【高中教育】最新高三数学上学期第二次月考试题文
三明一中2022-2023学年上学期月考二高三数学科试卷含答案
三明一中2022-2023学年上学期月考二高三数学科试卷(考试时间:120分钟,满分150分)注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的姓名、准考证号.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.非选择题用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,仅有一项是符合题目要求的.)1.已知集合{}{}22,3,4,230A B x x x ==∈+-<N ,则A B 中元素的个数是A.2B.3C.4D.52.复平面内表示复数622iz i+=-,则z =A. B. C.4 D.3.若非零实数,a b 满足a b >,则A.22ac bc> B.2b a a b+> C.e1a b-> D.ln ln a b>4.函数()cos f x x x =的图像大致是A .B .C .D .5.如图,在矩形ABCD 中,2AD =,点M ,N 在线段AB 上,且1AM MN NB ===,则MD 与NC所成角的余弦值为A .13B .45C .23D .356.足球起源于中国古代的蹴鞠游戏.“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动.已知某“鞠”的表面上有四个点,,,P A B C ,满足1,PA PA =⊥面ABC ,AC BC ⊥,若23P ABC V -=,则该“鞠”的体积的最小值为A.256π B.9π C.92π D.98π7.如图,在杨辉三角形中,斜线l 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,记其前n 项和为n S ,则22S =A.361B.374C.385D.3958.在ABC 中,角A、B 、C 所对的边分别为a 、b 、c ,若sin c A =,b a λ=,则实数λ的最大值是A.B.32+C.D.2二、多选题(本题共4小题,每小题5分,共20分。
山西省大同市第一中学校2024-2025学年高三上学期第二次学情监测(9月月考)数学试题(无答案)
2024-2025学年高三第二次学情监测数学试卷(考试时间:120分钟,满分150分)一、单选题(共8小题,每小题5分,共40分)1.已知集合,,则( )A. B. C. D.2.命题:“,”的否定为( )A.,B.,C.,D.,3.设为等差数列的前项和,若,则( )A.56B.66C.77D.784.函数是定义在上的奇函数,满足,当时,有,则( )A.0B.1C. D.5.若函数在外有极大值,则实数a 的值为( )A.1B.-1或-3C.-1D.-36.在中,,,,若满足条件的有两个,则x 的取值范围是( )A. B. C. D.7.设函数,则下列函数中为奇函数的是( )A. B. C. D.8.设函数,若在上单调递增,则a 的最小值为( )A.2B.1C.D.二、多选题(共3题,每小题6分,共18分){}14A x x =-<<()2,5B =()R B A = ð(]1,2-()1,2-()[),45,-∞+∞ ()[),15,-∞-+∞ p *x ∀∈N *x ∀∈N 1122x⎛⎫≤ ⎪⎝⎭*x ∀∈N 1122x⎛⎫>⎪⎝⎭*x ∀∉N 1122x⎛⎫>⎪⎝⎭*x ∃∉N 1122x⎛⎫>⎪⎝⎭*x ∃∈N 1122x⎛⎫>⎪⎝⎭n S {}n a n ()()3578122366a a a a a ++++=14S =()y f x =R ()()60f x f x +-=()0,3x ∈()ln f x x =()2024f =ln 2ln 4()()2f x x x a =+1x =ABC △a x =1b =45B =︒ABC △(]0,1(()0,1(()11xf x x-=+()11f x --()11f x -+()11f x +-()11f x ++()22,1e ln ,1x x ax xf x a x x ⎧-++≤=⎨->⎩()f x R 1e1e 1-9.若函数恰好有三个单调区间,则实数a 的取值可以是( )A.-3B.-1C.0D.210.是定义在上的奇函数,当时,有恒成立,则( )A. B.C. D.11.已知函数,则( )A.1是的极小值点B.的图象关于点对称C.有3个零点D.当时,三、填空(共3题,每小题5分,共15分)12.若正项等比数列中,,,则_________.13.函数的图象恒过定点A ,若点A 在直线上,则的最小值为_________.14.已知,则的值为_________.四、解答题15.(13分)已知函数,直线是函数的图象的一条对称轴.(1)求函数的最小正周期和单调递增区间;(2)若,求函数的值域.16.(15分)设函数(I )讨论的单调性;(Ⅱ)求在区间的最大值和最小值.17.(15分)在中,角A ,B ,C 的对边分别为a ,b ,c ,已知.(1)求B ;()3231f x ax x x =+-+()f x R 0x >()()20xf x f x '+>()()142f f >()()142f f ->-()()4293f f >()()4293f f ->-()3223f x x x =-()f x ()f x 11,22⎛⎫-⎪⎝⎭()()1g x f x =+01x <<()()211f x f x ->-{}n a 32a =78a =5a =()10,1x y a a a -=>≠()100mx ny mn +-=>11m n+()3cos 25cos 0a ββ++=()tan tan a βα+()()2sin 036πf x x ωω⎛⎫=-<< ⎪⎝⎭π3x =π3x =π3x =5π0,12x ⎡⎤∈⎢⎥⎣⎦π3x =()()2ln 23f x x x =++()f x ()f x 31,44⎡⎤-⎢⎥⎣⎦ABC △2cos cos cos 0c B b A a B --=(2)若,求周长的取值范围.18.(17分)已知函数,.(1)若,求函数在处的切线方程;(2)若关于的不等式对所有成立,求a 的取值范围19.(17分)已知函数,(1)当时,求的单调区间;(2)若方程有两个不同的根,.(i )求的取值范围;(ii )证明:.ABC △πABC △()1e ax y f x +==x ∈R 12a =()y f x =()()2,2f --x ()2e f x x >+()0,x ∈+∞()1ln xf x ax+=1a =()f x ()1f x =1x 2x a 22122x x +>。
湖南省长沙市2025届高三上学期第二次月考数学试卷含答案
湖南2025届高三月考试卷(二)数学(答案在最后)命题人、审题人:高三数学备课组时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11i z =+的虚部是()A.1 B.12 C.12- D.1-【答案】C【解析】【分析】先化简给定复数,再利用虚部的定义求解即可.【详解】因为()()11i 1i 1i 1i 1i 1i 222z --====-++-,所以其虚部为12-,故C 正确.故选:C.2.已知a 是单位向量,向量b 满足3a b -= ,则b 的最大值为()A.2B.4C.3D.1【答案】B【解析】【分析】设,OA a OB b == ,由3a b -= ,可得点B 在以A 为圆心,3为半径的圆上,利用向量的模的几何意义,可得 b 的最大值.【详解】设,OA a OB b == ,因为3a b -= ,即3OA OB BA -== ,即3AB = ,所以点B 在以A 为圆心,3为半径的圆上,又a 是单位向量,则1OA = ,故OB 最大值为134OA AB +=+= ,即 b 的最大值为4.故选:B.3.已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为()A.23- B.13- C.23 D.13【答案】D【解析】【分析】由角θ的终边,得tan 2θ=,由同角三角函数的关系得cos 1sin cos 1tan θθθθ=++,代入求值即可.【详解】因为角θ的终边在直线2y x =上,所以tan 2θ=.所以cos 111sin cos 1tan 123θθθθ===+++.故选:D.4.已知函数()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x ->-,则实数a 的取值范围为()A.34a ≤ B.34a ≥ C.1a ≤ D.1a ≥【答案】D【解析】【分析】由条件判定函数的单调性,再利用指数函数、二次函数的性质计算即可.【详解】()()()12120f x f x f x x x ->⇒- 在上单调递增,又()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩,当0x <时,()e 33xf x a =+-单调递增,当0x ≥时,()f x 单调递增,只需1330a a +-≤+,解得1a ≥.故选:D.5.如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD -的体积为83,则圆柱的表面积为()A.10πB.9π2C.4πD.8π【答案】A【解析】【分析】取AB 的中点O ,由13A BCD OCD V S AB -=⋅△,可求解底面半径,即可求解.【详解】设底面圆半径为r ,由AB CD ⊥,易得BC AC BD AD ===,取AB 的中点O ,连接,OC OD ,则,AB OC AB OD ⊥⊥,又OC OD O,OC,OD =⊂ 平面OCD ,所以AB ⊥平面OCD ,所以,11182423323A BCD OCD V S AB r r -=⋅=⨯⨯⨯⨯= ,解得=1,所以圆柱表面积为22π42π10πr r +⨯=.故选:A.6.已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为()A.52+ B.5 C.10 D.11【答案】B【解析】【分析】(方法一)首先求出抛物线C 的方程为24y x =,设直线l 的方程为:1x ty =+,与抛物线C 的方程联立,利用根与系数的关系求出21x x 的值,再根据抛物线的定义知11AF x =+,21BF x =+,从而求出23AF BF +的最小值即可.(方法二)首先求出111AF BF+=,再利用基本不等式即可求解即可.【详解】(方法一)因为抛物线C 的焦点到准线的距离为2,故2p =,所以抛物线C 的方程为24y x =,焦点坐标为1,0,设直线l 的方程为:()()11221,,,,x ty A x y B x y =+,不妨设120y y >>,联立方程241y x x ty ⎧=⎨=+⎩,整理得2440y ty --=,则12124,4y y t y y +==-,故221212144y y x x =⋅=,又B =1+2=1+1,2212p BF x x =+=+,则()()12122321312352525AF BF x x x x +=+++=++≥=,当且仅当12,23x x ==时等号成立,故23AF BF +的最小值为5.故选:B.(方法二)由方法一可得121x x =,则11AF BF +211111x x =+++121212211x x x x x x ++==+++,因此23AF BF +()1123AF BF AF BF ⎛⎫=++ ⎪ ⎪⎝⎭235AF BF BF AF =++55≥+=+,当且仅当661,123AF BF =+=+时等号成立,故23AF BF +的最小值为5.故选:B.7.设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()y f x =的图象与直线114y x =-的交点个数为()A.1B.2C.3D.4【答案】C【解析】【分析】利用给定条件求出()πcos 4f x x ⎛⎫=- ⎪⎝⎭,再作出图像求解交点个数即可.【详解】对R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以π4x =是=的一条对称轴,所以()ππZ 4k k ϕ+=∈,又π2ϕ<,所以π4ϕ=-.所以()πcos 4f x x ⎛⎫=- ⎪⎝⎭,在平面直角坐标系中画出()πcos 4f x x ⎛⎫=-⎪⎝⎭与114y x=-的图象,当3π4=-x 时,3π14f ⎛⎫-=- ⎪⎝⎭,11113π3π4164y --=⨯(-=-<-,当5π4x =时,5π14f ⎛⎫=- ⎪⎝⎭,5π5π14111461y =⨯-=->-,当9π4x =时,9π14f ⎛⎫= ⎪⎝⎭,11119π9π4416y =⨯-=-<,当17π4x =时,17π14f ⎛⎫= ⎪⎝⎭,111117π17π4416y =⨯-=->所以如图所示,可知=的图象与直线114y x =-的交点个数为3,故C 正确.故选:C.8.已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠-⋅=-,且()()()()()g x g y f x f y g x y -=-,则下列说法正确的是()A.()01f =B.()f x 是偶函数C.若()()1112f g +=,则()()2024202420242f g -=-D.若()()111g f -=,则()()202420242f g +=【答案】C【解析】【分析】对A ,利用赋值法令0,0x y ==即可求解;对B ,根据题中条件求出()f y x -,再利用偶函数定义即可求解;对C ,先根据题意求出()()001f g -=-,再找出()()11f x g x ---与()()f x g x ⎡⎤-⎣⎦的关系,根据等比数列的定义即可求解;对D ,找出()()11f x g x -+-与()()f x g x ⎡⎤+⎣⎦的关系,再根据常数列的定义即可求解.【详解】对A ,()()()()()f x g y f y g x f x y -⋅=- ,令0,0x y ==,即()()()()()00000f g f g f -⋅=,解得()00f =,故A 错;对B ,根据()()()()()f x g y f y g x f x y -=-,得()()()()()f y g x f x g y f y x -=-,即()()f y x f x y -=--,故()f x 为奇函数,故B 错;对C ,()()()()()g x g y f x f y g x y -=- 令0x y ==,即()()()()()00000g g f f g -=,()00f = ,()()200g g ∴=,又()00g ≠,()01g ∴=,()()001f g ∴-=-,由题知:()()f x yg x y ---()()()()()()()()f x g y f y g x g x g y f x f y ⎡⎤=-⋅--⎣⎦()()()()f y g y f x g x ⎡⎤⎡⎤=+-⎣⎦⎣⎦,令1y =,即()()()()()()1111f x g x f g f x g x ⎡⎤⎡⎤---=+-⎣⎦⎣⎦,()()1112f g += ,()()()()1112f xg x f x g x ⎡⎤∴---=-⎣⎦,即()(){}f xg x -是以()()001f g -=-为首项2为公比的等比数列;故()()()2024202420242024122f g -=-⨯=-,故C 正确;对D ,由题意知:()()f x yg x y -+-()()()()()()()()f xg y f y g x g x g y f x f y =-⋅+-()()()()g y f y f x g x ⎡⎤⎡⎤=-+⎣⎦⎣⎦,令1y =,得()()()()()()1111f x g x g f f x g x ⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦,又()()111g f -=,即()()()()11f x g x f x g x -+-=+,即数列()(){}f xg x +为常数列,由上知()()001f g +=,故()()202420241f g +=,故D 错.故选:C.【点睛】关键点点睛:本题的关键是对抽象函数进行赋值,难点是C ,D 选项通过赋值再结合数列的性质进行求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中正确的是()A.一个样本的方差()()()22221220133320s x x x ⎡⎤=-+-++-⎣⎦L ,则这组样本数据的总和等于60B.若样本数据1210,,,x x x 的标准差为8,则数据1221,21,x x -- ,1021x -的标准差为16C.数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D.若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小【答案】ABD【解析】【分析】对于A ,由题意可得样本容量为20,平均数是3,从而可得样本数据的总和,即可判断;对于B ,根据标准差为8,可得方差为64,从而可得新数据的方差及标准差,即可判断;对于C ,根据百分位数的定义,求出第70百分位数,即可判断;对于D ,由题意可求得新数据的平均数及方差,即可判断.【详解】解:对于A ,因为样本的方差()()()222212201333,20s x x x ⎡⎤=-+-++-⎣⎦ 所以这个样本有20个数据,平均数是3,这组样本数据的总和为32060,⨯=A 正确;对于B ,已知样本数据1210,,,x x x 的标准差为8s =,则264s =,数据121021,21,,21x x x --- 的方差为2222264s =⨯2816=⨯=,故B 正确;对于C ,数据13,27,24,12,14,30,15,17,19,23共10个数,从小到大排列为12,13,14,15,17,19,23,24,27,30,由于100.77⨯=,故选择第7和第8个数的平均数作为第70百分位数,即232423.52+=,所以第70百分位数是23.5,故C 错误;对于D ,某8个数的平均数为5,方差为2,现又加入一个新数据5,设此时这9个数的平均数为x ,方差为2S ,则2285582(55)165,2999x S ⨯+⨯+-====<,故D 正确.故选:ABD.10.已知函数()32f x ax bx =-+,则()A.()f x 的值域为RB.()f x 图象的对称中心为()0,2C.当30b a ->时,()f x 在区间()1,1-内单调递减D.当0ab >时,()f x 有两个极值点【答案】BD【解析】【分析】利用一次函数、三次函数的性质结合分类讨论思想可判定A ,利用函数的奇偶性判定B ,利用导数研究函数的单调性结合特殊值法排除C ,利用极值点的定义可判定D.【详解】对于A :当,a b 至少一个不为0,则()f x 为三次或者一次函数,值域均为;当,a b 均为0时,值域为{}2,错误;对于B :函数()()32g x f x ax bx =-=-满足()()3g x ax bx g x -=-+=-,可知()g x 为奇函数,其图象关于()0,0中心对称,所以()f x 的图象为()g x 的图象向上移动两个单位后得到的,即关于0,2中心对称,正确;对于C :()23f x ax b '=-,当30b a ->时,取1,1a b =-=-,当33,33x ⎛⎫∈- ⎪ ⎪⎝⎭时,()()2310,f x x f x =-+>'在区间33,33⎛⎫- ⎪ ⎪⎝⎭上单调递增,错误;对于D :()23f x ax b '=-,当0ab >时,()230f x ax b '=-=有两个不相等的实数根,所以函数()f x 有两个极值点,正确.故选:BD.11.我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是()A.函数()sin 1f x x =+是圆22:(1)1O x y +-=的一个太极函数B.对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C.对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D.若函数()()3f x kx kx k =-∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈-【答案】AD【解析】【分析】根据题意,对于A ,D 利用新定义逐个判断函数是否满足新定义即可,对于B ,C 举反例说明.【详解】对于A ,圆22:(1)1O x y +-=,圆心为0,1,()sin 1f x x =+的图象也过0,1,且0,1是其对称中心,所以()sin 1f x x =+的图象能将圆一分为二,所以A 正确;对于B,C ,根据题意圆22:1O x y +=,如图()331,332313,03231332331,332x x x f x x x x ⎧--<-⎪⎪+-≤≤=⎨⎪+<≤⎪->⎩,与圆交于点()1,0-,1,0,且在x 轴上方三角形面积与x 轴下方个三角形面积之和相等,()f x 为圆O 的太极函数,且()f x 是偶函数,所以B ,C 错误;对于D ,因为()()()()()33()f x k x k x kx kx f x k -=---=--=-∈R ,所以()f x 为奇函数,由()30f x kx kx =-=,得0x =或1x =±,所以()f x 的图象与圆22:1O x y +=的交点为()()1,0,1,0-,且过圆心()0,0,由3221y kx kx x y ⎧=-⎨+=⎩,得()2624222110k x k x k x -++-=,令2t x =,则()232222110k t k t kt -++-=,即()()222110t k t k t --+=,得1t =或22210k t k t -+=,当1t =时,1x =±,当22210k t k t -+=时,若0k =,则方程无解,合题意;若0k ≠,则()4222Δ44k k k k=-=-,若Δ0<,即204k <<时,方程无解,合题意;所以()2,2k ∈-时,两曲线共有两个交点,函数能将圆一分为二,如图,若Δ0=,即2k =±时,函数与圆有4个交点,将圆分成四部分,若Δ0>,即24k >时,函数与圆有6个交点,且均不能把圆一分为二,如图,所以()2,2k ∈-,所以D 正确.故选:AD.【点睛】关键点点睛:本题解题的关键是理解新定义,即如果一个函数过圆心,并且函数图象关于圆心中心对称,且函数将圆分成2部分,不能超过2部分必然合题.如果函数不是中心对称图形,则考虑与圆有2个交点,交点连起来过圆心,再考虑如何让面积相等.三、填空题:本题共3小题,每小题5分,共15分.12.曲线2ln y x x =-在点()1,2处的切线与抛物线22y ax ax =-+相切,则a =__________.【答案】1【解析】【分析】求出曲线2ln y x x =-在点()1,2处的切线方程,由该切线与抛物线22y ax ax =-+相切,联立消元,得到一元二次方程,其Δ0=,即可求得a .【详解】由2ln y x x =-,则12y x'=-,则11x y ='=,曲线2ln y x x =-在点()1,2处的切线方程为21y x -=-,即1y x =+,当0a ≠时,则212y x y ax ax =+⎧⎨=-+⎩,得()2110ax a x -++=,由2Δ(1)40a a =+-=,得1a =.故答案为:1.13.已知椭圆G22+22=1>>0的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c,则椭圆C 的离心率为______.【答案】23【解析】【分析】由内切圆半径的计算公式,利用等面积法表示焦点三角形12PF F 的面积,得到,a c 方程,即可得到离心率e 的方程,计算得到结果.【详解】由题意,可知1PF 为椭圆通径的一半,故21b PF a =,12PF F 的面积为21122b cc PF a⋅⋅=,又由于12PF F 的内切圆的半径为3c,则12PF F 的面积也可表示为()12223c a c +⋅,所以()111222223c c PF a c ⋅⋅=+⋅,即()212223b c ca c a =+⋅,整理得:22230a ac c --=,两边同除以2a ,得2320e e +-=,所以23e =或1-,又椭圆的离心率()0,1e ∈,所以椭圆C 的离心率为23.故答案为:23.14.设函数()()44xf x ax x x =+>-,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________.【答案】58##0.625【解析】【分析】根据题意,利用基本不等式,求得2min ()1)f x =+,转化为21)b +>恒成立,结合a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,得到基本事件总数有24个,再利用列举法,求得()f x b >成立的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】因为0,4a x >>,可得40x ->,则()()441441444x f x ax ax a x a x x x =+=++=-+++---2411)a ≥++=,当且仅当4x =时,等号成立,故2min ()1)f x =+,由不等式()f x b >恒成立转化为21)b >恒成立,因为a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则构成(),a b 的所有基本事件总数有24个,又由()221)1)912,16==+,()221)1319,201)25+=+=,设事件A =“不等式()f x b >恒成立”,则事件A 包含事件:()()1,4,1,8,()()()2,4,2,8,2,12,()()()()3,4,3,8,3,12,3,16,()()()()()()4,4,4,8,4,12,4,16,4,20,4,25共15个,因此不等式()f x b >恒成立的概率为155248=.故答案为:58.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC 的面积为334,且2AD DC = ,求BD 的最小值.【答案】(1)π3B =(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由.112333BD BC CA BA BC =+=+,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V 的面积为33π,43B =,所以133sin 24ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当6,2a c ==时取等号,所以BD .16.已知双曲线E 的焦点在x 轴上,离心率为233,点(在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直的直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.【答案】(1)2213x y -=(2)6【解析】【分析】(1)由222c a b =+和3e =,及点(在双曲线E 上,求出22,a b ,即可求出E 的方程;(2)设直线()()121:2,:2l y k x l y x k =-=--,其中0k ≠,根据题中条件确定2133k <<,再将1l 的方程与2213x y -=联立,利用根与系数的关系,用k 表示AC ,BD 的长,再利用12ABCDS AC BD =,即可求出四边形ABCD 面积的最小值.【小问1详解】因为222c a b =+,又由题意得22243c e a ==,则有223a b =,又点(在双曲线E 上,故229213-=b b,解得221,3b a ==,故E 的方程为2213xy -=.【小问2详解】根据题意,直线12,l l 的斜率都存在且不为0,设直线()()121:2,:2l y k x l y x k=-=--,其中0k ≠,因为12,l l 均与E 的右支有两个交点,所以313,33k k >->,所以2133k <<,将1l 的方程与2213x y -=联立,可得()222213121230k x k x k -+--=.设()()1122,,,A x y C x y ,则2212122212123,1313k k x x x x k k---+==--,所以()222121212114AC k x k x x x x =+-=++-)22222222222311212323114113133113k k k kkk k k k k +⎛⎫---+=+-⨯+ ⎪----⎝⎭,同理)22313k BD k +=-,所以))()()()2222222223131111622313313ABCD kkk S AC BD k kkk+++==⋅⋅=⋅----.令21t k =+,所以241,,43k t t ⎛⎫=-∈⎪⎝⎭,则2222166661616316161131612ABCDt S t t t t t =⋅=⋅=≥-+-⎛⎫-+---+ ⎪⎝⎭,当112t =,即1k =±时,等号成立.故四边形ABCD 面积的最小值为6.17.如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==,2,P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C 的夹角的余弦值为53333?若存在,求出点P ;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,点P 为11A B 中点【解析】【分析】(1)延长三条侧棱交于一点O ,由勾股定理证明OA OB ⊥,OA OC ⊥,根据线面垂直的判定定理得证;(2)建立空间直角坐标系,求出平面111A B C 和平面APC 的法向量,利用向量夹角公式求解.【小问1详解】延长三条侧棱交于一点O ,如图所示,由于11124,2AB A B BB ===22OB OA ==所以22216OA OB AB +==,所以OA OB ⊥,同理OA OC ⊥.又OB OC O = ,,OB OC ⊂平面OBC ,所以OA ⊥平面OBC ,即1AA ⊥平面11BCC B .【小问2详解】由(1)知,,OA OB OA OC OB OC ⊥⊥⊥,如图建立空间直角坐标系,则(()0,0,,0,A C,()()111,,0,A B C ,所以((1110,0,,0,,AA AC A B ==-=,()110,B C =.设)111,0,A P A B λλ===,则1AP AA =+)[]1,0,,0,1A P λ=∈,设平面111A B C 和平面APC 的法向量分别为(),,,m x y z n ==(),,r s t ,所以)01000r t λ⎧=+=⎪⎨+==⎪⎪⎩⎩,取()()1,1,1,1,,m n λλλ==+,则cos ,33m n m n m n ⋅===.整理得212870λλ+-=,即()()21670λλ-+=,所以12λ=或76λ=-(舍),故存在点P (点P 为11A B 中点时),满足题意.18.若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3nn n a n b ⎛⎫=-= ⎪⎝⎭,(i )判断数列{}{},n n a b 是否具有性质P ,并说明理由;(ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由;(2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .【答案】(1)(i )数列{}n a 不具有性质P ,数列{}n b 具有性质P ,理由见解析;(ii )数列{}n S 具有性质P ,理由见解析(2)证明见解析【解析】【分析】(1)判断数列是否满足条件①②,可得(i )的结果;利用错位相减法求数列{}n n a b 的前n 项和,再判断是否满足条件①②.(2)先求数列{}n c 的通项公式,再判断是否满足条件①②.【小问1详解】(i )因为21n a n =-单调递增,但无上限,即不存在M ,使得n a M <恒成立,所以数列不具有性质P .因为113nn b ⎛⎫=< ⎪⎝⎭,又数列为单调递减数列,所以数列具有性质P .(ii )数列{}n S 具有性质P .2112113333n n n S -=⋅+⋅++ ,23111121133333n n n S +-=⋅+⋅++ ,两式作差得23121111211222333333n n n n S +-=⋅+⋅+⋅++⋅- ,即1121121212223313333313n n n n n n S ++⎛⎫- ⎪-+⎝⎭=-+-=--,所以111,3n n n S +=-<∴数列{}n S 满足条件①.(){}11210,,3nn n n n n a b n S S S +⎛⎫=->∴<∴ ⎪⎝⎭为单调递增数列,满足条件②.综上,数列{}n S 具有性质P .【小问2详解】因为*0,1,,,X n n =∈N ,若X 为奇数的概率为,n c X 为偶数的概率为n d ,()1[1]nn n c d p p +==-+001112220C (1)C (1)C (1)C (1)n n n n nn n n n p p p p p p p p --=-+-+-++- ①()001112220[1]C ()(1)C ()(1)C ()(1)C ()(1)n n n n n n n n n n p p p p p p p p p p ----=--+--+--++-- ②,2n c -=①②,即1(12)2nn p c --=.所以当102p <<时,0121p <-<,故n c 随着n 的增大而增大,且12n c <.故数列{}n c 具有性质P .19.已知函数()24e 2x f x x x-=-,()2233g x x ax a a =-+--(a ∈R 且2a <).(1)令()()()(),x f x g x h x ϕ=-是()x ϕ的导函数,判断()h x 的单调性;(2)若()()f x g x ≥对任意的()1,x ∈+∞恒成立,求a 的取值范围.【答案】(1)ℎ在(),0∞-和0,+∞上单调递增;(2)(],1-∞.【解析】【分析】(1)需要二次求导,利用导函数的符号分析函数的单调性.(2)法一先利用()()22f g ≥这一特殊情况,探索a 的取值范围,再证明对()1,x ∈+∞时,()()f x g x ≥恒成立;法二利用导数工具求出函数()x ϕ的最小值()0x ϕ,同法一求证(]0,1a ∈时()00x ϕ≥,接着求证()1,2a ∈时()20ϕ<不符合题意即可得解.【小问1详解】()()()2224e 233x x f x g x x x ax a a xϕ-=-=-+-++,定义域为{}0xx ≠∣,所以()()()224e 1223x x h x x x a xϕ--==-+-',所以()()2234e 2220x x x h x x --+=+>'.所以()h x 在(),0-∞和()0,∞+上单调递增.【小问2详解】法一:由题知()()22f g ≥即()()()2232120a a a a ϕ=-+=--≥,即1a ≤或2a ≥,所以1a ≤.下证当1a ≤时,()()f x g x ≥对任意的()1,x ∈+∞恒成立.令()()24e x F x f x x x x -=+=-,则()()()()()222234e 224e 11,0x x x x x F x t x t x x x---+-'=-==>',所以()()224e 11x x F x x --=-'在()1,+∞单调递增,又()20F '=,所以当()1,2x ∈时,()()0,F x F x '<单调递减,当()2,x ∈+∞时,()()0,F F x x '>递单调增,所以()()20F x F ≥=,故()f x x ≥-,要证()()f x g x ≥,只需证()x g x -≥,即证()223130x a x a a -+++≥,令()()22313G x x a x a a =-+++,则()()()222Δ(31)43561151a a a a a a a =+-+=-+=--,若115a ≤≤,则0∆≤,所以()()223130G x x a x a a =-+++≥.若15a <,则对称轴31425a x +=<,所以()G x 在()1,+∞递增,故()()210G x G a >=≥,综上所述,a 的取值范围为(],1-∞.法二:由题知2224e 233x x x ax a a x--≥-+--对任意的()1,x ∈+∞恒成立,即()2224e 2330x x x x ax a a xϕ-=-+-++≥对任意的()1,x ∈+∞恒成立.由(1)知()()224e 1223x x x x a x ϕ--=-+-'在()1,+∞递增,又()13a ϕ'=-.①若0a ≤,则()()()10,x x ϕϕϕ'>≥'在()1,+∞递增,所以()()24110e x a ϕϕ>=-+>,符合;②若0a >,则()130a ϕ=-<',又()112224e 14e (1)(1)(1)a a a a a a a a a ϕ--⎡⎤+=-=-+⎣⎦++',令()124e(1)a m a a -=-+,则()()()14e 21a m a a h a -=-+=',则()14e 2a h a -'=-为单调递增函数,令()0h a '=得1ln2a =-,当()0,1ln2a ∈-时()()0,h a m a ''<单调递减,当()1ln2,a ∞∈-+时()()0,h a m a ''>单调递增,又()()10,00m m ='<',所以当()0,1a ∈时,()()0,m a m a '<单调递减,当()1,a ∈+∞时,()()0,m a m a '>单调递增,所以()()10m a m ≥=,则()12214e (1)0(1)a a a a a ϕ-⎡⎤+'=-+≥⎣⎦+,所以(]01,1x a ∃∈+,使得()00x ϕ'=,即()0200204e 12230x x x a x ---+-=,且当()01,x x ∈时,()()0,x x ϕϕ'<单调递减,当()0,x x ∈+∞时,()()0,x x ϕϕ'>单调递增,所以()()0222min 000004e 233x x x x x ax a a x ϕϕ-==-+-++.若(]0,1a ∈,同法一可证()0222000004e 2330x x x x ax a a x ϕ-=-+-++≥,符合题意.若()1,2a ∈,因为()()()2232120a a a a ϕ=-+=--<,所以不符合题意.综上所述,a 的取值范围为(],1-∞.【点睛】方法点睛:导数问题经常会遇到恒成立的问题.常见的解决思路有:(1)根据参变分离,转化为不含参数的函数最值问题.(2)若()0f x >恒成立,就可以讨论参数不同取值下的函数的单调性和极值与最值,最终转化为()min 0f x >;若()0f x <⇔()max 0f x <.(3)若()()f x g x ≥恒成立,可转化为()()min max f x g x ≥(需在同一处取得最值).。
天津市南开中学2023-2024学年高三上学期第二次月考数学试卷
答案第31 页,共22 页
【详解】设{an
-
n}
的公比为
q
,则
q
=
a2 a1
-2 -1
=
11- 2 4 -1
=
3
,
所以 an - n = (a1 -1) × qn-1 = (4 -1) ×3n-1 = 3n ,则 an = n + 3n ,
所以 a4 = 4 + 34 = 85 ,
所以落在区间[4,85] 内的偶数共有 41 个,故t (a4 ) = 41 .
