考研数学一大纲
考研数学大纲
考研数学大纲
1、数论:
整数的基本定义、算术运算、等式的性质、同余定理、质数的分解、素数的定义和性质、高等数论的基本概念及其应用。
2、代数:
代数的基本概念、多项式的定义、指数定义、系数的定义、根的定义、多项式的系数、根的性质、多项式的分解、代数方程的基本概念、一元一次方程的解法、一元二次方程的解法、一元n次方程的解法、一元多项式的零点和零分点、多元一次方程的解法、多元二次方程的解法、多元n次方程的解法、矩阵的定义、矩阵的运算、线性方程组的解法、行列式的定义、行列式的性质、行列式的计算方法、行列式的应用。
3、几何:
几何的基本概念、直线的性质、圆的性质、椭圆的性质、抛物线的性质、双曲线的性质、圆锥曲线的性质、三角形的性质、四边形的性质、平面图形的性质、立体图形的性质、几何变换的定义、几何变换的性质、几何变换的应用、几何分析的基本概念、几何分析的应用。
4、概率论:
概率论的基本概念、概率的定义、概率的性质、随机变量的定
义、概率分布的定义、概率分布的性质、概率分布的应用、期望的定义、期望的性质、期望的应用、协方差的定义、协方差的性质、协方差的应用、正态分布的定义、正态分布的性质、正态分布的应用。
考研数学一大纲变化与趋势分析
考研数学一大纲变化与趋势分析近年来,考研数学一科目的大纲发生了一些变化,本文将对这些变化进行分析,并且展望未来的趋势。
第一部分:大纲变化一、知识点调整从过去的大纲来看,考研数学一科目的知识点主要分为数学分析和线性代数两个部分。
然而,最新的大纲调整在这两个部分中进行了细化和调整。
数学分析中的微积分、极限和级数等内容得到了更加详细的规定,要求考生对这些概念和方法有更深入的理解。
线性代数中的矩阵和行列式、向量空间以及线性变换等内容也有所调整,要求考生能掌握更多的线性代数的基本概念和技巧。
二、题型改革考研数学一科目的题型一直以来都是以计算为主。
然而,随着考研数学一科目的知识点的增加和知识要求的提高,在最新的大纲中对题型进行了相应的改革。
除了传统的计算题外,还增加了多项式插值、数列极限、极值与最值以及概率与统计等题型。
这些题型更注重考察考生对数学概念的理解和应用能力,帮助考生培养出解决实际问题的能力。
第二部分:趋势分析一、综合能力的考察随着社会对综合素质人才的需求越来越大,未来考研数学一科目的趋势将更注重考察考生的综合能力。
除了对数学概念和方法的理解和应用,还将注重数学建模和解决实际问题的能力。
这意味着考生需要不仅掌握数学知识,还要培养出实际运用数学解决问题的能力。
二、难度提升为了选拔更优秀的考生,考研数学一科目的难度将会不断提升。
这不仅体现在知识点的增加和题型的改革上,还体现在对考生数学思维能力和逻辑推理能力的要求上。
未来的考研数学一科目将更加注重对考生深层次的思考能力和创新能力的考察,希望考生能够在解决复杂问题时展现出扎实的数学素养。
三、技巧的培养随着考研数学一科目的难度提升,考生在备考过程中需要不断提升解题的技巧。
未来的趋势将更加注重考察考生的数学思维方法和解题技巧。
考生需要通过大量的练习和解题经验的积累,培养自己解决各类数学问题的技巧,并且能够在考场上熟练应用。
结论:综上所述,考研数学一大纲在知识点调整和题型改革方面发生了一些变化。
考研数学一大纲完整版
考研数学一大纲完整版一、线性代数部分1.1 矩阵与行列式•矩阵的定义和基本运算•线性方程组及其求解•行列式及其性质•特征值与特征向量1.2 向量空间•向量空间的概念和性质•子空间及其判定•基与维数1.3 线性变换•线性变换的定义与性质•线性变换的矩阵表示•线性变换的相似性二、概率统计部分2.1 随机事件与概率•随机试验与样本空间•随机事件及其概率•分类求概率法•条件概率与乘法定理2.2 随机变量与分布律•随机变量与分布函数•离散型随机变量及其概率分布•连续型随机变量及其概率密度函数•边缘分布和条件分布2.3 数理统计•抽样与抽样分布•参数估计与点估计•区间估计与假设检验•正态总体的统计推断三、高等代数部分3.1 线性方程组•线性方程组的解的存在唯一性•线性方程组的参数表示与齐次线性方程组•等价方程组与初等变换•向量方程组与矩阵方程3.2 线性空间•线性空间的概念与性质•子空间与线性子空间•基与维数•对偶空间与线性映射3.3 线性变换•线性变换的定义与性质•标准和矩阵表示•相似矩阵与对角化四、高等数学(第一册、第二册)部分4.1 极限与连续•数列极限•函数极限•连续与间断点•无穷小与无穷大4.2 导数与微分•函数的导数及其计算•高阶导数与导数的应用•微分与微分中值定理•函数的连续性4.3 积分与应用•不定积分和定积分•牛顿—莱布尼茨公式•反常积分•定积分的应用五、数学分析部分5.1 实数与数列函数•数列极限和函数极限•函数的连续性•实数的完备性与相关定理•紧致性与连续函数的性质5.2 导数与微分•函数的导数与微分•导数与函数的几何应用•函数的高阶导数•泰勒公式与函数的局部性质5.3 积分与应用•不定积分和定积分•回顾微积分基本公式•牛顿—莱布尼茨公式•表达式与变量替换法以上为考研数学一大纲的完整内容,包括线性代数、概率统计、高等代数、高等数学和数学分析的各个知识点。
通过学习这些内容,将有助于考生全面掌握数学知识,提高考试的综合能力。
(整理)考研数学大纲内容 数一
考研数学大纲内容数一一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。
考研数学一考试大纲
考研数学一考试大纲
考研数学一考试大纲主要包括以下几方面:
一、数论:元素论、算术函数、素数与合数、算术基本定理等,占20%;。
二、代数学:群论、环论、域论、环上群论、域上群论、矩阵论、向量空
间论等,占30%;。
三、拓扑学:拓扑空间、拓扑群、流形和网等,占15%;。
四、几何学:立体几何、射影几何等,占20%;。
