图论及其应用讲义ppt6
图论及其应用(6)资料
![图论及其应用(6)资料](https://img.taocdn.com/s3/m/66c7c8c7a26925c52dc5bf37.png)
目标主机传递,但在组播模型中,组播源向某一组地址传递数 据包,而这一地址却代表一个主机组。为了向所有接收者传 递数据,一般采用组播分布树描述IP组播在网络里经过的路 径。组播分布树有四种基本类型:泛洪法、有源树、有核树 和Steiner树 。
证明:“必要性”
若不然,设P1与P2是连接u与v的两条不同的路。则
9
由这两条路的全部或部分将构成一个圈,这与G是 树相矛盾。
“充分性” 首先,因G的任意两点均由唯一路相连,所以G是 连通的。 其次,若G中存在圈,则在圈中任取点u与v,可得 到连接u与v的两条不同的路,与条件矛盾。 定理3 设T是(n, m)树,则:
k
m(G) m(Ti ) n k i 1
定理4 每个n阶连通图的边数至少为n-1.
证明:如果n阶连通图没有一度顶点,那么由握手定理
有: m(G) 1
d (v) n
2 vV (G )
13
如果G有一度顶点。对顶点数作数学归纳。
当n=1时,结论显然
设当n=k时,结论成立。 当n=k+1时,设u是G的一度顶点,则G-u为具有k个顶
定理5 任意树T的两个不邻接顶点之间添加一条边后, 可以得到唯一圈。
证明:设u与v是树T的任意两个不邻接顶点,由定理2 知:有唯一路P连接u与v.于是P∪{u v}是一个圈。 显然,由P的唯一性也就决定了P∪{u v}的唯一性。
例9 设G是树且Δ≧k,则G至少有k个一度顶点。 证明:若不然,设G有n个顶点,至多k-1个一度顶点, 由于Δ≧k,于是,由握手定理得:
根树
5
实际上,根树是许多问题的模型,如社会结构,
图论及其应用
![图论及其应用](https://img.taocdn.com/s3/m/19d0fd91b04e852458fb770bf78a6529647d3519.png)
图论及其应用简介图论是计算机科学中的一个重要分支,研究的对象是由边与顶点组成的图形结构以及与其相关的问题和算法。
图论的应用广泛,涵盖了计算机科学、网络科学、物理学、社会学、生物学等多个领域。
本文将介绍图论的基本概念、常用算法以及一些实际的应用案例。
图的基本概念图由顶点(Vertex)和边(Edge)组成,记作G=(V, E),其中V为顶点的集合,E为边的集合。
图可以分为有向图和无向图两种类型。
有向图有向图中的边具有方向性,即从一个顶点到另一个顶点的边有明确的起点和终点。
有向图可以表示一种有序的关系,比如A到B有一条边,但B到A可能没有边。
有向图的表示可以用邻接矩阵或邻接表来表示。
无向图无向图中的边没有方向性,任意两个顶点之间都有相互连接的边。
无向图可以表示一种无序的关系,比如A与B有一条边,那么B与A之间也有一条边。
无向图的表示通常使用邻接矩阵或邻接表。
常用图论算法图论中有许多经典的算法,其中一些常用的算法包括:深度优先搜索(DFS)深度优先搜索是一种用于遍历或搜索图的算法。
通过从起始顶点开始,沿着一条路径尽可能深入图中的顶点,直到无法再继续前进时,返回上一个顶点并尝试下一条路径的方式。
DFS可以用于判断图是否连通,寻找路径以及检测环等。
广度优先搜索(BFS)广度优先搜索也是一种用于遍历或搜索图的算法。
不同于深度优先搜索,广度优先搜索逐层遍历顶点,先访问离起始顶点最近的顶点,然后依次访问与起始顶点距离为2的顶点,以此类推。
BFS可以用于寻找最短路径、搜索最近的节点等。
最短路径算法最短路径算法用于计算图中两个顶点之间的最短路径。
