【全国校级联考】【衡水金卷】2018年普通高等学校招生全国统一考试模拟试题理综(三)生物试题(原卷版)
衡水金卷2018年普通高等学校招生全国统一考试模拟(调研卷)试题(四)理科综合物理试题(解析版)
衡水金卷2018年普通高等学校招生全国统一考试模拟(调研卷)试题(四)理科综合物理部分二、选择题1. 月球上含有丰富的(氦3),有它参与的一种核反应的方程式为,如果、、X质量分别为、、,则下列说法正确的是()A. 该核反应的质量亏损为B. 该反应属于裂变反应C. 该核反应吸收的能量为D. 生成物中的X为【答案】D【解析】A、由爱因斯坦质能方程知释放能量伴随质量亏损,所以聚变过程会有质量亏损,,故A错误;BC、该反应属于聚变反应,要放出大量能量,,故BC错误;D、根据质量数守恒和电荷数守恒可得,x的质量数3+3-2=4,电荷数为2+2-2=2,故生成物中的X为,故D正确;故选D。
2. 据媒体报道,美国海军最早将于2020年实现电磁轨道炮的实战部署,我国在该领域的研究也走在世界的前列。
如图所示为电磁轨道炮原理示意图,图中虚线表示电流方向,下列说法正确的是()A. 如果电流方向如图中所示,则该电流在两轨道间产生的磁场方向竖直向下B. 电流大小一定时,两导轨距离越近,导轨之间的磁场越强C. 如果电流反向,炮弹所受安培力也会反向,炮弹将无法发射出去D. 要提高炮弹的发射速度,导轨间距越小越好【答案】B【解析】A、根据安培定则,如果电流方向如图中所示,则该电流在两轨道间产生的磁场方向竖直向上,故A项错误;B、两平行导轨的电流方向相反,在导轨之间产生的磁场方向相同,根据直线电流的磁场分布可知,电流大小一定时,两导轨距离越近,导轨之间的磁场越强,故B项正确;C、如果电流反向,导轨之间的磁场方向反向,通过炮弹的电流方向反向,炮弹所受安培力方向不变,故C 项错误;C、电流一定时,导轨间距越小磁场越强,但炮弹的“有效长度”也变小,影响安培力的大小,所以导轨间距并不是越小越好,而是要适当,故D项错误;故选B。
3. 如图所示,三只完全相同的灯泡A、B、C分别与带有快芯的电感线图L、定值电阻R、二极管D串联在电路中,闭合开关S,电路稳定后,三只灯泡亮度相同。
【全国百强校】衡水金卷2018年普通高等学校招生全国统一考试 分科综合卷 理科数学(二)模拟试题(原卷版)
2018年普通高等学校招生全国统一考试模拟试题理数(二)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合)B. C. D.2. )3. ( )D.4. 的渐近线与抛物线)B. C. D.5. 袋中装有4个红球、3个白球,甲、乙按先后次序无放回地各摸取一球,在甲摸到了白球的条件下,乙摸到白球的概率是()6. 《算法统宗》是中国古代数学名著,由程大位所著,其中记载这样一首诗:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?请君布算莫迟疑!其含义为:用九百九十九文钱共买了一千个甜果和苦果,其中四文钱可以买苦果七个,十一文钱可以买甜果九个,请问究竟甜、苦果各有几个?现有如图所示的程序框图,()343657)B. C. D.8. 已知恒成立,若为真命题,则实数)A. 2B. 3C. 4D. 59. 已知某几何体的三视图如图所示,则该几何体的体积为()...10. 如图为正方体点出发,在正方体表面上沿逆时针方向运动一周后,再回,运动过程种,点与平面的距离保持不变,运动的路程关系,则此函数图象大致是()A. B. C. D.11. 两点,,则直线的斜率为()12. 已知函数的取值范围是()C.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. _________.14. 满足,则的取值范围是__________.的对边分别为最大时,.16. 3位逻辑学家分配10枚金币,因为都对自己的逻辑能力很自信,决定按以下方案分配:(1)抽签确定各人序号:1,2,3;(2)1号提出分配方案,然后其余各人进行表决,如果方案得到不少于半数的人同意(提出方案的人默认同意自己方案),就按照他的方案进行分配,否则1好只得到2枚金币,然后退出分配与表决;(3)再由2号提出方案,剩余各人进行表决,当且仅当不少于半数的人同意时(提出方案的人默认同意自己方案),才会按照他的提案进行分配,否则也将得到2枚金币,然后退出分配与表决;(4)最后剩的金币都给3号.每一位逻辑学家都能够进行严密的逻辑推理,并能很理智的判断自身的得失,1号为得到最多的金币,提出的分配方案中1号、2号、3号所得金币的数量分别为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列(1)的通项公式;(2).18. 某校高三年级有1000人,某次考试不同成绩段的人数且所有得分都是整数.(1)求全班平均成绩;(2)计算得分超过141的人数;(精确到整数)(3)甲同学每次考试进入年级前1004次考试,100名的次数,写.19. 中,,折起至.(1)(2),当二面角.20.(1)(2)若是,求出此定值,若不是,请说明理由.21. 已知函数.(1)有极值点,求证:必有一个极值点在区间(2)22. 在平面直角坐标系中,以坐标原点为极点,(1)(2)2,交曲线两点,若.23.((2)。
衡水金卷2018年普通高等学校招生全国统一考试模拟(调研卷)试题(四)理科综合物理试题(原卷版)
衡水金卷2018年普通高等学校招生全国统一考试模拟(调研卷)试题(四)理科综合物理部分二、选择题1. 月球上含有丰富的(氦3),有它参与的一种核反应的方程式为,如果、、X质量分别为、、,则下列说法正确的是()A. 该核反应的质量亏损为B. 该反应属于裂变反应C. 该核反应吸收的能量为D. 生成物中的X为2. 据媒体报道,美国海军最早将于2020年实现电磁轨道炮的实战部署,我国在该领域的研究也走在世界的前列。
如图所示为电磁轨道炮原理示意图,图中虚线表示电流方向,下列说法正确的是()学_科_网...学_科_网...学_科_网...A. 如果电流方向如图中所示,则该电流在两轨道间产生的磁场方向竖直向下B. 电流大小一定时,两导轨距离越近,导轨之间的磁场越强C. 如果电流反向,炮弹所受安培力也会反向,炮弹将无法发射出去D. 要提高炮弹的发射速度,导轨间距越小越好3. 如图所示,三只完全相同的灯泡A、B、C分别与带有快芯的电感线图L、定值电阻R、二极管D串联在电路中,闭合开关S,电路稳定后,三只灯泡亮度相同。
下列说法正确的是()A. 断开开关S,灯泡A、C马上熄灭,灯泡B慢慢熄灭B. 断开开关S,灯泡C马上熄灭,灯泡A、B慢慢熄灭C. 断开开关S瞬间,通过灯泡B的电流方向是从左向右的D. 如果先抽掉电感线圈的快芯,再断开开关S,会发现灯泡B熄灭得更慢4. 如图所示,光滑圆弧轨道固定在竖直平面内,圆心为O。
一根轻杆两端分别固定着可视为质点、质量相等的小球M、N,将轻杆静止放置于轨道上,如如图中虚线所示。
小球M沿轨道下滑,小球N沿轨道上滑,当小球M与圆心等高时,速度大小为,此时轻杆与水平方向夹角为,则下列说法正确的是()A. 此时小球N的速度大小等于小球M的速度大小B. 此时小球N的速度大小大于小球M的速度大小C. 两小球沿圆弧运动过程中,轻杆总是对小球M做负功,对小球N做正功D. 当小球M运动到圆弧最低点时速度最大5. 如图所示,在竖直平面内,由绝缘材料制成的竖直平行轨道CD、FG与半圆轨道DPG平滑相接,CD段粗糙,其余部分都光滑,圆弧轨道半径为R,圆心为O,P为圆弧最低点,整个轨道处于水平向右的匀强电场中,电场强度为E。
【衡水金卷】2018年普通高等学校招生全国统一考试模拟试题(二,压轴卷)数学(理)试题
2018年普通高等学校招生全国统一考试模拟试题理科数学(二)本试卷共4页,23题(含选考题)。
全卷满分1 50分。
考试用时120分钟。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中。
只有一项是符合 题目要求的。
1.已知集合{}{}1,1,2,3,5,6,210xA B x Z =-=∈<,则AB=A .{1}B .{l ,2}C .{1,2,3}D .{一1,1,2,3}2.设i 为虚数单位,复数z 满足2(13)(3)i z i +=-+,则共轭复数z 的虚部为 A .3i B .3i - C .3 D .3- 3.学生李明上学要经过4个路口,前三个路口遇到红灯的概率均为12,第四个路口遇到 红灯的概率为13,设在各个路口是否遇到红灯互不影响,则李明从家到学校恰好遇到 一次红灯的概率为 A .724 B .14 C . 124 D . 184.已知双曲线方程为22221(0,0)x y a b a b-=>>,F 1,F 2为双曲线的左、右焦点,P 为渐近线上一点且在第一象限,且满足120PF PF ⋅=,若1230PF F ︒∠=,则双曲线的离心率为 A .2 B .2 C .22 D .3 5.已知θ为锐角,1cos 211cos 22θθ-=+,则sin()3πθ+的值为A .264+ B .624- C .366+ D .3236+ 6.执行如图所示的程序框图,则输出的s 的值为A .一1B .一2C .1D .27.2101211011112(1)(2)(1)(1)(1)x x a x a x a x a +-=-+-++-+,则01211a a a a ++++的值为A .2B .0C .一 2D .一48.某几何体三视图如图所示,则该几何体的表面积为 A .2052π-B .203π-C .24π-D .12π+9.已知34a b ==12,则a ,b 不可能满足的关系是 A .a +b >4 B .ab >4C .(a 一1)2+(b —1)2>2D .a 2+b 2<8 10.若函数()sin()(0)6f x x πωω=+>在区间(π,2π)内没有最值,则ω的取值范围是 A .112(0,][,]1243 B .(0,16][13,23] C .[12,43] D .[12,33] 11.过抛物线x 2=2p y (p>0)上两点A ,B 分别作抛物线的切线,若两切线垂直且交于点 P(1,一2),则直线AB 的方程为 A .122y x =+ B .124y x =+ C .132y x =+ D .134y x =+ l 2.在正三棱锥(底面是正三角形,顶点在底面的射影是底面三角形的中心的 三棱锥)O 一ABC 中,OA ,OB ,OC 三条侧棱两两垂直,正三棱锥O —ABC 的内切球与三个侧面切点分别为D ,E ,F ,与底面ABC 切于点G ,则三棱 锥G —DEF 与O —ABC 的体积之比为 A .23318+ B .23318- C .6239+ D .6239- 第Ⅱ卷本卷包括必考题和选考题两部分。
衡水金卷(一)理科数学试题(卷)含答案
2018年普通高等学校招生全国统一考试模拟试题理数(一)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,,则()A. B. C. D.2. 设是虚数单位,若,,,则复数的共轭复数是()A. B. C. D.3. 已知等差数列的前项和是,且,则下列命题正确的是()A. 是常数B. 是常数C. 是常数D. 是常数4. 七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()学*科*网...A. B. C. D.5. 已知点为双曲线:(,)的右焦点,直线与双曲线的渐近线在第一象限的交点为,若的中点在双曲线上,则双曲线的离心率为()A. B. C. D.6. 已知函数则()A. B. C. D.7. 执行如图所示的程序框图,则输出的的值为()A. B. C. D.8. 已知函数()的相邻两个零点差的绝对值为,则函数的图象()A. 可由函数的图象向左平移个单位而得B. 可由函数的图象向右平移个单位而得C. 可由函数的图象向右平移个单位而得D. 可由函数的图象向右平移个单位而得9. 的展开式中剔除常数项后的各项系数和为()A. B. C. D.10. 某几何体的三视图如图所示,其中俯视图中六边形是边长为1的正六边形,点为的中点,则该几何体的外接球的表面积是()A. B. C. D.11. 已知抛物线:的焦点为,过点分别作两条直线,,直线与抛物线交于、两点,直线与抛物线交于、两点,若与的斜率的平方和为1,则的最小值为()A. 16B. 20C. 24D. 3212. 若函数,,对于给定的非零实数,总存在非零常数,使得定义域内的任意实数,都有恒成立,此时为的类周期,函数是上的级类周期函数.若函数是定义在区间内的2级类周期函数,且,当时,函数.若,,使成立,则实数的取值范围是()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量,,且,则__________.14. 已知,满足约束条件则目标函数的最小值为__________.15. 在等比数列中,,且与的等差中项为17,设,,则数列的前项和为__________.16. 如图,在直角梯形中,,,,点是线段上异于点,的动点,于点,将沿折起到的位置,并使,则五棱锥的体积的取值范围为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知的内角,,的对边,,分别满足,,又点满足.(1)求及角的大小;(2)求的值.18. 在四棱柱中,底面是正方形,且,.(1)求证:;(2)若动点在棱上,试确定点的位置,使得直线与平面所成角的正弦值为.19. “过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则,.20. 已知椭圆:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆的标准方程;(2)若直线:与椭圆相交于,两点,在轴上是否存在点,使直线与的斜率之和为定值?若存在,求出点坐标及该定值,若不存在,试说明理由.21. 已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求实数的取值范围;(2)已知函数,且,若函数在区间上恰有3个零点,求实数的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中,圆的参数方程为(为参数,是大于0的常数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求圆的极坐标方程和圆的直角坐标方程;(2)分别记直线:,与圆、圆的异于原点的焦点为,,若圆与圆外切,试求实数的值及线段的长.23. 