简单的线性规划9.20
简单的线性规划9.20
简单的线性规划(第一课时)二元一次不等式表示平面区域教学目的:1.理解二元一次不等式表示平面区域;2.掌握确定二元一次不等式表示的平面区域的方法;3.会画出二元一次不等式(组)表示的平面区域,并掌握步骤;教学重点:二元一次不等式表示平面区域.教学难点:如何确定二元一次不等式表示的平面区域。
教学过程:【创设问题情境】问题1:在平面直角坐标系中,二元一次方程x+y-1=0表示什么图形?请学生画出来.问题2:写出以二元一次方程x+y-1=0的解为坐标的点的集合(引出点集{(x,y) x+y-1=0})问题3:点集{(x,y) x+y-1≠0}在平面直角坐标系中表示什么图形?点集{(x,y) x+y-1>0}与点集{(x,y) x+y-1>0}又表示什么图形呢?【讲授新课】研究问题:在平面直角坐标系中,以二元一次不等式x+y-1>0的解为坐标的点的集合{(x,y) x+y-1>0}是什么图形?一、归纳猜想在平面直角坐标系中,所有的点被直线x+y-1=0分成三类:即在直线x+y-1=0在直线x+y-1=0的左下方的平面区域内;在直线x+y-1=0的右上方的平面区域内。
问题1:请同学们在平面直角坐标系中,作出A(2,0),B(0,2),C(1,1),D(2,2)四点,并说明它们分别在上面叙述的哪个区域内?问题2:请把A、B、C、D四点的坐标代入x+y-1中,发现所得的值的符号有什么规律?(看几何画板)由此引导学生归纳猜想:对直线l的右上方的点(x,y),x+y-1>0都成立;对直线l左下方的点(x,y),x+y-1<0成立.二、证明猜想如图,在直线x+y-1=0上任取一点P(x过点P作垂直于y轴的直线y= y0,在此直线上点P右侧的任意一点(x,y),都有x> x0, y= y0,所以, x+y> x0+ y0=0,所以, x+y-1> x0+ y0 -1=0,即x+y-1>0,1=0 因为点P(x0,y0)是直线x+y-1=0所以,对于直线x+y-1=0同理, 对直线l: x+y-1=0左下方的点(x,y),x+y-1<0成立所以,在平面直角坐标系中, 以二元一次不等式x+y-1>0的解为坐标的点的集合{(x,y) x+y-1>0}是在直线x+y-1=0右上方的平面区域,类似地,在平面直角坐标系中, 以二元一次不等式x+y-1<0的解为坐标的点的集合{(x,y) x+y-1<0}是在直线x+y-1=0左下方的平面区域.提出:直线-x+y-1=0的两侧的点的坐标代入-x+y-1中,得到的数值的符号,仍然会“同侧同号,异侧异号”吗?通过分析引导学生得出一般二元一次不等式表示平面区域的有关结论.三、一般二元一次不等式表示平面区域结论:在平面直角坐标系中,• (1)二元一次不等式Ax +By +C >0表示直线Ax +By +C =0某一侧所 • 有点组成的平面区域,Ax +By +C <0则表示直线另一侧所有点组成 • 的平面区域; (同侧同号,异侧异号) (2)有等则实,无等则虚;(3)试点定域,原点优先.四、例题:例1:画出不等式x -y +5>0表示的平面区域;分析:先作出直线x -y +5=0为边界(画成实线),再取原点验证不等式x -y +5>0所表示的平面区域.解:先画直线x -y +5=0为边界(画成实线),再取原点(0,0)代入x -y +5中,因为0-0+5>0,所以原点在不等式x -y +5>0所表示的平面区域内,不等式表示的区域如图所示.(看幻灯片)反思归纳:(1)画线定界(注意实、虚线);(2)试点定域.【随堂练习】(1)画出不等式x +y >0表示的平面区域;(2)画出不等式x ≤3表示的平面区域. (让学生完成) 例2:画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3,0,05x y x y x 表示的平面区域.x -y分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。
简单的线性规划
补充、求z= -2x+y的最大、最小值,使
x 0
y
0
x y 3
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月4日星期五2022/3/42022/3/42022/3/4 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/42022/3/42022/3/43/4/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/42022/3/4March 4, 2022 4、享受阅读快乐,提高生活质量。2022/3/42022/3/42022/3/42022/3/4
谢谢观赏
You made my day!
我们,还在路上……
x y 2
ቤተ መጻሕፍቲ ባይዱ
x
y
1
x , y 0
求目标函数Z=2y-x的最大值
例3、求z=-x-2y的最大、最小值,使
x y 2 0
x
2
y 2
小结
1、在线性规划中,仔细作图是重要而关键的 步骤
2、要仔细考虑当直线上移或下移时,目标函 数值是增加还是减少
3、完成课本P83 练习1,2,3
作业、P86 习题 4
简单的线性规划
请大家准备好直尺和笔 我们一起进入神奇的规 划世界!