11.在
æ çè
3x2
-
2 x
ö5 ÷ø
的展开式中,
x
的系数是
.
三、双空题
12.已知直线 l : y = kx - 2(k > 0) 与圆 x2 + y2 = 1 相切,且被圆 x2 + ( y + a)2 = 4(a > 0) 截
得的弦长为 2 3 ,则 k = ; a = .
四、填空题
13.锐角a
(2)求数列{anbn} 的前 n 项和 Sn ;
å (3)若数列{dn} 满足 d1 = 1 , dn + dn+1 = bn ,记Tn =
n
dk
m .是否存在整数 ,使得对
b k =1 2k
任意的 n Î N * 都有1 £
mTn
-
dn b2n
<
m 2 成立?若存在,求出
的值;若不存在,说明理由.
故选:C. 9.B
【分析】根据三角函数的变换规则求出 g ( x) 的解析式,再根据正弦函数的性质判断
A、C、D,利用诱导公式判断 B.
河南省周口市沈丘县长安高级中学2022-2023学年高三上学期第二次月考理科数学试题
B. a∈[ 3 ,1) 4
C. a∈(0, 1 ] 3
D. a∈[ 3 ,2) 4
8.
函数 y
3x 3x
cos
x
在区间
π 2
,
π 2
的图象大致为()
1
A.
B.
C.
D.
9. 已知函数 f (x) sin 2x 3 cos 2x 的图象向左平移 个单位长度后,得到函数 g(x) 的图象,且 g(x) 的
三、解答题:共 70 分,解答必须写出必要的文字说明、证明过程或者演算步骤.
17.
已知幂函数 f x m2 m 1xm1 2在0,
上为增函数.
(1)求实数 m 的值;
(2)求函数 g x f 2x 3 4x 5 的值域.
18. 已知在锐角△ABC 中,角 A,B,C 所对
边分别为
a,b,c,且
A. 2, 4
B. 0, 2, 4
2 f x x2 x 3 ,则 f 1 ()
C. 1,3,5
D. 0, 2, 4,6
A. 6
B. 5
C. 3
D. 2
3. 设命题甲:“ x2 3x 0 ”,命题乙:“ x 1 3 ”,那么命题甲是命题乙的()
A. 充分非必要条件 C. 充要条件
B. 必要非充分条件 D. 既不充分也不必要条件
为 22. 已知函数 f x 2x2ex , gx ax2alnxaR.
(1)求函数 f x 的单调区间和极值;
(2)若函数 h x f x g x 有 2 个零点,求实数 a 的取值范围.
4
tan C
a2
ab b2
c2
.
(1)求角 C 大小;
四川省内江市第六中学2022-2023学年高三上学期第二次月考《文科》数学(解析版)
内江六中2022—2023学年(上)高2023第二次月考文科数学试题第Ⅰ卷 选择题(满分60分)一、选择题(每题5分,共60分)1. 已知向量()1,2a =r ,()1,1b = ,若c a kb =+ ,且b c ⊥ ,则实数k =( )A. 32B. 53-C. 53D. 32-【答案】D 【解析】【分析】根据平面向量坐标的线性运算得c得坐标,在根据向量垂直的坐标关系,即可得实数k 的值.【详解】解:因为向量()1,2a =r ,()1,1b = ,所以()1,2c a kb k k =+=++ ,又b c ⊥,所以120b c k k ⋅=+++= ,解得32k =-.故选:D.2. 复数13i2iz -=+的虚部为( )A. 75-B. 7i 5-C. 73-D. 7i 3-【答案】A 【解析】【分析】利用复数的除法运算化简,即可得复数的虚部.【详解】解:复数13i (13i)(2i)17i 17i 2i (2i)(2i)555z -----====--++-故z 的虚部为75-.故选:A .3. 若集合{1A =-,0,1},2{|1B y y x ==-,}x A ∈,则A B = ( )A. {0} B. {1}C. {0,1}D. {0,1}-【答案】D 【解析】【分析】把A 中元素代入B 中解析式求出y 的值,确定出B ,找出两集合的交集即可.【详解】解:把A 中=1x -,0,1代入B 中得:0y =,1,即{0B =,1},则{0A B = ,1}-,故选:D .4. 若变量x 、y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =+取最大值时的最优解是( )A. 5,03⎛⎫ ⎪⎝⎭B. 1,12⎛⎫-- ⎪⎝⎭C. 12,33⎛⎫⎪⎝⎭D. ()2,1-【答案】C 【解析】【分析】作出满足约束条件的可行域,平移直线20x y +=,即可得出结果.【详解】作出满足约束条件的可行域(如图中阴影部分所示).2z x y =+可化为20x y z +-=,平移直线20x y +=,当其经过点C 时,目标函数2z x y =+取得最大值,联立21y x x y =⎧⎨+=⎩,解得13x =,23y =,故最优解是12,33⎛⎫⎪⎝⎭,故选:C.5. 若a ,b 均为实数,则“ln ln a b >”是“e e a b >”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据函数ln y x =与e x y =解不等式,即可判断.【详解】解:因为ln ln a b >,由函数ln y x =在()0,+∞上单调递增得:0a b >>又e e a b >,由于函数e x y =在R 上单调递增得:a b >由“0a b >>”是“a b >”的充分不必要条件可得“ln ln a b >”是“e e a b >”的充分不必要条件.故选:A.6. 如图是函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的图象的一部分,则函数()f x 的解析式为( )A. ()2sin 26f x x π⎛⎫=+⎪⎝⎭B. ()2sin 23f x x π⎛⎫=+⎪⎝⎭C. ()sin 3f x x π⎛⎫=+ ⎪⎝⎭D. ()2sin 23f x x π⎛⎫=-⎪⎝⎭【答案】B 【解析】【分析】由图象可确定()f x 最小正周期T ,由此可得ω;根据712f A π⎛⎫=- ⎪⎝⎭可求得ϕ;由()0f =可求得A ,由此可得()f x .【详解】由图象可知:()f x 最小正周期23471T πππ⎛⎫-=⎪⎝⎭=⨯,22T πω∴==;又77sin 126f A A ππϕ⎛⎫⎛⎫=+=-⎪ ⎪⎝⎭⎝⎭,()73262k k ππϕπ∴+=+∈Z ,解得:()23k k πϕπ=+∈Z ,又02πϕ<<,3πϕ∴=,()sin 23f x A x π⎛⎫∴=+⎪⎝⎭,()0sin 3f A A π=== ,2A ∴=,()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭.故选:B.7. 已知向量,a b 的夹角为4π,且1||4,(23)122a a b a b ⎛⎫=+⋅-= ⎪⎝⎭,则向量b 在向量a 方向上的投影是( )A.B. 3C. D. 1【答案】D 【解析】【分析】由题意,根据数量积的运算,化简等式,解得模长,结合投影的计算公式,可得答案.【详解】由()123122a b a b ⎛⎫+⋅-= ⎪⎝⎭,22323122a a b a b b -⋅+⋅-= ,2213122a a b b +⋅-= ,21164cos 31224b b π+⨯⋅-=,230b -= ,(30b += ,解得b = b 在向量a 方向上的投影为cos 14b π= ,故选:D.8. 蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系.用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法,现设计一个实验计算圆周率的近似值,向两直角边长分别为6和8的直角三角形中均匀投点40个.落入其内切圆中的点有22个,则圆周率π≈( )A.6320B.3310C.7825D.9429【答案】B 【解析】【分析】根据几何概型的计算公式和题意即可求出结果.【详解】直角三角形内切圆的直径等于两直角边的和与斜边的差,即268104r =+-=,由几何概型得2222140682π⨯≈⨯⨯,从而3310π≈.故选:B.9. 双碳,即碳达峰与碳中和的简称,2020年9月中国明确提出2030年实现“碳达峰”,2060年实现“碳中和”.为了实现这一目标,中国加大了电动汽车的研究与推广,到2060年,纯电动汽车在整体汽车中的渗透率有望超过70%,新型动力电池随之也迎来了蓬勃发展的机遇.Peukert 于1898年提出蓄电池的容量C (单位:A·h ),放电时间t (单位:h )与放电电流I (单位:A )之间关系的经验公式n C I t =⋅,其中32log 2n =为Peukert 常数.在电池容量不变的条件下,当放电电流10A I =时,放电时间57h t =,则当放电电流15A I =,放电时间为( )A. 28h B. 28.5hC. 29hD. 29.5h【答案】B 【解析】【分析】根据题意求出蓄电池的容量C ,再把15A I =代入,结合指数与对数的运算性质即可得解.【详解】解:根据题意可得5710n C =⋅,则当15A I =时,571015n n t ⋅=⋅,所以32231log 2log 222257575728.5h 333nt ⎛⎫⎛⎫⎛⎫=⋅=⋅=⋅= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即当放电电流15A I =,放电时间为28.5h.故选:B .10. 已知函数()32e ,0461,0x x f x x x x ⎧<=⎨-+≥⎩,则函数()()()2232g x f x f x =--⎡⎤⎣⎦的零点个数为( ).A. 2 B. 3 C. 4 D. 5【答案】B 【解析】【分析】首先根据()()22320f x f x --=⎡⎤⎣⎦,得到()2f x =或1()2f x =-,然后利用导数分析0x ≥时函数的单调性,结合单调性画出函数的图象,通过图象即可观察出函数零点的个数.【详解】由()()()22320g x f x f x =--=⎡⎤⎣⎦,得()2f x =或1()2f x =-.当0x ≥时,2()121212(1)f x x x x x '=-=-,所以当(0,1)x ∈,()0,()'<f x f x 单调递减;当()1,x ∈+∞,()0,()'>f x f x 单调递增,所以1x =时,()f x 有极小值(1)4611f =-+=-.又0x <时,()x f x e =,画出函数()f x 的图象如图所示,由图可知:函数()()()2232g x f x f x =--⎡⎤⎣⎦的零点个数为3.故选:B .11. 已知()f x 是定义在R 上的函数满足(4)()f x f x -=-,且满足(31)f x -为奇函数,则下列说法一定正确的是( )A. 函数()f x 图象关于直线=2x 对称B. 函数()f x 的周期为2C. 函数()f x 关于点1,03⎛⎫- ⎪⎝⎭中心对称 D. (2023)0f =【答案】D 【解析】【分析】对于A.令2x x =+代入(4)()f x f x -=-即可判断.对于C.可考虑图像平移或者将3x 换元进行判断.对于BD.通过AB对称轴和对称中心即可判断出函数周期,继而计算出(2023)f 【详解】因为函数()f x 关于直线2x =-对称,不能确定()f x 是否关于直线2x =对称,A 错误;因为(31)f x -为奇函数,所以(31)(31)f x f x -=---,所以(1)(1)f x f x -=---,所以()(2)f x f x =---,所以函数()f x 关于点(1,0)-中心对称,故C 错误;由()(4)f x f x =--与()(2)f x f x =---得(4)(2)f x f x --=---,即(4)(2)f x f x -=--,故(4)()f x f x -=,所以函数()f x 的周期为4,故B 错误;(2023)(50641)(1)0f f f =⨯-=-=,故D 正确.故选:D的的12. 已知关于x 的不等式(e )e ->x x x x m m 有且仅有两个正整数解(其中e 2.71828= 为自然对数的底数),则实数m 的取值范围是( )A. 43169(,]5e 4eB. 3294(,4e 3eC. 43169[,5e 4eD. 3294[,e 3e 4【答案】D 【解析】【分析】问题转化为2(1)e x x m x +<(0x >)有且仅有两个正整数解,讨论0m ≤、0m >并构造()(1)f x m x =+、2()ex x g x =,利用导数研究单调性,进而数形结合列出不等式组求参数范围.【详解】当0x >时,由2e e 0xxx mx m -->,可得2(1)ex x m x +<(0x >),显然当0m ≤时,不等式2(1)ex x m x +<在(0,)+∞恒成立,不合题意;当0m >时,令()(1)f x m x =+,则()f x 在(0,)+∞上单调递增,令2()ex x g x =,则(2)()e xx x g x '-=,故(0,2)上()0g x '>,(2,)+∞上()0g x '<,∴()g x 在(0,2)上递增,在(2,)+∞上递减,又(0)(0)0f m g =>=且x 趋向正无穷时()g x 趋向0,故()240,e g x ⎛⎤∈ ⎥⎝⎦,综上,(),()f x g x 图象如下:由图知:要使()()f x g x <有两个正整数解,则()()()()()()11{2233f g f g f g <<≥,即2312e 43e 94e m m m ⎧<⎪⎪⎪<⎨⎪⎪≥⎪⎩,解得32944e 3e m ≤<.故选:D【点睛】关键点点睛:问题转化为2(1)ex x m x +<(0x >)有且仅有两个正整数解,根据不等式两边的单调性及正整数解个数列不等式组求范围.第Ⅱ卷非选择题(满分90分)二、填空题(每题5分,共20分)13. 1289log 24⎛⎫+= ⎪⎝⎭______ .【答案】116##516【解析】【分析】利用指数幂与对数运算即可求解.【详解】112388893111log 2log 8log 84236⎛⎫+=+=+= ⎪⎝⎭.故答案为:116.14. 曲线123x y x -=+在点()1,2--处的切线方程为________.(用一般式表示)【答案】530x y -+=【解析】【分析】利用导数的几何意义即得.【详解】由123x y x -=+,得22(23)2(1)5(23)(23)x x y x x +--'==++,所以切线的斜率为255(23)k ==-+,所以所求的切线方程为(2)5[(1)]y x --=--,即530x y -+=.故答案为:530x y -+=.15. 已知π4sin 35α⎛⎫+= ⎪⎝⎭,则πsin 26α⎛⎫+= ⎪⎝⎭___________.【答案】725##0.28【解析】分析】利用倍角余弦公式求得2π7cos(2)325α+=-,由诱导公式π2πsin(2cos(263αα+=-+,即可求值.【详解】22ππ167cos(212sin 12332525αα⎛⎫+=-+=-⨯=- ⎪⎝⎭,而πππ2π7sin(2cos(2)cos(2)662325ααα+=-++=-+=.故答案为:72516. 已知函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭(ω>0),若()f x 在20,3π⎡⎤⎢⎥⎣⎦上恰有两个零点,且在,424ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围是________.【答案】510,23⎡⎤⎢⎥⎣⎦【解析】【分析】由()f x 在20,3π⎡⎤⎢⎥⎣⎦上恰有两个零点,令3x k πωπ+=,Z k ∈,可得52338233ππωππω⎧≤⎪⎪⎨⎪>⎪⎩,令22232k x k ππππωπ-+≤+≤+,Z k ∈,可得f (x )在5,66ππωω⎡⎤-⎢⎥⎣⎦上单调递增,从而有5646240ππωππωω⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,联立求解即可得答案.【详解】解:由题意,令3x k πωπ+=,Z k ∈,得x =33k ππω-,Z k ∈,∴f (x )的第2个、第3个正零点分别为53πω,83πω,【∴52338233ππωππω⎧≤⎪⎪⎨⎪>⎪⎩,解得542ω≤<,令22232k x k ππππωπ-+≤+≤+,Z k ∈,∴52266k k x ππππωωωω-+≤≤+,Z k ∈,令k =0,f (x )在5,66ππωω⎡⎤-⎢⎥⎣⎦上单调递增,∴5,,42466ππππωω⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,∴5646240ππωππωω⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,解得1003ω<≤,综上,ω的取值范围是51023ω≤≤.故答案为:510,23⎡⎤⎢⎥⎣⎦.三、解答题(共70分)(一)必考题(共60分)17. 在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c,已知sin sin ,2A Ca b A b +==.(1)求角B 的大小;(2)求2a c -的取值范围.【答案】(1)3π(2)()0,6【解析】【分析】(1)结合A C B π+=-,以及诱导公式、二倍角公式、正弦定理化简原式,即得解;(2)利用正弦定理,辅助角公式可化简26a c A π⎛⎫-=-⎪⎝⎭,结合A 的范围即得解【小问1详解】A CB π+=- ,sinsin 2B a b A π-∴=cos sin 2B a b A ∴=sin cos sin sin 2B A B A ∴=cos sin 2sin cos 222B B B B ∴==1sin 22B ∴=,又B 为锐角,263B B ππ∴==【小问2详解】由正弦定理4sin sin sin a b c A B C ====,214sin ,4sin 4sin 4sin 2sin 32a A c C A A A A A π⎫⎛⎫∴===-=+=+⎪ ⎪⎪⎝⎭⎭,128sin 2sin 6sin cos 2a c A A A A A A A ⎫∴-=--=-=-⎪⎪⎭6A π⎛⎫=- ⎪⎝⎭由锐角ABC ,故20,0232A C A πππ<<<=-<故(),sin ,20,6626A A a c πππ⎛⎛⎫<<∴-∈∴-∈ ⎪ ⎝⎭⎝.18. 已知等差数列{}n a 的前n 项和为n S ,2512a a +=,424S S =.(1)求n a 及n S ;(2)若11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-,2n S n =(2)()2111n T n =-+【解析】【分析】(1)设出等差数列的首项和公差,利用等差数列的通项公式、前n 项和公式得到关于首项和公差的方程组求出1a 和d ,进而求出n a 及n S ;(2)利用(1)求出n b ,再利用裂项抵消法进行求和.【小问1详解】设等差数列{}n a 的公差为d ,则11125124344(2)2a d a d a d +=⎧⎪⎨⨯+=+⎪⎩,解得112a d =⎧⎨=⎩,所以()12121n a n n =+-=-,()21212n n n S n n -⨯=⨯+=.【小问2详解】由(1)得:+121n a n =+,21(1)n S n +=+,则()()122221211111n n n n a n b S S n n n n +++===-⋅++,所以123n nT b b b b =+++⋅⋅⋅+()22222222111111122331114n n =-+-+-+⋅⋅-+⋅+()2111n =-+..19. 已知()2ex x a f x -=.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()1f x x ≤-对[)1,x ∞∈+恒成立,求a 的取值范围.【答案】(1)10x y --=(2)1a ≥【解析】【分析】(1)利用导数的几何意义以及直线方程的点斜式即可求解.(2)分离参数a ,转化成不等式恒成立问题,利用导数求最值即可.【小问1详解】当1a =时,()21ex x f x -=,()01f =-,()22(1)ex x x f x --'=,(0)1k f '∴==,所以切线方程为:11(0)y x +=⨯-,即10x y --=.【小问2详解】()1f x x ≤-恒成立,即2(1)e x a x x ≥--在[)1,x ∞∈+上恒成立,设2()(1)e x g x x x =--,()(2e )x g x x '=-,令()0g x '=,得120,ln 2x x ==,在[)1,+∞上,()0g x '<,所以函数2()(1)e x g x x x =--在[)1,+∞上单调递减,所以max ()(1)1g x g ==,max ()a g x ∴≥,故有1a ≥.20. 2022年2月4日北京冬奥运会正式开幕,“冰墩墩”作为冬奥会的吉祥物之一,受到各国运动员的“追捧”,成为新晋“网红”,尤其在我国,广大网友纷纷倡导“一户一墩”,为了了解人们对“冰墩墩”需求量,某电商平台采用预售的方式,预售时间段为2022年2月5日至2022年2月20日,该电商平台统计了2月5日至2月9日的相关数据,这5天的第x 天到该电商平台参与预售的人数y (单位:万人)的数据如下表:日期2月5日2月6日2月7日2月8日2月9日第x 天12345人数y (单位:万人)4556646872(1)依据表中的统计数据,请判断该电商平台的第x 天与到该电商平台参与预售的人数y (单位:万人)是否具有较高的线性相关程度?(参考:若0.300.75r <<,则线性相关程度一般,若0.75r ≥,则线性相关程度较高,计算r 时精确度为0.01)(2)求参与预售人数y 与预售的第x 天的线性回归方程;用样本估计总体,请预测2022年2月20日该电商平台的预售人数(单位:万人).参考数据:()()()55211460, 6.78i i i i i y y x x y y ==-=--=≈∑∑,附:相关系数()()()121ˆˆˆ,n i i i n i i x x y y r b ay bx x x ==--===--∑∑【答案】(1)具有较高的线性相关程度(2)ˆ 6.641.2yx =+,146.8万人【解析】【分析】(1)根据已知数据计算出相关系数r 可得;(2)由已知数据求出回归方程的系数得回归方程,然后在回归方程中令16x =代入计算可得估计值.【小问1详解】由表中数据可得1234545566468723,6155x y ++++++++====,所以()52110i i x x =-=∑又()()()55211460,66i i i i i y y x x y y ==-=--=∑∑所以0.970.75nx x y y r --==≈>所以该电商平台的第x 天与到该电商平台参与预售的人数y (单位:万人)具有较高的线性相关程度即可用线性回归模型拟合人数y 与天数x 之间的关系.【小问2详解】由表中数据可得()()()12166ˆ 6.610ni ii n i i x x y y b x x ==--===-∑∑则ˆˆ61 6.6341.2a y bx=-=-⨯=所以ˆ 6.641.2yx =+令16x =,可得ˆ 6.61641.2146.8y=⨯+=(万人)故预测2022年2月20日该电商平台预售人数146.8万人21. 已知()()2e 2ln x f x x a x x =-+(1)当e a =时,求()f x 的单调性;(2)讨论()f x 的零点个数.【答案】(1)()f x 在()0,1上单调递减,在()1,+∞上单调递增; (2)当0e ≤<a ,0个零点;当e a =或a<0,1个零点;e a >,2个零点【解析】【分析】(1)求出函数的导函数()()e 2e x f x x x x ⎛⎫'=+- ⎪⎝⎭,可得()10f '=,令()e e x g x x x =-,利用导数说明()g x 的单调性,即可求出()f x 的单调区间;(2)依题意可得()()2ln e 2ln 0x x f x a x x +=-+=,令2ln t x x =+,则问题转化为e t at =,R t ∈,利用零点存在定理结合单调性可判断方程的解的个数.