利川市2014九年级数学质检+答案
2014年九年级数学中考一模 调研试卷及答案
2014年初三统一练习暨毕业考试数学试卷一、选择题(本题共32分,每小题4分) 1.32-的相反数是 A .23- B .23 C .32- D .322.清明小长假本市150家景区接待游客约5245000人,数字5245000用科学记数法表示为 A .3105.245⨯B .6105.245⨯C .7100.5245⨯ D .3105245⨯ 3.正五边形的每个内角等于 A .72°B .108°C .54°D .36°4.为了解居民用水情况,晓娜在某小区随机抽查了10户家庭的月用水量,结果如下表:则这10户家庭的月用水量的平均数和众数分别是A .7.8,9B .7.8,3C .4.5,9D .4.5,3 5.将二次函数1822--=x x y 化成k h x a y +-=2)(的形式,结果为 A .1)2(22--=x y B . 32)4(22+-=x y C .9)2(22--=x y D . 33)4(22--=x y6.如图,△ABC 内接于⊙O ,BA =BC ,∠ACB =25°,AD 为⊙O 的直径,则∠DAC 的度数是 A .2530° C .40° D .50°7.转盘上有六个全等的区域,颜色分布如图所示,若指针固定不动,转动转盘, 当转盘停止后,则指针对准红色区域的概率是 A .21 B .31 C .41 D .618.如图,边长为1的正方形ABCD 中有两个动点P , Q ,点P 从点B 出发沿BD 作匀速运动,到达点D 后停止;同时点Q 从点B 出发,沿折线BC →CD 作匀速运动,P ,Q 两个点的速度都为每秒1个单位,如果其中一点停止运动,则另一点也停止运动.设P ,Q 两点的运动时间为x 秒,两点之间的距离为y ,下列图象中,能表示y 与x的函数关系的图象大致是红 黄蓝 红蓝 蓝二、填空题(本题共16分,每小题4分) 9. 分解因式:ax ax 163-=_______________.10. 如图,CD AB //,AC 与BD 相交于点O ,3=AB , 若3:1:=BD BO ,则CD 等于_____.11.如图所示,小明同学在距离某建筑物6米的点A 处测得条幅两端B 点、C 点的仰角分别为60°和30°,则条幅的高度BC 为 米(结果可以保留根号).12.在平面直角坐标系xOy 中,已知直线l :x y =,作1A (1,0)关于xy =的对称点1B ,将点1B 向右水平平移2个单位得到点2A ;再作2A 关于x y =的对称点2B ,将点2B 向右水平平移2个单位得到点3A ;….请继续操作并探究:点3A 的坐标是 ,点2014B 的坐标是 .三、解答题(本题共30分,每小题5分)13.02014130tan 3512(-︒+--. 14.解方程:xx x -=+--53153. 15.如图,在△ABC 和△ADE 中,AC AB =, AE AD =,DAE BAC ∠=∠,点C 在DE 上. 求证:(1)△ABD ≌△ACE ;(2)ADC BDA ∠=∠.16.已知:23=y x ,求代数式y x yx 3294+-的值.17.如图,一次函数21+=kx y 的图象与x 轴交于点B (0 2-,),与函数xmy =2(0>x )的图象交于点A (a 1,).(1)求k 和m 的值; BBDCC(2)将函数xmy =2(0x >)的图象沿y 轴向下平移3个单位后交x 轴于点C .若点D 是平移后函数图象上一点,且△BCD 的面积是3,直接写出点D 的坐标.18.某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台. (1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案? 四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,2AB =,︒=∠=∠60C A ,DB AB ⊥于点B ,45DBC ∠=︒,求BC 的长.20.为响应推进中小学生素质教育的号召,某校决定在下午15点至16点开设以下选修课:音乐史、管乐、篮球、健美操、油画.为了解同学们的选课情况,某班数学兴趣小组从全校三个年级中各调查一个班级,根据相关数据,绘制如下统计图.(1)请根据以上信息,直接补全条形统计图和扇形统计图;(2)若初一年级有180人,请估算初一年级中有多少学生选修音乐史? (3)若该校共有学生540人,请估算全校有多少学生选修篮球课? 21.如图,⊙O 是△ABC 的外接圆,AC AB =,连结CO 并延长交⊙O 的切线AP 于点P . (1)求证:BCP APC ∠=∠; (2)若53sin =∠APC ,4=BC ,求AP 的长.P三个班级参加选修课的 初二(5)班参加各类选修课的人数统计图 人数分布统计图 人数 音乐史 管乐 篮球 健美操油画 课程 10 9 8 7 6 5 4 3 2 122.实验操作(1)如图1,在平面直角坐标系xOy 中,△ABC 的顶点的横、纵坐标都是整数,若将(1)求m 的值;(2)将抛物线1C :1)1(22-+-+=m x m mx y 向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,若抛物线2C 过点),(b A 2和点),(12 4+b B ,求抛物线2C 的表达式;(3)将抛物线2C 绕点(n n ,1+)旋转︒180得到抛物线3C ,若抛物线3C 与直线121+=x y 有两个交点且交点在其对称轴两侧,求n 的取值范围.24.在矩形ABCD 中,AD =12,AB =8,点F 是AD 边上一点,过点F 作∠AFE =∠DFC ,交射线AB 于点E ,交射线CB 于点G . (1) 若FG =_____CFG ∠=︒;(2) 当以F ,G ,C 为顶点的三角形是等边三角形时,画出图形并求GB 的长;(3)过点E 作EH//CF 交射线CB 于点H ,请探究:当GB 为何值时,以F ,H ,E ,C为顶点的四边形是平行四边形.25.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义: “水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”=S ah .例如:三点坐标分别为)2,1(A ,)1,3(-B ,)2,2(-C ,则“水平底”5=a ,“铅垂高”4=h ,“矩面积”20==S ah .(1)已知点)2,1(A ,)1,3(-B ,),0(t P .①若A ,B ,P 三点的“矩面积”为12,求点P 的坐标; ②直接写出A ,B ,P 三点的“矩面积”的最小值. (2)已知点)0,4(E ,)2,0(F ,)4,(m m M ,)16,(nn N ,其中0>m ,0>n . ①若E ,F ,M 三点的“矩面积”为8,求m 的取值范围;②直接写出E ,F ,N 三点的“矩面积”的最小值及对应n 的取值范围.备用图数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共8道小题,每小题4分,共32分)9.)4)(4(-+x x ax ; 10.6; 11.34; 12.(3,2),(2013,2014). 三、解答题(本题共30分,每小题5分)13.解:02014130tan 3512)(-︒+-- =1333532-⨯+- ………………………………………4分 =6-33 ………………………………………5分 14. 解:方程两边同乘以)5(-x ,得 ………………………………………1分3)5(3-=-+-x x . ………………………………………2分解得25=x . ………………………………………3分 经检验:25=x 是原分式方程的解. ………………………………4分所以25=x 是原方程的解. ………………………………………5分15.证明:(1)DAE BAC ∠=∠ ,DAC DAE DAC BAC ∠-∠=∠-∠∴.CAE BAD ∠=∠∴. …………………………1分 在△ABD 和△ACE 中,⎪⎩⎪⎨⎧=∠=∠=AE AD EAC BAD AC AB , ……………2分 ∴△ABD ≌△ACE . ………………………3分 (2)AEC ADB ∠=∠∴. AE AD = ,AEC ADC ∠=∠∴. …………………………4分 ADC BDA ∠=∠∴. …………………………5分16.解:由已知y x 32=, ………………………………………2分 ∴原式yy yy 3396+-=………………………………………4分21-=. ………………………………………5分 17.解:(1)根据题意,将点B (0 2-,)代入21+=kx y ,∴22-0+=k . ………………………………………………………1分∴1=k . …………………………………………………2分∴A (3 1,). 将其代入x my =2,可得:3=m …………………3分(2)(2 53,)或(2 3-,). ………………………………………5分 18.解:设该公司购进甲型显示器x 台, 则购进乙型显示器()50-x 台.(1)依题意可列不等式:77000)50(20001000≤-+x x ……………2分解得:23≥x …………………………………………………………3分∴该公司至少购进甲型显示器23台. (2)依题意可列不等式:x x -≤50解得:25≤x ………………………………………………………4分∵23≥x∴x 为23,24,25. 答:购买方案有:①甲型显示器23台,乙型显示器27台; ②甲型显示器24台,乙型显示器26台;③甲型显示器25台,乙型显示器25台. …………5分四、解答题(本题共20分,每小题5分)19. 解:过点D 作BC DE ⊥于点E . ……………………1分︒=∠=⊥60 2,A AB AB DB ,,∴3260tan =︒⨯=AB BD . ………………2分 45DBC ∠=︒,BC DE ⊥,∴645sin =︒⨯==BD DE BE …………3分︒=∠︒=∠=∠9060DEC A C , 260tan =︒=∴DECE . ……………………4分62+=∴BC .………………………………5分20.解:(1)条形统计图补充数据:6(图略). ………………………………………1分 扇形统计图补充数据:20. ……………………………2分(2)180×308=48(人). ………………………………………………3分 (3)()1543030303020866=++÷⎪⎭⎫⎝⎛⨯++. ……………4分144540154=⨯(人). …………………………………………5分 21.(1)证明:连结AO 并延长交BC 于D 、⋂BC 于EAP 切⊙O 于点AAPBC BC EA AC AB ACAB PA EA //∴⊥∴=∴=⊥∴⋂⋂…………………1分 BCP APC ∠=∠∴…………………………2分(2)解:BC AE ⊥221==∴BC CD53sin ==∠PO AO APC ∴设k OP k OA 5,3==,则k OA OC 3==………………3分AP BC //∴△PAO ∽△CDO …………………………4分 COPOCD PA =∴ kkPA 352=∴∴310=PA …………………………5分PE34π=⋂AB ……………………………………………………5分 五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.解:(1)∵方程01)1(22=-+-+m x m mx有两个实数根,∴0≠m 且0≥∆, ……………………1分则有0)1(4-)1(42≥--m m m 且0≠m ∴1≤m 且0≠m又∵m 为非负整数,∴1=m . ………………………………2分(2)抛物线1C :2x y =平移后,得到抛物线2C :b a x y +-=2)(,……3分 ∵抛物线2C 过),2(b A 点,b a b +-=2)2(,可得2=a ,同理:b a b +-=+2)4(12,可得3=b , …………………………4分∴2C :()322+-=x y )(或742+-=x x y . …………5分(3)将抛物线2C :3)2(2+-=x y 绕点(n n ,1+)旋转180°后得到的抛物线3C 顶点为(322-n n ,), ………………6分当n x 2=时,11221+=+⨯=n n y , 由题意,132+>-n n ,即:4>n . ……………………………7分24.解:(1)90° ………………………………………………2分 (2)正确画图 ………………………………………………3分四边形ABCD 是矩形, ∴∠D=90°.△FGC 是等边三角形,=60GFC ∴∠︒ . ∠DFC =∠AFE ,∴∠DFC =60°. …………4分 DC =8 ,∴331660sin =︒=DC FC .△FGC 是等边三角形,∴GC =FC .BC=AD =12,∴GB=12.………………………………5分 (3)过点F 作FK ⊥BC 于点K 四边形ABCD 是矩形∴∠ABC =90°,AD//BC∴∠DFC =∠KCF ,∠AFG =∠KGF ∠DFC =∠AFG ∴∠KCF =∠KGF∴FG =FC ……………………………………………………………6分∴GK =CK四边形FHEC 是平行四边形∴FG =EG ……………………………………………………………7分 ∠FGK =∠EGB, ∠FKG =∠EBG=90°∴△FGK ≌△EGB∴BG =GK=KC=4312=……………………………………………8分25.解:(1)由题意:4=a .①当2>t 时,1-=t h , 则12)1(4=-t ,可得4=t ,故点P 的坐标为(0,4);……………1分当1<t 时,t h -=2,则12)2(4=-t ,可得1-=t ,故点P 的坐标为(0,1)-.…………2分②A ,B ,P 三点的“矩面积”的最小值为4. ……………………3分 (2)①∵E ,F ,M 三点的“矩面积”的最小值为8,∴⎩⎨⎧≤≤≤≤24040m m .∴210≤≤m .∵0>m ,∴210≤<m . ………………………………………………………4分②E ,F ,N 三点的“矩面积”的最小值为16,…………………………5分 n 的取值范围为84≤≤n ………………………………………………7分。