五、微积分:实变函数、积分、向量函数、常微分方程等,占15%。
因此,考研数学一考试大纲包括数论、代数学、拓扑学、几何学、微
积分等五大部分,分别占总分的比例为20%、30%、15%、20%、15%,考查
的知识点非常丰富。
24考研数一大纲
考研数学一,即全国硕士研究生招生考试数学一,是针对理工科类硕士研究生入学考试的数学科目。
考试大纲通常会明确指出考试内容和要求,以便考生进行针对性的复习。
2024年考研数学一考试大纲一般包括以下内容:
1. 考试目标:明确考试的目的,比如测试考生对数学基本概念、基本理论和方法的理解和运用能力。
2. 考试内容:详细列出考试涵盖的知识点,通常包括高等数学、线性代数、概率论与数理统计等几个部分。
3. 考试要求:对每个知识点的掌握程度进行说明,如“了解”、“理解”、“掌握”等。
4. 考试形式:说明考试的形式,例如选择题、填空题、解答题等。
5. 考试时间:规定考试的时间长度。
6. 题型示例:提供一些样题,帮助考生熟悉考试的题型和难度。
请注意,考试大纲每年都可能有所变化,考生需要查看最新的官方考试大纲进行准备。
通常,最新的考试大纲会在教育部的研究生招生信息网上发布,或者在相关高校的研究生招生网站公布。
考研数学(一)考试大纲
考研数学(一)考试大纲2022考研数学(一)考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时光试卷满分为150分,考试时光为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证实题)9小题,共94分高等数学一、函数、极限、延续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞??+=函数延续的概念函数间断点的类型初等函数的延续性闭区间上延续函数的性质考试要求1.理解函数的概念,把握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.把握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.把握极限的性质及四则运算法则.7.把握极限存在的两个准则,并会利用它们求极限,把握利用两个重要极限求极限的办法.8.理解无穷小量、无穷大量的概念,把握无穷小量的比较办法,会用等价无穷小量求极限.9.理解函数延续性的概念(含左延续与右延续),会判别函数间断点的类型.10.了解延续函数的性质和初等函数的延续性,理解闭区间上延续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与延续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L ’Hospital )法则函数单调性的判别函数的极值函数图形的高低性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与延续性之间的关系.2.把握导数的四则运算法则和复合函数的求导法则,把握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求容易函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.把握用洛必达法则求未定式极限的办法.7.理解函数的极值概念,把握用导数推断函数的单调性和求函数极值的办法,把握函数最大值和最小值的求法及其应用.8.会用导数推断函数图形的高低性(注:在区间(,)a b 内,设函数()f x 具有二阶导数。
考研数学一大纲微分方程
考研数学一大纲微分方程微分方程是数学领域中的一个重要分支,它研究的是描述变化过程中的关系的方程。
在考研数学一大纲中,微分方程是一个必考的内容,掌握微分方程的解法和应用是考生取得好成绩的关键。
本文将介绍微分方程的基本概念、常见解法和应用,并提供一些解题技巧和实例,帮助考生更好地备考数学一。
一、微分方程的基本概念微分方程是描述函数和其导数之间关系的方程。
一般形式为:dy/dx = f(x, y)其中,x 是自变量,y 是因变量,f 是一个给定的函数。
方程中的导数 dy/dx 描述了函数 y 的变化率。
微分方程的解是使得方程对于所有 x 成立的函数 y。
微分方程根据方程中的变量个数和导数阶数的不同可以分为常微分方程和偏微分方程。
常微分方程中只含有一元函数的导数,而偏微分方程中含有多元函数的偏导数。
二、常见微分方程的解法1. 可分离变量微分方程可分离变量微分方程的形式一般为:dy/dx = g(x)h(y)可通过变量分离的方法将方程分解为 dx/g(x) = dy/h(y),然后对两边同时积分得到解。
2. 齐次微分方程齐次微分方程的形式一般为:dy/dx = F(x, y) / G(x, y)其中 F 和 G 是关于 x 和 y 的函数。
齐次微分方程可以通过变量替换的方法将其转化为可分离变量的方程,进而求解。
3. 一阶线性微分方程一阶线性微分方程的形式一般为:dy/dx + P(x)y = Q(x)其中 P(x) 和 Q(x) 是关于 x 的函数。
可以用积分因子法求解一阶线性微分方程,并得到通解。
4. 二阶常系数线性齐次微分方程二阶常系数线性齐次微分方程的形式一般为:d²y/dx² + ay' + by = 0其中 a 和 b 是常数。
可以通过特征方程法求解二阶常系数线性齐次微分方程,并得到通解。
三、微分方程的应用微分方程在自然科学、工程技术和经济管理等领域中有着广泛的应用。
考研数学一、二、三大纲详解(教材分析)