【小问1详解】解:因为e a =,0x >,()()2e e 2ln x f x x x x =-+所以()()()()()2e 22e 2e e 12e 2e x x x x f x x x x x x x x x x +⎛⎫⎛⎫'=+-+=+-=+- ⎪ ⎪⎝⎭⎝⎭,()10f '=令()e e xg x x x =-,()()2e 1e 0x g x x x '=++>,所以()g x 在()0,+∞单增,且()10g =,当()0,1∈x 时()e e 0x g x x x =-<,当()1,x ∈+∞时()e e 0x g x x x =->,所以当()0,1∈x 时()0f x ¢<,当()1,x ∈+∞时()0f x ¢>,所以()f x 在()0,1单调递减,在()1,+∞单调递增【小问2详解】解:因为()()()2ln 2ln e e 2ln e 2ln 0x x x x f x a x x a x x +=⋅-+=-+=令2ln t x x =+,易知2ln t x x =+在()0,+∞上单调递增,且R t ∈,故()f x 零点转化为()()2ln e 2ln e 0x x t f x a x x at +=-+=-=即e t at =,R t ∈,的设()e t g t at =-,则()e tg t a '=-,当0a =时,()e tg t =无零点;当a<0时,()e 0t g t a '=->,故()g t 为R 上的增函数,而()010g =>,11e 10a g a ⎛⎫=-< ⎪⎝⎭,故()g t 在R 上有且只有一个零点;当0a >时,若(),ln t a ∈-∞,则()0g t '<;()ln ,t a ∈+∞,则()0g t '>;故()()()min ln 1ln g t g a a a ==-,若e a =,则()min 0g t =,故()g t 在R 上有且只有一个零点;若0e a <<,则()min 0g t >,故()g t 在R 上无零点;若e a >,则()min 0g t <,此时ln 1a >,而()010g =>,()()22ln 2ln 2ln g a a a a a a a =-=-,设()2ln h a a a =-,e a >,则()20a h a a-'=>,故()h a 在()e,+∞上为增函数,故()()e e 20h a h >=->即()2ln 0g a >,故此时()g t 在R 上有且只有两个不同的零点;综上:当0e ≤<a 时,0个零点;当e a =或a<0时,1个零点;e a >时,2个零点;【点睛】思路点睛:导数背景下的零点问题,注意利用零点存在定理结合函数单调性来讨论.(二)选考题(10分)请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22. 已知曲线1C 的参数方程为e e e e t tt t x y --⎧=+⎨=-⎩(t 为参数),以直角坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线2C 的极坐标方程4cos ρθ=.(1)求1C 的极坐标方程;(2)若曲线π(0)6θρ=>与曲线1C 、曲线2C 分别交于两点A ,B ,点(40)P , ,求△PAB 的面积.【答案】(1)24ππ(cos 244ρθθ=-<<(2)【解析】【分析】(1)将1C 的参数方程化为普通方程,再根据极坐标与直角坐标的转化公式即可得答案;(2)联立方程,分别求得点A ,B 的极坐标,根据三角形面积公式即可求得答案.【小问1详解】由e e e et tt t x y --⎧=+⎨=-⎩消去参数t ,得224x y -=,因为e e 2t t -+≥,所以曲线1C 的直角坐标方程为224(2)x y x -=≥,因为cos sin x y ρθρθ=⎧⎨=⎩,所以曲线1C 的极坐标方程为24ππ()cos 244ρθθ=-<< ;【小问2详解】由2π64cos2θρθ⎧=⎪⎪⎨⎪=⎪⎩得:A ρ=所以曲线π(0)6θρ=>与曲线1C 交于点A π)6,由π64cos θρθ⎧=⎪⎨⎪=⎩,得:B ρ=, 所以曲线π(0)6θρ=>与曲线2C :4cos ρθ=交于点B π6,则PAB S =△PA PBS S -△O △O 1π4()sin 26B A ρρ=⨯⨯-=选修4-5:不等式选讲23. 己知函数()221f x x a x a =+++-.(1)当0a =时,求不等式()2f x ≥的解集;(2)若对于任意x ∈R ,都有()2f x ≥,求实数a 的取值范围.【答案】(1)()1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭(2)32a ≤-或1a ≥.【解析】【分析】(1)分0x ≥,102x -≤<,12x <-三种情况打开绝对值,求解即可;(2)打开绝对值,将函数()f x 写成分段函数,结合单调性求解即可【小问1详解】()21f x x x=++当0x ≥时,()312f x x =+≥,解得13x ≥,当102x -≤<时,()12f x x =+≥,解得x ∈∅,当12x <-时,()312f x x =--≥,解得1x ≤-,所以不等式()2f x >的解集为()1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭.【小问2详解】因为222172()12148(0222a a a a a +++++--==>,故212a a +>-所以()2222231,11,2131,2x a a x a a f x x a a x a a x a a x ⎧⎪++-≥⎪+⎪=+++-≤<⎨⎪+⎪---+<-⎪⎩所以函数()f x 在1,2a +⎛⎤-∞- ⎥⎝⎦上递减,在1,2a +⎡⎫-+∞⎪⎢⎣⎭上递增,所以函数()f x 在R 上的最小值为21122a a f a ++⎛⎫-=+ ⎪⎝⎭.所以2122a a ++≥,即223(23)(1)0a a a a +-=+-≥解得32a ≤-或1a ≥。
湖南省百所重点高中2024学年高三3月线上第二次月考数学试题试卷
湖南省百所重点高中2024学年高三3月线上第二次月考数学试题试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在三棱锥P ABC -中,AB BP ⊥,AC PC ⊥,AB AC ⊥,PB PC ==,点P 到底面ABC 的距离为2,则三棱锥P ABC -外接球的表面积为( ) A .3πB.2C .12πD .24π2.已知定点1(4,0)F -,2(4,0)F ,N 是圆22:4O x y +=上的任意一点,点1F 关于点N 的对称点为M ,线段1F M 的垂直平分线与直线2F M 相交于点P ,则点P 的轨迹是( ) A .椭圆B .双曲线C .抛物线D .圆3.若不等式22ln x x x ax -+对[1,)x ∈+∞恒成立,则实数a 的取值范围是( ) A .(,0)-∞B .(,1]-∞C .(0,)+∞D .[1,)+∞4.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥5.若()()()32z i a i a R =-+∈为纯虚数,则z =( ) A .163i B .6i C .203i D .206.已知x ,y 满足不等式00224x y x y t x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数z =9x +6y 最大值的变化范围[20,22],则t 的取值范围( )A .[2,4]B .[4,6]C .[5,8]D .[6,7]7.点,,A B C 是单位圆O 上不同的三点,线段OC 与线段AB 交于圆内一点M ,若,(0,0),2OC mOA nOB m n m n =+>>+=,则AOB ∠的最小值为( )A .6π B .3π C .2π D .23π 8.已知实数x 、y 满足不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则3z x y =-+的最大值为( )A .3B .2C .32-D .2-9.已知集合{}3|20,|0x P x x Q x x -⎧⎫=-≤=≤⎨⎬⎩⎭,则()R P Q 为( ) A .[0,2)B .(2,3]C .[2,3]D .(0,2]10.已知31(2)(1)mx x--的展开式中的常数项为8,则实数m =( )A .2B .-2C .-3D .311.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)12.已知奇函数()f x 是R 上的减函数,若,m n 满足不等式组()(2)0(1)0()0f m f n f m n f m +-≥⎧⎪--≥⎨⎪≤⎩,则2m n -的最小值为( )A .-4B .-2C .0D .4二、填空题:本题共4小题,每小题5分,共20分。
海南省文昌中学2024-2025学年高三上学期第二次月考数学试题
海南省文昌中学2024-2025学年高三上学期第二次月考数学试题一、单选题1.已知集合{23}M xx =-<<∣,{}2540N x x x =-+>∣,则M N ⋃=( ) A .(2,1)-- B .(2,4)-C .(,1)(4,)-∞+∞UD .(,3)(4,)-∞⋃+∞2.若复数z 满足(13i)3i z -=-(i 为虚数单位),则z 的模z =( )A .35B .1CD .53.“2π3α=”是“1cos 2α=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知函数()()()1,0ln e 2,0f x x f x x x ⎧->⎪=⎨-++≤⎪⎩,则()2024f 的值为( )A .1-B .0C .1D .25.已知0.43a =,0.5log 4b =,πcos 18c ⎛⎫=- ⎪⎝⎭,则( )A .c b a >>B .b a c >>C .c a b >>D .a c b >>6.已知函数()()21,0lg ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若函数()()g x f x b =-有三个不同的零点,则实数b 的取值范围为( ) A .(0,1]B . 0,1C .(0,)+∞D .(1,)+∞7.若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=( )A B C D 8.挂钟的时针和分针从凌晨0时起到下午14点所在的14小时内,分针与时针会重合( )次(注意:0时开始的那次重合不计算在内)A .11B .12C .13D .14二、多选题9.已知正数x ,y 满足2x y +=,则下列选项正确的是( ) A .11x y+的最小值是4B .xy 的最大值是1C .22x y +的最小值是1D .(1)x y +的最大值是9410.已知函数()sin()f x A x ωϕ=+(0A >,0ω>,π||2ϕ<)的部分图象如图所示,则下列说法正确的是( )A .1ω=B .函数()f x 的图象关于直线5π12x =-对称 C .函数()f x 图象向右平移π3个单位后得到函数5π()2cos 26g x x ⎛⎫=- ⎪⎝⎭的图像D .函数()f x 在区间115π,π1212⎛⎫-- ⎪⎝⎭上是减函数11.对于已知函数32()3f x x x ax b =-++,下列论述正确的有( )A .若9a =-,则函数()y f x =的单调递减区间为(1,3)-B .若函数()y f x =在区间(0,)+∞上是增函数,则4a ≥C .当3a =,0b =时,函数()f x 图像的对称轴为2x =D .当0a =,2b =时,函数()f x 图像的对称中心为(1,0)三、填空题12.函数()f x 是定义在R 上的奇函数,当0x >时,2()log f x x =,则(4)f -=.13.如图是某个函数()y f x =的图象在[0,2]x ∈的一段图像.写出函数()y f x =在[0,2]x ∈时满足图象的一个解析式()f x =(写出一个即可).14.设()cos sin x x f ααα=-(其中N x +∈,α为任意角),则求下列: (1)当4x =时,且π0,3α⎡⎤∈⎢⎥⎣⎦时,()f α的取值范围为;(2)当8x =时,且π0,3α⎡⎤∈⎢⎥⎣⎦时,()f α的取值范围为.四、解答题15.某公园为了提升公园形象,提高游客旅游的体验感,他们更新了部分设施,调整了部分旅游线路.为了解游客对新措施是否满意,随机抽取了100名游客进行调查,男游客与女游客的人数之比为2:3,其中男游客有35名满意,女游客有15名不满意.(1)完成22⨯列联表,依据表中数据,以及小概率值0.05α=的独立性检验,能否认为游客对公园新措施满意与否与性别有关?(2)从被调查的游客中按男、女分层抽样抽取5名游客.再随机从这5名游客中抽取3名游客征求他们对公园进一步提高服务质量的建议,其中抽取男游客的人数为X .求出X 的分布列及数学期望.参考公式:22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.参考数据:16.已知函数()2()cos cos sin f x x x x x =+-.(1)求函数()f x 的最小正周期和单调递增区间; (2)若把()y f x =的图像先向右平移π6个单位,再向上平移1个单位,得到()y g x =的图像,则当[0,2π]x ∈时,求使得()2gx =时所有x 的取值.17.在锐角ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2(cos cos)cos ca Bb A C+=. (1)求角C ;(2)若c =ABABC V 的面积S .18.已知双曲线222:1(0)x C y a a-=>的焦距为1A ,2A ,过点(4,0)T 的直线l 与双曲线C 的右支交于M ,N 两点.(1)求双曲线的方程; (2)若直线MN MN ; (3)记直线1A M ,2A N 的斜率分别为1k ,2k ,证明:12k k 是定值. 19.已知函数()ln (2)f x x mx b b =+->, (1)若1m =-,3b =时,求()f x 的极值; (2)若2m =时,①证明:()f x 有唯一零点a ,且(1,)a b ∈;②若我们任取1(1,)x a ∈开始,实施如下步骤:在()()11,x f x 处作曲线()f x 的切线,交x 轴于点()2,0x ;在()()22,x f x 处作曲线()f x 的切线,交x 轴于点()3,0x ;…….在()(),n n x f x 处作曲线()f x 的切线,交x 轴于点()1,0n x +;可以得到一个数列{}n x ,它的各项都是()f x 不同程度的零点近似值.设()1n n x g x +=,求()n g x 的解析式(用n x 表示1n x +);并证明:当1(1,)x a ∈,总有1n n x x a +<<.。
福建省龙岩第一中学2022-2023学年高三上学期第二次月考数学试题(解析版)
2023届福建省龙岩第一中学高三上学期第二次月考数学试题一、单选题1.已知{}1,0,1,3,5A =-,{}230B x x =-<,则R A B =ð( ) A .{}0,1 B .{}1,1,3-C .{}1,0,1-D .{}3,5【答案】D【分析】由题意求出B ,R B ð,由交集的定义即可得出答案.【详解】因为{}230B x x =-<32x x ⎧⎫=<⎨⎬⎩⎭, 所以R B =ð32x x ⎧⎫≥⎨⎬⎩⎭,所以A R B =ð{}3,5.故选:D. 2.若5:11xp x -≤+,则p 成立的一个充分不必要条件是( ) A .21x -<≤- B .12x -≤≤ C .15x ≤≤ D .25x <<【答案】D【分析】先求出分式不等式的解集,进而结合选项根据充分不必要条件的概念即可求出结果. 【详解】因为511xx -≤+,即51011x x x x -+-≤++,因此4201x x -≤+等价于()()42+10+10x x x -≤≠⎧⎨⎩,解得2x ≥或1x <-,结合选项可知p 成立的一个充分不必要条件是25x <<, 故选:D.3.已知函数()()2ln 16f x x x =++-,则下列区间中含()f x 零点的是( )A .()0,1B .()1,2C .()2,3D .()3,4【答案】C【分析】分别求出()0f 、()1f 、()3f 、()4f 的值,即可判断其正负号,利用零点存在定理则可选出答案.【详解】由题意知:()0ln1660f =-=-<,()231ln2+16ln3+462ln 32ln0e f f =-<-==-=<(), ()ln3+96ln3303f =-=+>,()ln4+166ln 40041f =-=+>. 由零点存在定理可知()f x 在区间()2,3一定有零点. 故选:C.4.如图是杭州2022年第19届亚运会会徽,名为“潮涌”,钱塘江和钱江潮头是会徽的形象核心,绿水青山展示了浙江杭州山水城市的自然特征,江潮奔涌表达了浙江儿女勇立潮头的精神气质,整个会徽形象象征着新时代中国特色社会主义大潮的涌动和发展.如图是会徽的几何图形,设弧AD 长度是1l ,弧BC 长度是2l ,几何图形ABCD 面积为1S ,扇形BOC 面积为2S ,若122l l =,则12S S =( )A .1B .2C .3D .4【答案】C【分析】通过弧长比可以得到OA 与OB 的比,接着再利用扇形面积公式即可求解 【详解】解:设AOD θ∠=,则12,l OA l OB θθ=⋅=⋅,所以122l OAl OB==,即2OA OB =, 所以12221222111222231122OA l OB l OB l OB l S S OB l OB l ⋅-⋅⋅-⋅===⋅⋅, 故选:C5.已知22sin sin ,cos cos 33αβαβ-=--=,且π,0,2αβ⎛⎫∈ ⎪⎝⎭,则ta n()αβ-的值为( )AB.CD.【答案】B【分析】将条件的两个式子平方相加可得()8922cos αβ--=,然后可得()5os 9c αβ-=,再由2sin sin 03αβ-=-<,π,0,2αβ⎛⎫∈ ⎪⎝⎭,可得()π,02αβ⎛⎫-∈- ⎪⎝⎭,从而可求出()in s αβ-=,由商式关系可求得()an t αβ-=【详解】由2sin sin 3αβ-=-,得22sin 2sin sin sin 49ααββ-+=,由2cos cos 3αβ-=,得22cos 2cos cos cos 49ααββ-+=,两式相加得,()8922cos αβ--=,所以可得()5os 9c αβ-=,因为2sin sin 03αβ-=-<,π,0,2αβ⎛⎫∈ ⎪⎝⎭,所以()π,02αβ⎛⎫-∈- ⎪⎝⎭,所以()in s αβ-=()an t αβ-=故选:B6.已知()()2222cos 1ln 4f x x x =-⋅,则函数()f x 的部分图象大致为( )A .B .C .D .【答案】A【分析】利用二倍角余弦公式化简()2f x 的表达式,令()20t x t =≠,可得()f x 的解析式,再判断函数()f x 的奇偶性,可排除选项C 、D ,最后根据0x +→时,()0f x <即可求解.【详解】解:()()()()22222cos 1ln 4cos 2ln 2f x x x x x =-⋅=⋅,令()20t x t =≠,则()2cos ln f t t t =⋅()0t ≠,所以()2cos ln f x x x =⋅()0x ≠,定义域关于原点对称,因为()()()()22cos ln cos ln f x x x x x f x -=-⋅-=⋅=,所以()f x 为偶函数,图象关于y 轴对称,故排除选项C 、D ;又0x +→时,因为2cos 0,ln 0x x ><,所以()2cos ln 0f x x x =⋅<,所以排除选项B ,选项A 正确; 故选:A.7.已知()22231,0log ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,函数()()g x f x b =+有四个不同的零点1234,,,x x x x ,且满足:1234x x x x <<<.则下列结论中不正确的是( ) A .10b -<< B .341x x =C .3112x ≤< D .1232x x +=-【答案】A【分析】作出()f x 图象,利用函数有四个不同的交点求出10b -≤<,A 错误; 根据二次函数的对称轴求出1232x x +=-可判断D ;数形结合结合对数运算得到341x x =可判断B ;数形结合求出231log 0x -≤<,解得3112x ≤<,可判断C. 【详解】如图,作出()f x 图象,若y =-b 与()y f x =有四个交点,需01b <-≤,则10b -≤<,故A 错误;这四个交点的横坐标依次为1234,,,x x x x ,因为抛物线2231y x x =++的对称轴为34x =-,所以1232x x +=-,故D 正确;因为2324log log x x -=,即2324log log 0x x +=,所以341x x =,故B 正确;()(]323log 0,1f x x =-∈,即231log 0x -≤<,所以3112x ≤<,故C 正确.故选:A.8.已知13sin 2,ln 2,2a b c -===,则a ,b ,c 的大小关系是( ) A .c b a << B .a b c <<C .b a c <<D .b c a <<【答案】D【分析】判断sin2和2πsin3的大小,比较a 与34、b 与34、c 与34的大小可判断a 与b 大小关系及b 与c 大小关系,判断aca 与c 大小关系,从而可判断a 、b 、c 大小关系.【详解】2π3sin2sin34a =>=>, 4333344443e e 2e 2lne ln24⎛⎫=>⇒>⇒=> ⎪⎝⎭,即b 34<,∴a >b ;∵3131322264-⎛⎫== ⎪⎝⎭,3327464⎛⎫= ⎪⎝⎭,∴13324->,c b ∴>;∵62764=⎝⎭,6131162464-⎛⎫== ⎪⎝⎭,132->,a c ∴>; a cb ∴>>. 故选:D .【点睛】本题关键是利用正弦函数的值域求出sin2的范围,以34两个值作为中间值,比较a 、b 、c 与中间值的大小即可判断a 、b 、c 的大小.二、多选题9)A .2252cos cos 1212ππ⎛⎫- ⎪⎝⎭ B .1tan151tan15+︒-︒C.cos15︒︒ D .16sin10cos20cos30cos40︒︒︒︒【答案】ABD【分析】对于A ,采用降幂公式,结合特殊角三角函数,可得答案; 对于B ,根据特殊角三角函数,结合正切的和角公式,可得答案; 对于C ,根据辅助角公式,结合特殊角三角函数,可得答案; 对于D ,根据积化和差公式,结合特殊角三角函数,可得答案.【详解】对于A ,2251cos 1cos 55662cos cos 2cos cos12122266ππππππ⎛⎫++ ⎪⎛⎫-=-=- ⎪ ⎪⎝⎭⎪⎝⎭=,故A 正确; 对于B ,()1tan15tan 45tan15tan 4515tan 6031tan151tan 45tan15++==+==--,故B 正确;对于C ,13cos153sin152cos15sin1522⎛⎫-=- ⎪ ⎪⎝⎭()()()2sin30cos15cos30sin152sin 30152sin152sin 4530=-=-==-()212sin 45cos30cos 45sin 302222⎛⎫=-== ⎪ ⎪⎝⎭C 错误; 对于D ,16sin10cos 20cos30cos 40 ()116sin 30sin 10cos30cos 402⎡⎤=⨯+-⎣⎦ 8sin30cos30cos 408sin10cos30cos 40=-()18408sin 40sin 20cos 402⎡⎤=-⨯+-⎣⎦404sin 40cos 404sin 20cos 40=-+()1402sin804sin 60sin 202⎡⎤=-+⨯+-⎣⎦402sin8032sin 20=-+-404sin50cos303=-+ )cos 40sin 503=-+)cos 40cos 403=-+=D 正确;故选:ABD.10.已知0a >,0b >,且4a b +=,则下列结论正确的是( ) A .4ab ≤ B .111a b+≥ C .2216a b +≥ D .228a b +≤【答案】AB【分析】根据基本不等式进行逐一判断即可.【详解】A :因为0a >,0b >,所以4a b ab +≥≤,当且仅当2a b ==时取等号,故本选项正确;B :因为0a >,0b >,所以有11111()(2)(21444a b b a a b a b a b b a ++=+=++≥+=+,当且仅当2a b ==时取等号,故本选项正确;C :因为228a b +≥=,当且仅当2a b ==时取等号,所以本选项不正确;D :因为0a >,0b >,所以有22282a b a b +≤≤+≥,当且仅当2a b ==时取等号,所以本选项不正确,故选:AB11.已知函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线3x π=对称,则( )A .函数12f x π⎛⎫+ ⎪⎝⎭为奇函数B .函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递增C .函数()f x 的图像向右平移()0a a >个单位长度得到的函数图像关于6x π=对称,则a的最小值是3πD .若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根12,x x ,则12x x -的最大值为2π【答案】AC【分析】根据题意得6πϕ=-,()3sin 26f x x π⎛⎫=- ⎪⎝⎭,再结合三角函数的图像性质依次分析各选项即可得答案.