2014届九年级数学中考质量检测摸底考试试卷及答案
2014届初中毕业班数学科综合模拟试卷(一)(试卷满分:150分 考试时间:120分钟)一、选择题(每小题3分,共21分).1. 实数2014的相反数是( ). A . 2014 B .2014- C .12014 D .12014- 2. 下列计算正确的是( ).A. 32x x x =⋅B. 2x x x =+C. 532)(x x =D. 236x x x =÷3. 如图是一个由4个相同的正方体组成的立体图形,则它的主视图为( ).A .B .C .D .\4. 下列说法不正确的是( ). A .选举中,人们通常最关心的数据是众数B .从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C .一组数据3、5、4、1、-2的中位数是3D .某游艺活动的中奖率是60%,说明只要参加该活动10次就一定有6次获奖5. 有一道题目:已知一次函数y=2x+b,其中b <0,…,与这段描述相符的函数图像可能是( ).6. 下列图形中,既是轴对称图形又是中心对称图形的是( ).A .等边三角形B .平行四边形C .正方形D .等腰梯形 7. 如图,△ABC 是⊙O 的内接三角形,AC 是⊙O 的直径,∠C=50°, ∠ABC 的平分线BD 交⊙O 于点D ,则∠BAD 的度数是( ). A .45° B .85° C .90° D .95°二、填空题(每小题4分,共40分).8. 实数16的平方根是.9. 分解因式23x x -= .10. 微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.000 000 71平方毫米,用科学记数法表示为 平方毫米.11. 一副三角尺按如图所示放置,则∠1= 度.12. 若等腰三角形两边长分别为10和5,则它的周长是 . 13. 已知5-=+y x ,6=xy ,则=+22y x .14.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,点F 在BC 的延长线上,∠A=46°,∠1=52°,则∠2= 度. 15. 如图,反比例函数ky x=的图象经过点P ,则 k = .(第14题图) (第15题图) (第16题图) (第17题图)16. 把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为 厘米.17. 如图,在Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=4, E 、F 分别是AB 、AC 边的中点,则(1)=EF ;(2)若D 是BC 边上一动点,则△EFD 的周长最小值是 .三、解答题(共89分).18. (9分)计算:201)2π-⎛⎫⨯-- ⎪⎝⎭19. (9分)先化简,再求值:先化简,再求值:21(1)(1)(1)x x x x+-+-,其中2x =-.20. (9分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查。
2013-2014初三上学期学业水平考试初三数学(含答案)
2013-2014初三上学期学业水平考试数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷共3页,满45分;第Ⅱ卷共7页,满分75分.本试题共10页,满分120分,考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷的密封线内.3.第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,答案写在试卷上无效. 4.考试期间,一律不得使用计算器;考试结束,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个等腰三角形的顶角是40°,则它的底角是( )A .40°B .50°C .60°D .70° 2.方程 x (x +3)= 0的根是( ) A .x =0B .x =-3C .x 1=0,x 2 =3D .x 1=0,x 2 =-33.下列函数中,属于反比例函数的是( ) A .2xy =B .12y x=C .23y x =+D .223y x =+4.下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是( )A. A →B →C →DB. D →B →C →AC. C →D →A →BD. A →C →B →D北 东5.在Rt △ABC 中,∠C=90°,a =4,b =3,则cosA 的值是( ) A .54 B .35C .43 D .456.二次函数223y x x =-+顶点坐标是( )A .(-1,-2)B .(1,2)C .(-1,2)D .(0,2)7.如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是( )A .38 B .12 C .14 D .138. 与如图所示的三视图对应的几何体是( )9.下列命题中,不正确...的是( ) A .对角线相等的平行四边形是矩形.B .有一个角为60°的等腰三角形是等边三角形.C .直角三角形斜边上的高等于斜边的一半.D .正方形的两条对角线相等且互相垂直平分.10. 已知点A( -2 ,y 1 ) , ( -1 ,y 2 ) , ( 3 ,y 3 )都在反比例函数xy 4=的图象上,则 ( )A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 3 <y 1<y 2D. y 2<y 1<y 311.若关于x 的一元二次方程0962=+-x kx 有两个不相等的实数根,则k 的取值范围是( )A. 1k <B. 0k =/C. 10k k <=/且D. 1k >12. 如右图,在□ABCD 中,EF ∥AB,GH ∥AD,EF 与GH 交于点O,则图中的平行四边形的个数共有 ( )A. 7个B. 8个C. 9个D. 10个13.如图,在△ABC 中,AB=a ,AC=b ,BC 边上的垂直平分线DE 交BC ,BA 分别于点D ,E ,则△AEC 的周长等于( )A. a+bB.a-bC.2a+bD.a+2b14.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是( )A.2nB.4nC.12n + D.22n +15.已知x y z ,,为实数,且满足253x y z +-=,25x y z --=-,则222x y z ++的最小值为( ).A.111 B. 0 C. 5 D. 5411OGHFEC BAD图1图2图3……F EDC A2011年初三上学期学业水平考试数学试题第Ⅱ卷(非选择题 共75分)注意事项:1.第Ⅱ卷共6页.用蓝、黑钢笔或圆珠笔直接答在考试卷上.二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上) 16.已知反比例函数xky =的图象经过点P(一l ,2),则这个函数的图象位于_____________17.甲、乙两楼相距20m ,甲楼高20 m ,自甲楼顶看乙楼楼顶,仰角为60º,则乙楼的高为 。
2014初三级数学测试卷答案
2014年初三年级数学测试卷答案一、选择题(本题共32分,每小题4分)1.D2.A3.C4.C5.B6.B7.D8.C二、填空题(本题共16分,每小题4分)9.-110.答案不唯一,如平行四边形11.12.1+,,(第1、2每个空各1分,第3个空2分)三、解答题(本题共30分,每小题5分)13.证明:∵AE=CF,AE+EF=CF+EF.即AF=CE.1分∵AD∥BC,C.2分又∵AD=BC,3分△ADF≌△CBE.4分DF=BE.5分14.解:原式4分=.5分15.解:将方程整理,得.去分母,得x-3+3+x-2=0.2分解得x=1.3分经检验x=1是原分式方程的解.4分原分式方程的解为x=1.5分16.解:原式=2分=.3分∵x-5y=0,x=5y.4分原式=.5分17.解:设一支康乃馨的价格是x元,一支百合的价格是y元.1分根据题意,得3分解得4分答:一支康乃馨的价格是6元,一支百合的价格是8元.5分18.解:(1)根据题意,得0.1分即-43(1-k)0.解得k-2.2分∵k为负整数,k=-1,-2.3分(2)当k=-1时,不符合题意,舍去;4分当k=-2时,符合题意,此时方程的根为x1=x2=1.5分四、解答题(本题共20分,题每小题5分)19.解:(1)在Rt△ABC中,∵AB=,B=60,AC=ABsin60=6.2分(2)作DEAC于点E,∵DAB=90,BAC=30,DAE=60,∵AD=2,DE=.3分AE=1.∵AC=6,CE=5.4分在Rt△DEC中,..5分20.解:(1)14.5,3.4;2分(2)①=9.4(分);4分②120(人).5分估计在报名的学生中有102人得分不少于9分.21.(1)证明:如图①,连接AD.∵E是的中点,.DAE=EAB.∵C=2EAB,C=BAD.∵AB是⊙O的直径,ADB=ADC=90.CAD=90.BAD+CAD=90.即BAAC.AC是⊙O的切线.2分(2)解:如图②,过点F做FHAB于点H. ∵ADBD,DAE=EAB,FH=FD,且FH∥AC.在Rt△ADC中,∵,AC=6,CD=4.3分同理,在Rt△BAC中,可求得BC=9. BD=5.设DF=x,则FH=x,BF=5-x.∵FH∥AC,BFH=C..即.4分解得x=2.BF=3.5分22.解:(1)如图1分(2);3分(3)当点P在线段CB的延长线上时,(2)中结论仍然成立.理由如下:过点P分别作两坐标轴的平行线,与x轴、y轴分别交于点M、N,则四边形ONPM为平行四边形,且PN=x,PM=-y.OM=x,BM=5-x.∵PM∥OC,△PMB∽△COB.4分,即..5分本文导航1、首页2、初三年级数学测试卷答案-2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)1;1分(2)∵OP=m,MN=(-m2+3m)-(-m2+2m)=m,OP=MN.2分①当0∵PM=-m2+2m,PN=-m2+3m.若PM=OP=MN,有-m2+2m=m,解得m=0,m=1(舍).3分若PN=OP=MN,有-m2+3m=m,解得m=0(舍),m=2(舍).4分②当2③当m3时,∵PM=m2-2m,PN=m2-3m.若PM=OP=MN,有m2-2m=m,解得m=0(舍),m=3(舍).6分若PN=OP=MN,有m2-3m=m,解得m=0(舍),m=4.7分综上,当m=1或m=4,这四条线段中恰有三条线段相等.24.解:(1)△CDF是等腰直角三角形.1分证明:∵ABC=90,AFAB,FAD=DBC.∵AD=BC,AF=BD,△FAD≌△DBC.FD=DC.2分2.∵3=90,3=90.即CDF=903分△CDF是等腰直角三角形.(2)过点A作AFAB,并截取AF=BD,连接DF、CF.4分∵ABC=90,AFAB,FAD=DBC.∵AD=BC,AF=BD,△FAD≌△DBC.FD=DC,2.∵3=90,3=90.即CDF=90.△CDF是等腰直角三角形.5分FCD=APD=45.FC∥AE.∵ABC=90,AFAB,AF∥CE.四边形AFCE是平行四边形.6分AF=CE.BD=CE.7分page]初三年级数学测试卷答案-3精心整理,仅供学习参考。
2014下期末初三数学试题答案