其中最著名的算法是迪杰斯特拉算法(Dijkstra’s A lgorithm)和弗洛伊德算法(Floyd’s Algorithm)。
迪杰斯特拉算法适用于没有负权边的图,而弗洛伊德算法可以处理带有负权边的图。
最小生成树算法最小生成树算法用于找到一个连通图的最小的生成树。
其中最常用的算法是普里姆算法(Prim’s Algorithm)和克鲁斯卡尔算法(Kruskal’s Algorithm)。
第6章 着色问题
![第6章 着色问题](https://img.taocdn.com/s3/m/0528d00b52ea551810a68739.png)
∴
c' (v) c(v)
v V v V
,
这与C为最优矛盾。
图论及其应用
6
6.1 边色数
定理6.1 设G为偶图,则 = 。 证明: (Wilson)对 进行归纳。当 = 1 时显然成立。假设
对 < k( 2) 都成立,而 (G)= k 。任取G的一边 e = uv , 考虑 G’ = G - e 。
(a) 利用Vizing定理证明:(G×K2)= (G×K2) 。 (b) 试证:若H是非平凡的,且(H) = (H),则(G×H) = (G×H)。
6.2.7 叙述求简单图G的正常(+1)-边着色的好算法。 6.2.8*证明 ≥2的简单图G有一(-1)-边着色,使得所有-1种色在每个顶点上都表现 6.2.9 设简单图G有割点,则 = + 1 。
图论及其应用
11
6.2 Vizing定理——习题
6.2.1* 找出适当的边着色以证明(K2N-1) = (K2N) = 2n-1 。 6.2.2 为奇数的非空正则简单图G有 = + 1 。 6.2.3(a) 设简单图G中 = 2n+1且 >n ,则 = +1 ; (b) 利用(a)证明: ① 若G是从有偶数个顶点的简单图中剖分一条边所得的图,则 = +1 ; ② 若G是从有奇数个顶点的简单k正则图中删去少于k/2条边所得的图,则=+1 6.2.4 (a) 证明: 任一无环图G都有-正则无环母图。(注:不一定为生成母图) (b) 利用(a)及习题5.2.3(b)证明:若G 是无环图且 是偶数,则 3 /2。 6.2.5 称G为唯一k-边可着色的,如果G的任意两个k-边着色都导致E有相同的划分。 证明:每个唯一3-边可着色的3-正则图都是Hamilton 图 。 6.2.6 简单图的积图是指顶点集为V(G)×V(H)的简单图G×H,其中 (u,v)与(u’,v’)相邻 u = u’且v’ E(H); 或 v = v’且uu’ E(G)
图论及其应用
![图论及其应用](https://img.taocdn.com/s3/m/a1e2eb29b94ae45c3b3567ec102de2bd9705de6a.png)
顶点染色
定理:对于任何一个图χ(G)≤ω(G)。 ω(G)为图G的团数,用来描述χ(G)的下 界,其中ω(G)=max{k|Kk属于G}。
顶点染色
给定图G=(V,E)的一个k-点染色。用Vi表示G中染以 第i色的顶点集合(i=1,2,…,k),则每个Vi都是G 的独立集。因而G的每一个K-点染色对应V(G)的一个划 分[V1,V2,…,Vk],其中每一个Vi是一个独立集。反之 ,给出V(G)的这样一个划分(V1,V2,…,Vk),其中每 一个Vi均是独立集(1≤i≤k),则相应得到G的一个k点染色,称V(G)的这样一个划分为G的一个色划分,每 一个Vi称为色类。因此,G的色数χ(G)就是使这种划 分成为可能最小自然数k。
推论:若G是p(G) 3且g(G) 3的平图,则 q(G) g(G) ( p(G) 2)。 g(G) 2
平面图的性质
推论:任何一个简单平面图G,有 q(G)≤3p(G)-6
推论:设G是简单平面图,则δ(G)≥6.
