Controllable porous polymer particles generated by electrospraying
一种在室温下原位合成铜掺杂ZIF-8的方法
380金属有机骨架(MOFs)材料是由金属离子或团簇与有机配体自组装形成的一种周期性的无机-有机杂化材料[1]。
MOFs作为一种新兴的多孔材料,由于其具有高比表面积、高孔隙率、可控的多孔结构以及有序的骨架结构等特点,具有许多潜在的应用前景,成为材料科学领域的研究热点[2]。
MOFs可以通过改性获得较高性能的材料[3]。
传统的改性方法包括与其他材料复合,比如金属单质[4]、金属氧化物[5]、碳材料[6]等,合成的复合材料在具有特殊性能的同时还能提高材料的稳定性。
与其他材料制备MOFs复合材料带来高性能的同时也存在一些问题亟待解决。
制备复合材料过程较为复杂且出现负载不均,复合上的材料易脱落等问题[7]。
近些年,一些研究表明过渡金属掺杂金属有机骨架材料可以在不改变材料原有结构的同时获得高性能的过渡金属掺杂的金属有机骨架材料。
Yang [8]课题组通过一步水热合成法成功制备了钴离子掺杂的UiO-66晶体。
掺杂钴离子后的UiO-66晶体的微观形貌、晶体结构与原来的UiO-66单体保持一致。
值得注意的是,掺杂钴离子后的UiO-66晶体具有良好的吸附性能和光催化性能,可以用来去除模拟废水中的四环素分子,具有良好的应用前景。
掺杂过渡金属后会带来不饱和的金属位点,这些不饱和的金属位点可以与污染物分子结合,从而达到更好的吸附效果[9]。
与此同时,不饱和的金属位点会加速电子传递过程,使得光催化性能增强。
与此同时,金属掺杂带来的不饱和位点可以与药物中的羟基、羧基、氨基等官能团配位,从而达到药物的运输与释放的目的[10]。
由锌离子与2-甲基咪唑有机键合而成的三维的沸石型咪唑骨架(ZIF-8)是金属有机骨架的一个重要子类(分子结构示意图如图1所示)。
它们的拓扑结构和多孔结构可以由咪唑单元类型控制,Zn2+可以与含氮配体(二甲基咪唑)配位,生成ZnN4四方体,因而ZIF-8具有典型的方钠石拓扑结构[11]。
ZIF-8单体具有高比表面,特殊的孔道结构且且具有良好的热稳定性及溶剂稳定性,已经被广泛应用于吸附、催化、储能一种在室温下原位合成铜掺杂ZIF-8的方法孙赛武1,2 杨朝晖1,2 曹姣1,2 王玥1,2 童设华3(1.湖南大学环境科学与工程学院 湖南 长沙 4100822. 环境生物与控制教育部重点实验室(湖南大学) 湖南 长沙 4100823. 湖南大麓科技有限公司 湖南 长沙 410082摘要:金属-有机骨架(MOFs)是一种由金属中心或团簇与有机配体组成的具有周期性无限网状结构的新型多孔材料。
Pluronic嵌段共聚物磁性纳米颗粒的制备及其对漆酶的分离纯化
Tecnai G2 透射电子显微镜(荷兰 Philips 公司), JSM-6700F 扫 描 电 子 显 微 镜 ( 日 本 JEOL 公 司 ) , MicoMagTM 2900 交变梯度磁强计(美国 PMC 公司), Vector 22 傅立叶变换红外光谱仪(德国 Bruker 公司), UNICO UV-2000 紫外−可见分光光度计[尤尼柯(上海) 仪器有限公司].
纯化 将漆酶发酵液于 4 ℃下 9 000 r/min 离心 20 min,去 除离心出的菌丝体,−4 ℃下储存待用. 将漆酶发酵液用 1 mol/L NaOH 调节 pH 到 7,取一定量 PMNPs 加入 40 mL 漆酶发酵液中,20 ℃下摇床中振荡吸附 2 h. 吸附完 成后,磁场下分离磁颗粒,并用磷酸盐缓冲液(0.02 mol/L, pH 7)清洗磁颗粒 2 次,再用酒石酸缓冲液(0.02 mol/L, pH 3)洗脱. 初始发酵液和洗脱液均进行 SDS−PAGE 电 泳分析. 2.3 分析方法 嵌段共聚物磁性 Fe3O4 纳米颗粒的形貌、粒径及其 分布用透射电子显微镜(TEM)和扫描电子显微镜(SEM) 测定,颗粒的粒径及其分布通过统计同一样品在不同照
(1. 中国科学院过程工程研究所绿色过程与工程重点实验室,北京 100190;2. 中国科学院过程工程研究所生化工程国家重点实验室,北京 100190; 3. 中国科学院研究生院,北京 100049)
人大考研-化学系研究生导师简介-金朝霞教授
爱考机构-人大考研-化学系研究生导师简介-金朝霞教授金朝霞教授金朝霞,1970年出生。
北京大学化学系理学学士(1991年);北京大学化学系助理工程师(1991年)、工程师(1996年);新加坡国立大学化学系哲学博士(2002年);韩国国立汉城大学物理系博士后研究(2001年-2002年)。
中国人民大学化学系副教授(2004年6月),教授(2011年7月)。
主要研究方向:a.限域条件下聚合物纳米结构的制备、性质与功能的研究 b.碳纳米材料与聚合物的复合材料的生物医学应用主要科研项目与课题在研课题:国家自然科学基金面上项目21074149(2011.1-2013.12),51173201(2012.1-2015.12)中国人民大学明德学者计划(2009.12-2012.12)北京分子科学国家实验室开放课题(2009.10-2011.12)已完成课题:国家自然科学基金青年项目(2005年,项目号50503025)其他科研项目:中国人民大学科研启动基金教育部归国留学人员启动基金已发表论文:1.S.L.Mei,L.Wang,X.D.Feng,Z.X.Jin*,Swellingofblockcopolymernanoparticles---apro cesscombiningdeformationandphaseseparation,Langmuir2013,29,4640-4646.2.S.L.Mei, Z.X.Jin*,Mesoporousblock-copolymernanospherespreparedbyselectiveswelling,Small2 013,9,322-329.3.S.L.Mei,X.D.Feng,Z.X.Jin*,Polymernanofibersbycontrollableinfilt rationofvapourswollenpolymersintocylindricalnanopores,SoftMatter,2013,9,945-951 .4.X.D.Feng,S.L.Mei,Z.X.Jin*,Wettabilitytransitioninducedtransformationandentra pmentofpolymernanostructuresincylindricalnanopores,Langmuir2011,27,14240-14247.5.S.L.Mei,X.D.Feng,Z.X.Jin*,FabricationofPolymerNanospheresBasedonRayleighInsta bilityinCapillaryChannels,Macromolecules2011,44,1615-1620.6.L.Zhang,D.A.Zha,T.T .Du.S.L.Mei,Z.J.Shi,Z.X.Jin*,Formationofsuperhydrophobicmicrospheresofpoly(viny lidenefluoride-hexafluoropropylene)/graphenecompositeviagelation,Langmuir2011,2 7,8943-8949.7.D.A.Zha,S.L.Mei,Z.Y.Wang,H.J.Li,Z.J.ShiandZ.X.Jin*,Superhydrophob icpolyvinylidenefluoride/grapheneporousmaterials,Carbon2011,49,5166-5172.8.K.K. Zhao,Z.Y.Wang,Z.J.Shi,Z.N.Gu,Z.X.Jin*,Fillingdouble-walledcarbonnanotubeswithWO 3andWnanowiresviaconfinedchemicalreactions,J.Nanosci.Nanotechnol.2011,11,2278-2 282.9.H.L.Fan,L.L.Wang,K.K.Zhao,N.Li,Z.J.Shi,Z.G.Ge,andZ.X.Jin*,Fabrication,Mec hanicalProperties,andBiocompatibilityofGraphene-ReinforcedChitosanComposites,Bi omacromolecules2010,11,2345-2351.10.Q.C.Zhao,J.Yin,X.D.Feng,Z.J.Shi,Z.G.GeandZ. X.Jin*,Abiocompatiblechitosancompositecontainingphosphotungsticacidmodifiedsing le-walledcarbonnanotubes,J.Nanosci.Nanotechno.2010,10,7126-7129.11.X.D.Feng,Z.X .Jin*,SpontaneousFormationofNanoscalePolymerSpheres,Capsules,orRodsbyEvaporatio nofPolymerSolutionsinCylindricalAluminaNanopores,Macromolecules2009,42,569-572.12.Q.C.Zhao,X.D.Feng,S.L.MeiandZ.X.Jin*,Carbonnanotubeassistedhighloadingandcon trolledreleaseofpolyoxometalatesinbiodegradablemultilayerthinfilm,Nanotechnolog y2009,20,105101.13.Z.G.Ge,Z.X.JinandT.Cao,Manufactureofdegradablepolymericscaff oldsforboneregeneration,Biomed.Mater.2008,3,22001.14.Z.X.Jin*,Z.YWang,Z.J.Shi,H .J.Lee,Y.W.ParkandK.Akagi,Thehierarchicalmicrostructureofhelicalpolyacetylenena nofibers,Curr.App.Phys.2007,7,367.15.H.J.Lee,Z.X.Jin,A.N.Aleshin,J.Y.Lee,M.J.Go h,K.Akagi,Y.S.Kim,D.W.Kim,Y.W.Park,"Dispersionandcurrent-voltagecharacteristics ofhelicalpolyacetylenesinglefiber",J.Am.Chem.Soc.2004,126,16722.16.Z.X.Jin,S.H. Goh,G.Q.Xu,Y.W.Park,Dynamicmechanicalpropertiesofmulti-walledcarbonnanotube/poly(acrylicacid)-surfactantcomplex,Synth.Met.2003,135(Sp.Iss.),735-736.17.Z.X.Jin ,K.PPramoda,G.Q.Xu,S.HGoh,Poly(vinylidenefluoride)-assistedmelt-blendingofmulti -walledcarbonnanotube/poly(methylmethacrylate)composites,Mater.Res.Bull.,2002,3 7,271-278.18.Z.X.Jin,L.Huang,S.H.Goh,G.Q.Xu,W.Ji,Size-dependentopticallimitingb ehaviorofmulti-walledcarbonnanotubes,Chem.Phys.Lett.,2002,352,328-333.19.Z.X.Ji n,K.PPramoda,G.Q.Xu,S.HGoh,Dynamicmechanicalbehaviorofmelt-processedmulti-walle dcarbonnanotube/poly(methylmethacrylate)composites,Chem.Phys.Lett.,2001,337,43-47.20.Z.X.Jin,L.Huang,S.H.Goh,G.Q.Xu,W.Ji,Characterizationandnonlinearpropertie sofapoly(acrylicacid)-surfactant-multi-walledcarbonnanotubecomplex,Chem.Phys.Le tt.,2000,332,461-466.21.Z.X.Jin,X.Sun,G.Q.Xu,S.H.Goh,Nonlinearopticalproperties ofsomepolymer/multi-walledcarbonnanotubecomposites,Chem.Phys.Lett.,2000,318,505 -510.22.Z.X.Jin,G.Q.Xu,S.H.Goh,Apreferentiallyorderedaccumulationofbromineonmul ti-wallcarbonnanotube,Carbon2000,38,1135-1139.。
掺铜介孔生物活性玻璃的制备及其生物活性
浙江理工大学学报,2021,45(2): 221-226Journal of Zhejiang Sci-Tech UniversityDOI:10. 3969/j.issn.l673-3851(n).2021. 02.009掺铜介孔生物活性玻璃的制备及其生物活性郑玉华\刘涛,王莉a,周慧敏8,丁新波3(浙江理工大学,a.纺织科学与工程学院(国际丝绸学院);b.科技与艺术学院,杭州310018)摘要:采用溶胶-凝肢法分别以溴化十六烷基三甲铵(CTAB)、正硅酸乙酯(TEOS)、硝酸钙、铜/抗坏血酸复合 物作为玻璃前驱体合成掺铜介孔生物玻璃,通过TEM、F T IR及氮气吸附法等测试方法表征该玻璃材料的表面形 态、化学结构和理化性质,并测定不同剂量掺铜梯度对介孔生物玻璃粉体的生物活性影响。
结果表明:选择不同比 例的钢/抗坏血酸复合物可以获得可控的掺铜介孔生物玻璃纳米球,其中样品lCu-MBG、5Cu-MBG、7Cu-MBG的孔 容分别为0• 62、0. 74 m3/g和0• 78 m3/g,孔径分别为6_91、7. 28 n m和10. 06 nm,随着C u含量的增加,Cu-MBGs样 品的孔容和平均孔径均增加;所有样品颗粒均表现出较大的比表面积、孔容和孔径,且体外生物活性良好。
所制备 的玻璃材料有望应用于骨组织再生修复和皮肤缺损愈合。
关键词:溶胶凝肢;介孔生物玻璃;铜;纳米球;生物活性中图分类号:TQ127.2 文献标志码:A 文章编号:1673-3851 (2021) 03-0221-06Preparation of copper-doped m esoporous bioglass and its b io a ctivity ZH ENG Yuhua-, LIU Taoa'h, WANG L ia , ZHOU H uim ina , DING Xinboa(a. College of Textile Science and EngineeringCInternational Silk Institute);b. Keyi College, Zhejiang Sci-Tech University. Hangzhou 310018, China)Abstract:Copper-doped mesoporous bioglass was synthesized with sol-gel method by using cetyltrimethylammonium bromide (CTAB), ethyl orthosilicate (T E O S), calcium nitrate, and copper/ ascorbic acid composite as glass precursors. And TEM, FTIR and nitrogen adsorption method were used to characterize the ‘s urface morphology,chemical structure, physical and chemical properties of the glass material. The effect of different doses of copper doping gradient on the bioactivity of mesoporous bioglass powder was explored. The results showed that controllable copper-doped mesoporous bioglass nanospheres could be obtained by choosing different proportions of copper/ascorbic acid composites. The pore volume of samples lCu-MBG, 5Cu-MBG, 7Cu-MBG was 0. 62, 0. 74 and 0. 78 m3/g respectively, and the pore size was 6. 91, 7. 28, 10. 06 nm respectively. As the copper content increased, the pore volume and average pore size of Cu-MBGs samples increased. All sample particles showed large specific surface area,pore volume and pore size, with good in vitro bioactivity. The glass material prepared is expected to be further applied in bone tissue regeneration, repair and skin defect healing.Key words:sol-gel;mesoporous bioglass;copper;nanosphere;bioactivity〇引言介孔生物活性玻璃(Mesoporous bioactive glass,MBG)是一种重要的无机生物活性材料,具有优异的可降解性、生物相容性和生物活性,能诱导类 骨磷灰石形成,与宿主骨骼或软组织发生化学键合,且无炎症等[14]反应,可用于多种生物医学材料人体 骨骼修复、创口愈合及牙科治疗,备受材料学、生物收稿日期:2020—10—15 网络出版日期:2020—11 — 30基金项目:国家自然科学基金项目(31900964);浙江理工大学科技与艺术学院科研项目(KY2019002)作者简介:郑玉华(1995 — ),女.浙江衝州人,硕士研究生,主要从事现代纺织技术及新产品开发方面的研究。
形貌可控有机多孔聚合物:合成、功能化和应用