2014-2015学年第一学期期末考试初三数学参考答案及评分标准一、选择题:每小题3分,共45分.1.C 2.B 3.D 4.D 5.C 6.C 7.A 8.C 9.A 10.D11.A 12.A 13.C 14.D 15.D二、填空题:每小题4分,共20分.16.2(41)(21)(21)a a a ++- 172 18.AE=CF (答案不唯一) 19.±6 20.2<m<3三、解答题:21、解:(1) 原式=534-515a b c a b…………………………………………………………………………1分 =(54)(31)13ab c --- ……………………………………………………………………………………3分 =213ab c -……………………………………………………………………………………………4分 (2) 原式=4x 221()x x x x÷-- ……………………………………………………………………1分 =4x 221x x x-÷- …………………………………………………………………………2分 =4x 2x 21x x ⨯-- …………………………………………………………………………3分 =2 …………………………………………………………………………………………4分(3)原式= ………………………………………………2分= ……………………………………………………………………………………4分(4) 原式=22(44)y x xy y --+ …………………………………………………………………2分 =2(2)y x y -- ………………………………………………………………………………4分22、解:方程两边都乘以2x 4-得:2(2)34x x x ++=- ………………………………1分 22234x x x ++=-27x =- ……………………………………………………………………………………………2分72x =- ……………………………………………………………………………………………3分检验:把72x =-代入240x ≠-…………………………………………………………………4分 所以72x =-是原方程的解 …………………………………………………………5分 23、解:根据题意,得12APB y S PB AC ==⋅⋅ …………………………………………1分 ∴16(8)2y x =⨯⨯- ……………………………………………………………………………2分 ∴243y x =- ………………………………………………………………………………3分 而且P 点不与B,C 重合,所以x 的值的取值范围只能在0到8之间,而取不到0或者8,所以x 0<<8……………………………………………………………………………………5分 ∴y 与x 的函数解析式:243y x =-自变量x 的取值范围:x 0<<8 ……………………………………………………………6分24、解:在Rt △ABC 中:BC 2=225030-=1600,∴BC =40,………………………………3分 小汽车速度为:40÷2=20米/秒=72千米/时>70千米/时.………………………………………5分 ∴这辆小汽车超速了 ………………………………………………………………………………6分25、证明:四边形ABCD 是平行四边形,∴AF ∥CD ,AB=CD ………………………1分 AB=BE ,∴四边形BECD 是平行四边形………………………………………………………2分 ∴BD ∥CE∴∠BDF=∠EMF=∠DMC ………………………………………………………………………3分 BF=BD ,∴∠BDF=∠F=∠FDC ………………………………………………………………4分 ∴∠DMC=∠MDC ………………………………………………………………………………5分 ∴CD=CM …………………………………………………………………………………………6分26、证明:∵AD 是∠CAB 的平分线,∠ACD=∠ AED=90°∴CD=DE …………………………………………………………………………………………1分 ∵∠ACD=∠ AED ,∠CAD=∠DAE ,AD=AD∴△ACD ≌△AED ,∴∠ADC=∠ADE …………………………………………………………2分 又∵CD=DE ,DF=DF∴△CDF ≌△EDF ………………………………………………………………………………3分 ∴CF=EF ……………………………………………………………………………………………4分 ∵∠CDF=∠B+12∠CAB ,∠CFD=∠ACH+12∠CAB. ∵∠B=90°-∠CAB ,∠ACH=90°-∠CAB ,∴∠ACH=∠B∴∠CDF=∠CFD …………………………………………………………………………………5分 ∴CF=CD. ……………………………………………………………………………………6分∴CF=CD=DE=EF.∴四边形CDEF 是菱形……………………………………………………………………7分27、解:(1)如图:; ………………2分(2)2次 …………………………………………………………………………………………3分(3)如图,设直线AB 的解析式为y=k 1x+b 1∵图象过A (4,0)B (6,150),1111406150k b k b +=⎧∴⎨+=⎩ 1175300k b =⎧∴⎨=-⎩ 则75300y x =-① ……………………………………………………………………………5分 设直线CD 的解析式为y=k 2x+b 2∵图象过C (7,0),D (5,150),2222705150k b k b +=⎧∴⎨+=⎩ 2275525k b =-⎧∴⎨=⎩ 则75525y x =-+②……………………………………………………………………………7分 解由①、②组成的方程组得 5.5112.5x y =⎧⎨=⎩ ∴最后一次相遇时距离乌鲁木齐市的距离为112.5千米……………………………………9分。
2013-2014上学期九年级数学期末教学质量调研试题(附答案)
2013-2014学年度上期期末教学质量调研测试九年级数学试卷考试形式;闭卷 考试时间100分 分值120分一、选择题(每题3分,共18分)1.下列图案中,既是轴对对称图形又是中心对称图形的是( )A B C D2.下列二次根式中,x 的取值范围是x ≥3的是 ( )A.3x - B62x + C26x - D.13x - 3已知一元二次方程22410x m ++-=(m-1)x 的一个根为0,则m 的值是( ) A. -1 B . 1 C 1± D. 24.如图,在⊙O 中,∠CBO=45°,∠CAO=15°, 则∠AOB 的度数是( )5.如图,二次函数程2y ax bx c =++的图像开口向上,对称轴为直线1x =,图像经过(3,0),下列结论中,正确的一项是( )A .abc<0B .2a+b<0C .a-b+c<0D .4ac-b 2<0 6.如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴相切于点Q ,与y 轴交于M (0,2),题号 一 二 三总分 16 17 18 19 20 21 22 23 得分得 分 评卷人学校___________ 班级_____________ 姓名___________ 考试号___________………………………………密…………封…………线…………内…………不…………得…………答…………题………………………………ABCO O13 xyy XM NOQP第4题图第5题图第6题图第15题O C A B ′ A ′C ′ 第7题 第8题 ABx yDA BG FCE N(0,8)两点, 则点P 的坐标是( )A. (5,3)B. (3,5)C. (5,4) D .(4,5 )7.如图,A 是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上。
则A 与桌面接触的概率是( )A.16 B . 14 C 13 D. 128.如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA ′B ′C ′的位置,若OB=23,∠C=120°, 则点B ′的坐标是( )A.(3, 3)B. (3,-3)C. (6,-6)D. (6,6)二.填空题(每小题3分,共21分)9.已知a,b 为两个连续的整数,且a<28<b. 则a+b=__________;10.已知一元二次方程:2320x x --=的两个根分别是α、β,计算22αβαβ+的值为________.11. 在一只不透明的口袋中放入红球6个,黑球2个,黄球n 个。
湖北省利川市2013-2014年度九年级上期末调研考试数学试题及答案【新课标人教版】
评卷人得 分 利川市2013-2014学年度第一学期期末调研考试九年级数 学 试 题一、选择题。
(下列各题都给出了四个选项,其中只有一个选项是符合题目要求的,请将符合要求的选项前面的字母代号填写在下面的答题栏内. 本大题共12个小题,每小题3分,共36分)。
1、已知4a =,则a 等于A 、±16B 、16C 、±2D 、2 2、若x 3-在实数范围内有意义,则实数x 的取值范围是A 、3x ≥B 、3x >C 、3x ≤D 、3x < 3、一元二次方程01x x 22=+-的一次项系数和常数项依次是A 、-1和1B 、1和1C 、2和1D 、0和14、在正三角形、正方形、棱形和圆中,既是轴对称图形又是中心对称图形的个数是 A 、4 B 、3 C 、2 D 、15、下列计算,正确的是 A 、523=+B 、3223=-C 、1234=⨯D 、236=÷6、如果两圆的半径分别是4和7,两圆的连心线段长为3,则两圆的位置关系是 A 、外离 B 、内含 C 、外切 D 、内切7、下列事件中,不是随机事件的是A 、掷一次图钉,图钉尖朝上B 、掷一次硬币,硬币正面朝上C 、度量三角形的内角和,结果小于180°D 、度量三角形的内角和,结果等于360° 8、一元二次方程0c x 2x 2=++有两不等实数根,则c 的取值范围是 A 、c <1 B 、c ≤1 C 、c=1 D 、c ≠19、如图,AB 是⊙O 的直径,D 、C 在⊙O 上,AD ∥OC ,∠DAB=60°,连接AC ,则∠DAC 等于A 、15°B 、30°C 、45°D 、60° 10、已知关于x 的方程01k kx 2x )1k (2=++--(k 为实数),则其根的情况是评卷人得 分评卷人得 分A 、没有实数根 B 、有两不等实数根 C 、有两相等实数根D 、恒有实数根 11、掷一次骰子(每面分别刻有1—6点),向上一面的点数是质数..的概率等于 A 、61 B 、 21 C 、31 D 、 3212、一件商品的标价为108元,经过两次降价后的销售价是72元,求平均每次降价的百分率。
2013-2014年度第一学期九年级期末调考答案
利川市2013-2014学年度第一学期期末调研考试九年级数学试题参考答案及评分说明一、选择题(本大题共12个小题,每小题3分,共36分)。
说明:7题“D 、度量三角形的内角和,结果等于360°”是不可能事件(见教材);10题k=1时,方程有根,k ≠1时,△=4>0,故选D 。
二、填空题(本大题共4个小题,每小题3分,共12分)。
13、0。
14、72。
15、2cm 6π。
16、(2,2),或(-2,2),或(2,-2),或(-2,-2)。
三、解答题(本题共8个小题,共72分)。
17、计算(共8分)。
3622+-。
18、解方程(每题4分,共8分)。
(1)3x 1x 21-==,;(2)5622a 1+=,5622a 2-=。
19、化简求值(满分8分)。
化简得4c b +-,(3分)把13x 1+=,13x 2-=,代入方程0c x b x 2=++得, ⎪⎩⎪⎨⎧=+-+-=++++.0c b 1313,0c b 131322)()()()(解得⎩⎨⎧=-=.2c ,32b (3分) 原代数式的值为231+-。
(2分) 说明:用韦达定理(一元二次方程根与系数的关系为选学)求b 、c 的值不扣分。
20、几何证明(满分8分)。
解:BE=AD 。
(2分)证明:∵△ABC 是等边三角形, ∴BC=AC ,∠BCA=60°,同理,EC=DC ,∠ECD=60°,(3分)∴以点C 为旋转中心将△ACD 逆时针旋转60°得到△BCE , ∴△BCE ≌△ACD ,(2分) ∴BE=AD 。
(1分)说明:用SAS 证明,第四步不同,按题目要求扣1分。
21、概率与频率(满分8分)。
解:由题意知,第一个布袋内有2个红球和2个白球;(1分)第二个布袋内有1个红球和3个黑球。
(1分))P (两球颜色不相同)=871614=。
(2分) 说明:列举所有结果或用树形图求解,结果正确不扣分。
(2014年秋)(定稿)九数学答案
2014--2015学年度第一学期期末教学质量检测九年级数学参考答案及评分标准说明:1、答案只提供一种,如答案有误或一题多解(证),以阅卷组为单位统一商定评分。
2、评分标准中的评分细化到每个步骤中的得分点...累计记分,但学生解题过程中每个步骤出现的先后顺序是可以不同的,阅卷者需把握标准认真评阅。
二、解答题 (本大题共9小题,计75分)16.(6分)解:原方程可整理得:x 2-2x-3=0. ----------------------1分 (x-3)(x-1)=0(应用公式法和配方法均可) ----------------------3分解得:x 1=3,x 2=1 ----------------------6分17.(6分)解:原式=2)(2)31(+)(3)(3)33x x x x x x x +--÷+---(---------------------1分=)23()3)(3()2)(2--⨯-+-+x x x x x x (---------------------2分 =32++x x --------------------------- 3分解不等式2x ﹣3<7得,x <5 ---------------------------4分 依题意只可取数值1或4, ---------------------------5分 代入得值7643或(代一个数值计算即可)---------------------6分18.(7分)解:∵底面圆的面积为100π,∴底面圆的半径为10. ---------------------1分∴扇形的弧长等于圆的周长为20π. ---------------------2分 设圆锥的母线长为l . 则120180lπ=20π---------------------4分 解得:l=30. ---------------------5分∴扇形的面积为πrl=π×10×30=300π,---------------------7分 19.(7分)解:(1)∵在△ABC 中,∠ACB=90°,∠B=30°,∴∠A=60°, ---------------------1分又∵ AC=DC , ∴△ADC 是等边三角形,---------------------2分 ∴∠ACD=60°,∴ 当旋转角为60度时,点D 刚好落在AB 边上. ---------------------3分 (2)四边形ACFD 是菱形; ---------------------4分理由:∵∠DCE=∠ACB=90°,F 是DE 的中点,∴FC=DF=FE ,---------------------5分 ∵∠CDF=∠A=60°,∴△DFC 是等边三角形,---------------------6分 ∴DF=DC=FC,∵△ADC 是等边三角形, ∴AD=AC=DC,∴AD=AC=FC=DF,---------------------7分 ∴四边形ACFD 是菱形.20.