TLR-4 deficiency protects against focal cerebral ischemia and axotomy-induced neurodegeneration
TLR4促进苯肾上腺素诱导的心肌细胞肥大
doi:10.3969/j.issn.1000⁃484X.2020.21.005TLR4促进苯肾上腺素诱导的心肌细胞肥大韦 玲 闻 明 (天津市泰达医院,天津300457) 中图分类号 R541 文献标志码 A 文章编号 1000⁃484X (2020)21⁃2582⁃05作者简介:韦 玲,女,硕士,主治医师,主要从事急诊心脑血管疾病的临床及心肌肥大基础机制方面的研究,E⁃mail:wk856q@㊂[摘 要] 目的:探究Toll 样受体4(TLR4)基因对苯肾上腺素(PE)诱导的心肌细胞肥大的影响及其作用机制㊂方法:选择GEO 数据库中人及小鼠心肌肥厚组织的测序数据,借助R 软件进行分析,筛选出目的基因TLR4;使用PE 处理原代心肌细胞,检测细胞中TLR4蛋白和mRNA 水平;使用siRNA 转染或者腺病毒感染的方式敲低或者过表达原代心肌细胞中TLR4蛋白和mRNA 水平,检测其对PE 诱导的心肌细胞肥大的影响;Western blot 检测敲低或者过表达TLR4对IL⁃6/Stat3信号通路的影响㊂结果:共有32个基因在人和小鼠心肌肥厚组织中表达水平发生改变;PE 处理原代心肌细胞后,TLR4蛋白和mRNA 水平均显著升高;敲低TLR4能抑制PE 诱导的心肌细胞肥大,而上调TLR4能促进PE 诱导的心肌细胞肥大;Western blot 结果表明,在PE 处理下,敲低TLR4能引起心肌细胞中IL⁃6和p⁃Stat3表达水平降低,过表达TLR4能导致心肌细胞中IL⁃6和p⁃Stat3表达水平显著升高㊂结论:TLR4在心肌肥厚过程中高表达,敲低TLR4可能通过抑制IL⁃6/Stat3信号通路活性抑制PE 诱导的心肌细胞肥大㊂[关键词] TLR4;GEO 数据库;心肌肥厚;IL⁃6/Stat3信号通路TLR4promotes phenylephrine⁃induced cardiomyocyte hypertrophyWEI Ling ,WEN Ming .Tianjin Teda Hospital ,Tianjin 300457,China[Abstract ] Objective :To explore the effect of Toll⁃like receptor 4(TLR4)gene on phenylephrine(PE)⁃induced cardiomyocytehypertrophy and its mechanism.Methods :The sequencing data of human and mouse cardiomyocyte hypertrophy tissues in the GEO database were selected and analyzed using R software,and the target gene TLR4was screen out.Primary cardiomyocytes were treated with phenylephrine (PE)and TLR4protein and mRNA were detected in the cells.The TLR4protein and mRNA levels were downregulated or overexpressed through siRNA transfection or adenovirus infection to detect the effect TLR4in PE⁃induced cardiomyocyte hypertrophy.Western blot was used to detect the effect of TLR4knockdown or overexpression on IL⁃6/Stat3signal pathway.Results :A total of 32gene expression levels were changed in both human and mouse cardiomyocyte hypertrophic tissues.TLR4protein and mRNA levels were significantly increased after PE treatment.Knock⁃down the expression level of TLR4could inhibit PE⁃inducedcardiomyocytehypertrophy.Onthecontrary,overexpressionTLR4couldpromotePE⁃inducedcardiomyocytehypertrophy.Western blot results showed that under PE treatment,knocking down TLR4could significantly inhibit the expression levels of IL⁃6and p⁃Stat3in cardiomyocytes,and overexpression of TLR4could increase the expression levels of IL⁃6and p⁃Stat3.Conclusion :TLR4was highly expressed in cardiomyocyte hypertrophy.Knockdown of TLR4might inhibit PE⁃inducedcardiomyocyte hypertrophy by inhibiting the activity of IL⁃6/Stat3signaling pathway.[Key words ] TLR4;GEO database;Cardiomyocyte hypertrophy;IL⁃6/Stat3signaling pathway 心肌肥厚是心脏在生理性或者病理性刺激下发生的适应性改变,可分为生理性心肌肥厚和病理性心肌肥厚[1]㊂生理性心肌肥厚是在妊娠㊁运动等生理性刺激下心肌细胞发生的代偿性改变,心肌细胞沿着横轴方向增大,可引起心脏收缩功能增强,但不会进展为心力衰竭[2,3];病理性心肌肥厚则是由心肌损伤㊁代谢紊乱㊁血管病变等病理性刺激诱发的心脏负荷超载的代偿性改变,表现为心肌细胞沿着纵轴方向增大㊁心肌细胞收缩功能下降㊁蛋白质合成增多㊁胚胎基因的重新激活以及心肌细胞的凋亡和心肌纤维化等不可逆改变,是心脏疾病向心力衰竭进展的必然过程[4⁃6]㊂目前,心肌肥厚的发病机理尚未完全阐明,临床上尚缺乏有效的治疗手段,因此,探索病理性心肌肥厚发生的分子机制,寻找新的药物作用靶点,改善病理性心肌肥厚的治疗方案,对于人群健康具有重要意义㊂本研究通过分析GEO 数据库中人及小鼠心肌肥厚组织的测序数据,借助R 软件筛选出目的基因Toll 样受体4(Toll⁃like receptor 4,TLR4),并通过后续细胞实验探究其对PE 诱导的原代心肌细胞肥大的影响及可能的作用机制,以期为探索新的抗心肌肥厚药物治疗靶点和策略提供依据㊂1 材料与方法1.1 材料 胰蛋白酶和胶原酶Ⅱ购自美国Sigma 公司;Lipofectamine RNAiMAX转染试剂购自美国Invitrogen公司;PE购自英国Abcam公司;TLR4特异性siRNA序列(siTLR4)及对照组序列(siNeg)购自上海生工生物有限公司;TLR4过表达腺病毒(AdTLR4)及相应对照组病毒(AdEGFP)购自上海汉恒生物科技有限公司;抗TLR4㊁IL⁃6㊁p⁃Stat3㊁t⁃Stat3和GAPDH一抗均购自美国CST公司㊂1.2 方法1.2.1 原代心肌细胞培养 选取出生后2~3d 的新生大鼠,断颈处死后取出心脏组织,置于培养皿中,加入PBS缓冲液,洗涤后剪去心房组织㊂用剪刀将心脏组织剪碎,加入5ml含0.1%的胰蛋白酶和0.04%的胶原酶Ⅱ的消化液,置于恒温摇床中,37℃消化20min后,收集消化液,在剩余组织中添加消化液,继续消化,重复4~5次,心脏组织消化完全后将收集的消化液混合,1500r/min 离心10min,弃上清,用含有10%胎牛血清的DMEM完全培养基重悬细胞,2000目过滤后采用差时贴壁法去除成纤维细胞,用DMEM完全培养基重悬,调整细胞密度为1×105个/ml,接种在6孔板中,2ml/孔,置于37℃㊁5%CO2的细胞培养箱中培养㊂1.2.2 细胞转染与分组 原代心肌细胞用冷PBS 洗涤后用含1%ITS的DMEM培养基培养㊂将3μl siRNA或5μl Lipofectamine RNAiMAX转染试剂分别与100μl Opti⁃MEM培养基混合,室温静置5min 后,将siRNA与转染试剂混合后静置15min,加入6孔板中㊂转染后8h换液,48h收集细胞检测敲低效率㊂腺病毒感染参照公司提供的相关步骤,即原代心肌细胞换液后,分别在每孔中加入对照组病毒和TLR4过表达病毒,感染24h后换液,48h收集细胞检测过表达效率㊂细胞共分为4组:siNeg组㊁siTLR4组㊁AdEGFP组㊁AdTLR4组㊂1.2.3 WGA染色 原代心肌细胞用冷PBS浸洗3次,每次5min,室温下用4%多聚甲醛固定15min,PBS浸洗3次后,加入WGA(Wheat