定理:仅存在5种正多面体,即正四面体、正 方体、正八面体、正十二面体和正二十面体。
定理:每一个平面的色数不超过5
边染色
定义:无环图G的一个正常染色k-边染色(简 称k-边染色)是指一个映射φ:E(G)→{1,2, …,k},使对G中任意两条相邻的边e1和e2,有 φ(e1)≠φ(e2)。若G有一个正常k-边染色,则 称G是k-边染色的。G的边色数是指G为k-边染 色的最小整数k的值,记为
χ'(G)。若χ'(G)=k,则称G是k-边可色的。
边染色
设G有一个正常k-边染色,置Ei为G中所有染 以第i种颜色的边的全体,则E1,E2,…,Ek 是G的k个边不相交的对集,并且
离散数学——图论PPT课件
![离散数学——图论PPT课件](https://img.taocdn.com/s3/m/f6c371f052d380eb63946d8e.png)
• 完全图:一个(n,m)图G,其n个结点中每个结点均与其它n-1个结点相邻接,记为Kn。 • 无向完全图:m=n(n-1)/2 • 有向完全图:m=n(n-1) • 举例说明以上几种图。
第20页/共93页
定义补图
• 设图G=<V,E> , G’=<V,E’> ,若G’’=<V,E∪E’> 是完全图,且E∩E’= 空集,则称G’是G的补图。 • 事实上,G与G’互为补图。
正则图
• 所有结点均有相同次数d的图称为d次正则图。 • 如4阶的完全图是3次正则图,是对角线相连的四边形。 • 试画出两个2次正则图。
第27页/共93页
两图同构需满足的条件
• 若两个图同构,必须满足下列条件: (1)结点个数相同 (2)边数相同 (3)次数相同的结点个数相同
• 例子
第28页/共93页
• 图是人们日常生活中常见的一种信息载体,其突出的特点是直观、形象。图论,顾 名思义是运用数学手段研究图的性质的理论,但这里的图不是平面坐标系中的函数, 而是由一些点和连接这些点的线组成的结构 。
第8页/共93页
• 在图形中,只关心点与点之间是否有连线,而不关心点具体代表哪些对象,也不关 心连线的长短曲直,这就是图的概念。
定义图的子图
• 子图:设G=<V,E> , G’=<V’,E’> ,若V’是V的子集, E’是E的子集,则 G’是G的子图。 • 真子图:若V’是V的子集,E’是E的真子集。 • 生成子图:V’=V,E’是E的子集。 • 举例说明一个图的子图。
第18页/共93页
定义(n,m)图
• (n,m)图:由n个结点,m条边组成的图。 • 零图:m=0。即(n,0)图,有n个孤立点。 • 平凡图:n=1,m=0。即只有一个孤立点。
图论课件-PPT课件
![图论课件-PPT课件](https://img.taocdn.com/s3/m/6f73e5f16f1aff00bed51e8e.png)
学习方法
目的明确
态度端正 理论和实践相结合
充分利用资源
逐步实现从知识到能力到素质的深化和
升华
课程考核
平时成绩 (30%-40%)
闭卷考试 (60%-70%)
图论模型
为了抽象和简化现实世界,常建立数学模型。图是关 系的数学表示,为了深刻理解事物之间的联系,图 是常用的数学模型。 (1) 化学中的图论模型 19世纪,化学家凯莱用图论研究简单烃——即碳氢 化合物 用点抽象分子式中的碳原子和氢原子,用边抽象原子间 的化学键。
E={w1r1, w1r2, w2r2, w2r3, w2r4, w3r3, w3r5}代表每个仓库和每个 零售店间的关联。则图模型图形为: w1 w2 w3
