八年级数学上轴对称整章测试

合集下载

数学八年级上册《轴对称》单元检测(含答案)

数学八年级上册《轴对称》单元检测(含答案)
[点睛]本题考查了轴对称和轴对称图形的性质,难度适中.
9.如图,在 中, , , 平分 , ,则图中共有等腰三角形( )
A. 个B. 个C. 个D. 个
[答案]D
[解析]
[分析]
根据等腰三角形性质和三角形内角和定理求出∠A C B=∠B= (180°−∠A)=72°,求出∠A C D=∠B C D= ∠A C B=36°,求出∠C D B=∠A+∠A C D=72°,根据平行线的性质得出∠ED B=∠A=36°,∠DEB=∠A C B=72°,∠C DE=∠A C D=36°,推出∠A=∠A C D=∠B C D=∠C DE=36°,∠B=∠A C D=∠DEB=∠C D B=72°即可.
A. B. C. D.
3.一个角是 等腰三角形是( )
A.等腰直角三角形B.等边三角形C.直角三角形D.上述都正确
4.如图,在一个规格为 (即 个小正方形)的球台上,有两个小球 , .若击打小球 ,经过球台边的反弹后,恰好击中小球 ,那么小球 击出时,应瞄准球台边上的点( )
A. B. C. D.
5.如图,桌面上有M、N两球,若要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是( )
[详解]解:∵A B=A C,
∴∠A B C=∠C,
∵B D=B A,
∴∠A=∠B D A,
∴∠A>∠C,
∴2∠A<180°且3∠A>180°,
∴60°<∠A<90°,即60<x<90.
故选C.
[点睛]此题考查了等腰三角形的性质,三角形内角和为180°和三角形外角的性质,关键是得到2∠A<180°且3∠A>180°.
[答案]D
[解析]
[分析]
此题根据△A B C中∠A为锐角与钝角分为两种情况解答.

人教版八年级上册数学《轴对称》单元综合检测(附答案)

人教版八年级上册数学《轴对称》单元综合检测(附答案)
详解:由点A(m+3,2)与点B(1,n−1)关于x轴对称,得:
m+3=1,n−1=−2,
解得m=−2,n=−1,
点睛:本题考查了关于x轴对称的点的坐标;容易与关于y轴对称的点的坐标混淆.
A. 16cmB. 20cmC. 24cmD. 26cm
6.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为
A 40海里B. 60海里C. 70海里D. 80海里
7.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE,若∠A=30°,AB=AC,则∠BDE的度数为()
(2)经过多少秒,△BMN 直角三角形.
一、选择题(本题共12小题,每小题3分,共36分)
1.下列四个交通标志图中为轴对称图形的是( )
A.AB.BC.CD.D
【答案】D
【解析】
解:A、B、C不是轴对称图形,D是轴对称图形.故选D.
2.在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标是()
【答案】3
【解析】
试题解析:∵等边△ABC中,AB=8,
∴AB=BC=6.
∵AD⊥BC,
故答案为3.
14.已知点A(m+3,2)与点B(1,n-1)关于x轴对称,则m=________,n=________.
【答案】(1).-2(2).-1
【解析】
分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.
A.45B.52.5C.67.5D.75
【答案】C
【解析】
试题分析:根据AB=AC,利用三角形内角和定理求出∠ABC的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求出∠BDE的度数:

数学八年级上册《轴对称》单元检测题附答案

数学八年级上册《轴对称》单元检测题附答案
4.如图,直线m∥n,点A在直线m上,点B、C在直线n上,A B=C B,∠1=70°,则∠B A C等于( )
A.40°B.55°C.70°D.110°
[答案]C
[解析]
试题解析:∵m∥n,

∵A B=B C,

故选C.
点睛:平行线的性质:两直线平行,内错角相等.
5.如图,已知DE∥B C,A B=A C,∠1=125°,则∠C的度数是( )
一、选择题(共12小题,总分36分)
1.下列图案是轴对称图形的有 个.
A.1B.2C.3D.4
[答案]B
[解析]
试题分析:根据轴对称图形的概念(延某条直线对折,两部分能够完全重合)可知第一和第四个是轴对称图形.
故选B
考点:轴对称图形
2.点A(-2,5)关于x轴对称的点的坐标是( )
A.(2,5)B.(-2,-5)C.(2,-5)D.(5,-2)
(1)试判定△ODE的形状,并说明你的理由;
(2)线段B D、DE、EC三者有什么关系,写出你的判断过程.
25.如图所示,点O是等边三角形A B C内一点,∠AOB=110°,∠BOC=α,以OC为边作等边三角形OC D,连接A D.
(1)当α=150°时,试判断△AOD 形状,并说明理由;
(2)探究:当A为多少度时,△AOD是等腰三角形?
A. 31°B. 32°C. 59°D. 62°
11.如图,等边三角形A B C与互相平行的直线A,B相交,若∠1=25°,则∠2的大小为( )
A. 25°B. 35°C. 45°D. 55°
12.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=( )

八年级上册数学《轴对称》单元测试(含答案)

八年级上册数学《轴对称》单元测试(含答案)
10.如图, 中, , , 的垂直平分线 交 于 点,交 于 点,则下列结论错误的是()
A. B. C. D.
二、填空题(每小题3分,共24分)
11.一个正五边形的对称轴共____条.
12.如图,在等边△A B C中,A D是高,若A B=6,则C D的长为:_____
13.已知点P(3,-1)关于y轴 对称点Q的坐标是(A+B,1-B),则A B的值为______.
A. B. C. D.
[答案]A
[解析]
[分析]
根据直角三角形的性质得到A B=2B C,根据线段垂直平分线的性质得到D A=D B,根据直角三角形的性质、角平分线的性质判断即可.
[详解]∵∠C=90°,∠A=30°,
∴∠A B C=60°,A B=2B C,
∵DE是A B的垂直平分线,
∴D A=D B,故B正确,不符合题意;
三、解答题(共66分)
19.如图,已知A B=A C,AE平分∠D A C,那么AE∥B C吗?为什么?
20.(8分)如图,在△A B C中,∠C=∠A B C,BE⊥A C,△B DE是正三角形.求∠C的度数.
21.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)在图中 点上标出相应字母A、B、C,并求出△A B C的面积;
5.如图,已知A B=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4,….若∠A=70°,则∠Bn-1AnAn-1的度数为()
A. B. C. D.
[答案]C
[解析]
在△A B A1中,∵∠A=70°,A B=A1B,∴∠B A1A=∠A=70°.
∵A1A2=A1B1,∠B A1A是△A1A2B1的外角,∴∠B1A2A1= =35°.

人教版八年级数学上测第十三章《轴对称》检测题(含答案)

人教版八年级数学上测第十三章《轴对称》检测题(含答案)

人教版八年级数学上测第十三章《轴对称》检测题(含答案)一、选择题(每小题3分,共30分)1. 现实世界中,对称现象无处不在,下列汉字是轴对称图形的是()A. 爱B. 我C. 中D. 华【答案】C.2.点M(1,2)关于x轴对称点的坐标为()A.(-1,2)B.(-1,-2)C.(1,-2)D.(2,-1)【答案】C.3. 如图,△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B度数为()A. 25°B. 30°C. 35°D. 40°【答案】B.4.下列每个网格中均有两个图形,其中一个图形可由另一个轴对称变换得到的是()A. B. C. D.【答案】B.5. 如图,∠MON内有一点P,点P关于OM、ON的对称点分别是G、H,连GH分别交OM、ON于A、B点,若GH=10cm,则△P AB的周长为()A. 5cmB.10cmC. 20cmD.15cm【答案】B. 提示:根据对称性,AG=AP,BH=GP,∴AP+AB+BP=AG+AB+BH=GH=10.6.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A. 55° ,55°B. 70°,40或70°,55°C.70°,40°D. 55°,55°或70°,40°【答案】D.7. 如图,在正方形ABCD的外侧,作等边△CDE,连接AE交CD于点F,则∠DF A的度数为()A. 45°B. 55°C. 60°D. 75°【答案】D. 提示:∠ADE=90°+60°=150°,∠DAF=∠DEA=15°,则∠DF A=75°.8. 如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长度为()A. 5cmB. 5.4cmC. 2.4cmD. 3cm【答案】C. 提示:作DF⊥BC于F,∵BD平分∠ABC,故设DE=DF=h,由S△ABD+S△CBD=S△ABC,得:12(AB+BC)h=36,代入数值,解得h=2.4,故选C.9. 如图,在△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.2ba+B.2ba-C. a-b D. b-a【答案】C. 提示:AD=BD=BC=b,CD=AC-AD=a-b.10. 如图OE是等边△AOB的中线,OB=4,C是直线OE上一动点,以AC为边在直线AC下方作等边△ACD,连接ED,下列说法正确的是()A. ED的最小值是2B. ED的最小值是1C. ED有最大值D. ED没有最大值也没有最小值【答案】B. 提示:连BD,则易得△AOC≌△ABD(SAS),∴∠ABD=∠AOC=30°,当∠BDE=90°时,ED最小,此时ED=12BE=1,故选B.二、填空题(每小题3分,共18分)11. 点P(m,n)和点Q(n-1,2m)关于x轴对称,则m+n的值为__________.【答案】13. 提示:m=n-1,2m+n=0,联立解得m=-13,n=23,∴m+n=13.12. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是__________.【答案】3. 提示:由条件得AD=BD,∠CAD=∠BAD,∴∠CAD=∠BAD=∠B=30°,CD=DE=1,BD=2DE=2,∴BC=CD+BD=3.13. 如图,在△ABC中,DE垂直平分AC,若AE=3,△ABD周长为13,则△ABC周长为________.【答案】19. 提示:由题知AC=2AE=6,AD=CD,∴BC=BD+AD,∵AB+BD+AD=13,∴AB+BC=13,∴AB+BC+AC=13+6=19.14. 如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的力向被击出(球可以经过多次反射),那么该球最后将落入的球袋是________.【答案】1号袋. 提示:如图所示.15. 如图,在△ABC中,∠C=46°,将△ABC沿直线l折叠,点C落在点D的位置,则∠1-∠2的度数是___________ .【答案】92°. 提示:由飞镖模型,∠DNC=∠C+∠D+∠DMC,即:180°-∠2=46°+46°+(180°-∠1),∴∠1-∠2=92°.16 .已知A(1,2)、B(7,4),点M、N是x轴上的动点(M在N左边),MN=3,当AM+MN+NB最小时,直接写出点M的坐标为___________.【答案】(2,0). 提示:作点A关于x轴的对称点A′,将点B向左平移3个单位得点B′,连接A′B′,交x轴于点M.三、解答题(共8小题,共72分)17. (8分)如图,已知点M、N和∠AOB,用尺规作图作一点P,使P到点M、N的距离相等,且到∠AOB两边的距离相等.(保留作图痕迹,不写作法)【答案】1.作∠AOB的平分线OC;2.连MN,作MN的垂直平分线EF;则射线OC与直线EF的交点P即为所求.18. (8分)如图,在△ABC中,∠B=30°,∠C=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若△DAF的周长为20,求BC的长.【答案】(1)∠BAC=100°;(2)∵DE、FG分别垂直平分AB、AC,∴AD=BD,AF=CF,∴∠BAD=∠B=30°,∠CAF=∠C=50°,∴∠DAF=∠BAC-∠BAD-∠CAF=100°-30°-50°=20°;(3) ∵△DAF的周长为20,∴AD+DF+AF=20,∴BC=BD+DF+CF=AD+DF+AF=20.19. (8分)(1)如图,已知△ABC,请画出△ABC关于y轴对称的△A'B'C'(其中A'、B'、C'分别是A、B、C的对应点);(2)直接写出点A'、B'、C'点的坐标;(3)求△ABC的面积是多少?(4)用无刻度的直尺在y轴上找一点Q,使得QA+QB之和最小.(用虚线表示画图过程)【答案】(1) A'(2,3)、B'(3,1)、C'(-1,-2);(2)S△ABC=5×4-12×1×2-12×3×4-12×3×5=5.5;(3) 连接A′B(或AB′)交y轴于Q,即可.20. (8分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB于E,DF⊥AC于F,请添加一个条件,使DE=DF,并说明理由.【答案】添加的条件是:D为BC的中点. 理由如下:方法1:连接AD.∵AB=AC,D为BC中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.方法2:∵AB=AC,∴∠B=∠C.∵D为BC中点,∴BD=CD.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD=90°,BD=CD,∴△BDE≌△CDF(AAS),∴DE=DF.21. (8分)如图,△ABC 是等边三角形,点D 在BC 延长线上,DE ⊥AB 于点E ,交AC 于G ,EF ⊥BC 于点F ,若CD =3AE ,CF =6,求AC 的长. 【答案】设AE =x ,则CD =3x .在等边△ABC 中,∠A =∠B =∠ACB =60°, 又DE ⊥AB ,∴∠D =∠AGE =∠CGD =30°. ∴AG =2AE =2x ,CG =CD =3x , ∴AB =BC =AC =2x +3x =5x . 则BE =5x -x =4x ,又∵EF ⊥BC ,∠B =60°,∴BF =12BE =2x ,∴BC =BF +CF =2x +6.∵BC =AC ,∴2x +6=5x ,∴x =2. ∴AC =5x =10.22. (10分)如图,在△ABC 中,∠ABC =∠ACB ,E 为BC 边上一点,以E 为顶点作∠AEF ,∠AEF 的边交AC 于点F ,使∠AEF =∠B . (1)如果∠ABC =40°,则∠BAC =________; (2)判断∠BAE 与∠CEF 的大小关系,并说明理由;(3)当△AEF 为直角三角形时,求∠AEF 与∠BAE 的数量关系.【答案】(1)100°; …………… 2分 (2)∠BAE =∠CEF ,理由如下: ∵∠AEC 是△ABE 的外角, ∴∠AEF +∠CEF =∠B +∠BAE . 又∵∠AEF =∠B ,∴∠CEF =∠BAE . …………… 5分(3)由(2),设∠CEF =∠BAE =α,设∠AEF =∠B =∠C =β.则∠AFE =∠CEF +∠C =α+β.∵∠AEF =∠B <90°,故分两种情况考虑:1°当∠EAF 为直角时,如图1,由∠AEF +∠AFE =90°,CBAFECBA备用图1CBA备用图2得β+(α+β)=90°,∴α+2β=90°,故有:∠BAE+2∠AEF=90°.2°当∠AFE为直角时,如图2,得α+β=90°,即:∠BAE+∠AEF=90°.综上,当△AEF为直角三角形时,∠BAE+2∠AEF=90°或∠BAE+∠AEF=90°. …………… 10分23. (10分)已知Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边在AD的右侧作Rt△ADE,AD=AE,∠ADE=∠AED =45°,连接CE.(1)〖发现问题〗如图1,当点D在边BC上时,①请写出BD和CE之间的数量关系为_____________,位置关系为____________;②求证:CE+CD=BC;(2)尝试探究:如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、CD 之间存在的数量关系是否成立? 若成立,请证明;若不成立,请写出新的数量关系(不必证明);(3)拓展延伸:如图3,当点D在CB的延长线上且其他条件不变时,若BC=6,CE=2,求线段CD的长.【答案】(1)①BD=CE,BD⊥CE,…………… 2分②由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABD=45°,∴CE+CD=BD+CD=BC. …………… 5分(2) 不成立,此时关系式为BC+CD=CE. …………… 7分提示:同上,证明△BAD≌△CAE(SAS),得BD=CE,即BC+CD=CE.(3) 由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE. ∵BD+BC=CD,∴CD =CE +BC =2+6=8. …………… 10分24. (12分)等腰Rt △ACB 中,∠ACB =90°,AC =BC ,点A 在x 轴正半轴上,C 在y 轴负半轴上.(1)如图1,求证:∠BCO =∠CAO ;(2)如图2,若OA =4,OC =2,M 是AB 与y 轴交点,求△AOM 的面积;(3)如图3,点C (0,2),点Q 、A 均在x 轴上,且S △ACQ =6a (a 为已知数). 分别以AC 、CQ 为腰在第一、第二象限作等腰Rt △CAN 、等腰Rt △QCM ,连接MN 交y 轴于P 点,间:S △MON 是否发生改变?若不变,求出S △MON 的值;若变化,求S △MON 的取值范围.【答案】(1) ∵∠ACB =90°,∴∠BCO +∠ACO =90°. 又∵∠AOC =90°,∴∠CAO +∠ACO =90°. ∴ ∠BCO =∠CAO . …………… 3分(2) 过B 作BD ⊥y 轴于D ,则△BCD ≌△CAO (AAS ), ∴BD =CO =2,CD =AO =4,OD =CD -OC =2,∴B (-2,2). 又∵A (4,0),C (0,-2),由割补法,得S △ABC =4×6-12×2×4-12×2×4-12×2×6=10, 又2142△△BCM ACM S BD S OA ===,∴S △ACM =23S △ABC =203. ∵S △AOC =12×2×4=4,∴S △AOM =S △ACM -S △AOC =203-4=83. (3) 过N 作NE ∥CM 交y 轴于E ,则∠CNE +∠MCN =180°,∵∠MCQ +∠ACN =90°+90°=180°, ∴∠ACQ +∠MCN =180°, ∴∠CNE =∠ACQ . 又∵∠ECN +∠ACO =90°,∠QAC +∠ACO =90°, ∴∠ECN =∠QAC . 在△ECN 和△QAC 中,∵∠CNE =∠ACQ ,CN =AC ,∠ECN =∠QAC , ∴△ECN ≌△QAC (ASA ),∴CE=AQ,EN=QC=MC.又NE∥CM,∴△PEN≌△PCM(ASA),∴PE=PC.∵点C(0,2),S△ACQ=6a,∴AQ=6a.∴CE=AQ=6a,∴CP=PE=3a.∴OP=OC+CP=2+3a.过M作MF⊥y轴于F,过N作NG⊥y轴于G,∵△MCQ为等腰直角三角形,∴△MCF≌△CQO(AAS),∴MF=CO=2,同理,NG=OC=2.则S△MON=S△MOP+S△NOP=12OP·MF+12OP·NG=2OP=6a+4.。