选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若正数,满足,求证:.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,,则()A. B. C. D.【答案】C【解析】集合,故,集合表示非负的偶数,故,故选C.2. 设是虚数单位,若,,,则复数的共轭复数是()A. B. C. D.【答案】A【解析】,根据两复数相等的充要条件得,即,其共轭复数为,故选A.3. 已知等差数列的前项和是,且,则下列命题正确的是()A. 是常数B. 是常数C. 是常数D. 是常数【答案】D【解析】,为常数,故选D.4. 七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A. B. C. D.【答案】A【解析】由七巧板的构造可知,,故黑色部分的面积与梯形的面积相等,则所求的概率为,故选A.5. 已知点为双曲线:(,)的右焦点,直线与双曲线的渐近线在第一象限的交点为,若的中点在双曲线上,则双曲线的离心率为()A. B. C. D.【答案】D【解析】由,解得点,又,则的中点坐标为,于是,,则,解得或(舍去),故选D.【方法点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.本题中,根据的中点坐标为在双曲线上找出之间的关系,从而求出离心率.6. 已知函数则()A. B. C. D.【答案】D【解析】,,的几何意义是以原点为圆心,半径为的圆的面积的,故,故选D.7. 执行如图所示的程序框图,则输出的的值为()A. B. C. D.【答案】C【解析】图中程序数列的和,因为,故此框图实质计算,故选C.8. 已知函数()的相邻两个零点差的绝对值为,则函数的图象()A. 可由函数的图象向左平移个单位而得B. 可由函数的图象向右平移个单位而得C. 可由函数的图象向右平移个单位而得D. 可由函数的图象向右平移个单位而得【答案】B【解析】,因为函数()的相邻两个零点差的绝对值为,所以函数的最小正周期为,而,,故的图象可看作是的图象向右平移个单位而得,故选B.9. 的展开式中剔除常数项后的各项系数和为()A. B. C. D.【答案】A【解析】令,得,而常数项为,所以展开式中剔除常数项的各项系数和为,故选A.10. 某几何体的三视图如图所示,其中俯视图中六边形是边长为1的正六边形,点为的中点,则该几何体的外接球的表面积是()A. B. C. D.【答案】C【解析】由三视图可知,该几何体是一个六棱锥,其底面是边长为的正六边形,有一个侧面是底边上的离为的等腰三角形,且有侧面底面,设球心为,半径为到底面的距离为,底面正六边形外接球圆半径为,解得此六棱锥的外接球表面枳为,故选C.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力以及外接球的表面积,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.11. 已知抛物线:的焦点为,过点分别作两条直线,,直线与抛物线交于、两点,直线与抛物线交于、两点,若与的斜率的平方和为1,则的最小值为()A. 16B. 20C. 24D. 32【答案】C【解析】易知直线,的斜率存在,且不为零,设,直线的方程为,联立方程,得,,同理直线与抛物线的交点满足,由抛物线定义可知,又(当且仅当时取等号),的最小值为,故选C.12. 若函数,,对于给定的非零实数,总存在非零常数,使得定义域内的任意实数,都有恒成立,此时为的类周期,函数是上的级类周期函数.若函数是定义在区间内的2级类周期函数,且,当时,函数.若,,使成立,则实数的取值范围是()A. B. C. D.【答案】B【解析】是定义在区间内的级类周期函数,且,,当时,,故时,时,,而当时,,,当时,在区间上单调递减,当时,在区间上单调递增,故,依题意得,即实数的取值范围是,故选B.【方法点睛】本题主要考查分段函数函数的最值、全称量词与存在量词的应用以及新定义问题. 属于难题.解决这类问题的关键是理解题意、正确把问题转化为最值和解不等式问题,全称量词与存在量词的应用共分四种情况:(1)只需;(2),只需;(3),只需;(4),,.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量,,且,则__________.【答案】【解析】,,故答案为.14. 已知,满足约束条件则目标函数的最小值为__________.【答案】【解析】,作出约束条件表示的可行域,如图,平移直线,由图可知直线经过点时,取得最小值,且,,故答案为.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15. 在等比数列中,,且与的等差中项为17,设,,则数列的前项和为__________.【答案】【解析】设的公比为,则由等比数列的性质,知,则,由与的等差中项为,知,得,即,则,,故答案为.16. 如图,在直角梯形中,,,,点是线段上异于点,的动点,于点,将沿折起到的位置,并使,则五棱锥的体积的取值范围为__________.【答案】【解析】,平面,设,则五棱锥的体积,,得或(舍去),当时,单调递增,故,即的取值范围是,故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知的内角,,的对边,,分别满足,,又点满足.(1)求及角的大小;(2)求的值.【答案】(1) (2)【解析】试题分析:(1)由及正弦定理化简可得即,从而得.又,所以,由余弦定理得;(2)由,得,所以.试题解析:(1)由及正弦定理得,即,在中,,所以.又,所以.在中,由余弦定理得,所以.(2)由,得,所以.18. 在四棱柱中,底面是正方形,且,.(1)求证:;(2)若动点在棱上,试确定点的位置,使得直线与平面所成角的正弦值为.【答案】(1)见解析(2)【解析】试题分析:(1)连接,,,与的交点为,连接,则,由正方形的性质可得,从而得平面,,又,所以;(2)由勾股定理可得,由(1)得所以底面,所以、、两两垂直.以点为坐标原点,的方向为轴的正方向,建立空间直角坐标系,设(),求得,利用向量垂直数量积为零可得平面的一个法向量为,利用空间向量夹角余弦公式列方程可解得,从而可得结果.试题解析:(1)连接,,,因为,,所以和均为正三角形,于是.设与的交点为,连接,则,又四边形是正方形,所以,而,所以平面.又平面,所以,又,所以.(2)由,及,知,于是,从而,结合,,得底面,所以、、两两垂直.如图,以点为坐标原点,的方向为轴的正方向,建立空间直角坐标系,则,,,,,,,,由,易求得.设(),则,即,所以.设平面的一个法向量为,由得令,得,设直线与平面所成角为,则,解得或(舍去),所以当为的中点时,直线与平面所成角的正弦值为.【方法点晴】本题主要考查利用线面垂直证明线线垂直以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19. “过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则,.【答案】(1) (2) (3)的分布列为0 1 2 3 4∴.【解析】试题分析:(1)直方图各矩形中点值的横坐标与纵坐标的积的和就是所抽取的100包速冻水饺该项质量指标值的样本平均数;(2)①∵服从正态分布,且,,由可得落在内的概率是,②的可能取值为,根据独立重复试验概率公式求出各随机变量对应的概率,从而可得分布列,进而利用二项分布的期望公式可得的数学期望.试题解析:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为.(2)①∵服从正态分布,且,,∴,∴落在内的概率是.②根据题意得,;;;;.∴的分布列为0 1 2 3 4∴.20. 已知椭圆:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆的标准方程;(2)若直线:与椭圆相交于,两点,在轴上是否存在点,使直线与的斜率之和为定值?若存在,求出点坐标及该定值,若不存在,试说明理由.【答案】(1) (2) 存在点,使得为定值,且定值为0.【解析】试题分析:(1)由椭圆的离心率为,且以两焦点为直径的圆的内接正方形面积为可得,解方程组即可的结果;(2)由得,根据韦达定理以及过两点的直线的斜率公式可得,只需令,即可得结果.试题解析:(1)由已知可得解得,,所求椭圆方程为.(2)由得,则,解得或.设,,则,,设存在点,则,,所以.要使为定值,只需与参数无关,故,解得,当时,.综上所述,存在点,使得为定值,且定值为0.21. 已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求实数的取值范围;(2)已知函数,且,若函数在区间上恰有3个零点,求实数的取值范围.【答案】(1) (2)【解析】试题分析:(1)函数在区间上单调递增等价于在区间上恒成立,可得,函数在区间单调递减等价于在区间上恒成立,可得,综合两种情况可得结果;(2),由,知在区间内恰有一个零点,设该零点为,则在区间内不单调,所以在区间内存在零点,同理,在区间内存在零点,所以只需在区间内恰有两个零点即可,利用导数研究函数的单调性,结合函数单调性讨论的零点,从而可得结果.试题解析:(1),当函数在区间上单调递增时,在区间上恒成立,∴(其中),解得;当函数在区间单调递减时,在区间上恒成立,∴(其中),解得.综上所述,实数的取值范围是.(2).由,知在区间内恰有一个零点,设该零点为,则在区间内不单调,所以在区间内存在零点,同理,在区间内存在零点,所以在区间内恰有两个零点.由(1)知,当时,在区间上单调递增,故在区间内至多有一个零点,不合题意.当时,在区间上单调递减,故在内至多有一个零点,不合题意;所以.令,得,所以函数在区间上单调递减,在区间上单调递增.记的两个零点为,(),因此,,必有,.由,得,所以,又,,所以.综上所述,实数的取值范围为.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22. 选修4-4:坐标系与参数方程在平面直角坐标系中,圆的参数方程为(为参数,是大于0的常数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求圆的极坐标方程和圆的直角坐标方程;(2)分别记直线:,与圆、圆的异于原点的焦点为,,若圆与圆外切,试求实数的值及线段的长.【答案】(1) , (2) ,【解析】试题分析:(1)先将圆的参数方程化为直角坐标方程,再利用可得圆的极坐标方程,两边同乘以利用互化公式即可得圆的直角坐标方程;(2)由(1)知圆的圆心,半径;圆的圆心,半径,圆与圆外切的性质列方程解得,分别将代入、的极坐标方程,利用极径的几何意义可得线段的长.试题解析:(1)圆:(是参数)消去参数,得其普通方程为,将,代入上式并化简,得圆的极坐标方程,由圆的极坐标方程,得.将,,代入上式,得圆的直角坐标方程为.(2)由(1)知圆的圆心,半径;圆的圆心,半径,,∵圆与圆外切,∴,解得,即圆的极坐标方程为.将代入,得,得;将代入,得,得;故.【名师点睛】本题考查圆的参数方程和普通方程的转化、圆的极坐标方程和直角坐标方程的转化以及极径的几何意义,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法;极坐标方程化为直角坐标方程,只需利用转化即可.23. 选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若正数,满足,求证:.【答案】(1) (2)见解析【解析】试题分析:(1)对分三种情况讨论,分别求解不等式组,然后求并集,即可得不等式的解集;(2)先利用基本不等式成立的条件可得,所以.学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...试题解析:(1)此不等式等价于或或解得或或.即不等式的解集为.(2)∵,,,,即,当且仅当即时取等号.∴,当且仅当,即时,取等号.∴.。
衡水金卷2018年普通高等学校招生全国统一考试模拟试卷 分科综合卷 理科数学三 含答案 精品
2018年普通高等学校招生全国统一考试模拟试题理数(三)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()23z i i +=+(i 为虚数单位),其共轭复数为z ,则z 为( ) A .7155i - B .7155i -- C .7155i + D .7155i -+2.已知()1cos 3πα-=,2sin 23πβ⎛⎫+= ⎪⎝⎭(其中,α,(0,)βπ∈),则()sin αβ+的值为( )A .9 B .9C D3.已知集合{}2340A x R x x =∈--≤,{}B x R x a =∈≤,若AB B =,则实数a 的取值范围为( )A .()4,∞+B .[)4,∞+C .(),4-∞D .(],4-∞4.某高三学生进行考试心理素质测试,场景相同的条件下每次通过测试的概率为45,则连续测试4次,至少有3次通过的概率为( ) A .512625 B .256625 C.64625 D .641255.已知222351+2=6⨯⨯,2223471236⨯⨯++=,223245912346⨯⨯+++=,,若()22222*1234385n n N +++++=∈,则n 的值为( )A .8B .9 C.10 D .116.已知椭圆()222210x y a b a b +=>>的左顶点为M ,上顶点为N ,右焦点为F ,若=0NM NF ⋅,则椭圆的离心率为( )A .2 B .12C.12 D .12 7.将函数()sin 2f x x =图像上的所有点向右平移4π个单位长度后得到函数()g x 的图像,若()g x 在区间[]0,a 上单调递增,则a 的最大值为( )A .8πB .4πC.6πD .2π8.如图是计算()11111223341n n ++++⨯⨯⨯+的程序框图,若输出的S 的值为99100,则判断框中应填入的条件是( )A .98?n >B .99?n > C.100?n > D .101?n >9.朱世杰是历史上有名的数学家之一,他所著的《四元玉鉴》卷中“如像招数一五间”,有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日?”