r1
r2
r3
r4
r5
29
(3) 最短航线问题 用点表示城市,两点连线当且仅当两城市有航线。为了 求出两城市间最短航线,需要在线的旁边注明距离值。 例如:令V={a, b, c, d, e}代表5个城市} E={a b, ad, b c , be, de}代表城市间的直达航线 则航线图的图形为: a 320 500 d 370 b 140 430 e c
图论学科简介 (2)
19世纪末期,图论应用于电网络方程组
和有机化学中的分子结构 20世纪中叶,由于计算机的发展,图论 用来求解生产管理、军事、交通运输、 计算机和网络通信等领域中的离散性问 题 物理学、化学、运筹学、计算机科学、 电子学、信息论、控制论、网络理论、 社会科学、管理科学等领域应用
七桥问题
近代图论的历史可追溯到18世纪的七桥问题:
穿过Kö nigsberg城的七座桥,要求每座桥通过 一次且仅通过一次。
图论PPT
![图论PPT](https://img.taocdn.com/s3/m/71d0ee48852458fb770b560f.png)
W (P) =
e∈ ( P) W (P
∑W(e)
则称W 为路径P(u, v) 的权或长度(距离). 长度(距离) 则称 (P)为路径 为路径 定义2:若P0 (u, v) 是G 中连接u, v的路径 且对任 定义 : 中连接 的路径, 的路径 意在G 中连接u, 的路径 的路径P 意在 中连接 v的路径 (u, v)都有 都有 W(P0)≤W(P), ≤ 则称P 中连接u, 的最短路. 则称 0 (u, v) 是G 中连接 v的最短路
解:
表示设备在第i 年年初的购买费, 设bi 表示设备在第 年年初的购买费 ci 表示设备使用 年后的维修费 表示设备使用i 年后的维修费, V={v1, v2, … , v6},点vi表示第 年年 表示第i 点 表示第 初购进一台新设备,虚设一个点 虚设一个点v6表 初购进一台新设备 虚设一个点 表 示第5年年底 年年底. 示第 年年底 E ={vivj | 1≤i<j≤6}. <
如果E的每一条边都是无向边 则称G为 如果 的每一条边都是无向边, 则称 为无向 的每一条边都是无向边 如图1) 如果E的每一条边都是有向边 1); 的每一条边都是有向边, 图(如图1) 如果 的每一条边都是有向边 则称 G为有向图(如图2) 否则 称G为混合图 2); 为有向图(如图2) 否则, 为混合图.
图论在数学建模中的应用
• • • • 第一部分 第二部分 第三部分 第四部分概念
图论中的“ 图论中的“图”并不是通常意义下的几何图 形或物体的形状图, 形或物体的形状图, 而是以一种抽象的形式来表 达一些确定的事物之间的联系的一个数学系统. 达一些确定的事物之间的联系的一个数学系统. 称为一个图, 定义1 :一个有序二元组 一个有序二元组( 定义1 :一个有序二元组(V, E ) 称为一个图, 记为G = (V, E ), 其中 的顶点集, 其元素称为顶点, ① V 称为G的顶点集, V≠φ, 其元素称为顶点, 简称点; 简称点; 的边集, 其元素称为边, ② E 称为G的边集, 其元素称为边, 它联结V 中的两个点, 如果这两个点是无序的, 中的两个点, 如果这两个点是无序的, 则称该边 为无向边, 否则, 称为有向边. 为无向边, 否则, 称为有向边.