㊀第40卷㊀第9期2021年9月中国材料进展MATERIALS CHINAVol.40㊀No.9Sep.2021收稿日期:2021-05-29㊀㊀修回日期:2021-08-05基金项目:国家自然科学基金资助项目(21574042,51273066)第一作者:张㊀慧,女,1990年生,讲师,Email:huizhang@通讯作者:黄㊀琨,男,1975年生,教授,博士生导师,Email:khuang@DOI :10.7502/j.issn.1674-3962.202105035形貌可控有机多孔聚合物:合成㊁功能化和应用张㊀慧1,张㊀丽2,余海涛2,黄㊀琨2(1.上海海洋大学海洋生态与环境学院,上海201306)(2.华东师范大学化学与分子工程学院,上海200241)摘㊀要:有机多孔聚合物具有高的比表面积㊁优异的化学稳定性和丰富的构建方法,在吸附㊁分离和多相催化等多个领域具有广阔的应用前景㊂材料的结构㊁形貌在很大程度上决定了材料性能㊂为拓展有机多孔聚合物在更多领域的应用,形貌可控的有机多孔聚合物逐渐成为新的研究方向㊂通过合理的结构设计和采用不同的化学修饰方法,可获得具有不同形貌与性能的有机多孔聚合物,它们在不同方面展现出较好的应用潜力㊂针对形貌可控有机多孔聚合物的国内外研究现状,综述了形貌可控有机多孔聚合物的合成策略㊁功能化方法和应用领域,并对其今后的发展趋势做出了展望㊂关键词:形貌可控;有机多孔聚合物;材料合成;功能化;应用领域中图分类号:TB383.4;TQ317㊀㊀文献标识码:A㊀㊀文章编号:1674-3962(2021)09-0697-15Morphologically Controllable Organic Porous Polymers :Synthesis ,Functionalization and ApplicationZHANG Hui 1,ZHANG Li 2,YU Haitao 2,HUANG Kun 2(1.College of Marine Ecology and Environment,Shanghai Ocean University,Shanghai 201306,China)(2.School of Chemistry and Molecular Engineering,East China Normal University,Shanghai 200241,China)Abstract :Based on the high surface area,excellent chemical stability and various preparation methods,organic porouspolymers have broad application prospects in many fields including adsorption,separation and heterogeneous catalysis.The structure and morphology of the materials determine material properties to a great degree.To expand the application of organ-ic porous polymers in more fields,organic porous polymers with controllable morphology have gradually become a new re-search anic porous polymers with different morphologies and properties can be obtained with reasonable struc-tural design and various chemical modification methods,which shows good application potential in different aspects.In this paper,the synthesis strategy,functionalization methods and application of morphologically controllable organic porous poly-mers are reviewed based on the research situation at home and abroad,and the future development trends are also put for-ward.Key words :controllable morphology;organic porous polymers;material synthesis;functionalization;application area1㊀有机多孔聚合物概述近年来,一类由C,H,O,N 和B 等轻质元素组成的新型多孔材料 有机多孔聚合物(porous organic poly-mers,POPs)成为多孔材料领域的研究前沿[1]㊂与传统的无机多孔材料和金属-有机骨架材料相比,有机多孔聚合物除了具有多孔材料的高比表面积和可调控的孔结构特性,更重要的是有机合成方法的多样性为有机分子前驱体与分子网络的构建提供了丰富的合成路径和构建方式㊂例如碳-碳偶联反应㊁点击化学和氧化聚合等合成方法被成功地用于制备有机多孔聚合物㊂同时,也可以通过目的性地引入功能化的有机分子前驱体使最终的材料具有相应的性质,通过调节前驱体的结构来调控材料的孔性质㊂其次,一些有机多孔聚合物可以溶解于溶剂中,并在溶剂条件下处理加工而不破坏孔结构,可以利用聚合物材料易加工的特点,把有机多孔聚合物制成薄膜[2,3],这将大大增强其应用范围,这是一些无机多孔博看网 . All Rights Reserved.中国材料进展第40卷材料所不具备的特性㊂在大多数情况下,与通过非共价键连接成的分子网络结构较为脆弱相比,有机多孔聚合物都是通过共价键连接,在材料微孔性质得到保持的同时,分子网络结构更加稳固㊂近年来,有机多孔材料已经被应用于气体存储㊁多相催化和有机光电等领域[4-7],并且有望在许多方面取代传统的无机多孔材料,从而引起了人们广泛的研究兴趣㊂2㊀形貌可控有机多孔聚合物研究现状有机多孔聚合物按照其结构特点可以分为以下4种类型:超交联聚合物(HCPs)[8]㊁共价有机框架(COFs)[9]㊁自具微孔聚合物(PIMs)[10]和共轭微孔聚合物(CMPs)[11]㊂随着对有机多孔聚合物材料研究的深入,各种新单体㊁新方法制备的新型材料不断出现,为了拓展其应用,人们关注的重点也转移到材料的功能化研究上来,应用的范围也从传统的吸附㊁分离和催化延伸到有机光电㊁储能和传感等新兴领域㊂但是,现有的一些策略制备的功能化有机多孔聚合物多为粉末固体,且形貌不可控㊂众所周知,材料的微㊁纳形貌是影响材料性能的一个重要因素㊂华中科技大学谭必恩课题组通过一种简单的乳液聚合将聚苯乙烯壳层包裹在二氧化硅纳米颗粒上,随后通过超交联反应并刻蚀二氧化硅核,得到了具有高比表面积的有机微孔聚合物空心微囊㊂相比于实心的超交联纳米颗粒,这种具有独特孔结构的中空微囊空腔可以作为储存药物的载体,从而大大提高纳米颗粒对于布洛芬的吸附量,并能通过孔径调节达到对药物控制释放的效果[12]㊂韩国成均馆大学Son课题组则通过Sonogashira偶联反应制备得到了有机微孔聚合物纳米球和纳米管,并分别以它们为模板合成出Co3O4空心纳米球和Fe2O3纳米管,这些具有特殊形貌的无机纳米材料在催化和电化学方面展现出优异的性能[13,14]㊂现有的研究工作表明,有机多孔聚合物的微观形貌不仅可以对其性质产生重要的影响,而且也可以作为模板制备不同形貌的无机纳米材料㊂本文将从合成方法㊁功能化及应用等方面对形貌可控的有机多孔聚合物进行概述㊂2.1㊀形貌可控有机多孔聚合物合成方法目前,国内和国际上对形貌可控有机多孔聚合物的制备方法有诸多报道,主要集中在硬模板法㊁单体直接合成法㊁单分子软模板法和自组装法㊂2.1.1㊀硬模板法硬模板法是指以某一类物质作为空间填充物,除去该物质后可得到相应孔结构的合成方法,是目前制备具有特定形貌的有机多孔聚合物最常用且成熟的方法之一㊂通过硬模板法,可以较好地控制有机多孔聚合物的微观形貌,并且可大批量制备结构完整㊁稳定性好的有机多孔聚合物㊂目前,被开发出的模板剂包括SiO2纳米粒子㊁介孔SiO2㊁沸石及交联聚合物等,模板去除后均可得到有序的孔状结构㊂Asher等[15]以单分散SiO2颗粒为硬模板,通过分散聚合在外层包覆聚合物,后续利用氢氟酸(HF)去除SiO2模板,从而得到单分散的空心聚合物粒子,空心核的尺寸及壳层厚度可以在一定范围内进行调控㊂贵州师范大学庄金亮课题组[16]以SiO2纳米球为模板,利用2,2,6,6-四甲基哌啶氧化物(TEMPO)自由基修饰的小分子单体与四(4-苯乙炔基)甲烷之间的Sona-gashira偶联反应在SiO2纳米球的表面包覆一层孔状聚合物材料,随后通过HF刻蚀掉内部的SiO2模板,制备了TEMPO自由基功能化的聚合物空心纳米球(图1)㊂中山大学吴丁财课题组[17]则使用内部包覆Ag纳米粒子的SiO2纳米球为模板,通过原子转移自由基聚合(ATRP)反应在球外表面接枝聚苯乙烯壳层,再通过类似的超交联和SiO2刻蚀处理,合成出包覆Ag纳米粒子功能化的微孔有机聚合物纳米球复合材料(图2)㊂复旦大学郭佳课题组[18]利用具有不同形貌的聚甲基丙烯酸(PMAA)微球作为自牺牲模板,在PMAA表面进行炔基和卤素的Sonogashira偶联反应,通过一步法合成具有多种纳米结构的共轭微孔聚合物微胶囊(包括空心㊁花状㊁响铃等结构)㊂Son课题组[19-21]分别以SiO2纳米球㊁Fe3O4纳米球和多面体金属-有机框架(MOF)材料为模板,利用Sonogashira偶联反应,制备出具有不同形貌特征的中空共轭微孔聚合物功能化材料㊂随后,他们又利用多面体MOF材料ZIF-8为模板,以1,4-二碘苯和4-(4-乙炔基苯基)甲烷为结构单体,通过类似的Sono-gashira偶联反应,在ZIF-8表面合成出共轭微孔聚合物材图1㊀SiO2模板法制备TEMPO自由基功能化的中空有机纳米球[16]Fig.1㊀Synthesis of TEMPO radical-functionalized hollow organic nanosphere by SiO2template method[16]896博看网 . All Rights Reserved.㊀第9期张㊀慧等:形貌可控有机多孔聚合物:合成㊁功能化和应用图2㊀硬模板法制备Ag 纳米粒子功能化的微孔有机聚合物纳米球复合材料[17]Fig.2㊀Ag nanoparticles-functionalized microporous organic polymer nan-oparticles composite materials via hard template method [17]料,然后用冰乙酸刻蚀掉内部的ZIF-8模板,最后通过后修饰法,用氯磺化反应制备出磺酸功能化的中空共轭微孔聚合物纳米材料(图3)[22]㊂然而,硬模板法中的模板制备和去除造成了反应步骤繁琐㊁资源浪费和环境污染等问题,而且在模板的去除过程中,容易导致材料形貌的破坏㊂因此,开发更为简单易行且能有效控制形貌的方法成为有机多孔聚合物研究的一个重要方向㊂2.1.2㊀单体直接合成法单体直接合成法是通过单体小分子之间的化学反应,一步合成制备出各种形貌的有机多孔聚合物,这种方法的特点是简单㊁易规模化㊂如图4所示,陕西师范大学蒋加兴课题组[23]用芳香族小分子苯㊁蒽㊁菲为结构单元,通过傅克烷基化反应,制备出了纳米管形貌的超交联有机微孔聚合物,并对其进行进一步碳化处理制得管状碳纳米材料㊂图3㊀硬模板法制备磺酸功能化的中空共轭微孔聚合物纳米材料[22]Fig.3㊀Synthesis of sulfoacid functionalized hollow conjugated micro-porous polymer nanomaterials by hard template method [22]㊀㊀大连化学物理研究所邓伟桥课题组[24]以特殊结构的炔基苯和溴苯为反应单体,利用Sonogashira 交叉偶联反应,通过一步反应制备出比表面积高达1368m 2㊃g-1的共轭微孔聚合物纳米管,这种管状材料对CO 2和I 2展现出了高的吸附率㊂韩国釜山大学Kim 课题组[25]则以苯甲醇㊁1,4-苯二甲醇㊁1,4-二氯甲苯等为单体,开创性地提出了路易斯酸-碱相互作用诱导自组装机理,通过一步超交联反应制备出了不同形貌(空心球和纳米管)的超交联有机微孔聚合物(图5)㊂图4㊀芳香族小分子一步超交联法制备管状有机微孔聚合物[23]Fig.4㊀Construction of tubular organic mircroporous polymer via one-step hyper-crosslinking reaction of small aromatic molecule [23]996博看网 . All Rights Reserved.中国材料进展第40卷图5㊀一步超交联反应制备不同形貌有机微孔聚合物[25]Fig.5㊀Synthesis of organic microporous polymer with different morphology via one-step hyper-crosslinking reaction [25]㊀㊀Son 课题组[26]以3,5-二(4-溴苯基)吡啶和四(4-乙炔基苯基)甲烷为结构单体,通过类似的一步Sonogashira偶联反应,直接制得了比表面积为580m 2㊃g -1的纳米管状共轭微孔聚合物(图6)㊂2020年,南京邮电大学黄维课题组[27]在这方面同样做了出色的工作㊂他们以有机小分子为原料,通过水热反应制备出具有均匀且可控空心球结构的三维COFs 材料,该材料在气体吸附和电化学应用上均表现出优异的性能㊂单体直接合成法虽具有方法简单㊁可规模化制备等优势,但该方法的材料可控性较差,反应条件较苛刻,将限制其在实际生产中的应用㊂特别地,单体直接合成法中可控形貌的形成机理还未得到深入研究,难以实现材料形貌的多样化和可设计性㊂2.1.3㊀单分子软模板法单分子软模板法是利用一种特殊结构的聚合物分子刷作为单分子软模板,制备出空心/非空心结构的纳米管/线状有机多孔聚合物㊂聚合物瓶状分子刷是一种具有特殊拓扑结构的大分子,其高密度支链间的空间位阻效应使大分子主链趋于伸展状态,在溶液中呈纳米尺度的柱状形貌,可以方便地作为一种单分子软模板用于制备纳米材料[28]㊂如图7所示,Matyjaszewski 等较早开展了这方面的研究[29],他们设计㊁合成了支链末端修饰有苯基的单组分聚苯乙烯瓶状分子刷,以聚苯乙烯瓶状分子刷为软模板,利用傅克烷基化超交联瓶状分子刷,最终制备出具有微孔㊁介孔和大孔特征的有机纤维状多孔材料㊂图6㊀一步直接合成法制备纳米管状共轭微孔聚合物[26]Fig.6㊀One-step syntehsis of conjugated microporous polymer (CMPs)nanotube [26]07博看网 . All Rights Reserved.㊀第9期张㊀慧等:形貌可控有机多孔聚合物:合成㊁功能化和应用图7㊀超交联聚苯乙烯瓶状分子刷合成有机纤维状多孔材料[29]Fig.7㊀Synthesis of organic fibrous porous material by hyper-crosslinking of bottle-shaped polystyrene molecular brush [29]㊀㊀为获得具有更为多样的结构㊁形貌的有机多孔聚合物,华东师范大学黄琨课题组通过分子设计合成出具有核壳结构的双组分聚合物分子刷,以聚合物分子刷为模板,通过傅克烷基化反应实现超交联得到以有机纳米管为结构单元的有机多孔聚合物(图8)[30]㊂超交联反应产生的HCl 可使聚乳酸嵌段降解为低聚乳酸或乳酸,无需额外的模板去除步骤,为制备形貌可控的有机多孔聚合物提供了一种新颖的研究思路㊂图8㊀超交联核壳瓶状聚合物分子刷制备管状有机多孔聚合物材料[30]Fig.8㊀Synthesis of tubular organic porous polymer materials by hyper-crosslinking of core-shell polymer bottlebrushes [30]单分子软模板法提供了一种在单分子水平上控制制备管/线状有机多孔聚合物材料新的合成策略,并且利用可控自由基聚合可以方便地实施功能化㊂然而,在上述工作中,聚合物分子刷的合成步骤较为繁琐,限制了其作为前驱体在有机多孔聚合物工业化合成中的进一步应用㊂2.1.4㊀自组装法自组装法是以嵌段聚合物为组装单元,在溶液里通过自组装或先组装后固形反应形成不同形貌的有机多孔聚合物㊂如果选择的嵌段聚合物中有可降解聚合物链段,则可降解的聚合物链段可以充当自牺牲模板,在随后的反应步骤中去除自牺牲模板得到具有中空形貌的有机多孔聚合物㊂与硬模板法相比,自组装法步骤较少,更为简易,并且可通过嵌段聚合物分子设计的多样性,有效调控有机多孔聚合物的微观形貌和结构组成,成为了近年来较为流行的一种制备策略㊂吴丁财课题组预先合成出一种由聚苯乙烯和聚丙烯酸组成的嵌段共聚物,该嵌段聚合物作为前驱体在特定的混合溶剂中实现自组装形成胶束,通过超交联反应胶束外层的聚苯乙烯组分构成微孔结构,从而形成形貌可控的有机多孔聚合物(图9)[31]㊂图9㊀自组装法制备球形有机多孔聚合物纳米网络[31]Fig.9㊀Synthesis of spherical organic porous polymer nano network [31]黄琨课题组近来也开发出了一种以嵌段聚合物为前驱体,通过超交联诱导自组装方法制备形貌可控的有机多孔聚合物的新方法[32]㊂如图10所示,以聚乳酸-b -聚苯乙烯(PLA-b -PS)二嵌段共聚物为软模板,利用超交联诱导自组装技术制备出以中空纳米球为结构单元的有机多孔聚合物㊂该合成策略有效地简化了有机多孔材料的合成路线,并可通过调节嵌段聚合物的结构组成有效地控制有机多孔聚合物的微观形貌,进一步拓展了具有空心结构的形貌可控有机多孔聚合物的制备方法㊂107博看网 . All Rights Reserved.中国材料进展第40卷图10㊀超交联诱导自组装制备中空有机多孔纳米球[32]Fig.10㊀Preparation of hollow organic porous nanosphere via hyper-crosslinking derivated self-assembly [32]㊀㊀黄琨课题组还开发出一种三苯基膦介导的超交联自组装策略,以含三苯基膦的两嵌段共聚物为基础,一步合成出具有蜂窝型双连续结构的膦掺杂有机多孔聚合物材料[33]㊂该方法通过引入含杂原子配体,不仅可调控特殊蜂窝型形貌的形成,而且可以作为强配体对贵金属进行配位固载㊂这一合成策略可进一步优化有机多孔材料的形貌设计,从而提升其整体应用性能,使其能够在更多领域中发挥更好的作用㊂随着对形貌可控有机多孔聚合物的研究不断深入,其合成方法得到了较好的发展,由制备步骤相对繁琐的硬模板法,逐步优化为简单高效的单体直接合成法㊁单分子软模板法和自组装法㊂特别是,前驱体由结构相对复杂的聚合物分子刷发展为结构简单且易功能化的嵌段聚合物,为有机多孔聚合物的工业化应用提供了基础条件㊂2.2㊀形貌可控有机多孔聚合物的功能化为了使形貌可控的有机多孔聚合物具有更为多样的应用性,一般是通过不同形式的功能化赋予有机多孔聚合物特定的性能㊂从合成方法的角度来看,有机多孔聚合物的功能化方法可大致分为后修饰法㊁预合成法㊁与金属或无机纳米粒子复合和碳化等方法㊂以下将简要分析这些功能化手段在有机多孔聚合物制备中的应用㊂2.2.1㊀后修饰法后修饰法是指在有机多孔聚合物构建完成后通过化学修饰对其进行功能化的方法㊂一般地,后修饰法主要发生在固液两相的界面上,是在有机多孔聚合物表面修饰功能化活性位点,该方法在有机多孔材料功能化方面得到了较为广泛的应用㊂黄琨课题组以含有对氯甲基功能嵌段的聚合物分子刷为前驱体,利用超交联反应得到了一种带氯甲基的有机多孔材料Cl-MONNs㊂如图11所示,通过后修饰反应将氯转化成了叠氮基团并利用点击反应将小分子催化剂简便有效地负载于有机多孔材料上,制备出有机多孔材料负载的固相有机催化剂TEMPO-MONNs,实现了功能化有机多孔材料在非均相催化中的应用[34]㊂2021年,黄琨课题组以含有聚乳酸和聚苯乙烯组分的嵌段共聚物为软模板,采用超交联诱导自组装技术制图11㊀后修饰法制备有机多孔材料负载的有机非均相催化剂[34]Fig.11㊀Synthesis of organic porous materials-based organic heterogeneous catalysts via post-modification method [34]207博看网 . All Rights Reserved.㊀第9期张㊀慧等:形貌可控有机多孔聚合物:合成㊁功能化和应用备出以中空纳米球为结构单元的有机多孔聚合物㊂在此基础上,采用后修饰策略,使得中空纳米球外层的环氧基团与乙二胺发生开环反应,并最终获得乙二胺改性的中空有机多孔纳米微球(图12)㊂该功能化方法可有效地在纳米球表面修饰大量氨基,为后续的重金属吸附去除应用提供丰富的活性位点[35]㊂图12㊀乙二胺改性的中空有机多孔纳米微球的制备示意图[35]Fig.12㊀Scheme of preparation of ethylenediamine-modified hollow organic porous nanospheres [35]㊀㊀Son 课题组以SiO 2为硬模板制备出具有中空结构的有机微孔聚合物[36]㊂然后,通过后修饰法,在氯磺酸作用下,成功将功能化基团磺酸基负载于有机微孔聚合物上,合成了磺酸修饰的功能化有机微孔聚合物(图13)㊂利用类似的合成策略可制备出具有多层球壳的中空有机纳米材料,该材料在药物释放应用中表现出较高的药物负载量和药物释放速率㊂2017年,谭必恩课题组利用硬模板法和超交联反应相结合的策略,制备出具有中空结构的有机多孔聚合物[37]㊂随后,通过两步化学反应在有机多孔材料上成功修饰磺酸基和氨基,制备出酸碱双功能化的有机多孔材料(图14)㊂该功能化有机多孔聚合物在 一锅法 串联反应中表现出较好的催化性能㊂鉴于方法简单㊁操作性强等优势,后修饰法在有机多孔材料功能化方面得到了广泛的应用,在实际生产中具有很好的应用潜力㊂然而,采用后修饰法得到的功能化有机多孔聚合物中活性位点分布不均,功能化程度难以精准控制,这些不足在一定程度上限制了后修饰法在有机多孔聚合物功能化领域的应用㊂2.2.2㊀预合成法预合成法与后修饰法不同,是指由已预先合成的或已有的活性基团构建功能化有机多孔聚合物的方法,无后期化学修饰的过程㊂基于聚合物基的有机多孔材料采用预合成法进行功能化的方法可概括为两种:共聚合法和共交联法㊂图13㊀后修饰法合成磺酸功能化的有机微孔聚合物[36]Fig.13㊀Synthesis of sulfoacid functionalized organic microporous poly-mer via post-modification method [36]307博看网 . All Rights Reserved.中国材料进展第40卷图14㊀后修饰法制备酸碱双功能化的超交联有机多孔聚合物[37]Fig.14㊀Preparation of acid-base bifunctional hyper-crosslinked organic porous polymers via post-modification method [37]㊀㊀采用共聚合法进行功能化时,具有活性基团的分子通过聚合反应合成出功能化的有机多孔聚合物前驱体,后通过超交联反应等手段构建出功能基团修饰的有机多孔聚合物㊂2016年,黄琨课题组通过分子设计预先合成一种可聚合的功能化单体,并通过聚合反应将其修饰至多组分聚合物分子刷中㊂如图15所示,以聚合物分子刷为前驱体,利用傅克烷基化超交联反应和脱保护方法构建出氨基修饰的以有机纳米管为结构单元的有机多孔聚合物[38]㊂该方法可通过调节聚合物前驱体的结构组成对有机多孔材料中功能基团的含量和分布进行精确调控㊂氨基修饰的有机多孔聚合物在Knoevenage 缩合反应中表现出优异的催化活性㊁化学稳定性和普适性㊂共交联法是指预先合成的或已有的功能性芳香类小分子作为反应物直接参与聚合物前驱体的超交联反应共同构建出有机多孔骨架,从而得到负载活性基团的功能化有机多孔聚合物㊂如图16所示,黄琨课题组分别将苄图15㊀共聚合法制备氨基功能化的有机多孔聚合物[38]Fig.15㊀Synthesis of amino-functionalized organic porous polymer by co-polymerization[38]图16㊀共交联法合成杂原子掺杂的有机多孔聚合物[39]Fig.16㊀Synthesis of heteroatom-doped organic porous polymers via co-crosslinking method [39]407博看网 . All Rights Reserved.