germ ag⁃glutinin)工作液,室温下避光孵育30min,PBS浸洗后,用0.2%Triton X⁃100通透10min,使用DAPI进行细胞核染色,随后使用正置显微镜进行拍照,心肌细胞面积使用Image J软件进行分析㊂1.2.4 qRT⁃PCR 原代心肌细胞用冷PBS洗涤后,加入1ml Trizol,冰上裂解20min后,用细胞刮板收集细胞,Trizol法提取总RNA,取0.5μg总RNA进行逆转录,最后进行实时荧光定量PCR检测目的基因的mRNA水平,TLR4引物序列为:F:5′⁃TGGCAT⁃TGTTCCTTTCCTGC⁃3′,R:5′⁃GTTTAAGCCATGCCA⁃TGCCT⁃3′㊂β⁃actin引物序列为:F:5′⁃GGCATCCT⁃GACCCTGAAGTA⁃3′,R:5′⁃AGGCATACAGGGACA⁃ACACA⁃3′㊂qRT⁃PCR反应条件为:94℃2min;94℃30s,60℃20s,70℃20s,共计35个循环,基因表达水平采用2-ΔΔCt法计算㊂1.2.5 Western blot 原代心肌细胞用冷PBS洗涤2次后,RIPA上裂解30min,用细胞刮板收集细胞,提取总蛋白㊂取20μg总蛋白行10%或12%聚丙烯酰胺凝胶电泳分离,常规转膜封闭后将PVDF膜置入相应的一抗中4℃孵育过夜,TBST洗涤2次后,室温孵育辣根过氧化物酶标记的二抗(1∶10000),使用ECL试剂盒进行曝光分析㊂目的蛋白表达水平=目的蛋白灰度值/GAPDH灰度值㊂1.2.6 差异基因筛选 原始数据集GSE42955和GSE56348下载自GEO数据库,使用R软件及Limma功能包筛选差异表达基因,设置筛选条件为: |log2(Fold Change)|>0.5且P<0.05㊂使用及ggplot2等功能包进行数据可视化㊂1.3 统计学分析 采用SPSS20.0统计软件对实验结果进行分析,数据以x±s表示,两组间比较采用配对t检验,以P<0.05为差异具有统计学意义㊂2 结果2.1 心肌肥厚生物信息学分析 选取GEO数据库中数据集GSE42955,共含有17个人心脏组织样本,其中正常心脏组织(Ctr)5个,扩张性心肌病心脏组织(DCM)12个㊂对该数据集分析发现,与正常心脏组织相比,DCM组织中有372个基因表达水平发生改变,其中160个基因上调,212个基因下调(图1A);选取数据集GSE56348,共含有10个小鼠心脏组织,其中假手术组心脏组织(Sham)5个,主动脉缩窄手术组心脏组织(TAC)5个,对该数据集分析发现,与Sham组相比,TAC组中有575个基因表达水平发生改变,其中421个基因上调,154个基因下调(图1B)㊂2.2 TLR4在心肌肥厚组织中高表达 对数据集GSE42955和GSE56348联合分析发现,共有32个基因表达水平在人和小鼠心肌肥厚组织中发生改变(图2A)㊂与正常心脏组织(Ctr)相比,扩张性心肌病心脏组织(DCM)中TLR4表达水平显著增加(P =0.014)(图2B);与假手术组小鼠心脏组织(Sham)相比,主动脉缩窄手术组小鼠心脏组织(TAC)中TLR4表达水平显著增加(P =0.0079)(图2C)㊂2.3 PE 处理原代心肌细胞诱导TLR4表达增加 用PE 处理原代心肌细胞48h 后,心肌肥厚标志物Anp㊁Bnp㊁Myh7的mRNA 水平显著上升,Myh6的mRNA 水平显著降低(图3A)㊂心肌细胞面积分图1 心肌肥厚组织生物信息学分析Fig.1 Bioinformatics analysis of cardiomyocyte hyper⁃trophytissues图2 TLR4在心肌细胞肥厚组织中高表达Fig.2 TLR4is over⁃expressed in cardiomyocyte hyper⁃trophytissues图3 苯肾上腺素处理原代心肌细胞诱导TLR4表达上升Fig.3 Phenylephrine treatment induces increased expres⁃sion of TLR4in primary cardiomyocytesNote:Compared with Control,*.P <0.05,**.P <0.01.析发现,PE 处理组心肌细胞面积显著高于对照组心肌细胞(图3B)㊂qRT⁃PCR 和Western blot 结果表明,PE 处理48h 后,心肌细胞中TLR4基因mRNA 和蛋白水平均显著增加(图3A㊁C㊁D)㊂2.4 敲低TLR4抑制PE 诱导的心肌细胞肥大 通过siRNA 转染原代心肌细胞,敲低TLR4表达水平,qRT⁃PCR 和Western blot 结果表明,与siNeg 组相比,siTLR4组心肌细胞中TLR4的mRNA 和蛋白水平显著降低(图4A ~C)㊂在PE 处理下,敲低TLR4能逆转PE 导致的Anp 和Bnp 的mRNA 水平升高(图4D㊁E)㊂心肌细胞面积分析发现,敲低TLR4能抑制PE 诱导的心肌细胞面积增加(图4F)㊂2.5 过表达TLR4促进PE 诱导的心肌细胞肥大 通过腺病毒感染的方式过表达心肌细胞中TLR4表达水平,qRT⁃PCR 和Western blot 结果表明,与AdEGFP 组相比,AdTLR4组心肌细胞中TLR4的mRNA 和蛋白水平显著增加(图5A ~C)㊂在PE 处理下,过表达TLR4能促进PE 导致的Anp 和Bnp 的mRNA 水平升高(图5D㊁E)㊂心肌细胞面积分析发现,过表达TLR4能促进PE 诱导的心肌细胞面积增加(图5F)㊂2.6 TLR4对IL⁃6/Stat3信号通路的影响 Western blot 结果表明,PE 处理导致心肌细胞中IL⁃6和p⁃Stat3水平显著上升,t⁃Stat3水平变化无统计学意义(图6A㊁C)㊂在PE 处理下,敲低TLR4能引起心肌细胞中IL⁃6和p⁃Stat3表达水平降低(图6A㊁B),过表达TLR4能导致心肌细胞中IL⁃6和p⁃Stat3表达水平显著上升(图6C㊁D)㊂图4 敲低TLR4抑制PE 诱导的心肌细胞肥大Fig.4 Knock⁃down TLR4inhibits PE⁃induced cardiomyo⁃cyte hypertrophyNote:Compared with siNeg,*.P <0.05,**.P <0.01;compared withcontrol,##.P <0.01.图5 过表达TLR4促进PE 诱导的心肌细胞肥大Fig.5 Over⁃expression TLR4promotes PE⁃induced car⁃diomyocyte hypertrophyNote:Compared with AdEGFP,*.P <0.05,**.P <0.01;comparedwith Control,#.P <0.05,##.P <0.01.图6 TLR4对IL⁃6/Stat3信号通路的影响Fig.6 Effect of TLR4on IL⁃6/Stat3signal pathwayNote:Compared with siNeg or AdEGFP,*.P <0.05,**.P <0.01;compared with siNeg +PE or AdEGFP +PE,#.P <0.05,##.P <0.01.3 讨论TLR4属于TLRs 蛋白家族,目前已发现,该家族共含有13种TLRs 蛋白,均属于Ⅰ型跨膜糖蛋白受体,由富含亮氨酸重复序列的胞外段㊁跨膜区和胞内结构域组成,其中TLR4是哺乳动物中最早发现的TLRs [7,8]㊂研究表明,TLR4在包括单核/巨噬细胞㊁内皮细胞㊁肾小管上皮细胞等多种哺乳动物细胞中广泛表达,通过识别包括热休克蛋白㊁胎球蛋白A㊁纤连蛋白等在内的内源性配体和细菌脂多糖㊁核酸等外源性配体,激活下游信号通路而发挥重要功能,参与调控天然免疫和获得性免疫过程,与肿瘤㊁心血管疾病㊁免疫性疾病等多种疾病密切相关[9⁃11]㊂既往大量研究表明,TLR4与冠心病㊁高血压㊁心力衰竭㊁心肌梗死等心血管疾病密切相关,而TLR4与病理性心肌肥厚发生发展也有相关文献报道[12⁃14]㊂Li 等[15]研究表明,长链非编码RNA MIAT(myocardial infarction⁃associated transcript )可通过海绵吸附miRNA⁃93进而上调TLR4的表达水平,从而促进病理性心肌肥厚的发生㊂Li 等[16]发现,在压力负荷下,NLRP3基因敲除能促进小鼠发生病理性心肌肥厚,进一步机制研究发现,NLRP3敲除可引起TLR4高表达,TLR4抑制剂能缓解NLRP3基因敲除小鼠在压力负荷下出现的心肌肥厚和心功能下降,这些研究均提示TLR4在病理性心肌肥厚中的重要作用,而具体机制有待进一步阐明㊂本研究通过分析GEO 数据库中数据集GSE42955和GSE56348,发现与相应正常心脏组织相比,在人和小鼠肥厚心脏组织中有32个基因表达水平均发生改变,其中,TLR4基因在人和小鼠肥厚心脏组织中呈现高表达㊂随后,本研究使用PE 处理新生大鼠原代心肌细胞48h,然后检测Anp㊁Bnp㊁Myh6㊁Myh7等心肌肥厚的重要标志物,并通过WGA 染色及心肌细胞面积分析发现,PE 能明显诱导心肌细胞肥大,表明PE 诱导的新生大鼠原代心肌细胞肥大模型成功建立㊂随后,本研究检测了PE 处理48h 后,原代心肌细胞中TLR4基因蛋白和mRNA 水平,发现在PE 刺激后,TLR4基因蛋白和mRNA 水平均显著增加㊂这些结果提示TLR4在心肌肥厚发生过程中具有重要作用,因此本研究选择TLR4作为目的基因㊂为进一步探究TLR4在心肌肥厚中的作用,本研究设计TLR4特异性siRNA 