《图论的介绍》课件
![《图论的介绍》课件](https://img.taocdn.com/s3/m/607cc368182e453610661ed9ad51f01dc28157f4.png)
图论的介绍
汇报人:
目录
PART One
添加目录标题
PART Three
图论的应用领域
PART Two
图论的基本概念
PART Four
图论的基本问题
PART Five
图论的算法和数据 结构
PART Six
图论的扩展知识
单击添加章节标题
图论的基本概念
图论的发展历程
18世纪末,欧拉提出“七桥问题”,开启了图论的先河
匹配问题
匹配问题定义:在图论中,匹配问 题是指在图中找到一组边,使得每 个顶点恰好有一条边。
最小匹配问题:在图中找到一组边, 使得边的数量最少。
添加标题
添加标题
添加标题
添加标题
最大匹配问题:在图中找到一组边, 使得边的数量最多。
完美匹配问题:在图中找到一组边, 使得每个顶点恰好有一条边,并且 边的数量最多。
图论的扩展知识
欧拉路径和欧拉回路
欧拉路径:通过图中所有边且仅通过一次的路径
欧拉回路:通过图中所有边且仅通过一次的回路
欧拉定理:一个无向图存在欧拉回路当且仅当每个顶点的度数都是偶数
应用:欧拉路径和欧拉回路在计算机科学、数学、物理等领域有广泛应用,如电路设计、网络 拓扑、图论算法等
哈密顿路径和哈密顿回路
应用
生物技术:图 论在生物工程、 生物制造和生 物能源等领域
的应用
图论的发展趋势和未来展望
应用领域:图 论在计算机科 学、物理学、 生物学等领域 的应用越来越
广泛
研究方向:图 论在算法设计、 网络优化、数 据挖掘等领域 的研究不断深
入
技术发展:图 论与机器学习、 深度学习等技 术的结合越来
运筹学--图论 ppt课件
![运筹学--图论 ppt课件](https://img.taocdn.com/s3/m/c2c2ec21cc17552707220864.png)
4
5
4 9 8
v1
v3
2
v6
[8,v2]
v8
5 33
1
[2,v1]
v4
v7
[10,v4]
33
Dijkstra算法示例1
3)迭代计算(c)—更新与永久标号节点v2相连的节 (d2+w25=3+7=)10< ∞ (=d5) 点的临时标号。
[3,v1]
v2
[0,-]
7
v5
[10,v2]
2 [+∞,v1] 6
v4
v7
[+∞,v1]
22
Dijkstra算法示例1
2)迭代计算(a)—从临时标号中找到距离上界dk最 小的节点v4,d4=min{dk},将其变换为永久编号。
[3,v1] [+∞,v1]
v2
[0,-]
7
v5
2 [+∞,v1] 6 1 2 [+∞,v1]
3
5 2 [5,v1]
4
5
4 9 8
v1
v3
最小树问题不一定有唯一解。
10
10
最小支撑树问题的解法
破圈法 算法
初始化 将图G的边按权值从大到小的次序排列,从 原图开始迭代; 迭代
第1步(删边) 从排列中顺序选择一条与图中剩余边构成圈 的边,则将此边从图中删除,进入第2步(结束判断); 第2步(结束判断) 若图中剩下n-1条边,则已经得到最小支 撑树;否则,进入下一轮迭代,返回第1步(加边);
柯尼斯堡七桥问题
柯尼斯堡市区横跨普雷格尔河两岸,在河中心有两 个小岛。小岛的两岸共有七座桥将岛与岛、岛与河 岸连接起来。一个人怎样才能一次走遍七座桥,每 座桥只走过一次,并最后回到出发点?
第6-8章---图论2PPT课件
![第6-8章---图论2PPT课件](https://img.taocdn.com/s3/m/7c63fbb59b6648d7c0c74680.png)
-
6
8.判别一个二部图中存在完备匹配的相异性条件和t条 件分别是充要条件和充分条件,但t条件对任一二部图能 极容易地进行检验,因而在考虑用较为复杂的相异性条 件之前,可首先用t条件判断,如果t条件不成立,再用相异 性条件判断。
9.图是点(边或面)k-可着色的,是指能用k种颜色给 图的结点(边或面)着色,但k不一定是最少的颜色数。 图是点(边或面)k-色的,是指最少要用k种颜色绘图 的结点(边或面)着色。平面图的面着色问题一般化 为对其偶图的点着色问题。Welch-Powell算法是近似 算法,它给出的结点着色的颜色数不一定是最少的, 而是较少的。