㊀第9期张㊀慧等:形貌可控有机多孔聚合物:合成㊁功能化和应用胺㊁2,2-联吡啶和三苯基膦等含杂原子的有机小分子掺入含有聚合物分子刷的前驱体溶液中,后续通过一步超交联反应得到不同杂原子修饰的管状有机多孔聚合物[39]㊂该方法有效地避免了可聚合的含杂原子的芳香性小分子的繁琐合成,功能化有机多孔聚合物的制备路线更为方便,具有更强的普适性,为今后制备不同功能化的有机多孔聚合物提供了一种简便高效的合成策略㊂此外,利用相同的材料制备方法,黄琨课题组以聚乳酸-b-聚苯乙烯两嵌段共聚物为前驱体,在超交联过程中通过加入苄胺小分子制备出氨基修饰的有机多孔聚合物[40]㊂在该方法中,苄胺与聚苯乙烯嵌段不仅共同参与构建了中空有机纳米材料的骨架,同时实现了有机多孔聚合物的功能化㊂采用预合成法可有效地调控有机多孔聚合物中功能性基团的分布和含量,活性位点分布相对均匀,可实现对有机多孔聚合物功能化程度的调控㊂同时,该方法合成步骤相对简单,易于规模化生产㊂因此,预合成法在有机多孔聚合物功能化制备中得到了越来越广泛的应用㊂2.2.3㊀与金属或无机纳米粒子复合利用一定的物理或化学反应,有机多孔聚合物可以与金属或无机纳米粒子进行复合,实现有机多孔聚合物的多种功能化,赋予材料不同的物理或化学性能,如磁性㊁催化活性等,因此,该方法在有机多孔聚合物功能化领域得到了越来越多的关注㊂2016年,黄琨课题组预先合成了一种表层被聚苯乙烯修饰的Fe3O4磁性纳米粒子,将该纳米粒子与多组分聚合物分子刷共混于同一反应体系并共同发生超交联反应,制备出Fe3O4纳米粒子修饰的磁性有机多孔聚合物材料[41]㊂该材料表现出高效的电荷选择性吸附染料和快速磁性分离的能力㊂如图17所示,Son课题组利用Fe(III)-卟啉与1,4-二炔基苯之间的Sonogashira偶联反应成功地在Fe3O4磁性纳米粒子表面覆上一层Fe(Ⅲ)-卟啉构建的有机多孔聚合物网络,最终合成了磁性纳米粒子修饰的有机多孔聚合物[21]㊂该材料在卡宾插入N H反应中表现出良好的催化性能和快速分离功能㊂谭必恩课题组通过后修饰方法将氮原子掺杂于中空的有机多孔聚合物中㊂然后,基于氮原子与金属钯之间的相互作用,利用硼氢化钠的还原作用将钯纳米粒子修饰于有机多孔聚合物的中空孔腔中,合成出铂功能化的金属-有机复合多孔聚合物材料(图18)[42]㊂该复合材料在硝基苯的氢化反应中表现出良好的催化性能㊂图17㊀Fe3O4磁性纳米粒子与有机多孔聚合物复合构建非均相催化剂[21]Fig.17㊀Construction of heterogeneous catalysts by combination of Fe3O4 magnetic nanoparticles and organic porous polymers[21]图18㊀铂纳米粒子修饰的有机多孔聚合物的合成[42] Fig.18㊀Synthesis of palladium-modified organic porous polymers[42]㊀㊀如图19所示,黄琨课题组以聚乳酸-b-聚苯乙烯二嵌段聚合物为前驱体,通过超交联方法制备出具有中空结构且形貌可控的有机多孔聚合物;随后,利用硼氢化钠的还原作用将金属纳米粒子负载于材料内部的中空孔腔中,最终获得钯纳米粒子功能化的有机多孔聚合物[43]㊂该材料作为非均相催化剂在氢化反应中具有较好的催化活性㊂金属或无机纳米粒子与有机多孔聚合物的复合可实现有机多孔材料的多种功能化,赋予有机多孔材料不同的物理化学性能,可促进功能化有机多孔聚合物在不同领域的应用㊂2.2.4㊀碳化碳化是一种获取具有多种微观形貌的无机碳材料的有效途径㊂有机多孔聚合物通过碳化反应,在保持原有形貌的基础上,可以形成具有多孔结构的无机碳材料,制备出具有良好电化学性能的功能化材料㊂这一功能化方法在能源存储领域具有很好的应用前景㊂2017年,吴丁财课题组以聚苯乙烯分子刷修饰的碳纳米管为前驱体,通过超交联方法制备出由有机多孔聚507博看网 . All Rights Reserved.。
高分子化学专业术语中英文对照
高分子化学专业术语中英文对照中英文对照加聚反应Addition Polymerization加聚物Addition Polymer粘结剂Adhesive老化Ageing交替共聚物Alternating Copolymer交替共聚Alternating Copolymerization无定型态Amorphous State阴离子聚合Anionic Polymerization无规立构Atactic无规立构聚合物Atactic Polymer原子转移自由基聚合Auto Transfer Radical Polymerization, ATRP 自动加速Auto-acceleration平均官能度Average Functionality恒比共聚Azeotropic Copolymerization恒比点Azeotropic Point支化型聚合物Branched Polymer共混改性Blending Modificatioon嵌段共聚物Block Copolymer本体聚合Bulk or Mass Polymerization笼蔽效应Cage Effect碳链聚合物Carbon Chain Polymer阳离子聚合Cationic Polymerization扩链Chain Extension链节Chain Element链引发Chain Initiation连锁聚合Chain Polymerization链增长Chain Propagation链终止Chain Termination链转移Chain Transfer链转移剂Chain Transfer Agent手性中心Chiral Center顺丁橡胶cis-1,4-Polybutadiene rubber,BR涂料Coatings共缩聚Co-condensation Polymerization梳形聚合物Comb-shaped Polymer络合聚合Complexing Polymerization缩聚反应Condensation Polymerization构型异构Configurational Isomerism构象异构Conformational Isomerism转化率Conversion配位聚合Coordination Polymerization共聚物Copolymer共聚合Copolymerization共聚组成Copolymer Composition偶合终止Coupling Termination反离子Counterion临界胶束浓度Critical Micelle Concentration, CMC 交联Crosslinking结晶态Crystalline Morphology降解Degradation聚合度Degree of Polymerization, DP树枝状聚合物Dendritic Polymer解聚Depolymerization分散剂Dispersant歧化终止Disproportionation Termination元素有机高分子Elementary Organic Polymer乳化作用Emulsification乳化剂Emulsifier乳液聚合Emulsion Polymerization乳胶粒Emulsion Particle对映体异构Enantiomer Isomerism环氧树脂Epoxy Resin端基End Group平衡缩聚Equilibrium Polycondensation过量分率Excessive Ratio反应程度Extent of Reaction纤维Fiber功能材料Functional Material功能高分子Functional Polymer官能度Functionality, f几何异构Geometrical Isomerism凝胶点Gel point, Pc凝胶效应Gel Effect凝胶化Gelation玻璃化温度Glass Transition Temperature, Tg 接枝聚合Graft Copolymerization接枝共聚物Graft Copolymer半衰期Half-life杂链聚合物Hetero-chain Polymer高密度聚乙烯High Density Polyethylene HDPE 高抗冲聚苯乙烯High Impact Polystyrene, HIPS 均相成核Homogenous Nucleation均聚物Homopolymer均聚合Homopolymerization均缩聚Homopolycondensation理想共聚Ideal Copolymerization理想恒比共聚Ideal Azeotropic Copolymerization 诱导期Induction Period诱导分解Induced Decomposition阻聚剂Inhibitor阻聚作用Inhibition引发剂Initiator引发效率Initiator Efficiency无机高分子Inorganic Polymer插入聚合Insertion Polymerization原位复合In-situ Compounding界面缩聚Interfacial Polycondensation互穿网络Interpenetrating Polymer Network 离子聚合Ionic Polymerization离子对Ion-pair异构化聚合Isomerization Polymerization等规立构Isotactic等规度Isotacticity动力学链长Kinetic Chain Length梯形聚合物Ladder Polymer自由基寿命Life-time of Free Radical线型缩聚Linear Polycondensation线型聚合物Linear Polymer活性聚合Living Polymerization“活性”/可控自由基聚合“Living”/Controlled Polymerization 低密度聚乙烯Low Density Polyethylene LDPE 高分子(大分子)Macromolecule主链Main Chain熔融缩聚Melt Polycondensation茂金属引发剂Metallocene Initiator胶束成核Micelle Nucleation混缩聚Mixing Polycondensation摩尔系数Molar Coefficient单体Monomer单体单元Monomer Unit单体液滴Monomer Droplet天然高分子Natural Polymer邻位基团效应Neighboring Group Effect交联型聚合物Network Structure Polymer非理想共聚Non-ideal Copolymerization非理想恒比共聚Non-ideal Azeotropic Copolymerization 线型酚醛树脂Novolacs尼龙Nylon尼龙-6 Nylon-6, PA-6尼龙-66 Nylon-66, PA-66光学异构Optical Isomerism齐聚物(低聚物)Oligomer氧化偶合反应Oxidative Coupling Polymerization前末端效应Penultimate Effect光引发Photo initiation塑料Plastics聚酰胺Polyamide, PA聚加成反应Polyaddition Reaction聚碳酸酯Polycarbonate, PC聚酯Polyester, PET聚醚Polyether聚合物Polymer聚合物合金Polymer Alloy高分子化学Polymer Chemistry聚苯乙烯Polystyrene, PS聚乙烯Polythene PE聚氨酯Polyurethane聚氯乙烯Polyvinyl Chloride, PVC 几率效应Probable Effect辐射引发Radiation Initiation自由基聚合Radical Polymerization 无规聚合物Random Copolymer无规预聚物Random Prepolymer竞聚率Reactivity Ratios重复单元Repeating Unit缓聚作用Retardation缓聚剂Retarder可逆加成-断裂转移自由基聚合Reversible Addition Fragmentation Transfer, RAFT开环聚合Ring-Opening Polymerization 橡胶Rubber半梯形聚合物Semiladder Polymer侧链Side Chain侧基Side Group固相缩聚Solid Phase Polycondensation 溶液缩聚Solution Polycondensation溶液聚合Solution Polymerization星形聚合物Star-shaped Polymer逐步聚合Step Polymerization立体异构Stereo isomerism有规立构聚合物Stereo-regular Polymer有规立构聚合Stereo-regular Polymerization 定向聚合Stereo-specific Polymerization位阻效应Steric Effect结构单元Structural Unit结构材料Structural Material结构预聚物Structural Prepolymer丁苯橡胶Styrene-Butadiene Rubbers,SBR悬浮聚合Suspension Polymerization增溶胶束Swollen Micelle间规立构Syndiotactic间规度Syndiotacticity间规聚苯乙烯Syndiotactic Polystyrene合成高分子Synthetic Polymer遥爪聚合物T elechelic Polymer涤纶Terylene or Poly(ethylene terephthalate), PET 热引发Thermal Initiation热塑性聚合物Thermoplastic Polymer热固性聚合物Thermosetting Polymer体型缩聚Three Dimensional PolycondensationZigler-Natta引发剂Zigler-Natta -Initiator。
International Communications in Heat and Mass Transfer
7Numerical simulation of residual stress andbirefringence in the precision injection molding of plastic microlens arrays Original Research ArticleInternational Communications in Heat and Mass Transfer,Volume 36, Issue 3, March 2009, Pages 213-219Can Weng, W.B. Lee, S. To, Bing-yan JiangClose preview | Related articles | Related reference work articlesAbstract | Figures/Tables | ReferencesAbstractMicrolens arrays are critical components in the assembly of display devices usedin various telecommunication products. The optical quality of these plastic lensesis very sensitive to the presence of residual stress. In this paper the distribution ofresidual stress and birefringence of these microlens arrays has been investigated.It is found that maximum residual stress always occurs in the regions near thegate. The predicted trends and patterns of the residual stress and birefringencedistribution agree well with the experimental results. The effects of six mainprocessing parameters on maximum value of residual stress are studied. Thenoticeable discrepancy between the simulation and the experimental results are discussed.Article OutlineNomenclature1. Introduction2. Mathematical modeling3. 3D numerical simulation4. Experimental verification5. Effects of processing factorsPurchase6. Results and discussion7. Conclusions AcknowledgementsReferences8Automated manufacturing environment to address bulkpermeability variations and race tracking in resintransfer molding by redirecting flow with auxiliarygatesOriginal Research ArticleComposites Part A: Applied Science and Manufacturing,Volume 36, Issue 8, August 2005, Pages 1128-1141Jeffrey M. Lawrence, Peter Fried, Suresh G. AdvaniClose preview | Related articles | Related reference work articlesAbstract | Figures/Tables | ReferencesAbstractLiquid Composite Molding (LCM) processes inject a resin into a closed moldcontaining fiber preforms to manufacture a polymeric composite. Many a times,resin does not fully saturate the fiber perform causing one to discard thecomposite part as scrap. In order to make LCM processes more reliable, ascientific understanding of the resin flow and impregnation into the porousnetwork containing fiber preform can lead to advanced manufacturing techniqueswhich can rely on flow control approaches to improve the yield. The flow is usuallycontrolled by redirecting the resin flow by strategically opening and closingauxiliary injection gates as dictated by the flow monitoring sensor system. Thereare various approaches to generating such strategies. Once such technique,scenario-based control, has exhibited the potential to compensate for flowdisturbances such as race tracking. However, a flexible and reliablemanufacturing environment is needed in order to carry out experiments inadvanced LCM processing. For this, an automated Resin Transfer Moldingapparatus was designed and built, containing all of the necessary components.Flow sensors allow for the monitoring of the fluid advancement. IndividuallyPurchasecontrollable injection gates and vents allow for geometrical flexibility and flow control. The following study demonstrates usefulness of the manufacturing tool to implement, validate and uncover limitations of a