高等数学考研指定教材:同济大学数学系主编《高等数学》(上下册)(第六版)第一章函数与极限(7天)(考小题)第二章 导数与微分(6天)(小题的必考章节)f •- 2 5? eH5 =™ 5 eH三5 S-]買 a :B'rw 匸匸FTrs?B'pf Fa :IM FS ?ru Fa'B'^~?s?irff#r u F 匸■J TSFS ?R F F ^^rts'S'■®-?s?rs?匸J ff匸BS ?PF s^Wr匸a :J rv*匸^^rrtsv-^rta匸?可I 学习内容复习知识点与对应习题大纲要求bjL = SS191!lSlBl EE13丄£1血氐1就聖啡上吐的上测"翊暨E12UM価戲 1.E昭皿1』U1徂阿血暑沁测!!亦1認£1注仙皿珂HI2U1話!!EM上也血珂託聘5吕見山見叮竺打蠱幣人W豊WJVJVUJJIN出曹-W期J-但叮竺叮朗I第一节:导数的定义、几何意义、物理意义(数三不1.理解导数和微分的t r |r ■!■ BI・■・・!■■ ・・■!■・・■=■ ■■■!■■■■ ■=■ ■■■«■■■ Uwi/wviwvxwuvmwuw&m-nvi*WWLWL wvwuw»i wi>wwwxww wi>vwwmwn WL wh wwvuwk—Wh•"■■■WWUVL vh wwwmv^w^ H vi wvxwwxwv wwvuwm-VXWMX wkVHrwb WLWI w wxwuxwt xU作要求,可不看,数三要知道导数的经济意 义:边际与弹性),单侧与双侧可导的关系, 可导与连续之间的关系(非常重要,经常会 出现在选择题中),函数的可导性,导函数 奇偶函数与周期函数的导数的性质,按照定 义求导及其适用的情形,利用导数定义求极 限•会求平面曲线的切线方程和法线方程 (导数定义年年必考)例1 —例6 IF ...习题 2— 1: 3,4,5,6, 7,8,11, 15, 16,18,19,(重点)20II复合函数求导法、求初等函数的导数和多层复 合函数的导数,由复合函数求导法则导出的微 分法则,(幕、指数函数求导法,反函数求导 法),分段函数求导法(基本求导法则与求导 公式要非常熟)(定理1, 3的证明不用看, f 例1,17不用做,定理2的证明理解,例6,7,8 I重点做)习题2 — 2:除2,3,4,12不用做,其余全做, 13,14重点做&高阶导数和N 阶导数的求法(归纳法,分解法,, li 用莱布尼兹法则)(用泰勒展开式求高阶导)| ^例 1—例 7 习题2— 3: 5,6,7,11 不用做,i f 其余全做,4,12重点做| (由参数方程确定的函数的求导法(数三不用 I '看),变限积分的求导法,隐函数的求导法(相I 关变化率不用看)例1—例10 I 习题2 — 4: 9,10,11,12均不用做,数三 I 5,6,7,8也可以不做,其余全做,4重点做| 函数微分的定义,微分运算法则,微分几何意 义(微分在近似计算中的应用不用看,考纲不 作要求)例 1—例 6 习题 2-5: 5,6,7,8 ,9,10,11,12 均不用做,其余全做总复习题二:4,10,15,16,17,18 均不用做,其余全做,2,3,6,7,14 重点做,数三不用做 12,13 第二章测试题f 导数的概念| I (重要)i [第二节: i 函数的求导 |法则 I (考小题) 概念,理解导数与微分 , 的关系,理解导数的几 *何意义,会求平面曲线 ,的切线方程和法线方 程,了解导数的物理意 义,会用导数描述一些 . 物理量,理解函数的可 导性与连续性之间的 17,关系. iiII 1: ---- :- -— d - zrrzxnTEaiaTaiaTKiirEiiiTEiirEaiaTiidaEiimiaxEiiTKiiaiEairKiia-Eiiii'EiiaEiiiTEairKiiixiiiTEiii-EiiirEaiaxiiixEiiiEiiiTEiirEiiaxiiii'Eiii-EEiiTEiiaTii;•第三节: |高阶导数[(重要,考 |的可能性很 [大) ^rESi31:Si3?ES3SlSS3TEi3rE5S3 + £i :饬四节: I 隐函数及由 I 参数方程所I j 确定的函数II 的导数(考 I j 小i [第五节: [函数的微分I | (考小题)[自我小结:!2 •掌握导数的四则运算法则和复合函数 的求导法则,掌握基 本初等函数的导数公 式•了解微分的四则 运算法则和一阶微分 形式的不变性,会求 函数的微分.3•了解高阶导数的概念,会求简单函数的 高阶导数. 4 •会求分段函数的导 数,会求隐函数和由 参数方程所确定的函 数以及反函数的导数.第三章微分中值定理与导数的应用(8天)考大题难题经典章节第四章不定积分(7天)(重要,本章数二考大题可能性更大)第五章定积分(6天)(重要,考研必考)|学习内容|复习知识点与对应习题|大纲要求i第一节:定积定积分的概念与性质(可积存在定理)(定积门.理解原函数概念,分的概念与分的7个性质理解及熟练应用,性质7积分|理解定积分的概念.%■・・・■・・・«■ ■■・■・■・■■・■・・■・・・■・・・■・・」<^wuv!&ewvvxwux*wxwk VLWL wxvwxwuvHn VLWWL witvwuvxwuxWiWHfWLwsnnwvx WSJXVL wa/invk VL*VBrUwL WMWWA—wvwuviAWLVMn!wumtwi ewt wi><vsn I wi*nt反常积分无界函数反常积分与无穷限反常 积分例1 一例5习题:5-4:全做,3题结论记住 |第五节:反常 总复习题五:1 (3),2(3) (4) (5) ,15,16 不用做,其余全做,重点做3,5,7,8,9,10(1) (2) (3) (8) (9)iiiTEiii [iii]iiiiinimi [iiixiiiiEiiaiiii] ma [in [ini ini [IIIII1I1EIIIEIIHIIIII总结本章第六章 定积分的应用(4天)(考小题为主)waia .