【详解】解:因为函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线3x π=对称,所以,2,Z 32k k ππϕπ⨯+=+∈,解得,Z 6k k πϕπ=-+∈,因为22ππϕ-<<,所以6πϕ=-,即()3sin 26f x x π⎛⎫=- ⎪⎝⎭,所以,对于A 选项,函数3sin 212f x x π⎛⎫+= ⎪⎝⎭,是奇函数,故正确;对于B 选项,当,32x ππ⎡⎤∈⎢⎥⎣⎦时,25,626x πππ-⎡⎤∈⎢⎥⎣⎦,由于函数sin y x =在5,26ππ⎡⎤⎢⎥⎣⎦上单调递减,所以函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递减,故错误;对于C 选项,函数()f x 的图像向右平移()0a a >个单位长度得到的函数图像对应的解析式为()3sin 226g x x a π⎛⎫=-- ⎪⎝⎭,若()g x 图像关于6x π=对称,则22,Z 662a k k ππππ⨯--=+∈,解得,Z 62k a k ππ=-+∈, 由于0a >,故a 的最小值是3π,故正确; 对于D 选项,当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,672,66x πππ⎡⎤⎢⎥⎣⎦-∈,故结合正弦函数的性质可知,若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根12,x x ,不妨设12x x <,则12x x -取得最大值时满足1266x ππ-=且25266x ππ-=, 所以,12x x -的最大值为3π,故错误.故选:AC12.已知1a b >>,则( ) A .ln ln a b b a > B .11ea ba b-<C .11e b a ->D .若m b b n =+,则m a a n >+ 【答案】BC【分析】根据各个选项中的不等式,通过构造新函数,利用导数判断其单调性,再结合特例法进行判断即可.【详解】因为1a b >>,所以ln ln ln ln b aa b b a b a>⇔>, 设函数ln ()(1)xf x x x=>,21ln ()x f x x -'=,当(1,e)x ∈时,()0f x '>,函数()f x 单调递增, 当(e,)x ∈+∞时,()0f x '<,函数()f x 单调递减, 所以A 选项错误;因为1a b >>,所以由111111eln ln ln ln a ba ab a b b a b a b -<⇔-<-⇔->-, 设函数1()ln g x x x =-,211()g x x x '=+,当,()0x ∈+∞时,()0g x '>,函数()g x 单调递增,所以B 选项正确;因为111eln 1ba a b->⇔>-,设函数1()ln 1h a a a ⎛⎫=-- ⎪⎝⎭,所以21()a h a a -'=,当()1,a ∞∈+时,()0'>h a ,函数()h a 单调递增, 当()0,1a ∈时,()0h a '<,函数()h a 单调递减,所以()(1)0h a h >=,即11ln 10ln 1a a a a ⎛⎫-->⇒>- ⎪⎝⎭,因为1a b >>,所以111111a b a b <⇒->-,因此11ln 11a a b>->-,所以C 选项正确. 令2,0b m ==,则有1n =-,又令3a =,所以01,2m a a a n ==+=, 显然不成立,所以D 选项错误, 故选:BC【点睛】方法点睛:不等式是否成立可以通过构造函数利用导数的性质来进行判断.三、填空题13.已知角θ的终边经过点(2,1)P -,则22cos 2sin cos 2θθθ-=___________.【答案】23【分析】利用三角函数定义求出tan θ,再利用二倍角公式化简,结合齐次式法计算作答.【详解】因角θ的终边经过点(2,1)P -,则1tan 2θ=-,所以2222222222112()cos 2sin cos 2sin 12tan 221cos 2cos sin 1tan 31()2θθθθθθθθθ-⨯----====----. 故答案为:2314.函数()xe f x x =的单调递减区间是__________.【答案】和(或写成和)【详解】试题分析:由题意得22(1)()x x x xe e e x f x x x-='-=,令()0f x '<,解得0x <或01x <<,所以函数的递减区间为和.【解析】利用导数求解函数的单调区间.15.已知函数(1)y f x =+的图象关于直线3x =-对称,且对R x ∀∈都有()()2f x f x +-=,当2(]0,x ∈时,()2f x x =+.则(2022)f =___________. 【答案】2-【分析】根据给定条件,推理论证出函数()f x 的周期,再利用周期性计算作答. 【详解】因函数(1)y f x =+的图象关于直线3x =-对称,而函数(1)y f x =+的图象右移1个单位得()y f x =的图象,则函数()y f x =的图象关于直线2x =-对称,即(4)()f x f x --=,而对R x ∀∈都有()()2f x f x +-=,则(4)()2f x f x --+-=,即R x ∀∈,(4)()2f x f x +=-+,有(8)(4)2f x f x +=-++[()2]2()f x f x =--++=,因此函数()y f x =是周期函数,周期为8,又当2(]0,x ∈时,()2f x x =+, 所以(2022)(25382)(2)2(2)242f f f f =⨯-=-=-=-=-. 故答案为:2-16.已知函数()sin cos (0,0)f x x a x a ωωω=+>>图像的两条相邻对称轴之间的距离小于,3f ππ⎛⎫= ⎪⎝⎭()6f x f π⎛⎫≤⎪⎝⎭,则ω的最小值为___________. 【答案】13【分析】先由对称轴间的距离确定了1ω>,再利用()6f x f π⎛⎫≤ ⎪⎝⎭得到2,Z 62k k πωπϕπ+=+∈,依次利用诱导公式与基本关系式求得tan 6πω⎛⎫⎪⎝⎭、cos 6πω⎛⎫ ⎪⎝⎭、sin 6πω⎛⎫⎪⎝⎭的a 关于表达式,求出a 的值,进而得到121,Z k k ω=+∈,即可得到结果. 【详解】()()sin cos f x x a x x ωωωϕ=+=+,tan a ϕ=, 因为两条相邻对称轴之间的距离小于π,即2T π<,故22T ππω=<,所以1ω>, 因为()f x 在6x π=处取得最大值,所以2,Z 62k k πωπϕπ+=+∈,即2,Z 26k k ππωϕπ=+-∈,所以1tan tan 2tan 2626tan 6k a ππωππωϕππω⎛⎫⎛⎫=+-=-== ⎪ ⎪⎛⎫⎝⎭⎝⎭ ⎪⎝⎭, 所以1tan 6a πω⎛⎫= ⎪⎝⎭,因为3f π⎛⎫= ⎪⎝⎭3πωϕ⎛⎫+=⎪⎝⎭,即sin 3πωϕ⎛⎫+= ⎪⎝⎭所以sin sin 2sin cos 3326266k πωπωππωππωπωϕπ⎛⎫⎛⎫⎛⎫⎛⎫+=++-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以sin tan cos 666πωπωπω⎛⎫⎛⎫⎛⎫=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又2222sin cos 166πωπω⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭,解得23a =,又0a >,所以a =1sin 62πω⎛⎫= ⎪⎝⎭,又tan 06πω⎛⎫> ⎪⎝⎭,所以2,Z 66k k πωππ=+∈,解得121,Z k k ω=+∈,又1ω>,所以ω的最小值为13.故答案为:13.四、解答题17.已知a ,b ,c 分别为ABC 内角A ,B ,C 的对边,且满足2225,sin 2sin 8b c a bc C B +-==. (1)求cos A ;(2)若ABC 的周长为6ABC 的面积.【答案】(1)516;(2【解析】(1)由余弦定理可求得cos A ;(2)根据正弦定理可得2c b =,再由已知和余弦定理可求得2b =,根据三角形的面积可求得答案.【详解】解:(1)因为22258b c a bc +-=,所以2225cos 216b c a A bc +-==;(2)因为sin 2sin C B =,所以2c b =.由余弦定理得2222152cos 4a b c bc A b =+-=,则a =,因为ABC 的周长为636b =2b =,所以ABC 的面积为122b b ⨯⨯【点睛】方法点睛:(1)在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件;(2)如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件;(3)如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.(4)与三角形有关的最值问题,我们可以利用基本不等式来求最值或利用正弦定理把边转化为关于角的三角函数式,再利用三角变换和正弦函数、余弦函数的性质求最值或范围.18.已知函数()2ππ2sin sin cos cos 44f x x x x x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的对称中心,并求当π0,2x ⎛⎫∈ ⎪⎝⎭时,()f x 的值域;(2)若函数()g x 的图像与函数()f x 的图像关于y 轴对称,求()g x 在区间()0,π上的单调递增区间.【答案】(1)对称中心:π1π,622k ⎛⎫-+ ⎪⎝⎭,k ∈Z ,值域:12⎛⎤- ⎥⎝⎦(2)5π11π,1212⎛⎫ ⎪⎝⎭【分析】(1)根据三角恒等变换,化简函数()f x ,再结合正弦型函数的对称中心公式,即可得到对称中心,结合正弦函数的图像即可求得其值域.(2)由(1)中()f x 的解析式,根据对称变换即可得到函数()g x 的解析式,再结合正弦型函数的单调区间即可求得结果.【详解】(1)因为函数()2ππ2sin sin cos cos 44f x x x x x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭222cos x x x x x x ⎫=+⎪⎪⎝⎭⎝⎭()221cos 2cos sin 22xx x x +=-+π1232x ⎛⎫++ ⎪⎝⎭令π2π,3x k k +=∈Z ,解得ππ62k x =-+,即对称中心π1π,622k k ⎛⎫-+∈ ⎪⎝⎭Z ,当π0,2x ⎛⎫∈ ⎪⎝⎭时,则ππ4π2,333x ⎛⎫+∈ ⎪⎝⎭,再结合三角函数图像可得()12f x ⎛⎤∈- ⎥⎝⎦所以,函数对称中心:π1π,622k ⎛⎫-+ ⎪⎝⎭,k ∈Z ,值域:12⎛⎤- ⎥⎝⎦.(2)因为函数()g x 的图像与函数()f x 的图像关于y 轴对称,则()()π1232g x f x x ⎛⎫=-=-++ ⎪⎝⎭,令ππ3π2π22π232k x k +≤-+≤+,k ∈Z ,解得7ππππ,1212k x k k -+≤≤-+∈Z 当1k =时,即为5π11π,1212⎛⎫ ⎪⎝⎭所以当()0,πx ∈时,()g x 的单调递增区间:5π11π,1212⎛⎫⎪⎝⎭.19.为进一步奏响“绿水青山就是金山银山”的主旋律,某旅游风景区以“绿水青山”为主题,特别制作了旅游纪念章,决定近期投放市场,根据市场调研情况,预计每枚该纪念章的市场价y (单位:元)与上市时间x (单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个恰当的函数描述每枚该纪念章的市场价y 与上市时间x 的变化关系并说明理由:①(0)y ax b a =+≠,②()20y ax bx c a =++≠,③()log 0,0,1b y a x a b b =≠>≠,④(0)ay b a x=+≠; (2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低市场价;(3)利用你选取的函数,若存在()10,x ∈+∞,使得不等式()010f x k x -≤-成立,求实数k 的取值范围.【答案】(1)选择()20y ax bx c a =++≠,理由见解析(2)当该纪念章上市10天时,市场价最低,最低市场价为每枚70元 (3)k ≥【分析】(1)由表格数据分析变量x 与变量y 的关系,由此选择对应的函数关系;(2)由已知数据求出函数解析式,再结合函数性质求其最值;(3)不等式可化为()17010210x k x -+≤-,由条件可得()min 17010210x k x ⎡⎤-+≤⎢⎥-⎣⎦,利用函数的单调性求()17010210y x x =-+-的最小值,由此可得k 的取值范围. 【详解】(1)由题表知,随着时间x 的增大,y 的值随x 的增大,先减小后增大,而所给的函数(0)y ax b a =+≠,()log 0,0,1b y a x a b b =≠>≠和(0)ay b a x=+≠在(0,)+∞上显然都是单调函数,不满足题意,故选择()20y ax bx c a =++≠.(2)把()2,102,()6,78,()20,120分别代入2y ax bx c =++,得42102,36678,40020120,a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解得12a =,10b =-,120c = ∴()221110120107022y x x x =-+=-+,,()0x ∈+∞. ∴当10x =时,y 有最小值,且min 70y =.故当该纪念章上市10天时,市场价最低,最低市场价为每枚70元. (3)令()()()1701010210f xg x x x x ==-+--(10,)x ∞∈+, 因为存在()10,x ∈+∞,使得不等式()0g x k -≤成立, 则()min k g x ≥.又()()17010210g x x x =-+-在(10,10+上单调递减,在()10++∞上单调递增,∴ 当10x =+()g x 取得最小值,且最小值为(10g +=∴k ≥20.己知函数21()2ln (21)(0)2f x x ax a x a =-+->.(1)若曲线(=)y f x 在点(1,(1))f 处的切线经过原点,求a 的值;(2)设2()2g x x x =-,若对任意(0,2]s ∈,均存在(0,2]t ∈,使得()()f s g t <,求a 的取值范围.【答案】(1)=4a ; (2)(0,1ln 2)-.【分析】(1)利用导数的几何意义求切线方程(含参数a ),由切线过原点求出a 的值; (2)利用导数研究()f x 的单调性并求出(0,2]上的最大值,由二次函数性质求()g x 在(0,2]上的最大值,根据已知不等式恒(能)成立求参数a 的范围.【详解】(1)由21()2ln (21)(0)2f x x ax a x a =-+->,可得2()21f x ax a x '=-+-.因为(1)2211f a a a '=-+-=+,13(1)21122f a a a =-+-=-,所以切点坐标为3(1,1)2a -,切线方程为:()311(1)2a y a x ⎛⎫--=+- ⎪⎝⎭, 因为切线经过(0,0),所以3112aa -=+,解得=4a . (2)由题知()f x 的定义域为(0,)+∞,21()[(21)2]f x ax a x x'=----,令()f x '=2(21)20ax a x ---=,解得1x a=-或=2x , 因为0,a >所以10a-<,所以12a-<, 令()0f x '>,即2(21)20ax a x ---<,解得:12x a-<<,令()0f x '<,即2(21)20ax a x --->,解得:1x a<-或2x >,所以()f x 增区间为(0,2),减区间为(2,)+∞.因为()22()211g t t t t =-=--,所以函数()g t 在区间(0,2]的最大值为0, 函数()f s 在(0,2)上单调递增,故在区间(0,2]上max ()(2)2ln 222f s f a ==+-, 所以2ln 2220a +-<,即ln 210a +-<,故1ln 2a <-, 所以a 的取值范围是(0,1ln 2)-.21.如图,在三棱柱111ABC A B C -中,1112,,AB AC AA AB AC A AB A AC ===⊥∠=∠,D 是棱11B C 的中点.(1)证明:1AA BC ⊥;(2)若三棱锥11B A BD -1A BD 与平面11CBB C 所成锐二面角的余弦值.【答案】(1)证明见解析【分析】(1)作出辅助线,由三线合一证明线线垂直,进而证明线面垂直,得到BC ⊥平面1AAO ,从而证明1AA BC ⊥;(2)作出辅助线,由三棱锥的体积求出1A H =用空间向量求解二面角;方法二:作出辅助线,找到二面角的平面角,再求解余弦值. 【详解】(1)取BC 中点O ,连接AO ,1AO ,1AC,因为AB AC =,所以AO BC ⊥,因为11A AB A AC ∠=∠,11,AB AC AA AA ==,所以11A AB A AC ≅,所以11A B AC =,所以1AO BC ⊥, 因为1AOAO O =,1,AO AO ⊂平面1AAO , 所以BC ⊥平面1AAO , 因为1AA ⊂平面1AAO , 所以1AA BC ⊥;(2)连接OD ,则平面1AAO 即为平面1AA DO , 由(1)知BC ⊥平面1AA DO ,因为BC ⊂平面ABC ,且BC ⊂平面11BCC B , 故平面1AA DO ⊥平面ABC ,平面1AA DO ⊥平面11BCC B ,过O 作1OM A D ⊥于M ,则OM ⊥平面ABC ,过1A 作1A H OD ⊥于H ,则1A H ⊥平面11BCC B ,因为11DO BB AA ∥∥知DO BC ⊥,在ABC中:2,AB AC BC ===所以1112BDB S DB DO =⋅△所以111111113B A BD A BDB BDB A A V V S h --==⋅==△,所以11A A H h = 法一:设MOD α∠=,则1DA H α∠=,在1Rt A HD △中11cos A H A D α===所以sin cos DM DO OM OD αα=⋅==⋅=又1A D M 为线段1A D 的中点,以O 为原点,分别以,,OA OB OM 分别为x ,y ,z 轴正方向建立空间直角坐标系,1(0,A B C A ⎝⎭,1,2222B D ⎛⎛ ⎝⎭⎝⎭, 设面1A BD 的法向量为()1111,,x n y z =,则有111111*********n BA xn BD x⎧⋅==⎪⎪⎨⎪⋅=-=⎪⎩,两式相减得:10x =,所以110=,令12z =,可得:1y = 所以1(0,7,2)n =,设面11CBB C 的法向量为()2222,,n x y z =,则有221122220202n CB n CB ⎧⋅==⎪⎨⋅=-=⎪⎩, 解得:20y =,令21z =,解得:2x =所以2(7,0,1)n=, 设锐二面角为θ,则有1212cos 4n n n n θ⋅===+⋅. 法二:过H 做HE BD ⊥,连接1A E ,1A H ⊥面11BCC B,1A H DB ∴⊥,则DB ⊥面1AHE ,1A E BD ∴⊥,则1A EH ∠即为所求二面角.在1Rt A DH △中,11A H A D =12DH =,在Rt DOB 中,2,DO OB DB == 由RtRt DEHDOB 可得:HE DHOB DB=,HE ∴=,则1A E =11cos HE A EH A E ∴∠===22.己知函数()e sin 1(0)x f x a x a =-->在区间(0,)π内有唯一极值点1x . (1)求实数a 的取值范围;(2)证明:()f x 在区间(0,)π内有唯一零点2x ,且212x x <. 【答案】(1)(1,)∈+∞a (2)证明见解析【分析】(1)根据极值点的定义,求导,进而求导函数的零点,研究零点左右与零大小关系,可得答案;(2)由(1)明确函数的单调区间,分别在两个单调区间上,利用零点存在性定理,证明零点唯一存在,根据单调性证明不等式成立. 【详解】(1)()e cos x f x a x '=-,①当01a <≤时,因为()0,x π∈,所以cos 1a x <,1e e x π<<,()0f x '>,()f x 在()0,π上单调递增,没有极值点,不合题意,舍去;②当1a >时,令()=()g x f x ',则()e sin x g x a x '=+,因为()0,x π∈,所以()0g x '>,所以()f x '在()0,π上递增,又因为(0)10f a '=-<,2e 02f ππ⎛⎫'=> ⎪⎝⎭,所以()f x '在()0,π上有唯一零点1x ,且10,2x π⎛⎫⎪⎝⎭∈,所以()10,x x ∈,()0f x '<;1,2x x π⎛⎫∈ ⎪⎝⎭,()0f x '>,所以()f x 在()0,π上有唯一极值点,符合题意. 综上,(1,)∈+∞a .(2)由(1)知1a >,所以,2x ππ⎡⎫∈⎪⎢⎣⎭时,()e cos 0x f x a x '=->,所以()10,x x ∈,()0f x '<,()f x 单调递减;()1,x x π∈,()0f x '>,()f x 单调递增,所以()10,x x ∈时,()(0)0f x f <=,则()10f x <,又因为()e 10f ππ=->, 所以()f x 在()1,πx 上有唯一零点2x ,即()f x 在(0,)π上有唯一零点2x .因为()112211112e sin 21e 2sin cos 1x xf x a x a x x =--=--,由(1)知()10f x '=,所以11e cos x a x =,则()112112e 2e sin 1x x f x x =--,构造2()e 2e sin 1,0,2t tp t t t π⎛⎫=--∈ ⎪⎝⎭,所以()2()2e 2e (sin cos )2e e sin cos t t t tp t t t t t '=-+=--,记()e sin cos ,0,2tt t t t πϕ⎛⎫=--∈ ⎪⎝⎭,则()e c o s s i n t t t t ϕ'=-+,显然()t ϕ'在0,2π⎛⎫⎪⎝⎭上单调递增,所以()(0)0t ϕϕ''>=,所以()t ϕ在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以()(0)0t ϕϕ>=,所以()0p t '>,所以()p t 在0,2π⎛⎫⎪⎝⎭上单调递增,所以()(0)0p t p >=,所以()()1220f x f x >=,由前面讨论可知:112x x π<<,12x x π<<,且()f x 在()1,x x π∈单调递增,所以122x x >.【点睛】在利用导数证明不等式成立时,一定明确单调区间,在同一单调区间上,由函数值的大小关系,可得自变量的大小关系,探究函数的单调性,可通过研究导数过着导数中部分代数式所构成函数的单调性,求其最值,可得函数的单调性.。
2022-2023学年云南省曲靖市第一中学高三上学期第二次月考数学试卷带讲解
小问2详解】
因为 由余弦定理,得 ,
即 ,解得 ,而 ,
所以 的面积 .
18. 年 月 日,我国开始施行《个人所得税专项附加扣除操作办法》,附加扣除的专项包括子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人.某单位有老年员工 人,中年员工 人,青年员工 人,现采用分层抽样的方法,从该单位员工中抽取 人,调查享受个人所得税专项附加扣除的情况,并按照员工类别进行各专项人数汇总,数据统计如表:
B选项:利用基本不等式和对数运算求最值即可;
C选项:根据 得到 ,再结合 得 ,然后根据余弦值求角即可;D选项:根据线性运算得到 ,再结合中位线的性质得到 ,最后根据面积公式求面积比即可.
【详解】A选项:当 , 时, ,所以 ,故A错;
B选项:因为 , ,所以 ,当且仅当 时,等号成立,又 ,所以 ,故B正确;
故选:ABD
【点睛】抽象函数对称性与周期性的判断如下:
若 ,则函数 关于 对称;
若 ,则函数 关于 中心对称;
若 ,则 是 的一个周期.
三、填空题
13.已知点 为角 的终边上一点,则 的值为___________.
【答案】
【解析】
【分析】利用诱导公式化简 ,然后利用终边上点的坐标求三角函数值即可.
【详解】 .
(Ⅱ) 的可取值为 、 、 ,
, , .
所以 的分布列为:
数学期望 .
【点睛】本题考查利用分层抽样求抽取的人数,同时也考查了超几何分布列以及随机变量数学期望的计算,考查计算能力,属于中等题.
19.已知函数
(1)求函数 的单调区间;
(2)若函数 的图像在点 处的切线斜率为 ,设 ,若函数 在区间 内单调递增,求实数 的取值范围.