其大意为:“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始,每天派出的人数比前一天多7人,修筑堤坝的每人每天发大米3升,共发出大米40392升,问修筑堤坝多少天”,在这个问题中,第8天应发大米( )A .350升B .339升 C.2024升 D .2124升 10.已知三棱锥的三视图如图所示,则该三棱锥内切球的半径为( )AD11.如图所示,在矩形ABCD 中,4AB =,2AD =,P 为边AB 的中点,现将DAP ∆绕直线DP 翻转至'DA P ∆处,若M 为线段'A C 的中点,则异面直线BM 与'PA 所成角的正切值为( )A .12 B .2 C.14D .4 12.若函数()y f x =图像上存在两个点A ,B 关于原点对称,则对称点(),A B 为函数()y f x =的“孪生点对”,且点对(),A B 与(),B A 可看作同一个“孪生点对”.若函数()f x =322,0692,0x x x x a x <⎧⎨-+-+-≥⎩恰好有两个“孪生点对”,则实数a 的值为( ) A .0 B .2 C.4 D .6第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.()()3212x x +-的展开式中含2x 项的系数为 .14.如图所示,在正方形ABCD 中,点E 为边BC 的中点,点F 为边CD 上的靠近点C 的四等分点,点G 为边AE 上的靠近点A 的三等分点,则向量FG 用AB 与AD 表示为 .15.已知在等腰梯形ABCD 中,//AB CD ,24AB CD ==,60ABC ∠=,双曲线以A ,B 为焦点,且与线段AD ,BC (包含端点D ,C )分别有一个交点,则该双曲线的离心率的取值范围是 .16.已知数列{}n a 满足11a =,()21122n n n a a a n --=+≥,若()*1112n n n b n N a a +=+∈+,则数列{}n b 的前n 项和n S = .三、解答题 (解答应写出文字说明、证明过程或演算步骤.)17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()sin cos cos A A C -()cos sin sin A A C ++=D 为边AB 上一点,2BC =,BD =(1)求BCD ∆的面积;(2)若DA DC =,求角A 的大小.18.如图所示,在三棱锥P ABC -中,平面PAB ⊥平面ABC ,AC CB ⊥,4AB =,PA =45PAB ∠=.(1)证明:AC ⊥平面PCB ;(2)若二面角A PB C --的平面角的大小为60,求直线PB 与平面PAC 所成角的正弦值.19.某葡萄基地的种植专家发现,葡萄每株的收获量y (单位:kg )和与它“相近”葡萄的株数x 具有线性相关关系(所谓两株作物“相近”是指它们的直线距离不超过1m ),并分别记录了相近葡萄的株数为1,2,3,4,5,6,7时,该葡萄每株收获量的相关数据如下:(1)求该葡萄每株的收获量y 关于它“相近”葡萄的株数x 的线性回归方程及y 的方差2s ; (2)某葡萄专业种植户种植了1000株葡萄,每株“相近”的葡萄株数按2株计算,当年的葡萄价格按10元/kg 投入市场,利用上述回归方程估算该专业户的经济收入为多少万元;(精确到0.01)(3)该葡萄基地在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株葡萄,其中每个小正方形的面积都为21m ,现在所种葡萄中随机选取一株,求它的收获量的分布列与数学期望.(注:每株收获量以线性回归方程计算所得数据四舍五入后取的整数为依据)附:对于一组数据()11,x y ,()22,x y ,,(),n n x y ,其回归直线y b x a ∧∧∧=+的斜率和截距的最小二乘估计分别为()()()121niii nii x x y y b x x ∧==--=-∑∑,a y b x ∧∧=-.20.已知抛物线2:4C x y =的焦点为F ,直线():0l y kx a a =+>与抛物线C 交于A ,B 两点.(1)若直线l 过焦点F ,且与圆()2211x y +-=交于D ,E (其中A ,D 在y 轴同侧)两点,求证:AD BE ⋅是定值;(2)设抛物线C 在点A 和点B 处的切线交于点P ,试问在y 轴上是否存在点Q ,使得四边形APBQ 为菱形?若存在,求出此时直线l 的斜率和点Q 的坐标;若不存在,请说明理由.21.已知函数()()21ln f x a x x =-+,a R ∈.(1)当2a =时,求函数()y f x =在点()()1,1P f 处的切线方程;(2)当1a =-时,令函数()()ln 21g x f x x x m =+-++,若函数()g x 在区间1,e e ⎡⎤⎢⎥⎣⎦上有两个零点,求实数m 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知点()2+cos ,sin P αα(α为参数).以O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)求点P 的轨迹C 的方程及直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值. 23.选修4-5:不等式选讲已知函数()512f x x x =-+--.(1)在给出的平面直角坐标系中作出函数()y f x =的图像;(2)记函数()y f x =的最大值为M ,是否存在正数a ,b ,使2a b M +=,且123a b+=,若存在,求出a ,b 的值,若不存在,说明理由.试卷答案一、选择题1-5:CABAC 6-10:DDBDB 11、12:AA二、填空题13.18 14.55126FG AB AD =-- 15.(11] 16.21121n -- 三、解答题17.解:(1)由()sin cos cos A A C -+()cos sin sin A A C +=可知sin cos cos cos A C A C -cos sin sin sin A C A C ++=,即()()sin cos A C A C +-+=sin cos B B ⇒+=22B B ⎫+=⎪⎪⎭sin 14B π⎛⎫⇒+= ⎪⎝⎭. 因为在ABC ∆中,()0,B π∈,所以424B B πππ+=⇒=,所以1sin 2BCD S BC BD B ∆=⨯⨯12sin 24π=⨯⨯=22=.(2)在BCD ∆中,由余弦定理,可知2222cos DC BD BC BD BC B =+-⨯⨯8422cos4π=+-⨯⨯84222=+-⨯⨯, 所以2DC =,所以DC BC =,所以4BDC π∠=. 又由已知DA DC =,得8A π∠=, 故角A 的大小为8π.18.解:(1)在PAB ∆中,因为4AB =,PA =45PAB ∠=, 所以由余弦定理,可知2222cos PB AB AP AB AP PAB =+-⨯⨯⨯∠163224162=+-⨯⨯=, 所以4PB =.故222PB BA PA +=,即有PB BA ⊥.又因为平面PAB ⊥平面ABC ,且平面PAB 平面ABC AB =,PB ⊂平面PAB ,所以PB ⊥平面ABC .又AC ⊂平面ABC ,所以PB AC ⊥. 又因为AC CB ⊥,PBCB B =,所以AC ⊥平面PBC .(2)过点B 作BD PC ⊥,垂足为D ,连接AD . 由(1),知AC ⊥平面PBC ,BD ⊂平面PBC , 所以AC BD ⊥.又PCAC C =,所以BD ⊥平面PAC ,因此BPD ∠即为直线PB 与平面PAC 所成的角. 又由(1)的证明,可知PB ⊥平面ABC ,又BC ⊂平面ABC ,AB ⊂平面ABC ,所以PB BC ⊥,PB BA ⊥, 故ABC ∠即为二面角A PB C --的平面角,即60ABC ∠=. 故在Rt ACB ∆中,由4AB =,得2BC =.在Rt PBC ∆中,PC ==且42PB BC PC BD BD ⨯=⨯⇒⨯=BD ⇒=. 因此在Rt PBD ∆中,得5sin 4BD BPD PB ∠=== 故直线PB 与平面PAC19.解:(1)由题意,可知()112356746x =+++++=, ()11513121097116y =+++++=. ()()()()613422iii x x y y =--=-⨯+-⨯+∑()()()()11112234-⨯+⨯-+⨯-+⨯-=34-,()()()()62222213211i i x x=-=-+-+-++∑222328+=,所以()()()6162134172814iii i i x x y y b x x∧==--==-=--∑∑, 所以17111114147a yb x ∧∧=-=+⨯=, 故该葡萄每株收获量y 关于它“相近”葡萄的株数x 的线性回归方程为17111147y x ∧=-+. y 的方差为()()()222211511131112116s ⎡=-+-+-+⎣()()()22210119117117⎤-+-+-=⎦. (2)由17111147y x =-+,可知当2x =时,171119421477y =-⨯+=, 因此总收入为941010001000013.437⨯⨯÷≈(万元). (3)由题知,2,3,4x =.由(1)(2),知当2x =时,13.42y ≈,所以13y =;当3x =时,5111117112.2114714y =-+=≈,所以12y =; 当4x =时,341117711777y =-+==, 即2,3,4x =时,与之相对应的y 的值分别为13,12,11, 又()()41132164P y P x =====, ()()81123162P y P x =====, ()()41114164P y P x =====, 所以在所种葡萄中随机选取一株,它的收获量y 的分布列为()111131********E y =⨯+⨯+⨯=.20.解:由题知抛物线2:4C x y =的焦点为()0,1F ,设()11,A x y ,()22,B x y .由24x y y kx a⎧=⎨=+⎩2440x kx a ⇒--=, 则()2160k a ∆=+>,且124x x k +=,124x x a =-.(1)若直线l 过焦点F ,则1a =,所以124x x k +=,124x x =-. 由条件可知圆()2211x y +-=的圆心为()0,1F ,半径为1, 又由抛物线定义可知11AF y =+,21BF y =+, 故可得11AD AF y =-=,21BE BF y =-=, 所以()()121211AD BE y y kx kx ⋅==++()212121k x x k x x =+++=224411k k -++=. 故AD BE ⋅为定值1.(2)假设存在点Q 满足题意,设()00,Q y , 由22144x y y x =⇒=,因此1'2y x =. 若四边形APBQ 为菱形,则//AQ BP ,//BQ AP , 则102112AQ y y k x x -==,201212BQ y y k x x -==, 则101212y y x x -=,201212y y x x -=, 则12y y =,所以0k =,此时直线AB 的方程为y kx a a =+=,所以()A a -,()B a .则抛物线在点()A a -处的切线为y a =-,① 同理,抛物线在点B处的切线为y a =-,②联立①②,得()0,P a -. 又线段AB 的中点为()0,R a ,所以点()0,3Q a .即存在点()0,3Q a ,使得四边形APBQ 为菱形,此时0k =.21.解:(1)当2a =时,()()221ln f x x x =-+224ln 2x x x =-++. 当1x =时,()10f =,所以点()()1,1P f 为()1,0P ,又()1'44f x x x=-+,因此()'11k f ==. 因此所求切线方程为()0111y x y x -=⨯-⇒=-.(2)当1a =-时,()22ln g x x x m =-+,则()()()2112'2x x g x x x x-+-=-=. 因为1,x e e⎡⎤∈⎢⎥⎣⎦,所以当()'0g x =时,1x =, 且当11x e<<时,()'0g x >;当1x e <<时,()'0g x <; 故()g x 在1x =处取得极大值也即最大值()11g m =-. 又2112g m e e⎛⎫=-- ⎪⎝⎭,()22g e m e =+-, ()221122g e g m e m e e ⎛⎫-=+--++ ⎪⎝⎭24e =-+210e <, 则()1g e g e ⎛⎫< ⎪⎝⎭,所以()g x 在区间1,e e⎡⎤⎢⎥⎣⎦上的最小值为()g e , 故()g x 在区间1,e e ⎡⎤⎢⎥⎣⎦上有两个零点的条件是 ()21101120g m g m e e =->⎧⎪⎨⎛⎫=--≤ ⎪⎪⎝⎭⎩2112m e ⇒<≤+, 所以实数m 的取值范围是211,2e ⎛⎤+ ⎥⎝⎦.22.解:(1)设点(),P x y ,所以2cos sin x y αα=+⎧⎨=⎩,(α为参数), 消去参数,得()2221x y -+=, 即P 点的轨迹C 的方程为()2221x y -+=直线:sin 4l πρθ⎛⎫+= ⎪⎝⎭cos sin 4ρθρθ⇒+=4x y ⇒+=, 所以直线l 的直角坐标方程为40x y +-=.(2)由(1),可知P 点的轨迹C 是圆心为()2,0,半径为1的圆, 则圆心C 到直线l的距离为1d r ==>=.所以曲线C 上的点到直线l1.23.解:(1)由于()512f x x x =-+--24,12,1226,2x x x x x +<-⎧⎪=-≤≤⎨⎪-+>⎩.作图如下:(2)由图像可知,当12x -≤≤,()max 2f x =,即得2M =.假设存在正数a ,b ,使22a b +=,且123a b+=, 因为12122b a a b a b ⎛⎫⎛⎫+=++ ⎪⎪⎝⎭⎝⎭22()242b a a b =++≥+≥, 当且仅当2222,0a b b a a b a b +=⎧⎪⎪=⎨⎪>⎪⎩121a b ⎧=⎪⇒⎨⎪=⎩时,取等号, 所以12a b +的最小值为4,与123a b+=相矛盾, 故不存在正数a ,b ,使22a b +=,且123a b +=成立.。
2018年河北省衡水金卷普通高等学校招生全国统一考试模拟考试(一)理综物理试题(解析版)