・■・・・ ■・■ ■■■ M ■ ■ BM ■ ■・■ ■ ■ Ir 性质(理解)|第二节:微积 |分基本公式 | (重要) 中值定理要会证明)(定积分近似计算不用看) 习题 5- 1: 1,2,3,6,8,9,10 余全做,5,11,12重点做 微积分的基本公式 积分上限函数及其导数i (极其重要,要会证明) 公式(重要,要会证明) 例5不用做,例6极其重要,记住结论 习: 题 5-2: 6( 1) (2) (4) (5) (6) (7) ,7,8 [ 均不用做,其余全做,2数三不做,9(2), 10,11,12,13 重点做 ]第二节:定积i I 分的换元积i I 分法与分部I $积分法(重i [要,分部积分| I 法更为重要)I 定积分的换元法与分部积分法例1—例10例5,例6,例7,例12经典例 题,记住结论 习题 5- 3: 1 (1) (14) (15) (16) 不用做,其余全做, (18) (25) (26) (13)[2.掌握定积分的基 2本公式,掌握定积分 均不用做,其I 的性质及定积分中 ||值定理,掌握换元积........................... 1分法与分部积分法.牛顿-莱布尼兹〔三角求有理式及 ii 二角函数有理式及1简单无理函数的积 分. 4.理解积分上限的 [函数,会求它的导■ - ______ J . J| 数,掌握牛顿-莱布 [尼茨公式. 〔5.了解广义反常积 |分的概念,会计算广 i (2)( 3)( 6)(⑵ ,7 (1) (3) (8) 重点做1 (4) ( 7) ,2,6,7 (7) (10) (9) (17) (12)1第四节:反常 [积分(考小丨 I 题) I:积分的审敛 [法(不用看)^EIIIXIlllEIIIIIIIIEIiaEIIIXIIIEEldklI 自我小结(10) ,13,14,17 [inmi rij ii常微分方程(9天)(本章对数二相对重要,必考章节)复习知识点与对应习题第七章学习内容 大纲要求第一节:微分方程基 本概念 (了解)微分方程及其阶、解、通解、初始条件和特解, 例1、2、3、4,(例2数三不用看) 习题 7-1 : 1 (3)(4),2 (2)( 4),3 (2),第二节:可 分离变量 的微分方 程(理解)可分离变量的微分方程的概念及其解法例1、2、3、4,(例2,3,4数三不作要求) 习题 7-2 : 1,2第三节:齐 次方程(理解) 一阶齐次微分方程的形式及其解法(例2不用看,可化为齐次的方程不用看) 习题 7-3: 1,2 第四节:一 阶线性微 分方程 (重要,熟记公式) 一阶线性微分方程、伯努利方程(仅数一考,记 住公式即可),例1,3,4,习题7-4 : 1,2,3,8仅数一做 第五节:可 降解的高 阶微分方 程(仅数 一、数二 考,理解)全微分方程(会求全微分方程) 会用降阶法解下列微分方程:和 ,例 1— 6习题:7-5 :数三不用做、数一数二只做1,2第六节:高 阶线性微 分方程(理 解)线性微分方程解的结构(重要)(微分方程的特 解、通解)(二阶线性微分方程举例不用看;常 数变易法不用看)定理1,2,3,4重点看习题 7-6 : 1,3,4 1 .了解微分方程及其阶、解、通解、初始条 件和特解等概念•2. 掌握变量可分离的 微分方程及一阶线性 微分方程的解法.3. 会解齐次微分方程、伯努利方程和全微分 方程,会用简单的变量 代换解某些微分方程.4. 会用降阶法解下列 微分方程:「一, 和旳.5. 理解线性微分方程 解的性质及解的结构.6. 掌握二阶常系数线 性微分方程的解法,并 会解某些高于二阶的 常系数齐次线性微分 方程• 7. 会解自由项为多项式、指数函数、正弦函 数、余弦函数以及它们 的和与积的二阶常系 数非齐次线性微分方 程.8. 会解欧拉方程.第七节:常特征方程,微分方程通解中对应项9•会用微分方程解决系数齐次例1,2,3,6,7 (例4,5不用做) 一些简单的应用问题.线性微分习题7-7: 1,2方程(最重要,考大题)第八节:常会解自由项为多项式、指数函数、正弦函数、余系数非齐弦函数以及它们的和与积的二阶常系数非齐次次线性微线性微分方程分方程(最例1 —4,(例5不用看) 重要,考大习题7 —8: 1, 2,6重点做题)第九节:欧欧拉方程的通解拉方程(仅习题7 —9:数一只做5,8数一考,了 (第十节不用看)解)自我小结总复习题十二:1 (1)( 2)( 4),2 (2),3(1)( 3)( 5)( 7)( 8),4 (3)( 4),5,7,8,10 其中8,10仅数一做第八章空间解析几何和向量代数(4天)(仅数一考,考小题,了解)第九章多元函数微分法及其应用(10天)(考大题的经典章节,但难度一般不大)学习内容复习知识点与对应习题第一节:二元函数的极限、连续性、有界性与最大值最小多元函数值定理、介值定理基本概念例1—8,习题8—1:2,3,4,5,6,8(了解)第二节:偏导数的概念,高阶偏导数的求解(重要)偏导数例1 —8,习题8 —2:1,2,3,4,6,9(理解)第三节:全微分的定义,可微分的必要条件和充分条件全微分(全微分在近似计算中应用不用看)(理解)例1, 2,3,习题8—3:1,2,3,4第四节:多元复合函数求导,全微分形式的不变性多元复合例1—6,习题8—4:1—12 函数的求导法则(理解,重要)第五节:隐函数存在的3个定理(方程组的情形不用看)隐函数的例1—4,习题8—5:1 —9 求导公式(理解,小题)第六节:了解曲线的切线和法平面及曲面的切平面和法线多元函数的概念,会求它们的方程(一元向量值函数及其大纲要求1 •理解多元函数的概念,理解二元函数的几何意义.2•了解二元函数的极限与连续性的概念以及有界闭区域上连续函数的性质.3 •理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4. 理解方向导数与梯度的概念并掌握其计算方法.5. 掌握多元复合函数一阶、二阶偏导数的求法.6. 