和TLR4过表达腺病毒进行细胞水平和分子水平的验证㊂结果表明,在PE 处理下,敲低TLR4能逆转PE 导致的Anp 和Bnp 的mRNA 水平升高㊂心肌细胞面积分析发现,敲低TLR4能抑制PE 诱导的心肌细胞面积增加,说明敲低TLR4能抑制PE 诱导的心肌细胞肥大㊂相反,上调TLR4能显著促进PE 诱导的心肌细胞肥大,这些结果表明,TLR4在心肌肥厚中具有重要作用㊂IL⁃6是一种在细胞内广泛存在的多效能细胞因子,通过与其受体结合,诱导激活下游JAKs 家族成员,包括丝裂原激活蛋白激酶(mitogen⁃activation protein kinase,MAPK),磷脂酰肌醇3⁃激酶(phos⁃phatidylinositol 3⁃kinase,P Ⅰ3K)和信号转导及转录激活因子3(signal transduction and activator of transcri⁃ption 3,Stat3),从而广泛参与调控炎症反应,与细胞增殖㊁分化㊁凋亡密切相关,参与恶性肿瘤㊁糖尿病㊁心血管疾病等的发生㊁发展[17,18]㊂既往研究表明,IL⁃6/Stat3信号通路与病理性心肌肥厚的发生㊁发展密切相关[19⁃21]㊂Chen等[19]发现,在血管紧张素Ⅱ诱导的病理性心肌肥厚过程中伴随着IL⁃6/Stat3信号通路依赖的炎症反应的激活;Chen等[20]研究表明,在血管紧张素Ⅱ处理下,IL⁃6基因敲除能缓解小鼠病理性心肌肥厚的发生,改善心功能;Zhao等[21]研究发现,敲除IL⁃6能减轻压力超负荷引起的左心室肥大和功能障碍,与Stat3磷酸化水平降低有关,这些研究均表明,IL⁃6/Stat3信号通路在心肌肥厚发生中具有重要作用㊂因此,为进一步探究TLR4作用机制,本研究检测了TLR4敲低或者过表达对IL⁃6/Stat3信号通路的影响㊂结果表明,PE处理导致心肌细胞中IL⁃6和p⁃Stat3水平显著增加,t⁃Stat3水平无显著改变,说明在肥厚刺激下,IL⁃6/Stat3信号通路处于激活状态,这与既往研究相符㊂在基础水平下,敲低或过表达TLR4对IL⁃6和p⁃Stat3水平无明显影响,而在肥厚刺激下,敲低TLR4能引起心肌细胞中IL⁃6和p⁃Stat3表达水平降低,过表达TLR4能导致心肌细胞中IL⁃6和p⁃Stat3表达水平显著增加,以上结果表明,TLR4可能是通过调控IL⁃6/Stat3信号通路从而影响病理性心肌肥厚的发生㊂不过,本研究尚未深入探究TLR4激活IL⁃6/Stat3信号通路的具体机制,也未能进行逆转实验验证抑制IL⁃6/ Stat3信号通路活性能否减弱TLR4过表达对PE诱导的心肌细胞肥大的促进作用,有待进一步探索㊂总之,本研究基于GEO数据库,利用生物信息学手段,筛选出与病理性心肌肥厚发生有关的基因TLR4,敲低TLR4可能是通过抑制IL⁃6/Stat3信号通路缓解PE诱导的心肌细胞肥大的发生,TLR4可能是潜在的治疗心肌肥厚药物的作用靶点㊂参考文献:[1] Shimizu I,Minamino T.Physiological and pathological cardiachypertrophy[J].J Mol Cell Cardiol,2016,97:245⁃262. [2] Nakamura M,Sadoshima J.Mechanisms of physiological andpathological cardiac hypertrophy[J].Nat Rev Cardiol,2018,15(7):387⁃407.[3] Zhu L,Li C,Liu Q,et al.Molecular biomarkers in cardiachypertrophy[J].J Cell Mol Med,2019,23(3):1671⁃1677. [4] Samak M,Fatullayev J,Sabashnikov A,et al.Cardiac hypertrophy:An introduction to molecular and cellular basis[J].Med Sci Monit Basic Res,2016,22:75⁃79.[5] Gibb AA,Hill BG.Metabolic coordination of physiological andpathological cardiac remodeling[J].Circ Res,2018,123(1):107⁃128.[6] Marian AJ,Braunwald E.Hypertrophic Cardiomyopathy:Genetics,pathogenesis,clinical manifestations,diagnosis,and therapy[J].Circ Res,2017,121(7):749⁃770.[7] Ding J,Liu Q.Toll⁃like receptor4:A promising therapeutic targetfor pneumonia caused by Gram⁃negative bacteria[J].J Cell MolMed,2019,23(9):5868⁃5875.[8] Leitner GR,Wenzel TJ,Marshall N,et al.Targeting toll⁃likereceptor4to modulate neuroinflammation in central nervous system disorders[J].Exp Opin Ther Targets,2019,23(10):865⁃882.[9] 吴 宪,李 涛.sTLR4的研究进展[J].中国免疫学杂志,2018,34(4):628⁃631.Wu X,Li T.Research of sTLR4[J].Chin J Immunol,2018,34(4):628⁃631.[10] Pandey N,Chauhan A,Jain N.TLR4polymorphisms and expressionin solid cancers[J].Mol Diagn Ther,2018,22(6):683⁃702. [11] Schattner M.Platelet TLR4at the crossroads of thrombosis andthe innate immune response[J].J Leukoc Biol,2019,105(5):873⁃880.[12] Biancardi VC,Bomfim GF,Reis WL,et al.The interplay betweenAngiotensinⅡ,TLR4and hypertension[J].Pharmacol Res,2017,120:88⁃96.[13] Nunes KP,de Oliveira AA,Mowry FE,et al.Targeting toll⁃likereceptor4signalling pathways:Can therapeutics pay the toll forhypertension?[J].Br J Pharmacol,2019,176(12):1864⁃1879.[14] 李 飞,周 静,孙红梅,等.靶向TLR4的siRNA慢病毒感染减少过氧化氢诱导的心肌H9C2细胞凋亡及氧化损伤[J].中国免疫学杂志,2019,35(6):665⁃670.Li F,Zhou J,Sun HM,et al.Targeting TLR4siRNA lentivirusinfection reduced cardiomyocyte apoptosis and oxidative damageinduced by hydrogen peroxide[J].Chin J Immunol,2019,35(6):665⁃670.[15] Li Y,Wang J,Sun L,et al.LncRNA myocardial infarction⁃associated transcript(MIAT)contributed to cardiac hypertrophyby regulating TLR4via miR⁃93[J].Eur J Pharmacol,2017,818:508⁃517.[16] Li F,Zhang H,Yang L,et al.NLRP3deficiency acceleratespressure overload⁃induced cardiac remodeling via increased TLR4expression[J].J Mol Med,2018,96(11):1189⁃1202. [17] Kitamura H,Ohno Y,Toyoshima Y,et al.Interleukin⁃6/STAT3signaling as a promising target to improve the efficacy of cancerimmunotherapy[J].Cancer Sci,2017,108(10):1947⁃1952.[18] Fang T,Guo B,Xue L,et al.Atorvastatin prevents myocardialfibrosis in spontaneous hypertension via interleukin⁃6(IL⁃6)/signal transducer and activator of transcription3(STAT3)/endothelin⁃1(ET⁃1)pathway[J].Med Sci Monit,2019,25:318⁃323.