scenario-based flow control approach with geometries of increasing complexity.Article Outline1. Introduction1.1. Liquid composite molding processes1.2. Modeling and simulation1.3. Disturbances/variations in the process2. RTM workstation2.1. Mold2.2. Flow distribution system2.3. Sensor plate2.4. Controlling computer3. Flow control during filling4. Selected geometries for study4.1. Fender geometry4.2. Engine hood geometry4.3. Windows geometry5. Limitations5.1. Mode detection sensitivity5.2. Separation of mode detection and control5.3. Need for parameters6. ConclusionsAcknowledgementsReferences9 Multivariate regression modeling for monitoring quality of injection moulding components using cavity sensortechnology: Application to the manufacturing ofpharmaceutical device components Original Research ArticleJournal of Process Control , Volume 21, Issue 1, January 2011, Pages 137-150Magida Zeaiter, Wendy Knight, Simon HollandClose preview | Related articles | Related reference work articlesAbstract | Figures/Tables | ReferencesAbstractThere is an increased demand within the moulding industry to improve the quality of moulded parts by maintaining consistent tolerances and overall dimensions. This interest is more important in areas of the moulding industry that are dedicated to pharmaceutical devices, where a quality by design approach is now expected to be adopted. A pharmaceutical device is an assembly of different plastic components which are manufactured by injection moulding; many have critical quality parameters which affect not only the device appearance but also more importantly its performance for drug delivery. Hence, the need of better understanding and control of injection moulding processes. This study presents the use of multivariate regression modeling approach to monitor the quality of the final product using cavity sensor technology (CST). The influence of the injection moulding process parameters on the quality of the final parts have beeninvestigated using a design of experiment approach. The results demonstrate that the Partial Least Squares (PLS) regression model based on cavity pressure sensor data could be successfully used to monitor the quality (weight, dimensions) of the final product in plastic injection moulding.Article Outline1. Introduction2. Background on injection moulding process3. Experimental conditionsPurchase4. Data summary5. Multivariate regression modeling of pressure cavity sensor data5.1. Model building 5.2. Results5.2.1. Model building – cross validation 5.2.2. Model validation and testing5.2.2.1. Dependent test 5.2.2.1.1. Discussion 5.2.2.2. Independent test 5.2.2.2.1. Weight 5.2.2.2.2. Dimensions6. Discussion and conclusion Acknowledgements References10In-line process conditions monitoring expert system forinjection molding Original Research ArticleJournal of Materials Processing Technology , Volume 101,Issues 1-3, 14 April 2000, Pages 268-274Felix T. S. Chan, Henry C. W. Lau, Bing Jiang Close preview | Related articles | Related reference work articlesAbstract | Figures/Tables | ReferencesAbstractInjection molding is one of the most important and efficient manufacturing industries in Hong Kong and China, and has the capability to manufacture high-value-added products. Optimizing process parameters in-line is difficult to achieve due to a large number of factors being involved and the time-limited restriction. This paper describes a monitoring expert system, which is able to predict the developing trends of injection molding operation parameters. In addition, this system provides expert advice on the appropriate actions to bePurchasetaken before the occurrence of quality problems. The knowledge representation, the structure of the knowledge base, and the inference engine of the monitoring expert system are presented in this paper. One of the main objectives of the research project is to assist operators for quick response in-line, and thus to ensure the quality of the product and improve the production rate. Practicalexamples regarding the use of this monitoring expert system for a plasticmolding company are also included.Article Outline1. Introduction2. Literature review3. Outline of the expert system — MCMES4. Knowledge base and knowledge representation5. Inference engine6. On-site tests of the MCMES7. Evaluations and benefits8. ConclusionReferences11Mechanical failure classification for spherical rollerbearing ofhydraulic injection molding machine usingDWT–SVM Original Research ArticleExpert Systems with Applications, Volume 37, Issue 10,October 2010, Pages 6742-6747Guang-ming XianClose preview | Related articles | Related reference work articlesAbstract | Figures/Tables | ReferencesAbstractThis paper presents a combined discrete wavelet transform (DWT) and supportvector machine (SVM) technique for mechanical failure classification ofPurchasespherical roller bearing application in high performance hydraulic injection molding machine. The proposed technique consists of preprocessing the mechanical failure vibration signal samples using Db2 discrete wavelet transform at the fourth level of decomposition of vibration signal for mechanical failure classification. After feature extraction from vibration signal, support vectormachine is used for decision of mechanical failure types of the spherical rollerbearing. The classification results indicate the effectiveness of the combinedDWT and SVM based technique for mechanical failure classification of hydraulicinjection molding machine.Article Outline1. Introduction2. Spherical roller bearing application in hydraulic and hybrid injection moldingmachines3. Discrete wavelet transform4. SVM approach for classification5. Experimental results and analysis5.1. Classification performance comparison of mechanical failure using differentmethods5.2. Kernel function and parameters selection of SVM for mechanical failureclassification5.3. Noise analysis for the proposed DWT–SVM technique6. ConclusionAcknowledgementsReferences12PSO-based back-propagation artificial neural networkfor product and mold cost estimation of plasticinjection molding Original Research ArticleComputers & Industrial Engineering, Volume 58, Issue 4,May 2010, Pages 625-637PurchaseZ.H. CheShow preview | Related articles | Related reference work articles13Closed-loop flow control in resin transfer molding usingreal-time numerical process simulations OriginalResearch ArticleComposites Science and Technology , Volume 62, Issue 2,February 2002, Pages 283-298 D. R. Nielsen, R. PitchumaniShow preview | Related articles | Related reference work articlesPurchase14Flow sensing and control strategies to addressrace-tracking disturbances in resin transfermolding —part II: automation and validation OriginalResearch ArticleComposites Part A: Applied Science and Manufacturing , Volume 36, Issue 11,November 2005, Pages 1581-1589 Mathieu Devillard, Kuang-Ting Hsiao, Suresh G. AdvaniShow preview | Related articles | Related reference work articlesPurchase 15Near infrared spectroscopy for in-line monitoring during injection moulding Original Research Article。
扬州市人民政府关于2017-2019年度扬州市自然科学优秀学术论文评选结果的通报
扬州市人民政府关于2017-2019年度扬州市自然科学优秀学术论文评选结果的通报
文章属性
•【制定机关】扬州市人民政府
•【公布日期】2021.03.05
•【字号】扬府发〔2021〕16号
•【施行日期】2021.03.05
•【效力等级】地方规范性文件
•【时效性】现行有效
•【主题分类】科技成果与知识产权
正文
市政府关于2017-2019年度扬州市自然科学优秀学术论文评选结果的通报-市政府文件-政府办
各县(市、区)人民政府,经济技术开发区、生态科技新城、蜀冈—瘦西湖风景名胜区管委会,市各委办局(公司),市各直属单位:
为提高我市自然科学学术水平,鼓励全市科技工作者开展学术创新服务发展,促进全市科技人才成长,2020年我市开展了2017-2019年度扬州市自然科学优秀学术论文评选工作,共征集到701篇论文,其中675篇论文通过资格审查。
经评审委员会评定,分理工类、农业类、医药类、管理教育类,共评出优秀学术论文269篇,其中一等等次33篇、二等等次101篇、三等等次135篇。
经研究,市政府决定对评选出的269篇优秀学术论文给予通报并颁发证书。
希望全市各级科技团体和广大科技工作者,以科技赋能产业为己任,积极开展学术研究,主动投身科技创新,脚踏实地,严谨求是,把“好地方”扬州建设得好上加好、越来越好做出积极贡献。
附件:2017-2019年度扬州市自然科学优秀学术论文评选结果
扬州市人民政府
2021年3月5日附件
2017-2019年度扬州市自然科学优秀学术论文评选结果
一等等次(33篇)
二等等次(101篇)
三等等次(135篇)。
电感耦合等离子体质谱法测定饮用水中的钛
表1两种方法测试Ti结果比对
样品名称
空白 自来水 饮用水 饮用水加标
ICP-MS
测定值 标准偏差
/(ug/L)
/%
—0. 028
/
91.1
0. 6
95.1
0. 3
8& 20%
1.2
ICP
测定值
标准偏差
/(ug/L)
/%
—0. 014
/
1. 78
2. 5
1. 96
3. 6
93.60%
2. 9
Ti 标液 30Mg/L 29.23
and Environment, Xiangyang, Hubei 441021, China ; 2. Xiangyang Enviromental Protection Monitoring Station , Xiangyang, Hubei 441021, China))
Abstract: ICP—MS has high sensitivity, low detection limit and simultaneous determination of multiple elements. It (下转第93页)
量:12 L/min,辅助气流量:1. 0 L/min,雾化器流量: 0. 60 L/min。 2.3试样的制备
采集的饮用水样品经0. 45 urn滤膜过滤,弃去 50 mL初始滤液,加入适量硝酸将酸度调节至pHV2。 2.4标准溶液的配置
配制Ti单元素标准溶液1、5、10、20、50、100、200 “g/L和内标混合液10 “g/L,用1%的硝酸溶液定容。
11.1 1.432 95. 1 2. 154
87 93. 10 8& 2 90. 8
ATRP活性聚合
ATRP 在嵌段共聚物合成中的应用进展摘要:段共聚物作为一种新型的高分子材料越来越受到人们的关注,原子转移自由基聚合(ATRP)作为一种“活性/可控”聚合方法,在嵌段共聚物合成领域发挥着重要的作用。
文中主要介绍了近年来采用ATRP 合成的不同性能的嵌段高分子聚合物,并对ATRP 在嵌段共聚物中的应用前景进行了展望。
关键词:原子转移自由基聚合;合成;嵌段共聚物0 引言原子转移自由基聚合(Atom Transfer Radical Polymerization, ATRP)现在作为“活性/可控”自由基聚合技术,具有聚合条件温和(甚至可以在少量氧存在下进行),使用单体范围广范,分子设计能力强等特点,正逐渐成为合成功能高分子材料的有力手段而备受关注[1~4]。
是现在其他活性聚合方法所无法比拟的。
1 ATRP 的反应机理1.1 ATRP 简介原子转移自由基聚合(ATRP)是以低价态过渡金属配合物作为催化剂的“活性/可控”聚合,是制备具有预期分子量、精确末端官能团和预期链结构聚合物的新技术。
早在1995 年王锦山和Matyjaszewski 等人首先报道了一种新型自由基聚合方法[ 5,6 ],它是以卤代化合物为引发剂,过渡金属化合物以适当的配体为催化剂,使可进行自由基聚合的单体进行具有活性特征的聚合。
ATRP 方法进行聚合反应的单体,一般都是一端含有一个卤素端基,另一端含有功能化引发端基;或者两端皆为卤素端基。
这些端基很容易进一步的功能化,合成出相对分子量分布较窄的聚合物。
1.2 ATRP 反应机理过渡金属化合物Mtn 从有机卤化物“提取”出卤原子,产生氧化物种Mtn+1X 和初级自由基R· ;随后自由基R·和烯烃M 反应,生成单体自由基R-M· (即活性种);R-M·与40 Mtn+1X 反应,得到目标物种R-M-X;同时过渡金属被还原为Mtn,可再次引发新一轮的氧化还原反应。
中国科学院大连化学物理研究所
中国科学院大连化学物理研究所优秀博士后支持计划申请表
申请人:宋永杨
研究组: 1803组
学科专业:分析化学
合作导师:梁鑫淼
填表日期: 2019年5月7日
中国科学院大连化学物理研究所制
1 乳液界面聚合制备具有亲水/疏水异质结构的多孔聚合物微球。