吉林省长春市第二中学2023-2024学年高三上学期10月月考数学试题+Word版含答案
2024届高三年级第二次调研测试数学学科试卷命题人:戴丽美 审题人:张伟萍一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知p :2log 1x <,则p 的充分不必要条件是( )A. 2x < B. 02x << C. 01x << D. 03x <<2. 已知正实数a ,b 满足196a b+=,则()()19a b ++的最小值是( )A. 8B. 16C. 32D. 363. 已知函数22()lg[(1)(1)1]f x a x a x =-+++的值域为R .则实数a 的取值范围是( )A. 5[1,]3B. 5(1,3C. (]5,1(,)3-∞-⋃+∞ D. ()5,1[1,)3-∞- 4. 已知函数()()21,1215,1x a x f x x a x x ⎧+⎪=⎨-++>⎪⎩,…对12,R x x ∀∈,12x x ≠,满足1212()[()()]0x x f x f x -->,则实数a 的取值范围是( )A. 13a <…B. 13a <<C. 512a <<D. 512a <…5. 已知定义在R 上的函数()f x 满足()()0,(1)(1)f x f x f x f x -+=+=-,且当(1,0)x ∈-时,41()log ()2f x x =--,则172f ⎛⎫= ⎪⎝⎭( )A.12B. 1- C. 12-D. 16. 如图,在边长为2的正方形ABCD 中,其对称中心O 平分线段MN ,且2MN BC =,点E 为DC 的中点,则EM EN ⋅=( )A. 3- B. 2- C. 32-D. 12-7. 已知函数()2f x x m =+与函数()11ln 3,22g x x x x ⎛⎫⎡⎤=--∈ ⎪⎢⎥⎣⎦⎝⎭的图象上至少存在一对关于x 轴对称的点,则实数m 的取值范围是( )A. 5ln 2,24⎡⎤+⎢⎥⎣⎦B. 52ln 2,ln 24⎡⎤-+⎢⎥⎣⎦C. 5ln 2,2ln 24⎡⎤++⎢⎥⎣⎦D. []2ln 2,2-8. 将函数()cos f x x =的图象先向右平移56π个单位长度,再把所得函数图象的横坐标变为原来的 1ω(0)>ω倍,纵坐标不变,得到函数()g x 的图象,若函数 ()g x 在3(,)22ππ上没有零点,则 ω的取值范围是( )A. 228(0,][,939B. 2(0,]9C. 28(0,][,1]99D. (0,1]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 设函数()sin 22f x x x =+,则下列结论正确的是( )A. ()f x 的最小正周期为πB. ()f x 的图象关于直线12x π=对称C. ()f x 的一个零点为3x π=D. ()f x1+10. 下列说法中错误的为()A. 已知()1,2a =r ,()1,1b =r ,且a 与a λb + 的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B. 向量()12,3e =-,213,24e ⎛⎫=- ⎪⎝⎭不能作为平面内所有向量的一组基底C. 若//a b ,则a 在b方向上的正射影的数量为ar D. 三个不共线的向量OA ,OB ,OC ,满足AB CA BA CB OA OB AB CA BA CB ⎛⎫⎛⎫⎪ ⎪⋅+=⋅+ ⎪ ⎪⎝⎭⎝⎭0CA BC OC CA BC ⎛⎫ ⎪=⋅+= ⎪⎝⎭,则O 是ABC V 的内心11. 在现代社会中,信号处理是非常关键技术,我们通过每天都在使用的电话或者互联网就能感受到,而信号处理背后的“功臣”就是正弦型函数.()()71sin 2121i i x f x i =-⎡⎤⎣⎦=-∑的图象就可以近似的模拟某种信号的波形,则下列说法正确的是( )A. 函数()f x 为周期函数,且最小正周期为πB. 函数()f x 为偶函数C. 函数()y f x =的图象关于直线π2x =对称D. 函数()f x 导函数()f x '的最大值为712. 设函数()()πsin 05f x x ωω⎛⎫=+> ⎪⎝⎭,已知()f x []0,2π有且仅有5个零点,则( )A. ()f x 在()0,2π有且仅有3个极大值点B. ()f x 在()0,2π有且仅有2个极小值点C. ()f x 在π0,10⎛⎫⎪⎝⎭单调递增D. ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭三、填空题:本题共4小题,每小题5分,共20分.13. 若函数()y f x =在区间D 上是凸函数,则对于区间D 内的任意1x ,2x ,…,n x 都有()()()12121n n x x x f x f x f x f n n ++⋅⋅⋅+⎛⎫++⋅⋅⋅+≤⎡⎤ ⎪⎣⎦⎝⎭,若函数()sin f x x =在区间(0,)π上是凸函数,则在△ABC 中,sin sin sin A B C ++的最大值是______.14. 在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2221cos cos sin sin sin 4A B C B C -+==,且ABC V的面积为a 的值为________.15. 如图,在ABC V 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若ABC V的面积为,则AP的最小值为__________.的的在16. 若函数()cos sin f x a b x c x =++的图象经过点()0,1和π,4a ⎛⎫- ⎪⎝⎭,且当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()f x ≤恒成立,则实数a 的取值范围是______.四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17. 已知函数()ln f x x x ax b =++在()()1,1f 处的切线为2210x y --=.(1)求实数,a b 的值;(2)求()f x 的单调区间.18. 已知函数()2f x x ω=sin cos x x ωω+(0)>ω的最小正周期为π.(Ⅰ)求函数()f x 的单调递减区间;(Ⅱ)若()f x >,求x 取值的集合.19. 如图,洪泽湖湿地为拓展旅游业务,现准备在湿地内建造一个观景台P ,已知射线AB ,AC 为湿地两边夹角为120°的公路(长度均超过2千米),在两条公路AB ,AC 上分别设立游客接送点M ,N ,从观景台P 到M ,N 建造两条观光线路PM ,PN ,测得2AM =千米,2AN =千米.(1)求线段MN 的长度;(2)若60MPN ∠=︒,求两条观光线路PM 与PN 之和的最大值.20. 已知函数()2ln f x x ax a x =-+有两个极值点1x ,2x .(1)求a 的取值范围;(2)证明:()()1212242416ln2f x f x x x +++<.21. 设函数()sin xf x e a x b =++.(Ⅰ)当1a =,[)0,x ∈+∞时,()0f x ≥恒成立,求b 的范围;(Ⅱ)若()f x 在0x =处切线为10x y --=,且方程()2m xf x x-=恰有两解,求实数m 的取值范围.22 已知函数()1sin e xx f x x -=+,ππ,2x ⎛⎫∈- ⎪⎝⎭.(1)求证:()f x 在()ππ,2-上单调递增;(2)当()π,0-时,()sin e cos sin xf x x x k x --⎡⎤⎣⎦≤恒成立,求k 的取值范围.的.2024届高三年级第二次调研测试数学学科试卷命题人:戴丽美 审题人:张伟萍一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知p :2log 1x <,则p 的充分不必要条件是( )A. 2x <B. 02x << C. 01x << D. 03x <<【答案】C 【解析】【分析】解出2log 1x <的解集,p 的充分不必要条件是其子集,选出即可.【详解】解:由2log 1x <得02x <<,p 的充分不必要条件是()0,2的子集,C 符合,故选:C.【点睛】本题考查充分不必要条件的判断,是基础题.2. 已知正实数a ,b 满足196a b+=,则()()19a b ++的最小值是( )A. 8 B. 16C. 32D. 36【答案】B 【解析】【分析】对196a b+=1≥且96b a ab +=,把()()19a b ++展开得到()()=7919a b ab +++,即可求出最小值.【详解】因为正实数a ,b 满足196a b+=,所以196a b =+≥1≥,当且仅当19=a b 时,即1,33a b ==时取等号.因为196a b+=,所以96b a ab +=,所以()()919=9797916a a b a b b b a +++≥+=+=++.故()()19a b ++的最小值是16.故选:B3. 已知函数22()lg[(1)(1)1]f x a x a x =-+++的值域为R .则实数a 的取值范围是()A. 5[1,]3B. 5(1,3C. (]5,1(,)3-∞-⋃+∞ D. ()5,1[1,)3-∞- 【答案】A 【解析】【分析】当函数的值域为R 时,命题等价于函数()()22111y a x a x =-+++的值域必须包含区间()0+∞,得解【详解】22()lg[(1)(1)1]f x a x a x =-+++ 的值域为R 令()()22111y a x a x =-+++,则()()22111y a x a x =-+++的值域必须包含区间()0+∞,当210a -=时,则1a =±当1a =时,21y x =+符合题意;当1a =-时,1y =不符合题意;当1a ≠±时,()()222101410a a a ⎧->⎪⎨∆=+--≥⎪⎩,解得513a <≤513a ∴≤≤,即实数a 的取值范围是5[1,]3故选:A【点睛】转化命题的等价命题是解题关键.4. 已知函数()()21,1215,1xa x f x x a x x ⎧+⎪=⎨-++>⎪⎩,…对12,R x x ∀∈,12x x ≠,满足1212()[()()]0x x f x f x -->,则实数a 的取值范围是( )A. 13a <…B. 13a <<C. 512a << D. 512a <…【答案】D 【解析】【分析】先判断()f x 是R 上的增函数,列关于实数a 的不等式组,即可求得实数a 的取值范围.【详解】由题意,得()f x 是R 上的增函数,则()11141215a a a a >⎧⎪+⎪⎨⎪+-++⎪⎩……,解得512a <…,故选:D5. 已知定义在R 上函数()f x 满足()()0,(1)(1)f x f x f x f x -+=+=-,且当(1,0)x ∈-时,41()log ()2f x x =--,则172f ⎛⎫= ⎪⎝⎭( )A.12B. 1- C. 12-D. 1【答案】B 【解析】【分析】根据函数()f x 满足(1)(1)f x f x +=-,得到(2)()f x f x -=,再结合()()0f x f x -+=,得到(4)()f x f x +=,即()f x 的周期为4,然后利用周期结合当(1,0)x ∈-时,41()log ()2f x x =--求解.【详解】因为函数()f x 满足(1)(1)f x f x +=-,所以(2)()f x f x -=,又因为()()0f x f x -+=,所以(2)()f x f x +=-,所以(4)()f x f x +=,又因为(1,0)x ∈-时,41()log ()2f x x =--,则17118222⎛⎫⎛⎫⎛⎫=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f f ,2421og 1111112log 12222log 422⎛⎫ ⎪⎛⎫⎛⎫⎛⎫=--=--=--=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭l f .故选:B【点睛】本题主要考查函数奇偶性和周期性的综合应用,还考查了转化求解问题的能力,属于中档题.6. 如图,在边长为2的正方形ABCD 中,其对称中心O 平分线段MN ,且2MN BC =,点E 为DC 的中点,则EM EN ⋅=( )的A. 3-B. 2-C. 32-D. 12-【答案】A 【解析】【分析】利用平面向量线性运算、数量积运算求得正确答案.【详解】24,2,1MN BC OM OE ====.()()EM EN EO OM EO ON⋅=+⋅+ ()()22143EO OM EO OM EO OM =+⋅-=-=-=- .故选:A7. 已知函数()2f x x m =+与函数()11ln3,22g x x x x ⎛⎫⎡⎤=--∈ ⎪⎢⎥⎣⎦⎝⎭的图象上至少存在一对关于x 轴对称的点,则实数m 的取值范围是( )A. 5ln 2,24⎡⎤+⎢⎥⎣⎦ B. 52ln 2,ln 24⎡⎤-+⎢⎥⎣⎦C. 5ln 2,2ln 24⎡⎤++⎢⎥⎣⎦D. []2ln 2,2-【答案】D 【解析】【分析】由题可得()()()2ln 3h x f x g x x x x m =+=+-+在1,22⎡⎤⎢⎥⎣⎦有零点,利用导数研究函数的性质进而可得20ln 22m m -≤≤+-,即得.【详解】原问题等价于()()()2ln 3h x f x g x x x x m =+=+-+在1,22⎡⎤⎢⎥⎣⎦有零点,而()()()1123211h x x x x x x'=+-=--,∴()1,1,02x h x ⎛⎫'∈<⎪⎝⎭,()h x 单调递减, (]()1,2,0x h x '∈>,()h x 单调递增,又()()1512,2ln 22,ln 224h m h m h m ⎛⎫=-=-+=--+⎪⎝⎭,由1ln 22>可判断()122h h ⎛⎫> ⎪⎝⎭,因而()h x 的值域为[]2,ln 22m m -+-,又()h x 有零点,有20ln 22m m -≤≤+-,所以[]2ln2,2m ∈-.故选:D.8. 将函数()cos f x x =的图象先向右平移56π个单位长度,再把所得函数图象的横坐标变为原来的 1ω(0)>ω倍,纵坐标不变,得到函数()g x 的图象,若函数 ()g x 在3(,)22ππ上没有零点,则 ω的取值范围是( )A. 228(0,][,939B. 2(0,]9C. 28(0,][,1]99D. (0,1]【答案】A 【解析】【分析】根据y =Acos (ωx +φ)的图象变换规律,求得g (x )的解析式,根据定义域求出56x πω-的范围,再利用余弦函数的图象和性质,求得ω的取值范围.【详解】函数()cos f x x =的图象先向右平移56π个单位长度,可得5cos 6y x π⎛⎫=-⎪⎝⎭的图象,再将图象上每个点的横坐标变为原来的1ω(0)>ω倍(纵坐标不变),得到函数5()cos 6g x x πω⎛⎫=-⎪⎝⎭的图象,∴周期2T πω=,若函数()g x 在3(,)22ππ上没有零点,∴ 553526626x ωπππωππω-<-<-,∴ 35526262T ωππωπππω⎛⎫⎛⎫---≤=⎪ ⎪⎝⎭⎝⎭,21ω∴≤,解得01ω<≤,又522635226k k πωππππωπππ⎧-+≤-⎪⎪⎨⎪+≥-⎪⎩,解得3412323k ωω-≤≤-,当k =0时,解2839ω≤≤,当k =-1时,01ω<≤,可得209ω<≤,ω∴∈228(0,][,]939.故答案为:A .【点睛】本题考查函数y =Acos (ωx +φ)的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式,求解可得,属于较难题.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 设函数()sin 22f x x x =+,则下列结论正确的是( )A. ()f x 的最小正周期为πB. ()f x 的图象关于直线12x π=对称C. ()f x 的一个零点为3x π=D. ()f x1+【答案】ABC 【解析】【分析】先化简,得到()2sin 23f x x π⎛⎫=+⎪⎝⎭,再根据三角函数的图像和性质对四个选项一一验证.【详解】函数()sin 222sin 23f x x x x π⎛⎫=+=+⎪⎝⎭.对于A :()f x 的最小正周期为π.故A 正确;对于B :2sin 2212123πππf ⎛⎫⎛⎫=⨯+=⎪⎪⎝⎭⎝⎭,所以()f x 的图象关于直线12x π=对称.故B 正确;对于C :2sin 20333πππf ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭,所以3x π=是()f x 的一个零点.故C 正确;对于D :函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,所以()f x 的最大值为2.故D 错误.故选:ABC10. 下列说法中错误的为()A. 已知()1,2a =r ,()1,1b =r ,且a 与a λb + 的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B. 向量()12,3e =-,213,24e ⎛⎫=- ⎪⎝⎭不能作为平面内所有向量的一组基底C. 若//a b ,则a 在b方向上的正射影的数量为ar D. 三个不共线的向量OA ,OB ,OC ,满足AB CA BA CB OA OB AB CA BA CB ⎛⎫⎛⎫ ⎪ ⎪⋅+=⋅+ ⎪ ⎪⎝⎭⎝⎭0CA BC OC CA BC ⎛⎫⎪=⋅+= ⎪⎝⎭,则O 是ABC V 的内心【答案】AC 【解析】【分析】对于A ,由向量的交角为锐角的等价条件为数量积大于0,且两向量不共线,计算即可;对于B ,由124e e = ,可知1e ,2e不能作为平面内所有向量的一组基底;对于C ,利用向量投影的定义即可判断;对于D ,由0AB CA OA AB CA ⎛⎫⎪⋅+= ⎪⎝⎭,点O 在角A 的平分线上,同理,点O 在角B 的平分线上,点O 在角C 的平分线上,进而得出点O 是ABC V 的内心.【详解】对于A ,已知()1,2a =r ,()1,1b =r ,且a 与a λb +的夹角为锐角,可得()0a a b λ+>⋅ ,且a 与a λb +不共线,()1,2a λb λλ+=++ ,即有()1220λλ++⨯+>,且()212λλ⨯+≠+,解得53λ>-且0λ≠,则实数λ的取值范围是53λ>-且0λ≠,故A 不正确;对于B ,向量,,213,24e ⎛⎫=- ⎪⎝⎭,124e e = ,∴向量1e ,2e不能作为平面内所有向量的一组基底,故B 正确;对于C ,若a b P ,则a 在b上的投影为a ± ,故C 错误;对于D ,AB CA AB CA+ 表示与ABC V 中角A 的外角平分线共线的向量,由0AB CA OA AB CA ⎛⎫⎪⋅+= ⎪⎝⎭,可知OA 垂直于角A 的外角平分线,所以,点O 在角A 的平分线上,同理,点O 在角B 平分线上,点O 在角C 的平分线上,故点O 是ABC V 的内心,D 正确.故选:AC.【点睛】本题考查了平面向量的运算和有关概念,具体包括向量数量积的夹角公式、向量共线的坐标表示和向量投影的定义等知识,属于中档题.11. 在现代社会中,信号处理是非常关键的技术,我们通过每天都在使用的电话或者互联网就能感受到,而信号处理背后的“功臣”就是正弦型函数.()()71sin 2121i i x f x i =-⎡⎤⎣⎦=-∑的图象就可以近似的模拟某种信号的波形,则下列说法正确的是( )A. 函数()f x 为周期函数,且最小正周期为πB. 函数()f x 为偶函数C. 函数()y f x =的图象关于直线π2x =对称D. 函数()f x 的导函数()f x '的最大值为7的【答案】CD 【解析】【分析】利用周期的定义可判断A 选项的正误;利用奇偶性的定义可判断B 选项的正误;利用函数的对称性可判断C 选项的正误;求得函数()f x 的导数,求出()f x '的最大值,可判断D 选项的正误.【详解】对于选项A :因为()()()()()7711sin 21πsin 21π21π2121==-+-+-⎡⎤⎡⎤⎣⎦⎣⎦+==--∑∑i i i x i i x f x i i ()()()7711sin π21sin 212121==-+--⎡⎤⎡⎤⎣⎦⎣⎦==-=---∑∑i i i x i x f x i i ,即()()πf x f x +=-,可知函数()f x 的最小正周期不为π,故A 错误;对于选项B :因为sin y x =为奇函数,所以()sin sin x x =--,所以()()71sin 21sin 3sin 5sin 7sin 9sin11sin13sin 2135791113i i x x x x x x xf x x i =-⎡⎤⎣⎦==++++++-∑也是奇函数,故B 错误;对于选项C :因为()()()()()7711sin 21πsin 21π21π2121==-----⎡⎤⎡⎤⎣⎦⎣⎦-==--∑∑i i i x i i x f x i i ()()()7711sin π21sin 212121==----⎡⎤⎡⎤⎣⎦⎣⎦===--∑∑i i i x i x f x i i ,即()()πf x f x -=,所以函数()y f x =的图像关于直线π2x =对称,故C 正确;对于选项D :因为()sin 3sin 5sin 7sin 9sin11sin13sin 35791113x x x x x xf x x =++++++,所以()cos cos3cos5cos 7cos9cos11cos13f x x x x x x x x '=++++++,因为cos ,cos3,cos5,cos 7,cos9,cos11,cos13x x x x x x x 的取值范围均为[]1,1-,可知()7'≤f x ,当0x =时,()07f '=,所以()f x '的最大值为7,所以D 正确.故选:CD .12. 设函数()()πsin 05f x x ωω⎛⎫=+> ⎪⎝⎭,已知()f x 在[]0,2π有且仅有5个零点,则( )A. ()f x 在()0,2π有且仅有3个极大值点B. ()f x 在()0,2π有且仅有2个极小值点C. ()f x 在π0,10⎛⎫⎪⎝⎭单调递增D. ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭【答案】ACD 【解析】【分析】由()f x 在[]0,2π有且仅有5个零点,可得265ωπ5π≤+<ππ可求出ω的范围,然后逐个分析判断即可.【详解】因为()()πsin 05f x x ωω⎛⎫=+> ⎪⎝⎭在[]0,2π有且仅有5个零点,如图所示,所以265ωπ5π≤+<ππ,所以1229510ω≤<,所以D 正确,对于AB ,由函数sin y x =在,2π55ωππ⎡⎤+⎢⎥⎣⎦上的图象可知,()f x 在()0,2π有且仅有3个极大值点,有3个或2个极小值点,所以A 正确,B 错误,对于C ,当π0,10x ⎛⎫∈ ⎪⎝⎭时,ππππ,55105x ωω⎛⎫+∈+ ⎪⎝⎭,因为1229510ω≤<,所以π49ππ1051002ωπ+<<,所以πππ,5105ω⎛⎫+ ⎪⎝⎭π0,2⎛⎫⎪⎝⎭,所以()f x 在π0,10⎛⎫⎪⎝⎭单调递增,所以C 正确,故选:ACD三、填空题:本题共4小题,每小题5分,共20分.13. 若函数()y f x =在区间D 上是凸函数,则对于区间D 内的任意1x ,2x ,…,n x 都有()()()12121n n x x x f x f x f x f n n ++⋅⋅⋅+⎛⎫++⋅⋅⋅+≤⎡⎤ ⎪⎣⎦⎝⎭,若函数()sin f x x =在区间(0,)π上是凸函数,则在△ABC 中,sin sin sin A B C ++的最大值是______.【解析】【分析】根据题设凸函数的性质可得1(sin sin sin )sin(33A B CA B C ++++≤即可求最大值,注意等号成立条件.【详解】由题设知:1(sin sin sin )sin()sin 333A B C A B C π++++≤==,∴sin sin sin A B C ++≤,当且仅当3A B C π===时等号成立.14. 在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2221cos cos sin sin sin 4A B C B C -+==,且ABC V 的面积为a 的值为________.【答案】【解析】【分析】根据同角三角函数的基本关系以及正弦,余弦定理求得角A 的值,再利用正弦定理可得22sin sin sin bc a B C A=,结合ABC V 的面积求出边a 的值.【详解】解:222cos cos sin sin sin A B C B C -+= ,()2221sin 1sin sin sin sin A B C B C ∴---+=,即222sin sin sin sin sin B A C B C -+=,由正弦定理角化边得222b a c bc -+=,2221cos 222b c a bc A bc bc +-∴===,由正弦定理sin sin sin a b c A B C==,22sin sin sin bc a B C A∴=即221sin 43bc a π=,化简得23a bc =,又ABC V的面积为1sin 2ABC S bc A ==V 8bc ∴=224a ∴=解得a =故答案为:15. 如图,在ABC V 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若ABC V的面积为,则AP的最小值为__________.【解析】【分析】用,AC AB表示,CD PD ,利用这两者共线可求m ,求出2AP 后利用基本不等式可求其最小值.【详解】因为2AD DB =,故23AD AB = ,所以23CD AD AC AB AC =-=- ,而211326PD AD AP AB mAC AB AB mAC =-=--=-,因为CD 与PD 为非零共线向量,故存在实数λ,使得2136AB AC AB mAC λ⎛⎫-=- ⎪⎝⎭,故14,4m λ==,所以1142AP AC AB =+ ,所以2221111+216482AP AC AB AC AB =+⨯⨯⨯⨯,由ABC V的面积为=,故8AC AB ⨯= ,所以22211113164AP AC AB =++≥+= ,当且仅当4,2AC AB ==u u u r u u u r时等号成立.故minAP =,故答案【点睛】思路点睛:与三角形有关的向量问题,如果知道边与夹角的关系,则可以考虑用已知的边所在的向量作为基底向量,其余的向量可以用基地向量来表示,此时模长的计算、向量的数量积等都可以通过基底向量来计算.16. 若函数()cos sin f x a b x c x =++的图象经过点()0,1和π,4a ⎛⎫- ⎪⎝⎭,且当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()f x ≤恒成立,则实数a 的取值范围是______.【答案】0,4⎡+⎣【解析】【分析】先根据()π01,4f f a ⎛⎫=-= ⎪⎝⎭将,b c 转化为a 来表示,由此化简()f x 的解析式,对a 进行分类讨论,根据()f x ≤恒成立列不等式来求得a 的取值范围.【详解】因为()f x 经过点()0,1和π,4a ⎛⎫- ⎪⎝⎭,所以(0)1f a b =+=,π4f a a ⎛⎫-=+= ⎪⎝⎭,可得1b c a ==-,故π()(1)cos (1)sin (1)(sin cos ))sin 4f x a a x a x a a x x a a x ⎛⎫=+-+-=+-+=-+ ⎪⎝⎭.因为π02x ≤≤,所以ππ3π444x ≤+≤πsin 14x ⎛⎫≤+≤ ⎪⎝⎭,为当1a <时,10a ->,可得π1)sin )4a a x a ⎛⎫-≤-+≤- ⎪⎝⎭,所以1())f x a a ≤≤-+,要使()f x ≤≤恒成立,)a a -+≤0a ≥,又1a <,从而01a ≤<;当1a =时,()1[f x =∈;当1a >时,10a -<,所以π1)sin )4a a x a ⎛⎫-≥-+≥- ⎪⎝⎭,所以1())f x a a ≥≥-+,要使()f x ≤≤恒成立,)a a -+≥4a ≤+,又1a >,从而14a <≤+综上所述,a的取值范围为04a ≤≤+.故答案为:0,4⎡+⎣【点睛】求解不等式恒成立的问题,主要解题思路是转化为求函数的最值来进行求解,如本题中()f x ≤恒成立,就转化为()f x 的值域,也即三角函数的值域来进行求解.四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17. 已知函数()ln f x x x ax b =++在()()1,1f 处的切线为2210x y --=.(1)求实数,a b 的值;(2)求()f x 的单调区间.【答案】(1)012a b =⎧⎪⎨=⎪⎩(2)减区间为1(0,e 增区间为1(,)e +∞【解析】【分析】(1)求出函数的导数,计算f ′(1),f (1)可求出a ,b 的值;(2)求出函数的解析式,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;【详解】(1)依题意可得:122(1)10(1)2f f --==即()ln f x x x ax b=++ '()ln 1f x x a ∴=++又 函数()f x 在(1,(1))f 处的切线为2210x y --=,1(1)2f =(1)111(1)2f a f a b =+=⎧⎪∴⎨=+'=⎪⎩解得:012a b =⎧⎪⎨=⎪⎩(2)由(1)可得:f '(x )=1+lnx ,当10x e ⎛⎤∈ ⎥⎝⎦,时,f '(x )≤0,f (x )单调递减;当1x e ⎛⎫∈+∞ ⎪⎝⎭,时,f '(x )>0,f (x )单调递增,∴()f x 的单调减区间为1(0,),e ()f x 的单调增区间为1e⎛⎫+∞ ⎪⎝⎭,.【点睛】本题考查了函数的单调性、最值问题,考查导数的应用,属于基础题.18. 已知函数()2f x x ω=sin cos x x ωω+(0)>ω的最小正周期为π.(Ⅰ)求函数()f x 的单调递减区间;(Ⅱ)若()f x >,求x 取值的集合.【答案】(1)函数()f x 的单调递减区间为7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)x 取值的集合为5,2424x k x k k Z ππππ⎧⎫-+<<+∈⎨⎬⎩⎭.【解析】【详解】试题分析:(Ⅰ)根据二倍角的正弦公式、二倍角的余弦公式以及两角和的正弦公式化简()23f x sin x πω⎛⎫==+ ⎪⎝⎭,利用正弦函数的单调性解不等式3222,232k x k πππππ+≤+≤+即可求得函数()f x 的单调递减区间;(Ⅱ)()f x >,即sin 23x π⎛⎫+> ⎪⎝⎭,由正弦函数的性质得3222,434k x k k Z πππππ+<+<+∈,化简后,写成集合形式即可.试题解析:(Ⅰ) ())21sin cos 1cos2sin22f x x x x x x ωωωωω=+=++-1sin2sin 223x x x πωωω⎛⎫=+=+ ⎪⎝⎭,因为周期为22ππω=,所以1ω=,故()sin 23f x x π⎛⎫=+ ⎪⎝⎭, 由3222,232k x k k Z πππππ+≤+≤+∈,得7,1212k x k k Z ππππ+≤≤+∈,函数()f x 的单调递减区间为7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,(Ⅱ)()f x >sin 23x π⎛⎫+> ⎪⎝⎭,由正弦函数得性质得3222,434k x k k Z πππππ+<+<+∈, 解得5222,1212k x k ππππ-+<<+所以5,2424k x k k Z ππππ-+<<+∈,则x 取值的集合为5,2424x k x k k Z ππππ⎧⎫-+<<+∈⎨⎬⎩⎭.19. 如图,洪泽湖湿地为拓展旅游业务,现准备在湿地内建造一个观景台P ,已知射线AB ,AC 为湿地两边夹角为120°的公路(长度均超过2千米),在两条公路AB ,AC 上分别设立游客接送点M ,N ,从观景台P 到M ,N 建造两条观光线路PM ,PN ,测得2AM =千米,2AN =千米.