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。

第13章 轴对称 人教版数学八年级上册单元测试卷(含答案)

第13章 轴对称 人教版数学八年级上册单元测试卷(含答案)

第十三章 轴对称时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·辽宁盘锦双台子区期末)下列由黑白棋子摆成的图案中,是轴对称图形的是( ) A B C D2.(2022·福建福州鼓楼区期中改编)在平面直角坐标系中,若点(2,m)与点(n,3)关于x 轴对称,则(m+n)2 023的值为( )A.0B.-1C.1D.32 0233.如图是3×3的正方形网格,其中已有2个小方格被涂成了黑色.现在要从编号为①—④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是( )A.①B.②C.③D.④4.(2022·四川遂宁期末)若等腰三角形的一个外角等于70°,则它的底角的度数为( ) A.35° B.70° C.110° D.55°5.(2022·河南周口期末)元旦联欢会上,同学们玩抢凳子游戏,在与A,B,C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A,B,C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的( )A.三边中线的交点处B.三边垂直平分线的交点处C.三边上高的交点处D.三条角平分线的交点处6.(2022·山东菏泽期中)如图,在△ABC中,AB=AC,AD,BE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ABE的度数为( ) A.20° B.35° C.40° D.70°(第6题) (第7题)7.如图,直线a,b相交形成的夹角中,锐角为52°,交点为O,点A在直线a上,直线b 上存在点B,使以点O,A,B为顶点的三角形是等腰三角形,这样的点B有( )A.4个B.3个C.2个D.1个8.(2022·广东广州天河区期末)在△ABC中,AB=AC,∠A=36°,若按如图所示的尺规作图方法作出线段BD,则下列结论错误的是( )A.AD=BDB.∠BDC=72°C.S△ABD∶S△BCD=BC∶ACD.△BCD的周长=AB+BC9.(2022·山东烟台期末)如图,∠AOB=60°,点P在射线OA上,OP=22,点M,N在射线OB上(点M在点N的左侧),且PM=PN.若MN=4,则OM的长为( ) A.7 B.8 C.9 D.11(第9题) (第10题) 10.(2022·辽宁大连期末)如图,∠ABC=30°,点D是∠ABC内部的一点,连接BD.若BD=1m,点E,F分别是边BA,BC上的动点,则△DEF的周长的最小值为( )A.0.5mB.1mC.1.5mD.2m二、填空题(本大题共6小题,每小题3分,共18分)11.新风向开放性试题汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,黑体的汉字“王”“中”“田”等都是轴对称图形,请再写出两个这样的汉字: .12.(2022·安徽合肥庐阳区期末改编)如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE.若CE=3,则AE= .(第12题) (第13题)13.如图,在△ABC中,AB=AD=DC,若∠BAD=24°,则∠C的度数为 .14.新风向新定义试题(2021·江苏苏州期末)定义:等腰三角形的一个底角与其顶角的度数的比值k(k>1)称为这个等腰三角形的优美比.若在等腰三角形ABC中,∠A=36°,则它的优美比为 .15.(2022·河南济期末)在平面直角坐标系中,对△ABC进行如图所示的轴对称变换.若原来点A的坐标是(a,b),则经过第2 023次变换后,点A所对应的坐标是 .16.(2021·北京西城区期末)如图,△ABC是等边三角形,AD⊥BC于点D,DE⊥AC于三、解答题(共6小题,共52分)17.(6分)(2022·湖北十堰期末节选)如图,△ABC的顶点A,B,C都在小正方形的格点上,利用网格线按下列要求画图.(1)画出△A1B1C1,使它与△ABC关于直线l成轴对称;(2)在直线l上找一点P,使点P到点A,B的距离之和最短.(要求:不写作法,保留作图痕迹)18.(8分)(2022·湖北十堰郧阳区期中改编)某市发生地震后,为了抢救伤员,一架救援直升机从该市A地起飞,运送一批地震伤员沿正北方向到机场N,如图.上午8时,直升机从A地出发,以200 km/h的速度向正北方向飞行,9时到达B地,此时,机场的导航站传来信息:在C处有一座高山,因受天气影响,高山周围80 km内能见度低,飞行时会遇到危险.经测量得∠NAC=15°,∠NBC=30°.问该直升机继续向机场N飞行是否有危险,请说明理由.19.(8分)新风向开放性试题(2022·江苏南京鼓楼区期中)证明:有两个角相等的三角形是等腰三角形.已知:如图,在△ABC中, .求证: .证明:20.(8分)如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=15°,求∠AEB的度数;21.(10分)新风向探究性试题(2022·河北石家庄裕华区期末)【问题】如图,在△ABC中,点D为BC边上一点,BD=BA.EF垂直平分AC,交AC 于点E,交BC于点F,连接AD,AF.若∠B=30°,∠BAF=90°,求∠DAC的度数.【探究】如果把【问题】中的条件“∠B=30°”去掉,其他条件不变,那么∠DAC的度数会变吗?请说明理由.22.(12分)如图,在△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N 第一次到达点B时,M,N同时停止运动.(1)当点M,N运动几秒时,M,N两点重合?(2)当点M,N运动几秒时,可得到等边三角形AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如果能,请求出此时M,N运动的时间.第十三章 轴对称选择填空题答案速查12345678910D B D A B B A C C B11.甲,本(答案不唯一)12.613.39°14.215.(-a,b)16.181.D高分锦囊判断一个图形是不是轴对称图形,关键看能否找到这样一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合.2.B ∵点(2,m)与点(n,3)关于x轴对称,∴m=-3,n=2,∴(m+n)2 023=(2-3)2 023=-1.3.D 图示速解如图,将编号为④的小方格涂成黑色,黑色部分不是轴对称图形.4.A 由题意可得,与等腰三角形的这个外角相邻的内角等于110°.∵三角形的内×(180°-110°)=35°.角和为180°,∴底角不可能等于110°,∴底角度数为125.B ∵三角形的三边垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三边垂直平分线的交点处.6.B ∵AD是△ABC的中线,AB=AC,∠CAD=20°,【关键】等腰三角形的“三线合一”∴∠CAB=2∠CAD=40°,∴∠ABC=1×(180°-40°)=70°.∵BE是△ABC的角平分线,2∴∠ABE=1∠ABC=35°.2一题多解∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴AD⊥BC,∴∠C=90°-20°=70°,∴∠ABC=∠C=70°.又BE是△ABC的角平分线,∴∠ABE=1∠ABC=35°.27.A 图示速解如图,要使△OAB为等腰三角形,应分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B1;②当OA=AB时,以点A为圆心,OA 的长为半径作圆,与直线b交于点B2;③当OA=OB时,以点O为圆心,OA的长为半径作圆,与直线b交于点B3,B4.故选A.8.C ∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.由作图痕迹可知BD平分∠ABC∴∠DBC=∠ABD=∠A=36°,【关键】由尺规作图可以得出BD平分∠ABC∴AD=BD,∠BDC=72°.故A,B选项不符合题意.由以上可知∠C=∠BDC,∴BD=BC,∴AD=BC.∵S△ABD∶S△BCD=AD∶CD,∴S△ABD∶S△BCD=BC∶CD.【关键】两三角形同高不同底故C选项符合题意.∵BD=AD,△BCD的周长=BC+CD+BD,∴△BCD的周长=BC+CD+AD=BC+AC=AB+BC.故D选项不符合题意.7.C 如图,过点P作PC⊥OB于点C,∵∠AOB=60°,∴∠OPC=90°-∠AOB=30°.∵OP=22,∴OC=1OP=11.∵2MN=2,∴OM=OC-MC=11-2=9.PM=PN,MN=4,∴MC=1210.B (转化思想)如图,作点D关于AB的对称点G,作点D关于BC的对称点H,连接GH交AB于点E,交BC于点F,此时△DEF的周长有最小值,连接GB,BH.由线段垂直平分线的性质可得,GE=ED,DF=FH,由轴对称的性质得BG=BD,BD=BH,∴ED+DF+EF=GE+EF+FH=GH,此时△DEF的周长最小值为GH.∵∠GBA=∠ABD,∠DBC=∠CBH,BD=m,∴∠GBH=2∠ABC=2×30°=60°,∴△GBH是等边三角形,∴GH=BG=BD=m,∴△DEF的周长的最小值为m.【关键】发现△GBH是等边三角形11.甲,本(答案不唯一,只要是轴对称图形即可)12.6 ∵∠C=90°,∠A=30°,∴∠CBA=60°.∵DE是线段AB的垂直平分线,∴BE=AE,∴∠ABE=∠A=30°,∴∠CBE=60°-30°=30°.∵∠C=90°,CE=3,∴BE=2CE=2×3=6,∴AE=6.13.39° ∵AB=AD,∠BAD=24°,∴∠B=∠ADB=1×(180°-24°)=78°.2又AD=DC ,∴∠C=∠CAD=12∠ADB=12×78°=39°.14.2 (分类讨论思想)当∠A 为顶角时,则底角∠B=∠C=72°,此时,优美比=72°36°=2;当∠A 为底角时,则顶角为108°,此时,优美比=36°108°=13(不合题意,舍去).15.(-a ,b ) 第1次变换后,点A 在第四象限;第2次变换后,点A 在第三象限;第3次变换后,点A 在第二象限;第4次变换后,点A 在第一象限,回到原始位置,…,以此类推,每4次变换为一组循环.因为2 023÷4=505……3,所以第2 023次变换后,点A 在第二象限,坐标为(-a ,b ).16.18 ∵△ABC 是等边三角形,∴∠C=∠BAC=60°.∵AD ⊥BC ,∴BD=CD ,∠DAC=12∠BAC=30°.∵AD=12,∴DE=12AD=6.∵DE ⊥AC ,∴∠EDC=90°-∠C=90°-60°=30°,∴EC=12DC ,∴BC=4EC.∵S △EDC =12ED ·EC=12×6×EC=3EC ,S △ABC =12AD×BC=12×12×BC=6BC=24EC ,∴S △EDCS △ABC =3EC24EC =18.17.【参考答案】(1)如图,△A 1B 1C 1即为所求作.(3分)(2)如图,点P 即为所求作.(6分)18.【参考答案】该直升机继续向机场N 飞行无危险.(1分)理由:如图,过点C 作CD ⊥AN 于点D ,∵∠NAC=15°, ∠NBC=30°,∴∠ACB=15°,CD=12BC ,∴∠ACB=∠NAC ,∴BC=AB.(5分)由题意可得,AB=200 km,∴BC=200 km,∴CD=100 km.∵100>80,∴该直升机继续向机场N飞行无危险.(8分)19.【参考答案】已知:如图,在△ABC中,∠B=∠C.(2分)求证:△ABC是等腰三角形.(4分)证明:如图,过点A作AD⊥BC,垂足为点D.∵AD⊥BC,∴∠ADB=∠ADC=90°.在△ABD和△ACD中,∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.(8分)20.【参考答案】(1)补全图形如图所示. (3分) (2)在等边三角形ABC中,AC=AB ,∠BAC=60°.由对称可知AD=AC ,∠PAD=∠PAC=15°,∴∠BAD=90°,AB=AD ,∴∠ABD=∠D=45°,∴∠AEB=∠D+∠PAD=60°.(8分)21.思路导图【参考答案】【问题】∵AB=BD ,∠B=30°,∴∠BAD=∠ADB=180°―30°2=75°.∵∠BAF=90°,∴∠AFB=90°-30°=60°.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=30°,∴∠CAD=∠ADB-∠C=75°-30°=45°.(5分)【探究】不变.(6分)理由:∵AB=BD ,∴∠BAD=∠ADB=180°―∠B 2=90°-12∠B.∵∠BAF=90°,∴∠AFB=90°-∠B.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=45°-12∠B ,∴∠CAD=∠ADB-∠C=90°-12∠B-(45°-12∠B )=45°.(10分)22.【参考答案】(1)设当点M ,N 运动x s 时,M ,N 两点重合,由题意,可得x×1+12=2x ,解得x=12.故当点M ,N 运动12 s 时,M ,N 两点重合.(2分)(2)设当点M ,N 运动t s 时,可得到等边三角形AMN ,此时AM=t ,AN=AB-BN=12-2t ,∴t=12-2t ,解得t=4.(4分)故当点M ,N 运动4 s 时,可得到等边三角形AMN.(5分)(3)当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形.(6分)若△AMN 是以MN 为底边的等腰三角形,则AN=AM ,∴∠AMN=∠ANM ,∴∠AMC=∠ANB.∵在△ABC 中,AB=BC=AC ,∴△ACB 是等边三角形,∴∠C=∠B=60°.(8分)在△ACM 和△ABN 中,∠AMC =∠ANB ,∠C =∠B ,AC =AB ,∴△ACM ≌△ABN ,∴CM=BN.(10分)设当点M ,N 运动时间为y s 时,△AMN 是以MN 为底边的等腰三角形,∴CM=y-12,NB=36-2y ,∴y-12=36-2y ,解得y=16.故能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16 s .(12分)。