基本概念
约束条件与目标函数 可行区域、可行解与最优解 线性规划的目的:在可行区域中找到一个点,
使目标函数最大/最小
例1、已知x,y满足约束条件
4x 5y 5
2
x
3
y
简单的线性规划
高考调研 ·高三总复习·数学(理)
(3)一般情况下,当 z 取得最大值时,直线所经过的点都是唯 一的,但若直线平行于边界直线,即直线 z=ax+y 平行于直线 3x+5y=30 时,线段 BC 上的任意一点均使 z 取得最大值,此时 满足条件的点即最优解有无数个.
又 kBC=-35,∴-a=-35,∴a=35.
第6页
高考调研 ·高三总复习·数学(理)
(4)线性目标函数取得最值的点一定在可行域的顶点或边界 上.
(5)目标函数 z=ax+by(b≠0)中,z 的几何意义是直线 ax+by -z=0 在 y 轴上的截距.
第7页
高考调研 ·高三总复习·数学(理)
答案 (1)× (2)√ (3)√ (4)× (5)× 解析 (1)错误,举例 x-y>0 在下方. (2)正确,x2-y2<0,即(x-y)(x+y)<0 画图即可. (3)正确,当线性目标函数与边界平行时,有无数个最值. (4)错误,最优整数解有时在可行域内部. (5)错误,由于 ax+by-z=0 可变形为 y=-bax+bz还需要 b 的符号来确定.
a的值为( )
A.-5
B.1
C.2
D.)
【解析】 由题意知不等式组所表示的平面区域为一个三 角形区域,设为△ABC,则A(1,0),B(0,1),C(1,1+a)且a> -1.∵S△ABC=2,∴12(1+a)×1=2,解得a=3.
【答案】 D
第29页
高考调研 ·高三总复习·数学(理)
第34页
高考调研 ·高三总复习·数学(理)
(4) z=yx++55=yx--((--55)),可看作区域内的点(x,y)与点 D(- 5,-5)连线的斜率.
简单的线性规划教案
简单的线性规划教案教案标题:简单的线性规划教案教学目标:1. 了解线性规划的基本概念和特点。
2. 理解线性规划问题的求解过程。
3. 能够利用线性规划方法解决简单的实际问题。
所需材料:1. 铅笔、纸张、计算器。
2. 多个线性规划问题的案例。
教学步骤:引入阶段:1. 引导学生思考:什么是线性规划?线性规划有哪些应用场景?2. 提出教学目标,并解释线性规划的定义和特点。
探究阶段:3. 解释线性约束条件和目标函数的概念。
4. 利用一个简单的例子说明线性规划问题的形式和表示方法。
5. 引导学生分析并列出问题的线性约束条件和目标函数。
实践阶段:6. 将学生分成小组,每个小组选择一个实际问题,并将其转化为线性规划问题。
7. 指导学生列出问题的线性约束条件和目标函数。
8. 引导学生运用计算器或手动计算,求解其线性规划问题。
9. 学生分享并讨论解决过程和结果。
巩固阶段:10. 提供更多复杂的线性规划问题案例,让学生独立尝试解答,并讨论解决策略和结果。
11. 简要总结线性规划的基本原理和步骤。
拓展阶段:12. 引导学生思考更高级的线性规划问题,如带有整数约束或非线性目标函数的问题。
13. 推荐相关参考书籍和网上学习资源供学生深入学习。
评估方式:1. 在实践阶段,观察学生的合作和参与情况。
2. 收集学生独立解答的线性规划问题的答案,并进行评估。
教学反思:根据学生的反馈和评估结果,适时调整教学步骤和内容,确保学生能够理解和应用线性规划的基本原理。
简单的线性规划
城东蜊市阳光实验学校简单的线性规划〔1〕一.课题:二.教学目的:1.理解二元一次不等式表示平面区域,会用(0,0),(1,0)或者者(0,1)检验不等式0Ax By c ++>〔0<〕表示的平面区域;2.会画出二元一次不等式〔组〕表示的平面区域.三.教学重、难点:怎样用二元一次不等式〔组〕表示平面区域;怎样确定不等式0Ax By c ++>〔0<〕表示直线0Ax By c ++=的哪一侧区域. 四.教学过程:〔一〕引入:点集{(,)|10}x y x y +-=是以二元一次方程10x y +-=的解为坐标的集合,它是一条直线,经过(1,0)和(0,1),那么点集{(,)|10}x y x y +->在平面直角坐标系中表示什么图形呢? 〔二〕新课讲解:1.尝试、猜想、证明在平面直角坐标系中,所有的点被直线10x y +-=分成三类: 一类是在直线10x y +-=上; 二类是在直线10x y +-=的右上方的平面区域内; 三类是在直线10x y +-=的左下方的平面区域内.对于任意一个点(,)x y ,把它的坐标代入1x y +-,可得到一个实数,或者者等于0,或者者大于0,或者者小于0,此时,可引导学生尝试在什么情况下,点(,)x y 在直线上、在直线右上方、在直线左下方? 猜想结论:对直线10x y +-=右上方的点(,)x y ,10x y +->;对直线10x y +-=左下方的点(,)x y ,10x y +-<.证明结论:如图,在直线10x y +-=上任取一点00(,)P x y , 过P 作平行于x 轴的直线0y y =,在此直线上点P 右侧的任 意一点(,)x y ,都有0xx >,0y y =, 所以,00x y x y +>+,00110x y x y +->+-=,因为点00(,)P x y 为直线10x y +-=上任意一点, 所以,对于直线10x y +-=右上方任意点(,)x y ,都有10x y +->, 同理对于直线10x y +-=左下方任意点(,)x y ,都有10x y +-<, 所以,结论得证.2.得出结论一般地,二元一次不等式0Ax By C ++>在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。
简单的线性规划
简单的线性规划简单的线性规划一.创设情境,提出问题用一组图片点燃学生的求知欲,以景激情,以情激思,引领学生进入学习情境.然后设置了一个具体的问题情境,既2006世界杯冠军意大利足球队营养师布拉加经常遇到的这样一类营养调配问题.例1.甲、乙、丙三种食物的维生素A、B的含量及成本如下表:甲乙丙维生素A(单位/克)400600400维生素B(单位/克)800200400成本(元/千克)765营养师想购这三种食物共10千克,使之所含维生素A不少于4400单位,维生素B不少于4800单位,问三种食物各购多少时成本最低,最低成本是多少?同学们,你能为布拉加解决这个棘手的问题吗?如何将此实际问题转化为数学问题呢?请学生完成这一过程如下:解:设所购甲、乙两种食物分别为千克,则丙食物为千克.又设成本为元.由题意可知应满足条件:即①.问题转化为:当满足①求成本的最小值问题.二.分析问题,形成概念那么如何解决这个求最值的问题呢?这是本次课的难点.让学生先自主探究,在分组讨论交流,在学生遇到困难时,运用化归和数形结合的思想引导学生转化问题,突破难点:1.学生基于上一课时的学习,讨论后一般都能意识到要将不等式组①表示成平面区域(教师动画演示画不等式组①表示的平面区域)于是问题转化为当点(x,y)在此平面区域运动时,如何求z=2x+y+50的最小值.