(1)求线段MN 的长度;(2)若60MPN ∠=︒,求两条观光线路PM 与PN 之和的最大值.【答案】(1)千米(2)【解析】【分析】(1)在AMN V 中,利用余弦定理运算求解;(2)在PMN V中,利用正弦定理边化角,结合三角恒等变换可得π6PM PN α⎛⎫+=+⎪⎝⎭,进而可得结果.【小问1详解】在AMN V 中,由余弦定理得,2222cos MN AM AN AM AN MAN =+-⋅∠,即222122222122MN ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,可得MN =所以线段MN的长度【小问2详解】设2π0,3PMN α⎛⎫∠=∈ ⎪⎝⎭,因为π3MPN ∠=,所以2π3PNM α∠=-,在PMN V 中,由正弦定理得sin sin sin MN PM PN MPN PNM PMN==∠∠∠,因为sin ∠MN MPN4=,所以24sin 4sin ,4sin 4si π3n PM PNM PN PMN αα⎛⎫=∠==∠= ⎪⎝⎭-,因此4si 2n 4s π3in PM PN αα-⎛⎫+=+ ⎪⎝⎭14sin 4sin 2ααα⎫=++⎪⎭6sin αα=+=π6α⎛⎫+ ⎪⎝⎭,因为2π03α<<,所以6ππ5π66α<+<,所以当ππ62α+=,即π3α=时,PM PN +取到最大值20. 已知函数()2ln f x x ax a x =-+有两个极值点1x ,2x .(1)求a 的取值范围;(2)证明:()()1212242416ln2f x f x x x +++<.【答案】(1)8a >(2)证明见解析【解析】【分析】(1)求导,将问题转化为220x ax a -+=在()0,∞+上有两个实数根1x ,2x ,根据二次方程根的分布即可求解,(2)结合1212,22a a x x x x =+=,代入化简式子,将问题转化()2ln 2416ln 242a a g a a a =--++<,利用导数即可求解.【小问1详解】()222a x ax a f x x a x x-+'=-+=,()f x 有两个极值点1x ,2x ,则()0f x '=在()0,∞+上有两个实数根1x ,2x ,所以220x ax a -+=在()0,∞+上有两个实数根1x ,2x ,则21212Δ800202a a a x x a x x ⎧⎪=->⎪⎪=>⎨⎪⎪+=>⎪⎩解得8a >,故a 的取值范围为8a >,【小问2详解】由(1)知1212,22a a x x x x =+=,且8a >,()()2212111222121224242424ln ln f x f x x ax a x x ax a x x x x x +++=-++-+++()()()2121212121212242ln x x x x x x a x x a x x x x =++--+++22ln 24ln 2442242a a a a a a a a a a =--++=--++,令()2ln 24(8)42a a g a a a a =--++>,()ln 22a a g a '=-+,令()()()112ln ,02222a a a h a g a h a a a-''==-+=-+=<在8a >上恒成立,为所以()()ln 22a a h a g a '==-+在8a >单调递减,故()()ln 84ln 4022a a g a g ''=-+<=-+<,因此()g a 在8a >单调递减,故()()81688ln 42416ln 2g a g <=--++=,故()2ln 2416ln 242a a g a a a =--++<,得证.【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.21. 设函数()sin xf x e a x b =++.(Ⅰ)当1a =,[)0,x ∈+∞时,()0f x ≥恒成立,求b 的范围;(Ⅱ)若()f x 在0x =处的切线为10x y --=,且方程()2m x f x x -=恰有两解,求实数m 的取值范围.【答案】(I )1b ≥-(II )10m e -<<【解析】【详解】试题分析:(1)将参数值代入得到函数表达式,研究函数的单调性求得函数最值,使得最小值大于等于0即可;(2)根据切线得到0a =,2b =-,方程22x m x e x --=有两解,可得22x xe x m x -=-,所以x xe m =有两解,令()x g x xe =,研究这个函数的单调性和图像,使得常函数y=m ,和()x g x xe =有两个交点即可.解析:由()sin xf x e a x b =++,当1a =时,得()cos xf x e x '=+.当[)0,x ∈+∞时,[]1,cos 1,1xe x ≥∈-,且当cos 1x =-时,2,x k k N ππ=+∈,此时1x e >.所以()cos 0xf x e x =+>',即()f x 在[)0,+∞上单调递增,所以()()min 01f x f b ==+,由()0f x ≥恒成立,得10b +≥,所以1b ≥-.(2)由()sin xf x e a x b =++得()cos x f x e a x =+',且()01f b =+.由题意得()001f e a '=+=,所以0a =.又()0,1b +在切线10x y --=上.所以0110b ---=.所以2b =-.所以()2xf x e =-.即方程22x m x e x --=有两解,可得22x xe x m x -=-,所以x xe m =.令()x g x xe =,则()()1x g x e x '=+,当(),1x ∈-∞-时,()0g x '<,所以()g x 在(),1-∞-上是减函数.当()1,x ∈-+∞时,()0g x '>,所以()g x 在()1,-+∞上是减函数.所以()()min 11g x g e=-=-.又当x →-∞时,()0g x →;且有()10g e =>.数形结合易知:10m e-<<.点睛:本题中涉及根据函数零点求参数取值,是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.22. 已知函数()1sin e x x f x x -=+,ππ,2x ⎛⎫∈- ⎪⎝⎭.(1)求证:()f x 在()ππ,2-上单调递增;(2)当()π,0-时,()sin e cos sin x f x x x k x --⎡⎤⎣⎦≤恒成立,求k 的取值范围.【答案】(1)证明见解析(2)π12k ≤+【解析】【分析】(1)求出函数()f x 的导数,判断导数在()ππ,2-的取值范围,从而证明()f x 的单调性;(2)由题意可得1cos sin x x k x --≤,分离参数得到 1cos sin x x k x --≤,求出1cos ()sin x x g x x--=导数,判断其单调区间,找出最小值即可.小问1详解】()1sin e x x f x x -=+,ππ,2x ⎛⎫∈- ⎪⎝⎭,()2cos e x x f x x -'=+,由()π,0x ∈-,有22x -≥,11e x >,则22e x x ->,又1cos 1x -≤≤,则()2cos 120e x x f x x -'=+>-+>.当π0,2x ⎛⎫∈ ⎪⎝⎭时,cos 0x ≥,20x ->,所以()2cos 0e xx f x x -'=+> 所以当()ππ,2-时,()0f x ¢>,综上,()f x 在()ππ,2-上单调递增.【小问2详解】()sin e cos sin x f x x x k x --⎡⎤⎣⎦≤.化简得1cos sin x x k x --≤.当()π,0x ∈-时,sin 0x <,所以1cos sin x x k x --≤,设()1cos sin x x g x x--=,()()()221sin sin cos 1cos sin 1cos cos sin sin x x x x x x x x x g x x x +-+='--+-=设()sin 1cos cos h x x x x x =+-+,()()cos cos sin sin 1sin h x x x x x x x x =-+-=-'.()π,0x ∈- ,10x ∴-<,sin 0x <,()0h x '∴>()h x ∴在()π,0-上单调递增,又由π02h ⎛⎫-= ⎪⎝⎭,所以当ππ,2x ⎛⎫∈-- ⎪⎝⎭时,()0h x <,()0g x '<,()g x ∴在ππ,2⎛⎫-- ⎪⎝⎭上单调递减;当π,02x ⎛⎫∈- ⎪⎝⎭时,()0h x ∴>,()0g x '>,()g x ∴在π,02⎛⎫- ⎪⎝⎭上单调递增,所以()min π1ππ21212g x g --⎛⎫=-==+ ⎪-⎝⎭,【故π12k ≤+.【点睛】思路点睛:不等式恒成立问题在定义域内,若()g x k ≥恒成立,即()min g x k ≥;在定义域内,若()g x k ≤恒成立,即()max g x k ≤.。
宁夏银川重点名校2023届高三上学期第二次月考数学(文)试题及答案
2023届高三年级第二次月考文 科 数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某国近日开展了大规模COVID -19核酸检测,并将数据整理如图所示,其中集合S 表示A .无症状感染者B .发病者C .未感染者D .轻症感染者2.已知2i z =+,则(i)z z -= A .2i - B .12i +C .62i -+D .62i -3.如图所示的程序框图,输入3个数,0.12a =,0.23b -=,41log 2c =,则输出的a 为 A .0 B .0.12C .0.23-D .41log 24.已知{}n a 是等差数列,172a a +=-,32a =,则{}n a 的公差d 等于 A .3B .4C .-3D .-45.设()0sin f x x =,()()10f x f x '=,()()21f x f x '=,…,()()1n n f x f x +'=,n N ∈,则()2020f x = A .sin x B .sin x -C .cos xD .cos x -6.若110a b<<,则下列不等式成立的是 A .a b ab -> B .a b ab -< C .b a ab -> D .b a ab -<7.若x ,y 满足约束条件423x y x y y +≤⎧⎪-≤⎨⎪≤⎩,则3z x y =+的最大值为A .6B .10C .14D .188.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x -≤-≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]9.函数()ln e e x xy -=+的图像大致是A .B .C .D .10.已知实数,0x y >,且11y x+=,则12x y +的最小值是A .6B .322+C .232+D .1211.已知⎪⎩⎪⎨⎧<-≥=0,30,)(3x x x x exx f x ,若关于x 的方程22()()10f x k f x ⋅--=有5个不同的实根,则实数k 的取值范围为A .72(,)(,)2e e -∞--+∞B .72](,2e e--C .72(,)2e e--D .72(,(,2])e e-∞--+∞12.英国物理学家牛顿用“作切线”的方法求函数的零点时,给出的“牛顿数列”在航空航天中应用广泛,若数列{}n x 满足()()1n n n n f x x x f x +=-',则称数列{}n x 为牛顿数列,如果()22f x x x =--,数列{}n x 为牛顿数列,设1ln2n n n x a x +=-且11a =,2n x >,数列{}n a 的前n 项和为n S ,则2022S = A .202221-B .202222-C .20221122⎛⎫- ⎪⎝⎭D .2022122⎛⎫- ⎪⎝⎭二、填空题(本大题共4小题,每小题5分.共20分)13.已知函数2,0()2,0x x a x f x x ⎧+≤=⎨>⎩,若f [ f ( - 1 ) ] = 4 ,且a > - 1 ,则 a =______.14.若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使2210x x λ-+<成立是假命题,则实数λ的取值范围是___________.15.数列121321,,,,n n a a a a a a a ---⋯-,…是首项为1,公比为2的等比数列,那么n a =________.16.已知定义域为R 的偶函数()f x ,其导函数为()f x ',满足2()()4,(1)1f x xf x f >'+=,则21()2f x x >-的解集为_________. 三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。
2022届宁夏银川一中高三上学期第二次月考数学(文)试题解析.docx
银川一中2022届高三年级第二次月考文科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有 一项是符合题目要求的.1.集合尸={1,2}的真子集的个数是( )A. 7B. 3C. 4D. 8【答案】B 【解析】根据真子集个数的计算方法,求得正确选项. 解:集合尸有两个元素,所以真子集个数为22-1 = 3. 故选:B2 复数 z =「r ,贝01 |z| =()2-1A.季B. 1C. ^5D. 5【答案】A 【解析】3.已知命题p:3xeR,sinx<l ;命题V XG R ,此21,则下列命题中为真命题的是()A . PE【答案】A【解析】 由正弦函数的有界性确定命题P 的真假性,由指数函数的知识确定命题0的真假性,由此确定正确选项.D.利用复数除法运算化简z,由此求得|z|.故选:A解:由于sin0=0,所以命题。
为真命题;由于y = e'在R上为增函数,国20,所以e w>e°=l,所以命题0为真命题;所以PE 为真命题,-P^<3 > 一i(pvg)为假命题.故选:A.4.已知等比数{qj满足%。
7=3。
4。
3,则数列{%}的公比0=()1 1A. 2B. —C. 3D.—3 2【答案】C【解析】根据题意代入等比数列通项公式可得a-" =3a;q\化简即可得解.解:由题意可得。
「苛=3。
含5,可得0 = 3.故选:Cx<45.若x, y满足约束条件< 2x + y>10,则z = x—v的最大值为()y<4A. -1B. 0C. 2D. 10【答案】C【解析】作出可行域,作出目标函数对应的直线,平移该直线得最优解.解:作出可行域,如图△A3C内部(含边界),作直线l:x-y=O, 在直线x-V = z中-z是直线的纵截距,向下平移时纵截距减小,z增大.因此平移直线Z,当Z过A(4,2)时,z = x-y = 2为最大值.故选:C.y A【答案】B【解析】7通过平方将原式变形得到2sinacosa =-—,再结合正弦二倍角公式即可求解.94构轧因为sin a-cos a =—,32 2 1所以两边平方得sin a-2sinacosa + cos a -一,9又因为sin? + cos2 a =1,77所以一2sinocosa = —,艮|12sinacosa =——,9 97所以sin 2a = 2sin a cos a = ~—故选:B7.己知函数/(x) = 2',在[1,9]上随机取一个实数则使得/(x0)<8成立的概率为( )1 1 1 2A. —B. —C. —D.—8 4 3 3【答案】B【解析】首先求不等式的解集,再根据区间长度,求几何概型的概率.解:由/(x0)<8,得2改<8,解得x0<3,在区间[1,9〕上随机取一实数知则实数%满足不等式a _i i/U)<8的概率为P = o.9— 1 4故选:B8.下列不等式恒成立的是( )A. a-+b- < 2abB. a2+b2 > -labC. a + b> -2^\ab\D. a + b< 2^|tzZ?|【答案】B【解析】由基本不等式,可判定A不正确;由a2 +b2 +2ab = (a + by>Q ,可判定B正确;根据特例,可判定C、D 不正确;解:由基本不等式可知a2+b2>2ab>故A不正确;由a2 +b2 > —lab > 可得a2 +b2 + 2ab > 0 > 即(a + Z?)2 > 0 恒成立,故B 正确;当a = -l,b = -l时,不等式不成立,故C不正确;当a = O,b = 1时,不等式不成立,故D不正确.故选:B.9.在数列{%}中,弓=上,。
河南省南阳市第一中学2022届高三数学上学期第二次月考(9月)试题 文
河南省南阳市第一中学2022届高三数学上学期第二次月考(9月)试题 文一、单选题(本大题共12小题,每小题5分,共60分)1.已知集合{}|02A x x =<<,13|log 2B x x ⎧⎫=<⎨⎬⎩⎭,则A B =( )A .{}|0x x >B .1|09x x ⎧⎫<<⎨⎬⎩⎭C .{}|02x x << D .1|29x x ⎧⎫<<⎨⎬⎩⎭2.已知函数()2xy f =的定义域是[1,1]-,则函数()3log f x 的定义域是( )A .[1,1]-B .1,33⎡⎤⎢⎥⎣⎦C .[1,3]D .[3,9]3.已知x 、y R ∈,若:224x yp +>,:2q x y +>,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充分且必要条件D .既不充分也不必要条件4. 设命题0:(0,)p x ∃∈+∞,00132016xx +=;命题:,(0,)q a b ∀∈+∞,11,a b b a++中至少有一个不小于2。
则下列命题为真命题的是( )A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()()p q ⌝∧⌝5.设,则,,a b c 的大小关系是( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>6.已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为( )A .y x =-B .2y x =-+C .y x =D .2y x =-7.已知函数()()()1,0ln 2,20a x a x f x x x ⎧-+>⎪=⎨+-<≤⎪⎩的值域为R ,则实数a 的取值范围是( )A .ln 2a <B .ln 2a ≤C .0a >D .12ln <≤a 8.函数()()22xf x x x e =-的图象大致为( )A B C D9.已知函数112,1()2,1x x x f x x --⎧≥=⎨<⎩,若()2(22)2f x f x x -≥-+,则实数x 的取值范围是( )A .[2,1]--B .[1,)+∞C .RD .(,2][1,)-∞-+∞10.已知函数521log (21),(,3)()21022,[3,)x x f x x x x ⎧-∈⎪=⎨⎪-+∈+∞⎩,若方程()f x m =有4个不同的实根1234,,,x x x x ,且1234x x x x <<<,则341211()()x x x x ++=( ) A .12B .16C .18D .2011.函数()f x 对于任意实数x ,都()()f x f x -=与)1()1(x f x f +=-成立,并且当01x ≤≤时,()2f x x =.则方程()02019xf x -=的根的个数是( ) A .2020 B .2019C .1010D .100912.已知函数()31443f x x x =-+在区间()225,a a -上存在最大值,则实数a 的取值范围是( ) A .32,2⎡⎤-⎢⎥⎣⎦B .()2,2-C .2,2⎡⎤-⎣⎦D .32,2⎡⎫-⎪⎢⎣⎭二、填空题(本大题共4小题,每小题5分,共20分)13.函数()()2322log log 4f x x x =-+,(]1,4x ∈的值域为__________.14.已知函数21()3ln 2f x x ax x =+-在区间1[,2]3上是增函数,则实数a 的取值范围为 15.已知定义在R 上的可导函数()f x 的导函数为()f x ',满足()()(1)f x f x y f x '>=+且是偶函数,2(0)2f e =,则不等式()2x f x e <的解集为16.已知函数211,0()62ln ,0a x x f x x x x x ⎧++<⎪=⎨⎪->⎩,若关于x 的方程()()0f x f x +-=在定义域上有四个不同的解,则实数a 的取值范围是_______.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设p :实数a 满足不等式3113a -≥(),:q 函数3213()392a f x x x x -=++无极值点. (1)若p q ⌝∧为假命题,p q ⌝∨为真命题,求实数a 的取值范围;20001202020192019,2019log ,2020log ===c b a(2)若p q ∧为真命题,并记为r ,且t :12a m >+或a m <,若t 是r ⌝的必要不充分条件,求m 的取值范围.18.(本小题满分12分)已知函数()()2210g x ax ax b a =-++>在区间[]2,3上有最大值4和最小值1,设()()g x f x x=.(1)求,a b 的值; (2)若不等式()220xxf k -⋅≥在区间[]1,1-上恒成立,求实数k 的取值范围.19.(本小题满分12分)某种出口产品的关税税率为t ,市场价格x (单位:千元)与市场供应量p (单位:万件)之间近似满足关系式:2))(1(2b x kt p --=,其中k 、b 均为常数.当关税税率75%t =时,若市场价格为5千元,则市场供应量约为1万件;若市场价格为7千元,则市场供应量约为2万件. (1)试确定k 、b 的值;(2)市场需求量q (单位:万件)与市场价格x 近似满足关系式:2xq -=,当p q =时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值.20.(本小题满分12分)已知函数()()()()2ln 0,f x a x x a g x x =+>=.(1)若()f x 的图象在1x =处的切线恰好也是()g x 图象的切线.求实数a 的值;(2)对于区间[]1,2上的任意两个不相等的实数12,x x 且12x x <,都有()()()()2121f x f x g x g x -<-成立.试求实数a 的取值范围.21.(本小题满分12分)已知函数R m x m x x f ∈+-=,ln )1()(2.若函数)(x f 有两个极值点21,x x ,且21x x <,求12)(x x f 的取值范围.22.(本小题满分12分)已知函数()()()221ln f x x m x x m R =-++∈.(1)当12m =-时,若函数()()()1ln g x f x a x =+-恰有一个零点,求a 的取值范围; (2)当1x >时,()()21f x m x <-恒成立,求m 的取值范围.高三2022年秋期第二次月考文科数学答案DDABCA BBDDAD 13.7,44⎡⎫⎪⎢⎣⎭ 14.8[,)9+∞ 15.(,2)-∞ 16.1,03⎛⎫- ⎪⎝⎭16.若()()0f x f x +-=在定义域上有四个不同的解等价于21162a y x x =++关于原点对称的函数21162a y x x =-+-与函数f (x )=lnx -x (x >0)的图象有两个交点,联立可得211ln 062a x x x x -++=-有两个解,即2311ln 62a x x x x x =-++可设()2311ln 62g x x x x x x =-++,则()21ln 2232g x x x x '=-++,进而()120g x x x''=+-≥且不恒为零,可得()g x '在()0,∞+单调递增.由()10g '=可得01x <<时,()0,()g x g x '<单调递减;1x >时,()0,()'>g x g x 单调递增,即()g x 在1x =处取得极小值且为13-作出()y g x =的图象,可得103-<<a 时,211ln 062a x x x x -++=-有两个解. 17.解:若p 为真,则3a ≤, 又21'()(3)33f x x a x =+-+,若q 为真,令0∆≤,则15a ≤≤;(1)由p q⌝∧为假命题,p q ⌝∨为真命题,则p ⌝与q 一真一假 若p ⌝为真,q 为假,则351a a a >⎧⎨><⎩或,5a ∴>若p ⌝为假,q 为真,则315a a ≤⎧⎨≤≤⎩,13a ∴≤≤综上,实数a 的取值范围为5a >或13a ≤≤ ;(2)若p q ∧为真,则13a ≤≤,:3r a ∴⌝>或1a <1:2t a m ∴>+或a m <又t 是r ⌝的必要不充分条件,1132m m ≥⎧⎪∴⎨+≤⎪⎩,512m ∴≤≤. 18.(1)()()2g x a x 11b a =-++-,因为a 0>,所以()g x 在区间[]23,上是增函数,故()()21{34g g ==,解得1{0a b ==. (2)由已知可得()12=+-f x x x ,所以()20-≥x f kx 可化为12222+-≥⋅x xx k ,化为2111+222-⋅≥x x k (),令12=x t ,则221≤-+k t t ,因[]1,1∈-x ,故1,22⎡⎤∈⎢⎥⎣⎦t ,记()221=-+h t t t ,因为1,22⎡⎤∈⎢⎥⎣⎦t ,故()0=min h t , 所以k 的取值范围是(],0∞-.19.(1)由已知22(10.75)(5)(10.75)(7)1222k b k b ----⎧=⎪⎨=⎪⎩,22(10.75)(5)0(10.75)(7)1k b k b ⎧--=⎨--=⎩解得,5,1b k == (2)当p q =时,2(1)(5)22t x x ---=所以221(1)(5)1125(5)10x t x x t x x x--=-=+=++-⇒- 而25()f x x x =+在(0,4]上单调递减,所以当4x =时,()f x 最小值414, 故当4x =时,关税税率的最大值为500%. 20.(1)∵()()ln f x a x x =+,∴()11f x a x ⎛⎫=+⎪⎝⎭', ∴ ()12f a '=, 又()1f a =,∴()f x 的图象在1x =处的切线方程为()21y a a x -=-, 即2y ax a =-,由22y ax a y x=-⎧⎨=⎩,消去y 整理得得220,x ax a -+= 则2440a a ∆=-=,解得 1a =;(2)由条件可知()()()()()221112f x g x f x g x x x -<-<,设()()()()2ln F x f x g x a x x x =-=+-,则由条件可得()F x 在[]1,2上单调递减, ∴ ()()2120a x x F x x+-'=≤在[]1,2上恒成立,∴ ()2120a x x +-≤在[]1,2上恒成立,即221x a x ≤+在[]1,2上恒成立, ∵ 22221111124x x x =≥+⎛⎫+- ⎪⎝⎭,当x 2=时等号成立。
2025届江门市高三数学上学期第二次月考试卷及答案解析
2024--2025学年新会华侨中学高三第一学期第二次月考数学试题本试卷共4页,19小题,满分150分.考试用时120分钟.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{1,2,3,4,5}U =,集合M 满足{}2,4U M =ð,则( )A. 1M ÍB. 4MÍ C. 5MÎ D. 3MÏ【答案】C 【解析】【分析】由补集运算得出集合M ,再由元素与集合的关系判断.【详解】因为全集{}{}1,2,3,4,5,2,4U U M ==ð,所以{1,3,5}M =,根据元素与集合的关系可知,ABD 错误,C 正确.故选:C .2 已知()()10()sin π0x x f x x x -ì-<ï=í³ïî,则()()3f f -=( )A. B. 0 C.12D.【答案】D 【解析】【分析】先求()133f -=,再求()()1π3sin 33f f f æö-==ç÷èø,即可求解.【详解】根据已知()()11333f --=--=,所以()()1π3sin 33ff f æö-===ç÷èø故选:D .3. 若“x a >”是“1x >”的必要不充分条件,则实数a 的取值范围为( )A. (),1-¥ B. (],1-¥ C. ()1,+¥ D. [)1,+¥【答案】A 【解析】【分析】由题意可得{}1x x >⫋{}x x a >,再根据集合的包含关系求参即可..【详解】因为“x a >”是“1x >”的必要不充分条件,所有{}1x x >⫋{}x x a >,所以1a <,即实数a 的取值范围为(),1-¥.故选:A .4. 已知πcos 4a æö+=ç÷èøsin 2a =( )A. 56- B. 23-C.23D.56【答案】C 【解析】【分析】代入二倍角公式,以及诱导公式,即可求解.【详解】由条件可知,22ππ2cos 22cos 121243a a æöæö+=+-=´-=-ç÷ç÷èøèø,而π2sin 2cos 223a a æö=-+=ç÷èø.故选:C5. 若1nx æöç÷èø的二项展开式中,当且仅当第5项是二项式系数最大的项,则其展开式中51x 的系数为( )A. 8 B. 28 C. 70 D. 252【答案】D 【解析】【分析】先确定n 值,再由二项展开式的通项求解5x -项的系数即可.【详解】因为二项展开式中当且仅当第5项是二项式系数最大的项,即二项式系数01C ,C ,,C nn n n L 中第5个即4C n 最大,所以由二项式系数的性质可知,展开式中共9项,8n =,又811213nx x x -æöæö-=-ç÷ç÷èøèø,则81123x x -æö-ç÷èø二项展开式的通项公式()81831822188C 3C (1)3rrr r r r rr T x x x ----+æö=-=-ç÷èø,0,1,2,,r n =L .令835,62r r -=-=,所以51x 的系数为62288C 39C 252×==.故选:D .6. 心形代表浪漫的爱情,人们用它来向所爱之人表达爱意.一心形作为建筑立面造型,呈现出优雅的弧度,心形木屋融入山川,河流,森林,草原,营造出一个精神和自然聚合的空间.图2是由此抽象出来的一个“心形”图形,这个图形可看作由两个函数的图象构成,则“心形”在x 轴上方的图象对应的函数解析式可能为( )A. yB. y =C. y =D. y =【答案】C 【解析】【分析】根据奇偶性和最值排除错误答案即可.【详解】A 选项:1|1x y ==>,故A 错误;B 选项:记()f x =()()f x f x -=-=-,故()f x 为奇函数,不符合题意,故B 错误;C 选项:记()h x =()()h x h x -=,故y =当0x ³时,y ==,此函数在()0,1上单调递增,在()1,2上单调递减,且()()()00,11,20h h h ===,故C 正确;D 选项:记()g x =()()g x g x -=¹-,故()g x 既不是奇函数也不是偶函数,不符合题意,故D 错误.故选:C.7. 已知函数221(2)()15(2)24x ax x x f x x ì+->ï=íæö-£ïç÷èøî是R 上的减函数,则实数a 的取值范围是( )A. (,1]-¥-B. 1,2æù-¥-çúèûC. (,0]-¥D. (,1]-¥【答案】A 【解析】【分析】首先由题意有(2)1f =-,若()f x 是R 上的减函数,故只需当2x >时,()221f x ax x =+-单调递减,从而列出不等式组,解不等式组即可.【详解】当2x £时,15()24xf x æö=-ç÷èø单调递减,a ÎR ,且()f x 最小值(2)1f =-,当2x >时,当0a =时,()21f x x =-单调递增,不符题意,又注意到()f x 是R 上的减函数,故只能抛物线()221f x ax x =+-的开口向下即0a <,其对称轴为1x a=-,则由题意有201222211a a a <ìïï-£íï´+´-£-ïî,解得1a £-.故选:A.8. 