数学八年级上册《轴对称》单元测试题(带答案)

数学八年级上册《轴对称》单元测试题(带答案)
∴∠A=40°.
∵A B=A C,

故选A.
[点睛]此题考查等腰三角形的性质及三角形的内角与外角等知识点的掌握情况.根据已知求得∠A=40°是正确解答本题的关键.
二、填空题
11.请写出两个具有轴对称性的汉字.
[答案]甲、由、中、田、日等(答案不唯一).
[解析]
[分析]
根据轴对称图形的概念,即可写出:甲,日,田等字.
6.已知M(0,2)关于x轴对称的点为N,线段MN的中点坐标是()
A.(0,﹣2)B.(0,0)C.(﹣2,0)D.(0,4)
[答案]B
[解析]
根据轴对称的性质,知线段MN的中点就是原点,即线段MN的中点坐标是(0,0).
故选B
7.在△A B C中,A B=A C,D为B C的中点,则下列结论:①∠B=∠C;②A D⊥B C;③∠B A C=2∠B A D;④A B,A C边上的中线的长相等.其中正确的结论有( )
故答案选:A.
[点睛]本题考查了用坐标表示轴对称的知识点,熟练掌握点关于x轴、y轴对称的点的坐标特点是解题的关键.
3.已知线段A B和点C,D,且C A=C B,D A=D B,那么直线C D是线段A B的( )
A. 垂线B. 平行线
C. 垂直平分线D. 过中点的直线
[答案]C
[解析]
[分析]
由已知C A=C B根据线段垂直平分线的性质的逆定理可得点C在A B的垂直平分线上,同理得点D的位置
[答案]D
[解析]
[分析]
此题中没有明确指出等边三角形的边长是等腰三角形的底边还是腰长,所以我们应该分两种情况进行分析.先求出等边三角形的边长,再分两种情况进行分析求解.
[详解]解:∵等边三角形周长为45Cm,

数学八年级上册《轴对称》单元测试题(附答案)

数学八年级上册《轴对称》单元测试题(附答案)
A.3B.4C.8D.9
[答案]C
[解析]
[详解]试题解析:设A D=x,∵△A B C是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥A C于点E,EF⊥B C于点F,FG⊥A B,∴∠A DF=∠DEB=∠EFC=90°,∴BF=2x,∴B D=x,CF=12﹣2x,∴CE=2CF=24﹣4x,∴AE=12﹣CE=4x﹣12,∴A D=2AE=8x﹣24,∵A D+B D=A B,∴x+8x﹣24=12,∴x=4,∴B D=4.A D=A B-B D=12-4=8,故选C.
7.已知点P(5,-2)与点Q关于y轴对称,则Q点的坐标为()
A.(-5,2)B.(-5,-2)C.(5,2)D.(5,-2)
[答案]B
[解析]
[分析]
平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出Q的对称点的坐标.
A. 3B. 4C. 8D. 9
7.已知点P(5,-2)与点Q关于y轴对称,则Q点的坐标为()
A. (-5,2)B. (-5,-2)C. (5,2)D. (5,-2)
8.如图,在锐角△A B C中,A B=4 ,∠B A C=45°,∠B A C的平分线交B C于点D,M、N分别是A D和A B上的动点,则BM+MN的最小值是()
人教版八年级上册《轴对称》单元测试卷
(时间:120分钟 满分:150分)
一、单选题(共10题;共28分)
1.下列交通标志是轴对称图形的是( )
A. B. C. D.
2.下面的图形中,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
3.如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有( )