衡水金卷2018年普通高等学校招生全国统一考试模拟考试(一)理综物理试题一、选择题1. 物理公式在确定各物理量的数量关系时,同时也确定了各物理量的单位关系。
现有物理单位s(秒)、m (米)、Wb(韦伯)、Ω(欧姆)、C(库仑)、A(安培)、N(牛顿)、T(特斯拉),由它们组成的单位与电压的单位V(伏特)不等效的是()A. A· ΩB. T·m2·s-1C. N·C·mD. Wb.s-l【答案】C【解析】根据U=IR,则1V=1A·Ω,与电压的单位V(伏特)等效;由E=可知,T•m2/s和Wb·s-1是和电压单位V等效的;1N·C·m=1J·C=1V As∙C,与电压的单位不等效;故选C.2. 如图所示,质量分别为M和m的A、B两物体叠放在一起置于光滑水平面上。
而物体之间用轻弹簧相连,B上表面水平且光滑,用水平拉力F向右拉A,两物体一起向右加速运动时,A、B间弹簧的长度为L1:用水平拉力F向右拉B,两物体一起向右加速运动时,A、B间弹簧的长度为L2,则弹簧的原长为()A.B.C.D.【答案】A【解析】用水平拉力F向右拉A时,根据牛顿第二定律得,整体的加速度a1=,隔离对B分析,根据牛顿第二定律得,弹簧的弹力k(L1-L0)=ma1=;用水平拉力F向右拉B时,根据牛顿第二定律得,整体的加速度a2=,隔离对A分析,根据牛顿第二定律得,弹簧的弹力k(L0-L2)=Ma2=;解得故选A.3. 如图甲所示为研究光电效应中入射光的频率、强弱与光电子发射情况的实验电路,阴极K受到光照时可以发射光电子,电源正负极可以对调。
实验中得到如图乙所示的实验规律,下列表述错误的是( )A. 在光照条件不变的情况下,随着所加电压的增大,光电流趋于一个饱和值B. 在光的频率不变的情况下,入射光越强饱和电流越大C. 一定频率的光照射光电管,不论光的强弱如何,遏止电压不变D. 蓝光的遏止电压大于黄光的遏止电压是因为蓝光强度大于黄光强度【答案】D【解析】在光照条件不变的情况下,随着所加电压的增大,则从K极发射出的电子射到阳极的电子越来越多,则光电流趋于一个饱和值,选项A正确;在光的频率不变的情况下,入射光越强,则单位时间射出的光电子数越多,则饱和电流越大,选项B正确;一定频率的光照射光电管,不论光的强弱如何,根据光电效应的规律可知射出的光电子的最大初动能不变,则截至电压不变,选项C正确;因为蓝光的频率大于黄光,逸出的光电子最大初动能蓝光大于黄光,则蓝光的遏止电压大于黄光的遏止电压蓝光,故选项D错误;此题选择错误的选项,故选D.4. 太阳系八大行星几乎是在同一平面内沿同一方向绕太阳做圆周运动,当地球恰好运行到土星和太阳之间,且三者几乎成一条直线的现象,天文学称为“土星冲日”,据报道,土星最近一次冲日是在2017年6月15日。
2018年河北省【衡水金卷】普通高等学校招生全国统一考试模拟试题理数试题(解析版)
2018年普通高等学校招生全国统一考试模拟试题理数(四)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知虚数单位,复数对应的点在复平面的( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】D 【解析】因为=所对应的点为,在第四项限.故答案为:D.2. 已知集合,,若,则实数的取值范围为( )A.B.C.D.【答案】D 【解析】},若,则故答案为:D.3. 设,,,,为实数,且,,下列不等式正确的是( )A. B.C.D.【答案】D【解析】取a=2,b=4,c=3,d=2,d-a=0,c-b=-1,此时d-a>c-b,A 错误;取a=2,b=3,小,则,,此时,B 错误;取b=3,a=,c=1,d=-3,,C 错误;对于D,D正确. 故选D. 4. 设随机变量,则使得成立的一个必要不充分条件为( )A.或B.C.D.或【答案】A【解析】由,得到=,故3m=3,得到m=1,则使得成立的充要条件为m=1,故B错误;因为是的真子集,故原题的必要不充分条件为或.故答案为:A.5. 执行如图所示的程序框图,若输出的结果,则判断框内实数应填入的整数值为()A. 998B. 999C. 1000D. 1001【答案】A【解析】因为令则故当根据题意此时退出循环,满足题意,则实数M应填入的整数值为998,故答案为:A.6. 已知公差不为0的等差数列的前项和为,若,则下列选项中结果为0的是()A. B. C. D.【答案】C【解析】由得到,因为公差不为0,故=0,由等差数列的性质得到,故答案为:C.7. 设,分别为双曲线(,)的左、右顶点,过左顶点的直线交双曲线右支于点,连接,设直线与直线的斜率分别为,,若,互为倒数,则双曲线的离心率为()A. B. C. D.【答案】B【解析】由圆锥曲线的结论知道故答案为:B.8. 如图所示,网格纸上小正方形的边长为1,粗实线画出的是几何体的三视图,则该几何体的体积为()A. B. C. 16 D.【答案】A【解析】由已知中的三视图得到该几何体是一个半圆柱挖去了一个三棱锥,底面面积为,高为4,该几何体的体积为故答案为:A .9. 已知曲线和直线所围成图形的面积是,则的展开式中项的系数为()A. 480B. 160C. 1280D. 640【答案】D【解析】由题意得到两曲线围成的面积为=故答案为:D.点睛:这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等.10. 在平面直角坐标系中,为坐标原点,,,,,设,,若,,且,则的最大值为()A. 7B. 10C. 8D. 12【答案】B【解析】已知,,,得到因为,,故有不等式组表示出平面区域,是封闭的三角形区域,当目标函数过点(2,4)时取得最大值,为10.故答案为:B.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型);(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值;注意解答本题时不要忽视斜率不存在的情形.11. 如图所示,椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:已知曲线的方程为,其左、右焦点分别是,,直线与椭圆切于点,且,过点且与直线垂直的直线与椭圆长轴交于点,则()A. B. C. D.【答案】C【解析】由椭圆的光学性质得到直线平分角,因为由,得到,故.故答案为:C.12. 将给定的一个数列:,,,…按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列.如在上述数列中,我们将作为第一组,将,作为第二组,将,,作为第三组,…,依次类推,第组有个元素(),即可得到以组为单位的序列:,,,…,我们通常称此数列为分群数列.其中第1个括号称为第1群,第2个括号称为第2群,第3个数列称为第3群,…,第个括号称为第群,从而数列称为这个分群数列的原数列.如果某一个元素在分群数列的第个群众,且从第个括号的左端起是第个,则称这个元素为第群众的第个元素.已知数列1,1,3,1,3,9,1,3,9,27,…,将数列分群,其中,第1群为(1),第2群为(1,3),第3群为(1,3,),…,以此类推.设该数列前项和,若使得成立的最小位于第个群,则()A. 11 B. 10 C. 9 D. 8【答案】B【解析】由题意得到该数列的前r组共有个元素,其和为则r=9时,故使得N>14900成立的最小值a位于第十个群.故答案为:B.点睛:这个题目考查的是新定义题型,属于数列中的归纳推理求和问题;对于这类题目,可以先找一些特殊情况,总结一下规律,再进行推广,得到递推关系,或者直接从变量较小的情况开始归纳得到递推关系.第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若函数为偶函数,则__________.【答案】-1【解析】由偶函数的定义得到,即=即恒成立,k=-1.故答案为:-1.14. 已知,,则__________.【答案】【解析】=,故=,因为,故=,故,故.故答案为:.15. 中华民族具有五千多年连绵不断的文明历史,创造了博大精深的中华文化,为人类文明进步作出了不可磨灭的贡献.为弘扬传统文化,某校组织了国学知识大赛,该校最终有四名选手、、、参加了总决赛,总决赛设置了一、二、三等奖各一个,无并列.比赛结束后,对说:“你没有获得一等奖”,对说:“你获得了二等奖”;对大家说:“我未获得三等奖”,对、、说:“你妈三人中有一人未获奖”,四位选手中仅有一人撒谎,则选手获奖情形共计__________种.(用数字作答)【答案】12【解析】设选手ABCD获得一等奖,二等奖,三等奖,分别用表示获得的奖次,其中i=0时,表示为获奖,若C说谎,则若B说谎则等九种情况,若A说谎则若D说谎则,公12种情况.故答案为:12.16. 已知为的重心,点、分别在边,上,且存在实数,使得.若,则__________.【答案】3【解析】设连接AG并延长交BC于M,此时M为BC的中点,故故存在实数t使得,得到故答案为:3.点睛:本题考查了向量共线定理、平面向量基本定理、考查了推理能力与计算能力,属于中档题.在解决多元的范围或最值问题时,常用的解决方法有:多元化一元,线性规划的应用,均值不等式的应用,“乘1法”与基本不等式的性质,等.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,内角,,所对的边分别为,,,已知.(1)求角的大小;(2)若的面积,为边的中点,,求.【答案】(1);(2)5.【解析】试题分析:(1)由正弦定理,得,又,进而得到;(2)的面积,得,两边平方得到,结合两个方程得到结果.解析:(1)因为,由正弦定理,得.又,所以,即.因为,故.所以.(2)由的面积,得.又为边的中点,故,因此,故,即,故.所以.18. 市场份额又称市场占有率,它在很大程度上反映了企业的竞争地位和盈利能力,是企业非常重视的一个指标.近年来,服务机器人与工业机器人以迅猛的增速占据了中国机器人领域庞大的市场份额,随着“一带一路”的积极推动,包括机器人产业在内的众多行业得到了更广阔的的发展空间,某市场研究人员为了了解某机器人制造企业的经营状况,对该机器人制造企业2017年1月至6月的市场份额进行了调查,得到如下资料:月份市场份额((1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并预测该企业2017年7月份的市场份额;(2)如图是该机器人制造企业记录的2017年6月1日至6月30日之间的产品销售频数(单位:天)统计图.设销售产品数量为,经统计,当时,企业每天亏损约为200万元,当时,企业平均每天收人约为400万元;当时,企业平均每天收人约为700万元。
衡水金卷2018年普通高等学校招生全国统一考试模拟试卷分科综合卷理科数学(三)
2018年普通高等学校招生全国统一考试模拟试题理数(三)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()23z i i +=+(i 为虚数单位),其共轭复数为z ,则z 为( )A .7155i - B .7155i -- C .7155i + D .7155i -+ 2.已知()1cos 3πα-=,2sin 23πβ⎛⎫+= ⎪⎝⎭(其中,α,(0,)βπ∈),则()sin αβ+的值为( )A .9 B .9+C .9- D .9-3.已知集合{}2340A x R x x =∈--≤,{}B x R x a =∈≤,若A B B =,则实数a 的取值范围为( )A .()4,∞+B .[)4,∞+C .(),4-∞D .(],4-∞4.某高三学生进行考试心理素质测试,场景相同的条件下每次通过测试的概率为45,则连续测试4次,至少有3次通过的概率为( ) A .512625 B .256625 C.64625 D .641255.已知222351+2=6⨯⨯,2223471236⨯⨯++=,223245912346⨯⨯+++=,,若()22222*1234385n n N +++++=∈,则n 的值为( )A .8B .9 C.10 D .116.已知椭圆()222210x y a b a b +=>>的左顶点为M ,上顶点为N ,右焦点为F ,若=0NM NF ⋅,则椭圆的离心率为( )A D 7.将函数()sin 2f x x =图像上的所有点向右平移4π个单位长度后得到函数()g x 的图像,若()g x 在区间[]0,a 上单调递增,则a 的最大值为( )A .8π B .4π C.6π D .2π 8.如图是计算()11111223341n n ++++⨯⨯⨯+的程序框图,若输出的S 的值为99100,则判断框中应填入的条件是( )A .98?n >B .99?n > C.100?n > D .101?n >9.朱世杰是历史上有名的数学家之一,他所著的《四元玉鉴》卷中“如像招数一五间”,有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日?”其大意为:“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始,每天派出的人数比前一天多7人,修筑堤坝的每人每天发大米3升,共发出大米40392升,问修筑堤坝多少天”,在这个问题中,第8天应发大米( )A .350升B .339升 C.2024升 D .2124升 10.已知三棱锥的三视图如图所示,则该三棱锥内切球的半径为( )AB D11.如图所示,在矩形ABCD 中,4AB =,2AD =,P 为边AB 的中点,现将DAP ∆绕直线DP 翻转至'DA P ∆处,若M 为线段'A C 的中点,则异面直线BM 与'PA 所成角的正切值为( )A .12 B .2 C.14D .4 12.若函数()y f x =图像上存在两个点A ,B 关于原点对称,则对称点(),A B 为函数()y f x =的“孪生点对”,且点对(),A B 与(),B A 可看作同一个“孪生点对”.若函数()f x =322,0692,0x x x x a x <⎧⎨-+-+-≥⎩恰好有两个“孪生点对”,则实数a 的值为( ) A .0 B .2 C.4 D .6第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.()()3212x x +-的展开式中含2x 项的系数为 .14.如图所示,在正方形ABCD 中,点E 为边BC 的中点,点F 为边CD 上的靠近点C 的四等分点,点G 为边AE 上的靠近点A 的三等分点,则向量FG 用AB 与AD 表示为 .15.