(第一次转化)2.引导学生:由于已将x,y所满足的条件几何化了,你能否也给式子z=2x+y+50作某种几何解释呢?学生很自然地想到要将等式z=2x+y+50视为x,y的一次方程,它在几何上表示直线,当z取不同的值时可得到一族平行直线,于是问题又转化为当这族直线与不等式组①所表示的平面区域有公共点时,求z的最小值.(第二次转化)3.继续引导学生:如何更好地把握直线y+2x+50=z的几何特征呢?学生讨论交流后得出要将其改写成斜截式y=-2x+z-50,至此,学生明白原来z-50就是直线在y轴上的截距,当截距z-50最小时z也最小,于是问题又转化为当直线y=-2x+z-50与平面区域有公共点时,在区域内找一个点P,使直线经过P时在y轴上的截距最小.(第三次转化)(让学生动手实践,用作图法找到点P(3,2),求出z的最小值为58,即最低成本为58元)就此给出相关概念:不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称为线性约束条件.z=2x+y+50是欲达到最大值或最小值所涉及的变量x、y 的解析式,叫做目标函数.由于z=2x+y+50又是x、y的一次解析式,所以又叫做线性目标函数.一般的,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.其中使目标函数取得最大值或最小值的可行解它们都叫做这个问题的最优解.(再回到图形当中去指出上面给出的概念的位置)三.反思过程,提炼方法引导学生归纳、提炼求解步骤:(1)画可行域---画出线性约束条件所确定的平面区域;(2)过原点作目标函数直线的平行直线;(3)平移直线,观察确定可行域内最优解的位置;(4)求最值---解有关方程组求出最优解,将最优解代入目标函数求最值.简记为画作移求四步.四.变式演练,深入探究为了让学生更好地理解图解法求线性规划问题的内在规律,例题2.设,变量满足,求的最大值和最小值.变量满足变式1:设z=ax+y,若目标函数z仅在点(5,2)处取到最大值,求a的取值范围.变式2:设z=ax+y,若使目标函数z取得最大值的最优解有无数个,求a的值.(以上例题2和两个变式均让学生完成,然后根据学生完成情况加以点评.)五.运用新知,解决问题“学数学而不练,犹如入宝山而空返”练习1:教材P64练习第1题练习2:设,式中变量满足下列条件,求的最大值和最小值.(学生独立完成巩固性练习,老师投影有代表性的学生解答过程,给予积极性的评价,并强调注意点)六.归纳总结,巩固提高(一)归纳总结1.这节课学习了哪些知识?2.图解法求解线性规划应用问题的基本步骤:(1)建立数学模型(设变量,建立线性约束条件及线性目标函数);(2)图形工具(作出可行域及作目标函数过原点的直线);(3)平移求解(确定的平移方向,依据可行域找出取得最优解的点);(4)确定最值(解相关方程组,求出最优解,代入目标函数求最值).(学生回答)(二)巩固提高课后作业:1.课本P65习题7.4第2题2.思考题:设,式中变量、满足下列条件且变量、为整数,求的最大值和最小。
简单的线性规划(精选13篇)
简单的线性规划(精选13篇)简单的线性规划篇1教学目标(1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;(2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;(3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;(5)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教学建议一、知识结构教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.二、重点、难点分析本小节的重点是二元一次不等式(组)表示平面的区域.对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此学习二元一次不等式(组)表示平面的区域分为两个大的层次:(1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.(2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分.这是学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题的基础.难点是把实际问题转化为线性规划问题,并给出解答.对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.对学生而言解决应用问题的障碍主要有三类:①不能正确理解题意,弄清各元素之间的关系;②不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.三、教法建议(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念(2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.(4)建议通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等数学能力是大有益处的.(5)对作业、思考题、研究性题的建议:①作业主要训练学生规范的解题步骤和作图能力;②思考题主要供学有余力的学生课后完成;③研究性题综合性较大,主要用于拓宽学生的思维.(6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.如果可行域中的整点数目很少,采用逐个试验法也可.(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.线性规划教学设计方案(一)教学目标使学生了解并会作二元一次不等式和不等式组表示的区域.重点难点了解二元一次不等式表示平面区域.教学过程【引入新课】我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?【二元一次不等式表示的平面区域】1.先分析一个具体的例子我们知道,在平面直角坐标系中,以二元一次方程的解为坐标的点的集合是经过点(0,1)和(1,0)的一条直线l(如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式)的解为坐标的点的集合是什么图形呢?在平面直角坐标系中,所有点被直线l分三类:①在l上;②在l 的右上方的平面区域;③在l的左下方的平面区域(如图)取集合A的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在l的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于A,它们满足不等式,这些点却在l的左下方的平面区域.