人教版八年级数学轴对称章检测卷

人教版八年级数学轴对称章检测卷

第1页 共8页 ◎ 第2页 共8页人教版八年级数学轴对称章检测卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知点A (a ,2)与点B (3,b )关于x 轴对称,则a +2b =( ) A .-4B .-1C .-2D .42.下列图标中,是轴对称图形的是( )A .B .C .D .3.在平面直角坐标系中,点A (3,﹣1)关于x 轴对称的点的坐标为( ) A .(﹣3,1)B .(1,﹣3)C .(﹣3,﹣1)D .(3,1)4.如图,在ABC 中,DE 是AC 的垂直平分线,且分别交BC 、AC 于点D 和E ,70B ∠=︒,25C ∠=︒,则BAD ∠为( )A .55︒B .60︒C .65︒D .70︒5.剪纸是我国传统的民间艺术.将一张正方形纸片按图1,图2中的方式沿虚线依次对折后,再沿图3中的虚线裁剪,最后将图4中的纸片打开铺平,所得图案应该是( )A .B .C .D .6.如图,在△ABC 中,BD 平分△ABC ,BC 的垂直平分线交BD 于点E ,连接CE ,若△A =60°,△ACE =24°,则△ABE 的度数为( )A .24°B .30°C .32°D .48°7.下列图案中,是轴对称图形的是( )A .B .C .D .第3页 共8页 ◎ 第4页 共8页8.如图,△ABC 与A B C '''关于直线MN 对称,BB '交MN 于点O ,则下列结论不一定正确的是( )A .AC AC =''B .BO B O ='C .AA MN '⊥D .AB B C ''∥9.下列图形中,轴对称图形的个数是( )A .1个;B .2个;C .3个;D .4个;10.如图,△ABC 中△A =40°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,点C 恰好落在BE 上的点G 处,此时△BDC =82°,则原三角形的△B 的度数为( )A .57°B .60°C .63°D .70°二、填空题11.把一张长方形纸条ABCD 沿EF 折叠成图△,再沿HF 折叠成图△,若△DEF =β(0°<β<90°),用β表示△C ''FE ,则△C ''FE =_______.12.如图,将ABC 沿AB 边对折,使点C 落在点D 处,延长CA 到E ,使AE AD =,连接CD 交AB 于F ,连接ED ,则下列结论中:△若ABC 的周长为12,5DE =,则四边形ABDE 的周长为17;△AB DE ∥;△90CDE ∠=︒;△2ADE ADF S S =△△,正确的有_____________.13.如图,在△ABC 中,△B 、△C 的平分线交于点F ,过点F 作DE △BC 交AB 于点D ,交AC 于点E ,下列结论:△△BDF ,△ADE 都是等腰三角形;△DE =BD +CE ;△△ADE 的周长等于AB +AC ;△BF=CF ;△若△A =80°,则△BFC =130°,其中正确的有_________14.如图,在平行四边形ABCD 中,60C ∠=︒,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B ,F 为圆心,大于12BF 的长为半径画弧,两弧交于一点P ,连接AP 并延长交BC 于点E ,连接EF .设AE 与BF 相交于点O ,若四边形ABEF 的周长为16,则四边形ABEF 的面积是_________.第5页 共8页 ◎ 第6页 共8页15.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△ABO △△ADO ,下列结论:△AC △BD ;△CB =CD ;△△ABC △△ADC ;△DA =DC .其中不正确结论的序号是____.16.如图,在ABC 中,90ACB ∠=︒,15B ∠=︒,DE 的垂直平分线AB 分别交AB 、BC 于点D 、E ,连接AE ,若6cm BE =,则AC 等于___________cm .17.等腰三角形的顶角是100︒,那么它的一个底角的度数是________.18.如图,在△ABC 中,AB =8,BC =9,AC =5,直线m 是△ABC 中BC 边的垂直平分线,P 是直线上的一动点,则△APC 的周长的最小值为________.三、解答题19.如图,在△ABC 中,AB =BC ,△ABC =120°,AB 的垂直平分线DE 交AC 于点D ,连接BD ,若AC =12(1)求证:BD △BC . (2)求DB 的长.20.如图,E 为ABC 的外角CAD ∠平分线上的一点,AE //BC ,BF AE =.(1)求证:ABC 是等腰三角形;(2)若4AF =,求CE 的长.21.如图,△ABC 是边长为6的等边三角形,三边上分别有点E 、D 、F ,使得AE =BD =CF ,过点E 作EP △DF ,垂足为点P(1)求证:△BDE △△CFD ; (2)求△DEP 的度数;第7页 共8页 ◎ 第8页 共8页(3)当点E 、D 、F 分别在三边BA 、CB 及AC 的延长线上时,过点E 作EP △DF ,垂足为点P ,若AE =BD =CF =2,若△BDE 的周长为19,求DP 的长. 22.如图,AB 是线段,AD 和BC 是射线,AD//BC .(1)尺规作图:作AB 的垂直平分线EF ,垂足为O ,且分别与射线BC 、AD 相交于点E 、F (不写作法,保留作图痕迹);(2)在(1)条件下,连接AE ,求证:AE=AF .23.已知:如图,△ABC 是等边三角形,边长为6,点D 为动点,AD 绕点A 逆时针旋转60°得到AE .(1)如图1,连接BD ,CE ,求证BD CE =;(2)如图2,BAD DBC ∠=∠,连接DE ,求证:点B ,D ,E 三点在同一条直线上; (3)如图3,点D 在△ABC 的高BF 上,连接EF ,求EF 的最小值. 24.已知:Rt ABC ,90B .求作:点P ,使点P 在ABC 内部,且,45PB PC PBC =∠=︒.25.在正方形网格中,建立如图所示的平面直角坐标系,△ABC 的三个顶点都在格点上,△ABC 关于y 轴对称图形为△A 1B 1C 1(要求:A 与A 1,B 与B 1,C 与C 1相对应)(1)写出A 1,B 1,C 1的坐标,并画出△A 1B 1C 1的图形; (2)求△A 1B 1C 1的面积;(3)点P 是y 轴上一动点,画出P A +PC 最短时,点P 的位置.(保留作图痕迹,不写画法)26.如图,在平面直角坐标系中,A (3,4),B (1,2),C (5,1).(1)作出△ABC 关于y 轴的对称图形△1A 1B 1C ; (2)写出△1A 1B 1C 的三个顶点的坐标;(3)连接1AA ,1BB ,并求出四边形11ABB A 的面积.参考答案:1.B【分析】先根据关于x轴对称的点的坐标特点求出a、b,再代入计算即可.【详解】解:△点A(a,2)与点B(3,b)关于x轴对称,所以a=3,b=−2,△a+2b=3+2×(−2)=-1.故选B.【点睛】此题主要考查关于x轴对称的点的坐标特点.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数.2.D【分析】根据轴对称图形的定义“如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形”逐项判断即可.【详解】A、不是轴对称图形,此项不符题意;B、不是轴对称图形,此项不符题意;C、不是轴对称图形,此项不符题意;;D、是轴对称图形,此项符合题意;故选:D.【点睛】本题考查了轴对称图形的定义,熟记定义是解题关键.3.D【分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】解:点P(3,−1)关于x轴对称的点的坐标是(3,1)故选:D.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.4.B【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到△DAC=△C,根据三角形内角和定理求出△BAC的度数,计算出结果.【详解】解:△DE是AC的垂直平分线,△DA=DC,△△DAC=△C=25°,△△B=70°,△C=25°,△△BAC=85°,△△BAD=△BAC-△DAC=60°,故选:B.【点睛】本题考查的是线段垂直平分线的性质的知识,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.A【分析】依据翻折变换,将图4中的纸片按顺序打开铺平,即可得到一个图案.【详解】解:将图4中的纸片打开铺平,所得图案应该是:故选:A.【点睛】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确地找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.6.C【分析】先根据BC的垂直平分线交BD于点E证明△BFE△△CFE(SAS),根据全等三角形∠=∠=∠,再根据三角形内角和定理即可得到的性质和角平分线的性质得到ABE EBF ECF答案.【详解】解:如图:△BC的垂直平分线交BD于点E,△BF=CF,△BFE=△CFE=90°,在△BFE和△CFE中,EF EF EFB EFC BF CF =⎧⎪∠=∠⎨⎪=⎩, △△BFE △△CFE (SAS ),△EBF ECF ∠=∠(全等三角形对应角相等), 又△BD 平分△ABC , △ABE EBF ECF ∠=∠=∠,又△180ABE EBF ECF ACE A ∠+∠+∠+∠+∠=︒(三角形内角和定理), △180602496ABE EBF ECF ∠+∠+∠=︒-︒-︒=︒, △196323ABE ∠=⨯︒=︒,故选:C .【点睛】本题主要考查了三角形全等的判定与性质、角平分线的性质、三角形内角和定理,解题的关键是证明ABE EBF ECF ∠=∠=∠. 7.C【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各选项判断即可.【详解】根据轴对称图形的定义可知A 、B 、D 均不是轴对称图形, 只有C 是轴对称图形. 故选:C .【点睛】本题考查了轴对称图形的知识,属于基础题,解答本题的关键是找出对称轴从而判段是否是轴对称图形. 8.D【分析】根据轴对称的性质逐项判断即可得.【详解】解:A .AC AC='',则此项正确,不符合题意; B .BO B O =',则此项正确,不符合题意; C .AA MN '⊥,则此项正确,不符合题意; D .AB B C ''∥不一定正确,则此项符合题意; 故选:D .【点睛】本题考查了轴对称的性质,解题的关键是熟练掌握轴对称的性质:成轴对称的两个图形的对应边相等,对应角相等,对称轴垂直平分对应点连接的线段.9.C【分析】根据轴对称图形的概念对各图形分析判断即可得解. 【详解】解:第1个不是轴对称图形; 第2个是轴对称图形; 第3个是轴对称图形; 第4个是轴对称图形; 故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 10.C【分析】根据折叠的性质可知:△BDG =△BDC =82°,△ABE =△A 'BE =△A 'BG=△A 'BC ,根据三角形外角性质可得:△DBA =△BDC ﹣△A =82°﹣40°=42°,进一步可求出△ABE =△A 'BE =21°,△ABC =3×21°=63°,即原三角形的△B =63°.【详解】解:由折叠性质可得,△BDG =△BDC =82°,△ABE =△A 'BE =△A 'BG=△A 'BC , △△BDC 是△BDA 的外角,△△DBA =△BDC ﹣△A =82°﹣40°=42°, △△ABE =△A 'BE =21°,△△ABC =3×21°=63°,即原三角形的△B =63°, 故选:C .【点睛】此题主要考查的是图形的折叠及三角形外角性质,能够根据折叠的性质发现△BDG =△BDC =82°,△ABE =△A 'BE =△A 'BG=△A 'BC 是解答此题的关键. 11.1803β︒-【分析】先利用平行线的性质得到EFH DEF β∠=∠=,180EFC β∠=︒-,再根据折叠的性质得到180EFC β∠'=︒-,所以1802HFC β∠'=︒-,接着再利用折叠的性质得到1802C FH C FH β∠''=∠'=︒-,然后计算C FH EFH ''∠-∠即可.【详解】四边形ABCD 为长方形,//AD BC ∴,EFH DEF β∴∠=∠=,180EFC β∠=︒-,方形纸条ABCD 沿EF 折叠成图△, 180EFC EFC β∴∠'=∠=︒-,1801802HFC EFC EFH βββ∴∠'=∠'-∠=︒--=︒-,长方形ABCD 沿HF 折叠成图△, 1802C FH C FH β∴∠''=∠'=︒-,18021803C FE C FH EFH βββ∴∠=∠-∠=︒--=''︒-''.故答案为:1803β︒-.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等. 12.△△△△【分析】△由题知AE =AC ,BD =BC ,可得结论正确;△由三角形外角知△CAB +△DAB =△ADE +△AED ,又知△CAB =△DAB ,△ADE =△AED ,即可得△CAB =△DAB =△ADE =△AED ,即可得证结论; △由对称知CD △AB ,由AB △DE 可得结论;△由△知S △ADE =12DF •DE ,S △ADF =12DF •AF ,证AF 是中位线可得AF =12DE ,即可得证结论.【详解】解:△由图形翻折可知,AD =AC ,BD =BC , △AE =AD , △AE =AC ,△C 四边形ABDE =C △ABC +DE , △C △ABC =12,DE =5, △C 四边形ABDE =17, △△正确;△由图形翻折知,△CAB =△DAB , △AE =AD , △△ADE =△AED ,又△△CAB +△DAB =△ADE +△AED , △△CAB =△DAB =△ADE =△AED , △AB //DE , △△正确;△由△知,AB //DE ,由图形翻折知,CD△AB,△△CF A=△CDE=90°,△△正确;△由△知,△CF A=△CDE=90°,△S△ADE=12DF•DE,S△ADF=12DF•AF,△A是EC的中点,AB//DE,△AF是△CDE的中位线,△AF=12DE,△S△ADE=2S△ADF,△△正确,故答案为:△△△△.【点睛】本题主要考查图形的翻折,三角形的面积,平行线的判定和性质等知识点,证明AB DE是解题的关键.13.△△△【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【详解】解:△△B、△C的角平分线交于点F,△△DBF=△CBF,△ECF=△BCF,设△DBF=△CBF=α,△ECF=△BCF=β,△DE BC∥,△△DFB=△CBF=α,△EFC=△BCF=β,△△DBF=△DFB,△EFC=△ECF,△DB=DF,EF=EC,△△BDF与△CEF为等腰三角形,△DE=DF+EF=BD+CE,故△正确;△△ADE的周长为AD+AE+DE=AD+AE+BD+CE=AB+AC,故△正确;只有当△ABC是等腰三角形时,即△ABC=△ACB,则△FBC=△FCB,△ADE=△AED,则BF =CF,AD=AE,根据现有条件无法证明BF=CF,并且无法证明△ADE=△A或△AED=△A,即无法证明△ADE为等腰三角形,故△、△错误;△△A =80°,△△FBC +△FCB =218080︒-︒=50°, △△BFC =180°-50°=130°,故△正确.故答案为△△△.【点睛】本题考查了等腰三角形的性质与判定及角平分线的定义及平行线的性质,三角形内角和定理;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形的;等量代换的利用是解答本题的关键.14.【分析】根据题意可知AE 是BF 的垂直平分线,可得AB=AF ,BE=EF ,再根据“AAS ”证明△AOF △△EOB ,可得AF=BE ,进而根据“四边相等的四边形是菱形”得出四边形ABEF 是菱形,可知AF=AB=4,再说明△ABF 是等边三角形,可求出BF=4,然后根据勾股定理求出AO ,最后根据菱形的面积等于对角线乘积的一半得出答案即可.【详解】根据题意可知AE 是BF 的垂直平分线,△AB=AF ,BE=EF .△△F AO=△BEO ,△AOF=△BOE ,BO=FO ,△△AOF △△EOB ,△AF=BE ,△AB=BE=EF=AF ,△四边形ABEF 是菱形,△AF=AB=4.△四边形ABCD 是平行四边形,且△C =60°,△△BAF =60°,△△ABF 是等边三角形,△BF=4,△OF=2.在Rt △AOF 中,AO ===,△AE =△11==422ABEF S AE BF ⨯⋅⨯⨯四边形故答案为:【点睛】本题主要考查了尺规作垂直平分线,菱形的判定和性质,平行四边形的性质,等边三角形的判定和性质,勾股定理等,掌握菱形面积的计算方法是解题的关键.15.△【分析】根据全等三角形的性质可得AOB AOD ∠=∠,根据平角的定义可得1180902AOB AOD ∠=∠=⨯︒=︒,即可判断△,根据全等三角形的性质得出AB AD =,BO DO =,结合△可得AC 是BD 的垂直平分线,即可判断△,根据SSS 即可证明△,不能得出结论△.【详解】解:△△ABO △△ADO ,△AOB AOD ∠=∠,AB AD =,BO DO =△四边形ABCD 的对角线AC 、BD 相交于点O , △1180902AOB AOD ∠=∠=⨯︒=︒, △△AC △BD 正确;△AB AD =,BO DO =△AC 是BD 的垂直平分线,△△CB =CD 正确;△,,AB AD BC DC AC AC ===,△△△ABC △△ADC 正确;由已知条件不能判断△DA =DC .故答案为:△.【点睛】本题考查了全等三角形的性质与判定,垂直平分线的性质与判定,掌握以上知识是解题的关键.16.3【分析】根据垂直平分线的性质,可知6AE BE ,再由三角形外角的性质得出30AEC ABE BAE ∠=∠+∠=︒,最后由含30°的直角三角形的性质得出AC 的值即可.【详解】解:△DE 垂直平分AB ,6BE =△6AE BE ,又15B ∠=︒△15ABE BAE ∠=∠=︒,△30AEC ABE BAE ∠=∠+∠=︒,又△90ACB ∠=︒△在Rt AEC 中,132AC AE == 故答案为:3.【点睛】本题考查了垂直平分线的性质、三角形的外角的性质、含30°的直角三角形的性质,解题的关键在于对知识的灵活运用.17.40︒##40度【分析】根据等腰三角形的性质即可得. 【详解】解:根据题意得,底角的度数为:1(180100)402⨯︒-︒=︒, 故答案为:40︒.【点睛】本题考查了等腰三角形的性质,解题的关键是熟记等腰三角形的性质. 18.13【分析】首先连接PC ,由中垂线的性质可得PB =PC ,由于△APC 的周长为AC +P A +PC ,AC 长度固定,则只要P A +PB 最小即可,此时可推出P 、A 、B 三点共线,即P A +PB =AB ,由此计算即可.【详解】解:如图,连接PC ,则由中垂线的性质可得PB =PC ,△△APC 的周长=AC +P A +PC ,△△APC 的周长=AC +P A +PB ,△AC =5,△要使得△APC 的周长最小,使得P A +PB 最小即可,显然,根据两点之间线段最短,可知当P 、A 、B 三点共线时,P A +PB 最小此时,P 点即在AB 边上,P A +PB =AB ,△P A +PB 最小值为8,△△APC 的周长最小为:8+5=13,故答案为:13.【点睛】本题考查最短路径问题,以及中垂线的性质,理解并掌握中垂线的性质,以及最短路径问题的基本处理方式是解题关键.19.(1)见解析(2)4【分析】(1)根据等腰三角形的性质和三角形内角和定理求出△A=△C=30°,再根据线段垂直平分线的性质得出AD=BD,求出△DBA=30°,据此即可证得;(2)根据含30°角的直角三角形的性质求出BD=12CD,求出AD=12CD,据此求出答案即可.【详解】(1)证明:△AB=BC,△ABC=120°,△1180302A C ABC∠=∠=︒-∠︒()=,△AB的垂直平分线是DE,△AD=BD,△△DBA=△A=30°,△△DBC=△ABC﹣△DBA=120°﹣30°=90°,△BD△BC;(2)解:△△DBC=90°,△C=30°,△12BD CD=,△AD=BD,△1123AD CD AC==,△AC=12,△AD=4,△BD=AD=4.【点睛】本题考查了线段垂直平分线的性质,含30°角的直角三角形的性质,三角形内角和定理,等腰三角形的性质等知识点,能灵活运用知识点进行推理和计算是解此题的关键.20.(1)证明见解析(2)4【分析】(1)先根据平行线的性质可得DAE B ∠=∠,EAC ACB ∠=∠,再根据角平分线的定义可得DAE EAC ∠=∠,从而可得B ACB ∠=∠,然后根据等腰三角形的判定即可得证; (2)先根据三角形全等的判定证出ABF CAE ≅,再根据全等三角形的性质即可得.【详解】(1)证明:△AE //BC ,DAE B ∴∠=∠,EAC ACB ∠=∠, E 为ABC 的外角CAD ∠平分线上的一点,DAE EAC ∴∠=∠,B ACB ∴∠=∠,AB AC ∴=,ABC ∴是等腰三角形.(2)解:由(1)已得:,DAE B DAE EAC ∠=∠∠=∠,B EAC ∴∠=∠,在ABF △和CAE 中,AB CA B EAC BF AE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABF CAE ∴≅,AF CE ∴=,4AF =,4CE ∴=.【点睛】本题考查了等腰三角形的判定、三角形全等的判定与性质等知识点,熟练掌握等腰三角形的判定是解题关键.21.(1)见解析;(2)30°;(3)4.5【分析】(1)直接根据SAS 证明△BDE △△CFD 即可;(2)由(1)得△BDE △△CFD ,则△BED =△CDF ,即可推出△ EDP =△B =60°,再由EP △DF ,即可得到△ DEP =30° ;(2)根据△ABC 边长为6, AE =BD =2,得到BE =AB +AE =8,由△BDE 的周长为19,求出DE =19-BD -BE =9,然后证明△BDE △△CFD 得到△DEB =△FDC ,推出△EDP =60°,即可利用含30度角的直角三角形的性质求解.【详解】解:(1)△△ABC是等边三角形,△△B=△C=60°,AB=BC,△AE=BD=CF,△AB-AE=BC-BD,即BE=CD,△△BDE△△CFD(SAS);(2)由(1)得△BDE△△CFD,△△BED=△CDF,又△△EDC=△B+△BED,△△ EDP+△CDF=△B+△BED,△△ EDP=△B=60°,△EP△DF,△△EPD=90°,△△ DEP=30° ;(2)△△ABC边长为6,AE=BD =2,△BE=AB+AE=8,又△△BDE的周长为19,△ DE=19-BD-BE=9,△△ABC是等边三角形,△△ABC=△ACB=60°,BA=CB,△△EBD=180°-△ABC=180°-△ACB=△DCF=120°,又△BD=AE,△BA+AE=CB+BD,即BE=CD,△△BDE△△CFD(SAS),△△DEB=△FDC,△△EBC=△EDB+△DEB=60°,△△EDB+△FDC=60°,即△EDP=60°,又△EP△DF,△△EPD=90°,△△ DEP=30°,△DE=2DP,△DP= 4.5.【点睛】本题主要考查了等边三角形的性质,全等三角形的性质与判定,三角形外角的性质,含30度角的直角三角形的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.22.(1)见详解;(2)见详解【分析】(1)按照垂直平分线的作法画出AB的垂直平分线即可;(2)通过平行线的性质及垂直平分线的性质得出BAF EAB∠=∠,然后通过ASA证明≅,再由全等三角形的性质即可得出结论.AOE AOF【详解】(1)如图(2)如图,连接AE//AD BCEBA BAF∴∠=∠△EF是AB的垂直平分线,90 EB EA AOE AOF∴=∠=∠=︒EBA EAB∴∠=∠BAF EAB∴∠=∠在AOE△和AOF中,EAO FAO AO AOAOE AOF ∠=∠⎧⎪=⎨⎪∠=⎩()AOE AOF ASA∴≅AE AF∴=【点睛】本题主要考查尺规作图及全等三角形的判定及性质,掌握垂直平分线的作法和全等三角形的判定方法及性质是解题的关键.23.(1)见解析(2)见解析(3)3 2【分析】(1)证明△BAD△△CAE,从而得出结论;(2)△BAD=△CAE=△CBE,所以△ABC=△ABD+△CBE=△ABD+△BAD=60°,从而得出△ADB=120°,进一步得出结论;(3)可证得△ACE=△ABF=30°,从而得出点E的运动轨迹,进而求得EF的最小值.【详解】(1)△△ABC是等边三角形,△AB=AC,△BAC=60°,△AD 绕点A 逆时针旋转60°得到AE ,△△DAE =60°,AD =AE ,△△BAC =△DAE ,△△BAC -△DAC =△DAE -△DAC ,即:△BAD =CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , △△BAD △△CAE (SAS ),△BD =CE ;(2)由(1)知:△CAE =△BAD ,△△CAE =△CBE ,△△BAD =△CBE ,△△ABC 是等边三角形,△△ABC =60°,△△ABD +△CBE =60°,△△ABD +△BAD =60°,△△ADB =180°-(△ABD +△BAD )=120°,△AD =AE ,△DAE =60°,△△ADE 是等边三角形,△△ADE =60°,△△ADB +△ADE =180°,△B 、D 、E 在同一条直线上;(3)如图,连接CE ,由(1)得:△BAD △△CAE ,△△ACE=△ABD,△△ABC是等边三角形,△AB=BC,△ACB=△ABC=60°,△BF△AC,△△ABF=12△ABC=30°,CF=AF=12AC=3,△△ACE=30°,△△BCE=△ACB+△ACE=90°,△点E在过点C且与BC垂直的直线上运动,△当FE垂直于该直线时,CE最小(图中点CE′),△△CE′F=90°,△ACE=30°,△FE′=12CF=32,△EF的最小值为:32.【点睛】本题考查了等边三角形性质,直角三角形性质,全等三角形的判定和性质等知识,解决问题的关键是熟练掌握“手拉手”模型.24.见解析【分析】分别以点B、C为圆心,大于BC长的一半为半径画弧,交于两点,连接这两点,然后再以点B为圆心,适当长为半径画弧,交AB、BC于点M、N,以点M、N为圆心,大于MN长一半为半径画弧,交于一点Q,连接BQ,进而问题可求解.【详解】解:如图,点P即为所求:【点睛】本题主要考查角平分线与垂直平分线的尺规作图,熟练掌握角平分线与垂直平分线的尺规作图是解题的关键.25.(1)A1(4,1) ;B1(2,-1);C1(1,3);见解析;(2)5;(3)见解析【分析】(1)根据关于y轴对称的点的坐标特征,纵坐标相同,横坐标互为相反数,先找到A 、B 、C 关于y 轴对称的点,然后顺次连接即可;(2)根据111A B C △的面积等于其所在的长方形面积减去周围三个三角形面积求解即可; (3)连接1A C 与y 轴交于点P 即为所求.【详解】解:(1)如图所示,111A B C △即为所求;由图可知,1A 的坐标为(4,1),1B 的坐标为(2,-1),1C 的坐标为(1,3);(2)由图可知111111341422325222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=△; (3)如图所示,连接1A C 与y 轴交于点P 即为所求;【点睛】本题主要考查了画轴对称图形,坐标与图形变化,轴对称最短路径等等,解题的关键在于能够熟练掌握关于y 轴对称的点的坐标特征.26.(1)作图见详解(2)1(3,4)A -,1(1,2)B -,1(5,1)C -(3)作图见详解,四边形11ABB A 的面积为8【分析】(1)先依次作A ,B ,C 关于y 轴的对称点,再顺次连接即可.(2)由图写出1A ,1B ,1C 坐标即可.(3)由图可知四边形11ABB A 为梯形,用梯形面积公式即可求得面积.【详解】(1)(2)解:由(1)中图可知1(3,4)A -,1(1,2)B -,1(5,1)C -(3)解:如图四边形11ABB A 的面积=1(26)282+⨯= 【点睛】本题考查了轴对称的作图,以及平面直角坐标系相关知识点.掌握轴对称的作图步骤是解题关键.。