[19] Chen D,Li Z,Bao P,et al.Nrf2deficiency aggravates AngiotensinⅡ⁃induced cardiac injury by increasing hypertrophy andenhancing IL⁃6/STAT3⁃dependent inflammation[J].BiochimBiophys Acta Mol Basis Dis,2019,1865(6):1253⁃1264. [20] Chen F,Chen D,Zhang Y,et al.Interleukin⁃6deficiency atten⁃uates angiotensinⅡ⁃induced cardiac pathogenesis with increasedmyocyte hypertrophy[J].Biochem Biophys Res Commun,2017,494(3⁃4):534⁃541.[21] Zhao L,Cheng G,Jin R,et al.Deletion of interleukin⁃6attenuatespressure overload⁃induced left ventricular hypertrophy and dysf⁃unction[J].Circ Res,2016,118(12):1918⁃1929.[收稿2020⁃07⁃28](编辑 张晓舟)。
磷酸二酯酶4抑制剂[发明专利]
专利名称:磷酸二酯酶4抑制剂
专利类型:发明专利
发明人:阿肖克·泰西姆,阿伦·霍珀,刘瑞平,埃里克·屈斯特,罗伯特·F.·邓恩,托马斯·E.·雷瑙
申请号:CN200480016778.6
申请日:20040416
公开号:CN1805929A
公开日:
20060719
专利内容由知识产权出版社提供
摘要:式Ⅰ用4-(取代苯基)-2-吡咯烷酮化合物实现选择性PDE4抑制。
这些化合物与诸如咯利普兰的化合物相比显示提高的PDE4抑制,并且相对于其它类PDE的抑制而言表现出选择性。
本发明的化合物是式(I)的化合物,其中R、R和R如本文中定义。
申请人:记忆药物公司,罗氏公司
地址:美国新泽西州
国籍:US
代理机构:永新专利商标代理有限公司
代理人:张晓威
更多信息请下载全文后查看。
2020届长春市十三中学高三生物上学期期中考试试卷及答案解析
2020届长春市十三中学高三生物上学期期中考试试卷及答案解析一、选择题:本题共15小题,每小题2分,共30分。
每小题只有一个选项符合题目要求。
1. 三刺鱼根据栖息环境可分为湖泊型和溪流型(如图所示)。
科研人员在实验室中让湖泊型和溪流型三刺鱼进行几代杂交,形成一个实验种群。
之后将上述实验种群的幼鱼放生到一条没有三刺鱼的天然溪流中。
一年后,他们将这条溪流中的三刺鱼重新捕捞上来进行基因检测。
发现溪流型标志基因的基因频率增加了约2.5%,而湖泊型标志基因的基因频率则减少了。
对上述材料分析,下列选项正确的是()A. 自然选择可以定向改变种群的基因频率,但不一定导致新物种的形成B. 突变和基因重组使种群产生定向变异,导致基因频率改变,为进化提供原材料C. 溪流型和湖泊型三刺鱼不属于同一物种,两个物种存在竞争关系D. 溪流型三刺鱼在新环境中繁殖能力增强,导致两种三刺鱼发生协同进化2. 下列关于细胞的说法正确的一组是()①含细胞壁结构的细胞必定为植物细胞①含中心体的细胞必定为动物细胞①同一动物体不同组织细胞中线粒体含量可能不同①植物细胞必定含叶绿体①能进行光合作用的生物不一定是绿色植物A.①①B.①①C.①①D.①①3. 某种RNA病毒在增殖过程中,其遗传物质需要经过某种转变后整合到真核宿主的基因组中。
物质Y与脱氧核苷酸结构相似,可抑制该病毒的增殖,但不抑制宿主细胞的增殖,那么Y抑制该病毒增殖的机制是A. 抑制该病毒RNA的转录过程B. 抑制该病毒蛋白质的翻译过程C. 抑制该RNA病毒的反转录过程D. 抑制该病毒RNA的自我复制过程4. 决定小鼠毛色为黑(B)褐(b)色、有(s)/无(S)白斑的两对等位基因分别位于两对同源染色体上。
基因型为BbSs的小鼠间相互交配,后代中出现黑色有白斑小鼠的比例是()A. 1/16B. 3/16C. 7/16D. 9/165. 动物细胞内不具有的结构是()A.细胞核B.叶绿体C.细胞膜D.线粒体6. 肾上腺的髓质分泌肾上腺素,它的分泌活动受内脏神经的直接支配,在恐惧、严重焦虑、剧痛等紧急情况下,肾上腺素分泌增多,如图为肾上腺素在不同组织细胞发挥作用的机制。
2021年南京板桥中学高三生物期中考试试卷及答案解析
2021年南京板桥中学高三生物期中考试试卷及答案解析一、选择题:本题共15小题,每小题2分,共30分。
每小题只有一个选项符合题目要求。
1. 图一曲线a表示在最适温度、最适pH条件下生成物的量与时间的关系,图二曲线b表示在最适温度、最适pH条件下,酶促反应速率与反应物浓度的关系。
据图分析正确的是()A.图一曲线a中,A点后,限制生成物的量不再增加的因素是酶的数量不足B.分别在图二中取B、C点的速率值,对应图一中的曲线c和dC.图二曲线,酶减少后,图示反应速率可用曲线f表示D.减小pH,重复该实验,图二曲线b应变为曲线f;增大pH,应变为曲线e2. 下列物质进入细胞需要载体蛋白的是()A.酒精进入胃粘膜细胞B.CO2进入叶肉细胞C.钾离子进入丽藻细胞D.母乳中的抗体进入婴儿小肠上皮细胞3. 人体的个体发育是从受精卵开始的,其中有细胞增殖、细胞分化、细胞衰老和细胞凋亡等现象。
下列相关叙述正确的是()A.婴儿时期有细胞增殖、细胞分化、细胞衰老和细胞凋亡等现象B.人体中没有同时进行有丝分裂和减数分裂的器官C.有丝分裂和减数分裂过程中均可发生3种可遗传的变异D.人体细胞在增殖过程中染色体数目最多可达92条,最少可达46条4. 如图细胞分类概念图中不符合事实的是A. 若A为真核细胞,B为原核细胞,则D为核糖体B. 若A为真核细胞,B为原核细胞,则C为拟核C. 若A为植物细胞,B为动物细胞,则C为细胞壁D. 若A为植物细胞,B为动物细胞,则D为高尔基体5. 进行有性生殖的高等动物的三个生理过程如图所示,则①、①、①分别为()A.受精作用、有丝分裂、减数分裂B.有丝分裂、受精作用、减数分裂C.受精作用、减数分裂、有丝分裂D.减数分裂、受精作用、有丝分裂6. 用32P标记果蝇精原细胞所有核DNA双链,然后置于31P的培养液中培养。
关于该果蝇的精原细胞的一次有丝分裂与减数分裂的叙述,正确的是A.有丝分裂与减数第二次分裂两者后期细胞中,含32P的DNA的含量,前者是后者的两倍B.有丝分裂与减数第一次分裂两者后期细胞中,含32P的DNA的含量,前者是后者的两倍C.有丝分裂与减数第一次分裂两者前期细胞中,含32P的DNA的含量相同,染色体数不同D.有丝分裂与减数第一次分裂两者中期细胞中,含32P的DNA的含量不同,染色体数相同7. 下列关于A TP的描述正确的是A. 一个ATP分子中含有三个高能磷酸键B. 动物体内主要的储能物质是ATPC. A TP是直接能源物质D. 线粒体是合成A TP的唯一场所8. 在我国北方,游泳爱好者冬泳入水后,身体立即发生系列生理反应,以维持体温稳定。
FDA警告消费者不要使用力强四号胶囊
FDA警告消费者不要使用力强四号胶囊
罗娟(摘)
【期刊名称】《国外药讯》
【年(卷),期】2006(000)001
【摘要】美国FDA发现力强四号食物补充胶囊(Liqiang 4 Dietary Supplement Capsules;Liqiang Xiao Ke Ling;Liqiang Thirst Quenching Efficacious)含有格列苯脲(glibenelamide),某些患者服用后可能出现严重后果,甚至威胁生命。
【总页数】2页(P41-42)
【作者】罗娟(摘)
【作者单位】无
【正文语种】中文
【中图分类】R95
【相关文献】
1.关于东风四号要不要取消的一场争论关于东风四号要不要取消的一场争论 [J], 胡溪涛
2.美国FDA警告信对我国高校药学实验室建设的启示 [J], 朱狄峰;杨晓春;平丽;陈超
3.FDA警告:减肥药氯卡色林可能增加患癌风险 [J],
4.FDA警告不要使用PNC-27产品治疗癌症 [J],
5.美国FDA提醒消费者不要通过网上购买风险较高的药物 [J], 何宁宁
因版权原因,仅展示原文概要,查看原文内容请购买。
TLR-4、COX-2在口腔鳞癌中表达及意义
TLR-4、COX-2在口腔鳞癌中表达及意义
代婧
【期刊名称】《三峡大学学报:自然科学版》
【年(卷),期】2017(0)S1
【摘要】目的:探讨口腔鳞癌中TLR-4和COX-2表达与临床病理因素之间的关系及意义.方法:采用免疫组化SP法检测48例口腔鳞癌患者中TLR-4和COX-2蛋白表达,并分析其临床意义.结果:TLR-4和COX-2主要表达于口腔鳞癌细胞膜和细胞质上,细胞核上无表达,在癌组织及癌旁组织中的阳性表达率逐渐升高,均高于正常组织,各组间比较差别有统计学意义(P<0.01)并且在口腔鳞癌和癌旁组织中TLR-4和COX-2呈正相关.结论:TLR-4和COX-2在口腔鳞癌病变进程中表达异常增高,并有明显的协同作用,两者在口腔鳞癌的发生、发展过程中发挥一定作用.