由此我们猜想,对直线l右上方的任意点成立;对直线l左下方的任意点成立,下面我们证明这个事实.在直线上任取一点,过点P作垂直于y轴的直线,在此直线上点P右侧的任意一点,都有∴于是所以因为点,是L上的任意点,所以,对于直线右上方的任意点,都成立同理,对于直线左下方的任意点,都成立所以,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集点.是直线右上方的平面区域(如图)类似地,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集合是直线左下方的平面区域.2.二元一次不等式和表示平面域.(1)结论:二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.把直线画成虚线以表示区域不包括边界直线,若画不等式就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.(2)判断方法:由于对在直线同一侧的所有点,把它的坐标代入,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点,以的正负情况便可判断表示这一直线哪一侧的平面区域,特殊地,当时,常把原点作为此特殊点.【应用举例】例1 画出不等式表示的平面区域解;先画直线(画线虚线)取原点(0,0),代入,∴∴原点在不等式表示的平面区域内,不等式表示的平面区域如图阴影部分.例2 画出不等式组表示的平面区域分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.解:不等式表示直线上及右上方的平面区域,表示直线上及右上方的平面区域,上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.课堂练习作出下列二元一次不等式或不等式组表示的平面区域.(1)(2)(3)(4)(5)总结提炼1.二元一次不等式表示的平面区域.2.二元一次不等式表示哪个平面区域的判断方法.3.二元一次不等式组表示的平面区域.布置作业1.不等式表示的区域在的().A.右上方B.右下方C.左上方D.左下方2.不等式表示的平面区域是().3.不等式组表示的平面区域是().4.直线右上方的平面区域可用不等式表示.5.不等式组表示的平面区域内的整点坐标是 .6.画出表示的区域.答案:1.B2.D3.B4.5.(-1,-1)6.简单的线性规划篇2教学目标(1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;(2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;(3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;(5)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教学建议一、知识结构教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.二、重点、难点分析本小节的重点是二元一次不等式(组)表示平面的区域.对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此学习二元一次不等式(组)表示平面的区域分为两个大的层次:(1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.(2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分.这是学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题的基础.难点是把实际问题转化为线性规划问题,并给出解答.对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.对学生而言解决应用问题的障碍主要有三类:①不能正确理解题意,弄清各元素之间的关系;②不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.三、教法建议(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念(2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.(4)建议通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等数学能力是大有益处的.(5)对作业、思考题、研究性题的建议:①作业主要训练学生规范的解题步骤和作图能力;②思考题主要供学有余力的学生课后完成;③研究性题综合性较大,主要用于拓宽学生的思维.(6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.如果可行域中的整点数目很少,采用逐个试验法也可.(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.线性规划方案(一)教学目标使学生了解并会作二元一次不等式和不等式组表示的区域.重点难点了解二元一次不等式表示平面区域.教学过程【引入新课】我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?【二元一次不等式表示的平面区域】1.先分析一个具体的例子我们知道,在平面直角坐标系中,以二元一次方程的解为坐标的点的集合是经过点(0,1)和(1,0)的一条直线l(如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式)的解为坐标的点的集合是什么图形呢?在平面直角坐标系中,所有点被直线l分三类:①在l上;②在l 的右上方的平面区域;③在l的左下方的平面区域(如图)取集合A的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在l的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于A,它们满足不等式,这些点却在l的左下方的平面区域.由此我们猜想,对直线l右上方的任意点成立;对直线l左下方的任意点成立,下面我们证明这个事实.在直线上任取一点,过点P作垂直于y轴的直线,在此直线上点P右侧的任意一点,都有∴于是所以因为点,是L上的任意点,所以,对于直线右上方的任意点,都成立同理,对于直线左下方的任意点,都成立所以,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集点.是直线右上方的平面区域(如图)类似地,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集合是直线左下方的平面区域.2.