人教版八年级数学上册《第十三章轴对称》测试卷-附带有答案

人教版八年级数学上册《第十三章轴对称》测试卷-附带有答案

人教版八年级数学上册《第十三章轴对称》测试卷-附带有答案一、单选题1.以下是某些运动会会标,其中是轴对称图形的是()A.B.C.D.2.等腰三角形的周长为,其中一边长为,则其腰长为()A.B.或C.D.以上都不对3.如图,在由边长为1的小正方形组成的5×5的网格中,点A,B在小方格的顶点上,要在小方格的顶点确定一点C,连接AC和BC,使△ABC是等腰三角形.则方格图中满足条件的点C的个数是()A.5 B.6 C.7 D.84.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°5.如图,中,是边的垂直平分线,分别交、于点、连接,若恰好为的平分线,则的度数是()A.B.C.D.6.如图,在中、的垂直平分线分别交于点、若的周长是20,则的周长为()A.4 B.7 C.9 D.117.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为()A.7.5 B.5 C.4 D.不能确定8.如图,在△ABC,AB=AC,D为BC上的一点,∠BAD=28°,在AD的右侧作△ADE,使得AE=AD,∠DAE=∠BAC,连接CE、DE,DE交AC于点O,若CE∥AB,则∠AOD的度数为()A.92°B.90°C.88°D.84°二、填空题9.已知等腰三角形的两边长分别为3,6,则这个等腰三角形的周长为.10.如图,在中则°.11.如图,在△ABC中,AB=AC,BD=CD,∠BAD=20°,DE⊥AC于E ,则∠EDC °.12.如图,在直角三角形中,点D在上,点G在上,与关于直线对称,与交于点E,若,则的度数是度.13.如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1,则AD 的长为.三、解答题14.如图,在中,求的长15.如图,在平面直角坐标系中,的顶点均在正方形网格的格点上.①画出关于x轴的对称图形;②将向左平移3个单位后得到,画出,并写出顶点的坐标.16.如图所示,在△ABC中,AB=BC,点D是BC上一点,DE⊥AB于点E,DF⊥BC,交AC于点F,连接BF.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,判断∠ABC与∠CFD的数量关系,并说明理由.17.如图,在中,的垂直平分线分别交线段,于点M,P,的垂直平分线分别交线段,于点N,Q.(1)如图,当时,求的度数;(2)当时,求的度数.18.如图,在中,点分别在边上,且.(1)求证:是等腰三角形;(2)当时,求的度数;(3)若,判断是何种三角形.参考答案:1.B2.C3.B4.B5.C6.C7.B8.C9.1510.6511.2012.13.714.解:在中即BC的长为.15.解:如图所示:,即为所求;,即为所求,点(−3,−1). 16.(1)解:∵∠AFD=155°∴∠DFC=25°∵DF⊥BC,DE⊥AB∴∠FDC=∠AED=90°在Rt△FDC中∴∠C=90°﹣25°=65°∵AB=BC∴∠C=∠A=65°∴∠ABC=180°﹣2×65°=50°∵∠ABC+∠BDE=∠EDF+∠BDE=90°∴∠EDF=∠ABC=50°;(2)解:∠CFD=∠ABC,理由如下:∵AB=BC,且点F是AC的中点∴BF⊥AC,∠ABF=∠CBF=∠ABC∴∠CFD+∠BFD=90°∠CBF+∠BFD=90°∴∠CFD=∠CBF.17.(1)解:∵、分别是的垂直平分线∴,∵∴∵∴∴(2)解:∵分别是的垂直平分线∴∴∴当P点在Q点右侧时,如图:∵∴∵∴.当P点在Q点左侧时∵∴∵∴.综上或.18.(1)证明:在和中是等腰三角形;(2)解:即;;(3)解:是等边三角形,理由如下:由(2)知又又是等边三角形。

八年级上册数学《轴对称》单元检测题(含答案)

八年级上册数学《轴对称》单元检测题(含答案)
[详解]解:①原三角形是锐角三角形,最大角是72°的情况如图所示:
∠A B C=∠A C B=72°, ∠A=36°,A D=B D=B C;
②原三角形是直角三角形,最大角是90°的情况如图所示:
∠A B C=90°, ∠A=36°,A D=C D=B D;
③原三角形是钝角三角形,最大角是108°的情况如图所示:
如图,过点D作DF⊥A B于F,DG⊥A C的延长线于G,
∵BE、CE分别为∠A B C、∠A C B的平分线,
∴A D为∠B A C的平分线,
∴DF=DG,
∴∠FDG=360°-90°×2-60°=120°,
又∵∠B D C=120°,
∴∠B DF+∠C DF=120°,∠C DG+∠C DF=120°,
11.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围是_____.
12.若一个等腰三角形中有两边长分别为2和5,则这个等腰三角形的周长为_________.
13.如下图,在Rt△A B C中,∠C=90°,DE垂直平分A B,垂足为E,D在B C上,已知∠C A D=32°,则∠B=_____度.
人教版八年级上册《轴对称》单元测试卷
(时间:120分钟 满分:150分)
一、选择题(共7小题,满分35分,每小题5分)
1.下列体育运动标志中,从图案看不是轴对称图形的有( )个.
A.4B.3C.2D.1
2.在平面直角坐标系中Biblioteka 点(1,1)关于y轴对称的点的坐标是
A (-1,-1)B. (1,-1)C. (-1,1)D. (1,1)
4.已知:如图,在△A B C中,边A B 垂直平分线分别交B C、A B于点G、D,若△AGC的周长为31Cm,A B=20Cm,则△A B C的周长为( )

人教版八年级上册数学第13章《轴对称》单元测试卷(含答案解析)

人教版八年级上册数学第13章《轴对称》单元测试卷(含答案解析)