【总页数】4页(P11-14)
【关键词】TLR-4;COX-2;口腔鳞癌
【作者】代婧
【作者单位】湖北省荆州市中心人民医院口腔科
【正文语种】中文
【中图分类】R739.8
【相关文献】
1.IL-17、COX-2在口腔扁平苔藓和口腔鳞癌中的表达分析 [J], 陈启林;胡孝丽;徐琼莉;严艳
2.口腔鳞癌中COX-2、VEGF-C的表达及其临床意义 [J], 黄元清;宋宇峰;易建国
3.口腔鳞癌组织中PTEN、COX-2表达和MVD测定及意义 [J], 方冬冬;颜雨春;杨全全
4.口腔鳞癌及癌前病变组织中Cox-2、VEGF的表达及意义 [J], 孙晓菊;马嘉;张辉;王绪凯;李建华
5.COX-2在口腔鳞癌组织中表达及意义的meta分析 [J], 董红;余和东;张敬阳因版权原因,仅展示原文概要,查看原文内容请购买。
sTLR4的研究进展
sTLR4的研究进展sTLR4的研究进展本文关键词:研究进展,sTLR4sTLR4的研究进展本文简介:摘要:TLR4是第一个被发现的哺乳动物的Toll样受体(TLRs),广泛表达于哺乳动物细胞表面,能识别病原体的入侵,通过识别配体,激活核转录因子kappaB(NF-κB),进而触发炎症反应。
近年来,在体液中发现了一种可溶性形式TLR4(sTLR4).sTLR4来自TLR4mRNA的可变剪sTLR4的研究进展本文内容:摘要:TLR4是第一个被发现的哺乳动物的Toll样受体(TLRs), 广泛表达于哺乳动物细胞表面,能识别病原体的入侵,通过识别配体,激活核转录因子kappa B (NF-κB), 进而触发炎症反应。
近年来,在体液中发现了一种可溶性形式TLR4 (s TLR4).s TLR4来自TLR4 mRNA的可变剪切,广泛存在于各种体液中。
s TLR4主要通过与MD-2形成复合体,抑制LPS信号通路,从而抑制LPS 引起的炎症反应。
s TLR4作为炎症的诊断工具;作为某些炎症的拮抗剂,抑制炎症反应;替代细胞膜上TLR4受体的胞外域,用于研究信号分子与TLR4的相互作用;作为某些癌症的预后指标。
关键词:sTLR4; 可变剪切;炎症反应;癌症;1 s TLR4的概述1.1 s TLR4的来源TLR4受体属于Ⅰ型跨膜糖蛋白,结构上主要由胞外域、跨膜域和胞内域构成。
其胞外域由富含亮氨酸的重复序列组成,能结合相关配体。
跨膜域是介导信号转导的主要结构。
胞内域进化保守,因其结构类似于IL-1受体,故称为TIR (Toll/IL-1 receptor)区。
TLR4的固有配体主要有细菌脂多糖(Lipopolysaccharide, LPS)、热休克蛋白(Heat shock protein, HSP)60、软脂酸等[1].一个基因的不同外显子和内含子可以组合并一起被剪切下来,从而产生出不同的mRNA.一个外显子或内含子是否被剪切保留在成熟的mRNA中也是可以变化的,故称之为可变剪切。
全球化妆品动态
全球化妆品动态与化妆品中的4-甲基苄亚基樟脑有关联的风险评估2 0 0 9 年1月21日,卫生、青年、体育和社会活动部女部长通过信件责成法国健康产品卫生安全局(Afssaps)解决有关化妆品原料所致的生殖毒性和/或内分泌干扰物的问题。
在此背景下,法国健康产品卫生安全局鉴定了数种有生殖毒性和/或内分泌干扰物的物质,其中有4-甲基苄亚基樟脑(4-MBC)(CAS:36861-47-9/38102-62-4)。
4-甲基苄亚基樟脑是一种吸收紫外线UVB射线的紫外线过滤剂,它被列入化妆品规程指令76/768/CEE的附件VII部分条目12中。
该指令确定了允许在化妆品中含有紫外线过滤剂的名单,因而在化妆品中可用作紫外线过滤剂,最高浓度为4%。
在19 9 6年至20 0 8年期间,欧盟消费者科学委员会多次发表意见。
此外,Schlumps等人发表文章(2001)指控4-甲基苄亚基樟脑为一种内分泌干扰物,因为在体内和体外试验中观察到雌情效应。
之后,欧盟消费者科学委员会于2001年发出通告指出,根据目前的认识水平,这种紫外线过滤剂没有表现出有损害人体健康的雌情效应。
在其2 0 0 4 年5 月2 5 日通过的意见(SCCNFP/0779/04)中,欧盟消费者科学委员会得出结论,在防晒品中使用4-甲基苄亚基樟脑的担忧与上述的雌情效应无关。
实际上在鼠身上重复使用4-甲基苄亚基樟脑的毒性试验中观察到一些变化,特别是在甲状腺激素全貌和甲状腺形态学方面。
不过根据这些掌握的试验很难进行解释。
欧盟消费者科学委员会对2005年提供的新数据的评估得出结论,无风险地使用最高浓度为4%的4-甲基苄亚基樟脑是不能成立的(SCCP/1044/06)。
接着由行业提供了补充的信息。
2008年6月24日欧盟消费者科学委员会通过的最后意见的目的是为了明确4-甲基苄亚基樟脑在化妆品中用作紫外线过滤剂最高浓度为4%对消费者是否没有风险的问题。
在本报告中,法国健康产品卫生安全局对欧盟消费者科学委员会所有的意见以及在有关4-甲基苄亚基樟脑文献中掌握的研究中进行了临界分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TLR-4deficiency protects against focal cerebral ischemia and axotomy-induced neurodegenerationUlkan Kilic,a,b Ertugrul Kilic,a,c,⁎Christian M.Matter,b Claudio L.Bassetti,a and Dirk M.Hermann a,daDepartment of Neurology,University Hospital Zürich,Frauenklinikstr.26,CH-8091Zürich,SwitzerlandbCardiovascular Research,Institute of Physiology,University Hospital Zürich,Wintherturerstrasse 190,CH-8057Zurich,Switzerland cDepartment of Physiology,Faculty of Medicine,Yeditepe University,TR-34755Kayisdag ı,Istanbul,Turkey dDepartment of Neurology,University Hospital Essen,Hufelandstr.55,D-45122Essen,GermanyReceived 27September 2007;revised 29February 2008;accepted 13March 2008Available online 28March 2008The pattern recognition receptor toll-like receptor (TLR)-4mediates innate danger signaling in the brain,being activated in response to lipopolysaccharide.Until now,its role in the degenerating brain remained unknown.We here examined effects of a loss-of-function mutation of TLR-4in mice submitted to transient focal cerebral ischemia and retinal ganglion cell (RGC)axotomy,which are highly reproducible and clinically relevant in vivo models of acute and subacute neuronal degeneration.We show that TLR-4deficiency protects mice against ischemia and axotomy-induced RGC degenera-tion.Decreased phosphorylation levels of the mitogen-activated kinases ERK-1/-2,JNK-1/-2and p38together with reduced inducible NO synthase levels in injured neurons of TLR-4mutant mice suggests that TLR-4deficiency downscales parenchymal stress responses,thereby enhancing neuronal survival.At the same time,densities of MPO+neutrophils and Iba1+microglial cells were increased in the brains of TLR-4mutant animals,pointing towards a futile inflammatory response aiming to compensate lost functions.Our data indicate that innate immunity may represent an attractive target for neuroprotective treatments in stroke and neurodegeneration.©2008Elsevier Inc.All rights reserved.Keywords:Innate immune system;Danger signaling;Ischemic stroke;NeurodegenerationThe injured brain is particularly vulnerable to environmental stimuli.As such,brain cells may remain viable under conditions of ischemia or trauma,but activate death programs when exposed to additional stressors,such as organic toxins (Hermann et al.,2006)orpro-inflammatory signals (Bermpohl et al.,2005).To protect itself from injury,the brain has developed its own endogenous strategies.Along the blood-brain barrier (BBB),so-called ATP-binding cassette (ABC)transporters are expressed on capillary cells that actively eliminate natural compounds from the brain (Begley,2004;Löscher and Potschka,2005;Hermann,and Bassetti,2007).ABC transporters are specifically regulated in response to ischemia (Spudich et al.,2006)and other kinds of brain injury (Hermann et al.,2006;Hermann,and Bassetti,2007),thus providing a highly efficacious barrier for environmental toxins.In the surrounding of brain capillaries,perivascular dendritic and macrophages are located,which together with brain-resident microglia represent an innate surveillance system in the immune-privileged brain (Bechmann et al.,2007).This task is achieved by so-called pathogen-recognition receptors (PRR),which recognize conserved microbial motifs (Sansonetti,2006;Sutmuller et al.,2006;Lee and Kim,2007).Among the pathogen-associated molecular patterns (PAMP)recognized by brain-resident microglia,lipopolysaccharides (LPS),i.e.,cell wall constituents of gram-negative bacteria,play a very im-portant role,being detected by a PRR termed toll-like receptor (TLR)-4(Chakravarty and Herkenham,2005).TLR-4is a leucine-rich transmembrane protein,named after the toll protein in Drosophila ,where this receptor family was first described (Lemaitre et al.,1996).Once stimulated by LPS,TLR-4activates a variety of signal pathways in the cytosol of immune cells.Via its cytosolic Toll/interleukin-1(IL-1)receptor homology domain (TIR),TLR-4stimulates mitogen-activated protein (MAP)and stress kinases,such as extracellular-regulated kinase (ERK)-1/-2,Jun kinase (JNK)-1/-2and p38,which in turn activate transcription regulators of inflammation in the nucleus (Schröder et al.,2001).Activation of TLR-4enables microglial cells to remove LPS from the brain tissue (Sutmuller et al.,2006).In view of the complex downstream responses activated by LPS we wondered how TLR-4deactivation influences cell injury under conditions in which neurons are lost.We therefore investigatedthe/locate/ynbdiNeurobiology of Disease 31(2008)33–40⁎Corresponding author.Department of Neurology,University Hospital Zürich,Frauenklinikstr.26,CH-8091Zürich,Switzerland.Fax:+41442554507.E-mail address:kilic44@ (E.Kilic).Available online on ScienceDirect ().0969-9961/$-see front matter ©2008Elsevier Inc.All rights reserved.doi:10.1016/j.nbd.2008.03.002effect of the loss-of-function mutation of TLR-4in the C3H/HeJ mouse line on injury development and cell signaling in two models of brain disease,i.e.,i.)after focal cerebral ischemia,induced by intraluminal middle cerebral artery(MCA)occlusion(Kilic et al.,2006a;Bechmann et al.,2007),and ii.)after retinal ganglion cell(RGC)axotomy,induced by optic nerve(ON)transsection(Kilic et al.,2005a,b,2006b).Materials and methodsAnimalsAll experimental procedures were carried out with government approval according to NIH guidelines for the care and use of laboratory animals.Adult male C3H/HeJ mice,which carry a point mutation in the cytosolic domain of the TLR-4protein resulting in the exchange of amino acid712from proline to histidine that abrogate receptor functionality(Poltorak et al.,1998),and TLR-4-wildype(wt)C3H/HeN controls were purchased from the Jackson Laboratory.Animals were subjected to transient focal cerebral ischemia,induced by90min or30min of MCA occlusion,or underwent RGC axotomy by ON transsection(n=6animals/group). Experimental procedures:Transient focal brain ischemiaAnimals(9–11weeks)were anesthetized with1%halothane(30% O2,remainder N2O).Rectal temperature was maintained between36.5 and37.0°C using a feedback-controlled heating system.During the experiments,blood flow was measured by laser Doppler flow(LDF) measurements using a flexible0.5mm fiber optic probe(Perimed, Stockholm,Sweden),which was attached to the intact skull overlying the