已知在等腰梯形ABCD 中,//AB CD ,24AB CD ==,60ABC ∠=,双曲线以A ,B 为焦点,且与线段AD ,BC (包含端点D ,C )分别有一个交点,则该双曲线的离心率的取值范围是 .16.已知数列{}n a 满足11a =,()21122n n n a a a n --=+≥,若()*1112nn n b n N a a +=+∈+,则数列{}n b 的前n 项和n S = .三、解答题 (解答应写出文字说明、证明过程或演算步骤.)17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()sin cos cos A A C -()cos sin sin A A C ++=D 为边AB 上一点,2BC =,BD =(1)求BCD ∆的面积;(2)若DA DC =,求角A 的大小.18.如图所示,在三棱锥P ABC -中,平面PAB ⊥平面ABC ,AC CB ⊥,4AB =,PA =45PAB ∠=.(1)证明:AC ⊥平面PCB ;(2)若二面角A PB C --的平面角的大小为60,求直线PB 与平面PAC 所成角的正弦值. 19.某葡萄基地的种植专家发现,葡萄每株的收获量y (单位:kg )和与它“相近”葡萄的株数x 具有线性相关关系(所谓两株作物“相近”是指它们的直线距离不超过1m ),并分别记录了相近葡萄的株数为1,2,3,4,5,6,7时,该葡萄每株收获量的相关数据如下:(1)求该葡萄每株的收获量y 关于它“相近”葡萄的株数x 的线性回归方程及y 的方差2s ; (2)某葡萄专业种植户种植了1000株葡萄,每株“相近”的葡萄株数按2株计算,当年的葡萄价格按10元/kg 投入市场,利用上述回归方程估算该专业户的经济收入为多少万元;(精确到0.01)(3)该葡萄基地在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株葡萄,其中每个小正方形的面积都为21m ,现在所种葡萄中随机选取一株,求它的收获量的分布列与数学期望.(注:每株收获量以线性回归方程计算所得数据四舍五入后取的整数为依据)附:对于一组数据()11,x y ,()22,x y ,,(),n n x y ,其回归直线y b x a ∧∧∧=+的斜率和截距的最小二乘估计分别为()()()121niii nii x x y y b x x ∧==--=-∑∑,a y b x ∧∧=-.20.已知抛物线2:4C x y =的焦点为F ,直线():0l y kx a a =+>与抛物线C 交于A ,B 两点.(1)若直线l 过焦点F ,且与圆()2211x y +-=交于D ,E (其中A ,D 在y 轴同侧)两点,求证:AD BE ⋅是定值;(2)设抛物线C 在点A 和点B 处的切线交于点P ,试问在y 轴上是否存在点Q ,使得四边形APBQ 为菱形?若存在,求出此时直线l 的斜率和点Q 的坐标;若不存在,请说明理由. 21.已知函数()()21ln f x a x x =-+,a R ∈.(1)当2a =时,求函数()y f x =在点()()1,1P f 处的切线方程;(2)当1a =-时,令函数()()ln 21g x f x x x m =+-++,若函数()g x 在区间1,e e ⎡⎤⎢⎥⎣⎦上有两个零点,求实数m 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知点()2+cos ,sin P αα(α为参数).以O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)求点P 的轨迹C 的方程及直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值. 23.选修4-5:不等式选讲已知函数()512f x x x =-+--.(1)在给出的平面直角坐标系中作出函数()y f x =的图像;(2)记函数()y f x =的最大值为M ,是否存在正数a ,b ,使2a b M +=,且123a b+=,若存在,求出a ,b 的值,若不存在,说明理由.试卷答案一、选择题1-5:CABAC 6-10:DDBDB 11、12:AA二、填空题13.18 14.55126FG AB AD =-- 15.1] 16.21121n -- 三、解答题17.解:(1)由()sin cos cos A A C -+()cos sin sin A A C +=可知sin cos cos cos A C A C -cos sin sin sin A C A C ++=,即()()sin cos A C A C +-+=sin cos B B ⇒+=sin 22B B ⎫+=⎪⎪⎭sin 14B π⎛⎫⇒+= ⎪⎝⎭. 因为在ABC ∆中,()0,B π∈,所以424B B πππ+=⇒=,所以1sin 2BCD S BC BD B ∆=⨯⨯12sin 24π=⨯⨯=22=. (2)在BCD ∆中,由余弦定理,可知2222cos DC BD BC BD BC B =+-⨯⨯8422cos4π=+-⨯⨯8422=42=+-⨯⨯, 所以2DC =,所以DC BC =,所以4BDC π∠=. 又由已知DA DC =,得8A π∠=, 故角A 的大小为8π.18.解:(1)在PAB ∆中,因为4AB =,PA =45PAB ∠=, 所以由余弦定理,可知2222cos PB AB AP AB AP PAB =+-⨯⨯⨯∠163224162=+-⨯⨯=, 所以4PB =.故222PB BA PA +=,即有PB BA ⊥. 又因为平面PAB ⊥平面ABC ,且平面PAB平面ABC AB =,PB ⊂平面PAB ,所以PB ⊥平面ABC .又AC ⊂平面ABC ,所以PB AC ⊥. 又因为AC CB ⊥,PBCB B =,所以AC ⊥平面PBC .(2)过点B 作BD PC ⊥,垂足为D ,连接AD . 由(1),知AC ⊥平面PBC ,BD ⊂平面PBC , 所以AC BD ⊥.又PCAC C =,所以BD ⊥平面PAC ,因此BPD ∠即为直线PB 与平面PAC 所成的角. 又由(1)的证明,可知PB ⊥平面ABC ,又BC ⊂平面ABC ,AB ⊂平面ABC ,所以PB BC ⊥,PB BA ⊥, 故ABC ∠即为二面角A PB C --的平面角,即60ABC ∠=. 故在Rt ACB ∆中,由4AB =,得2BC =.在Rt PBC ∆中,PC ==且42PB BC PC BD BD ⨯=⨯⇒⨯=BD ⇒=因此在Rt PBD ∆中,得5sin 45BD BPD PB ∠===, 故直线PB 与平面PAC19.解:(1)由题意,可知()112356746x =+++++=, ()11513121097116y =+++++=. ()()()()613422iii x x y y =--=-⨯+-⨯+∑()()()()11112234-⨯+⨯-+⨯-+⨯-=34-,()()()()62222213211i i x x=-=-+-+-++∑222328+=,所以()()()6162134172814iii i i x x y y b x x∧==--==-=--∑∑, 所以17111114147a yb x ∧∧=-=+⨯=, 故该葡萄每株收获量y 关于它“相近”葡萄的株数x 的线性回归方程为17111147y x ∧=-+. y 的方差为()()()222211511131112116s ⎡=-+-+-+⎣()()()22210119117117⎤-+-+-=⎦.(2)由17111147y x =-+,可知当2x =时,171119421477y =-⨯+=,因此总收入为941010001000013.437⨯⨯÷≈(万元). (3)由题知,2,3,4x =.由(1)(2),知当2x =时,13.42y ≈,所以13y =;当3x =时,5111117112.2114714y =-+=≈,所以12y =; 当4x =时,341117711777y =-+==, 即2,3,4x =时,与之相对应的y 的值分别为13,12,11, 又()()41132164P y P x =====, ()()81123162P y P x =====, ()()41114164P y P x =====, 所以在所种葡萄中随机选取一株,它的收获量y 的分布列为()111131********E y =⨯+⨯+⨯=.20.解:由题知抛物线2:4C x y =的焦点为()0,1F ,设()11,A x y ,()22,B x y .由24x yy kx a⎧=⎨=+⎩2440x kx a ⇒--=, 则()2160k a ∆=+>,且124x x k +=,124x x a =-.(1)若直线l 过焦点F ,则1a =,所以124x x k +=,124x x =-.由条件可知圆()2211x y +-=的圆心为()0,1F ,半径为1, 又由抛物线定义可知11AF y =+,21BF y =+, 故可得11AD AF y =-=,21BE BF y =-=, 所以()()121211AD BE y y kx kx ⋅==++()212121k x x k x x =+++=224411k k -++=. 故AD BE ⋅为定值1.(2)假设存在点Q 满足题意,设()00,Q y , 由22144x y y x =⇒=,因此1'2y x =. 若四边形APBQ 为菱形,则//AQ BP ,//BQ AP , 则102112AQ y y k x x -==,201212BQ y y k x x -==, 则101212y y x x -=,201212y y x x -=, 则12y y =,所以0k =,此时直线AB 的方程为y kx a a =+=,所以()A a -,()B a .则抛物线在点()A a -处的切线为y a =-,① 同理,抛物线在点B处的切线为y a =-,②联立①②,得()0,P a -. 又线段AB 的中点为()0,R a ,所以点()0,3Q a .即存在点()0,3Q a ,使得四边形APBQ 为菱形,此时0k =.21.解:(1)当2a =时,()()221ln f x x x =-+224ln 2x x x =-++. 当1x =时,()10f =,所以点()()1,1P f 为()1,0P ,又()1'44f x x x=-+,因此()'11k f ==. 因此所求切线方程为()0111y x y x -=⨯-⇒=-.(2)当1a =-时,()22ln g x x x m =-+,则()()()2112'2x x g x x x x-+-=-=. 因为1,x e e ⎡⎤∈⎢⎥⎣⎦,所以当()'0g x =时,1x =, 且当11x e<<时,()'0g x >;当1x e <<时,()'0g x <; 故()g x 在1x =处取得极大值也即最大值()11g m =-. 又2112g m e e⎛⎫=-- ⎪⎝⎭,()22g e m e =+-, ()221122g e g m e m e e ⎛⎫-=+--++ ⎪⎝⎭24e =-+210e <, 则()1g e g e ⎛⎫< ⎪⎝⎭,所以()g x 在区间1,e e⎡⎤⎢⎥⎣⎦上的最小值为()g e , 故()g x 在区间1,e e ⎡⎤⎢⎥⎣⎦上有两个零点的条件是 ()21101120g m g m e e =->⎧⎪⎨⎛⎫=--≤ ⎪⎪⎝⎭⎩2112m e ⇒<≤+, 所以实数m 的取值范围是211,2e ⎛⎤+ ⎥⎝⎦. 22.解:(1)设点(),P x y ,所以2cos sin x y αα=+⎧⎨=⎩,(α为参数), 消去参数,得()2221x y -+=, 即P 点的轨迹C 的方程为()2221x y -+=直线:sin 4l πρθ⎛⎫+= ⎪⎝⎭cos sin 4ρθρθ⇒+=4x y ⇒+=, 所以直线l 的直角坐标方程为40x y +-=.(2)由(1),可知P 点的轨迹C 是圆心为()2,0,半径为1的圆, 则圆心C 到直线l的距离为1d r ==>=.所以曲线C 上的点到直线l1.23.解:(1)由于()512f x x x =-+--24,12,1226,2x x x x x +<-⎧⎪=-≤≤⎨⎪-+>⎩.作图如下:(2)由图像可知,当12x -≤≤,()max 2f x =,即得2M =.假设存在正数a ,b ,使22a b +=,且123a b +=, 因为12122b a a b a b ⎛⎫⎛⎫+=++ ⎪⎪⎝⎭⎝⎭22()242b a a b =++≥+≥,当且仅当2222,0a b b a a b a b +=⎧⎪⎪=⎨⎪>⎪⎩121a b ⎧=⎪⇒⎨⎪=⎩时,取等号, 所以12a b +的最小值为4,与123a b+=相矛盾, 故不存在正数a ,b ,使22a b +=,且123a b +=成立.。
【全国百强校】【衡水金卷】2018年普通高等学校招生全国统一考试模拟试题(一)理科数学(解析版)