人教版八年级上册数学第13章《轴对称》单元测试卷班级_________ 姓名__________ 考号_____________ 得分____________一、选择题(每小题3分,共30分)1、下列图形中一定是轴对称图形的是()A.B.C.D.2、点A(a﹣3,﹣1)与点B(2,b+2)关于x轴对称,则a,b的值分别是()A.a=1,b=﹣3 B.a=1,b=﹣1 C.a=5,b=﹣3 D.a=5,b=﹣13、如图,在△ABC中,AB=AD=DC,若∠BAD=36°,则∠C的大小为()A.36°B.38°C.40°D.42°4、等腰三角形的一个外角是140°,则其底角是()A.40°B.70°或40°C.70°D.140°5、等腰三角形的周长为15,其中一边长为3,则该等腰三角形的底边长为()A.3 B.4 C.5 D.66、如图,△ABC中,AB=AC,AD=DE,∠BAD=18°,∠EDC=12°,则∠DAE的度数为()A.58°B.56°C.62°D.60°7、如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°8、如图,在△ABC中,∠C=90°,点A关于BC边的对称点为A′,点B关于AC边的对称点为B′,点C关于AB边的对称点为C′,则△ABC与△A′B′C′的面积之比为()A.B.C.D.9、在△ABC中,AB=AC,OB=OC,点A到BC的距离是6,O到BC的距离是4,则AO为()A.2 B.10 C.2或10 D.无法测量10、如图,在Rt△ABC中(AB>2BC),∠C=90°,以BC为边作等腰△BCD,使点D落在△ABC的边上,则点D的位置有()A.2个B.3个C.4个D.5个二、填空题(每小题4分,共24分)11、在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴对称得到点A′,再将点A′向上平移2个单位,得到点A″,则点A″的坐标是(1,4).12、一个等腰三角形一腰上的中线把这个三角形的周长分为12和30两部分,则这个等腰三角形的腰长为20.13、如图,等腰△ABC中,AB=AC,∠A=54°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是9°.14、如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为.15、如图,在平面直角坐标系xOy中,已知点A(6,2),B(0,1).在x轴上找一点P,使得PA+PB最小,则点P的坐标是(2,0),此时△PAB的面积是4.16、在Rt△ABC中,∠ACB=90°,∠CAB=36°,在直线AC或BC上取点M,使得△MAB为等腰三角形,符合条件的M点有8个.。

数学八年级上册《轴对称》单元综合测试题(含答案)

数学八年级上册《轴对称》单元综合测试题(含答案)
故答案为100°.
[点睛]此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
12.如图所示,分别作出点P关于OA,OB的对称点P1、P2,连接P1,P2,分别交OA、OB于点M、N,若P1P2=5Cm,则△PMN的周长为______________.
[答案]5
A -4031B. -1C. 1D. 4031
3.如图,已知△A B C,按以下步骤作图:①分别以B,C为圆心,以大于 B C的长为半径作弧,两弧相交于两点M,N;②作直线MN交A B于点D,连接CD.若C D=A C,∠A=50°,则∠A C B的度数为( )
A. 90°B. 95°C. 105°D. 110°
∴A=2016,B=-2015,
∴A+B=2016-2015=1,
故选C.
[点睛]此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.
3.如图,已知△A B C,按以下步骤作图:①分别以B,C为圆心,以大于 B C的长为半径作弧,两弧相交于两点M,N;②作直线MN交A B于点D,连接CD.若C D=A C,∠A=50°,则∠A C B的度数为( )
A. 4B. 5C. 6D. 7
[答案]C
[解析]
试题分析:根据对称图形的性质可得:PM= M,PN= N,
则△PMN的周长=PM+MN+PN= M+MN+ N= =6.
考点:对称的性质
7.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的△A DH中( )
[详解]解:关于y轴对称的点的坐标特征是纵坐标不变,横坐标互为相反数,

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。

人教版八年级数学上册轴对称单元测试题

人教版八年级数学上册轴对称单元测试题

人教版八年级数学上册轴对称单元测试题TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-A. B C. D. 轴对称单元测试题一、选择题1.下列平面图形中,不是..轴对称图形的是 2.下列说法正确的是A. 任何一个图形都有对称轴B. 两个全等三角形一定关于某条直线对称C. 点A ,点B 在直线m 两旁,且AB 与直线m 交于点O ,若AO =BO ,则点A 与点B 关于直线m 对称D. 若△ABC 与△DEF 成轴对称,则△ABC ≌△DEF3.在平面直角坐标系中,点A (-3,-2)关于yA. (-2,3)B. (3,-2)C. (2,-3)D.(-3,-2) 4.如右图,△ABC 中,AB=AC,D 是BC 的中点,则下列结论中不正确...的是 A.∠B=∠C B. AD 平分∠BAC C. AB=2BD D. AD ⊥BC5.等腰三角形是轴对称图形,它的对称轴是A.过顶点的直线B.顶角平分线所在的直线C.底边上的中线D. 底边上的高6.等腰三角形的一个角是80°,则它的底角是A. 50°B. 80°C. 20°或80°D. 50°或80° 7.如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是A.等腰三角形B. 锐角三角形C. 直角三角形D. 钝角三角形 8.如右图,屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC,AB=8m,∠A=30°,则BC 和DE 的长分别等于 ,2m B. 4m ,2m,4m D. 4m ,4m9.已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O,P 2三点构成的三角形是A. 等边三角形B.钝角三角形C.等腰三角形D. 直角三角形 10.如右图,五角星的五个角都是顶角为36°的等腰三角形,则∠AMB 的度数为 A. 144° ° C. 108° D. 100°二、填空题(每题3分,共24分)11.等边三角形有________条对称轴, 正方形有________条对称轴, 圆有________条对称轴,12.点(-5,3)关于x 轴对称的点坐标为__________,关于y 轴对称的点坐标为__________,关于原点对称的点坐标为_____________。

人教版数学八年级上册《轴对称》单元综合测试(含答案)

人教版数学八年级上册《轴对称》单元综合测试(含答案)
6.如图, , , 点在 的垂直平分线上,若 ,则
A.4B.6C.8D.10
【答案】C
【解析】
【分析】
根据 点在 的垂直平分线上得到AB=BD,所以∠D=∠BAD,所以∠ABC=30°,在△ABC中求出BD.
【详解】∠D=15°,B点在AD的垂直平分线上,则△ABD是等腰三角形,AB=BD,∠DAB=15°,∠ABC=30°.由于∠ACD=90°,则∠CAB=60°.AC=4,则AB=8.所以BD=8.
18.等腰三角形一腰上 高与另一腰的夹角为30度,则它的底角的度数为____
19.已知 、 ,点 在 轴上,若 是等腰三角形,则满足这样条件的 有________个.
三、解答题(共5小题,共58分)
20.如图,在等边三角形 中, 是 的中点,延长 到点 ,使 , .
求 的长;
(2) 吗?为什么?
21.如图,点 是等边 内一点, , .将 绕点 逆时针旋转 得 ,连接 .
8.下列说法错误的是()
A. 关于某直线对称的两个图形一定能够重合
B. 长方形是轴对称图形
C. 两个全等的三角形一定关于某直线对称
D. 轴对称图形的对称轴至少有一条
9.若等腰三角形的顶角为 ,则它一腰上的高与底边的夹角等于()
A. B. C. D.
10.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是()
故选A
【点睛】本题考察轴对称图形的对称点的相关知识点,要牢固掌握对称轴相关性质,合理的与题目相结合.
8.下列说法错误的是()
A.关于某直线对称的两个图形一定能够重合
B.长方形是轴对称图形
C.两个全等的三角形一定关于某直线对称
D.轴对称图形的对称轴至少有一条

八年级上册数学《轴对称》单元综合检测(附答案)

八年级上册数学《轴对称》单元综合检测(附答案)
11.如图,将长方形A B C D对折,得折痕PQ,展开后再沿MN翻折,使点C恰好落在折痕PQ上的点C′处,点D落在D′处,其中M是B C的中点且MN与折痕PQ交于F,连接A C′,B C′,则图中共有等腰三角形的个数是( )
A.1B.2C.3D.4
12. 如图,过边长为1的等边△A B C的边A B上一点P,作PE⊥A C于E,Q为B C延长线上一点,当PA=CQ时,连PQ交A C边于D,则DE的长为()
故选C.
4.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是()
A.1号袋B.2号袋C.3号袋D.4号袋
[答案]B
[解析]
[分析]
根据轴对称的性质画出图形即可得出正确选项.
[详解]解:根据轴对称的性质可知,台球走过的路径为:
(1)请用尺规作图法作出B C的垂直平分线DE,垂足为D,交A C于点E,(保留作图痕迹,不写作法);
(2)请用尺规作图法作出∠C 角平分线CF,交A B于点F,(保留作图痕迹,不写作法);
(3)请用尺规作图法在B C上找出一点P,使△PEF的周长最小.(保留作图痕迹,不写作法).
四、解答题:
20.已知点A(2A-B,5+A),B(2B-1,-A+B).
∴∠NMC=15°+15°=30°,
∴BM所在的直线是△C DM的角平分线,
又∵CM=DM,
∴BM所在的直线垂直平分C D;
(4)根据(2)同理可求∠D A B=105°,∠B C D=75°,
∴∠D A B+∠A B C=180°,
∴A D∥B C,
24.如图点O是等边 内一点, ,∠A C D=∠B CO,OC=C D,

八年级上册数学《轴对称》单元综合测试附答案

八年级上册数学《轴对称》单元综合测试附答案
故选B.
[点睛]本题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.
4.在平面直角坐标系中,点P(2,1)向右平移3个单位得到点P1,点P1关于x轴的对称点是点P2,则点P2的坐标是( )
A.(5,1)B.(5,﹣1)C.(﹣5,1)D.(﹣5,﹣1)
[答案]B
[解析]
人教版八年级上册《轴对称》单元测试卷
(时间:120分钟 满分:150分)
一.选择题(共10小题)
1.下列图形中为轴对称图形的是( )
A. B. C. D.
2.如图,△A B )
A.25°B.45°C.30°D.20°
3.如图,在△A B C中,边A B的垂直平分线DE交A B于点E,交B C于点D,若B C=10,A C=6,则△A C D的周长是( )
C.三个角都相等的三角形,内角一定为60°是等边三角形,不合题意,故此选项错误;
D.边上的高也是这边的中线的三角形,也可能是等腰三角形,符合题意,故此选项正确.
故选D.
[点睛]本题主要考查了等边三角形的判定,注意熟练掌握:由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.
22.已知等腰三角形△A B C 一边长为5,周长为22.求△A B C另两边的长.
23.如图,在△A B C中,∠B A C=90°,A D⊥B C于点D,BF平分∠A B C交A D于点E,交A C于点F,求证:AE=AF.
24.如图,△A B C中,点O是∠B C A与∠A B C的平分线的交点,过O作与B C平行的直线分别交AB、A C于D、E.已知△A B C的周长为15,B C的长为6,求△A DE的周长.

人教版初中数学八年级数学上册第三单元《轴对称》测试(有答案解析)

人教版初中数学八年级数学上册第三单元《轴对称》测试(有答案解析)