(8分)解:(1)随机抽取1名是女生展示的概率为:41---------------------2分 (2---------------------5分所有等可能的情况有12种,其中同为男生的情况有6种,----------------6分 则P==21.---------------------8分 21.(8分)解:(1)如图所示,圆为所求. -----------------2分 (2)①如图连接AE 、.∵AC 为⊙O 的直径,∴∠AEC=90°------------------3分又∵AB=AC ,∴∠BAE=∠CAE ---------------------4分而∠BAE=21∠DOE ,∠CAE=21∠EOC∴∠DOE=∠EOC ---------------------5分②连接,过点作于∵AC 为⊙O 的直径,∴∠ADC=90°∵∠AEC=90°,AB=AC=5,BC=6 ∴BE=EC=3 设DB=X,则AD=5-x ,在和中,有即52-(5-x)2=62-x 2解得:x=518 ---------------------6分即=524又---------------------7分即DH ×6=2418 ∴DH=72---------------------8分(此问题解题方法多样,只要方法正确,均可视对错给予判分.)22.(10分) 解:(1)设用于购买书桌、书架等设施的为x 元,-----------------1分则购买书籍的有(40000﹣x )元,根据题意得:40000﹣x≥3x,-------------2分 解得:x≤10000. -----------------3分答:用于购买书桌、书架等设施的资金最多为10000元;-----------------4分 (列方程计算也可,只要回答时按最多作答即可判满分) (2)设这个相同的百分数为y,根据题意可得:----------------5分200(1+y )×200(1-y )=30000 -----------------7分 整理得:4(1-y 2)=3,-----------------8分解得:y=0.5或a=﹣0.5(舍去),-----------------9分 答:这个相同的百分数为50%.-----------------10分 23.(11分)解:(1)∵l 1⊥l 2,⊙O 与l 1,l 2都相切,∴∠OAD=45°,而⊙O 的半径为2-------------1分 ∴OA=22 --------------2分 (2)当直线AC 与⊙O 第一次相切时(如图位置一)⊙O移动到⊙O1的位置,矩形ABCD移动到A1B1C1D1的位置,设⊙O1与直线l1,A1C1分别相切于点F,G,连接O1F,O1G,O1A1,∴O1F⊥l1,O1G⊥A1G,∠C1A1D1=60°,∴∠GA1F=120°,∴∠O1A1F=60°,-----------------3分在Rt△A1O1F中,O2F=2,∴A1F=,-----------------4分∵OO1=3t,AF=AA1+A1F=4t1+,又∵AF= OO1+2 ∴4t1+=3t1+2,----------------5分∴t1=2﹣,------------------6分(3)如图(位置二),当O2,A2,C2恰好在同一直线上时,设⊙O2与l1的切点为E,连接O2E,可得O2E=2,O21E⊥l1,在矩形A2B2C2D2中,∵∠ A2 C2B2=60°,∴∠O2A2E=∠C2A2D2=60°,设A2E=x,则A2O2=2x.由勾股定理可得:∴A2E=,-----------------7分∵A2E=AA2﹣OO2﹣2=4t﹣3t-2,∴t﹣2=,-----------------8分∴解得:t=+2,此时点O2,A2,C2恰好在同一直线上. ---------------9分(4)当直线AC与⊙O第二次相切时,设移动时间为t2,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.----------------11分(不等式有一个正确即可得1分,合计2分)24.(12分)解:(1) 由直线BC 的解析式y=一x+4可得:A(4,0), B(0,4) -----------------1分由抛物线经过点B(O ,4)可得c=4,① ∵抛物线过点A(4,0),C (-2,O ),∴16a+4b+c=0 ②,4a -2b+c=0 ③ ---------2分由①②③ 解得:a=21-, b=1 ,c=4. 所以抛物线的解析式是y=21-x 2+x+4--------3分(2) ∵点D 是直线AB 上方的抛物线上的一个动点,∴可设动点D 的坐标为(m ,21-m 2+m+4),则E 点的坐标为(m ,-m+4), ∴DE=(21-m 2+m+4)﹣(-m+4),-----------------4分 =21-m 2+2m=21-(m ﹣2)2+2,----------------5分∵DE >0,∴当m=2时,线段DE 的最大值为2. ----------------6分 (3)假设能,设点D 的坐标为(t, 21-t 2+t+4),连接BD 、AD 、OD . 过点D 作D G⊥y 轴于G .DE ⊥x 轴于H ,∵O<t<4, 则DH=21-t 2+t+4 , DG=t, ∴S △O AD=21OA.DH=21×4×(21-t 2+t+4)=-t 2+2t+8 , S △O BD =21OB.DG=21×4×t=2t ; S △O BC =21OB.OC=21×4×2=4∴S 四边形ACBD =S △BOC +S △AOD +S △BOD =4-t 2+2t+8+2t=-t 2+4t+12.-------------7分 令-t2+4t+12 =20,即t2-4t+8=0,则△=(一4)2-4×8=-16<0, ---------8分∴方程无解,故点D 在运动中不能使得四边形ACBD 的面积为20.---------9分 (4)由y=21-x 2+4x+4及题意得: D (1,29),又点E 在直线AB 上,则点E(1,3),于是DE=29一3= 23.若以D.E.P.Q 为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ, ------10分设点P 的坐标是(n ,-n+4),则点Q 的坐标是(n ,-21n 2+n+4).①当0<n<4时,PQ=(-21n 2+n+4)-(-n+4)=-21n 2+2n .由-21n 2+2n=23,解得:n=1或3.当n=1时,线段PQ 与DE 重合,n=1舍去,∴n=3,此时P 1 (3,1). -------------11分 ②当n<o 或n>4时,PQ=(-n+4)-(-21n 2+n+4)= 21n 2—2n,由21n 2—2n=23,解得m=2±7,经检验适合题意,此时P 2(2+7,2一7),P 3(2一7,2+7).---------------12分综上所述,满足条件的点P 有三个,分别是P 1 (3,1),P 2(2+7,2 -7),P 3(2—7,2十7).。
2014初三下册数学试卷及参考答案精编
2014初三下册数学试卷及参考答案精编一、选择题(本大题共10小题,每小题4分,共40分.)在每小题给出的四个选项中,只有一项是符合题意的,请把你认为正确的选项前字母填写在该题后面的括号中.1.下列几何图形中,一定是轴对称图形的有 ( )A.2个B.3个C.4个D.5个2.今年5月,随着第四条水泥熟料生产线的点火投产,芜湖海螺水泥熟料已达年产6000000吨,用科学记数法可记作()A.吨B.吨 C.吨 D.吨3.如果,则= ( )A.B.1C.D.24.下列计算中,正确的是()A. B. C.D.5.如图,在△ABC中ADperp;BC,CEperp;AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3、AE=4,则CH 的长是( )A.1B.2C.3D.46.已知关于x的一元二次方程有两个不相等的实数根,则m的取值范围是( )A.mgt;-1B.mlt;-2C.mge;0D.mlt;07.筹建中的安徽芜湖核电站芭茅山厂址位于长江南岸繁昌县狄港镇,距离繁昌县县城约17km,距离芜湖市区约35km,距离无为县城约18km,距离巢湖市区约50km,距离铜陵市区约36km,距离合肥市区约99km.以上这组数据17、35、18、50、36、99的中位数为().A.18B.50C.35D.35.58.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A 的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A.cm B.4cm C.cm D.3cm9.函数中自变量x的取值范围是()A.xge;B.xne;3C.xge;且xne;3 D.10.如图,Rt△ABC绕O点旋转90deg;得Rt△BDE,其中ang;ACB=ang;E= 90deg;,AC=3,DE=5,则OC的长为()A.B.C.D.二、填空题(本大题共6小题,每小题5分,共30分)11.已知是一元二次方程的一个根,则方程的另一个根是.12.在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是米.13.据芜湖市环保局6月5日发布的2006年环境状况公报,去年我市城市空气质量符合国家二级标准.请根据图中数据计算出该年空气质量达到一级标准的天数是天.(结果四舍五入取整数).14.因式分解:.15.如图,,以为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD 切于点Q.则.16.定义运算“@”的运算法则为:x@y=,则.三、解答题(本大题共8小题,共80分.)解答应写明文字说明和运算步骤.17.(本题共两小题,每小题6分,满分12分)(1)计算:deg;.(2)解不等式组芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?19.(本小题满分8分)如图,在△ABC中,AD是BC上的高,,(1)求证:AC=BD;(2)若,BC=12,求AD的长.20.(本小题满分8分)已知多边形ABDEC是由边长为2的等边三角形ABC和正方形BDEC组成,一圆过A、D、E三点,求该圆半径的长.21.(本小题满分10分)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);(2)求线段BC的对应线段所在直线的解析式.22.(本小题满分10分)一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.(1)求使图1花圃面积为最大时R-r的值及此时花圃面积,其中R、r分别为大圆和小圆的半径;(2)若L=160m,r=10m,求使图2面积为最大时的theta;值.23.(本小题满分12分)阅读以下材料,并解答以下问题.“完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N= m + n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n 种不同的方法,这就是分步乘法计数原理.”如完成沿图1所示的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A点出发到某些交叉点的走法数已在图2填出.(1)根据以上原理和图2的提示,算出从A出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种?(2)运用适当的原理和方法算出从A点出发到达B点,并禁止通过交叉点C的走法有多少种?(3)现由于交叉点C道路施工,禁止通行.求如任选一种走法,从A点出发能顺利开车到达B点(无返回)概率是多少?24.(本小题满分12分)已知圆P的圆心在反比例函数图象上,并与x轴相交于A、B两点.且始终与y轴相切于定点C(0,1).(1)求经过A、B、C三点的二次函数图象的解析式;(2)若二次函数图象的顶点为D,问当k为何值时,四边形ADBP为菱形.参考答案一、选择题(本大题共10小题,每题4分,满分40分)题号1234567910答案BCCDAADACB二、填空题(本大题共6小题,每题5分,满分30分) 11.12.0.513.11714.15.616.6三、解答题(本大题共8小题,共80分)解答应写明文字说明和运算步骤.17.(本小题满分12分)(1)解:原式=,,4分==. ,,6分(2)解:解不等式①,得:xle;2. ,,2分解不等式②,得xgt;1. ,4分所以原不等式组的解集为 1。
2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)