申请人在博士期间工作的基础上,博士后阶段将依托梁鑫淼研究员课题组,拟开展应用于糖蛋白高选择性分离的新型异质多孔微球的研究。
在异质多孔微球分离材料模型的思路下,利用乳液界面聚合,设计能和糖蛋白特异性识别的功能单体,并调控亲疏水功能单体的比例和其他参数,制备并优化出一系列能选择性分离糖蛋白的异质多孔聚合物微球,并建立相应的糖蛋白富集方法,用于复杂样品中糖蛋白的高选择性分离。
乳液界面聚合是一种普适性的方法,适用于不同种类的(含碳碳双键的)可聚合单体,包括亲水单体和疏水单体。
此外,通过调节单体的浓度,能实现微球孔径、表面亲疏水性的可控调节。
因此,通过异质多孔微球实现糖蛋白的高选择性分离具有可行性。
具有特异选择性基团的异质多孔微球,不同于传统的均质微球,或表面修饰特异性单分子层的微球,能很大程度上避免背景分子的非特异性吸附,从而提高分离效率。
本人承诺:申请表所填内容均真实可靠。
对因虚报、伪造等行为引起的后果及法律责任均由本人承担。
2019年月日。
DiO (细胞膜绿色荧光探针) 说明书
DiO (细胞膜绿色荧光探针)产品编号 产品名称包装 C1038DiO (细胞膜绿色荧光探针)10mg产品简介:DiO 即DiOC18(3),全称为3,3′-dioctadecyloxacarbocyanine perchlorate ,是最常用的细胞膜荧光探针之一,呈现绿色荧光。
DiO 是一种亲脂性膜染料,进入细胞膜后可以侧向扩散逐渐使整个细胞的细胞膜被染色。
DiO 在进入细胞膜之前荧光非常弱,仅当进入到细胞膜后才可以被激发出很强的荧光。
DiO 被激发后可以发出绿色的荧光,DiO 和磷酯双层膜结合后的激发光谱和发射光谱参考下图。
其中,最大激发波长为484nm ,最大发射波长为501nm 。
DiO 的分子式为C 53H 85ClN 2O 6,分子量为881.72,CAS number 为34215-57-1。
DiO 可以溶解于无水乙醇、DMSO 和DMF ,其中在DMSO 溶解度大于为10mg/ml 。
发现较难溶解时可以适当加热,并用超声处理以促进溶解。
DiO 被广泛用于正向或逆向的,活的或固定的神经等细胞或组织的示踪剂或长期示踪剂(long-term tracer)。
DiO 通常不会明显影响细胞的生存力(viability)。
DiO 对于细胞膜染色的荧光强度通常要低于DiI ,有时对于某些经过固定的组织的染色效果欠佳。
DiO 除了最简单的细胞膜荧光标记外,还可以用于检测细胞的融合和粘附,检测发育或移植过程中细胞迁移,通过FRAP(Fluorescence Recovery After Photobleaching)检测脂在细胞膜上的扩散,检测细胞毒性和标记脂蛋白等。
用于细胞膜荧光标记时,DiO 的常用浓度为1-30μM ,最常用的浓度为5-10μM 。
DiO 可以直接染色活的细胞或组织,染色时间通常为5-20分钟。
对于固定的细胞或组织,通常宜使用配制在PBS 中的4%多聚甲醛进行固定,使用其它不适当的固定液会导致荧光背景较高。
溶剂挥发法制备大孔聚合物微球
第33卷第6期高校化学工程学报No.6 V ol.33 2019 年12月 Journal of Chemical Engineering of Chinese Universities Dec. 2019文章编号:1003-9015(2019)06-1509-07溶剂挥发法制备大孔聚合物微球冯子雄, 徐建昌, 章莉娟(华南理工大学化学与化工学院, 广东省绿色化学产品技术重点实验室, 广东广州 510640)Ⅳ为原料,通过溶剂挥发法制备大孔聚合物微球。
摘要:以乙基纤维素(EC)和具有pH敏感性的聚丙烯酸树脂(PAR)聚合物浓度和乳化剂聚乙烯醇(PVA)的浓度影响聚合物微球的粒径大小,聚合物浓度减小或乳化剂浓度增大有利于形成较小的微球。
研究了pH和PAR/EC质量比对微球孔结构、比表面积的影响,分析了微球多孔结构形成的机理。
溶液的pH可改变PAR的亲疏水性,影响微球的孔结构:酸性环境中得到的微球表面出现致密的大孔,内部是复杂的多孔网络结构,碱性环境中则得到表面无孔的微球。
因此,可通过调节溶液PAR/EC质量比和pH来调控微球的孔结构。
关键词:聚丙烯酸树脂IV;聚合物微球;溶剂挥发法;大孔;pH敏感性中图分类号:TQ031 文献标志码:A DOI:10.3969/j.issn.1003-9015.2019.06.028 Preparation of macroporous polymer microspheres by a solvent evaporation methodFENG Zi-xiong, XU Jian-chang, ZHANG Li-juan(School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China)Abstract: Macroporous polymer microspheres were prepared using ethyl cellulose (EC) and pH-sensitive polyacrylic resin Ⅳ(PAR) by a solvent evaporation method. The particle size of polymer microspheres was affected by the concentrations of polymers and emulsifier polyvinyl alcohol (PV A). The reduction of polymer concentration or the increase of emulsifier concentration was beneficial for the formation of microspheres with smaller size. The effects of pH and PAR/EC mass ratio on the pore structure and specific surface area of microspheres were studied. The results show that the change of solution pH affects the hydrophilicity of PAR, which results in different pore structures of microspheres. The microspheres synthesized in acidic solution have dense surface macropores and complex inner porous network structures, while nonporous microspheres can be obtained in alkaline environment. Therefore, the pore structure of microspheres can be regulated by adjusting PAR/EC mass ratios and solution pH.Key words: polyacrylic resin IV; polymer microspheres; solvent evaporation; macroporous;pH-sensitive1 前言大孔材料(孔径大于50 nm)相较于微孔与介孔具有许多独特的性能,例如良好的通透性、材质选择的广泛性、高效的吸附和分离性能,以及易于化学改性[1-2]。
ABSORBENT CORES HAVING MATERIAL FREE AREAS
专利名称:ABSORBENT CORES HAVING MATERIAL FREEAREAS发明人:Juliane KAMPHUS申请号:US15337358申请日:20161028公开号:US20170135871A1公开日:20170518专利内容由知识产权出版社提供专利附图:摘要:An absorbent core for use in an absorbent article is provided and comprises a core wrap enclosing an absorbent material, the absorbent material comprisingsuperabsorbent polymer particles. The superabsorbent polymer particles represent lessthan 85% by weight based on the total weight of the absorbent material. The core wrap comprises a top side and a bottom side, the absorbent core comprises one or more area(s) substantially free of absorbent material through which the top side of the core wrap is attached to the bottom side of the core wrap, so that when the absorbent material swells the core wrap forms one or more channel(s) along the area(s) substantially free of absorbent material. The superabsorbent polymer particles have a value of Absorption Against Pressure (AAP) of at least 22 g/g according to the Absorption Against Pressure Test Method and a bulk density of at least 0.5 g/ml according to the Bulk Density Test Method.申请人:The Procter & Gamble Company地址:Cincinnati OH US国籍:US更多信息请下载全文后查看。
印刷技术术语 第6部分:孔版印刷术语-最新国标
印刷技术术语第6部分:孔版印刷术语1范围本文件界定了孔版印刷技术及其应用所涉及的术语和定义。
本文件适用于孔版印刷技术及其应用领域的生产、教学、科研和技术交流等。
2规范性引用文件本文件没有规范性引用文件。
3基础术语3.1孔版印刷porous printing(permeographic printing)印料透过印版的镂空区域,在承印物上形成图文信息的印刷方式。
3.2网版印刷screen printing印版镂空区域呈孔洞状的孔版印刷(3.1)。
3.3丝网印刷fabric printing(screen printing)印版镂空区域由线状材料形成的网版印刷(3.2)。
4制版4.1丝网screen mesh经纬线梭织而成,具有相同开孔的网版印刷(3.2)材料。
4.1.1丝网目数mesh count(screen mesh count)单位长度内丝网(4.1)的开孔数量。
4.1.2断裂伸长率breaking elongation radio(breaking elongation ratio)丝网(4.1)经向或纬向拉伸至断裂时的伸长量与拉伸前长度的比值。
4.1.3丝网厚度thickness of mesh(screen mesh thickness)丝网(4.1)两个表面间的最大垂直距离。
4.1.4开孔宽度width of mesh opening(aperture width)丝网(4.1)相邻两条经线之间和两条纬线之间最大垂直距离的较大值。
4.1.5开孔面积aperture area丝网(4.1)单个网孔的面积。
4.1.6丝网开孔率open mesh area ratio(aperture percentage)一定面积内,开孔总面积与丝网(4.1)面积的比值。
4.1.7丝网容积theoretical ink volume丝网厚度(4.1.3)与开孔面积(4.1.5)的乘积。
4.2网框screen printing frame(screen frame)固定丝网(4.1)的闭合性框架装置。
固废基水化硅酸钙制备及综合利用研究进展
518
硅 酸 盐 通 报
资源综合利用
第 43 卷
镓、稀土等宝贵资源,该资源的高值化利用既能减少对矿产资源的开采,又符合国家战略矿产资源的循环利
用导向,有利于保障相关战略资源的安全供给 [2] 。 但上述再生资源的循环利用过程中,大量伴生硅元素难
以有效利用,不可避免地会带来一定的二次污染问题,因此硅资源的脱除与利用是制约固废高值化利用的关
Na2 SiO3 , Ca( NO3 ) 2
C4 H10 O2 Ca, C8 H20 O4 Si
C3 S, C2 S
Blast furnace slag, water quenching
slag, fly ash, calcium carbide
slag and other bulk solid waste
参考。
1 固废基水化硅酸钙的制备
传统的 C-S-H 合成方法主要是以石英、硅灰、硅藻土等硅质材料与生石灰、煅烧石灰石等钙质材料按一
定比例混合,在特定的反应条件下结晶形成,从而具有较高的纯度,但原材料成本较高,合成条件苛刻,难以
大规模利用,适用于微观结构和物化机理表征,为 C-S-H 性能调控提供实验支撑,多用于加速水泥水化研究。
硅
第 43 卷 第 2 期
2024 年 2 月
BULLETIN
OF
酸
THE
盐
CHINESE
通
CERAMIC
报
SOCIETY
Vol. 43 No. 2
February,2024
固废基水化硅酸钙制备及综合利用研究进展
朱崟源1 ,朱干宇2 ,齐 放2 ,李会泉2,3 ,陈 艳2 ,李少鹏2 ,郭彦霞1
2种前处理方法对多孔淀粉吸油率的影响
2种前处理方法对多孔淀粉吸油率的影响张洪微;崔素萍;唐彦君;曲颖【摘要】为了制备高吸油率的马铃薯多孔淀粉,分别采用超声波和加热预处理辅助酶法处理马铃薯淀粉,研究超声波条件与加热预处理条件对多孔淀粉吸油率的影响.研究结果表明:超声波法最佳条件为超声时间30 min、超声功率600 W、酶解温度55℃、pH 6.5、酶用量1.5%,所得多孔淀粉的吸油率为71.34%;加热预处理最佳反应条件为淀粉乳质量浓度30 g/100 mL,加热温度50℃,加热时间为15 rmin,过筛细度80目,酶解条件同超声波法,制备的多孔淀粉吸油率为69.05%.因此,两种前处理方法都可用于制备多孔淀粉,但超声波辅助酶法优于加热预处理辅助酶法.【期刊名称】《中国粮油学报》【年(卷),期】2016(031)008【总页数】4页(P13-16)【关键词】超声波法;加热预处理法;多孔淀粉;吸油率【作者】张洪微;崔素萍;唐彦君;曲颖【作者单位】黑龙江八一农垦大学食品学院,大庆163319;黑龙江八一农垦大学食品学院,大庆163319;黑龙江八一农垦大学食品学院,大庆163319;黑龙江八一农垦大学食品学院,大庆163319【正文语种】中文【中图分类】TS235.2多孔淀粉与天然淀粉相比,具有较大的比表面积,较低的颗粒密度及良好的吸水、吸油、分散等优良性能,可用于食品色素、香料、调味料、维生素、酶制剂、糖果、油脂、粉末食品等产品中,应用价值很高[1-4]。
多孔淀粉的制备方法有物理法、化学法及生物酶法3种,物理法难以实现工业化生产,化学法生产的多孔淀粉成孔效果不好,因此生物酶法是目前制备多孔淀粉的主要方法。
有研究表明[5-6],葡萄糖酶、α-淀粉酶、普鲁兰酶、糖化酶等可用于多孔淀粉的制备,且葡萄糖酶与α-淀粉酶组合使用效果较好,制备的多孔淀粉吸水率和吸油率都较高。
而不同来源的淀粉对酶的敏感性也不同,Fannon等[7]研究发现,玉米、高粱、小麦、黑麦及大麦等淀粉粒表面自然存在小孔,因此有利于酶的作用,使孔径和孔深增加,并提高孔的数量;而稻米、燕麦、马铃薯和木薯等淀粉表面没有发现小孔,酶作用后成孔数量少,孔径小,尤其是马铃薯淀粉表面只形成杂乱的纹路,这个现象说明,淀粉粒表面的孔洞可能是酶最初的作用位点,其允许酶分子进入淀粉粒内部发挥作用,所以对于马铃薯淀粉制备多孔淀粉时,在酶解前的处理是非常关键的步骤。
氟化石墨烯对聚酰亚胺复合薄膜力学性能的影响
氟化石墨烯对聚酰亚胺复合薄膜力学性能的影响白瑞;刘皓;高平强;卢翠英;刘晓菊【摘要】采用溶液共混法制备了聚酰胺酸/氟化石墨烯混合溶液,然后通过流延涂膜和阶梯升温的方法制备了不同含量的聚酰亚胺/氟化石墨烯(PI/FG)复合薄膜,研究了PI/FG复合薄膜的晶相结构和物质结构以及不同掺杂量的氟化石墨烯对PI/FG复合薄膜的力学性能的影响.结果表明,制备了聚酰亚胺/氟化石墨烯复合薄膜,且氟化石墨烯含量越高聚酰亚胺的力学性能越好,当氟化石墨烯质量分数为1.0%时,PI/FG 复合薄膜的拉伸强度、弹性模量、断裂伸长率可分别高达237.26 MPa、4.23 GPa和5.58%.【期刊名称】《河南科学》【年(卷),期】2018(036)012【总页数】5页(P1910-1914)【关键词】聚酰亚胺;氟化石墨烯;复合薄膜;力学性能【作者】白瑞;刘皓;高平强;卢翠英;刘晓菊【作者单位】榆林学院化学与化工学院,陕西榆林 719000;榆林学院化学与化工学院,陕西榆林 719000;榆林学院化学与化工学院,陕西榆林 719000;榆林学院化学与化工学院,陕西榆林 719000;榆林学院化学与化工学院,陕西榆林 719000【正文语种】中文【中图分类】TB332聚酰亚胺作为一种重要的工程塑料,具有耐高、低温,耐化学腐蚀性,机械强度高,绝缘性好,化学性质稳定,合成方法多等优异性能,在航天航空、电子电气及工业机械等领域中广泛应用[1-5].具有低介电常数的聚酰亚胺薄膜可以有效缓解当今微电子领域超大规模集成电路中由于信号在传输过程中产生的RC延迟、串扰、能耗大、噪声高等问题[6].目前,制备低介电聚酰亚胺薄膜的方法大致归纳为三种:①引入纳米分散的空气;②改变聚酰亚胺本体结构;③填充低介电常数材料[7-10].通过聚酰亚胺中引入多孔结构制备低介电常数聚酰亚胺是目前研究的热点之一[11-14].但是多孔薄膜仍存在着严重问题:结构容易坍塌,力学性能差,不利于加工,而且会带来吸潮性上升导致器件性能下降等[15-16].采用石墨烯[17]的新型衍生物——氟化石墨烯[18-22]引入强电负性的氟原子可以降低聚酰亚胺分子的电子和离子极化率,从而达到降低PI介电常数的目的.此外,通过填充氟化石墨烯这种片层状填料不仅会降低聚酰亚胺的介电常数,还会提高聚酰亚胺的力学性能[23-25].本论文采用氟化石墨烯为填料、聚酰亚胺为基体,通过溶液共混法制备聚酰亚胺/氟化石墨烯混合溶液,然后通过流延涂膜和阶梯升温的方法制备了不同质量分数的聚酰亚胺/氟化石墨烯(PI/FG)复合薄膜,借助红外光谱仪、X射线衍射仪、扫描电镜以及微控电子万能试验机对PI/FG复合薄膜的晶相结构、微观形貌以及力学性能进行测试研究,并且加以分析讨论.1 实验材料与方法1.1 实验材料3,3,4,4-二苯酮四酸二酐(BTDA),99%,购买于北京百灵威科技有限公司;4,4′-二氨基二苯醚(ODA),98%,购买于北京百灵威科技有限公司;氟化石墨(CF0.45),分析纯,购买于上海鑫鑫实业股份有限公司;N,N-二甲基乙酰胺,分析纯,购买于天津博迪化工股份有限责任;N-甲基吡咯烷酮,分析纯,购买于天津市致远化学试剂有限公司;丙酮,分析纯,购买于天津市福晨化学试剂厂;无水乙醇,分析纯,天津市福晨化学试剂厂;超纯水,RO>18 MΩ·cm,自制. Quanta 200F型扫描电子显微镜,美国FEI公司生产;D/max-rb型X射线衍射仪,日本理学公司生产;Nicollt Avatar 360型红外光谱仪,美国Nicollt公司生产;WDW-20型微控电子万能试验机,长春科新实验仪器有限公司生产.微控电子万能试验机进行力学性能测试时,拉伸试样需要根据国际标准GB 13022—91《塑料薄膜拉伸性能的测定》进行裁剪.1.2 实验方法称取一定量的ODA加入盛有40 mL DMAc的三口烧瓶中并通氮气,室温搅拌至ODA完全溶解.然后以一定的物质的量的比称取适量的BTDA分三批加完,每次加入之前保证上一次溶解完全.随着BTDA的加入,溶液逐渐变黄,同时黏度增大.待溶液包裹在搅拌桨周围时,降低搅拌速度继续搅拌一定时间,即可得到棕黄色的、黏稠的PAA溶液,然后按照一定的质量分数向每份前驱体中加入相应的氟化石墨烯溶液,然后氮气气氛中机械搅拌5 h,由此获得氟化石墨烯质量分数为0、0.2%、0.5%、1.0%和2.0%的PAA/FG混合溶液.最后通过流延涂膜、静置消泡以及阶梯升温法获得不同质量分数的PI/FG复合薄膜.2 结果与分析2.1 PI/FG复合薄膜FTIR表征图1是不同质量分数的PI/FG复合薄膜的FTIR图和2000~500 cm-1区域局部放大图.观察图中PAA和PI的红外光谱可以发现,在1772 cm-1和1712 cm-1处出现了明显的吸收峰,这分别是主链中羰基(C==O)对称和不对称伸缩振动峰,720 cm-1为羰基的弯曲振动峰,1494 cm-1为芳香苯环的振动峰,1370 cm-1为C—N基的伸缩振动峰,1230 cm-1为主链中C—O—C基的伸缩振动峰,这些均为聚酰亚胺的特征峰,说明所制备的复合薄膜为聚酰亚胺.PAA曲线中2925~3427 cm-1处是-OH和-NH的伸缩振动峰,1604 cm-1是酰亚胺基(CONH)中C==O伸缩振动峰,均为PAA的特征吸收峰,而在PI曲线中这些特征振动峰都消失,说明热亚胺化过程比较彻底,聚酰胺酸全部转化为聚酰亚胺.而在1084 cm-1处是C—F的吸收振动峰,且随着氟化石墨烯含量的增加,吸收峰逐渐增强,这是因为氟化石墨烯与聚酰亚胺成功复合.