2018年普通高等学校招生全国统一考试模拟试题(一)理数第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,,则()A. B. C. D.【答案】B【解析】∵集合∴∵集合∴∴∵集合∴故选B.2. 设是虚数单位,若,,,则复数的共轭复数是()A. B. C. D.【答案】A【解析】,根据两复数相等的充要条件得,即,其共轭复数为,故选A.........................3. 已知等差数列的前项和是,且,则下列命题正确的是()A. 是常数B. 是常数C. 是常数D. 是常数【答案】D【解析】,为常数,故选D.4. 七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是()A. B. C. D.【答案】A【解析】设,则.∴,∴所求的概率为故选A.5. 已知点为双曲线:(,)的右焦点,点到渐近线的距离是点到左顶点的距离的一半,则双曲线的离心率为()A. 或B.C.D.【答案】B【解析】由题意可得,双曲线的渐近线方程为,即.∵点到渐近线的距离是点到左顶点的距离的一半∴,即.∴,即.∴∴双曲线的离心率为.故选B.点睛:本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.6. 已知函数则()A. B. C. D.【答案】D【解析】,,的几何意义是以原点为圆心,半径为的圆的面积的,故,故选D.7. 执行如图程序框图,则输出的的值为()A. B. C. D.【答案】C【解析】第1次循环后,,不满足退出循环的条件,;第2次循环后,,不满足退出循环的条件,;第3次循环后,,不满足退出循环的条件,;…第次循环后,,不满足退出循环的条件,;…第次循环后,,不满足退出循环的条件,;第次循环后,,满足退出循环的条件,故输出的的值为.故选C.8. 已知函数的相邻两个零点差的绝对值为,则函数的图象()A. 可由函数的图象向左平移个单位而得B. 可由函数的图象向右平移个单位而得C. 可由函数的图象向右平移个单位而得D. 可由函数的图象向右平移个单位而得【答案】B【解析】,因为函数()的相邻两个零点差的绝对值为,所以函数的最小正周期为,而,,故的图象可看作是的图象向右平移个单位而得,故选B.9. 的展开式中剔除常数项后的各项系数和为()A. B. C. D.【答案】A【解析】令,得,而常数项为,所以展开式中剔除常数项的各项系数和为,故选A.10. 某几何体的三视图如图所示,其中俯视图为一个正六边形及其三条对角线,则该几何体的外接球的表面积是()A. B. C. D.【答案】B【解析】由三视图可得该几何体是六棱锥,底面是边长为1的正六边形,有一条侧棱垂直底面,且长为2,可以将该几何体补成正六棱柱,其外接球与该正六棱柱外接球是同一个球.故该几何体的外接球的半径,则该几何体的外接球的表面积是.点睛:空间几何体与球接、切问题的求解方法:(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解;(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.11. 设为坐标原点,点为抛物线:上异于原点的任意一点,过点作斜率为的直线交轴于点,点是线段的中点,连接并延长交抛物线于点,则的值为()A. B. C. D.【答案】C【解析】设点,点,则,.∵过点作斜率为的直线交轴于点,点是线段的中点∴∴直线的方程为.∴联立,解得,即.∴故选C.12. 若函数,,对于给定的非零实数,总存在非零常数,使得定义域内的任意实数,都有恒成立,此时为的类周期,函数是上的级类周期函数,若函数是定义在区间内的2级类周期函数,且,当时,函数,若,,使成立,则实数的取值范围是()A. B. C. D.【解析】是定义在区间内的级类周期函数,且,,当时,,故时,时,,而当时,,,当时,在区间上单调递减,当时,在区间上单调递增,故,依题意得,即实数的取值范围是,故选B.【方法点睛】本题主要考查分段函数函数的最值、全称量词与存在量词的应用以及新定义问题. 属于难题.解决这类问题的关键是理解题意、正确把问题转化为最值和解不等式问题,全称量词与存在量词的应用共分四种情况:(1)只需;(2),只需;(3),只需;(4),,.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量,,且,则__________.【答案】【解析】∵向量,,且∴,即.∵∴故答案为.14. 已知,满足约束条件则目标函数的最小值为__________.【解析】由约束条件作出可行域如图所示:联立,解得.由目标函数化为,由图可知过时,直线在轴上的截距最大,此时最小,的最小值为.故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15. 在等比数列中,,且与的等差中项为,设,,则数列的前项和为__________.【答案】【解析】设等比数列的首项为,公比为.∵∴,即.∵与的等差中项为∴,即.∴,.∴∵∴数列的前项和为.故答案为.16. 有一个容器,下部是高为的圆柱体,上部是与圆柱共底面且母线长为的圆锥,现不考虑该容器内壁的厚度,则该容器的最大容积为__________.【答案】【解析】设圆柱的底面半径为,圆锥的高为,则,故.∴该容器的体积.∴当时,,即在上为增函数;当时,,即在上为减函数.∴当时,取得最大值,此时,.故答案为点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果要与实际情况相结合,用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知的内角,,的对边,,分别满足,,又点满足.(1)求及角的大小;(2)求的值.【答案】(1),;(2).【解析】试题分析:(1)由及正弦定理化简可得即,从而得.又,所以,由余弦定理得;(2)由,得,所以.试题解析:(1)由及正弦定理得,即,在中,,所以.又,所以.在中,由余弦定理得,所以.(2)由,得,所以.18. 在四棱柱中,底面是正方形,且,.(1)求证:;(2)若动点在棱上,试确定点的位置,使得直线与平面所成角的正弦值为.【答案】(1)证明见解析;(2)为的中点.【解析】试题分析:(1)连接,,,与的交点为,连接,则,由正方形的性质可得,从而得平面,,又,所以;(2)由勾股定理可得,由(1)得所以底面,所以、、两两垂直.以点为坐标原点,的方向为轴的正方向,建立空间直角坐标系,设(),求得,利用向量垂直数量积为零可得平面的一个法向量为,利用空间向量夹角余弦公式列方程可解得,从而可得结果.试题解析:(1)连接,,,因为,,所以和均为正三角形,于是.设与的交点为,连接,则,又四边形是正方形,所以,而,所以平面.又平面,所以,又,所以.(2)由,及,知,于是,从而,结合,,得底面,所以、、两两垂直.如图,以点为坐标原点,的方向为轴的正方向,建立空间直角坐标系,则,,,,,,,,由,易求得.设(),则,即,所以.设平面的一个法向量为,由得令,得,设直线与平面所成角为,则,解得或(舍去),所以当为的中点时,直线与平面所成角的正弦值为.【方法点晴】本题主要考查利用线面垂直证明线线垂直以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19. “过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则,.【答案】(1);(2)①,②分布列见解析,.【解析】试题分析:(1)根据频率分布直方图,直方图各矩形中点值的横坐标与纵坐标的积的和就是所抽取的100包速冻水饺该项质量指标值的样本平均数;(2)①根据服从正态分布,从而求出;②根据题意得,的可能取值为,根据独立重复试验概率公式求出各随机变量对应的概率,从而可得分布列,进而利用二项分布的期望公式可得的数学期望.试题解析:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为:.(2)①∵服从正态分布,且,,∴,∴落在内的概率是.②根据题意得,;;;;. ∴的分布列为∴.20. 已知椭圆:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆的标准方程;(2)若直线:与椭圆相交于,两点,点的坐标为,问直线与的斜率之和是否为定值?若是,求出该定值,若不是,试说明理由.【答案】(1);(2)定值为.【解析】试题分析:(1)由椭圆的几何性质可得,即可求得,的值,从而可得椭圆的标准方程;(2)联立直线与椭圆的方程得,根据判别式可得的取值范围,设,,结合韦达定理,对化简,从而可得出定值.试题解析:(1)由已知可得解得,.故所求的椭圆方程为.(2)由得,则,解得或.设,,则,,则,,∴,∴为定值,且定值为0.点睛:(1)解题时注意圆锥曲线定义的两种应用,一是利用定义求曲线方程,二是根据曲线的定义求曲线上的点满足的条件,并进一步解题.(2)求定值问题常见的方法:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21. 已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求实数的取值范围;(2)已知函数,且,若函数在区间上恰有3个零点,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)根据题意,由函数的解析式计算可得,由函数的导数与函数单调性的关系,分函数在区间上是为单调增函数和单调减函数两种情况讨论,分别求出的取值范围,综合即可得答案;(2)根据题意,对求导分析可得,由,知在区间内恰有一个零点,设该零点为,则在区间内不单调,在区间内存在零点,同理,在区间内存在零点,由(1)的结论,只需在区间内两个零点即可,利用导数研究函数的单调性,从而可得实数的取值范围.试题解析:(1)由题意得,当函数在区间上单调递增时,在区间上恒成立.∴(其中),解得;当函数在区间上单调递减时,在区间上恒成立,∴(其中),解得.综上所述,实数的取值范围是.(2).由,知在区间内恰有一个零点,设该零点为,则在区间内不单调.∴在区间内存在零点,同理,在区间内存在零点.∴在区间内恰有两个零点.由(1)知,当时,在区间上单调递增,故在区间内至多有一个零点,不合题意.当时,在区间上单调递减,故在区间内至多有一个零点,不合题意,∴.令,得,∴函数在区间上单调递减,在区间内单调递增.记的两个零点为,,∴,,必有,.由,得.∴,又∵,,∴.综上所述,实数的取值范围为.点睛:已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.选修4-4:坐标系与参数方程22. 在平面直角坐标系中,圆的参数方程为(是参数,是大于0的常数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求圆的极坐标方程和圆的直角坐标方程;(2)分别记直线:,与圆、圆的异于原点的交点为,,若圆与圆外切,试求实数的值及线段的长.【答案】(1),;(2),.【解析】试题分析:(1)先将圆的参数方程化为直角坐标方程,再利用可得圆的极坐标方程,两边同乘以利用互化公式即可得圆的直角坐标方程;(2)由(1)知圆的圆心,半径;圆的圆心,半径,圆与圆外切的性质列方程解得,分别将代入、的极坐标方程,利用极径的几何意义可得线段的长.试题解析:(1)圆:(是参数)消去参数,得其普通方程为,将,代入上式并化简,得圆的极坐标方程,由圆的极坐标方程,得.将,,代入上式,得圆的直角坐标方程为.(2)由(1)知圆的圆心,半径;圆的圆心,半径,,∵圆与圆外切,∴,解得,即圆的极坐标方程为.将代入,得,得;将代入,得,得;故.【名师点睛】本题考查圆的参数方程和普通方程的转化、圆的极坐标方程和直角坐标方程的转化以及极径的几何意义,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法;极坐标方程化为直角坐标方程,只需利用转化即可.选修4-5:不等式选讲23. 已知函数.(1)求不等式;(2)若正数,满足,求证:.【答案】(1);(2)证明见解析.【解析】试题分析:(1)对分三种情况讨论,分别求解不等式组,然后求并集,即可得不等式的解集;(2)先利用基本不等式成立的条件可得,所以.试题解析:(1)此不等式等价于或或解得或或.即不等式的解集为.(2)∵,,,,即,当且仅当即时取等号.∴,当且仅当,即时,取等号.∴.。
河北省衡水金卷2018年普通高等学校理数招生全国统一考试模拟试题(3)及解析
第1页,总19页河北省衡水金卷2018年普通高等学校理数招生全国统一考试模拟试题(3)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知复数 z 满足 z(2+i)=3+i ( i 为虚数单位),其共轭复数为 z ¯,则 z ¯为( ) A.75−15i B.−75−15iC.75+15i D.−75+15i2.已知 cos(π−α)=13, sin(π2+β)=23(其中, α , β∈(0,π) ),则 sin(α+β)的值为( ) A.4√2−√59 B.4√2+√59 C.−4√2+√59 D.−4√2−√593.已知集合 A ={x ∈R|x 2−3x −4≤0 } , B ={x ∈R|x ≤a } ,若 A ∪B =B ,则实数 a 的取值范围为( ) A.(4,+∞) B.[4,+∞) C.(−∞,4) D.(−∞,4]4.某高三学生进行考试心理素质测试,场景相同的条件下每次通过测试的概率为 45 ,则连续测试4次,至少有3次通过的概率为( )答案第2页,总19页A.512625 B.256625 C.64625 D.641255.已知 12+22=2×3×56, 12+22+32=3×4×76, 12+22+33+42=4×5×96, ⋯ ,若 12+22+32+42+⋯+n 2=385(n ∈N ∗) ,则 n 的值为( )A.8B.9C.10D.116.已知椭圆 x 2a 2+y 2b 2=1(a >b >0) 的左顶点为 M ,上顶点为 N ,右焦点为 F ,若NM ⇀⋅NF ⇀=0 ,则椭圆的离心率为( )A.√32 B.√2−12 C.√3−12 D.√5−127.将函数 f(x)=sin2x 图像上的所有点向右平移 π4 个单位长度后得到函数 g(x) 的图像,若 g(x) 在区间 [0,a] 上单调递增,则 a 的最大值为( ) A.π8 B.π4 C.π6 D.π28.如图是计算 11×2+12×3+13×4+⋯+1n(n+1) 的程序框图,若输出的 S 的值为 99100 ,则判断框中应填入的条件是( )第3页,总19页外…………○…………装…………○………………线…………○…学校:___________姓名:___________班级:__内…………○…………装…………○………………线…………○…A.n >98?B.n >99?C.n >100?D.n >101?9.朱世杰是历史上有名的数学家之一,他所著的《四元玉鉴》卷中“如像招数一五间”,有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日?”其大意为:“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始,每天派出的人数比前一天多7人,修筑堤坝的每人每天发大米3升,共发出大米40392升,问修筑堤坝多少天”,在这个问题中,第8天应发大米( ) A.350升 B.339升 C.2024升 D.2124升10.已知三棱锥的三视图如图所示,则该三棱锥内切球的半径为( )A.3+4√3+√6B.6+2√3+√6C.2+3√3+2√6D.4+3√3+2√611.