一、选择题1.如图,在ABC 中,6AB =,8AC =,10BC =,EF 是BC 的垂直平分线,P 是直线EF 上的一动点,则PA PB +的最小值是( ).A .6B .8C .10D .112.如图,在ABC ∆中,90,30C B ∠=︒∠=︒,以点A 为圆心,任意长为半径画弧分别交,AB AC 于点M 和N ,再分别以,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 是∠BAC 的平分线B .60ADC ∠=︒ C .点D 在AB 的垂直平分线上D . : 1:3DAC ABD S S ∆∆= 3.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 4.如图,在ABC ∆中,DE 垂直平分BC 交AB 于点,D 交BC 于点E .若10,8AB cm AC cm ==,则ACD ∆的周长是( )A .12cmB .18cmC .16cmD .14cm5.等腰三角形的两边a ,b 满足7260a b -+-=,则它的周长是( )A .17B .13或17C .13D .196.如图,长方形纸片ABCD (长方形的对边平行且相等,每个角都为直角),将纸片沿EF 折叠,使点C 与点A 重合,下列结论:①AF AE =,②ABE AGF ≌,③AF CE =,④60AEF ∠=︒,其中正确的( )A .①②B .②③C .①②③D .①②③④ 7.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D 处,若130∠=︒,则2∠的度数为( )A .30°B .60°C .50°D .55°8.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- 9.如图,在△ABC 纸片中,AB=9cm ,BC=5cm ,AC=7cm ,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则△ADE 的周长为是( )A .9cmB .11cmC .12cmD .14cm 10.下列推理中,不能判断ABC 是等边三角形的是( ) A .A B C ∠=∠=∠ B .,60AB AC B =∠=︒C .60,60A B ∠=︒∠=︒D .AB AC =,且B C ∠=∠ 11.以下说法正确的是( )A .三角形中 30°的对边等于最长边的一半B .若a + b = 3,ab = 2,则a - b = 1C .到三角形三边所在直线距离相等的点有且仅有一个D .等腰三角形三边垂直平分线的交点、三个内角平分线的交点、顶角的顶点三点共线 12.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm二、填空题13.如图,已知60AOB ︒∠=,点P 在边OA 上, 10OP =,点,M N 在边OB 上, PM PN =,若3,MN =则OM 的长是__________.14.如图,在ABC ∆中,CD 平分,ACB ∠点,E F 分别是,CD AC 上的动点.若6,12,ABC BC S ∆==则AE EF +的最小值是______________.15.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.16.若点P(x-y ,y)与点Q(-1,-5)关于x 轴对称,则x+y=______.17.如图,在ABC 中,点D 是BC 上一动点,BD ,CD 的垂直平分线分别交AB ,AC 于点E ,F ,在点D 的运动过程中,EDF ∠与A ∠的大小关系是EDF ∠______A ∠(填“>”“=”或“<”).18.如图,P 是等边三角形ABC 内一点,∠APB ,∠BPC ,∠CPA 的大小之比为5:6:7,则以PA ,PB ,PC 为边的三角形三内角大小之比(从小到大)是_________________.19.如图,点D 是ABC ∠内一点,点E 在射线BA 上,且15DBE BDE ∠=∠=︒,//DE BC ,过点D 作DF BC ⊥,垂足为点F ,若BE a =,则DF =___________(用含a 的式子表示).20.如图,网格纸上每个小正方形的边长为1,点A ,点C 均在格点上,点P 为x 轴上任意一点,则PAC △周长的最小值为________.三、解答题21.如图,在ABC ∆中,已知D 是BC 的中点,过点D 作BC 的垂线交∠BAC 的平分线于点E ,EF ⊥AB 于点F ,EG ⊥AC 于点G .(1)求证:BF=CG ;(2)若AB=12,AC=8,求线段CG 的长.22.如图,ABC 中,90BAC ∠=︒,AB AC =,AD 是高,E 是AB 上一点,连接DE ,过点D 作DF DE ⊥,交AC 于点F ,连接EF ,交AD 于点G .(1)若6AB =,2AE =,求线段AF 的长;(2)求证:AGF AED ∠=∠.23.(1)问题:如图①,在四边形ABCD 中,90B C ∠=∠=︒,P 是BC 上一点,PA PD =,AB BP BC +=.求证:90APD ∠=︒;(2)问题:如图②,在三角形ABC 中,45B C ∠=∠=︒,P 是AC 上一点,PE PD =,且90EPD ∠=︒.求AE AP PC+的值.24.如图,在ABC 中,90ACB ∠=︒,AC BC =,点D 在线段BC 上,连接AD ,过点C 作CE AD ⊥交AD 于点E ,过点B 作BF CE ⊥,交CE 的延长线于点F ,点G 是AB 的中点,连接GE ,GF .(1)若30CAD ∠=︒,5AD =,求DE 的长度;(2)求证:GE GF =.25.在直角坐标系中,ABC ∆的三个顶点的位置如图所示.(1)请画出ABC ∆关于y 轴对称的'''A B C ∆(其中',','A B C 分别是,,A B C 的对应点,不写画法);(2)直接写出',','A B C 三点的坐标'A ( ),'B ( ),'C ( ), (3)求出'''A B C ∆的面积26.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,ABC 的顶点均在格点上,点A 的坐标是(3,1)--.(1)将ABC 关于x 轴对称得到111A B C △,画出111A B C △,并写出点1B 的坐标; (2)把111A B C △平移,使点B 平移到2(3,4)B ,请作出111A B C △平移后的222A B C △,并写出2A 的坐标;(3)已知ABC 中有一点(,)D a b ,求222A B C △中的对应点2D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意,设EF 与AC 的交点为点P ,连接BP ,由垂直平分线的性质,则BP=CP ,得到PA PB PA PC AC +=+=,即可得到PA PB +的最小值.【详解】解:根据题意,设EF 与AC 的交点为点P ,连接BP ,如图:∵EF 是BC 的垂直平分线,∴BP=CP ,∴8PA PB PA PC AC +=+==,∴PA PB +的最小值为8;故选:B .【点睛】本题考查了垂直平分线的性质,解题的关键是正确找出点P 的位置,使得PA PB +有最小值.2.D解析:D【分析】根据题意作图可知:AD 是BAC ∠的平分线,即可判断A ;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,即可判断B ;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断C ;由30CAD ∠=︒,可得12CD AD =,由AD DB =,可得12DC DB =.可得::DAC ABD SS CD DB =,由12CD DB =,可得:1:21:3DAC ABD S S =≠,即可判断D .【详解】解:根据作图方法可得AD 是BAC ∠的平分线,故A 正确;∵90,30C B ∠=︒∠=︒,∴60CAB ∠=︒.∵AD 是BAC ∠的平分线,∴30DAC DAB ∠=∠=︒.∴60ADC ∠=︒.故B 正确;过D 作DE ⊥AB∵30,30B DAB ∠=︒∠=︒,∴AD DB =.∴AE=BE∴点D 在AB 的垂直平分线上.故C 正确;∵30CAD ∠=︒, ∴12CD AD =, ∵AD DB =, ∴12DC DB =. ∴12DAC CD AC S⋅=,12ABD DB AC S ⋅=, ∴::DAC ABD SS CD DB =, ∴12CD DB =, ∴:1:21:3DAC ABD S S =≠,故D 错误.故选择:D.【点睛】本题考查角平分线的作图方法及性质应用,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.3.A解析:A【分析】分别利用全等三角形的性质以及等腰三角形的性质判断得出即可.【详解】解:A、全等三角形的对应边相等,是真命题;B、面积相等的两个三角形不一定全等,原命题是假命题;C、两个全等三角形不一定成轴对称,原命题是假命题;D、所有等腰三角形不一定都只有一条对称轴,如等边三角形有三条对称轴,原命题是假命题;故选:A.【点睛】本题主要考查了命题与定理,熟练掌握几何性质与判定是解题的关键.4.B解析:B【分析】∆的周长= AB+AC,据此可解.由题意可知BD=CD,因此ACD【详解】解:∵DE垂直平分BC,∴BD=CD,∆的周长=AD+CD+AC∴ACD= AD+BD+AC= AB+AC=10+8=18(cm),故选:B.【点睛】本题主要考查线段垂直平分线的性质,关键在于求出BD=CD.5.A解析:A【分析】根据绝对值和二次根式的性质求出a ,b ,再根据等腰三角形的性质判断即可;【详解】∵70a -=,∴70260a b -=⎧⎨-=⎩, 解得73a b =⎧⎨=⎩, ∵a ,b 是等腰三角形的两边,∴当7a =为腰时,三边分别为7,7,3,符合三角形三边关系,此时三角形的周长77317++=;当3b =为腰时,三边为3,3,7,由于33+<7,故不符合三角形的三边关系; ∴三角形的周长为17.故答案选A .【点睛】本题主要考查了等腰三角形的性质、绝对值性质和二次根式的性质,准确计算是解题的关键.6.C解析:C【分析】根据翻折的性质可得∠AEF =∠CEF ,根据两直线平行,内错角相等可得∠AFE =∠CEF ,然后求出∠AEF =∠AFE ,根据等角对等边可得AE =AF ;根据HL 即可得到△ABE ≌AGF .根据等量代换即可得到AF =CE ;根据△AEF 是等腰三角形,不一定是等边三角形,即可得到∠AEF 不一定为60°.【详解】解:由翻折的性质得,∠AEF =∠CEF ,∵矩形ABCD 的对边AD ∥BC ,∴∠AFE =∠CEF ,∴∠AEF =∠AFE ,∴AE =AF ,故①正确,在Rt △ABE 和Rt △AGF 中,AE AF AB AG =⎧⎨=⎩, ∴Rt △ABE ≌Rt △AGF (HL ),故②正确,∵CE =AE ,AE =AF ,∴CE =AF ,故③正确;∵AE =AF ,∴△AEF 是等腰三角形,不一定是等边三角形,∴∠AEF 不一定为60°,故④错误;故选C .【点睛】本题考查了翻折变换的性质,等腰三角形的判定与性质,解题时注意:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.B解析:B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.8.C解析:C【分析】根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标.【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3), ∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1)故选:C .【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y 轴对称的两点纵坐标相等,横坐标互为相反数是关键.9.B解析:B【分析】根据折叠的性质得到:DE=CD ,BE=BC=5cm ,求出AE=4cm ,根据△ADE 的周长为AD+DE+AE=AC+AE 代入数值计算即可得解.【详解】由折叠得:DE=CD,BE=BC=5cm,∵AB=9cm,∴AE=AB-BE=9cm-5cm=4cm,∴△ADE的周长为AD+DE+AE=AC+AE=7cm+4cm=11cm,故选:B.【点睛】此题考查折叠的性质:折叠前后对应边相等,正确理解折叠的性质是解题的关键.10.D解析:D【分析】根据等边三角形的定义、判定定理以及三角形内角和定理进行判断.【详解】A、由“三个角都相等的三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意;B、由“有一个角是60°的等腰三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意;C、由“∠A=60°,∠B=60°”可以得到“∠A=∠B=∠C=60°”,则由“三个角都相等的三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意;D、由“AB=AC,且∠B=∠C”只能判定△ABC是等腰三角形,故本选项符合题意.故选:D.【点睛】本题主要考查了等边三角形的判定和三角形内角和定理,属于基础题.(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.11.D解析:D【分析】对每个选项一一分析即可得到正确答案.【详解】解:A、错误,正确的说法是:含30°的直角三角形中 30°的对边等于最长边的一半;B、错误,例如a =1,b=2,满足a +b = 3 ,ab = 2,但不满足a -b = 1;C、错误,到三角形三边所在直线距离相等的点有4个,在三角形内部的有一个,是三个内角角平分线的交点,在三角形的外部还有三个,是三角形的外角角平分线的交点;D、正确,等腰三角形三边垂直平分线的交点、三个内角平分线的交点、顶角的顶点三点共线,都在等腰三角形的底边的垂直平分线上,故选:D.【点睛】本题考查了含30°的直角三角形的性质,等腰三角形的性质,三角形的角平分线的性质,熟练掌握相关图形的性质是解决本题的关键.12.D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM ∠=∠=,∴EFD △是等边三角形,2DE cm =,∴2EF FD ED cm ===,∴4DM cm =,EBM △是等边三角形,∴60EMB ∠=,∴30NDM ∠=,∴2NM cm =,∴4BN BM NM cm =-=,∴28BC BN cm ==.故选:D .【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN的长度是解决问题的关键.二、填空题13.5【分析】作PH⊥MN于H如图根据等腰三角形的性质得MH=NH=MN=15在Rt△POH中由∠POH=60°得到∠OPH=30°则根据在直角三角形中30°角所对的直角边等于斜边的一半可得OH=OP=解析:5【分析】作PH⊥MN于H,如图,根据等腰三角形的性质得MH=NH=12MN=1.5,在Rt△POH中由∠POH=60°得到∠OPH=30°,则根据在直角三角形中,30°角所对的直角边等于斜边的一半可得OH=12OP=5,然后计算OH-MH即可.【详解】作PH⊥MN于H,如图,∵PM=PN,∴MH=NH=12MN=1.5,在Rt△POH中,∵∠POH=60°,∴∠OPH=30°,∴OH=12OP=12×10=5,∴OM=OH-MH=5-1.5=3.5.故答案为:3.5.【点睛】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了等腰三角形的性质.14.【分析】作A关于CD的对称点H由CD是△ABC的角平分线得到点H一定在BC上过H作HF⊥AC于F交CD于E连接AE则此时AE+EF的值最小AE+EF 的最小值=HF过A作AG⊥BC于G根据垂直平分线的解析:4【分析】作A关于CD的对称点H,由CD是△ABC的角平分线,得到点H一定在BC上,过H作HF⊥AC于F,交CD于E,连接AE,则此时,AE+EF的值最小,AE+EF的最小值=HF,过A作AG⊥BC于G,根据垂直平分线的性质和三角形的面积即可得到结论.【详解】作A关于CD的对称点H,∵CD是△ABC的角平分线,∴点H一定在BC上,过H作HF⊥AC于F,交CD于E,连接AE,则此时,AE+EF的值最小,AE+EF的最小值=HF,过A作AG⊥BC于G,∵△ABC的面积为12,BC长为6,∴AG=4,∵CD垂直平分AH,∴AC=CH,∴S△ACH=12AC•HF=12CH•AG,∴HF=AG=4,∴AE+EF的最小值是4,故答案是:4.【点睛】本题考查了轴对称−最短路线问题,解题的关键是正确的作出对称点和利用垂直平分线的性质证明AE+EF的最小值为三角形某一边上的高线.15.【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=OA3OA3=A3B3=OA4…再将解得OA3==OA2==OA1=找到规律进而得出答案【详解】解:∵△A1B1A2是等边解析:12n-【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=12OA3,OA3=A3B3=12OA4…,再将48OA=解得OA3=1842⨯==312-,OA2=1422⨯==212-,OA 1=1112122-⨯==,找到规律,进而得出答案. 