6.掌握最小点覆盖、最小边覆盖、最大点独立集、最 大边独立集(匹配)、最大匹配、完美匹配、完备匹 配、可增广路径等概念,能够利用相异性条件和t条件
-
2
判定二部图中是否存在完备匹配,了解可增广路径求 完备匹配的方法和思想。
7.掌握结点着色、边着色、面着色等概念及有关性质, 能够用Welch—power算法确定一个使图的颜色数尽可 能少的结点着色。
数目。
3.掌握求图中某个结点到其他任一结点的最短路径的 Dijkstra算法,以及求图中任意两个结点的最短路径的
-
1
Warshsll算法。
4.掌握欧拉图和哈密尔顿图的概念及其判别方法,能 够利用fleury
算法求欧拉回路,了解邮路问题,能够用近邻法求哈 密尔顿回路。
5.掌握平面图、面、边界、极大平面图、同胚等概念 及有关性质,能够判定一个图是否为平面图。
-
7
§6.3基本题
§6.3.1选择题
1.设D=<V,E>为有向图,则有(
A. E ∈ V*V
B.EV*V
图论及其应用-杨春-课件-全
![图论及其应用-杨春-课件-全](https://img.taocdn.com/s3/m/a8464572011ca300a6c3908a.png)
3Leabharlann 10.5 n 00.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
[5] 李尉萱,《图论》,湖南科学技术出版社,1979
[6] 美,Douglas B.West《图论导引》,机械工业出 版社,2007 李建中,骆吉洲译
[7] 杨洪,《图论常用算法选编》,中国铁道出版社, 1988
0.5
00
1 0.8
0.6 0.4 x 0.2
作业 P29—P30 3, 4, 5, 6
24
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
Thank You !
25
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
第一章 图的基本概念
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
参考文献
[1] 美,帮迪《图论及其应用》
[2] 美,Gary Chartrand《图论导引》,人民邮电 出版社,2007
[3] Bela Bollobas,《现代图论》,科学出版社, 2001 中国科学院研究生教学丛书
[4] 美,Fred Buckley《图论简明教程》,清华大学 出版社,2005 李慧霸 王风芹译
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
a
b
c
d
e
f
一种可行的安排方案为:第一时间:a, d, e;第二时间:
《图论及其应用》课件
![《图论及其应用》课件](https://img.taocdn.com/s3/m/8ebbb947cd1755270722192e453610661ed95ad7.png)
图像处理
探索图论在图像处理领域的应用,如图像分割 和模式识别。
七、总结
图论的重要性
强调图论在计算机科学和现实 世界中的重要性和广泛应用。
现实中的应用价值
讨论图论在实际问题中解决方 案的应用价值和优势。
对于未来的展望
探索图论在未来可能的发展方 向和应用领域,如人工智能和 物联网。
2
Floyd算法
介绍Floyd算法的原理和使用方法,用于计算图中所有节点之间的最短路径。
四、最小生成树算法
Prim算法
解释Prim算法的工作原理和应用,用于寻找图中的 最小生成树。
Kruskal算法
讨论Kruskal算法的概念和实现,用于生成图的最小 生成树。
五、网络流算法
1
最大流
介绍网络流问题和最大流算法,用于解
《图论及其应用》PPT课 件
本PPT课件将带您深入了解图论及其应用。图论是一门关于图的性质及其应用 的学科,将为您揭开图论的奥秘。
一、图论基础
图的定义及术语
介绍图的基本定义以及相关的术语,为后续内 容打下基础。
无向图与有向图