会用隐函数的求导法则.7. 了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.微分学的 导数不用看)几何应用 例 2—7,习题 8—6: 1 —9 (仅数一 考,考小 题)第七节: 方向导数与梯度的概念与计算 方向导数 例 1—5,习题 8—7:1— 8, 10 与梯度 (仅数一 考,考小 题)第八节: 多元函数极值与最值的概念,二元函数极值存在 多元函数 的必要条件和充分条件,会求二元函数的极值, 的极值及 会用拉格朗日乘数法求条件极值其求法 例 1-9,习题 8—8:1— 10 (重要, 大题的常考题型) 第九节: n 阶泰勒公式,拉格朗日型余项 二元函数 (极值充分条件的证明不用看) 的泰勒公 (第十节 最小二乘法 不用看) 式(仅数 例 1,习题 8—9:1,2, 3 一考,了解) 自我小结 总复习题八: 1—3,5,6,8,11— 19本章测试题——检验自己是否对本章的复习合格( 合格成绩为 80分以上 ) ,如果合格继续向前复习, 如果不合格总结自己的薄弱点还要针对性的对本 章的内容进行复习或者到总部答疑。
考研数学一大纲导数与微分
考研数学一大纲导数与微分导数与微分是高等数学中重要的概念,也是考研数学一大纲的一部分。
理解和掌握导数与微分的相关知识对于考研数学的学习至关重要。
本文将从定义、性质和应用等方面进行论述,旨在帮助考生全面理解与应用导数与微分。
一、导数的定义与性质弄清楚导数的定义是理解该概念的第一步。
在微积分中,导数表示了函数在某一点处的变化率。
具体来说,对于函数f(x),在区间[a, b]内某一点x0上的导数可由以下定义给出:f'(x0) = lim (h→0) [f(x0+h) -f(x0)] / h。
导数的性质是导数理论中的重要部分。
其中,基本导数公式如下:1. 常数函数导数为0:d/dx (c) = 0;2. 幂函数导数:d/dx (x^n) = nx^(n-1);3. 指数函数导数:d/dx (e^x) = e^x;4. 对数函数导数:d/dx (lnx) = 1/x;5. 三角函数导数:d/dx (sinx) = cosx,d/dx (cosx) = -sinx。
二、微分的定义与性质微分是导数的一个重要应用。
在微积分中,微分表示了函数在某一点附近的局部线性近似。
定义中,对于函数f(x),在区间[a, b]内某一点x0上的微分可由以下公式给出:dy = f'(x0)dx。
微分的性质如下:1. 乘法法则:d(uv) = u dv + v du;2. 链式法则:设y=f(u),u=g(x),则dy=f'(u)g'(x)dx;3. 高阶导数:导数可以被多次求导,二阶导数记为f''(x),依此类推;4. 隐函数求导:对于含有隐函数的方程,可以采用隐函数求导法进行求导数。
三、导数与微分的应用导数与微分在自然科学和社会科学中有广泛应用。
在数学上,导数与微分有助于解决极值问题、函数图像的绘制以及函数的近似计算等。
在实际应用中,导数与微分被广泛用于物理学的运动学、经济学的边际效应分析、生物学的模型建立等领域。
考研数学一考试大纲
考研数学一考试大纲一、考试性质考研数学一是全国硕士研究生招生考试的重要组成部分,旨在考查考生对高等数学、线性代数、概率论与数理统计等数学知识的掌握程度,以及运用这些知识解决实际问题的能力。
二、考试目标通过考查考生对高等数学、线性代数、概率论与数理统计等数学知识的理解与运用,重点检测考生的运算能力、逻辑推理能力、空间想象能力以及运用数学知识解决实际问题的能力。
三、考试内容1、高等数学:函数、极限、连续;一元函数微积分学;多元函数微积分学;常微分方程;无穷级数;向量代数与空间解析几何等。
2、线性代数:行列式;矩阵;向量;线性方程组;矩阵的特征值和特征向量;二次型等。
3、概率论与数理统计:随机事件及其概率;随机变量及其分布;随机变量的数字特征;大数定律与中心极限定理;数理统计的基本概念;参数估计等。
四、考试形式与试卷结构1、考试形式:笔试,考试时间为180分钟,满分150分。
2、试卷结构:题型包括选择题、填空题和解答题。
其中,选择题和填空题分值约占40%,解答题分值约占60%。
五、考试难度与要求1、考试难度:考研数学一的考试难度较大,主要表现在对知识点的综合运用能力和解题技巧的要求较高。
2、考试要求:考生应全面掌握考试大纲所要求的知识点,并能够灵活运用,具备综合分析问题和解决问题的能力。
在解题过程中,要求思路清晰、运算准确、表达规范。
六、备考建议1、系统复习:考生应首先对考试大纲所涉及的知识点进行系统复习,建立完整的知识体系,不留死角。
2、强化训练:通过大量的练习题和模拟试题进行强化训练,提高解题能力和速度。
3、注重方法:在复习和解题过程中,要注重方法和思路,善于总结和归纳。
4、合理安排时间:在备考过程中,要合理安排时间,尤其是对于知识点较多、难度较大的章节,要适当增加复习时间。
5、多交流:可以参加考研辅导班或者与其他考生进行交流,分享经验和心得。
七、总结考研数学一是硕士研究生招生考试中重要的一环,对于想要继续深造的学子来说至关重要。
2024考研数一 大纲