如图所示,在矩形 ABCD 中, AB =4 , AD =2 , P 为边 AB 的中点,现将 ΔDAP 绕直线 DP 翻转至 ΔDA′P 处,若 M 为线段 A′C 的中点,则异面直线 BM 与 PA′ 所成角的正切值为( )答案第4页,总19页外…………○…………装…○…………线…………○※※请※※不※※※※内…………○…………装…○…………线…………○A.12 B.2 C.14 D.412.若函数 y =f(x) 图像上存在两个点 A , B 关于原点对称,则对称点 (A,B) 为函数y =f(x) 的“孪生点对”,且点对 (A,B) 与 (B,A) 可看作同一个“孪生点对”.若函数 f(x)= {2,x <0−x 3+6x 2−9x +2−a,x ≥0恰好有两个“孪生点对”,则实数 a 的值为( A.0 B.2 C.4 D.6第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.(2x +1)(x −2)3 的展开式中含 x 2 项的系数为 .14.如图所示,在正方形 ABCD 中,点 E 为边 BC 的中点,点 F 为边 CD 上的靠近点C 的四等分点,点 G 为边 AE 上的靠近点 A 的三等分点,则向量 FG ⇀ 用 AB ⇀ 与 AD ⇀表示为 .15.已知在等腰梯形 ABCD 中, AB//CD , |AB|=2|CD|=4 , ∠ABC =60∘ ,双曲线以 A , B 为焦点,且与线段 AD , BC (包含端点 D , C )分别有一个交点,则该双曲线的离心率的取值范围是 .第5页,总19页…○…………外……装…………○…………订………姓名:___________班级:___________考号:______…○…………内……装…………○…………订………16.已知数列 {a n } 满足 a 1=1 , a n =a n−12+2a (n ≥2)n−1 ,若 b n =1a n+1+1an +2(n ∈N ∗) ,则数列 {b n } 的前 n 项和 S n = .三、解答题(题型注释)17.在 ΔABC 中,角 A , B , C 的对边分别为 a , b , c ,且 (sinA −cosA)cosC+(cosA +sinA)sinC =√2 , D 为边 AB 上一点, BC =2 , BD =2√2 .(1)求 ΔBCD 的面积;(2)若 DA =DC ,求角 A 的大小.18.如图所示,在三棱锥 P −ABC 中,平面 PAB ⊥ 平面 ABC , AC ⊥CB , AB =4 ,PA =4√2 , ∠PAB =45∘ .(1)证明: AC ⊥ 平面 PCB ;(2)若二面角 A −PB −C 的平面角的大小为 60∘,求直线 PB 与平面 PAC 所成角的正弦值.19.某葡萄基地的种植专家发现,葡萄每株的收获量 y (单位: kg )和与它“相近”葡萄的株数 x 具有线性相关关系(所谓两株作物“相近”是指它们的直线距离不超过 1m ),(1)求该葡萄每株的收获量 y 关于它“相近”葡萄的株数 x 的线性回归方程及 y 的方差 s 2 ;答案第6页,总19页(2)某葡萄专业种植户种植了1000株葡萄,每株“相近”的葡萄株数按2株计算,当年的葡萄价格按10元/ kg 投入市场,利用上述回归方程估算该专业户的经济收入为多少万元;(精确到0.01)(3)该葡萄基地在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株葡萄,其中每个小正方形的面积都为 1m 2 ,现在所种葡萄中随机选取一株,求它的收获量的分布列与数学期望.(注:每株收获量以线性回归方程计算所得数据四舍五入后取的整数为依据)20.已知抛物线 C:x 2=4y 的焦点为 F ,直线 l:y =kx +a(a >0) 与抛物线 C 交于A ,B 两点.(1)若直线 l 过焦点 F ,且与圆 x 2+(y −1)2=1 交于 D , E (其中 A , D 在y 轴同侧)两点,求证: |AD|⋅|BE| 是定值;(2)设抛物线 C 在点 A 和点 B 处的切线交于点 P ,试问在 y 轴上是否存在点 Q ,使得四边形 APBQ 为菱形?若存在,求出此时直线 l 的斜率和点 Q 的坐标;若不存在,请说明理由.21.已知函数 f(x)=a(x −1)2+lnx , a ∈R .(1)当 a =2 时,求函数 y =f(x) 在点 P(1,f(1)) 处的切线方程;(2)当 a =−1 时,令函数 g(x)=f(x)+lnx −2x +1+m ,若函数 g(x) 在区间[1e,e] 上有两个零点,求实数 m 的取值范围.22.在平面直角坐标系 xOy 中,已知点 P(2+cosα,sinα) ( α 为参数).以 O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线 l 的极坐标方程为 ρsin(θ+π4)=2√2 .(1)求点 P 的轨迹 C 的方程及直线 l 的直角坐标方程; (2)求曲线 C 上的点到直线 l 的距离的最大值.第7页,总19页…………○…………线…………○…:___________…………○…………线…………○…23.已知函数 f(x)=5−|x +1|−|x −2| .(1)在给出的平面直角坐标系中作出函数 y =f(x) 的图像;(2)记函数 y =f(x) 的最大值为 M ,是否存在正数 a , b ,使 2a +b =M ,且1a +2b=3 ,若存在,求出 a , b 的值,若不存在,说明理由.答案第8页,总19页……装……………………订……………………线…※※不※※要※※在※※装※订※※线※※内※※答※※题※※……装……………………订……………………线…参数答案1.C【解析】1. z =3+i 2+i=(3+i)(2−i)(2+i)(2−i)=7−i 5,故 z ¯=75+15i . 所以答案是:C【考点精析】掌握复数的定义是解答本题的根本,需要知道形如的数叫做复数,和分别叫它的实部和虚部. 2.A【解析】2.由诱导公式得 cosα=−13〈0,cosβ=23〉0 ,故 α 为钝角, β 为锐角.且sinα=√1−cos 2α=2√23 , sinβ=√1−cos 2β=√53, sin(α+β)=sinαcosβ+cosαsinβ=2√23⋅23+(−13)⋅√53=4√2−√59. 所以答案是:A【考点精析】解答此题的关键在于理解两角和与差的正弦公式的相关知识,掌握两角和与差的正弦公式:.3.B【解析】3.对于集合 A , x 2−3x −4=(x −4)(x +1)≤0 ,解得 −1≤x ≤4 .由于 A ∪B =B 故 a ≥4 . 所以答案是:B【考点精析】通过灵活运用集合的并集运算,掌握并集的性质:(1)A A∪B,B A∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则A B ,反之也成立即可以解答此题.4.A【解析】4. 4 次独立重复实验,故概率为 C 43(45)3⋅15+C 44(45)4=512625 . 所以答案是:A5.C【解析】5.通过归纳得 ∑k=1nk 2=16n(n +1)(2n +1) ,故 16n(n +1)(2n +1)=385 解得 n =10 . 所以答案是:C【考点精析】认真审题,首先需要了解归纳推理(根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理). 6.D第9页,总19页…………线…………○……………线…………○…【解析】6.依题意 M(−a,0),N(0,b),F(c,0) ,代入 NM ⇀⋅NF ⇀=0 得 (a,b)(c,−b)=ac −b 2=0 ,即 ac −(a 2−c 2)=0 ,两边除以 a 2 得 e 2+e −1=0 ,解得 e =√5−12. 所以答案是:D【考点精析】认真审题,首先需要了解椭圆的概念(平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆,这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距). 7.D【解析】7.右移 π4 个单位得到 g(x)=sin[2(x −π4)]=−cos2x ,根据余弦函数的图像可知, 0≤2x ≤π ,即 0≤x ≤π2时递增,故 a 的最大值为 π2 . 故答案为:D 首先利用函数的平移性质得到 g(x) 的代数式,再结合余弦函数的图像和性质即可得到函数的增区间,进而求出a 的最大值即可。
衡水金卷2018年普通高等学校招生全国统一考试模拟试卷 分科综合卷 理科数学(五)
第 Ⅰ卷 一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项 是符合题目要求的.
1. 已 知 全 集 U R , 集 合 A y y x 2 x 3, x R , 集 合 B y y x
y | y x 1 2, x R
2
y | y 2 ,
,
1 8 B y | y x , x 1,3 y | 0 y x 3
,
U
A y | y 2
8 U A B y | y 2 y | 0 y y | 0 y 2 ,故选 A. 3
5 2 i 6i , 故 p1 正 确 ; p2 : z i 2 i
p3 : 由 题 意 , 可 得
1 i 1 i
2 1 i
2 1 i 11
1 i , 其 共 轭 复 数 是 1 i , 故 p2 错 误 ;
2
p4 :若 z 表示复数 z 的共轭复数, z 表示复数 z 的模,则 zz z .
其中的真命题为( ) A. p1 , p3 【答案】B 【 解 析 】 p1 : 若 复 数 z 满 足 z i i 5 , z B. p1 , p4 C. p2 , p3 D. p2 , p4
a bi
1 i 2 2 2 则 a 0, b 1 , 故 p3 错误; p4 : 设 z a bi , 则 z a bi , 故 zz a b z , i , 1 i
衡水金卷2018年普通高等学校招生全国统一考试模拟试卷理科数学(一)试题Word版含答案
衡水金卷2018年普通高等学校招生全国统一考试模拟试卷理科数学(一)试题Word版含答案2018年普通高等学校招生全国统一考试模拟试题理数(一)第Ⅰ卷(共60分)一、选择题:1.已知集合A={x|2-x>1},B={x| x<1},则()A.A∩B={x| x≤2}B.A∩B={x| x<0}C.A∪B={x| x<2}D.A∪B= R解析:由A的定义可得x<1,结合B的定义得到A∩B={x| x<1},故选B。
2.已知i为虚数单位,a为实数,复数z满足z+3i=a+ai,若复数z是纯虚数,则()A.a=3B.a=0C.a≠3D.a<3.解析:由z+3i=a+ai,得到z=(a-3)i,因为z是纯虚数,所以a-3=0,即a=3,故选A。
3.我国数学家XXX利用下图证明了勾股定理,该图中用勾a和股b分别表示直角三角形的两条直角边,用弦c来表示斜边,现已知该图中勾为3,股为4,若从图中随机取一点,则此点不落在中间小正方形中的概率是()A.25/244B.1/2XXXD.1/4解析:由题意可知,中间小正方形的对角线长为4,设其为AB,则由勾股定理可得AC=3,BC=1,所以此点不落在中间小正方形中的概率为(4^2-2^2πr^2)/4^2=12/16=3/4,即选D。
4.已知等差数列(an)的前n项和为Sn,且S9=6π,则tana5=()A.3B.3C.−3D.−3解析:由等差数列的通项公式可得,an=a1+(n-1)d,其中d为公差,将其代入Sn的通项公式可得S9=(a1+a9)×9/2=9a1+36d,又因为a5=a1+4d,所以tana5=(a5/a1)=(2a5/(a5+a1))=(2(S5-S4)/(S5+S4))=2(2π-5π/6)/(2π+5π/6)=3,故选A。
5.已知函数f(x)=x+a(a∈R),则下列结论正确的是()A.对于任意a∈R,f(x)在区间(x,+∞)内单调递增B.存在a∈R,使得f(x)在区间(x,+∞)内单调递减C.存在a∈R,使得f(x)是偶函数D.存在a∈R,使得f(x)是奇函数,且f(x)在区间(x,+∞)内单调递增解析:由题意可知,f(x)的导数为f'(x)=1,即f(x)在任意区间内单调递增,故选A。
【全国市级联考word版】衡水金卷2018年普通高等学校招生全国统一考试模拟(调研卷)(三)理综物理试题
二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错或不选的得0分。
14.在物理学的发展过程中,科学家们创造出了许多物理学研究方法,以下关于所用物理学研究方法的叙述正确的是A.牛顿运动定律是研究动力学问题的基石,牛顿运动定律都能通过现代的实验手段直接验证B.在伽利略的斜面实验中将可靠的事实和科学抽象思维有机结合起来反映自然规律,开创了物理学的研究方法C.将一个铁球放在墙角处判断两个接触面的支持力较困难,若在两个接触面处放上海绵垫来观察海绵的凹陷来判断较容易,这里采用的是转化和控制变量的方法D.公式UIR=中的U和I有因果关系,公式E ntϕ∆=∆中的ϕ∆和E有因果关系,同理vat∆=∆中的v∆和a有因果关系15.质量m=1kg的物体静止放在粗糙水平地面上,现对物体施加一个随位移变化的水平外力F时物体在水平面上运动,已知物体与地面间的滑动摩擦力与最大静摩擦力相等。
若F−x图象如图所示,且4~5m内物体匀速运动,x=7m时撤去外力。
取g=10m/s2,则下列有关描述正确的是A.物体与地面间的动摩擦因数为0.1B.x=3m时物体的速度最大C./sD.撤去外力后物体还能在水平面上滑行3s16.一对等量点电荷位于平面直角坐标系xOy的一个轴上,它们激发的电场沿x、y轴方向上的场强和电动势随坐标的变化情况如图中甲、乙所示,甲图为y 轴上各点场强随坐标变化的E −y 图象,且沿y 轴正向场强为正。
乙图为x 轴上各点电势随坐标变化的φ−x 图象,且以无穷远处电势为零。
图中a 、b 、c 、d 为轴上关于原点O 的对称点,根据图象可判断下列有关描述正确的是A.是一对关于原点O 对称的等量负点电荷所激发的电场,电荷位于y 轴上B.是一对关于原点O 对称的等量异种点电荷所激发的电场,电荷位于x 轴上C.将一个+q 从y 轴上a 点由静止释放,它会在aOb 间往复运动D.将一个+q 从x 轴上c 点由静止释放,它会在cOd 间往复运动17.如图所示的电路中,电源的电动势为E ,内阻为r 。
【全国校级联考】【衡水金卷】2018年普通高等学校招生全国统一考试模拟试题理综(二)生物试题(解析版)
