和最小值.23.(本小题满分10分)选修4 —5:不等式选讲已知函数f (x) x a |.(1 )当a =1时,求不等式f (x)勻2x+1 -1的解集;数学(文科)试题 A 第5页共13页(2)若函数g(x) = f (x) - x +3的值域为A,且1一2,1】匸A,求a的取值范围数学(文科)试题A 第8页共13页2018届广州市高三年级调研测试文科数学试题答案及评分参考评分说明:1•本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2•对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3•解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题不给中间分.•选择题.填空题13. 1014.三、解答题15. 1 l n2 16. 1117. 解:(1)当n =1 时,a1. ....................................................4因为a1 - 4a2 42a3 L +4n^a n-1■ 4n4a^-,n N* , ①42 n 2 n-1所以a1■ 4a2 4 a3 L 4 a n-1, n _ 2 . ②...........................4①-②得4n°a n =—.. ................................................................41 *所以a n二+ n —2,n N ........... ...............................................................................................................41 1 *由于a1也满足上式,故a n = n (n,N )............................................4 4(2)由(1)得b n 4$ ___ .................................................................................................... 2n 1=2n 1'所以b n b n 1 =1 1 f 12n 1 2n 3 2 2n 1丄..... .................................2n 31分3分4分5分6分7分9分数学(文科)试题 A 第5页共13页数学(文科)试题A 第10页共13页解法2:因为底面ABCD 为菱形,且• ABC =60 , 取AD 的中点M ,连CM ,则CM _ AD ,且CM数学(文科)试题 A 第故1」—丄一2 3 5 5 7 2n 1 2 n 310分1 1=——2 13 2n +3 丿11分n 6n 912分18.( 1)证明:连接BD ,交AC 于点0,设PC 中点为F ,连接OF , EF . 因为0 , F 分别为AC , PC 的中点, 所以OF 二PA ,且OF4PA,因为DE 〔 PA ,且DE 1石PA ,EDCB 所以OF 二DE ,且OF所以四边形OFED 为平行四边形,所以 OD^EF ,即BD ] EF . 因为 PA _ 平面 ABCD , BD 平面 ABCD ,所以 PA _ BD .因为 ABCD 是菱形,所以BD_AC . 因为 PA^AC 二 A ,所以 BD _ 平面 PAC . 因为 BD 二 EF ,所以 EF _ 平面 PAC . 因为 FE 平面PCE ,所以平面PAC _平面PCE . (2)解法1:因为.ABC =60;,所以△ ABC 是等边三角形,所以 AC =2 . 又因为PA_平面ABCD , AC 平面ABCD ,所以PA _ AC . 1 所以 S P AC PA AC =2 ..............................................................因为EF _面PAC ,所以EF 是三棱锥E - PAC 的高. .............因为 EF 二 DO =BO =寸3,10分1所以 V “CE=VE”C =3S PAC EF11分12分所以△ ACD 为等边三角形. 「3 .7页共13页数学(文科)试题 A 第12页共13页因为PA _平面ABCD ,所以PA _ CM ,又PA AD = A , 所以CM —平面PADE ,所以CM 是三棱锥C - PAE 的高.5__因为' (X j -X)(y j J) =(-3) (-1) 0 0 0 3 1=6, ..................................................................................... 2 分i 4因为r 0.75,所以可用线性回归模型拟合 y 与X 的关系. .................................. 6分(2)记商家周总利润为 Y 元,由条件可得在过去 50周里:当X >70时,共有10周,此时只有1台光照控制仪运行,周总利润 Y=1X 3000-2X1000=1000 元. ..................................................... 8 分 当50W X W 70时,共有35周,此时有2台光照控制仪运行,周总利润 Y=2X 3000-1X1000=5000 元. ..................................................... 9 分当X< 50时,共有5周,此时3台光照控制仪都运行,周总利润 Y=3X 3000=9000元. .......................................................... 10分1000 10 5000 35 9000 5所以过去50周周总利润的平均值 Y4600元,50所以商家在过去 50周周总利润的平均值为 4600元. ......................................... 12分因为S PAE1 PA AD =2 .2所以三棱锥P- ACE 的体积V1公CE 二 VC _PAES PAE CM3匕10分 11分佃.解:1)由已知数据可得 12分-2 4 5 6 8x5, y5' (X i - X )—O 2 (一1)2 o 2 12 32 = 2.5, ......................................................「(v^y)2i 1=...(-1)2 02 02 02 12=2. ..............................................................n__'、• (X i - X)( y - y)所以相关系数-y)6 2、_5、20.95 .(X i(y i数学(文科)试题 A 第13页共13页20.解:(1)抛物线的准线方程为 X =--,2所以点E 2, t 到焦点的距离为 2 ^=3 . .................................................................... 