2024考研数一大纲2024年考研数学一专业的大纲如下:一、高等数学1. 极限与连续- 极限的概念与性质- 无穷小量与无穷大量的比较- 函数的连续性与间断点- 闭区间上连续函数的性质- 导数的概念与性质- 微分中值定理及其应用2. 一元函数微积分- 微积分基本定理与不定积分- 函数的定积分与不定积分的关系- 一元函数的积分学- 定积分的计算与应用3. 多元函数微积分- 多元函数的极限与连续- 偏导数与全微分- 多元函数的求导法则- 多元函数的极值与条件极值- 重积分的概念与计算4. 常微分方程- 常微分方程的基本概念与初值问题- 一阶常微分方程的解法与应用- 高阶常微分方程的一般理论- 常系数线性微分方程5. 线性代数- 行列式的定义与性质- 矩阵的基本概念与运算- 线性方程组的解法与应用- 矩阵的特征值与特征向量- 正交变换与对称矩阵的对角化二、概率论与数理统计1. 随机变量及其分布- 随机变量的概念与分布函数- 常见离散型分布与连续型分布- 二维随机变量及其分布- 边缘分布与条件分布2. 随机变量的数字特征- 数学期望与方差- 矩母函数与特征函数- 大数定律与中心极限定理3. 多维随机变量及其分布- 二维随机变量的分布函数与密度函数- 边缘分布与条件分布- 相互独立与不相关4. 参数估计- 点估计与区间估计- 常见参数估计方法- 最小二乘估计与极大似然估计5. 假设检验与方差分析- 假设检验的基本原理- 单侧与双侧假设检验- 方差分析与卡方检验- 相关分析与回归分析以上就是2024年考研数学一专业的大纲,考生可以根据大纲内容有针对性地进行复习和准备。
2023数学一考研大纲
2023数学一考研大纲
一、考试性质
数学一是全国硕士研究生招生考试中的重要科目,主要考察数学的基本概念、原理和方法,以及数学在实际问题中的应用。
二、考试内容
1. 函数、极限、连续
2. 一元函数微分学
3. 一元函数积分学
4. 多元函数微积分学
5. 常微分方程
6. 线性代数
7. 概率论与数理统计
三、考试要求
1. 掌握数学的基本概念和原理,理解数学的本质和思想方法。
2. 具备一定的数学分析和解决问题的能力,能够运用数学知识解决实际问题。
3. 掌握基本的数学技巧和方法,能够进行数学运算和推理。
4. 具备运用数学软件进行数值计算和数据分析的能力。
5. 了解数学在各领域的应用,能够运用数学语言进行科学表达和交流。
四、考试形式与试卷结构
1. 考试时间:180分钟。
2. 试卷满分:150分。
3. 试题结构:选择题、填空题、解答题。
4. 试题难度:基础题、中等题、难题。
五、考试范围
具体考试范围详见附件。
2024数学一考研大纲
2024数学一考研大纲一、总述数学一考试是为招收工学类硕士研究生而设置的具有选拔功能的水平考试。
它的主要目的是测试考生的数学基础知识、基本思想和方法的掌握程度,以及运用数学知识和方法分析问题和解决问题的能力。
二、考试内容1. 高等数学函数、极限、连续ㆍ函数的概念及性质ㆍ极限的概念与性质ㆍ无穷小与无穷大ㆍ函数的连续性一元函数微分学ㆍ导数的概念ㆍ导数的计算ㆍ微分及其应用ㆍ中值定理及其应用一元函数积分学ㆍ不定积分的概念与性质ㆍ定积分的概念与性质ㆍ积分计算与应用向量代数与空间解析几何ㆍ向量的概念与运算ㆍ平面与直线ㆍ空间曲面与曲线2. 线性代数行列式ㆍ行列式的概念与性质ㆍ行列式的计算矩阵ㆍ矩阵的概念与运算ㆍ逆矩阵ㆍ矩阵的秩线性方程组ㆍ线性方程组的解的结构ㆍ齐次线性方程组ㆍ非齐次线性方程组向量空间ㆍ向量空间的基与维数ㆍ向量的线性相关性特征值与特征向量ㆍ特征值与特征向量的概念与性质ㆍ矩阵的对角化二次型ㆍ二次型的概念与性质ㆍ二次型的标准形与规范形3. 概率论与数理统计随机事件与概率ㆍ随机事件的概念与运算ㆍ概率的定义与性质ㆍ条件概率与独立性随机变量及其分布ㆍ随机变量的概念与分类ㆍ分布函数与概率密度函数ㆍ常见分布及其性质随机变量的数字特征ㆍ数学期望与方差ㆍ协方差与相关系数大数定律与中心极限定理ㆍ大数定律ㆍ中心极限定理数理统计的基本概念ㆍ总体与样本ㆍ统计量与抽样分布参数估计ㆍ点估计ㆍ区间估计假设检验ㆍ基本概念与原理ㆍ常见假设检验方法三、考试要求1. 考生应掌握数学的基础知识、基本思想和基本方法,并能够运用所学知识分析和解决实际问题。
2. 考生应具备抽象思维能力、逻辑推理能力、空间想象能力、运算能力和综合运用所学知识解决实际问题的能力。
3. 考试形式为闭卷、笔试,考试时间为180分钟,试卷满分为150分。
2023考研高数数学一考试大纲
2023考研高数数学一考试大纲2023考研高数数学一考试大纲相关参考内容:第一部分:数列和数学归纳法数列:1. 数列的定义与性质,如等差数列、等比数列等;2. 求解数列的通项公式以及根据数列的通项公式计算数列的和;3. 数列的极限概念,极限存在的判定条件;4. 数列的极限性质,如夹逼定理、最值定理等。
数学归纳法:1. 数学归纳法的基本思想和步骤;2. 数学归纳法的证明方法和技巧;3. 利用数学归纳法证明数学命题的正确性。
第二部分:函数与极限函数:1. 函数的定义与性质,如奇偶性、周期性等;2. 常见初等函数的性质,如幂函数、指数函数、对数函数、三角函数等;3. 复合函数的概念和性质,链式法则的应用;4. 反函数的概念和性质,求解反函数的方法。
极限:1. 函数极限的定义与性质,极限存在与不存在的判定条件;2. 无穷小与无穷大的概念及其性质;3. 极限计算方法,如夹逼定理、洛必达法则、泰勒展开等;4. 函数的连续性概念及其判定条件。
第三部分:导数与微分导数:1. 导数的定义与性质,如可导性、连续性等;2. 常用函数的导数公式和性质,如幂函数的导函数、指数函数的导函数、对数函数的导函数等;3. 高阶导数的概念和应用;4. 参数方程的导数计算,隐函数的导数计算。
微分:1. 微分的概念与性质,微分的几何意义;2. 微分中值定理及其应用;3. 泰勒公式及其应用;4. 极值问题的求解,如最大值、最小值的判定条件等。
第四部分:定积分与不定积分定积分:1. 定积分的概念与性质;2. 定积分的计算方法,如换元法、分部积分法等;3. 定积分的应用,如曲线长度、曲线面积、体积等。
不定积分:1. 不定积分的概念与性质;2. 基本积分表及运算法则;3. 特殊函数的不定积分,如三角函数的不定积分、指数函数的不定积分等;4. 定积分与不定积分的关系。
以上是2023考研高数数学一考试大纲的相关参考内容,涵盖了数列和数学归纳法、函数与极限、导数与微分以及定积分与不定积分等内容,希望对您的学习有所帮助。
考研数学一、二、三大纲详解(教材分析)