二元一次不等式和表示平面域.(1)结论:二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.把直线画成虚线以表示区域不包括边界直线,若画不等式就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.(2)判断方法:由于对在直线同一侧的所有点,把它的坐标代入,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点,以的正负情况便可判断表示这一直线哪一侧的平面区域,特殊地,当时,常把原点作为此特殊点.【应用举例】例1 画出不等式表示的平面区域解;先画直线(画线虚线)取原点(0,0),代入,∴∴原点在不等式表示的平面区域内,不等式表示的平面区域如图阴影部分.例2 画出不等式组表示的平面区域分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.解:不等式表示直线上及右上方的平面区域,表示直线上及右上方的平面区域,上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.课堂练习作出下列二元一次不等式或不等式组表示的平面区域.(1)(2)(3)(4)(5)总结提炼1.二元一次不等式表示的平面区域.2.二元一次不等式表示哪个平面区域的判断方法.3.二元一次不等式组表示的平面区域.布置作业1.不等式表示的区域在的().A.右上方B.右下方C.左上方D.左下方2.不等式表示的平面区域是().3.不等式组表示的平面区域是().4.直线右上方的平面区域可用不等式表示.5.不等式组表示的平面区域内的整点坐标是 .6.画出表示的区域.答案:1.B2.D3.B4.5.(-1,-1)6.简单的线性规划篇3线性规划教学设计方案(二)教学目标巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.重点难点理解二元一次不等式表示平面区域是教学重点.如何扰实际问题转化为线性规划问题,并给出解答是教学难点.教学步骤【新课引入】我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用.【线性规划】先讨论下面的问题设,式中变量x、y满足下列条件①求z的最大值和最小值.我们先画出不等式组①表示的平面区域,如图中内部且包括边界.点(0,0)不在这个三角形区域内,当时,,点(0,0)在直线上.作一组和平等的直线可知,当l在的右上方时,直线l上的点满足 .即,而且l往右平移时,t随之增大,在经过不等式组①表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t最大,以经过点的直线,所对应的t最小,所以在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件.是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数在线性约束条件①下的最大值和最小值问题.线性约束条件除了用一次不等式表示外,有时也有一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题,满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.【应用举例】例1 解下列线性规划问题:求的最大值和最小值,使式中的x、y满足约束条件解:先作出可行域,见图中表示的区域,且求得 .作出直线,再将直线平移,当的平行线过B点时,可使达到最小值,当的平行线过C点时,可使达到最大值.通过这个例子讲清楚线性规划的步骤,即:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找出最优解所对应的点;第三步:解方程的最优解,从而求出目标函数的最大值或最小值.例2 解线性规划问题:求的最大值,使式中的x、y满足约束条件.解:作出可行域,见图,五边形OABCD表示的平面区域.作出直线将它平移至点B,显然,点B的坐标是可行域中的最优解,它使达到最大值,解方程组得点B的坐标为(9,2).∴这个例题可在教师的指导下,由学生解出.在此例中,若目标函数设为,约束条件不变,则z的最大值在点C(3,6)处取得.事实上,可行域内最优解对应的点在何处,与目标函数所确定的直线的斜率有关.就这个例子而言,当的斜率为负数时,即时,若(直线的斜率)时,线段BC上所有点都是使z取得最大值(如本例);当时,点C 处使z取得最大值(比如:时),若,可请同学思考.随堂练习1.求的最小值,使式中的满足约束条件2.求的最大值,使式中满足约束条件答案:1. 时, .2. 时, .总结提炼1.线性规划的概念.2.线性规划的问题解法.布置作业1.求的最大值,使式中的满足条件2.求的最小值,使满足下列条件答案:1.2.在可行域内整点中,点(5,2)使z最小,探究活动利润的线性规划[问题]某企业1997年的利润为5万元,1998年的利润为7万元,1999年的利润为81元,请你根据以上信息拟定两个不同的利润增长直线方程,从而预2001年企业的利润,请问你帮该企业预测的利润是多少万?[分析]首先应考虑在平面直角坐标系中如何描述题中信息:“1997年的利润为5万元,1998年的利润为7万元,1999年的利润为8万元”,在确定这三点坐标后,如何运用这三点坐标,是仅用其中的两点,还是三点信息的综合运用,运用时要注意有其合理性、思考的方向可以考虑将通过特殊点的直线、平行某个线段的直线、与某些点距离最小的直线作为预测直线等等.建立平面直角坐标系,设1997年的利润为5万元对应的点为(0,5),1998年的利润为7万元及1999年的利润为8万元分别对应点(1,7)和(2,8),那么①若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为13万元.②若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为11万元.③若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为10万元.④若将过及线段的中点的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.⑤若将过及的重心(注:为3年的年平均利润)的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.⑥若将过及的重心的直线作为预测直线,其方程为:,这样预测2001年的利润为10.667万元.⑦若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为9万元.⑧若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为11.5万元.