2014—2015学年度第⼀学期期末学业质量评估九年级数学试题(含答案)九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为⾮选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上⾯的项⽬填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上⼀律⽆效.第Ⅰ卷⼀、选择题(本题共12⼩题,在每⼩题给出的四个选项中,只有⼀个是正确的,请把正确的选项选出来,每⼩题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每⼀条直径都是它的对称轴;C. 弦的垂直平分线过圆⼼;D. 相等的圆⼼⾓所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有⼀动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系⽤图象描述⼤致是()4. 下列命题中的假命题是()A. 正⽅形的半径等于正⽅形的边⼼距的2倍;B. 三⾓形任意两边的垂直平分线的交点是三⾓形的外⼼;C. ⽤反证法证明命题“三⾓形中⾄少有⼀个内⾓不⼩于60°”时,第⼀步应该“假设每⼀个内⾓都⼩于60°”;D. 过三点能且只能作⼀个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的⼀点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所⽰,在△ABC 中D 为AC 边上⼀点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为() A .1 B .2 C .23 D .25 7. 下列⽅程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有() A. 0个 B. 1个 C. 2个 D. 3个8. ⼀次函数y 1=3x +3与y 2=-2x +8在同⼀直⾓坐标系内的交点坐标为(1,6).则当y 1>y 2时,x 的取值范围是()A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是() A. 45° B. 60° C. 75° D. 105°10. 如图,热⽓球的探测器显⽰,从热⽓球A 看⼀栋⾼楼顶部B 的仰⾓为30°,看这栋⾼楼底部C 的俯⾓为60°,热⽓球A 与⾼楼的⽔平距离为120m ,这栋⾼楼BC 的⾼度为() A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反⽐例函数y =xk的图像经过点P (-1,2),则这个函数图像位于() A .第⼆、三象限 B .第⼀、三象限 C .第三、四象限 D .第⼆、四象限 12. 已知⼆次函数y =ax 2+bx +c (a ≠0)的图象如图所⽰,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是() A.1个 B.2个 C.3个 D.4个第Ⅱ卷⼆、填空题(本题共6⼩题,要求将每⼩题的最后结果填写在横线上. 每⼩题3分,满分18分) 13. 已知⼀元⼆次⽅程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则⼆次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所⽰,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满⾜12AE AF EB FC ==,则△EFD 与△ABC 的⾯积⽐为.16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的⼀定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. ⼀个⾜球从地⾯上被踢出,它距地⾯⾼度y (⽶)可以⽤⼆次函数x x y 6.199.42+-=刻画,其中x (秒)表⽰⾜球被踢出后经过的时间. 则⾜球被踢出后到离开地⾯达到最⾼点所⽤的时间是秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6⼩题,解答应写出⽂字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平⽅⽶6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资⾦周转,对价格经过两次下调后,决定以每平⽅⽶4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某⼈准备以开盘价均价购买⼀套100平⽅⽶的住房,开发商给予以下两种优惠⽅案以供选择:①打9.8折销售;②不打折,⼀次性送装修费每平⽅⽶80元,试问哪种⽅案更优惠?如图,晚上⼩明站在路灯P的底下观察⾃⼰的影⼦时发现,当他站在F点的位置时,在地⾯上的影⼦为BF,⼩明向前⾛2⽶到D 点时,在地⾯上的影⼦为AD,若AB=4⽶,∠PBF=60°,∠PAB=30°,通过计算,求出⼩明的⾝⾼.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的⾯积.如图,在平⾏四边形ABCD 中,过点A 作AE ⊥BC ,垂⾜为E ,连接DE ,F 为线段DE 上⼀点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的⼀元⼆次⽅程()2kx 4k 1x 3k 30-+++=. (1)试说明:⽆论k 取何值,⽅程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是⽅程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三⾓形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上⼀点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准⼀、选择题(每⼩题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB⼆、填空题(每⼩题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6⼩题,解答应写出⽂字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x ,则6000(1-x )2=4860,解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分(2)⽅案1优惠:4860×100×(1-0.98)=9720(元);⽅案2可优惠:80×100=8000(元). 故⽅案1优惠.…………………………10分20. (本题满分10分)解:设⼩明的⾝⾼为x ⽶,则CD =EF =x ⽶.在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:⼩明的⾝⾼为3⽶.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30°∴弧AB 和弧AD 的度数都等于60°⼜∵BC 是直径∴弧CD 的度数也是60° ------------------ --------------2分∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径∴∠BAC =90°∵∠ACB =30°,AC =6 ∴06433cos 230AC BC === 23R = ∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE 中:0sin330OE OB =?=,0cos 330BE OB =?=,BD =2BE =6----------------------------------------------------8分∴()21201-63=4-33360223BOD BOD S S S ??=-=阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分∴△ADF ∽△DEC ----------------------------------------------------5分⑵解:∵△ADF ∽△DEC ∴AD AFDE CD= ∴63438DE = 解得:DE =12 ----------------------------------------------------7分∵AE ⊥BC , AD ∥BC ∴AE ⊥AD ∴221441086AE DEAD =-=-=----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴⽆论k 取何值,⽅程总有两个实数根. -------------------------------------------------5分⑵若AB =AC 则⽅程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满⾜三边关系. -------------------------8分若BC =5为△ABC 的⼀腰,则⽅程()2kx 4k 1x 3k 30-+++=有⼀根是5,将5x =代⼊⽅程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得⽅程两根为5和3,此时AB 、AC 、BC 满⾜三边关系. ----------11分综上:当△ABC 是等腰三⾓形时,k 的值为1124或. -----------------------------12分24. (本题满分12分)⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分⼜OC 是半径∴CE 是⊙O 的切线。
2014年九年级第二次质量检测数学试题卷(A3版)含答案答题卡
2014年九年级第一次质量预测 数学试题卷(满分120分,考试时间100分钟)一、选择题(本题共8个小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的. 1.15-的相反数是( ) A .15-B .15C .5D .5- 2. 网上购物已成为现代人消费的趋势,2013年天猫“11·11”购物狂欢节创造了一天350.19亿元的支付宝成交额.其中350.19亿用科学记数法可以表示为( ) A .350.19×108 B .3.501 9×109 C .35.019×109 D .3.501 9×1010 3. 妈妈昨天为小杰制作了一个正方体礼品盒,该礼品盒的六个面上各有一个字,连起来就是“宽容是种美德”,其中“宽”的对面是“是”,“美”的对面是“德”,则它的平面展开图可能是( )A .B .C .D .4. 小华所在的九年级(1)班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.68米,下列说法错误..的是( ) A .班上比小华高的学生人数不超过25人 B .1.65米是该班学生身高的平均水平C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米5. 小明在2013年暑假帮某服装店买卖T 恤衫时发现:在一段时间内,T 恤衫按每件80元销售时,每天销售量是20件,而单价每降低4元,每天就可以多销售8件,已知该T 恤衫进价是每件40元.请问服装店一天能赢利1 200元吗?如果设每件降价x 元,那么下列所列方程正确的是( ) A .(80)(20) 1 200x x -+= B .(80)(202) 1 200x x -+= C .(40)(20) 1 200x x -+= D .(40)(202) 1 200x x -+=6. 如图,直线l 上摆有三个正方形a ,b ,c ,若a ,c 的面积分别为10和8,则b 的面积是( ) A .16 B .20 C .18 D .24第6题图 第7题图 第8题图7. 如图为手的示意图,在各个手指间标记字母A ,B ,C ,D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当字母B 第2 014次出现时,恰好数到的数是( ) A .4 028 B .6 042 C .8 056 D .12 0848. 如图,一条抛物线与x 轴相交于A ,B 两点,其顶点P 在折线CD -DE 上移动,若点C ,D ,E 的坐标分别为(-2,8),(8,8),(8,2),点B 的横坐标的最小值为0,则点A 的横坐标的最大值为( ) A .5 B .6 C .7 D .8 二、填空题(本题共7个小题,每小题3分,共21分)9._________. 10. 已知反比例函数6y x =-的图象经过点P (2,a ),则a =_________.11. 《爸爸去哪儿》有一期选择住房,一排五套房子编号分别为1,2,3,4,5.五个家庭每家只能选择一套房不能重复,Kimi 和王诗龄代表各自家庭选房,他俩选择的住房编号相邻的概率是_________.12. 如图,半径为5的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的正弦值为_________.第12题图 第14题图 第15题图13. 数学的美无处不在,数学家们研究发现弹拨琴弦发出声音的音调高低取决于弦的长度,如三根弦长之比为15:12:10,把它们绷得一样紧,用同样的力度弹拨,它们将分别发出很调和的乐声:do 、mi 、so ,研究15,12,10这三个数的倒数发现:111112151012-=-,此时我们称15,12,10为一组调和数,现有一组调和数:x ,5,3(5x >),则整数x 的值为_________.14. 如图,在菱形纸片ABCD 中,∠A =60°.将纸片折叠,点A ,D 分别落在点A ′,D ′处,且A ′D ′经过点B ,EF 为折痕,当D ′F ⊥CD 时,CGBG =_________.15. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC =6,BD =8,E 为AD 中点,点P 在x 轴上移动.请你写出所有使△POE 为等腰三角形的P 点坐标:__________________.三、解答题(本题共8个小题,共75分)16. (8分)化简:22111a a ab a ab --⋅+÷,并选择你喜欢的整数a ,b 代入求值. 