高等数学考研指定教材:同济大学数学系主编《高等数学》〔上下册〕〔第六版〕第一章函数与极限(7天)〔考小题〕学习内容复习知识点与对应习题大纲要求第一节:映射与函数(一般章节)函数的概念,常见的函数〔有界函数、奇函数与偶函数、单调函数、周期函数〕、复合函数、反函数、初等函数具体概念和形式.〔集合、映射不用看;双曲正弦,双曲余弦,双曲正切不用看〕习题1-1:4,5,6,7,8,9,13,15,16〔重点〕1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等第二节:数列的极限(一般章节)数列定义,数列极限的性质(唯一性、有界性、保号性 )〔本节用极限定义证明极限的题目考纲不作要求,可不看,如P26例1,例2,例3,定理1,2,3的证明都不作要求,但要理解;定理4不用看〕习题1-2:1第三节:函数的极限(一般章节)函数极限的基本性质〔不等式性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等〕 P33(例4,例5)〔例7不用做,定理2,3的证明不用看,定理4不用看〕习题1-3:1,2,3,4第四节:无穷大与无穷小〔重要〕无穷小与无穷大的定义,它们之间的关系,以及与极限的关系〔无穷小重要,无穷大了解〕〔例2不用看,定理2不用证明〕习题1-4:1,6第五节:极限的运算法则〔掌握〕极限的运算法则(6个定理以及一些推论)〔注意运算法则的前提条件是否各自极限存在〕〔定理1,2的证明理解,推论1,2,3,定理6的证明不用看〕P46(例3,例4),P47(例6)习题1-5:1,2,3,4,5〔重点〕第六节:极限存在准则〔理解〕两个重要极限〔重要〕两个重要极限〔要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式,要会证明两个重要极限〕,函数极限的存在问题〔夹逼定理、单调有界数列必有极限〕,利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限〔准则1的证明理解,第一个重要极限的证明一定要会,另一个重要极限的证明不用看,柯西存在准则不用看〕P51(例1)习题1-6:1,2,4价无穷小量求极限.9.理解函数连续性的概念〔含左连续与右连续〕,会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质〔有界性、最大值和最小值定理、介值定理〕,并会应用这些性质.第七节:无穷小的比较〔重要〕无穷小阶的概念〔同阶无穷小、等价无穷小、高阶无穷小、k阶无穷小〕,重要的等价无穷小〔尤其重要,一定要烂熟于心〕以及它们的重要性质和确定方法〔定理1,2的证明理解〕P57(例1)P58(例5)习题1-7:全做第八节:函数的连续性与间断点〔重要,基本必考小题〕函数的连续性,间断点的定义与分类〔第一类间断点与第二类间断点〕,判断函数的连续性〔连续性的四则运算法则,复合函数的连续性,反函数的连续性〕和间断点的类型。
考研数学一考试大纲
考研数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟。
二、答题方式答题方式为闭卷、笔试。
三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
考研数学一大纲详解线性代数部分重要知识点梳理
考研数学一大纲详解线性代数部分重要知识点梳理线性代数作为数学的一个重要分支,是考研数学一科目中不可或缺的一部分。
在考研备考的过程中,对线性代数的重要知识点进行详细梳理,对于提高考生的备考效果具有重要意义。
本文将详解考研数学一大纲中线性代数部分的重要知识点,并对其进行逐一讲解。
一、行列式及其性质行列式是线性代数中的基础知识,掌握行列式的性质对于解题至关重要。
行列式的性质包括:行列式的定义、行列式的性质、行列式的计算方法等。
行列式的定义是关于n阶行列式的,其中n表示行列式的阶数。
行列式的定义较为复杂,但我们只需熟记其定义即可。
行列式的性质包括:行列式相等的条件、行列式的值与其元素的关系等。
这些性质在解题过程中经常用到,熟悉这些性质不仅可以帮助我们更好地理解行列式的本质,还能够简化计算过程。
行列式的计算方法是解决行列式问题的基础。
行列式的计算采用展开法、按行(列)展开法等多种方法。
我们需要熟练掌握这些计算方法,并灵活运用于解答各类行列式题目。
二、矩阵及其运算矩阵是线性代数中的另一个重要概念,学习矩阵及其运算对于解题具有重要作用。
矩阵的概念包括:矩阵的定义、矩阵的运算等。
矩阵的定义是关于m行n列的矩阵的,其中m表示矩阵的行数,n表示矩阵的列数。
矩阵的定义较为简单,但需要我们掌握其基本概念和术语。
矩阵的运算包括:矩阵的加法、矩阵的乘法等。
矩阵的加法和乘法是两种基本的矩阵运算,我们需要熟练掌握其定义和运算法则,并能够应用到实际问题中。
三、向量及其运算向量是线性代数中的重要概念,其运算方法也是考研数学一大纲中的重点内容。
向量的概念包括:向量的定义、向量的运算等。
向量的定义是关于n维向量的,其中n表示向量的维数。
向量的定义较为简单,但需要我们理解其本质和特点。
向量的运算包括:向量的加法、向量的数乘、向量的内积和外积等。
掌握这些运算方法对于解题非常重要,需要注意运算规则和性质。
四、线性相关与线性无关线性相关与线性无关是线性代数中的一个重要概念,其在解决线性方程组和矩阵求逆等问题时经常用到。
[整理]考研数学一大纲