已知函数()f x 的图象向左平移1个单位后关于y 轴对称,当121x x <<时,()()()21210f x f x x x -->éùëû恒成立,设1ln 2a f æö=ç÷èø,()2log 3b f =,32c f æö=ç÷èø,则a ,b ,c 的大小关系为( )A. c a b >> B. c b a>> C. a c b>> D. b a c>>【答案】C 【解析】为【分析】先结合条件判断函数()f x 的对称性质和单调性,再分别界定三个自变量的值或者范围,利用函数对称性和单调性即得.【详解】依题可知函数()f x 的图象关于直线1x =对称,且在区间(,1)-¥上单调递增,则在区间(1,)+¥上单调递减.因2ln 213=<<,则131ln 22<<,23log 322<<,故213()()(log 3)2ln 2f f f >>,即a c b >>.故选:C.【点睛】关键点点睛:解题的关键在于,得知了函数在(1,+)¥上的单调性之后,如何判断三个自变量的大小范围,考虑到三个都是大于1的,且有一个是32,故对于2log 3和1ln 2,就必然先考虑它们与32的大小,而这需要利用对数函数的单调性得到.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知在某市的一次学情检测中,学生的数学成绩X 服从正态分布(100,100)N ,其中90分为及格线,120分为优秀线,下列说法正确的是( )附:随机变量x 服从正态分布2~(,)N m s ,则()0.6826P m s x m s -<<+=,(22)0.9544P m s x m s -<<+=,(33)0.9974P m s x m s -<<+=.A. 该市学生数学成绩的标准差为100B. 该市学生数学成绩的期望为100C. 该市学生数学成绩的及格率超过0.8D. 该市学生数学成绩不及格的人数和优秀的人数大致相等【答案】BC 【解析】【分析】根据正态分布网线的对称性,正态分布的概念判断.【详解】X 服从正态分布(100,100)N ,则标准差为10,期望为100,A 错,B 正确,100,10m s ==,11(90)()(1())(10.6826)0.158722P X P X P X m s m s m s £=£-=--<<+=´-=,(90)1(90)10.15870.84130.8P X P X ³=-<=-=>,C 正确;及格线m s -,而优秀线是2m s +,1(120)(2)(10.9544)0.02282P X P X m s ³=>+=´-=,这优秀率,优秀率与及格率相差很大,人数相差也很大,D 错.故选:BC .10. 下列命题正确的是( )A. 命题“1x ">,20x x ->”的否定是“01x $£,2000x x -£”;B. 如果A 是B 的必要不充分条件,B 是C 的充分必要条件,D 是C 的充分不必要条件,那么A 是D 的必要不充分条件C. 函数()21f x ax x =++的图象恒在()2g x x ax =+的图象上方,则a 的范围是()1,5D. 已知111222,,,,,a b c a b c 均不为零,不等式不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为M 和N ,则“111222a b c a b c ==”是“M N =”成立的既不充分也不必要条件【答案】BD 【解析】【分析】借助全称命题的否定的定义可得A ;借助充分条件与必要条件的关系推导可得 B ;借助作差法结合二次函数的性质计算可得C ;结合充分条件与必要条件的定义,举出相应反例可得D.【详解】对A :命题“1x ">,20x x ->”的否定是“01x $>,2000x x -£”,故A 错误;对B :由A 是B 的必要不充分条件,B 是C 的充分必要条件,可得A 是C 的必要不充分条件,由D 是C 的充分不必要条件,则A 是D 的必要不充分条件,故B 正确;对C :由题意可得()()2201f g x x x x a a x x ---++>=恒成立,即()()20111a x a x -++>-恒成立,则当1a =时,有10>恒成立,符合要求,当1a >时,()()()()2141150a a a a D =---=--<,解得()1,5a Î,当1a <时,()()20111a x a x -++>-不恒成立,故舍去,综上所述,a 的范围是[)1,5,故C 错误;对D :若“1112220a b c a b c ==<”,则“M N =”不成立,是若“M N ==Æ”,则“111222a b c a b c ==”不恒成立,故“111222a b c a b c ==”是“M N =”成立的既不充分也不必要条件,故D 正确.故选:BD .11. 已知函数()sin cos f x a x x =+的图象关于π3x =对称,下列结论中正确的是( )A. π6f x æö-ç÷èø是奇函数B. π4f æö=ç÷èøC. 若()f x 在[,]m m -上单调递增,则π03m <£D. ()f x 的图象与直线π23y x =+有三个交点【答案】AC 【解析】【分析】先函数对称性求解a ,得到()f x 的解析式.A 项,化简π2sin 6f x x æö-=ç÷èø可知为奇函数;B 项,代入解析式求值即可;C 项,利用整体角求()f x 的单调递增区间,由2ππ33m m -£-<£可得m 范围;D 项,利用导数可知直线恰为曲线在π,06æö-ç÷èø处的切线,进而可得公共点个数.【详解】因为()f x 的图象关于直线π3x =对称,所以2π(0)3f f æö=ç÷èø112-=,解得a =所以π()cos 2sin 6f x x x x æö=+=+ç÷èø,验证:当π3x =时,π23f æö=ç÷èø,()f x 取最大值,故()f x 的图象关于直线π3x =对称,满足题意;A 项,π2sin 6f x x æö-=ç÷èø,x ∈R ,由2sin()2sin x x -=-,则π6f x æö-ç÷èø是奇函数,故A 正确;B 项,由)πππcos 1444f æö=+=+=ç÷èøB 错误;C 项,π()2sin 6f x x æö=+ç÷èø,由πππ2π2π,262k x k k -+£+£+ÎZ ,解得2ππ2π2π,33k x k k -+££+ÎZ ,当0k =时,32π3π-££x ,由()f x 在[,]m m -上单调递增,则2ππ33m m -£-<£,解得π03m <£,故C 正确;D 项,π()2sin 6f x x æö=+ç÷èø的图象与直线π23y x =+均过点π,06æö-ç÷èø,由π()2cos 6f x x æö=+ç÷èø¢,则π2cos 026f æö-==ç÷èø¢,故直线π26y x æö=+ç÷èø即π23y x =+与曲线π()2sin 6f x x æö=+ç÷èø相切,如图可知()f x 的图象与直线π23y x =+有且仅有一个公共点,故D 错误.故选:AC.三、填空题:本题共3小题,每小题5分,共15分.12. 已知x ,y 之间的一组数据:若y ˆˆy a =+,则此曲线必过点_____________.x 14916y12.98 5.017.01【答案】(6.25,4)【解析】【分析】设t =ˆˆˆybt a =+,根据回归方程性质可得回归直线所过定点.【详解】由已知ˆˆya =,设t =ˆˆˆybt a =+,由回归直线性质可得(),t y 在直线ˆˆˆybt a =+上,又1234 2.54t +++==,1 2.98 5.017.0144y +++==,所以点()2.5,4在直线ˆˆˆybt a =+上,故点(6.25,4)在曲线ˆˆy a =上.故答案为:(6.25,4).13. 诗词是中国的传统文化遗产之一,是中华文化的重要组成部分.某校为了弘扬我国优秀的诗词文化,举办了校园诗词大赛,大赛以抢答形式进行.若某题被甲、乙两队回答正确的概率分别为11,43,且甲、乙两队抢到该题的可能性相等,则该题被答对的概率为___________.【答案】724【解析】【分析】分甲抢到题且答对和乙抢到题且答对两种情况计算即可.【详解】解:由题意,甲、乙两队抢到该题的概率均为12,该题被答对的概率为11117242324´+´=.故答案:724.14. 函数()f x 为定义在R 上的奇函数,且满足()(2)f x f x =-,若(1)3f =,则(1)(2)(50)f f f +++=L __________.【答案】3【解析】【分析】首先由函数的奇偶性和对称性,分析函数的周期性,再求值.【详解】()(2)f x f x =-Q ,(2)()f x f x \+=-,又()f x 奇函数,(2)()(),(4)(2)()f x f x f x f x f x f x \+=-=-+=-+=()f x \是周期为4的周期函数,为为()f x Q 是定义在R 上的奇函数,(0)0,(4)(0)0f f f \=\==,(2)(0)0,(3)(1)(1)3f f f f f ===-=-=-(1)(2)(3)(4)0f f f f \+++=,()()()()()12...50012123f f f f f \+++=´++=.故答案为:3.【点睛】本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,属于中档题型,本题关键是能够通过对称性与周期性的关系确定函数的周期,进而确定函数值的变化特点.四、解答题:共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数2111222f x x x æö-=--ç÷èø.(1)求函数()f x 的解析式;(2)对任意的实数1,22x éùÎêúëû,都有()113222f x x ax ³+-恒成立,求实数a 的取值范围.【答案】(1) ()()2471f x x x x R =++Î;(2) (],7a Î-¥.【解析】【详解】试题分析:()1用换元法令112t x =-来求函数()f x 的解析式(2)由(1)得()f x 的解析式代入,分离含参量123a x x æö£++ç÷èø,求出实数a 的取值范围解析:(1)令11222t x x t =-Þ=+∴()()()21222222f t t t =+-+- 2471t t =++即:∴()()2471f x x x x R =++Î.(2)由()11312222f x x ax ³+-Þ ()21347122x x x ax ++³+-即:2232ax x x £++又因为:1,22x éùÎêúëû,∴123a x x æö£++ç÷èø令()123g x x x æö=++ç÷èø,则:()min a g x £又()g x 在1,12x éùÎêúëû为减函数,在[]1,2x Î为增函数.∴()()min 17g x g ==∴7a £,即:(],7a Î-¥.点睛:在解答含有参量的恒成立问题时,可以运用分离含参量的方法,求解不等式,注意分类讨论其符号,最后求解结果.16. 记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知)()()sin sin sin a A b c B C -=+-.(1)求角C ;(2)若ABC V 外接圆的半径为2,求ABC V 面积的最大值.【答案】(1)π6C =(2)2+【解析】【分析】(1)运用正弦定理实现边角转化,结合余弦定理进行求解即可;(2)根据正弦定理,结合外接圆的半径可以求出2c =,根据三角形面积公式、利用重要不等式进行求解即可.【小问1详解】由已知及正弦定理可得)()()a a b c b c -=+-,整理得222a b c +-=,222cos 2a b c C ab +-\==,()π0,π,6C C Î\=Q .【小问2详解】ABC QV 外接圆的半径为2,4sin cC\=,得222,4c a b =\+=,又(222,42a b ab ab +³\£,当且仅当a b ==时,等号成立,(111sin 422222ABC S ab C \=£´+´=+V ,V面积的最大值为2+.即ABC17. 为响应国家使用新能源的号召,促进“碳达峰碳中和”的目标实现,某汽车生产企业在积极上市四款新能源汽车后,对它们进行了市场调研.该企业研发部门从购买这四款车的车主中随机抽取了50人,让车主对所购汽车的性能进行评分,每款车的性能都有1分、2分、3分、4分、5分五个等级,各评分及相应人数的统计结果如下表.汽车款式合计汽车性能基础版豪华版一般优秀合计性能评分12345汽车款式基础版122310基础版基础版244531豪华版113541豪华版豪华版200353(1)求所抽车主对这四款车性能评分的平均数和第90百分位数;(2)当评分不小于4时,认为该款车性能优秀,否则认为性能一般.根据上述样本数据,完成上面列联a=的独立性检验,能否认为汽车的性能与款式有关?表,并依据0.05(3)为提高这四款新车的性能,现从样本评分不大于2的基础版车主中,随机抽取3人征求意见,记X 为其中基础版1车主的人数,求X的分布列及数学期望.附:()()()()()22n ad bca b c d a c b dc-=++++.a0.100.050.010.005xa2.7063.841 6.6357.879【答案】(1)3,4.5(2)列联表见解析,依据0.05a=的独立性检验,能认为汽车的性能与款式有关;(3)分布列见解析,1【解析】【分析】(1)根据平均数公式求平均数,根据百分位数定义求第90百分位数;(2)由条件数据填写列联表,提出零假设,计算2c,比较2c与临界值的大小,确定结论;(3)由条件可得X服从超几何分布,确定其取值,求取各值的概率,可得分布列,再由期望公式求期望.【小问1详解】由题意得这四款车性能评分的平均数为1 (172931641355)350´+´+´+´+´´=;509045´%=,所以第90百分位数为50数从小到大排列的45和第46个数的平均数,由已知50数从小到大排列后的第45个数为4,第46个数为5,故第90百分位数为454.5 2+=;【小问2详解】由题意得汽车款式汽车性能基础版豪华版合计一般201232优秀51318合计252550零假设为0H :汽车性能与款式无关,根据列联表中的数据,经计算得到220.0550(2013125)505.556 3.841321825259x c ´´-´==»>=´´´.根据小概率值0.05a =的独立性检验,推断0H 不成立,即认为汽车性能与款式有关,此推断犯错误的概率不超过0.05;【小问3详解】由题意可得X 服从超几何分布,且12N =,4M =,3n =,由题意知,X 的所有可能取值为0,1,2,3,则38312C 14(0)C 55P X ===,1482123C C (1)C 2855P X ===,824312112C C (2)C 55P X ===,34312C 1(3)C 55P X === 所以X 的分布列为X123P1455285512551551428121()0123155555555E X =´+´+´+´=.18. 已知锐角ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos a c c B -=.(1)证明:2B C =;(2)若2a =,求cos 1C b c+的取值范围.【答案】(1)证明见解析 (2)33,42æöç÷èø【解析】【分析】(1)由正弦定理、两角和差的正弦公式化简得sin()sin B C C -=,进一步即可证明;(2)由题意首先求得cos C 的取值范围,进一步将目标式子cos 1C b c+转换为只含有cos C 的式子即可求解.【小问1详解】因为2cos a c c B -=,由正弦定理得sin sin 2sin cos A C C B -=,所以sin cos sin cos sin 2sin cos B C C B C C B +-=,所以()sin cos sin cos sin sin sin B C C B C B C C -=Û-=,而0π,0C πB <<<<,则B C C -=或πB C C -+=,即2B C =或B π=(舍去),故2B C =.【小问2详解】因为ABC V 是锐角三角形,所以π02π022π0π32C C C ì<<ïïï<<íïï<-<ïî,解得ππ64C <<,所以cos Ccos C <<,由正弦定理可得:sin sin b B c C =,则sin sin 22cos sin sin B C b c c C c C C=×=×=×,所以cos 12C b c =,所以cos 132C b c c+=,因为2cos a c c B -=,所以22cos 2c c C -=,所以22cos 21c C =+,所以()()234cos 132cos 21cos 13342442cos 21C C C b c c C -++====+,因为cos CÎ,所以24cos 1C -Î()1,2,所以()234cos 1cos 14C C b c -+=的取值范围是33,42æöç÷èø.19. 已知()x x a b f x a b+=-(0a >且1a ¹)是R 上的奇函数,且()325f =.设()()()2f x F x f x =.(1)求a ,b 的值,并求()F x 的值域;(2)把区间()0,2等分成2n 份,记等分点的横坐标依次为i x ,1,2,3,,21i n =-L ,设()142321x g x -=-+,记()()()()()()*12321g g g g n H n x x x x n -=++++ÎN L ,是否存在正整数n ,使不等式()()F x H n ≥有解?若存在,求出所有n 的值,若不存在,说明理由.【答案】(1)答案见解析(2)存在,n =1,2或3【解析】【分析】(1)由()f x 是R 上的奇函数,且()325f =求出,a b 可得()f x 及()F x ,利用分离常量求出()F x 的值域;(2)()()113g x f x =-+得出()g x 的图象关于11,3æöç÷èø对称,所以()()223i i g x g x +-=,利用对称性求出()H n 可得答案.【小问1详解】因为()x x a bf x a b+=-(0a >且1a ¹)是R 上的奇函数,且()325f =,所以()()002200325a bf a b a b f a b ì+==ïï-í+ï==ï-î,解得21a b =ìí=-î,则()2121x x f x -=+,因为定义域为R ,()()21212121x x x x f x f x -----==-=-++,所以()f x 是R 上的奇函数,故2,1a b ==-,()()()2222221212221212121x x x x x x x f x F x f x -++×+==´=+-+()22212221012122x x xx x x ++×==+¹++,因为20x >,所以()221121222x xF x =+£+=+,当且仅当122xx=,即x =0时等号成立,所以()2F x <又x R Î时,()211122xxF x =+>+,所以()12F x <<,即()F x 的值域为()1,2;【小问2详解】把区间()0,2等分成2n 份,则等分点的横坐标为i ix n=,1,2,3,,21i n =-L ,()()1142211113212133x x g x f x --=-=-+=-+++,()f x 为奇函数,所以()g x 的图象关于11,3æöç÷èø对称,所以()()223i i g x g x +-=,1,2,3,,21i n =-L ,所以()122221g g g g n n H n n n n n --æöæöæöæö=++++ç÷ç÷ç÷ç÷èøèøèøèøL 12122211n n n n n g g g g g g g n n n n n n n éùéùéù---+æöæöæöæöæöæöæö=+++++++ç÷ç÷ç÷ç÷ç÷ç÷ç÷êúêúêúèøèøèøèøèøèøèøëûëûëûL 122212133333n n --=++++=L 1442443项所以()2123n H n -=<,即72n <.故存在正整数1,2n =或3,使不等式()()f x H n ³有解.【点睛】关键点点睛:第二问的解题的关键点是判断出()()113g x f x =-+,()g x 的图象关于11,3æöç÷èø对称,所以()()223i i g x g x +-=.。
湖南省湘阴县知源高级中学2022-2023学年高三上学期第二次月考数学试题含答案
湘阴县知源高级中学2023届高三第二次月考数学科试卷满分:150分 考试时量:120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x|x >−1},B ={x|x <2},则A ∪(∁R B)= ( )A. {x|x >−1}B. {x|x ≥−1}C. {x|x <−1}D. {x|−1<x ⩽2} 2.对于实数a ,b ,c ,“a >b ”是“ac 2>bc 2”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 3.三个数50.6,0.65,log 0.65的大小顺序是( )A. 0.65<log 0.65<50.6B. 0.65<50.6<log 0.65C. log 0.65<0.65<50.6D. log 0.65<50.6<0.654.若实数x,y 满足:x,y >0,3xy −x −y −1=0,则xy 的最小值为( )A .1B .2C .3D .45.函数f (x )=2xx 2−1的图象大致为( )A. B.C. D.6.设函数f(x)={−x 2+4x −3,x ≤2log 2x,x >2,则满足不等式f (2x −1)<2的解集是( )A .(−∞,32)B .[2,52)C .(32,2]D .(−∞,52)7.当x =1时,函数f(x)=alnx +bx 2+3取得最大值2,则f(3)=( ) A .2ln3+2B .−163C .2ln3−6D .−48.已知函数f (x )={|log 3x |,x >03x,x ≤0,若函数g (x )=[f (x )]2−(m +2)f (x )+2m 恰好有5个不同的零点,则实数m 的取值范围是( ) A .(0,1]B .(0,1)C .[1,+∞)D .(1,+∞)二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列求导错误的是( )A. (e 3x)′=3ex B.(x 22x+1)′=xC. (2sinx −3)′=2cosxD. (xcosx)′=cosx −xsinx10.已知关于x 的不等式ax 2+bx +c >0的解集为(−∞,−2)∪(3,+∞),则( )A. a >0B. 不等式bx +c >0的解集是{x|x <−6}C. a +b +c >0D. 不等式cx 2−bx +a <0的解集为(−∞,−13)∪(12,+∞)11.牛顿曾提出了物体在常温环境下温度变化的冷却模型:若物体初始温度是θ0(单位:oC ),环境温度是θ1(单位:o C ),其中θ0>θ1则经过t 分钟后物体的温度θ将满足θ=f (t )=θ1+(θ0−θ1)⋅e −kt (k ∈R 且k >0).现有一杯80∘C 的热红茶置于20∘C 的房间里,根据这一模型研究红茶冷却情况,下列结论正确的是( )(参考数值ln 2≈0.7) A .若f (3)=50∘C ,则f (6)=35∘C B .若k =110,则红茶下降到50∘C 所需时间大约为7分钟C .若f ′(3)=−5,则其实际意义是在第3分钟附近,红茶温度大约以每分钟5∘C 的速率下降D .红茶温度从80∘C 下降到60∘C 所需的时间比从60∘C 下降到40∘C 所需的时间多12.函数f(x)及其导函数f ′(x)的定义域均为R ,且f(x)是奇函数,设g(x)=f ′(x),ℎ(x)=f(x −4)+x ,则以下结论正确的有( ) A .函数g(x −2)的图象关于直线x =−2对称B .若g(x)的导函数为g ′(x),定义域为R ,则g ′(0)=0C .ℎ(x)的图象关于点(4,4)中心对称D .设{a n }为等差数列,若a 1+a 2+⋯+a 11=44,则ℎ(a 1)+ℎ(a 2)+⋯+ℎ(a 11)=44三、填空题:本题共4小题,每小题5分,共20分.13.若函数f (x )=(2m −1)x m 是幂函数,则实数m =______.14.求值:2log 214−(827)−23+lg 1100+(√2−1)lg 1= .15.已知点P 为曲线y =lnx 上的动点,则P 到直线y =x +4的最小距离为______.16.设定义域为(0,+∞)的单调函数f(x),对任意的x ∈(0,+∞),都有f [f(x)−log 3x ]=4,若x 0是方程f(x)−2f ′(x)=3的一个解,且x 0∈(a,a +1),a ∈N ∗,则实数a =_____.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f(x)=sin (π4+x)sin (π4−x)+√3sin xcos x .(1)求f(π6)的值;(2)在△ABC中,若f(A2)=1,求sin B+sin C的最大值.18.(本小题满分12分)已知在数列{a n}中,a1=3,且a n+a n+1=3n+1.(1)证明:数列{a n3n −34}是等比数列.(2)求{a n}的前n项和S n.19.(本小题满分12分)如图,已知长方形ABCD中,AB=2√2,AD=√2,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM(1)求证:AD⊥BM(2)若点E是线段DB上的一动点,问点E在何位置时,二面角E−AM−D的余弦值为√55.20.(本小题满分12分)某学习小组在暑期社会实践活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以30天计)的日销售价格P(x)(元)与时间x(天)的函数关系近似满足P(x)=1+kx(k为正常数).该商品的日销售量Q(x)(个)与时间x(天)的部分数据如下表所示:x/天10202530Q(x)/个110120125120已知第10天该商品的日销售收入为121元.(1)求k的值;(2)给出以下四种函数模型:①Q(x)=ax+b,①Q(x)=a|x−25|+b,①Q(x)=a⋅b x,①Q(x)=a⋅log b x.请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量Q(x)与时间x的关系,并求出该函数的解析式;(3)求该商品的日销售收入f(x)(1≤x≤30,x∈N+)(元)的最小值.21.(本小题满分12分)已知函数f(x)=log141−axx−1的图象关于原点对称,其中a为常数.(1)求a的值;(2)当x∈(1,+∞)时,f(x)+log14(x−1)<m恒成立,求实数m的取值范围;(3)若关于x的方程f(x)=log14(x+k)在[2,3]上有解,求实数k的取值范围.22.(本小题满分12分)已知函数f(x)=e x−m+ln3x.(1)设x=1是函数f(x)的极值点,求m的值并讨论f(x)的单调性;(2)当m⩽2时,证明:f(x)>ln3.湘阴县知源高级中学2023届高三第二次月考数学科试卷(答案)一、单选题1.【答案】A【详解】已知集合A={x|x>−1},B={x|x<2},则∁R B={x|x≥2},因此A∪(∁R B)= {x|x>−1}.故选A.2.【答案】B【详解】当a>b时,不能推出ac2>bc2,当ac2>bc2,可推出a>b.故“a>b”是“ac2>bc2”的必要不充分条件.故选:B.3.【答案】C【详解】∵50.6>1,1>0.65>0,log0.65<0∴50.6>0.65>log0.65,故选C.4.【答案】A【详解】因为3xy−x−y−1=0,所以3xy−1=x+y,由基本不等式可得3xy−1=x+y≥2√xy,(舍),即xy≥1故3xy−2√xy−1≥0,解得√xy≥1或√xy≤−13当且仅当x=y=1时等号成立,故xy的最小值为1,故选:A.5.【答案】A,定义域为{x|x≠±1},【详解】函数f(x)=2xx2−1由f(−x)=−f(x),故f(x)为奇函数,图象关于原点对称,故排除B,D;当0<x<1时,f(x)<0,排除C.故本题选A.6.【答案】D【详解】函数f(x)的图象如下图所示:由图可知:函数f(x)在R上单调递增,因为f(4)=2,所以f(2x−1)<2等价于f(2x−1)<f(4),故2x−1<4,即x<5,故选:D27.【答案】C【详解】因为f (x )=alnx +bx 2+3,所以f ′(x )=ax +2bx , 又当x =1时,函数f (x )=alnx +bx 2+3取得最大值2,所以f (1)=2,f ′(1)=0,即{b +3=2a +2b =0,解得b =−1,a =2,所以f (x )=2lnx −x 2+3,f ′(x )=2x−2x =2(1−x )(1+x )x ,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,符合题意, 所以f (3)=2ln3−6故选:C . 8.【答案】A【详解】画出函数的大致图象,如下图所示: ∵函数g (x )=[f (x )]2−(m +2)f (x )+2m 恰好有5个不同的零点,∴方程[f (x )]2−(m +2)f (x )+2m =0有5个根,设t =f(x),则方程化为t 2−(m +2)t +2m =0,易知此方程有两个不等的实根t 1,t 2,结合f(x)的图象可知,t 1∈(0,1],t 2∈(1,+∞),令ℎ(t)=t 2−(m +2)t +2m ,则由二次函数的根的分布情况得:{Δ=(m +2)2−8m >0ℎ(0)>0ℎ(1)≤0 ,解得:0<m ≤1.故选:A 二、多选题 9.【答案】AB【详解】(e 3x )′=3e 3x ,故A 错误;(x 22x+1)′=2x (2x+1)−2x 2(2x+1)2≠x ,故B 错误;(2sin x −3)′=2cos x ,故C 正确;(xcos x)′=x′cosx +x (cosx )′=cos x −xsin x ,故D 正确.故答案选:AB .10.【答案】ABD【详解】由题意可知,−2和3是方程ax 2+bx +c =0的两根,且a >0, ∴−2+3=−ba ,(−2)×3=ca ,∴b =−a ,c =−6a ,a >0,即选项A 正确; 不等式bx +c >0等价于a(x +6)<0,∴x <−6,即选项B 正确; ∵不等式ax 2+bx +c >0的解集为(−∞,−2)∪(3,+∞), ∴当x =1时,有a +b +c <0,即选项C 错误;不等式cx 2−bx +a <0等价于a(6x 2−x −1)>0,即a(3x +1)(2x −1)>0, ∴x <−13或x >12,即选项D 正确.故选:ABD . 11.【答案】ABC【详解】由题知θ=f (t )=20+60e −kt ,A :若f (3)=50∘C ,即50=20+60e −3k ,所以e −3k =12,则f (6)=20+60e −6k =20+60(e −3k )2=20+60×(12)2=35∘C ,A 正确;B :若k =110,则20+60⋅e −110t =50,则e −110t =12,两边同时取对数得−110t =ln 12=−ln 2,所以t =10ln 2≈7, 所以红茶下降到50∘C 所需时间大约为7分钟,B 正确;C :f ′(3)表示t =3处的函数值的变化情况,若f ′(3)=−5<0,所以实际意义是在第3分钟附近,红茶温度大约以每分钟5∘C 的速率下降,故C 正确;D :f (t )为指数型函数,如图,可得红茶温度从80∘C 下降到60∘C 所需的时间(t 2−t 1)比从60∘C 下降到40∘C 所需的时间(t 3−t 2)少,故D 错误. 故选:ABC .12.【答案】BCD【详解】由导数的几何意义及f (x )的对称性,f (x )在x 和−x 处的切线也关于原点对称,其斜率总相等,故g (x )=g (−x ),g (x )是偶函数,g (x −2)对称轴为x =2,A 错;由g (x )的对称性,g (x )在x 和−x 处的切线关于纵轴对称,其斜率互为相反数,故g ′(−x )=−g ′(x ),g ′(x )为奇函数,又定义域为R,g ′(0)=0,B 对;ℎ(x )=f (x −4)+(x −4)+4,由f (x )为奇函数知u (x )=f (x )+x 为奇函数,图像关于(0,0)对称,ℎ(x )可以看作由u (x )按向量(4,4)平移而得,故C 对; 由C 选项知,当x 1+x 2=8时,ℎ(x 1)+ℎ(x 2)=8,由等差数列性质a 1+a 11=8,∴ℎ(a 1)+ℎ(a 11)=8,以此类推倒序相加,D 正确. 