小刚计算这一题的过程如下:德美种是容宽德美种是容宽德美种是容宽德美种是容宽D'A'G FED C BA lc baDC B A2(1)(1)11解:原式÷……①a a a ab a ab +--=⋅+ 211(1)(1)……②a a ab a a ab +-=⨯⋅+- 1……③ab =当a =1,b =1时,原式=1.……④以上过程有两处错误,第一次出错在第_________步(填序号),原因:________________;还有第_________步出错(填序号),原因:__________________. 请你写出此题的正确解答过程.17. (9分)某校有学生3 600人,在“文明我先行”的活动中,开设了“法律、礼仪、环保、感恩、互助”五门校本课程,规定每位学生必须且只能选一门.为了解学生的报名意向,学校随机调查了一些学生,并制成如下统计表和统计图:(1)在这次调查活动中,学校采取的调查方式是_________(填写“普查”或“抽样调查”),a =_________;m =_________;n =_________.(2)请补全条形统计图;如果要画一个“校本课程报名意向扇形统计图”,那么“环保”类校本课程所对应的扇形圆心角应为_________度.(3)请估算该校3 600名学生中选择“感恩”校本课程的学生约有多少人.18.(9分)星期天,小丽和同学们来碧沙岗公园游玩,他们来到1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽和同学们肃然起敬,小丽问:“这个纪念碑有多高呢?”.请你利用初中数学知识,设计一种方案测量纪念碑的高(画出示意图),并说明理由.19. (9分)我们知道,对于二次函数2()y a x m k =++的图象,可由函数2y ax =的图象进行向左或向右平移m 个单位、再向上或向下平移k 个单位得到,我们称函数2y ax =为“基本函数”,而称由它平移得到的二次函数2()y a x m k =++为“基本函数”2y ax =的“朋友函数”.左右、上下平移的路径称为朋友路径,对应点之间的线段距如一次函数25y x =-是基本函数2y x =的朋友函数,由25y x =-可化成2(1)3y x =--,于是,朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=(1)探究一:小明同学经过思考后,为函数25y x =-又找到了一条朋友路径:由基本函数2y x =先向_______,再向下平移7个单位,相应的朋友距离为_______;(2)探究二:将函数451x y x +=+化成y =_______,使其和它的基本函数1y x =成为朋友函数,并写出朋友路径,求相应的朋友距离.20. (9分)我南海巡逻船接到有人落水求救信号,如图,巡逻船A 观测到∠P AB =67.5°,同时,巡逻船B 观测到∠PBA =36.9°,两巡逻船相距63海里,求此时巡逻船A 与落水人P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)21. (10分)某小区有一长100m ,宽80m 的空地,现将其建成花园广场,设计图案如图,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m ,不大于60m ,预计活动区每平方米造价60元,绿化区每平方米造价50元.设一块绿化区的长边为x(m ).(1)设工程总造价为y (元),直接写出工程总造价y (元)与x (m )的函数关系式:__________________.(2)如果小区投资46.9万元,问能否完成工程任务,若能,请写出x 为整数的所有工程方案;若不能,请说明理由. 1.732≈)67.5°36.9°PAB校本课程报名意向条形统计图课程类别互助感恩环保礼仪法律22. (10分)如图1,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是射线BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接FC ,观察并猜测tan ∠FCN 的值,并说明理由;(2)如图2,将图1中正方形ABCD 改为矩形ABCD ,AB =m ,BC =n (m ,n 为常数),E 是射线BC 上一动点(不含端点B ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上,当点E 沿射线CN 运动时,请用含m ,n 的代数式表示tan ∠FCN 的值.图1 图223. (11分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为Q (-2,-1),且与y 轴交于点C (0,3),与x 轴交于A ,B 两点(点A 在点B 的左侧),点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交直线AC 于 点D .(1)求该抛物线的函数关系式.(2)当△ADP 是直角三角形时,求点P 的坐标.(3)在问题(2)的结论下,若点E 在x 轴上,点F 在抛物线上,问是否存在以A ,P ,E ,F 为顶点的平行四边形?若存在,请直接写出点F 的坐标;若不存在,请简单说明理由.AB C DE FGM NAB C DEFGM N2014年九年级第二次质量预测数学试题卷注意事项:本试卷分试题卷和答题卡两部分.考试时间100分钟,满分120分.考生应首先阅读答题卡上的文字信息,然后再答题卡上作答,在试题卷上作答无效,交卷时只交答题卡.参考公式:二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为(24,24b ac ba a--).一、选择题(每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.9的绝对值是()A.9 B.-9 C.19D.19-2.如图是由5个大小相同的正方体组成的几何体,它的主视图是()A. B. C. D.3.近年来人们越来越关注健康,我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的衣物,每千克衣物上甲醛含量应在0.000 075千克以下,将0.000 075用科学记数法表示为()A.0.75×10-4B.7.5×10-4C.75×10-6D.7.5×10-54.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,若∠ADC=26°,则∠AOB的度数为()A.13°B.26°C.52°D.78°6.这15A.12,13 B.12,12 C.11,12 D.3,47.小明用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子的侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2B.240πcm2 C.260πcm2D.480πcm2第7题图第8题图8.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B,C重合),现将△PCD沿直线PD折叠,使点C落在点C′处,作∠BPC′的角平分线交AB于点E,设BP=x,BE=y,则下列图象中,能表示y与x函数关系的图象大致是()A. B. C.二、填空题(每小题3分,共21分)9.计算:2(1)-=___________.10.如图,一把矩形直尺沿直线断开并错位,点E,D,B,F在同一条直线上,若∠ADE=128°,则∠DBC的度数为___________.第10题图第11题图11.一位园艺设计师计划在一块形状为直角三角形且有一个内角为60°的绿化区域上种植四种不同的花卉,要求种植的四种花卉分别组成面积相等、形状完全相同的几何图形图案.某同学为此提供了如图所示的4种设计方案,其中可以满足园艺设计师要求的有___________种.12.农历5月5日是中华民族的传统节日端午节,有吃粽子的习俗.端午节早上,妈妈给小华准备了4个粽子:1个肉馅,1个豆沙馅,2个红枣馅.4个粽子除内部馅料不同外其他一切均相同,小华喜欢吃红枣馅的粽子,小华吃了一个粽子刚好是红枣馅的概率是___________.13.若一次函数(2)(2)y a x a=-++不经过第三象限,则a的取值范围为___________.14.如图,在平面直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点(2)P a a,是反比例函数2yx=的图象与正方形的一个交点,则图中阴影部分的面积是___________.C'PEDCBAFEDC BA主视方向第15题图15. 在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为4,6,8,则原直角三角形纸片的斜边长是___________. 三、解答题(本大题共8个小题,共75分)16. (本题8分)有三个代数式:①a 2-2ab +b 2,②2a -2b,③a 2-b 2,其中a ≠b ;(1)请你从①②③三个代数式中任意选取两个代数式,分别作为分子和分母构造成一个分式;(2)请把你所构造的分式进行化简;(3)若a ,b 为满足不等式0<x <3的整数解,且a >b ,请求出化简后的分式的值.17. (本题9分)郑州地铁1号线在2013年12月28日通车之前,为了解市民对地铁票的定价意向,市物价局向社会公开征集定价意见.某学校课外小组也开展了“你认为郑州地铁起步价定为多少合适?”的问卷调查,征求市民的意见,并将某社区市民的问卷调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了________人; (2)请你把条形统计图补充完整;(3)假定该社区有1万人,请估计该社区支持“起步价为3元”的市民大约有多少人? 18. (本题9分)已知命题:“如图,点A ,D ,B ,E 在同一条直线上,且AD =BE ,AC ∥DF ,则△ABC ≌△DEF .”这个命题是真命题还是假命题?如果是真命题,请给出证明;如果是假命题,请添加一个适当的条件,使它成为真命题,并加以证明.19. (本题9分)“城市发展,交通先行”,我市启动了缓堵保畅的高架桥快速通道建设工程,建成后将大大提升道路的通行能力.研究表明,某种情况下,高架桥上的车流速度V (单位:千米/时)是车流密度x (单位:辆/千米)的函数,且当028≤x <时,V =80;当28188≤x <时,V 是x 的一次函数.函数关系如图所示. (1)求当28188≤x <时,V 关于x 的函数表达式;(2)请你直接写出车流量P 和车流密度x 之间的函数表达式;当x 为多少时,车流量P (单位:辆/时)达到最大,最大值是多少?(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)20. (本题9分)在某飞机场东西方向的地面l 上有一长为1km 的飞机跑道MN (如图),在跑道MN 的正西端14.5千米处有一观察站A .某时刻测得一架匀速直线降落的飞机位于点A 的北偏西30°,且与点A 相距15千米的B 处;经过1分钟,又测得该飞机位于点A 的北偏东60°,且与点A 相距C 处.(1)该飞机航行的速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN 之间?请说明理由.864票价10%15%5元4元3元2元FEC (辆/千米)北东21.(本题10分)某学校开展“我的中国梦”演讲比赛,学校准备购买10支某种品牌的水笔,每支水笔配x(x≥2)支笔芯,作为比赛获得一等奖学生的奖品.A,B两家文具店都有这种品牌的水笔和笔芯出售,且每支水笔的标价均为30元,每支笔芯的标价为3元.目前两家文具店同时在做促销活动:A文具店:所有商品均打九折(按标价的90%)销售;B文具店:买一支水笔送2支笔芯.设在A文具店购买水笔和笔芯的费用为y A(元),在B文具店购买水笔和笔芯的费用为y B(元).请解答下列问题:(1)分别写出与y A,y B与x之间的函数表达式;(2)若该校只在一家文具店购买奖品,你认为在哪家文具店购买更优惠?(3)若每支水笔配15支笔芯,请你帮助学校设计出最省钱的购买方案.22.(本题10分)如图1,点P,Q分别是边长为4cm的等边△ABC边AB,BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ,CP交于点M,在点P,Q运动的过程中,∠CMQ的大小变化吗?若变化,则说明理由,若不变,请直接写出它的度数;(2)点P,Q在运动过程中,设运动时间为t,当t为何值时,△PBQ为直角三角形?(3)如图2,若点P,Q在运动到终点后继续在射线AB,BC上运动,直线AQ,CP 交点为M,则∠CMQ的大小变化吗?若变化,则说明理由;若不变,请求出它的度数。
2014届九年级教学质量检测联合调研考试数学试题