考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:和.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.来源:万学教育。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学一一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系2.了解函数的有界性、单调性、周期性和奇偶性3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念4.掌握基本初等函数的性质及其图形,了解初等函数的概念5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系6.掌握极限的性质及四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法3.会求有理函数、三角函数有理式和简单无理函数的积分4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式5.了解反常积分的概念,会计算反常积分6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法4.掌握平面方程和直线方程及其求法5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题6.会求点到直线以及点到平面的距离7.了解曲面方程和空间曲线方程的概念8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性4.理解方向导数与梯度的概念,并掌握其计算方法5.掌握多元复合函数一阶、二阶偏导数的求法6.了解隐函数存在定理,会求多元隐函数的偏导数7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程8.了解二元函数的二阶泰勒公式9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,,了解二重积分的中值定理2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系4.掌握计算两类曲线积分的方法5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分7.了解散度与旋度的概念,并会计算8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等)七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件2.掌握几何级数与级数的收敛与发散的条件3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法4.掌握交错级数的莱布尼茨判别法5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系6.了解函数项级数的收敛域及和函数的概念7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和9.了解函数展开为泰勒级数的充分必要条件10.掌握,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念2.掌握变量可分离的微分方程及一阶线性微分方程的解法3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程4.会用降阶法解下列形式的微分方程5.理解线性微分方程解的性质及解的结构6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程8.会解欧拉方程9.会用微分方程解决一些简单的应用问题线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质2.会应用行列式的性质和行列式按行(列)展开定理计算行列式二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法5.了解分块矩阵及其运算三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5.了解维向量空间、子空间、基底、维数、坐标等概念6.了解基变换和坐标变换公式,会求过渡矩阵7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法8.了解规范正交基、正交矩阵的概念以及它们的性质四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法4.理解非齐次线性方程组解的结构及通解的概念5.掌握用初等行变换求解线性方程组的方法五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法3.掌握实对称矩阵的特征值和特征向量的性质六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形3.理解正定二次型、正定矩阵的概念,并掌握其判别法概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用5.会求随机变量函数的分布三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2.会求随机变量函数的数学期望五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)六、数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算3.了解正态总体的常用抽样分布七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误2.掌握单个及两个正态总体的均值和方差的假设检验。