middle cerebral artery(MCA)territory(2mm posterior/6mm lateral from bregma).LDF changes were monitored up to30min after the onset of reperfusion.Focal ischemia was induced using an intraluminal filament technique(Wang et al.,2005;Kilic et al.,2006a).A midline neck incision was made,and the left common and external carotid arteries were isolated and ligated.A microvascular clip(FE691, Aesculap,Tuttlingen,Germany)was temporarily placed on the internal carotid artery.A8-0nylon monofilament(Ethilon;Ethicon, Norderstedt,Germany)coated with silicon resin(Xantopren,Bayer Dental,Osaka,Japan;diameter of the coated thread:190–200µm)was introduced through a small incision into the common carotid artery and advanced9mm distal to the carotid bifurcation for MCA occlusion. Either30min or90min after MCA occlusion,reperfusion was initiated by withdrawal of the monofilament.Anesthesia was discontinued and animals were placed back into their cages. Twenty-four hours(90min MCA occlusion)or72h(30min)later, animals were deeply re-anesthetized and decapitated.Brains were removed and cut on a cryostat in18μm coronal sections. Experimental procedures:Optic nerve(ON)transsection For retrograde labeling of RGC,animals(12–14weeks)were i.p. anesthetized with7%chloral hydrate.The superior colliculi were exposed via a bur hole that was drilled into the pericranium0.7mm lateral to the sagittal suture and3mm posterior to the bregma.A Hamilton syringe was inserted2.0mm beneath the brain surface, and0.7µl of fluorogold(infusion rate0.7µl/min)was injected stereotactically into both superior colliculi(Kilic et al.,2005a,b, 2006b).After infusion,the injection needle remained inside the tissue for2min to prevent fluorogold diffusion along the needle track,before the syringe was withdrawn.Four days after labeling,mice were re-anesthetized with7% chloral hydrate.After skin incision close to the superior orbital rim, the right orbita was opened,leaving the supraorbital vein intact, and the lacrimal gland was resected subtotally.After spreading the superior extraocular muscles,the right ON was transected under microscopical control approximately0.5mm distant to the pos-terior pole of the eye,taking care not to damage the retinal blood vessels.The wounds were sutured and the retinal blood supply was verified by fundoscopy(Kilic et al.,2006b).Fourteen days after ON transsection,mice were killed with an overdose of chloral hydrate and both eyes were removed.The retinas were dissected,flat-mounted on glass slides,and fixed in4%para-formaldehyde(PFA)in0.1M phosphate-buffered saline(PBS)for 30min.Analysis of histological injuryInfarct volumetry and brain edemaBrain sections were fixed for10min with4%PFA in0.1M PBS and subsequently stained with cresyl violet.For infarct volumetry and assessment of brain edema,a total of four sections from equidistant brain levels,2mm apart,were analyzed in animals submitted to 90min MCA occlusion(sections selected starting from the rostral pole of the striatum:bregma+2.0mm,subsequent sections taken from bregma0.0,−2.0and−4.0mm).On these sections,brain infarcts were outlined by delineating non-lesioned tissue in both hemispheres, from which edema-corrected infarct areas and infarct volumes were calculated.Brain edema was analyzed by outlining lesioned and non-lesioned tissue in both hemispheres,which were subtracted from each other and divided by the non-lesioned tissue in the contralateral brain, thus calculating percentage values of brain swelling.Analysis of surviving neuronsIn animals submitted to30min MCA occlusion cresyl violet-stained sections from the bregma level were microscopically eval-uated by counting the density of surviving medium-to-large-sized neurons in the striatum in a total of nine random regions of interest (ROI),1mm apart,each measuring62,500µm2(Wang et al.,2005). Stereological analysis was done by one of the investigators blinded for the experimental condition(Ü.K.).Mean values were calculated for all areas both ipsilateral and contralateral to the stroke.Thereby, the percentage of surviving neurons was determined.Analysis of DNA-fragmented cellsFrom animals subjected to30min MCA occlusion,sections from the level of the mid-striatum(bregma0.0mm)were stained by terminal transferase biotinylated-dUTP nick end labeling(TUNEL) using a commercially available kit(Roche,Basle,Switzerland) (Kilic et al.,2006a).In these sections,DNA-fragmented cells were counted in blinded manner(again done byÜ.K.)in the same nine random ROI in the striatum(each62,500µm2)as above. Evaluation of RGC survival by stereology of surviving RGCs Surviving RGCs were evaluated by fluorescence microscopy using retinal whole-mounts using a rhodamine filter(546/590nm). RGC densities were determined by counting tracer-labeled RGCs in12random ROI(three areas per retinal quadrant at different eccentricities of1/6,3/6and5/6of the retinal radius,respectively; measuring62,500μm2each)(Kilic et al.,2006b).Mean values were calculated for all eccentricities as well as over the whole retina.34U.Kilic et al./Neurobiology of Disease31(2008)33–40Activation of MAP kinases ERK-1/-2,JNK-1/-2and p38 Tissue samples harvested from the ischemic MCA territory of C3H/HeJ and C3H/HeN mice subjected to30min MCA occlusion (72h reperfusion)were complemented with lysis buffer,homo-genized and centrifuged.Supernatants were used for sodium dodecylsulphate-polyacrylamide gel electrophoresis(SDS-PAGE). Prior to processing,samples from animals belonging to the same experimental group(n=6animals/group)were pooled.After SDS-PAGE,proteins were transferred onto PVDF membranes.Mem-branes were dried,incubated in blocking solution and immersed with polyclonal rabbit anti-total(=detecting both the phosphory-lated and unphosphorylated forms)ERK-1/-2(9102;Cell Signaling, Allschwil,Switzerland),mouse anti-phospho-ERK-1/-2(M8159; Sigma,Deisenhofen,Germany),rabbit anti-total JNK-1/-2(JNK-2, sc-572;Santa Cruz),rabbit anti-phospho-JNK-1/-2(9251;Cell Signaling),rabbit anti-total p38(9212,Cell Signaling)or rabbit anti-phospho-p38(9211,Cell Signaling)antibody,each diluted1:500in 0.1%Tween20/0.1M Tris buffered saline(TBS)(Kilic et al., 2006b).Membranes were rinsed,incubated in peroxidase-coupled secondary antibodies,diluted1:2000in0.1%Tween20/0.1M TBS, washed,immersed in enhanced chemoluminescence(ECL)solu-tion and exposed to ECL-Hyperfilm(Amersham,Braunschweig, Germany).Protein loading was controlled with a monoclonal mouse antibody against anti-β-actin(A5316;Sigma).Blots were performed at least three times.Protein levels were analyzed densitometrically, corrected with values determined on anti-β-actin blots and expressed as relative values compared with wt mice.Expression of activated caspase-3and inducible NO synthase(iNOS) Brain sections were fixed in4%PFA in0.1M PBS,washed and immersed for1h in0.1M PBS containing0.3%Triton X-100(PBS-T)/ 10%normal goat serum.Sections were incubated overnight at4°C with polyclonal rabbit anti-activated caspase-3(CM-1;BD Bios-ciences,Basle,Switzerland)or anti-iNOS(NOS-2,sc-650;Santa Cruz, Nunningen,Switzerland)antibody,diluted1:100in PBS-T.Counter-stainings were performed with a monoclonal mouse antibody against the neuronal nuclear protein NeuN(MAB377;Chemicon,Lucerne, Switzerland;1:500).After staining with Cy3-labeled(iNOS,caspase-3) and FITC-labeled(NeuN)secondary antibody,sections were incubated with4′,6-diaminido-2-phenylidole(DAPI)and coverslipped.Sections were microscopically analyzed by counting activated caspase-3(+)and iNOS(+)cells in six random ROI each in the ischemic parietal cortex and ischemic striatum(62,500µm2),for which mean values were calculated(Kilic et al.,2006a).Analysis of polymorphonuclear neutrophil(PMN)recruitment and microglial activationFor assessment of PMN recruitment,myeloperoxidase(MPO) stainings were prepared with Histostain®-Plus kits(Zymed Labora-tories,San Francisco,CA).Microglial activation was evaluated by immunohistochemistry for ionized calcium binding adaptor protein-1 (Iba1).Brain sections were fixed in4%PFA in0.1M PBS,washed in water and boiled in0.01M citrate buffer for15min for epitope retrieval.Sections were incubated in0.3%H2O2peroxidase quenching solution for10min,followed by serum blocking solution for30min.Sections were then incubated with rabbit anti-MPO (Zymed Laboratories,San Francisco,CA)and ant-Iba1(Wako Chemicals GmbH,Neuss,Germany)antibodies,diluted1:100in5%normal goat serum in0.3%Triton X-100/0.1M PBS for60min, followed by incubation in a biotinylated secondary antibody for 10min.Following signal detection with diaminobenzidine,sections were counterstained with hematoxyline.MPO(+)PMN and Iba1(+) microglia were microscopically identified based on morphological criteria.PMNs were distinguished from eosinophilic and basophilic cells based on hematoxyline staining properties.Sections were analyzed by counting MPO(+)and Iba1(+)cells in six random ROI each in the ischemic parietal cortex and ischemic striatum(measuring 62,500µm2),for which mean values were calculated.StatisticsAll values are given as mean±SD.Differences between groups were compared by independent two-tailed t-tests.p values b0.05 were considered to indicate statisticalsignificance.Fig.1.TLR-4deficiency reduces ischemic infarct volume after transient focal cerebral ser Doppler flow(LDF)during and after ischemia (A),infarct volume(B),and brain swelling(C)in TLR-4wt and TLR-4mt mice submitted to90min MCA occlusion,followed by24h reperfusion. Representative cresyl violet-stained sections are also shown(B).Note that LDF(A)and brain edema(C)do not differ between mouse lines.Data are means±SD(n=6animals/mouse line).