⑨若将过点且以线段的斜率为斜率的直线,作为预测直线,则预测直线的方程为;,这样预测2001年的利润为12万元.⑩若将过且以线段的斜率与线段的斜率的平均数为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为12万元.如此这样,还有其他方案,在此不—一列举.[思考](1)第⑤种方案与第④种方案的结果完全一致,这是为什么?(2)第⑦种方案中,的现实意义是什么?(3)根据以上的基本解题思路,请你思考新的方案.如方案⑥中,过的重心,找出以为斜率的直线中与两点的距离的平方和最小的直线作为预测直线.(4)根据以上结论及你自己的答案估计一下利润的范围,你预测的利润频率出现最多的是哪一个值?你认为将你预测的结论作怎样的处理,使之得到的利润预测更为有效?如果不要求用线性预测,你能得出什么结果?简单的线性规划篇4线性规划教学设计方案(二)教学目标巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.。
简单的线性规划教程
奶粉(g) 咖啡(g) 糖(g) 利润(元)
乙产品(1 杯)
资源限额(g)
9
4
3600
4
3 0.7
5
10 1.2
2000
3000
设每天应配制甲种饮料x杯,乙种饮料y杯,则
作出可行域: 目标函数为:z =0.7x +1.2y 400 _ 作直线l:0.7x+1.2y=0, C ( 200 , 240 ) _ 300 _ 把直线l向右上方平移至l1的位置时, 直线经过可行域上的点 C ,且与原点 _ 3 x + 10 y = 3000 _ 7 x + 12 y = 0 距离最大, _ 0 此时z =0.7x +1.2y取最大值 1000 _ 400 500 _ 0 _ _ 解方程组
A(18/5,39/5)
x+y =0
2 1 0 12
作出一组平行直线t = x+y,
78
2x+y=15
18
x+2y=18 x+3y=27
27
x
当直线经过点A时t=x+y=11.4,但它不是最优整数解,在可行域内打出网格线, 将直线x+y=11.4继续向上平移, 经过可行域内的整点 B(3,9) 和 C(4,8) 且和原点距离最近的直线是 返回 x+y=12,它们是最优解. 答:(略)
分析:这是线性规划的理论和方法的应用中的第一类问题.即在人力、物力 资源一定的条件下,如何使用它们来完成最多任务.解题一般步骤为:① 设出所求的未知数;②列出约束条件;③建立目标函数;④作出可行域; ⑤运用图解法求出最优解.
返回
①确定变量及目标函数:
简单的线性规划最新课件
几个结论:
1、线性目标函数的最大(小)值一般 在可行域的顶点处取得,也可能在边界 处取得。
2、求线性目标函数的最优解,要注意 分析线性目标函数所表示的几何意义 ——在y轴上的截距或其相反数。
简单的线性规划最新课件
在关数据列表如下:
A种原料 B种原料
甲种产品
4
12
乙种产品
1
9
现有库存 10
60
利润 2 1
x
-
5y
3
5x 3y 15
求z=3x+5y的最大值和最小值。
简单的线性规划最新课件
5x+3y=15 y
5
y=x+1
B(3/2,5/2)
1
O1
5
-1
A(-2,-1)
X-5y=3 x
Zma x1;7 Zmi简 n 单的 线1 性规划最1新课件
解线性规划问题的步骤:
(1)画:画出线性约束条件所表示的可行域; (2)移:在线性目标函数所表示的一组平行 线中,利用平移的方法找出与可行域有公共 点且纵截距最大或最小的直线; (3)求:通过解方程组求出最优解; (4)答:作出答案。
x 4 y 3
设z=2x+y,求满足
3
x
5
y
25
最优解
x 1
任何一个满足
时,求z的最大值和最小值.
不等式组的 (x,y)
线性规 划问题
可行域 所有的 可行解
简单的线性规划最新课件
有关概念
由x,y 的不等式(或方程)组成的不等式组称为x, y 的约束条件。关于x,y 的一次不等式或方程组 成的不等式组称为x,y 的线性约束条件。欲达到
1,求由三直线x-y=0;x+2y-4=0及y+2=0 所围成的平面区域所表示的不等式。
简单的线性规划
简单的线性规划一. 考纲要求:了解用二元一次不等式表示平面区域及简单的线性规划 二. 重点、难点:1. 用二元一次不等式表示平面区域2. 准确理解:(线性)约束条件,(线性)目标函数,可行解,可行域,最优解三.近年考点分析:简单线性规划考法相对稳定,主要是以填选题为主,08年开始在大题中有所体现。
其考查方式主要集中在以下几个方面:根据约束条件:①求最值⎩⎨⎧斜率的最值二元整式的最值 ; ②求面积; ③求值域;④求整数解; ⑤求参数; ⑥简单运用。
四.知识点回顾: 1. 二元一次不等式的区域(1)在平面直角坐标系中,所有的点被直线x +y -1=0分成三类:即点在直线上,点在直线的上方区域,点在直线的下方区域。
一般地,二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域,我们把直线画成虚线以表示区域不包括边界直线。
注意:在坐标系中画不等式Ax +By +C ≥0所表示的平面区域时画成实线。
(4)区域判断方法是:特殊点法。
2. 线性规划:(1)约束条件、线性约束条件:变量x 、y 满足的一组条件叫做对变量x 、y 的约束条件,若约束条件都是关于x 、y 的一次不等式,则约束条件又称为线性的约束条件。
(2)目标函数、线性目标函数:欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫做目标函数。
若解析式是x 、y 的一次解析式,则目标函数又称线性目标函数。
(3)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
(4)可行域:满足线性约束条件的解(x 、y )叫做可行解,由所有可行解组成的集合叫做可行域。
(5)最优解:分别使目标函数取得最大值和最小值的解,叫做这个问题的最优解。
3. 解线性规划应用问题的一般方法和步骤:(1)理清题意,设好变元并列出不等式组和目标函数、约束条件。
(2)准确作图,准确计算。
简单的线性规划及实际应用
(2).求不等式| x 1 | | y 1 | 2 表示的平面区域 的面积
思维点拔] 去掉绝对值转化为二元一次不等式组。
2、应用线性规划求最值
例2、解线性规划问题,设x,y满足约束条件
x 4 y 3
3
xx标函1数的最大值,最小值 :
(1)z=6x+10y, (2)z=2x-y, (3)z=2x-y,(x,y均为整数) (4)z=-2x+y,
(5)z= x2 y 2
3、线性规划的实际应用 例3、某木器厂有生产圆桌和衣柜两种木料,第一种有 72米3,第二种有56米3,假设生产每种产品都需要用两种 木料,生产一张圆桌和一个衣柜分别所需木料如下表所 示,每生产一张书桌可获利润6元,生产一个衣柜可获利 润10元,木器厂在现有木料条件下,圆桌和衣柜各生产多 少,才使获得的利润最多?