2014届九年级教学质量检测联合调研考试数学试题一、相信你的选择(本大题共12个小题.1~6小题,每小题2分;7~12小题,每小题2分,共30分.在每个小题给出的四个选项中,只有一项是正确的,把正确选项的代码填在题后的括号内)﹣<=2.(2分)(2012•黔东南州)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对)=,AM=﹣的坐标为(3.(2分)(2012•珠海)某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同,方差分别为,,,.二月份白解:因为甲、乙、丙、丁四个市场的方差分别为,4.(2分)(2012•河北)如图,在平行四边形ABCD中,∠A=70°,将平行四边形折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠AMF等于()5.(2分)(2012•本溪)已知一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,6.(2分)(2012•钦州)如图所示,把一张矩形纸片对折,折痕为AB,在把以AB的中点O为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()7.(3分)(2013•衡水模拟)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象不经过()8.(3分)(2013•衡水模拟)如图所示,A 、B 是边长为1的小正方形组成的网格的两个格点,在图中的网格的格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( ) B . 的概率为.9.(3分)(2012•广安)时钟在正常运行时,时针和分针的夹角会随着时间的变换而变化,设时针与分针的夹角为y 度,运行时间为t 分,当时间从3:00开始到3:30止,图中能大致表示y 与t 之间的函数关 B C D11.(3分)(2012•临沂)如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数y=(x>0)和y=(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是()=的面积是(=为线段一定为正值,故=|MO PQ==MO 的面积是12.(3分)(2012•永州)如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,….若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是()k+k=k,应停在第k)代入可得,7p=7m+二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.(3分)(2013•衡水模拟)计算(﹣2a)3的结果是﹣8a3.14.(3分)(2012•张家界)已知圆锥的底面直径和母线长都是10cm,则圆锥的侧面积为50πcm2.15.(3分)(2013•衡水模拟)如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD 交AD于E,则△ABE的周长为10cm.=AB+AE+BE=AB+AD=16.(3分)(2013•衡水模拟)如图,在半径为2的扇形AOB中,∠AOB=90°,点C是上的一个动点(不与点A、B重合),OD⊥BC,OE⊥AC,垂足分别为D、E.则线段DE的长为.AB=,DE=AB=故答案为:17.(3分)(2013•衡水模拟)已知函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,则k的取值范围是k≤4且k≠3.18.(3分)(2012•东营)某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是30 cm.三、解答题(本大题8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)19.(8分)(2012•广州)已知(a≠b),求的值.求出=,通分得出﹣,推出,化简得出,代入求解:∵=,∴=∴﹣,﹣,,,,.键,用了整体代入的方法(即把20.(8分)(2012•丹东)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C (2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2:1,并直接写出C2点的坐标及△A2BC2的面积.﹣×﹣21.(8分)(2012•河源)为实施校园文化公园化战略,提升校园文化品位,在“回赠母校一棵树”活动中,我市某中学准备在校园内空地上种植桂花树、香樟树、柳树、木棉树,为了解学生喜爱的树种情况,随机调查了该校部分学生,并将调查结果整理后制成了如图统计图:请你根据统计图提供的信息,解答以下问题:(直接填写答案)(1)该中学一共随机调查了200人;(2)条形统计图中的m=70,n=30;(3)如果在该学校随机抽查了一位学生,那么该学生喜爱的香樟树的概率是.=..22.(8分)(2012•鞍山)如图,AB是⊙O的弦,AB=4,过圆心O的直线垂直AB于点D,交⊙O于点C和点E,连接AC、BC、OB,cos∠ACB=,延长OE到点F,使EF=2OE.(1)求⊙O的半径;(2)求证:BF是⊙O的切线.ACB=,x=OB=3x=,则=,而=,于是得到,根据相似三角形的ACB=,BOD=,,OB=3x=的半径为OF=3OE=∴=,=,∴=,23.(9分)(2012•南昌)如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学记算器)OCA=ODB=(OEF=OCA=(ODB=(∴…OEF=∴,24.(9分)(2012•永州)在△ABC中,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图甲),而y关于x的函数图象如图乙所示.Q(1,)是函数图象上的最低点.请仔细观察甲、乙两图,解答下列问题.(1)请直接写出AB边的长和BC边上的高AH的长;(2)求∠B的度数;(3)若△ABP为钝角三角形,求x的取值范围.,在AH=AH=,BP==425.(10分)(2005•青岛)操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.研究:(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD 和ME之间有什么数量关系?并结合图4加以证明.ACP=﹣时,此时∵,∴∴.26.(12分)(2013•衡水模拟)如图1,在平面直角坐标系中,四边形OABC是梯形,BC∥AO,顶点O在坐标原点,顶点A(4,0),顶点B(1,4),动点P从O点出发,以每秒1个单位长度的速度沿OA的方向向A运动,同时,动点Q从A出发,以每秒2个单位长度的速度沿A→B→C的方向向C运动.当其中一个点到达终点时,另一个也随之停止.设运动时间为t秒.(1)当t为何值时,PB与AQ互相平分?(2)设△PAQ的面积为S,求S与t的函数关系式.当t为何值时,S有最大值?最大值是多少?(3)在整个运动过程中,是否存在某一时刻t,使得以PQ为直径的圆与y轴相切?若存在,求出相应的t值;若不存在,请说明理由.时,点OAB=(,求出当;②≤≤•t=时,点t t,得出方程=PQ≤)(AB=时,点•tS=PA•t﹣﹣有最大值是≤≤S=t=时,有最大值是<﹣t t(t﹣﹣﹣=PQ)(t+16t=∵<,t=符合题意;≤的中点的横坐标是,即﹣=PQ)(t=,使得以。
2014年秋期期末质量监测九年级数学答案
2014年秋期末义务教育教学质量监测 九年级数学试题答案及评分意见说 明:一、本解答给出了一种或几种解法供参考,如果考生的解答与本解答不同,可比照评分意见制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半,如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一、选择题(每小题3分,共24分)二、填空题(每小题3分,共24分)9. 2; 10. 4-; 11.3; 12.75°;13.50; 14. 210; 15.322⎛⎫⎪ ⎪⎝⎭; 16. ①④.三、解答题:(本大题共8个题,共72分)17.(1)解: 原式 13=+ ………(4分)2=- ………(5分)(2)解:224142(6)490b ac -=-⨯⨯-=> ………(2分)∴174x -±== ………(4分)∴123,22x x ==- ………(5分) 18.解:(1)标出位似中心P 的位置(略) ………(2分)P 的坐标是()4,5 ………(4分)(2)∵2142=='C P PC ………(6分)21124ABC A B C S S ∆'''∆⎛⎫∴== ⎪⎝⎭ ………(8分)19.解法1:(1)根据题意,可以画出如下的“树状图”:第一张卡片—1 —2 3 4第二张卡片 —2 3 4 —1 3 4 —1 —2 4 —1 —2 3∴这两次抽取的(),x y 共有12种可能的结果 ………(5分) (2)由(1)中“树状图”知,点M 位于第四象限的结果有4种,且所有结果的可能性相等 ∴P (点M 位于第四象限)=41123= ………(8分) 解法2 以下同解法1(略)20.(1)根据题意,得[]2(21)4(2)0m m m ∆=---->.解得14m >- ………(3分) ∴当14m >-且0m ≠时,方程有两个不相等的实数根. ………(4分) (2)1221m x x m -+=,122m x x m-= ………(5分)2212122x x x x +-= ()2121232x x x x ∴+-= ………(6分)2213(2)2m m m m --⎛⎫∴-= ⎪⎝⎭,即2210m m --=解得1211m m == ………(7分)1,14m m >-∴=+综上,1m = ………(8分) 21.解:(1)设平均每次下调的百分率为x ,根据题意,得:26000(1)4860x -=解得120.1, 1.9x x ==(舍去)所以平均每次下调的百分率为10% ………(5分) (2)方案①可优惠:4860100(10.98)9720⨯⨯-=(元)方案②可优惠:100808000⨯=(元)所以方案①更优惠. ………(8分)22.解:(1),AB AD ABE ADB =∴∠=∠,ADB ACB ABE ACB ∠=∠∴∠=∠BAE BAC ∠=∠ ABE ∴∆∽ACB ∆ ………(4分)(2)ABE ∆∽ACB ∆ A B A CA E A B∴= 得:2AB AE AC =⋅设:AE x =,:1:2,2AE EC EC x =∴=2233AB x x x ∴=⋅=,AB ∴= ………(6分)A B A C ⊥ 90BAC ︒∴∠=在Rt △BAC 中,tanAC ABC AB ∠=== ………(7分) 60ABC ︒∴∠= ………(8分)23.解:(1) 解:(1)如图,过点C 作CE ⊥AB 于点E由题意得:∠ABC =45°,∠BAC =60°,设AE =x 海里,在Rt △AEC 中,CE =AE •tan60°=x ; 在Rt △BCE 中,BE =CE =x . ∴AE +BE =x +x =50(+1), 解得:x =50. AC =2x =100.所以A 与C 之间的距离为100海里. ………(5分) (2)如图,过点D 作DF ⊥AC 于点F . ∵∠DF A =90°,∠DAF =60°,∴∠ADF =30°∴∠FDC =75°—30°=45°,∴DF =CF在Rt △DAF 中,tan 60100100DF DF DFAF CF DF︒====--∴DF =50(3≈63.5>50所以巡逻船A 沿直线AC 航行,在去营救的途中没有触暗礁危险。
利川市2014-2015学年九年级上期末调研考试数学试题含答案
评卷人得 分利川市2014-2015学年九年级上期末调研考试数学试题含答案数 学 试 题限时:120分钟 满分:120分一、选择题。
(下列各题都给出了四个选项,其中只有一个选项是符合题目要求的,请将符合要求的选项前面的字母代号填写在下面的答题栏内. 本大题共12个小题,每小题3分,共36分)。
1、已知一元二次方程042=-x ,则下列关于它的讲法正确的是 A 、不是一样形式 B 、一次项系数是0 C 、常数项是4 D 、没有二次项系数2、已知点A (-2,5),点B 与点A 关于原点O 对称,则点B 的坐标是 A 、(-2,5) B 、(-2,-5) C 、(2,5) D 、(2,-5)3、一元二次方程01x 2=+-x 的根的情形是A 、无实数根B 、有两不等实数根C 、有两相等实数根D 、有一个实数根4、下列讲法错误的是(圆周角和圆心角均指小于平角的角)A 、同弧所对的圆周角相等B 、同弧上的圆周角等于圆心角的一半C 、同弧所对的圆心角相等D 、同弧上的圆心角等于圆周角的一半5、已知二次函数1x 22+-=x y ,当y=4时,x 的值等于A 、3和 -1B 、-3和1C 、3和1D 、-3和-16、如果⊙O 的半径分是4,线段OP 的长为3,则点PA 、在⊙O 上B 、在⊙O 内C 、在⊙O 外D 、在⊙O 上或⊙O 内7、下列图案中,是中心对称图形的有A 、1个B 、2个C 、3个D 、4个8、抛物线c x x y ++=22的顶点在第二象限,则c 的取值范畴是A 、c <1B 、c ≤1C 、c >1D 、c ≥19、如图,AB 是⊙O 的直径,C 在⊙O 上,若以B 为圆心,BC 为半径作⊙B ,则直线AC 与⊙BA 、相离B 、相切C 、相交D 、相切或相交10、抛物线1622+--=x x y 的对称轴是A 、-3B 、3-=xC 、23=x D 、23-=x 11、掷一次骰子(每面分不刻有1—6点),向上一面的点数是奇数的概率等于A 、61 B 、21 C 、31 D 、 32 12、某旅行景点原先的门票价格是50元一张,“5.1”小长假时提价一次,“10.1”小长假时又提价一次,该景点现在的门票价格是98元一张,求平均每次提价的百分率。
2014-2015年长顺中学九年级上第二次段考数学试卷及答案解析
常数,且 m≠0)的图象可能是( )
A.
B.
C.
D.
二.填空题(将正确的答案填在横线上,每题 3 分,共 12 分) 13.(3 分)(2013 秋•芜湖期末)已知关于 x 的一元二次方程(a﹣2)x2 +x+2a ﹣4=0 的一个
根是 0,则 a 的值为
.