1分解得p =2 .所以抛物线C 的方程为y 2 = 4x . ............................................................................................................. 2分(2)解法1:设直线l 的方程为x = my-1 m 0 . ........................................................................... 3分 将 x = my -1 代入 y 2 = 4x 并整理得 y 2 -4my 4 = 0, ....................................................................... 4 分2由::=4m -16 0 ,解得 m 1. ......................................................................................... 5 分设 A X 1, y 1 , B X 2,y 2 , D 为,-% ,则 y 1 y 2 =4m , y°2 =4 , .................................................................................................................. 6 分因为 FAFB=(% —1 )(x 2 — 1 )+%『2 =(1 + m 2)%y 2 —2口(% + y 2 )+4 =8-4m 2, ............................ 7 分即 8 -4m 2 =0,又 m 0,解得 m 二、.2 . .............................................................................. 8 分 所以直线I 的方程为x -、.2y ^0 . 设AB 的中点为x 3,y 0 ,则 y 0 = _ =2m = 2\/2, x o=my 0 -1=3, ................................................................................... 9 分2所以直线AB 的中垂线方程为2迈一泡x-3 .因为AD 的中垂线方程为y =0,所以△ ABD 的外接圆圆心坐标为5,0 .因为FA _ FB ,所以F AL FB = o.10分11分 12分所以圆的半径因为圆心(5,0 )到直线l的距离为d =2巧,且AB = +m2+y2' _4y』2 =4刀,所以△ ABD的外接圆的方程为x_5 y^ 24 .................................................................数学(文科)试题A 第14页共13页数学(文科)试题 A 第15页共13页解法2:依题意可设直线l:y=kx ・1 k 0 .将直线I 与抛物线C 联立整理得k 2x 2 (2k 2 _4)x • k 2 =0 . .............................................................. 由 A -(2k 2 一4)2 —4k 4 0,解得 0 k < 1 ..... ............................................................. 设 A (X !,y !),B (X 2,y 2),4贝V X ! x 2 = -2,X i X 2 = 1k所以 y 1 y 2 = k 2 (x 1x 2 x 1 x 2 1)=4 ,4FB =-(捲 x 2) T y<)y 2 = 8 - k4 J 2所以8 2=°,又k 0,解得k. ................................................................................... 8分k 22以下同解法1.21.解:(1)函数f X 的定义域为 0, •::.c 22a 2 x 十 a当 b = 2时,f x A alnx x ,所以 f x =一 2x = ---------------------------- . .......................x x①当a 0时,「x0,所以函数f x 在0,上单调递增. ........................综上所述,当b=2 , a 0时,函数f x 在0,= 上单调递增;因为因为FA _ FB ,所以F^L FB = o.②当a :0时,令f X =0,解得X -时,f x :0,所以函数f x 在0,当0当x上单调递减;f X 0,所以函数f x 在i,•::上单调递增.i J—■a, ^^上单调递增. .......当b = 2 , a;0时,函数f x在上单调递减,在(2)因为对任意x^|~,e ',有f (x)^e-1成立,所以IL e'f Xmax咗e-1数学(文科)试题 A 第16页共13页数学(文科)试题 A 第17页共13页令 f x :0,得 0 :: x :: 1 ;令 f x 0,得 x 1 .所以函数f (X )在1 1上单调递减,在(1,e ]上单调递增, ................................. 7分0丿f (xm ax 为f 丨1 ]=b +e 虫与f (e )=_b +e b 中的较大者. ................................ 8分\e设 g b =f e - f 1 =e b —e 」—2b b 0 ,2丿 则 g b =e b e^ -2 2 硏歹 一2 =0,所以g (b 在 (0,址)上单调递增,故 g (b )n g (0)=0所以f (e )〉f 1 l e .丿从而 Il f x max = f e - -b • e b • .................................................................................................................. 9 分 所以一b • e b 乞 e -1 即 e b 一 b - e ■ 1 _ 0 .设」b =e b —b —e 1 b 0,则,b=d —1 0. ............................................ 10 分 所以' b 在0, •::上单调递增.又,1 - 0,所以e —b - e ■ 1 _ 0的解为b - 1 . .............................................................. 11分 因为b 0,所以b 的取值范围为 0,1 ]. ................................................ 12分]L x = COS-I22.解:(1)因为曲线 G 的参数方程为(〉为参数),y =2si na「, x =2x ,…亠八 lx =2cos 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档