【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠B 1A 1A 2=∠A 1B 1A 2=60°∵∠MON=30°,∴∠OB 1A 1=30°,∠OB 1A 2=90° ∴OA 1=A 1B 1=12OA 2, 同理可得OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4 ∵48OA =∴OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==, 以此类推△A n B n A n+1的边长为2n-1.故答案为2n-1.【点睛】本题考查了等边三角形的性质及含30°角的直角三角形的性质,根据得出的数值找到规律是解题的关键.16.9【分析】根据关于x 轴对称的点横坐标相同纵坐标互为相反数可得答案【详解】由点P (x-yy )与点Q (-1-5)关于x 轴对称得x-y =-1y =5解得x =4y =5x+y=4+5=9故答案为:9【点睛】本题解析:9【分析】根据关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】由点P (x-y ,y )与点Q (-1,-5)关于x 轴对称,得x-y =-1,y =5.解得x =4,y =5,x+y=4+5=9,故答案为:9【点睛】本题考查了关于x 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.17.=【分析】先根据线段的垂直平分线的性质得到EB=EDFD=FC 则根据等腰三角形的性质得到∠EDB=∠B ∠FDC=∠C 然后利用平角的定义得∠EDF=180°-(∠EDB+∠FDC )利用三角形内角和定理解析:=【分析】先根据线段的垂直平分线的性质得到EB=ED,FD=FC,则根据等腰三角形的性质得到∠EDB=∠B,∠FDC=∠C,然后利用平角的定义得∠EDF=180°-(∠EDB+∠FDC),利用三角形内角和定理得到∠A=180°-(∠B+∠C),所以∠EDF=∠A.【详解】解:∵BD、CD的垂直平分线分别交AB、AC于点E、F,∴EB=ED,FD=FC,∴∠EDB=∠B,∠FDC=∠C,∴∠EDB+∠FDC=∠B+∠C,∵∠EDF=180°-(∠EDB+∠FDC),∠A=180°-(∠B+∠C),∴∠EDF=∠A.故答案为:=.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.也考查了等腰三角形的性质.18.2:3:4【分析】将△APB绕A点逆时针旋转60°得△AP′C显然有△AP′C≌△APB连PP′证△AP′P是等边三角形PP′=AP所以△P′CP的三边长分别为PAPBPC;由∠APB:∠BPC:∠解析:2:3:4.【分析】将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,证△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;由∠APB:∠BPC:∠CPA=5:6:7,设∠APB=5xº,∠BPC=6xº,∠CPA=7xº,5x+6x+7x=360,x=20,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=40°,∠P′PC=80°,∠PCP′=60°即可.【详解】如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,设∠APB=5xº,∠BPC=6xº,∠CPA=7xº,∴5x+6x+7x=360,∴18x=360,∴x=20,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C -∠AP′P=∠APB-∠AP′P=100°-60°=40°,∠P′PC=∠APC-∠APP′=140°-60°=80°,∠PCP′=180°-(40°+80°)=60°,∴∠PP′C :∠PCP′:∠P′PC=40°:60°:80°=2:3:4.故答案为:2:3:4.【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.利用方程来解角成比例问题,三角形的内角和,用角度的和差计算解决问题.19.【分析】作DH ⊥AB 根据直角三角形的性质求出DH 根据平行线的性质角平分线的性质解答【详解】解:作DH ⊥AB 于H ∵∴∠DEH=∠DBE+∠BDE=30°∴DH=∵DE ∥BC ∴∠DBF=∠BDE ∴∠DB 解析:12a 【分析】作DH ⊥AB ,根据直角三角形的性质求出DH ,根据平行线的性质,角平分线的性质解答.【详解】解:作DH ⊥AB 于H ,∵15DBE BDE ∠=∠=︒∴∠DEH=∠DBE+∠BDE=30°,DE BE a ==∴DH=11=22DE a , ∵DE ∥BC ,∴∠DBF=∠BDE , ∴∠DBF=∠DBH ,又DF ⊥BC ,DH ⊥AB ,∴DF=DH=12a , 故答案为:12a . 【点睛】本题考查的是角平分线的性质,直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.20.【分析】根据勾股定理可得AC的长度作点C关于x轴的对称点C′连接AC′与x轴交于点P利用勾股定理求出AP+PC的最小值从而得出答案【详解】AC=如图作点C关于x轴的对称点C′连接AC′与x轴交于点P解析:21022+【分析】根据勾股定理可得AC的长度,作点C关于x轴的对称点C′,连接AC′,与x轴交于点P,利用勾股定理求出AP+PC的最小值,从而得出答案.【详解】AC=22+=,2222如图,作点C关于x轴的对称点C′,连接AC′,与x轴交于点P,则AP+PC=AP+PC′=AC′,此时AP+PC22+=26210所以△PAC周长的最小值为21022故答案为:21022.【点睛】本题主要考查了轴对称-最短路线问题,解题的关键是掌握轴对称变换的性质.三、解答题21.(1)见解析;(2)2【分析】(1)连接EC、EB,根据AE是∠CAB的平分线,得出EG=EF,再根据ED垂直平分BC,得出Rt△CGE≌△BFE,从而证出BF=CG;(2)根据全等三角形的性质得到AF=AG,求得AG=10,于是得到结论.【详解】(1)连接EC、EB.∵AE是∠CAB的平分线,EF⊥AB于点F,EG⊥AC于点G,∴EG=EF,又∵ED垂直平分BC,∴EC=EB,∴Rt△CGE≌Rt△BFE(HL),∴BF=CG;(2)在Rt△AEF和Rt△AEG中,AE AE EF EG=⎧⎨=⎩,∴△AEF≌△AEG(HL),∴AF=AG,∵BF=CG,∴AB+AC=AF+BF+AG-CG=2AG,∵AB=12,AC=8,∴AG=10,∴CG=AG-AC=2.【点睛】本题主要考查了全等三角形的判定和性质,在解题时要注意全等三角形的判定和性质的灵活应用以及与角平分线的性质的联系是本题的关键.22.(1)4;(2)见解析【分析】(1)证△ADE≌△CDF(ASA),得AE=CF=2,即可得出答案;(2)由全等三角形的性质得DE=DF,则△DEF是等腰直角三角形,得∠DEF=∠DFE=45°,再由三角形的外角性质即可得出结论.【详解】(1)解:∵△ABC中,∠BAC=90°,AB=AC,AD是高,∴BD=CD=AD=12BC,∠B=∠C=45°,∠BAD=∠CAD=12∠BAC=45°,∵DF⊥DE,∴∠EDF=∠ADC=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,ADE CDF AD CDBAD C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△CDF (ASA ),∴AE=CF=2,∵AC=AB=6,∴AF=AC-CF=6-2=4;(2)证明:由(1)得:△ADE ≌△CDF ,∴DE=DF ,又∵∠EDF=90°,∴△DEF 是等腰直角三角形,∴∠DEF=∠DFE=45°,∵∠AGF=∠DAE+∠AEG=45°+∠AEG ,∠AED=∠DEF+∠AEG=45°+∠AEG ,∴∠AGF=∠AED .【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.23.(1)见解析;(2)1【分析】(1)先证明()ABP PCD HL ≅△△,从而得APB PDC ∠∠=,进而即可得到结论;(2)过D 点做DF AC ⊥于点F ,易证()APE FDP AAS ≅△△,DPC △是等腰直角三角形,进而即可求解.【详解】(1)∵BP PC BC +=,BP AB BC +=,∴PC AB =,在t R ABP △与t R PCD 中∵AP PD AB PC =⎧⎨=⎩, ∴()ABP PCD HL ≅△△,∴APB PDC ∠∠=,∴180APD APB DPC ∠=︒-∠-∠180()PDC DPC =︒-∠+∠18090=︒-︒90=︒; (2)过D 点做DF AC ⊥于点F ,在ABC 中,18090A B C ∠=︒-∠-∠=︒,∴A PFD ∠∠=,∵90APE DPF +=︒∠∠ ,90AEP APE ∠+∠=︒,∴DPF AEP ∠∠=,在APE 与FDP 中A DFP DPE AEP PE PD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()APE FDP AAS ≅△△,∴AE PF =,AP DF =,∵在DPC △中,90904545FDC C ∠∠︒︒︒︒=-=-=,∴DF FC =,∴AP FC =,∴PC PF FC AE AP =+=+,∴1AE AP PC+=.【点睛】本题主要考查全等三角形的判定和性质,等腰直角三角形的判定和性质,熟练掌握“一线三等角”模型,添加合适的辅助线,构造全等三角形,是解题的关键.24.(1)54;(2)见详解 【分析】(1)先求出∠DCE=30°,根据直角三角形的性质,可得CD=12AD ,DE =12CD ,进而即可求解;(2)连接CG ,先证明∆BFC ≅∆CEA ,从而得BF=CE ,结合等腰直角三角形的性质,得CG=BG ,CG ⊥AB ,进而证明∆GCE ≅∆GBF ,即可得到结论.【详解】(1)∵CE AD ⊥,30CAD ∠=︒,∴∠ACE=90°-30°=60°,∵90ACB ∠=︒,∴∠DCE=30°,∵5AD =,∴CD=12AD=52,DE =12CD=54; (2)连接CG ,∵CE AD ⊥,∴∠ACE+∠CAE=90°,∵90ACB ∠=︒,∴∠ACE+∠BCF=90°,∴∠CAE=∠BCF ,∵BF CE ⊥,∴∠BFC=∠CEA=90°,又∵AC BC =,∴∆BFC ≅∆CEA (AAS ),∴BF=CE ,∵点G 是AB 的中点,∴CG=BG ,CG ⊥AB ,∴∠CGB=∠BFC=90°,∴∠GCE=∠GBF ,∴∆GCE ≅∆GBF ,∴GE GF =.【点睛】本题主要考查全等三角形的判定和性质以及等腰直角三角形的性质,熟练掌握AAS 证明全等三角形以及等腰直角三角形的性质,是解题的关键.25.(1)所画图形见解析;(2)3,-3 ;-1,-3;0,4 ;(3)11【分析】(1)分别作出各点关于y 轴的对称点,再顺次连接各点即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)作矩形DB EF ',用矩形的面积减去三个三角形的面积,即可得到A B C S'''.【详解】解:(1)如图所示:(2)由图可知,A '(3,-3),B '(-1,-3),C '(0,4);(3)如图,作矩形DB EF ',则DB EF S S S S S ''''''''''=---△A B C △C DB △C FA △A EB 四边形1117417316411222=⨯-⨯⨯-⨯⨯-⨯⨯=, ∴11A B C S '''=△.【点睛】本题考查的是作图-轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键. 26.(1)图见解析,点B 1的坐标为(-2,4);(2)图见解析,A 2的坐标为(2,1);(3)D 2的坐标为(a+5,-b ).【分析】(1)分别作出点A 、B 、C 关于x 轴对称得到的对应点,再顺次连接可得;(2)根据B 1(-2,4)和2(3,4)B ,可得平移方式为向右平移5个单位,分别作出△A 1B 1C 1向右平移5个单位所得对应点,再顺次连接可得;(3)根据图形的变换方式即可得出D 点的变换方式,从而可得点2D 的坐标.【详解】解:(1)如图所示,△A1B1C1即为所求,点B1的坐标为(-2,4);(2)如图所示,△A2B2C2即为所求,A2的坐标为(2,1);(3)△A2B2C2中的对应点D2的坐标为(a+5,-b).【点睛】本题考查坐标与图形变换—轴对称和平移.理解点的变换和对应图形变换的关系是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学(上)轴对称整章测试(时间90分钟满分100分)
班级学号姓名得分
一、填空题(每题2分,共32分)
1.轴对称是指____个图形的位置关系;轴对称图形是指____个具有特殊形状的图形.
2.设A、B两点关于直线MN对称,则______垂直平分________.
3.等腰三角形是_______对称图形,它至少有________条对称轴.
4.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.
5.点(1,3)
P 关于x轴的对称点的坐标为.
6.已知等腰三角形的顶角是30°,则它的一个底角是.
7.已知等腰三角形有一个角是50°,则它的另外两个角是.
8.等腰三角形两边长为4cm 和6cm ,则它的周长为.
9.已知点P在线段AB的垂直平分线上,PA=6,则PB= .
10.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,若BD=10,则CD= .
11.如图,在等边△ABC中,AD⊥BC,AB=5cm ,则DC的长为.
12.如图,△ABC中,AB=AC,DE是AB的垂直平分线,AB=8,BC=4,∠A=36°,则∠DBC= ,△BDC的周长C△BDC = .
13.如图,∠1=50°,∠2=80°,
DB=AB,CE=CA,则∠D= ,∠DAE= .
14.如图,AB=AC,∠A=40o,AB的垂直平分线MN交AC于点D,则∠DBC=_______.
15.如图,若P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1P2,连接P1P2交OA于M,交OB于N,第14题图第15题图第16题图
A
B
C
D
第10题第11题图第12题图第13题图
B
A
D C
B C
D
A
E
1 2
B C
A
D E
第4题图
A
C
O
B D
B
C
A
P 1P 2=15,则△PMN 的周长是________.
16.如图,若B 、D 、F 在MN 上,C 、E 在AM 上,且AB=BC=CD ,EC=ED=EF ,∠A=20o ,则∠FEB=________. 二、解答题(共68分)
17.(7分)已知:如图,△ABC ,分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 , △A 1B 1C 1 和
△A 2B 2C 2 各顶点坐标为:A 1( , );B 1( , );C 1( , );A 2( , );B 2( , );C 2( , ).
18.(5分)已知:如图,AC 和BD 交于点O ,AB//CD ,OA=OB .求证:OC=OD
19.(5分)在Rt △ABC 中,∠C =90°,DE 是AB 的垂直平分线,且∠BAD ∶∠BAC =1∶3,求∠B 的度数.
20.(5分)已知:如图△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4cm ,求BC 的长.
21.(5分)如图所示,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,求PD 的长.
O
C B
A
D
P
22.(5分)如图,△ABC 中,AB=AC, △ABC 的两条中线BC 、CE 交于O 点,求证:OB=OC.
D
E
C
A
B
A
D
E
F B C
D E
C
B
A
O
A
B
C
D
E
23.(5分)如图,△ABD 、△AEC 都是等边三角形,求证:BE=DC .
24.(6分)已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D .求证:(1)∠ECD=∠EDC ;
(2)OE 是CD 的垂直平分线.
25.(5分)已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求
证:BE+CF=EF
26.(6分)已知:如图△ABC中,AB=AC,AD和BE是高,它们交于点H,且AE=BE,求证:AH=2BD.
27.(6分)如图,已知在△ABC中,AB=AC,∠BAC=120o,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.
28.(8分)如图,某船在上午11点30分在A处观测岛B在东偏北30o,该船以10海里/时的速度向东航行到C 处,再观测海岛在东偏北60o,且船距海岛40海里.
(1)求船到达C点的时间;
(2)若该船从C 点继续向东航行,何时到达B 岛正南的D 处?
答案部分
一、填空题
1.2,1 2.MN ,AB 3.轴,1 4.10点45分 5.(-1,-3)6.75度7.65度或50度8.14cm 或16cm 9.6 10.5 11.2.5cm 12.36度,12 13.25度,115度 14.30度 15.15 16.100度 二、解答题
17.111222(0,2),(2,4),(4,1),(0,2),(2,4),(4,1)A B C A B C ----- 18.略 19.25度20.12 21.2 22.略 23.略 24.略 25.略 26.略 27.略 28.3时30分,5点30分。

相关文档
最新文档