14.(3 分)(2011•衡阳)某一个十字路口的交通信号灯每分钟红灯亮 30 秒,绿灯亮 25 秒,
Байду номын сангаас
表法或画树状图法说明理由;如果 x 的值不可以取 7,请写出一个符合要求的 x 值.
21.(10 分)(2010•西藏)某商场将进价为 2000 元的冰箱以 2400 元售出,平均每天能售出 8 台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这 种冰箱的售价每降低 50 元,平均每天就能多售出 4 台. (1)假设每台冰箱降价 x 元,商场每天销售这种冰箱的利润是 y 元,请写出 y 与 x 之间的 函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应 降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
球分别标有数字 3、4、5、x.甲、乙两人每次同时从袋中各随机摸出 1 个球,并计算摸出
的这 2 个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表
摸球总次数
10 20 30 60 90 120 180 240 330 450
“和为 8”出现的频数2 10 13 24 30 37 58 82 110 150
分点,点 B 是 的中点,P 是直径 MN 上的一个动点,则 PA+PB 的最小值为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利川市2014九年级数学质检+答案2014年利川市九年级质量检测数学试题卷本试卷共6页,三个大题24个小题。
全卷满分120分。
考试用时120分钟。
注意事项:1.考生答题全部在答题卷上,答在试题卷上无效.2.请认真核对监考教师在答题卷上所粘贴条形码的姓名.准考证号是否与本人相符合,再将自己的姓名.准考证号用0.5毫米的黑色墨水签字笔填写在答题卷及试题卷上.3.选择题作答必须用2B铅笔将答题卷上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案.非选择题作答必须用0.5毫米黑色墨水签字笔写在答题卷上指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.5. 考生不得折叠答题卷,保持答题卷的整洁.考试结束后,请将试题卷和答题卷一并上交.一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卷相应位置.......上)。
1、-2的相反数是A 、2B 、-2C 、2或-2D 、21 2、9的算数平方根是A 、3B 、3C 、±3D 、±33、已知点A (a+1,a-1)在双曲线x 3y 上,则点A 的坐标是A 、(3,1)B 、(3,1)或(-1,-3)C 、(1,3)或(-1,-3)D 、(-3,-1)或(-1,-3)4、随机抽取九年级10位同学100m 跑的成绩(单位:秒)是:13、12、15、13、14、14、16、14、12、17。
则这组数据的众数和中位数分别是A 、14和14B 、13和14C 、12和14D 、14和135、已知x 是非零实数,则下列计算正确的是 A 、022=--x x B 、422)(x x x =-⨯- C 、1)(22=-÷-x x D、422(x x x =-⨯-)6、在实数范围内分解因式a a 423-的结果是 A 、)2(22-a a B 、)2)(2(2-+a a aC 、)2)(2(2-+a a aD 、)2)(2(-+a a a7、如图,直线a ∥b ,直线c 与a ,b 相交,已知∠2-∠1=90°,则图中∠1等于A 、135°B 、75°C 、55°D 、45°8、某公司招聘一名营销员,有甲、乙、丙、丁四名人员参与竞聘,他们的笔试和面试成绩如下表(单位:分):竞聘者 甲 乙丙 丁若按笔试成绩︰面试成绩=2︰3的比例计算竞聘人员的综合成绩,综合成绩高者录用,则被录用的是A、甲B、乙C、丙D、丁9、小亮在“五一”假期间,为宣传“摈弃不良习惯,治理清江污染”的环保意识,对到利川市清江流域游玩人群的垃圾处理习惯(A带回处理、B焚烧掩埋、C就地扔掉,三者任选其一)进行了随机抽样调查。
小亮根据调查情况进行统计,绘制的扇形统计图和频数分布直方图尚不完整,如图示。
请结合统计图中的信息判断,下列说法错误..的是A、抽样调查的样本数据是240B、“A带回处理”所在扇形的圆心角为18°C 、样本中“C 就地扔掉”的人数是168D 、样本中“B 焚烧掩埋”的人数占“五一”假到利川市清江流域游玩人数的25%10、已知二次函数)0(122≠--=k x kx y 的图象与x 轴有两个交点,则k 的取值范围是A 、1->k 且0≠kB 、1->kC 、1<k 且0≠kD 、1<k 11、不等式组⎪⎪⎩⎪⎪⎨⎧≥-+--<-01311213x x 的整数解是A 、2B 、3C 、2,3 D,2,3,412、如图,O 是正△ABC 三条角平分线的交点.则下列说法错误..的是 A 、△AOC 与△BOC 关于直线OC 对称B 、△AOC 绕O 点顺时针旋转240°与△COB 重合C 、△AOC 绕O 点逆时针旋转120°与△COB 重合D 、△AOC 只通过平移就能与△BOC 重合二、填空题(本大题共有4小题,每小题3分,共12分.不要写出解答过程,请把答案 直接填写在答题卷相应位置上)。
13、恩施州利川市齐岳山风电场被列为全国十大风场之一,是湖北最大的风电场,经测试风能理论蕴藏量达80万千瓦。
用科学记数法表示“80万千瓦”是▲千瓦。
14、如图,在等边三角形△ABC中,以AB为直径的⊙O交BC于点D,交AC于点F,过D作⊙O的切线交AC于E。
若DE=2,则⊙O的面积等于▲。
15、如图,在△ABC和△DEF中,若AB>BC,且AB=AC=EF,BC=DE=DF,∠A=∠E=∠F,则∠D= ▲。
16、若干个正方形如图所示位置放置,从左至右,第1个正方形ABCD的边长为1;第2个正方形的边长等于第1个正方形的对角线的长;第3个正方形的边长等于第2个正方形的对角线的长;…。
则第n正方形的边长= ▲。
(用含正整数n的式子表示)三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写 出文字说明.证明过程或演算步骤)。
17、(满分8分).求代数式)111(1222-++÷+++x x x x x x 的值,其中36-=x 。
18、(满分8分)如图,在三角形纸片ABC 中,AD 是△ABC 的角平分线,把△ABC 进行折叠,使点A 与点D 重合,折痕与AB 相交于E ,与AC 相交于F ,求证:四边形AEDF 是菱形。
19、(满分8分)如图, 点A 是海事救护船的停靠港口,点B 是救护直升机的停靠基地,点D 是海面上的一个小岛。
已知,小岛D 位于港口A北偏东30°方向上,距离港口A约10km,机场...60..°方向....上,....D.北偏西..B.位于小岛距离港口....。
一天,海事救护船收到....A.约.50km一失事船只的求救信号,根据求救信号得知失事船只位于港口A正东方向上,距离港口A约20km的C处,且B、D、C在同一直线上。
一接到求救信号,救护船立即通知救护直升机,并立即从港口A出发,以40km/h的速度,沿正东方向驶往失事船只所在地C处,10分钟后,救护直升机从机场B处出发,以300km/h的速度,沿最短路径飞往失事船只所在地C处。
问:救护船与救护直升机谁先到达失事地点C处出?先到达多长时间?(结果精确到1分)(参考数据:)20、(满分8分)一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回。
设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x 的函数关系如图所示。
根据图象信息解答下列问题。
(1)分别求出汽车往、返时y与x间的函数关系式(卸货时间除外);(2)汽车出发后2.5h时,汽车距离甲地多少km?21、(满分8分)在不透明的布袋内装有红、黑两种颜色的小球各若干个(小球除颜色外都相同)。
已知:从布袋内摸出一个红球后,袋内剩余的红球和黑球的个数相同;从布袋内摸出一个黑球后,袋内剩余的红球个数是黑球的3倍。
(1)求从原布袋内随机摸出一个球是红球的概率;(2)求从原布袋内随机一次摸出两个球是黑球的概率。
22、(满分10分)某村为了改善村民生活环境,从2013年开始,计划用3年时间硬化本村公路26km,资金来源:村委号召村民每年集资部分资金;政府每年向该村投入部分资金。
已知,该村2013年村民集资和政府投资共40万元,且村民集资是政府投资的十分之一,共硬化了5km公路。
(1)求2013年村民集资和政府投资各多少万元?(2)若村民每年集资的资金不变..,每公里公路硬化需要的资金不变....,政府每年投资的增长率相同...,要完成计划任务,则该村2014年应硬化公路多少km?23、(满分10分)如图,△ABC是⊙O的内接等腰三角形,其顶角的平分线AD交⊙O于D,交BC于E,连接BD,DC。
⑴证明△ABE∽△CDE;⑵若DE=3,BC=8,求si n∠BAD的值。
24、(满分12分)如图,抛物线c=2-y与x轴+bxx+交于A(-1,0)、B(3,0)两点,与y轴相交于点C,顶点为D。
(1)求抛物线的函数解析式;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作x轴的垂线,交抛物线于点F,设点P的横坐标为m,△BCF的面积为S,求S与m间的函数关系式;(3)在(2)中是否存在点P,使得四边形DEPF是平行四边形?若存在,求出P点的坐标,若不存在,请说明理由。
2014年利川市九年级质量检测数学试题参考答案及评分说明一、选择题(本大题共有12个小题,每小题3分,共36分)。
ABBA DCDD DACD注:8题丁的得分为89,讲评时追问一下得分,看看学生对加权平均数的理解。
二、填空题(本大题共有4小题,每小题3分,共12分)。
13、5108⨯。
14、π316。
15、108°。
16、1122--n n 或)(。
注:15题把黄金三角形分成了两个图形,讲评时考虑合二为一;16题如用分数指数表示的扣1分。
三、解答题(本大题共有8个小题,共72分)。
17、(满分8分)解:化简得x 1,值为26-。
18、(满分8分)证明略。
注:证明的步骤和格式要简洁规范....。
19、(满分8分)解(提示):过D 作AC 的垂线,连接AB 、AC 、BDC ,根据题意得出△ABD 是直角三角形。
(3分)BD=22AD AB -=220105-=206(km),DC=310(km )。
(2分)救护直升机迟出发10min ,用时约为13min ;救护船用时为30min 。
(2分)所以,救护直升机比救护船提前7min 到达失事地点C 处。
(1分)20、(满分8分)解(提示):(1))5.10(40≤≤=t t y ,)32(18060≤≤+-=t t y ;(4分)(2)t=2.5h 代入)32(18060≤≤+-=t t y ,y=30(km )。
(3分)答略。
(1分)注:(1)中无取值范围的扣1分。
21、(满分8分)解(提示):(1)用方程组求出原布袋内有红球3个,黑球2个,(3分)从原布袋内随机摸出一个球是红球的概率=53;(1分)(2)用列表法求(略)。
随机一次摸出两个球是黑球的概率=101202=。
(4分) 22、(满分10分)解(提示):(1)用方程组求,2013年村民集资和政府投资分别为4万元和36万元;(4分)(2)村民每年集资4万元,每1km 公路硬化需要8万元,设政府每年投资的增长率为....k .,要完成计划任务,则该村2014年和2015年还应硬化公路21km ,其中政府投资为21×8-4×2=160(万元),根据题意有:160)1(36)1362=+++k k (,(3分)解得32=k (负值舍去),(2分),所以2014年政府投资36(32+1)=60(万元),(60+4)÷8=8(km ),所以,该村2014年应硬化公路8km 。