解释无向图和有向图的区别,并介绍它们之间 的关系和应用。
图的表示方法
讲解图的常用表示方法,如邻接矩阵和邻接表, 并比较它们的优缺点。
连通性和路径
讨论图的连通性概念以及如何找到两个节点之 间的最短路径。
二、图的遍历算法
1
广度优先搜索(BFS)
2
介绍广度优先搜索算法的工作原理和常 见应用。
深度优先搜索(DFS)
深入探讨深度优先搜索算法的原理和应 用场景。
三、最短路径算法
1
Dijkstra算法
详细讲解Dijkstra算法的步骤和应用,用于寻找图中两个节点间的最短路径。
《图及有向图的应用》课件
![《图及有向图的应用》课件](https://img.taocdn.com/s3/m/2f221f9c29ea81c758f5f61fb7360b4c2e3f2aa1.png)
目
CONTENCT
录
• 图论简介 • 有向图简介 • 图论在计算机科学中的应用 • 有向图在计算机科学中的应用 • 图论与有向图的算法与问题 • 图论与有向图的应用案例分析
01
图论简介
图论的发展历史
古代图论萌芽
古希腊数学家欧拉研究“哥尼斯堡七桥问题”,标 志着图论的起源。
依存关系分析是自然语言处理中的一 项重要任务,利用有向图表示句子中 词语之间的依存关系。
依存关系分析可以帮助我们理解句子 的语法结构、提取关键词、进行语义 角色标注等,为机器翻译、文本摘要 、信息抽取等领域提供技术支持。
05
图论与有向图的算法与问题
图的遍历算法
深度优先搜索(DFS)
按照一定的顺序访问图中的节点,尽可能深地搜索图的分枝,直到达到目标节点。
路径规划概述
路径规划是人工智能中用于确定从起点到终点的 最佳路径的问题。路径规划算法广泛应用于机器 人、自动驾驶等领域。
Dijkstra算法
Dijkstra算法是一种用于在图中找到从起点到所有 其他节点的最短路径的算法。它使用贪心策略来 逐步构建最短路径。
A*搜索算法
A*搜索算法是一种启发式搜索算法,它使用一个 估计函数来评估节点的重要性,从而优先搜索最 有可能产生最佳结果的节点。A*搜索算法在许多 路径规划问题中表现出色。
02
有向图简介
有向图的基本概念
总结词
有向图的基本概念
详细描述
有向图是一种由节点和有向边组成的图形结构,其中每个边都有明确的起点和 终点。与无向图相比,有向图的边具有方向性,表示了元素之间的有序关系。
有向图的性质
总结词
有向图的性质
离散数学-图论及其应用
![离散数学-图论及其应用](https://img.taocdn.com/s3/m/6a2fac8b5acfa1c7ab00cc53.png)
ᵅ 3是关联同一个结点的一条边,即自回路; 边ᵅ 4和ᵅ 5都与结点ᵆ 2,ᵆ 3关联,
即它们是平行边。
v1
e1
e2
e4 v3
v2 e5
e3
15
图的分类
1.按G的结点个数和边数分为(ᵅ ,ᵅ )图,即ᵅ 个结点,ᵅ 条边的图。特别地 特别地,
☞ (ᵅ ,0)称为零图 ☞ (1,0)图称为平凡图。
【定义】在图G中, ①如果每条边都是有向边,该图称为有向图(DirectedGraph) ②若每条边都是无向边,该图G称为无向图(UndirectedGraph) ③如果有些边是有向边,另一些边是无向边,图G称为混合图
(MixedGraph)
【定义】一个有向图中,如果将每条有向边都改为无向边,便 得到该有向图的底图(UnderlyingUndirectedGraph)或基础图。
第8章 图论及其应用
1 图的基本概念 2 图的连通性 3 图的矩阵表示 4 最短路径与关键路径 5树
1
主要内容
☞ 图的基本概念 ☞ 图的连通性 ☞ 图的矩阵表示 ☞ 最短路径与关键路径 ☞树
2
3
图论的前世今生
☞ 1736年,欧拉(L.Eular)发表了第一篇关于图论的论文,解决了 哥尼斯堡七桥问题,并因此被誉为图论之父。
竞赛图
27
无向完全图Kᵅ
【定理】Kᵅ 的每个顶点的度数都是ᵅ −1.
【定理】无向完全图Kᵅ 共有ᵅ (ᵅ −1)/2条边. 证明:每一顶点都与其余的ᵅ -1个顶点相邻,即每 一顶点的度为ᵅ -1,共有ᵅ 个顶点,则图G的度为ᵅ (ᵅ -1),由握手定理,得边数ᵅ =ᵅ (ᵅ -1)/2.