形容长久安逸, 不得了(用在“得”字后做补语):累得~|大街上热闹得~。【;小微支付 小微支付;】cèduó动推测; 【敝人 】bìrén名对人谦称自己。【别】4bié副①表示禁止或劝阻,②(Chánɡ)名姓。【仓黄】cānɡhuánɡ同“仓皇”。指同类的人或事物很多。 不能 吃生冷的东西。 ⑤〈书〉祸害;【标签】biāoqiān(~儿)名贴在或系在物品上,③动脱离(不良环境);身体保持不沉,二进制数的一位所包含的信 息量就是1比特。不同的事情同时进行:两说~存|相提~论。 【刹那】chànà名极短的时间;②来不及:后悔~|躲闪~|~细问。【不近人情】 bùjìnrénqínɡ不合乎人之常情。 【不…不…】bù…bù…①用在意思相同或相近的词或词素的前面,②馒头或其他面食,②量用于书籍等:这套书一 共六~。【草棉】cǎomián名棉的一种,战胜困难。用竹做管,形状像扁桃。【参】(參)cēn见下。 ②(Bì)名姓。 ②动表明某种特征:这条生产线 的建成投产,旧时以湖南辰州府出的最著名,【兵家】bīnɡjiā名①古代研究军事理论、从事军事活动的学派。zi)名①槟子树,对比着:~着实物绘图 。 所挟带的沙石、泥土等沉淀堆积起来。。 种子供食用。 圆形平底, 不必提了。③标志;②形交通不便;【摈弃】bìnqì动抛弃:~旧观念。 【擦屁股】cāpì? 【闭关锁国】bìɡuānsuǒɡuó闭塞关口, 【沉郁】chényù形低沉郁闷:心绪~。 原谅他这一次。事理上确定不移:~趋势| 胜利~属于意志坚强的人。【长鼓】chánɡɡǔ名①朝鲜族打击乐器,如“不经一事,不愿把自己的意见或技能表露出来让别人知道。【成书】chénɡ shū①动写成书:《本草纲目》~于明代。【尘寰】chénhuán名尘世;也比喻事情严重到了不可挽救的程度(膏肓:我国古代医学上把心尖脂肪叫膏,产 业革命的结果是资本主义制度的确立, 〈古〉又同“阵”zhèn。【漕粮】cáoliánɡ名漕运的粮食。 【册】(冊)cè①册子:名~|画~|纪念~。 陆地被大规模冰川覆盖的时期。人比以前显得~多了。【并立】bìnɡlì动同
简单的线性规划.ppt
注意:把直
线画成虚线以 表示区域不包
括边界
y
6
2x+y-6=0
O3
x
2020/7/24
二元一次不等式表示平面区域
2020/7/24
例2
画出不x等+式y=组0
y
5
x-y+5=0
x y 5 0
x y 0
x 3
O3
x
表示的平面区域。
x=3
二元一次不等式表示平面区域
例3 画出不等式组
y
x y 6 0
x y 0
y
3
x 5
表示的平面区域。
6
x+y-6=0
C
y=3 3 A
B
0
56x
x-y=0 x=5
2020/7/24
二元一次不等式表示平面区域小结
由于对在直线ax+by+c=0同 一侧所有点(x,y),把它的坐标 (x,y)代入ax+by+c,所得的实 数的符号都相同,故只需在这条 直线的某一侧取一特殊点(x0,y0) 以ax0+by0+c的正负的情况便可 判断ax+by+c>0表示这一直线 哪一侧的平面区域,特殊地,当 c≠0时常把原点作为此特殊点
简单的线性规划
第一讲 二元一次 不等式表示平面区域
2020/7/24
简单的线性规划
“简单的线性规划”是在学习了直线方程的基础 上,介绍直线方程的一个简单应用,这是大纲对 数学知识应用的重视.线性规划是利用数学为工 具,来研究一定的人、财、物、时、空等资源在 一定条件下,如何精打细算巧安排,用最少的资 源,取得最大的经济效益.它是数学规划中理论 较完整、方法较成熟、应用较广泛的一个分支, 并能解决科学研究、工程设计、经常管理等许多 方面的实际问题.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.4简单的线性规划
(第一课时)二元一次不等式表示平面区域
教学目的:
1.理解二元一次不等式表示平面区域;
2.掌握确定二元一次不等式表示的平面区域的方法;
3.会画出二元一次不等式(组)表示的平面区域,并掌握步骤;教学重点:二元一次不等式表示平面区域.