*p b0.05(two-tailed t-tests).Bar, 2mm.35U.Kilic et al./Neurobiology of Disease31(2008)33–40ResultsTLR-4deficiency protects against focal cerebral ischemia Laser Doppler flowmetryTo evaluate effects of TLR-4deficiency on cerebral blood flow during and after MCA occlusion,LDF recordings were analyzed.In our studies,MCA occlusion resulted in a decrease of LDFvalues to ~15%of pre-ischemic levels (Figs.1A and 2A ).After reperfusion,LDF values normalized rapidly in animals subjected to 90min MCA occlusion (Fig.1A),but slightly increased above pre-ischemic values in animals submitted to 30min ischemia (Fig.2A).No differences were detected between wt and TLR-4mutant (mt)mice.Infarct volume and brain edemaAs in previous studies (Kilic et al.,2006a;Bechmann et al.,2007),90min MCA occlusion resulted in focal infarcts of the cerebral cortex and underlying striatum in wt mice (Fig.1B)that was reproducibly associated with brain edema (Fig.1C).TLR-4deficiency decreased infarct volume (Fig.1B),without influencing brain swelling (Fig.1C).Selective neuronal injury and caspase-3activationAs in earlier reports (Hermann et al.,2001;Wang et al.,2005),30min MCA occlusion induced selective neuronal injury in the striatum (Figs.2B,C)that was accompanied by activation of caspase-3(Fig.2D).TLR-4deficiency increased the percentage of surviving striatal neurons (Fig.2B),reduced the density of DNA-fragmented,i.e.,injured cells (Fig.2C),and diminished caspase-3activity (Fig.2D).TLR-4mutation promotes the survival of axotomized RGCsIn non-lesioned retinae,RGC densities of TLR-4mutant mice were slightly higher than those of wt animals (4115.7±263.2/mm 2vs.3321.1±508.8/mm 2,p b 0.05),which may reflect an effect of TLR-4on RGC survival during development.Upon ON transsec-tion,reproducible RGC degeneration was noticed in retinae of wt mice,~75%of RGCs undergoing delayed degeneration within 14days (Figs.3A,B).RGC damage was attenuated by TLR-4deficiency (Figs.3A,B).Fig. 2.Loss-of-function mutant TLR-4promotes neuronal survival,decreases DNA fragmentation and reduces caspase-3activation in the mouse striatum.LDF during and after ischemia (A),neuronal survival assessed by cresyl violet staining (B),DNA-fragmented cells evaluated by TUNEL (C),and activated caspase-3(+)cells (D)in TLR-4wt and TLR-4mt mice subjected to 30min MCA occlusion,followed by 72h reperfusion.Note again that LDF does not differ between mouse lines (A).Data are means±SD (n =6animals/mouse line).*p b 0.05(two-tailed t-tests).Fig. 3.TLR-4deficiency protects axotomized RGCs from retrograde degeneration.Survival rates of fluorogold-prelabeled RGCs in TLR-4wt and TLR-4mt mice submitted to ON transsection,followed by 14survivals.Survival rates averaged over the whole retina (A)and also survival rates at various retinal eccentricities (B)are shown.Data are means±SD (n =6animals/mouse line).*p b 0.05(two-tailed t -tests).36U.Kilic et al./Neurobiology of Disease 31(2008)33–40TLR-4deficiency reduces phosphorylation levels of ERK-1/-2, JNK-1/-2and p38To elucidate mechanisms underlying the neuroprotective effect of TLR-4deficiency,Western blots were prepared using protein extracts obtained from brains subjected to focal cerebral ischemia. Western blots obtained with antibodies recognizing both unpho-sphorylated and phosphorylated MAP kinases revealed no differences in the overall expression of ERK-1/-2,JNK-1/-2and p38between wt and TLR-4mt mice(Fig.4).Phosphorylation levels of ERK-1/-2,JNK-1/-2and p38,on the other hand,were markedly reduced by TLR-4deficiency(Fig.4).TLR-4deactivation downregulates neuronal iNOS expression To evaluate how TLR-4deficiency influences the expression of the pro-inflammatory protein iNOS,immunohistochemistries were evaluated.In animals submitted to90min,but not30min MCA occlusion,robust iNOS expression was noted in the ischemic brain parenchyma of wt mice that in the vast majority of cells(N80%) collocalized with the neuronal nuclear protein NeuN(Fig.5A). TLR-4deficiency downregulated neuronal iNOS levels in the ischemic brain tissue(Fig.5A).TLR-4deficiency associated with compensatory PMN recruitment and microglial activationTo find out how TLR-4deficiency influences the brain ac-cumulation of blood-derived PMN as well as the activation of microglia—both cell types express TLR-4on their cell surface(Lee and Kim,2007),immunohistochemistries for MPO and Iba1were prepared.Significant PMN recruitment and microglial reactivity was noted in ischemic brain areas in animals subjected to90min,but not30min MCA occlusion in wt mice(Figs.5B,C).TLR-4 deficiency increased the density of MPO(+)PMN and of Iba1(+) ramified microglia in the ischemic tissue(Figs.5B,C),most likely as compensatory mechanism counteracting the TLR-4defect.DiscussionWe show that TLR-4deficiency protects against rapidly develop-ing ischemic and slowly progressive degenerative neuronal injury in vivo by mechanisms involving deactivation of ERK-1/-2,JNK-1/-2 and p38,downregulation of iNOS and inhibition of the executioner caspase-3.Our data were obtained using i.)the intraluminal MCA occlusion model,a highly reproducible and clinically relevant model of ischemic stroke,in which we evaluated two different durationsof Fig.4.Mutant TLR-4decreases phosphorylated,but not total ERK-1/-2,JNK-1/-2and p38.Western blots with protein extracts of tissue samples obtained from the ischemic cortex and underlying striatum of TLR-4wt and TLR-4mt mice submitted to30min MCA occlusion.Membranes were incubated with antibodies detecting both phosphorylated and non-phosphorylated(=total)protein kinases as well as antibodies that only recognize the phosphorylated,i.e.,activated forms. Representative blots are also shown.Data are mean±S.D.(n=3different blots/mouse line),normalized with corresponding blots forβ-actin.*p b0.05(two-tailed t-tests).37U.Kilic et al./Neurobiology of Disease31(2008)33–40ischemia that result in reproducible brain infarcts (90min MCA occlusion)(Hata et al.,2000;Kilic et al.,2006a )or selective neuronal injury (30min ischemia)(Hermann et al.,2001;Wang et al.,2005;)and ii.)a model of RGC axotomy,in which the ON is cut close to the posterior eye pole (Isenmann et al.,1997;Klöcker et al.,1998;Kilic et al.,2006b ).ON transsection leads to the degeneration of ~80%of RGCs within 14days post-injury (Isenmann et al.,1997;Klöcker et al.,1998;Kilic et al.,2006b ),thus mimicking more delayed neuro-degenerative processes.In our studies,we made use of the C3H/HeJ mouse line,which expresses a non-functional TLR-4protein due to a point mutation in the receptor's cytosolic domain (Poltorak et al.,1998).While this paper was in the final stage of preparation,a manuscript from another group showed that tlr -4deletion in C57bl/10ScNJ mice similar to loss-of-function mutant TLR-4in C3H/HeJ animals re-duces cortical injury following permanent MCA electrocoagulation (Caso et al.,2007).That tlr -4knockout also promotes neuronal survival supports our present findings,providing additional evi-dence for TLR-4's harmful effects.That TLR-4deficiency protects against neuronal injury ex-emplifies the relationship between immune responses and neuronal degeneration,pointing out that signal responses triggered by PRR might set the pace for cell death programs (Zipp and Aktas,2006).Our data suggest that TLR-4might represent a promising target for neuroprotective therapies.TLR-4is constitutively expressed in the CNS on microglia and macrophages (Lee and Kim,2007),being involved in danger signaling to LPS,an outer cell wall constituent of gram-negative bacteria (Chakravarty and Herkenham,2005).By demonstrating that TLR-4reduces ERK-1/-2,JNK-1/-2and p38phosphorylation,we provide insights into the mechanisms of neuroprotection induced by TLR-4deficiency.In cultured macro-phages,the LPS-induced release of tumor necrosis factor (TNF)-αwasFig.5.TLR-4deficiency downregulates inducible NO synthase (iNOS)in injured neurons,at the same time increasing polymorphonuclear neutrophil (PMN)recruitment and microglial activation in the stroke tissue.Density of iNOS+neurons (A),MPO(+)neutrophils (B)and Iba1(+)microglia (C)in TLR-4wt and TLR-4mt mice submitted to 90min MCA occlusion,followed by 24h reperfusion.Representative microphotographs exhibiting iNOS(+)/NeuN(+)neurons in the ischemic cortex are shown (A;counterstained with DAPI).Representative MPO(+)neutrophils and Iba1(+)microglia in the cortex are also depicted (B,C;counterstained with hematoxyline;labeled cells:see flashes).Data are means±SD (n =6animals/mouse line).