图1 不同质量分数的PI/FG复合薄膜的FTIR图Fig.1 Typical FTIR patterns of PI/FG composite films with different mass content2.2 PI/FG复合薄膜XRD表征图2 为聚酰亚胺及不同质量分数的PI/FG复合薄膜的XRD谱图.从图中可以看出纯PI薄膜在2θ=18.7°处出现了一个明显的衍射峰,这是表征聚酰亚胺特有的特征峰,表明聚酰亚胺薄膜具有一定的结晶度.而该衍射峰较宽,揭示了聚酰亚胺结晶能力较弱.这是因为聚酰亚胺主链上含有杂原子(如:氧、氮)不同程度地降低了分子链的对称性,但是仍属于对称结构,因此结晶能力下降很多,但仍能结晶.此外分子链柔顺性的好坏也是影响其结晶能力的一个因素.聚酰亚胺由于主链上含有密度较大的苯环,因此会降低主链的柔顺性,从而减弱了其结晶能力.聚酰亚胺和氟化石墨烯复合之后,发现所对应的峰向左移动,在2θ=14.8°出现了一个新的衍射峰,这是氟化石墨烯六方晶系(001)晶面的衍射峰,说明氟化石墨烯成功复合到聚酰亚胺基体中.随着氟化石墨烯填料的增加,PI/FG复合薄膜的XRD曲线趋势基本没有发生变化,但是对应峰的强度越来越高.图2 不同质量分数的PI/FG复合薄膜的XRD图Fig.2 Typical XRD patterns of PI/FG composite films with different mass content2.3 PI/FG复合薄膜力学性能测试图3 是不同含量PI/FG复合薄膜的力学性能测试结果.从图中可以看出,随着含量的增加,拉伸强度、弹性模量以及断裂伸长率均出现先增长后下降的趋势.添加少量氟化石墨烯时,PI/FG复合薄膜的拉伸强度、弹性模量以及断裂伸长率都出现增加趋势,说明氟化石墨烯加入聚酰亚胺基体中可以起固化加强作用,这可能是由于氟化石墨烯在聚酰亚胺中良好的分散性和高的取向性所造成的.此外由于两者之间强大的界面相互作用,使得有效荷载从PI基体传递至氟化石墨烯纳米片层,由此提高了力学性能,此时聚酰亚胺由脆性由断裂转变为韧性断裂.当FG含量继续增加时,拉伸强度、弹性模量以及断裂伸长率开始逐渐下降.分析原因认为是由两个原因造成:一是基体内部可能由于团聚等现象出现应力集中导致;二是增强体在基体中作为物理交联点,限制了聚合物分子链的运动和流动性.断裂伸长率是表征材料韧性程度的一个重要参数,它的大小与分子链的柔顺性有着直接关系.当氟化石墨烯加入过量时,会使分子链运动受到限制造成柔顺性下降.图3 不同质量分数PI/FG复合薄膜的力学性能测试图Fig.3 Mechanical properties patterns of PI/FG composite films with different mass content 2.4 PI/FG复合薄膜断裂面形貌分析图4 是不同质量分数的PI/FG复合薄膜的断裂面扫描电镜图,从图中能够清晰地看出纯聚酰亚胺薄膜的断裂面断口平滑、干净,而且相界面比较清楚,具有明显的脆性断裂特征.氟化石墨烯加入到聚酰亚胺基体后,清晰地看见填料呈多层分布的状态.随着FG含量的增加,可以发现片层分布密度增大,并且发现氟化石墨烯填料在基体中具有很好的分散性.图4(c)和图4(d)分别是质量分数为0.5%和1.0%的PI/FG复合薄膜断裂面电镜图,观察断裂面可以发现与纯聚酰亚胺断裂面相比,PI/FG复合薄膜断口表面相对粗糙,明显不平齐而且相界面比较模糊,存在着大量的韧窝和缩颈,出现明显的塑性变形的特征.出现这种韧性断裂的原因可能是由于氟化石墨烯和聚酰亚胺基体之间强大的界面附着力和良好的兼容性,这样应力便从聚酰亚胺基体转移到氟化石墨烯这种纳米级填充物上.因此,氟化石墨烯和聚酰亚胺基体好的分散性和强的相互作用加固了聚酰亚胺/氟化石墨烯这种复合材料的机械性能.当氟化石墨烯质量分数继续增加至2.0%时,如图4(e)中可以看出,出现了明显的团聚现象,团聚会造成材料内部应力分布不平均,在材料局部范围内的应力急剧地增加,会导致应力集中,应力集中会严重降低材料的强度,由此造成力学性能下降.断裂面分析结果与前面力学性能测试所得到的结果一致.图4 不同质量分数的PI/FG复合薄膜的断裂面扫描电镜图Fig.4 SEM photographs of fracture surface in PI/FG composite films with different mass content3 结论1)通过FTIR和XRD结构表征说明成功制备了PI/FG复合薄膜.2)通过力学性能测试发现当氟化石墨烯质量分数为1.0%时,PI/FG复合材料的最大拉伸强度为237.26 MPa,断裂伸长率最高为5.28%,弹性模量最高为4.23 GPa,表明氟化石墨烯这种片层结构的填料可以有效提高聚酰亚胺的力学性能.3)通过PI/FG复合薄膜的断裂面进行扫描分析发现当添加适量氟化石墨烯时,氟化石墨烯增强体在聚酰亚胺基体中分散性良好,PI/FG复合薄膜断口表面相对粗糙,明显不平齐而且相界面比较模糊,存在着大量的韧窝和缩颈,出现明显的塑性变形的特征;当氟化石墨烯含量过多时,会出现团聚现象.【相关文献】[1]白瑞,高平强,卢翠英.低介电聚酰亚胺/氟化石墨烯复合薄膜的制备及表征[J].表面技术,2017,46(1):36-39.[2]贾英坤,陈培,张青红,等.高温热还原氧化石墨烯/聚酰亚胺复合涂层的制备及防腐性能研究[J].无机材料学报,2017,32(12):1258-1263.[3]熊兵,陈平.含硫聚酰亚胺的合成与表征及性能研究[J].化工新型材料,2017,45(10):88-93.[4]宋晓峰.聚酰亚胺的研究与进展[J].纤维复合材料,2007,33(3):34-37.[5]CHEN D,ZHU H,LIU T X.In situ thermal preparation of polyimide nanocomposites films containing functionlized graphene sheet[sJ].ACS Applied Materials and Interface,2010,2(12):3702-3708.[6]张明艳,程同磊,高升,等.微电子工业用低介电聚酰亚胺薄膜研究进展[J].绝缘材料,2016,49(6):7-11.[7]贝润鑫,陈文欣,张艺,等.低介电常数聚酰亚胺薄膜的研究进展[J].绝缘材料,2016,49(8):1-11.[8]王铭钧,杨晓慧,姚洪喜,等.低介电常数和低介电损耗的含二硅氧烷共聚聚酰亚胺的制备研究[J].绝缘材料,2018(10):16-21.[9]范振国,陈文欣,魏世洋,等.聚酰亚胺介电常数的定量构效关系研究及其低介电薄膜的分子结构设计[J].高分子学报,2018(10):1-10.[10]程凤梅,马明月,李海东.新型纳米ZrO2/聚酰亚胺复合超薄膜的制备表征及其介电性能[J].复合材料学报,2018,35(7):1725-1730.[11]WANG Q H,WANG C,WANG T M.Controllable low dielectric porous polyimide films templated by silica microspheres:microstructure,formation mechanism and propertie[sJ].Journal of Colloid and Interface Science,2013,389:99-105.[12]KIM S,JANG K S,CHOI H D,et al.Porous polyimide membranes prepared by wet phase inversion for use in low dielectric application[sJ].International Journal of Molecular Sciences,2013,14:8698-8707.[13]LEE Y J,HUANG J M,KUO S W,et al.Low-dielectric,nanoporous polyimide films prepared from PEO-POSS nanoparticles[J].Polymer,2005,46:10056-10065.[14]邓超,彭黎莹,秦家强,等.溶胶凝胶法制备具有介孔结构的聚酰亚胺/SiO2多孔复合微球[J].高分子材料科学与工程,2017,33(7):126-130.[15]杨大令,韩晓倩,王立久.低介电常数聚酰亚胺基多孔复合材料的研究进展[J].材料科学与工程学报,2016,34(5):843-847.[16]陆艳博,任文坛,张勇.基于纳米多孔性聚合物低介电常数材料的研究进展[J].化工新型材料,2014,42(11):27-29.[17]刘小花,白海鑫.石墨烯-Nafion修饰电极同时测定邻苯二酚、对苯二酚[J].河南科学,2014,32(1):20-23.[18]吴鹏,王会娜,李宝印,等.氟化石墨烯结构表征及接枝增强芳纶薄膜的力学性能[J].高分子材料科学与工程,2016,32(9):59-64.[19]ZHANG M,MA Y C,ZHU Y Y,et al.Two-dimensional transparent hydrophobic coating based on liquid-phase exfoliated graphene fluoride[J].Carbon,2013,63:149-156.[20]WANG Z F,WANG J Q,LIIU X H,et al.Synthesis of fluorinated graphene withtunable degree of fluorination[J].Carbon,2012,50:5403-5410.[21]何云凤,顾健,李磊,等.简捷水热法制备氟化石墨烯及其表征[J].材料导报,2018,32(S1):141-143.[22]康文泽,李尚益,刘玉.氧化法制备氟化石墨烯及其性能研究[J].炭素技术,2018,37(2):32-36.[23]曹洪,韦建军,王锋.热处理对聚酰胺酸薄膜的光学及力学性能的影响研究[J].化学研究与应用,2017,29(7):951-956.[24]刘向阳.氟化石墨烯制备及其聚酰亚胺复合材料[C]//中国化学会高分子学科委员会.2015年全国高分子学术论文报告会论文摘要集——主题J高性能高分子.苏州:中国化学会高分子学科委员会,2015.[25]陈植耿.多孔聚酰亚胺/氧氟化石墨烯复合薄膜的制备及性能[C]//中国化学会高分子学科委员会.2015年全国高分子学术论文报告会论文摘要集——主题J高性能高分子.苏州:中国化学会高分子学科委员会,2015.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Colloid and Interface Science310(2007)529–535/locate/jcisControllable porous polymer particles generated by electrosprayingYiquan Wu a,b,Robert L.Clark a,b,∗a Center for Biologically Inspired Materials&Materials System,Duke University,Durham,NC27708,USAb Mechanical Engineering and Material Science,Pratt School of Engineering,Duke University,Durham,NC27708,USAReceived24November2006;accepted3February2007Available online14February2007AbstractIn this paper,an electrospraying technique was applied to prepare polycaprolactone(PCL)polymer particles with a different microstructure.The PCL particles can be controlled to have a porous microstructure by tailoring the evaporation of solvents during the electrospraying process.The effect of various concentrations on the morphology and microstructure of PCL particles was investigated.The experiment has demonstrated the versatile capability of the electrohydrodynamic atomization process for preparing polymer PCL porous particles andfibers.The thermally induced and evaporation-induced phase separations are proposed as the main mechanisms for the porous microstructure formation.The results demonstrate that the electrospraying method is a simple,innovative and cost-effective method for preparing polymer particles with controllable microstructures.©2007Elsevier Inc.All rights reserved.Keywords:Electrospraying;Polymer particles;Electrospinning1.IntroductionIn the last decade,porous polymer particles have been of great interest to nanotechnology and bioengineering.They are widely used in tissue engineering,drug delivery,catalysis, chemical sensing,and biomolecular analysis due to their de-signed porous microstructure,large surface area,controllable pore size,and size distribution[1–4].Widely applied to the analysis of gases,porous polymer particles have been used as a stationary phase in gas chromatography[5,6].Monodisperse porous polymer particles with controllable microstructures are also highly desired as the starting materials for ion exchangers, polymeric supports in chromatography,and more recently as chemical catalysts[7,8].Moreover,porous biological polymer particles are explored as drug delivery carriers and scaffolding in tissue engineering for certain orthopedic applications[9,10]. Bioactive substances assembled in the pores can play an im-portant role in modifying the physical and chemical properties of the polymer particles.Therefore,designing and arranging the bioactive substances in the pores can generate novel bi-ological materials that display unique properties for specific *Corresponding author.E-mail address:rclark@(R.L.Clark).applications[11].From a scientific viewpoint,it is possible to prepare various functionalized porous polymer particles whose applications can be expanded to thefield of bionanotechnol-ogy.Currently,a number of approaches for their fabrication are employed:supercritical carbon dioxide emulsion,colloidal particles,aerosol spray techniques and controlled solvent evap-oration have been developed[12–15].Highly porousfibers of various polymers were prepared via electrospinning with a modified collector and freezing with liq-uid nitrogen,which induced a phase separation between the polymer and the solvent[16].Porousfibers could also be gen-erated by electrospinning polymer blends followed by selective dissolution.For example,porous ultrafine poly(glycolic acid)fibers were prepared by electrospinning a mixture solution to obtain poly(glycolic acid)/poly(L-lactic acid)compositefibers, and then the poly(L-lactic acid)composition was removed via a selective dissolution technique using chloroform[17].Mean-while,a number of research groups have reported that porous fibers orfibers with unusual surface microstructures can be obtained when a highly volatile solvent is used during the elec-trospinning process[18,19].Porousfibers such as cellulose tri-acetate were prepared via electrospinning using a mixed solvent of methylene chloride and ethanol.The porous microstructure was induced by phase separation resulting from a rapid evap-0021-9797/$–see front matter©2007Elsevier Inc.All rights reserved. doi:10.1016/j.jcis.2007.02.023530Y.Q.Wu,R.L.Clark/Journal of Colloid and Interface Science310(2007)529–535oration of the solvent during the electrospinning process[18].Unlike the electrospinning of porousfibers,few studies regard-ing porous particles prepared using electrospraying have beenreported in the literature.Electrospraying and electrospinningshare similar physical principles of electrohydrodynamic atom-ization[20].The principle behind electrospraying is the appliedelectricfield that stretches the liquid meniscus at the tip of thenozzle.When the applied electricfield is sufficiently high,theliquid meniscus will form a conical jet and further break intodroplets due to electrostatic force[21].The size and distribu-tion of droplets can be controlled by optimizing the processingparameters and the physical properties of the