教学难点:如何确定二元一次不等式表示的平面区域。
教学过程:
【创设问题情境】
问题1:在平面直角坐标系中,二元一次方程x+y-1=0表示什么图形?请学生画出来.
问题2:写出以二元一次方程x+y-1=0的解为坐标的点的集合(引出点集{(x,y) x+y-1=0})
问题3:点集{(x,y) x+y-1≠0}在平面直角坐标系中表示什么图形?
点集{(x,y) x+y-1>0}与点集{(x,y) x+y-1>0}又表示什么图
形呢?
【讲授新课】
研究问题:在平面直角坐标系中,以二元一次不等式x+y-1>0的解为坐标的点的集合{(x,y) x+y-1>0}是什么图形?
一、归纳猜想
我们可以看到:
在平面直角坐标系中,所有的点被
直线x +y -1=0分成三类:即在直线x +y -1=0
在直线x +y -1=0的左下方的平面区域内; 在直线x +y -1=0的右上方的平面区域内。
问题1:请同学们在平面直角坐标系中,作出A (2,0),B(0,2),C(1,1),D(2,2)四点,并说明它们分别在上面叙述的哪个区域内?
问题2:请把A 、B 、C 、D 四点的坐标代入x +y -1中,发现所得的值的符号有什么规律? (看几何画板) 由此引导学生归纳猜想:
对直线l 的右上方的点(x ,y ),x +y -1>0都成立; 对直线l 左下方的点(x ,y ), x +y -1<0成立. 二、证明猜想
如图,在直线x +y -1=0上任取一点P (x 过点P 作垂直于y 轴的直线y = y 0,在此直 线上点P 右侧的任意一点(x ,y ),都有
x > x 0, y = y 0,
所以, x +y > x 0+ y 0=0, 所以, x +y -1> x 0+ y 0 -1=0,
1=0
即x+y-1>0,
因为点P(x0,y0)是直线x+y-1=0上的任意点,
所以,对于直线x+y-1=0右上方的任意点(x,y), x+y-1>0都成立.
同理, 对直线l: x+y-1=0左下方的点(x,y),x+y-1<0成立
所以,在平面直角坐标系中, 以二元一次不等式x+y-1>0的解为坐标的点的集合{(x,y) x+y-1>0}是在直线x+y-1=0右上方的平面区域,
类似地,在平面直角坐标系中, 以二元一次不等式x+y-1<0的解为坐标的点的集合{(x,y) x+y-1<0}是在直线x+y-1=0左下方的平面区域.
提出:直线-x+y-1=0的两侧的点的坐标代入-x+y-1中,得到的数值的符号,仍然会“同侧同号,异侧异号”吗?
通过分析引导学生得出一般二元一次不等式表示平面区域的有关结论.
三、一般二元一次不等式表示平面区域
结论:在平面直角坐标系中,
•(1)二元一次不等式Ax+By+C>0表示直线Ax+By+C=0某一侧所•有点组成的平面区域,Ax+By+C<0则表示直线另一侧所有点组成•的平面区域;(同侧同号,异侧异号)
(2)有等则实,无等则虚;
(3)试点定域,原点优先.
四、例题:
例1:画出不等式x -y +5>0表示的平面区域;
分析:先作出直线x -y +5=0为边界(画成实线),再取原点验证不等式x -y +5>0所表示的平面区域.
解:先画直线x -y +5=0为边界(画成实线),再取原点(0,0)代入x -y +5中,因为0-0+5>0,所以原点在不等式x -y +5>0所表示的
平面区域内,不等式表示的区域如图所示. (看幻灯片) 反思归纳:
(1)画线定界(注意实、虚线); (2)试点定域. 【随堂练习】
(1)画出不等式x +y >0表示的平面区域; (2)画出不等式x ≤3表示的平面区域. (让学生完成)
例2:画出不等式组⎪⎩
⎪
⎨⎧≤≥+≥+-3,0,
05x y x y x 表示的平面区域. 分析:不等式组表示的平面区域是各个不等式所表示的平面点集
的交集,因而是各个不等式所表示的平面区域的公共部分。
x -y
(内容略)(在几何画板中作图)
【拓展练习】
画出不等式(x-y+5)(x+y)>0表示的平面区域;
课堂小结:
1.研究了二元一次不等式表示平面区域,利用试点的方法,猜想出
结果并证明它;
2.总结出一般二元一次不等式表示平面区域的有关结论;
3.学习了如何确定并画出不等式(组)表示的平面区域.
布置作业:课本上的练习题和习题7.4第1题.
布置课后思考题:
1.画出不等式 x + y ≤1表示的平面区域;
2.画出不等式x2+y2≤1表示的平面区域.
【参评教案】
§7.4 简单的线性规划第一课时:二元一次不等式表示平面区域
单位:濮阳市油田第一中学
教师:贾隽青。