*p b 0.05(two-tailed t -tests).Bar,50µm.38U.Kilic et al./Neurobiology of Disease 31(2008)33–40previously shown to be mediated by MAP kinases(Schröder et al., 2001).Deactivation of TLR-4using a monoclonal antibody abolished LPS-induced ERK-1/-2phosphorylation,while pharmacological ERK-1/-2and p38blockade prevented LPS-induced TNF-αsecretion (Schröder et al.,2001).By revealing that ERK-1/-2,JNK-1/-2and p38,which are activated upon ischemia in wt mice(Kilic et al.,2005b), are dephosphorylated when TLR-4is deactivated,we for the first time show that MAP kinases are involved in TLR-4signaling in vivo.Among the effectors contributing to immune-mediated injury in stroke and neurodegenerative diseases,iNOS is a well-established player(Dalkara and Moskowitz,1994;Chan,2001).Being induced in ischemic neurons(Kilic et al.,2006a)and axotomized RGCs(Klöcker et al.,1998),iNOS contributes to oxidative stress via formation of nitrite and nitrate(Dalkara and Moskowitz,1994;Chan,2001).By showing that TLR-4deficiency downregulates iNOS in NeuN(+)ischemic neurons,we provide a link between immune surveillance,TLR-4-mediated cell signaling and neuronal injury pathways.Thus,a crosstalk exists between TLR-4(+)microglia and macrophages with brain neu-rons,which may explain TLR-4's neurodegeneration-promoting effects.In contrast to neuronal iNOS that was reduced by TLR-4defi-ciency,the recruitment of blood-derived PMN and activation of microglia was increased in ischemic tissue of our C3H/HeJ mouse line.PMN leucocytes similar to brain-resident microglia and mac-rophages express TLR-4on their cell surface(Lee and Kim,2007). That PMN accumulation and microglial activation were increased in the brains of ischemic TLR-4mt animals might represent a futile,compensatory mechanism,aiming to counterbalance con-sequences of the gene defect.Apparently,the increased PMN and microglia recruitment did not exert any injurious effect,pointing out that PMN invasion and microglial activation are not necessarily detrimental to the brain.The enhanced neuronal survival in TLR-4deficient mice raises the question whether deactivation strategies of innate immune receptors may be used for clinical purposes in the future.Our here-presented data support this fascinating idea.Yet,when evaluating strategies of PRR blockade,long-term effects of receptor deactiva-tion for immune function should carefully be considered.Rodent studies have shown that stroke represents a particularly vulnerable immunodepressant state in which bacterial infection may occur more easily than normal(Prass et al.,2006).Thus,care must be taken that survival-promoting effects are not achieved at the expense of infectious states.Further studies should further elucidate the therapeutic potential of strategies modulating PRR signaling in ischemic stroke and neurodegenerative diseases.Such studies may help to clarify whether innate immunity is indeed a promising target for neuroprotection therapies.AcknowledgmentsThis research was supported by the Swiss National Center of Competence(NCCR)‘Neural plasticity’,the Center for Integrative Human Physiology(CIHP),the Swiss National Science(3200B0-112056/1),the Baasch-Medicus,Hermann-Klaus,David-and-Betty-Koetser and Hartmann-Müller Foundation(all to D.M.H.). ReferencesBechmann,I.,Galea,I.,Perry,V.H.,2007.What is the blood-brain barrier (not)?Trends Immunol.28,5–11.Begley,D.J.,2004.Delivery of therapeutic agents to the central nervous system:the problems and the possibilities.Pharmacol.Ther.104,29–45.Bermpohl,D.,Halle,A.,Freyer,D.,Dagand,E.,Braun,J.S.,Bechmann,I., Schröder,N.W.,Weber,J.R.,2005.Bacterial programmed cell death of cerebral endothelial cells involves dual death pathways.J.Clin.Invest.115,1607–1615.Caso,J.R.,Pradillo,J.M.,Hurtado,O.,Lorenzo,P.,Moro,M.A.,Lizasoain,I., 2007.Toll-like receptor-4is involved in brain damage and inflammation after experimental stroke.Circulation115,1599–1608. Chakravarty,S.,Herkenham,M.,2005.Toll-like receptor4on nonhemato-poietic cells sustains CNS inflammation during endotoxemia,indepen-dent of systemic cytokines.J.Neurosci.25,1788–1796.Chan,P.H.,2001.Reactive oxygen radicals in signaling and damage in the ischemic brain.J.Cereb.Blood Flow Metab.21,2–14.Dalkara,T.,Moskowitz,M.A.,1994.The complex role of nitric oxide in the pathophysiology of focal cerebral ischemia.Brain Pathol.4,49–57. Hata,R.,Maeda,K.,Hermann,D.M.,Mies,G.,Hossmann,K.A.,2000.Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice.J.Cereb.Blood Flow Metab.20,306–315.Hermann,D.M.,Bassetti,C.L.,2007.Implications of ATP-binding cassette transporters for brain pharmacotherapies.Trends Pharmacol.Sci.28, 128–134.Hermann,D.M.,Kilic,E.,Hata,R.,Hossmann,K.A.,Mies,G.,2001.Relationship between metabolic changes,gene responses and delayed ischemic injury after mild focal cerebral ischemia in mice.Neuroscience 104,947–955.Hermann,D.M.,Kilic,E.,Spudich,A.,Krämer,S.D.,Wunderli-Allenspach,H.,Bassetti,C.L.,2006.Role of drug efflux carriers in the healthy anddiseased brain.Ann.Neurol.60,489–498.Isenmann,S.,Wahl,C.,Krajewski,S.,Reed,J.C.,Bähr,M.,1997.Up-regulation of Bax protein in degenerating retinal ganglion cells precedes apoptotic cell death after optic nerve lesion in the rat.Eur.J.Neurosci.9, 1763–1772.Kilic,Ü.,Kilic,E.,Soliz,J.,Bassetti,C.L.,Gassmann,M.,Hermann,D.M.,2005a.Erythropoietin protects from axotomy-induced degenera-tion of retinal ganglion cells by activating ERK-1/-2.FASEB J.19, 249–251.Kilic,Ü.,Kilic,E.,Xing,H.,Wang,Z.,Bassetti,C.L.,Hermann,D.M., 2005b.Post-ischemic delivery of the3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor rosuvastatin protects against focal cerebral ischemia in mice by mechanisms involving inhibition of extracellular-regulated kinase-1/-2.Neuroscience106,901–906. Kilic,E.,Kilic,Ü.,Wang,Y.,Bassetti,C.L.,Marti,H.H.,Hermann,D.M., 2006a.The phosphatidylinositol-3kinase/Akt pathway mediates VEGF's neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia.FASEB J.20,1185–1187. Kilic,Ü.,Kilic,E.,Järve,A.,Guo,Z.,Spudich,A.,Bieber,K.,Barzena,U., Bassetti,C.L.,Marti,H.H.,Hermann,D.M.,2006b.Human vascular endothelial growth factor protects axotomized retinal ganglion cells in vivo by activating ERK-1/2and Akt pathways.J.Neurosci.26, 12439–12446.Klöcker,N.,Cellerino,A.,Bähr,M.,1998.Free radical scavenging and inhibition of nitric oxide synthase potentiates the neurotrophic effects of BDNF on axotomized retinal ganglion cells in vivo.J.Neurosci.18,1038–1046. Lee,M.S.,Kim,Y.J.,2007.Signaling pathways downstream of pattern-recognition receptors and their cross talk.Annu.Rev.Biochem.76, 447–480.Lemaitre,B.,Nicolas,E.,Michaut,L.,Reichhart,J.M.,Hoffmann,J.A., 1996.The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults.Cell86, 973–983.Löscher,W.,Potschka,H.,2005.Drug resistance in brain diseases and the role of drug efflux transporters.Nat.Rev.,Neurosci.6,591–602. Poltorak,A.,He,X.,Smirnova,I.,Liu,M.H.,van Huffel,C.,Du,X., Birdwell,D.,Alejos,E.,Silva,M.,Galanos,C.,Freudenberg,M., Ricciardi-Castagnoli,P.,Layton,B.,Beutler,B.,1998.Detective LPS signaling in C3H/HeJ and C57BL/10ScCr mice:mutations in TLR4 gene.Science282,2085–2088.39U.Kilic et al./Neurobiology of Disease31(2008)33–40。