故选:BCD 三、填空题 13.【答案】1【详解】因为f (x )=(2m −1)x m 是幂函数,所以2m −1=1,解得m =1. 故答案为:1 14.【答案】−3【详解】2log 214−(827)−23+lg 1100+(√2−1)lg1=14−[(23)3]−23−lg100+(√2−1)0=14−94−2+1=−3.故答案为−3.15.【答案】5√22【详解】解:设y =x +m (m ≠4)与y =lnx 相切与点Q (x 0,lnx 0),则 y ′=1x 0,令y ′=1x 0=1,得x 0=1,则切点Q (1,0),代入y =x +m (m ≠4),得m =−1,即直线方程为y =x −1, 所以与直线y =x +4间的距离为d =|4+1|√2=5√22, 即为P 到直线y =x +4的最小距离, 故答案为:5√2216.【答案】2【详解】对任意的x ∈(0,+∞),都有f [f(x)−log 3x ]=4,且f(x)是(0,+∞)上的单调函数,因此f (x )−log 3x 为定值,设t =f (x )−log 3x ,则f (x )=t +log 3x ,显然f (t )=4, 即t +log 3t =4,而函数ℎ(t)=t +log 3t 在(0,+∞)上单调递增,且ℎ(3)=4,于是得t =3, 从而f (x )=log 3x +3,求导得f ′(x )=1xln3,方程f(x)−2f ′(x)=3⇔log 3x −2xln3=0, 依题意,x 0是函数g(x)=log 3x −2xln3的零点,而函数g(x)在(0,+∞)上单调递增, 且g(2)=log 32−1ln3=ln2−1ln3<0,g(3)=1−23ln3>0,即函数g(x)的零点x 0∈(2,3),又x 0∈(a,a +1),a ∈N ∗,所以a =2. 故答案为:2 四、解答题17.【答案】(1)∵f(x)=sin (π 4+x)sin (π 4−x)+√3sin x cos x=sin (π4+x)sin [π2−(π4+x)]+√3sinxcosx =sin (π4+x)cos (π4+x)+√3sinxcosx =12cos2x +√32sin2x =sin (2x +π6),∴f (π6)=sin (2×π6+π6)=1. (2)由f (A2)=sin (A +π6)=1,而0<A <π,可得A +π6=π2,即A =π3, ∴sinB +sinC =sinB +sin (2π3−B)=32sinB +√32cosB =√3sin (B +π6),∵0<B <2π3,∴π6<B +π6<5π6,12<sin (B +π6)≤1,则√32<√3sin (B +π6)≤√3,故当B =π3时,sinB +sinC 取最大值,最大值为√3. 18.【答案】(1)因为a n +a n+1=3n+1,所以a n+13n+1−34a n 3n −34=3n+1−a n 3n+1−34a n 3n −34=14−a n 3n+1a n 3n −34=−13.又a13−34=14,所以{an3n−34}是以a13−34=14为首项,−13为公比的等比数列. (2)由(1)可知a n3n −34=14×(−13)n−1,则a n =3n+14+34×(−1)n−1.S n =14×(32+33+⋯+3n+1)+34×[(−1)0+(−1)1+⋯+(−1)n−1] =14×32−3n+21−3+34×1−(−1)n 1−(−1)=3n+2−6+3×(−1)n+18.19.【答案】(Ⅰ)证明:∵长方形ABCD 中,AB =2√2,AD =√2,M 为DC 的中点,∴AM =BM =2,可得AM 2+BM 2=AB 2, ∴BM ⊥AM .∵平面ADM ⊥平面ABCM ,平面ADM ∩平面ABCM =AM ,BM ⊂平面ABCM , ∴BM ⊥平面ADM ,∵AD ⊂平面ADM ,∴AD ⊥BM.(Ⅱ)建立如图所示的直角坐标系,则A(1,0,0),B(−1,2,0),D(0,0,1),M(−1,0,0) 设DE⃗⃗⃗⃗⃗ =λDB ⃗⃗⃗⃗⃗⃗ ,则平面AMD 的一个法向量n ⃗ =(0,1,0), ME ⃗⃗⃗⃗⃗⃗ =MD ⃗⃗⃗⃗⃗⃗ +λDB ⃗⃗⃗⃗⃗⃗ =(1−λ,2λ,1−λ),AM ⃗⃗⃗⃗⃗⃗ =(−2,0,0), 设平面AME 的一个法向量为m⃗⃗ =(x,y,z),则{m ⃗⃗ ·AM ⃗⃗⃗⃗⃗⃗ =−2x =0m ⃗⃗ ·ME⃗⃗⃗⃗⃗⃗ =(1−λ)x +2λy +(1−λ)z =0, 取y =1,得x =0,z =2λλ−1,则m ⃗⃗ =(0,1,2λλ−1),∵|cos <m →,n →>|=|m⃗⃗⃗ ·n ⃗ ||m⃗⃗⃗ ||n ⃗ |=√55, 解得λ=12,故E 为BD 的中点.20.【答案】(1)由题意得P (10)⋅Q (10)=(1+k10)×110=121,解得k =1.(2)由题表中的数据知,当时间变化时,该商品的日销售量有增有减,并不单调,而①,①,①中的函数为单调函数,故只能选①,即Q (x )=a |x −25|+b . 由题表可得Q (10)=110,Q (20)=120,即{15a +b =110,5a +b =120,解得{a =−1,b =125, 故Q (x )=125−|x −25|(1≤x ≤30,x ∈N +).(3)由(2)知Q (x )=125−|x −25|={100+x,1≤x <25,x ∈N +,150−x,25≤x ≤30,x ∈N +,①f (x )=P (x )⋅Q (x )={x +100x+101,1≤x <25,x ∈N +,150x−x +149,25≤x ≤30,x ∈N +.当1≤x <25时,y =x +100x在区间[1,10)上单调递减,在区间[10,25)上单调递增,①当x =10时,f (x )取得最小值,且f (x )min =121; 当25≤x ≤30时,y =150x−x 是单调递减的,①当x =30时,f (x )取得最小值,且f (x )min =124.综上所述,当x =10时,f (x )取得最小值,且f (x )min =121. 故该商品的日销售收入f (x )的最小值为121元. 21.【答案】(1)解:因为函数f (x )=log 141−ax x−1的图象关于原点对称,所以f (x )+f (−x )=0,即log 141−ax x−1+log 141+ax−x−1=0,所以log 14(1−ax x−1×1+ax −x−1)=0恒成立,所以1−ax x−1×1+ax−x−1=1恒成立,即1−a 2x 2=1−x 2恒成立,即(a 2−1)x 2=0恒成立,所以a 2−1=0,解得a =±1又a =1时,f (x )=log 141−ax x−1无意义,故a =−1.(2)因为x ∈(1,+∞)时,f (x )+log 14(x −1)<m 恒成立, 所以log 141+xx−1+log 14(x −1)<m 恒成立,所以log 14(x +1)<m 在x ∈(1,+∞)上恒成立,因为y =log 14(x +1)是减函数, 所以当x ∈(1,+∞)时,log 14(x +1)∈(−∞,−1),所以m ≥−1, 所以实数m 的取值范围是[−1,+∞).(3)因为f (x )=log 141+x x−1=log 14(1+2x−1)在[2,3]上单调递增,g (x )=log 14(x +k )在[2,3]上单调递减,因为关于x 的方程f (x )=log 14(x +k )在[2,3]上有解, 所以{f (2)≤g (2),f (3)≥g (3), 即{log 143≤log 14(2+k ),log 142≥log 14(3+k ),解得−1≤k ≤1,所以实数k 的取值范围是[−1,1]. 22.【答案】(1)∵f(x)=e x−m +ln 3x ,∴x >0,f ′(x)=e x−m −1x ,∵x =1是函数f(x)的极值点, ∴f ′(1)=e 1−m −1=0,解得m =1,∴f ′(x)=e x−1−1x ,设g (x )=e x−1−1x ,则g ′(x )=e x−1+1x 2>0, ∴x =1是f ′(x)=0的唯一零点,∴当x ∈(0,1)时,f ′(x)<0,函数f(x)单调递减;当x ∈(1,+∞)时,f ′(x)>0,函数f(x)单调递增.(2)当m ⩽2,x ∈(0,+∞)时,e x−m ⩾e x−2, 设φ(x )=e x −x −1,则φ′(x )=e x −1, 所以当x ∈(0,+∞)时φ′(x )>0,φ(x )单调递增, 所以φ(x )=e x −x −1>φ(0)=0,即e x >x +1, ∴e x−m ⩾e x−2>x −1,取函数ℎ(x)=x −1+ln 3x (x >0),则ℎ′(x)=1−1x ,当0<x <1时,ℎ′(x)<0,ℎ(x)单调递减,当x >1时,ℎ′(x)>0,ℎ(x)单调递增, 所以函数ℎ(x)在x =1处取得唯一的极小值,即最小值为ℎ(1)=ln3, ∴f(x)=e x−m +ln 3x ⩾e x−2+ln 3x >x −1+ln 3x ⩾ln3,故f(x)>ln3.。
陕西省榆林市府谷县府谷中学、府谷县第一中学2024-2025学年高三上学期第二次月考 数学试题
2024年秋季学期高三年级第二次月考数学全卷满分150分,考试时间120分钟。
注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置。
2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚。
4.考试结束后,请将试卷和答题卡一并上交。
5.本卷主要考查内容:集合、常用逻辑用语与不等式、函数的概念与性质、一元函数的导数及其应用、三角函数与解三角形、数列。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知U 为整数集,{}24A x x =∈>Z ,则U A =ð()A.{}0,1B.{}1,0,1,2-C.{}0,1,2 D.{}2,1,0,1,2--2.已知命题p :“x ∃∈R ,使得23250x x -+=”,则命题p 的否定是()A.x ∃∈R ,使得23250x x -+≠ B.x ∃∉R ,使得23250x x -+≠C.x ∀∈R ,23250x x -+≠ D.x ∀∉R ,23250x x -+≠3.已知2246a b +=,则ab 的最大值为()A.34B.32 C.52D.34.函数()()213log 321f x x x =--的减区间为()A.()1,+∞ B.1,3⎛⎫+∞ ⎪⎝⎭C.1,3⎛⎫-∞ ⎪⎝⎭D.1,3⎛⎫-∞- ⎪⎝⎭5.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a ++⋅⋅⋅+=()A.12B.10C.5D.32log 56.已知函数()3221x f x x =-,则其图象大致是()A.B. C.D.7.已知π1cos 64α⎛⎫+= ⎪⎝⎭,则πsin 26α⎛⎫-= ⎪⎝⎭()A.78 B.78-C.38D.38-8.已知定义在R 上的函数()f x 满足()()2f x f x +=-,()()11f x f x +=--,当[]0,1x ∈时,()22f x x x =-+,若()()2f a f b =,其中[]1,2a ∈,52,2b ⎡⎤∈⎢⎥⎣⎦,则当121a b +-取最小值时,()f a =()A.12 B.34 C.78 D.89二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()()sin 20πf x x ϕϕ=+<<,对任意实数x 都有()π8f x f ⎛⎫≤ ⎪⎝⎭,则下列结论正确的是()A.()f x 的最小正周期为πB.π4ϕ=C.函数()f x 的图象关于π4x =对称 D.()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上有一个零点10.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()()22log 211f x x =+-,则下列说法正确的是()A.752f ⎛⎫-= ⎪⎝⎭B.当(),0x ∈-∞时,()()212log 21f x x =--+C.()f x 在R 上单调递增D.不等式()1f x ≥的解集为1,2⎡⎫+∞⎪⎢⎣⎭11.已知函数()()()1ln 1a x f x x a x +=-∈-R ,则下列说法正确的是()A.当0a >时,()f x 在()1,+∞上单调递增B.若()f x 的图象在2x =处的切线与直线250x y +-=垂直,则实数34a =C.当10a -<<时,()f x 不存在极值D.当0a >时,()f x 有且仅有两个零点1x ,2x ,且121x x =三、填空题:本题共3小题,每小题5分,共15分.12.桃湖公园有一扇形花园,扇形的圆心角为120︒,半径为30m ,现要在该花园的周围围一圈护栏,则护栏的总长度为(结果保留π)______m .13.已知关于x 的方程()22140x m x m -++=的两根分别在区间()0,1,()1,2内,则实数m 的取值范围为______.14.对给定的数列{}()0n n a a ≠,记1n n n a b a +=,则称数列{}n b 为数列{}n a 的一阶商数列;记1n n nbc b +=,则称数列{}n c 为数列{}n a 的二阶商数列;以此类推,可得数列{}n a 的P 阶商数列()*P ∈N ,已知数列{}na 的二阶商数列的各项均为e ,且11a =,21a =,则10a =______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,ABC △的面积为()1sin sin sin 2a c Cb B a A +-.(1)求A ;(2)若2a =,且ABC △的周长为5,设D 为边BC 中点,求AD .16.(本小题满分15分)已知数列{}n a 的前n 项和为n S ,且1233n n S a =+,*n ∈N .(1)求数列{}n a 的通项公式;(2)已知n n b n a =⋅,求数列{}n b 的前n 项和n T .17.(本小题满分15分)已知函数()()32ln 02a f x x a x a =-≠.(1)若1a =,求()f x 的极值;(2)讨论函数()f x 的单调性.18.(本小题满分17分)设函数()f x 的定义域为D ,对于区间[](),,I a b a b I D =<⊆,若满足以下两条性质之一,则称I 为()f x 的一个“Ω区间”.性质1:对任意x I ∈,均有()f x I ∈;性质2:对任意x I ∈,均有()f x I ∉.(1)分别判断说明区间[]2,3是否为下列两函数的“Ω区间”;①5y x =-;②8y x=.(2)若[]()0,0m m >是函数()22f x x x =-+的“Ω区间”,求m 的取值范围.19.(本小题满分17分)已知函数()ln af x x x=-.(1)当1a =-时,求()f x 的极值;(2)若()0f x ≥恒成立,求实数a 的取值范围;(3)证明:()()312e2e1n nn n +++⋅⋅⋅+*>+∈N .2024年秋季学期高三年级第二次月考・数学参考答案、提示及评分细则1.D因为{}{}242,1,0,1,2U A x x =∈≤=--Z ð,故选D.2.C 命题p :x ∃∈R ,使得23250x x -+=,则命题p 的否定是x ∀∈R ,23250x x -+≠,故选C.3.B()22211322222a b ab a b +=⨯⨯≤⨯=,当且仅当2a b =,即32a =-,b =32a =,b =时等号成立.故选B.4.A 令23210x x -->,解得1x >或13x <-,则()f x 的定义域为()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭ ,令2321u x x =--,()13log f x u =在定义域上单调递减,又2321u x x =--在1,3⎛⎫-∞- ⎪⎝⎭上单调递减,所以()f x 在1,3⎛⎫-∞- ⎪⎝⎭上单调递增,2321u x x =--在()1,+∞上单调递增,所以()f x 在()1,+∞上单调递减,故选A.5.B 因为{}n a 是各项均为正数的等比数列,564718a a a a +=,所以564756218a a a a a a +==,即569a a =,则11029569a a a a a a ==⋅⋅⋅==记3132310log log log S a a a =++⋅⋅⋅+,则3103931log log log S a a a =++⋅⋅⋅+,两式相加得()()()311032931012log log log S a a a a a a =++⋅⋅⋅+()()()311032931013log log log 10log 920a a a a a a =++⋅⋅⋅+=⨯=,所以10S =,即3132310log log log 10a a a ++⋅⋅⋅+=.故选B.6.B ()()()()33222211x x f x f x x x ---===---- ,()f x ∴是奇函数,当1x >时,()0f x >,综合分析,故选B.7.A 设π6t α+=,则π6t α=-,1cos 4t =,()22ππππ17sin 2sin 2sin 2cos22cos 121666248t t t t α⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=--=-=-=--=-⨯-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎢⎥⎣⎦.故选A.8.D根据()()2f x f x +=-可得()f x 的图象关于1x =对称,()()11f x f x +=--,()()()311f x f x f x +=-+=-,()f x ∴的周期为4,52,2b ⎡⎤∈⎢⎥⎣⎦ ,[]24,5b ∴∈,[]240,1b -∈,[]1,2a ∈,()()()224f b f b f a =-=,242a b ∴+-=,26a b +=,()()1214112241922554122442244b a a b a b a b a b -⎛⎫⎛⎫+=++-⋅=++≥⨯+= ⎪ ⎪---⎝⎭⎝⎭,当且仅当1a b =-,即43a =,73b =时,等号成立,()242228233339f a f f ⎛⎫⎛⎫⎛⎫===-+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选D.9.ABD选项A ,2ππ2T ==,故A 正确;选项B ,易知π8f ⎛⎫⎪⎝⎭为最大值或最小值,π8x ∴=是()f x 的一条对称轴的方程.ππ2π82k ϕ∴⨯+=+,k ∈Z ,()ππ4k k ϕ∴=+∈Z ,0πϕ<< ,π4ϕ∴=,故B 正确;选项C ,π32sin π442f ⎛⎫==⎪⎝⎭,不是最值,故C 错误;选项D ,当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ5π2,444x ⎡⎤+∈⎢⎥⎣⎦,此区间上()f x 有1个零点.故选ABD.10.BD27772log 2115222f f ⎡⎤⎛⎫⎛⎫⎛⎫-=-=-⨯+-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故A 错误;当(),0x ∈-∞时,()0,x -∈+∞,所以()()()()222log 21112log 21f x f x x x ⎡⎤=--=--+-=--+⎣⎦,故B 正确;因为()00f =时,11442212112log 211222f ⎛⎫⎛⎫-- ⎪ ⎪=⨯+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,又142102-<,()142102f f ⎛⎫- ⎪> ⎪ ⎪⎝⎭,所以C 错误;当()0,x ∈+∞时,()()22log 2111f x x =+-≥,解得12x ≥;当(),0x ∈-∞时,()()212log 211f x x =--+≥,无解;当0x =时,()00f =.故D 正确.故选BD.11.ABD 当0a >时,()()21201a f x x x '=+>-在()1,+∞上恒成立,所以在()1,+∞上单调递增,故A 正确;()()21222221a f '=+=-,解得34a =,故B 正确;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——教学资料参考参考范本——【高中教育】最新高三数学上学期第二次月考试题文______年______月______日____________________部门文科数学第I 卷(选择题,满分60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知,,复数,则 a b R∈512ia bi i +=+a b +=A .3B .1C .0D .2-2.设集合,,则 {3,2,1,0,1,2}A =---2{|230}B x x x =+-≤A B =A .B .C .D .{0,1,2}{2,1,0}--{1,0,1}-{3,2,1,0,1}---3.为了得到函数的图象,可以将函数的图象A .向左平移个单位长度B .向右平移个单位长度C .向左平移个单位长度D .向右平移个单位长度4.某四棱锥的三视图如图所示,正视图和侧视图为全等的直角边为1的等腰直角三角形,则该四棱锥的表面积为A .B .C .D .32+22+21+135.“”是“”的11()()22a b<lg lg a b > A. 充分不必要条件 B. 充要条件C. 必要不充分条件D. 既不充分也不必要条件6.已知函数f (x )=kx ﹣1,其中实数k 随机选自区间[﹣2,2],∀x∈[0,1],f (x )≤0的概率是A .B .C .D .7.已知满足,则α322cos =α=-+)4cos()4cos(απαπA. B. C. D.8.设奇函数f (x )的定义域为R , 且, 当x 时f (x)=, 则f (x )在区间上的表达式为 )()(x f x f =+4] ,[64∈12+x] ,[02-A .B .C .D .12+=x x f )(124--=+-x x f )(124+=+-x x f )(12+=-x x f )(9.设,则 44ln 4,33ln 3,22ln 2-=-=-=c b aA.a >b >cB. b >c >aC.c >a >bD.c >b >a10.已知两点,若曲线上存在点,使得,则正实数的取值范围为()()(),0,,00A a B a a ->2223230x y x y +--+=P 90APB ∠=︒aA .B . C. D . (]0,3[]1,2[]2,3[]1,311.已知是椭圆的左焦点,经过原点的直线与椭圆交于,两点,若,且,则椭圆的离心率为 F 2222:1(0)x y E a b a b +=>>l E P Q ||2||PF QF =120PFQ ∠=︒EA .B . C. D .1312332212.已知函数;若方程恰有两个不同的实数根,则实数的取值范围是( )2ln )(x xx f =0)(=-a x f aA. B. C.错误!未找到引用源。
D.e a 210<<e a 21<e a 2<e a 21>第Ⅱ卷(非选择题,满分90分)注意事项:1.请用蓝黑钢笔或圆珠笔在第Ⅱ卷答题卡上作答,不能答在此试卷上。
2.试卷中横线及框内注有“▲”的地方,是需要你在第Ⅱ卷答题卡上作答。
本卷包括必考题和选考题两部分。
第13题至第21题为必考题,每个试题考生都作答;第22、23题为选考题,考生根据要求作答。
二.填空题:本大题共4个小题,每小题5分,共20分。
13.设,满足约束条件,则目标函数的最小值是 ▲ .x y2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩2z x y =- 14.已知等腰直角三角形AOB 中,OA =OB =2,AB 中点为C ,OB 中点为D ,则 ▲ =⋅AD OA15.已知三棱锥O-ABC 的体积为错误!未找到引用源。
10,OA =3,OB =4,,则三棱锥O-ABC 的外接球的表面积为 ▲OC OA OC OB OB OA ⊥⊥⊥,,16.若直线与曲线有公共点,则的取值范围是 ▲ y x b=+234y x x =+-b三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本大题满分12分)已知在中,角、、的对边分别是、、,,,且.ABC ∆A B C a b c(2cos ,cos cos )m C a B b A =+(,1)n c =-m n ⊥(Ⅰ)求角;C(Ⅱ)若,求周长的最大值.3c =ABC ∆ 18.(本小题满分12分)某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 3 5 销售额y (万元)49263954(I )根据上表求回归方程;根据回归方程判断广告费用x 与销售额y是否高度相关?(回答结论即可,不必说明理由)ˆˆˆybx a =+ (II )据此模型预报广告费用为6万元时的销售额。
(参考公式:,)()()()∑∑==---=ni ini iix x yyx x b 121x b y a -=19.(本小题满分12分)如图,四棱锥P ﹣ABCD 中,侧面PAD 是边长为2的正三角形,且与底面垂直,底面ABCD 是菱形,且∠ABC=60°,M 为PC 的中点.(Ⅰ)在棱PB 上是否存在一点Q ,使用A ,Q ,M ,D 四点共面?若存在,指出点Q 的位置并证明;若不存在,请说明理由.(Ⅱ)求点D 到平面PAM 的距离. 20.(本小题满分12分)设抛物线的焦点为,准线为.已知以为圆心,半径为4的圆与交于、两点,是该圆与抛物线的一个交点,.2:2(0)C y px p =>F l F l A B E C 90EAB ∠=︒(Ⅰ)求的值;p(Ⅱ)已知点的纵坐标为且在上,、是上异于点的另两点,且满足直线和直线的斜率之和为,试问直线是否经过一定点,若是,求出定点的坐标,否则,请说明理由.P 1-C Q R C P PQ 21.(本小题满分12分) 已知函数, 讨论的单调性.)2(对于任意的,证明:存在,当时总有:.),0(+∞∈a 0x ),(0+∞∈x x ax x <ln请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建极坐标系,直线的极坐标方程为xoy C 22cos 2sin x y αα=+⎧⎨=⎩αO x l (sin 3cos ) 3.ρθθ+=(Ⅰ)求的极坐标方程;C(Ⅱ)射线与圆C 的交点为,与直线的交点为,求的范围.11:()63OM ππθθθ=≤≤,O P l Q ||||OP OQ ⋅23.[选修4-5:不等式选讲] (10分)已知,,.证明:0a >0b >22a b a b +=+ (Ⅰ);222()2()a b a b +≤+ (Ⅱ).(1)(1)4a b ++≤棠湖中学高20xx 届高三上第二学月考试文科数学答案一.选择题题号 1 2 3 4 5 6 选项 A D C B C D 题号 7 8 9 10 11 12 选项ABDDCA二. 填空题13. 14. 15. 16.9-4-π50[]221,3+三、解答题17. 解:(Ⅰ)∵ ∴m n ⊥2cos (cos cos )0c C a B b A -+= 由正弦定理得2sin cos (sin cos cos sin )0C C A B A B -+=即∴,在中, ∴2sin cos sin()0C C A B -+=2sin cos sin 0C C C -=ABC∆0C π<<sin 0C ≠∴, ∵,∴1cos 2C =(0,)C π∈3C π=(Ⅱ)由余弦定理可得:22222cos ()2(1cos )9c a b ab C a b ab C =+-=+-+= 即∴∴ ∴,2()39a b ab +-=221[()9]32a b ab a b +⎛⎫=+-≤ ⎪⎝⎭2()36a b +≤6a b +≤当且仅当时取等号,∴周长的最大值为6+3=93a b ==ABC ∆ 18.解:(I )由表可计算,, 4235742x +++==49263954424y +++==ˆb=9.4,解得 9.1a = 故回归方程为, ˆ9.49.1yx =+ 广告费用x 与销售额y 是高度正相关。
(II )令x=6得65.5.ˆy= 预报广告费用为6万元时的销售额为65.5万元。
19.解:(Ⅰ)当点Q 为棱PB 的中点时,A ,Q ,M ,D 四点共面, 证明如下:取棱PB 的中点Q ,连接QM ,QA ,又M 为PC 的中点,所以QM∥BC, 在菱形ABCD 中AD∥BC,所以QM∥AD, 所以A ,Q ,M ,D 四点共面.(Ⅱ)点D 到平面PAM 的距离即点D 到平面PAC 的距离,取AD 中点O ,连接OP ,OC ,AC ,可知PO⊥AD,又平面PAD⊥平面ABCD , 平面PAD∩平面ABCD=AD ,PO ⊂平面PAD ,所以PO⊥平面ABCD ,即PO 为三棱锥P ﹣ACD 的体高. 在Rt△POC 中,PO=OC=,PC=,在△PAC 中,PA=AC=2,PC=,边PC 上的高AM==,所以△PAC 的面积S△PAC==,设点D 到平面PAC 的距离为h ,S△ACD==由VD ﹣PAC=VP ﹣ACD 得,解得h=,所以点D 到平面PAM 的距离为.20.解:(1)由题意及抛物线定义,,为边长为4的正三角形,设准线与轴交于点,.||||||4AF EF AE ===AEF l x D11||||4222AD p AE ===⨯=(2)设直线的方程为,点,.QR x my t =+11(,)Q x y 22(,)R x y由,得,则,,.24x my ty x =+⎧⎨=⎩2440y my t --=216160m t ∆=+>124y y m+=124y y t ⋅=-又点在抛物线上,则,同理可得.P C11221144p P PQP P y y y y k y y x x --==--11441P y y y ==+-241PR k y =- 因为,所以,解得.1PQ PRk k +=-124411y y +=--1212124()8()1y y y y y y +--++1681441m t m -==---+734t m =-由,解得.21616073417(1)344m t t m m m ⎧⎪∆=+>⎪⎪=-⎨⎪⎪≠⨯-+-⎪⎩71(,)(,1)(1,)22m ∈-∞-⋃⋃+∞所以直线的方程为,则直线过定点.QR 7(3)4x m y =+-QR 7(,3)4--21.解: )1(x ax x f 1)(,-=所以递减,当),时原函数在(∞+≤00a)递增)递减,在(,时在(+∞>,1100a a a)(2当时命题显然成立1≥a考察 令10<<a ax x e x e x aa<+∞∈=ln ),(220总有则证明如下:由(1)所以,故只需证明a e a12>)递增在(+∞,)(2ae x f22.解:(Ⅰ)圆C 的普通方程是又所以圆C 的极坐标方程是22(2)4,x y -+=cos ,sin .x y ρθρθ==4cos .ρθ=(Ⅱ)设则由设且直线的方程是则有11(,),P ρθ114cos ,ρθ=22(,),Q ρθl(sin 3cos )3,ρθθ+= 2113,sin 3cos ρθθ=+所以1121143cos 43||||[2,3]sin 3cos 3tan OP OQ θρρθθθ===∈++23.证明:(1)因为.22222()2()2a b a b ab a b +-+=--2()0a b =--≤ 所以.222()2()a b a b +≤+ (2)方法1:由(1)及得.22a b a b +=+2a b +≤因为,.2(1)(1)(1)(1)[]2a b a b +++++≤22(1)(1)2)[]()422a b a b +++++=≤于是. (1)(1)4a b ++≤ 方法2:由(1)及得.22a b a b +=+2a b +≤因为,所以.故.2()2a b ab +≤1ab ≤(1)(1)14a b ab a b ++=+++≤。