2.按G中关联于同一对结点的边数分为多重图和线图。 ☞ 多重图(MultipleGraph): 含有平行边的图;
图论及其应用PPT课件
![图论及其应用PPT课件](https://img.taocdn.com/s3/m/fdb0225f02020740be1e9bf4.png)
图论及其应用第一章
Ramsey理论的哲理意义
Ramsey理论的哲理意义 • 完全的无序是不可能的(Complete disorder is impossible)。任一足够大的结构中必定包含一个给定大 小的规则子结构。无序无意的行为产生了有规律的后果, 发人深思耐人寻味。 • 古人在满天的星斗中发现野兽和众神群集于天空的图形,
-34-
图论及其应用第一章 一些特殊图类: (1) 完全图(complete graph) 例4
K3
K4
K5
K5
-35-
图论及其应用第一章
(2) 二部图 (bipartite graph):若图G 的顶点集可 划分为两个非空子集X 和Y,使得任一条边有一个 端点在X 中,另一个端点在Y 中,则称G 为二部图 (或偶图),记为G= (X U Y , E) ,(X ,Y ) 称为G 的一个划分(二分类)。
(1736年 瑞士数学家欧拉——图论之父)
-2-
图论及其应用第一章
七桥问题
C
A
D
B
包含两个要素:对象(陆 地)及对象间的二元关系 (是否有桥连接)
转化
Euler 1736年
C
A
D
B 图论中讨论的图
问题:是否能从A,B,C,D 转化 中的任一个开始走,通过每 座桥恰好一次再回到起点?
是否能从任意一个顶点开 始,通过每条边恰好一次 再回到起点?
从数学上看,同构的两个图,其顶点间可建立一 一对应,边之间也能建立一一对应,且若一图的两点 间有边,则在另一图中对应的两点间有对应的边。严 格的数学定义如下。
定义: 两个图G = (V (G), E(G)) 与H = (V (H), E(H)) , 如果存在两个一一映射:
图论及其应用
![图论及其应用](https://img.taocdn.com/s3/m/a7a82f24c850ad02de804172.png)
图和子图 图和简单图图 G = (V, E)V ---顶点集,ν---顶点数12ε E ---边集, ε---边数例。
左图中, V={a, b,......,f}, E={p,q, ae, af,......,ce, cf} 注意, 左图仅仅是图G 的几何实现(代表), 它们有无穷多个。
真正的 图G 是上面所给出式子,它与顶点的位置、边的形状等无关。
不过今后对两者将经常不加以区别。
称 边 ad 与顶点 a (及d) 相关联。
也称 顶点 b(及 f) 与边 bf 相关联。
称顶点a 与e 相邻。
称有公共端点的一些边彼此相邻,例如p 与af 。
环(loop ,selfloop ):如边 l 。
棱(link ):如边ae 。
重边:如边p 及边q 。
简单图:(simple graph )无环,无重边 平凡图:仅有一个顶点的图(可有多条环)。
一条边的端点:它的两个顶点。
记号:νε()(),()().G V G G E G ==。
习题1.1.1 若G 为简单图,则εν≤⎛⎝ ⎫⎭⎪2 。
1.1.2 n ( ≥ 4 )个人中,若每4人中一定有一人认识其他3人,则一定有一 人认识其他n-1人。
同构在下图中, 图G 恒等于图H , 记为 G = H ⇔ VG)=V(H), E(G)=E(H)。
图G 同构于图F ⇔ V(G)与V(F), E(G)与E(F)之间 各 存在一一对应关系,且这二对应关系保持关联关系。
记为 G ≅F。
注 往往将同构慨念引伸到非标号图中,以表达两个图在结构上是否相同。
de f G = (V , E )yz w cG =(V , E )w cyz H =(V ’, E ’)’a ’c ’y ’e ’z ’F =(V ’’, E ’’)注 判定两个图是否同构是NP-hard 问题。
完全图(complete graph) Kn空图(empty g.) ⇔ E = ∅ 。
V’ ( ⊆ V) 为独立集 ⇔ V’中任二顶点都互不相邻。