liquid precursor[22,23].Electrospinning is an extension of the electrospray-ing process that uses a high concentration of solution.In ahigh concentration of solution,polymer chain entanglement caneasily occur,which is capable of producingfibers at micro-or nanometer dimensions.Porousfiber production by electro-spinning through rapid phase separation with a volatile solventinspired us to utilize similar methods for the electrosprayingof porous polymer particles.In this work,porous polymer par-ticles with a controllable microstructure were prepared usingelectrospraying for thefirst time.The influences of processingconditions upon the pore formation were studied,and possiblemechanisms for pore generation were proposed.2.Experimental sectionTo prepare electrosprayed polycaprolactone(PCL)particlesand electrospun PCLfibers,several solutions with concentra-tions in a range of1–4w/v%were prepared by dissolving PCL(M w=10,000;Aldrich)in chloroform(CHCl3,Aldrich)sol-vent and a mixed solvent of acetone(CH3COCH3,Aldrich)and chloroform,respectively.The solutions of PCL polymerdissolved in the solvents were stirred magnetically at room tem-perature for2h before electrospraying.Fig.1shows a schematic of the setup in this experiment.The electrospraying setup consisted of a syringe pump(Cole–Parmer Instrument Co.,USA)that was loaded with a sy-ringe(Becton Dickinson and Co.,USA),a high-voltage supply(Acopian,Easton,USA)and a grounded collector.The PCLpolymer solution was placed in a3ml syringe and was continu-ously pushed by the syringe pump at aflow rate of3.0ml/h to astainless steel blunt nozzle with an internal diameter of455µm,which was connected to the high-voltage power supply.Thehigh-voltage power supply was used to generate a8kV poten-tial difference between the nozzle and the grounded aluminumfoil,which was placed on a lab jacket platform or immersed in awater bath around5mm in depth,respectively.A spraying dis-tance of10cm between the nozzle and the collector was chosenfor each set of experiments.The morphologies and pore microstructure of electrosprayedPCL particles were characterized by afield emission scanningelectron microscope(FESEM,FEI XL30SEM-FEG).The ac-celeration voltage was8kV and the working distance was3mm.The pore size and size distribution of electrosprayedpolymer particles were measured using SEM technique withimage analysis software(Philips XL30SEM,Netherlands)andFig.1.A schematic of the setup used forelectrospraying.Fig.2.Low-and high-magnification SEM images of PCL particles obtained by electrospraying a solution directly onto the substrate.SEM photographs.To obtain SEM images the PCL particles were collected on an aluminum disk and then were coated with gold before FESEM analysis.3.Results and discussionFig.2shows SEM images of PCL particles obtained by electrospraying a solution directly onto the substrate.The mi-Y.Q.Wu,R.L.Clark/Journal of Colloid and Interface Science310(2007)529–535531Fig.3.Low-and high-magnification SEM images of cup-shaped porous PCL particles prepared via electrospraying by using a mixed solvent of chloroform and acetone with a concentration of2w/v%.crospheres prepared from a2w/v%concentration solution of PCL and chloroform has diameters in the range of1–5µm.The high-magnification SEM image reveals the particles are non-porous andfilled.It was attributed to the rapid chloroform evap-oration at the early state of the ejecting passage from the nozzle to the collector due to the less interaction between the PCL and chloroform.The chloroform molecules were expulsed fast from the electrosprayed droplets,thus PCL polymer chains precipi-tated and linked in thefinal stage of the process which resulted in golf ball shaped particles with closed pores on the surface [18,24].Fig.3shows SEM images of cup-shaped porous PCL particles prepared via electrospraying by using a mixed solvent of chloroform and acetone.From the SEM images it can be seen that the PCL particles with a size in a range of1–5µm have an isolated large circular hole on each particle and scattered adher-ence.The pore size distribution is shown in Fig.4.The standard deviation of the fraction for the pore size distribution is shown in Table1.Most of the pore sizes were distributed in a range of 0.3–1.3µm.The formation of holes was attributed to the phase separation resulting from the rapid evaporation of acetone dur-ing the electrospraying process.The polymer-rich phase formed the cup shell,and the solvent-rich phase resulted in the porous core[16,25].Fig.5shows SEM images of PCL particles synthesized by electrospraying PCL solution into a water bath.The particles have an average size of4±0.3µm in diameter with a narrow size distribution.From the SEM images,some particles areob-Fig.4.Pore size distribution of the cup-shaped porous particle prepared using a solution concentration of2w/v%.Table1Standard deviation of the fraction of pore size distributionPore size(µm)0.3–0.80.8–1.3 1.3–1.8 1.8–2.3 2.3–2.8 2.8–3.3 Fraction(%)27.3±0.630.9±0.39.1±0.520.0±0.77.3±0.25.5±0.3Fig.5.Low-and high-magnification SEM images of PCL particles synthesized by electrospraying a PCL and chloroform solution into a water bath.served to adhere with each other,which is believed to be the surface tension force of water acting on the PCL particles dur-ing drying.The shape and size of these particles with nano-and532Y.Q.Wu,R.L.Clark /Journal of Colloid and Interface Science 310(2007)529–535Fig.6.Pore size distribution of the particle prepared using PCL and chloroform solution.Table 2Standard deviation of the fraction for the pore size distribution Pore size (µm)0.02–0.230.23–0.440.44–0.650.65–0.860.86–1.07 1.07–1.28 1.28–1.49 1.49–1.70Fraction (%)39.6±0.233.7±0.513.9±0.35.0±0.12.0±0.53.0±0.11.0±0.32.0±0.2Table 3Standard deviation of the fraction for the pore size distribution Pore size (nm)20–8080–140140–200200–260260–320320–380380–440Fraction (%)21±0.219±0.48.6±0.17.1±0.534.3±0.35.7±0.44.3±0.2micrometer pores are clearly identified from the SEM images.At high magnification it is observed that the PCL particles have two kinds of isolated pores—small mostly rounded pores in the nanometer range,and large pores with a size larger than 1µm having a hexagon shape.The pore size distribution is shown in Fig.6.Tables 2and 3show the standard deviation of the frac-tion for a pore size distribution in the range of 0.02–1.71µm and 20–440nm,respectively.It is demonstrated in our experiments that when the precursor solution was electrosprayed into a wa-ter bath,the microstructures on particles were different from those prepared using the previous two processing conditions.The collecting mode will affect the particle size of the electro-sprayed PCL particles.With the same solution concentration the particle size became large when the water bath was used as the collector because of the pore formation within the particles.The particle size increased with an increase of the porosity and pore size.Particles with isolated pores were obtained from the chloroform/water–PCL system while the cup-shaped and the golf ball shaped particles were obtained from chloroform and PCL system,which was due to a change in phase separation during the evaporation of solvent.It is speculated that the inter-action between PCL and chloroform decreases because of the non-solvent water,and thus facilitates the phase separation of the polymer matrix and solvent [24,26].When the concentration of PCL and chloroform was in-creased to 4w/v%during the electrospraying process,the pores became smaller and more circular but distributed homoge-neously in the particles,as shown in Fig.7.The PCL particlesFig.7.Low-and high-magnification SEM images of PCL particles synthesized by electrospraying with a solution concentration of 4w/v%into a water bath.Y.Q.Wu,R.L.Clark/Journal of Colloid and Interface Science310(2007)529–535533Fig.8.Pore size distributions of PCL porous particles prepared by electrospraying the solution into a water bath.Table4Standard deviation of the fraction for the pore size distributionPore size(nm)10–6060–110110–160160–210210–260260–310 Fraction(%)40.5±0.223.0±0.531.1±0.61.4±0.22.7±0.51.4±0.1Table5Standard deviation of the fraction for the pore size distributionPore size(nm)10–4040–7070–100100–130130–160 Fraction(%)18.6±0.224.3±0.521.4±0.117.1±0.218.6±0.4have an average size of approximately8±0.5µm.Fig.8shows the pore size distribution.Tables4and5show the standard de-viation of the fraction for a pore size distribution in the range of10–310nm and10–160nm,respectively.Most of the pore sizes were scattered in a range of10–160nm.Relatively few large pores occurred in the particles.From the SEM images it can be observed that some pores were closed on the surface of the particles,which was attributed to the phase separation and evaporation of chloroform at a relatively slower rate be-cause of more interaction between the PCL and chloroform due to a high concentration of solution when compared to the so-lution with a concentration of2w/v%[27].More concentrated precursor results in a smaller solvent-rich phase and produces smaller pores because of rapid chloroform evaporation.Fig.9 shows that large and irregular pores were formed on the sur-face of the particles prepared using a1w/v%concentration of PCL and chloroform solution.The pores are no longer circular in shape due to the coalescence of small pores into large pores, and the PCL particles are adhered together.The pores in the electrosprayed particles are0.5–2.5µm with an average size of 1.5±0.4µm.The morphologies of particles cannot be clearly identified from the SEM image because the particles overlap each other.In the SEM image the circles were drawn to illus-trate the shapes of PCL particles,which have an average size of5±0.2µm.When a low concentration was used,more chlo-roform was separated from the mixture due to vapor-induced phase separation.During electrospraying the rapidevaporation Fig.9.SEM image of PCL particle synthesized by electrospraying with a solu-tion concentration of1w/v%.of chloroform results in a less polymer-rich phase and a more solvent-rich phase[25,27].For1w/v%concentration solution, the polymer-rich phase was insufficient to form a rigid matrix of particles when electrosprayed into the water bath;therefore, the PCL porous particles collapsed and aggregated together.The experimental results reveal that phase separation is an important factor for the formation of pores in PCL particles. Thermally induced and evaporation-induced phase separations are the pertinent phase separation processes for pore forma-tion in electrosprayed PCL porous particles[28,29].Solvent evaporation and evaporative cooling results in a solution that is thermodynamically unstable,which is the driving force for phase separation.In this work,by varying the precursor solu-tion and processing parameters,different microstructures with micro-and nanopores were generated in the electrosprayed PCL particles.During solvent evaporation the polymer solution became thermodynamically unstable and phase separation de-veloped into a polymer-rich and a polymer-poor phase[18,29]. The concentrated polymer phase solidified shortly after phase separation and formed the particle matrix whereas the polymer-poor phase formed the pores.Another mechanism to be consid-ered in the formation of electrosprayed PCL porous particles is the evaporative cooling due to rapid solvent evaporation,which534Y.Q.Wu,R.L.Clark /Journal of Colloid and Interface Science 310(2007)529–535Fig.10.Illustration of the phase separation that results in different porous microstructure.significantly decreased the surface temperature of the electro-sprayed jet [28].As a result,water droplets were encapsulated in the polymer particles either from atmospheric moisture or the water bath due to evaporative cooling during spraying.When the particles were dried,the water droplets left an imprint on the particles in the form of pores.This mechanism might play another role in describing how and why pores are formed in the electrosprayed particles.It is concluded from this experiment that pore formation can depend upon a combination of moist atmosphere conditions and the use of volatile solvents.Fig.10illustrates possible formations of particles with different mi-crostructure.When the precursor was electrosprayed into small droplets,the droplets would go through one of the processes to form particles with different porous microstructure,which was determined by the concentration of precursor,the solvent evaporation rate and the possible reactions between solvents and polymer.The phase separations are induced and controlled by many factors such as the percentage of the solvent,the sol-vent species,the solute species and the operating temperature,in which the parameters that decrease the interaction between the PCL and chloroform facilitate the phase separations.It is known that electrohydrodynamic atomization,inducing electrospraying and electrospinning,has been used in preparing particulate and fibrous materials [30,31].In the process a liquid solution is forced through a nozzle and a high-voltage poten-tial difference is applied between the nozzle and the collecting electrode.The spraying atomization generated under an electric field can transform the solution precursor into nano-and mi-crometer fibers and particles [25].Principally,electrospinning and electrospraying processes are both generated by the appli-cation of a relatively high voltage to a precursor solution.There-fore,the capability of electrospinning for generating porous PCL fibers has also been demonstrated in the work.Fig.11shows an SEM image of porous PCL fibers prepared by electro-spinning a solution of PCL and chloroform with a concentration of 10w/v%into a water bath using a flow rate of 3.0ml /h,a high voltage of 18kV ,and a working distance of 15cm.The formation of pores in the fibers results from the same principle.The diameter of fibers is approximately 3±0.3µm.The porous PCL fibers,containing a high density of pores 300–800nm in diameter,have circular shaped pores and the size distributionisFig.11.SEM image of porous PCL fiber prepared by electrospinning a solution of PCL and chloroform.relatively narrow.However,they have different applications in the synthesis of materials.Electrospinning is typically applied to fiber production whereas electrospraying is used to generate particles.Electrospraying has been experimentally demonstrated as a viable process for generating micro-or nanometer droplets,which have a surface charge,and the highly charged droplets consequently result in self-repelled particles without coales-cence [32].It is conceptually easy to control the size of electro-sprayed particles from the nanometer to micrometer range by varying the solution flow rate,the applied voltage,the spray-ing distance,and the solution physical properties [22].In the micro-or nanometer range,the capability of producing poly-mer particles with controllable porous microstructures using electrospraying would be unmatched by other aerosol process-ing pared with other methods for synthesizing porous polymer particles,there are several advantages of elec-trospraying:(1)relative ease of setup,(2)open-atmosphere op-eration without use of a sophisticated chamber,(3)controllable particle sizes in a narrow distribution via a cone-jet spraying mode,(4)high production efficiency due to the direction of particles onto the collector under an electric field,and (5)well-dispersed particles due to self-repellence resulting from the electric charges on the particles.Y.Q.Wu,R.L.Clark/Journal of Colloid and Interface Science310(2007)529–5355354.ConclusionsPCL particles with different microstructure were success-fully produced using the electrospraying technique.Particles with an average size of4±0.3µm in diameter were gener-ated to possess nano-and micrometer pores by electrospraying a PCL and chloroform solution with a concentration of2w/v% into a water bath.As the concentration increased to4w/v%, the pore sizes decreased and mostly were in a range of10–160nm.Phase separation is responsible for the formation of porous microstructure and can be induced to occur at different stages during the process in order to produce denser or highly porous polymer particles.As an atomistic spraying method, electrospraying can generate pure polymer particles with mi-crostructural control at room temperature.Through parametric processing,the resulting procedure exhibits inherent capabil-ity in the production of polymer particles at the micro-or nanometer scale with a narrow size distribution.In summary, electrospraying has potential advantages in cost,simplicity and innovation in preparing polymer particles with controllable mi-crostructures based upon phase separation.References[1]J.W.Kim,J.E.Lee,S.J.Kim,J.S.Lee,J.H.Ryu,J.K.Kim,S.H.Han,I.S.Chang,K.D.Suh,Polymer45(2004)4741.[2]P.Jiang,K.S.Hwang,D.M.Mittleman,J.F.Bertone,V.L.Colvin,J.Am.Chem.Soc.121(1999)11630.[3]A.K.Salem,F.Rose,R.O.Oreffo,X.B.Yang,M.C.Davies,J.R.Mitchell,C.J.Roberts,S.Stolnik-Trenkic,S.J.B.Tendler,P.M.Williams,K.M.Shakesheff,Adv.Mater.15(2003)210.[4]J.S.Yang,T.M.Swager,J.Am.Chem.Soc.120(1998)11864.[5]G.Castello,S.Vezzani,L.Gardella,J.Chromatogr.A837(1999)153.[6]O.L.Hollis,Anal.Chem.38(1996)309.[7]T.Koyama,K.J.Terauchi,Chromatography B679(1996)31.[8]E.Unsal,T.Irmak,E.Durusoy,M.Tuncel,A.Tuncel,Anal.Chim.Acta570(2006)240.[9]D.A.Edwards,J.Hanes,G.Caponetti,J.Hrkach,A.BenJebria,M.L.Es-kew,J.Mintzes,D.Deaver,N.Lotan,nger,Science276(1997)1868.[10]Y.Kuboki,Q.M.Jin,H.J.Takita,Bone Joint Surgery83(2001)S105.[11]K.Tsuru,S.Hayakawa,A.Osaka,J.Sol–Gel Sci.Technol.32(2004)201.[12]A.I.Cooper,A.B.Holmes,Adv.Mater.11(1999)1270.[13]P.Jiang,J.F.Bertone,V.L.Colvin,Science291(2001)453.[14]G.Widawski,M.Rawiso,B.Francois,Nature369(1994)387.[15]J.Thies,B.W.Muller,Eur.J.Pharm.Biopharm.45(1998)67.[16]J.T.McCann,M.Marquez,Y.N.Xia,J.Am.Chem.Soc.128(2006)1436.[17]Y.You,J.H.Youk,S.W.Lee,B.M.Min,S.J.Lee,W.H.Park,Mater.Lett.60(2006)757.[18]M.Bognitzki,W.Czado,T.Frese,A.Schaper,M.Hellwig,M.Steinhart,A.Greiner,J.H.Wendorff,Adv.Mater.13(2001)70.[19]Y.S.Nam,J.Biomed.Mater.Res.47(1999)8.[20]Y.Q.Wu,L.L.Hench,J.Du,J.Am.Ceram.Soc.87(2004)1988.[21]A.M.Gañán-Calvo,J.Dávila,A.Barrero,J.Aero.Sci.28(1997)249.[22]D.R.Chen,Y.H.P.David,J.Aero.Sci.27(1996)646.[23]P.Gupta,C.Elkins,T.E.Long,G.L.Wilkes,Polymer46(2005)4799.[24]X.D.Zhou,S.C.Zhang,W.Huebner,J.Mater.Sci.36(2001)3759.[25]J.F.Zheng,A.H.He,J.X.Li,J.Xu,C.Han,Polymer47(2006)7095.[26]J.Raula,H.Eerikainen,E.I.Kauppinen,Int.J.Pharm.284(2004)13.[27]J.Liu,S.Kumar,Polymer46(2005)3211.[28]C.L.Casper,J.S.Stephens,N.G.Tassi,D.B.Chase,J.F.Rabolt,Macro-molecules37(2004)573.[29]S.Megelski,J.S.Stephens,D.B.Chase,J.F.Rabolt,Macromolecules35(2002)8456.[30]R.Kessick,J.Fenn,G.Tepper,Polymer45(2004)2981.[31]S.L.Shenoy,W.D.Bates,H.L.Frisch,G.E.Wnek,Polymer46(2005)3372.[32]G.H.Kim,J.H.Park,H.Han,J.Colloid Interface Sci.299(2006)593.。