2018年普通高等学校招生全国统一考试模拟试题理综(二)生物试题一、选择题1. 蓝球藻和小球藻在细胞结构等方面存在着较大的差异。
下列对于这两种生物的叙述正确的是A. 均含有叶绿素和类胡萝卜素B. 均在叶绿体基质中完成二氧化碳的固定和还原C. 细胞膜均有控制内外物质交换的作用D. 有丝分裂过程中均会以一定方式形成细胞壁【答案】C【解析】蓝球藻属于原核生物,细胞内含有叶绿素和藻蓝素,不含类胡萝卜素,小球藻属于真核生物,细胞内叶绿体中含有叶绿素和类胡萝卜素,A错误;蓝球藻中没有叶绿体,B错误;不管是原核细胞还是真核细胞,它们的细胞膜都有控制物质进出的功能,C正确;原核细胞不能行有丝分裂,有丝分裂是真核细胞的分裂方式之一,D错误。
2. 下列对实验试剂及其实验效果的分析,错误的是A. 细胞膜的通透性与所使用盐度的浓度及处理时间有关B. 茎段的生根数和生根长度与所使用的NAA浓度有关C. 染色体数目加倍的细胞所占的比例与固定液处理的时间有关D. 洋葱鳞片叶外表皮细胞质壁分离的程度与外界蔗糖溶液浓度有关【答案】C【解析】细胞膜的通透性在高浓度盐溶液中会因长期过度失水而失去其选择透过性,A正确;不同浓度的生长素或类似物(如NAA)有促进或抑制生根的作用不同,所以用NAA溶液处理茎段,其生根数和生根长度与所使用的NAA浓度有关,B正确;在低温诱导根尖分生区细胞中染色体数目加倍的实验中,用固定液处理根尖分生区细胞的处理时间越长,停留在细胞分裂期的细胞越多,其中染色体加倍的细胞所占的比例也越大,C正确;在一定范围内,外界蔗糖溶液浓度越大,洋葱鳞片叶外表皮细胞质壁分离的程度越大,D正确。
3. 如图为人体免疫过程的示意图,下列与此图相关的说法错误的是A. 图中的固有免疫应答属于第二道防线B. 图中淋巴细胞接受抗原刺激后大部分分化为记忆细胞C. 图中接受抗原刺激的淋巴细胞不可能是浆细胞D. 图中过程能说明免疫系统具有防卫功能【答案】B【解析】分析图示可知,图中固有是免疫应答是噬菌细胞可对部分病原体的非特异性吞噬处理,属于人体第二道防线,A正确;图中淋巴细胞接受抗原刺激后只有小部分分化为记忆细胞,其中大部分分化为浆细胞,B错误;浆细胞不具有识别抗原的功能,图中接受抗原刺激的淋巴细胞不可能是浆细胞,C正确;图中过程能说明免疫系统具有识别、防御和杀灭外来病原体的功能,即体现了免疫系统的防卫功能,D正确。
衡水金卷2018年普通高等学校招生全国统一考试模拟试卷理科数学(一)试题-有答案
2018年普通高等学校招生全国统一考试模拟试题理数(一)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}02|>-=x x A ,⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛=121|xx B ,则( )A .{}20|≤<=x xB A B .{}0|<=x x B AC .{}2|<=x x B AD .R B A =2.已知i 为虚数单位,a 为实数,复数z 满足ai a i z +=+3,若复数z 是纯虚数,则( ) A .3=a B .0=a C .0≠a D .0<a3.我国数学家邹元治利用下图证明了购股定理,该图中用勾()a 和股()b 分别表示直角三角形的两条直角边,用弦()c 来表示斜边,现已知该图中勾为3,股为4,若从图中随机取一点,则此点不落在中间小正方形中的概率是( )A .4925 B .4924 C .74 D .754.已知等差数列()n a 的前n 项和为n S ,且π=69S ,则=5tan a ( ) A .33 B .3 C.3- D .33- 5.已知函数())(R a xax x f ∈+=,则下列结论正确的是( ) A .)(,x f R a ∈∀在区间()∞+,0内单调递增 B .)(,x f R a ∈∃在区间()∞+,0内单调递减 C.)(,x f R a ∈∃是偶函数D .)(,x f R a ∈∃是奇函数,且()x f 在区间()∞+,0内单调递增 6.()()421x x -+的展开式中x 项的系数为( )A .-16B .16 C. 48 D .-487.如图是某个集合体的三视图,则这个几何体的表面积是( )A .424++πB .4242++π C. 2242++π D .4222++π 8.若10,1<<<>b c a ,则下列不等式不正确的是( ) A .b a 20182018log log > B .a a c b log log < C.bca c a a c a )()(->- D .()()bca b c a b c ->-9.执行如图所示的程序框图,若输出的n 值为11,则判断框中的条件可以是( )A .?1022<SB .?2018<S C. ?4095<S D .?4095>S 10.已知函数()⎪⎪⎭⎫ ⎝⎛π≤ϕ>ϕϕ+ϖ=20)sin(2,x x f 的部分图象如图所示,将函数()x f 的图象向左平移12π个单位长度后,所得图象与函数)(x g y =的图象重合,则( )A .()⎪⎭⎫ ⎝⎛π+=32sin 2x x g B .()⎪⎭⎫ ⎝⎛π+=62sin 2x x g B .C.()x x g 2sin 2= D .()⎪⎭⎫ ⎝⎛π-=32sin 2x x g 11.已知抛物线x y C 4:2=的焦点为F ,过点F 作斜率为1的直线l 交抛物线C 于Q P ,两点,则QFPF 11+的值为( ) A .21 B .87C. 1 D .2 12.已知数列{}n a 中,()*+∈+=-=N n a a a n a n n n ,1,211,若对于任意的[]*∈-∈N n a ,2,2,不等式12121-+<++at t n a n 恒成立,则实数t 的取值范围为( ) A .(][)+∞-∞-,22, B .(][)+∞-∞-,12, C. (][)+∞-∞-,21, D .[]2,2-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量()()1,3,,1=λ=b a ,若向量b a -2与()2,1=c 共线,则向量a 在向量c 放心上的投影为 .14.若实数y x ,满足⎪⎩⎪⎨⎧≥≤=+,1,2,4x y x y x 则13+-=y x z 的最大值是 .15.过双曲线()0,012222>>=-b a bx a y 的下焦点1F 作y 轴的垂线,交双曲线于B A ,两点,若以AB 为直径的圆恰好过其上焦点2F ,则双曲线的离心率为 .16.一底面为正方形的长方体各棱长之和为24,则当该长方体体积最大时,其外接球的体积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若B c C b A a cos cos cos 2+=. (1)求角A 的大小;(2)若点D 在边AC 上,且BD 是ABC ∠的平分线,4,2==BC AB ,求AD 的长.18. 如图,在三棱柱111C B A ABC -中,侧棱⊥1CC 底面ABC ,且BC AC BC AC CC ⊥==,221,D 是棱AB 的中点,点M 在侧棱1CC 上运动.(1)当M 是棱1CC 的中点时,求证://CD 平面1MAB ; (2)当直线AM 与平面ABC 所成的角的正切值为23时,求二面角11C MB A --的余弦值.19. 第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地区合作具有重要意义.某高中政数处为了调查学生对“一带一络"的关注情况,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制),如茎叶图所示. (1)写出该样本的众数、中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数; (2)从所轴取的70分以上的学生中再随机选取4人. ①记X 表示选取4人的成绩的平均数,求)87(≥X P ;②记ξ表示测试成绩在80分以上的人数,求ξ的分布列和数学期望.20.已知椭圆 )0(12222>>=+b a b y a x C :的左、右焦点分别为21,F F ,离心率为31,点P 在椭圆C 上,且21F PF ∆的面积的最大值为22. (1)求椭圆C 的方程;(2)已知直线)0(2:≠+=k kx y l 与椭圆C 交于不同的两点N M ,,若在x 轴上存在点G ,使得GN GM =,求点G 的横坐标的取值范围.21. 设函数e R a a x a e x f x,),ln(2)(∈+--=为自然对数的底数.(1)若0>a ,且函数)(x f 在区间),0[+∞内单调递增,求实数a 的取值范围; (2)若320<<a ,试判断函数)(x f 的零点个数. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知在平面直角坐标系xOy 中,椭圆C 的方程为141622=+x y ,以O 为极点,x 轴非负半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为3)3sin(=π+θρ. (1)求直线l 的直角坐标方程和椭圆C 的参数方程;(2)设),(y x M 为椭圆C 上任意一点,求132-+y x 的最大值. 23.选修4-5:不等式选讲 已知函数|2|)(-=x x f .(1)求不等式4)2()(≤++x f x f 的解集;(2)若)2()()(x f x f x g +-=的最大值为m ,对任意不想等的正实数b a ,,证明:||)()(b a m a bf b af -≥+.试卷答案一、选择题1-5: DBBCD 6-10: ABCCA 11、12:CA二、填空题13.0 14.31-15.21+ 16.π34 三、解答题17.解:(1)在ABC ∆中,∵B c C b A a cos cos cos 2+=, ∴由正弦定理,得B C C B A cos sin cos sin cos sin 2+=A CB sin )sin(=+=,∵0sin ≠A ,∴21cos =A , ∵()π∈,0A , ∴3π=A . (2)在ABC ∆中,由余弦定理得A AC AB AC AB BC cos 2222⋅-+=,即AC AC 24162-+=,解得131+=AC , 或131-=AC (负值,舍去)∵BD 是ABC ∠的平分线,4,2==BC AB , ∴21==BC AB DC AD ,∴313131+==AC AD . 18.解:(1)取线段1AB 的中点E ,连结EM DE ,. ∵1,EB AE DB AD ==, ∴1//BB DE ,且121BB DE =. 又M 为1CC 的中点, ∴1//BB CM ,且121BB CM =. ∴DE CM //,且DE CM =. ∴四边形CDEM 是平行四边形. ∴EM CD //.又⊂EM 平面⊄CD M AB ,1平面M AB 1, ∴//CD 平面1MAB .(2)∵1,,CC CB CA 两两垂直,∴以C 为原点,1,,CC CB CA 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Cxyz ,如图,∵三棱柱111C B A ABC -中,⊥1CC 平面ABC , ∴MAC ∠即为直线AM 与平面ABC 所成的角. 设1=AC ,则由23tan =∠MAC ,得23=CM . ∴()()()()⎪⎭⎫ ⎝⎛23,0,0,2,1,0,0,1,0,0,0,1,0,0,01M B B A C . ∴()2,1,1,23,0,11-=⎪⎭⎫ ⎝⎛-=AB AM , 设平面1AMB 的一个法向量为()z y x n ,,=,则⎪⎩⎪⎨⎧=++-=⋅=+-=⋅,02,0231z y x n AB z x n 令2=z ,得1,3-==y x ,即)2,1,3(-=n . 又平面11B BCC 的一个法向量为)0,0,1(=,∴14143||==n , 又二面角11C MB A --的平面角为钝角, ∴二面角11C MB A --的余弦值为14143-. 19.解:(1)众数为76,中位数为76.抽取的12人中,70分以下的有4人,不低于70分的有8人, 故从该校学生中人选1人,这个人测试成绩在70分以上的概率为32128=,故该校这次测试成绩在70分以上的约有2000323000=⨯(人) (2)①由题意知70分以上的有72,76,76,76,82,88,93,94. 当所选取的四个人的成绩的平均分大于87分时,有两类. 一类是82,88,93,94,共1种; 另一类是76,88,93,94,共3种. 所以 3524087(48==≥C X p . ②由题意可得,ξ的可能取值为0,1,2,3,4701)0(484404===ξC C C P , ()35870161483414====ξC C C P ,35187036)2(482424====ξC C C P ,()35870163481434====ξC C C P , 701)4(480444===ξC C C P . ξ的分别列为()27043533523517010=⨯+⨯+⨯+⨯+⨯=ξ∴E 20.解:(1)由已知得⎪⎪⎪⎩⎪⎪⎪⎨⎧-==⨯⨯=,,22221,31222b a c b c a c解得1,8,9222===c b a ,∴椭圆C 的方程为18922=+y x . (2)设()()2211,,,y x N y x M ,MN 的中点为()00,y x E ,点()0,m G ,使得GN GM =, 则MN GE ⊥.由⎪⎩⎪⎨⎧=++=,189,222y x kx y 得()036369822=-++kx x k ,由0>∆,得R k ∈. ∴8936221+-=+k kx x ,∴89162,891820020+=+=+-=k kx y k k x . ∵,MN GE ⊥∴kk GE 1-=, 即k k k k 189180891622-=+--+,∴kk k k m 8928922+-=+-=. 当0>k 时,21289289=⨯≥+k k (当且仅当kk 89=,即322=k 时,取等号), ∴0122<≤-m ; 当0>k 时,21289-≤+k k (当且仅当kk 89=,即322-=k 时,取等号),∴1220≤<m , ∴点G 的横坐标的取值范围为⎥⎦⎤⎝⎛⎪⎪⎭⎫⎢⎣⎡-122,00,122U . 21.解:(1)∵函数()x f 在区间[)∞+,0内单调递增, ∴01)('≥+-=ax e x f x 在区间[)∞+,0内恒成立. 即x e a x -≥-在区间[)∞+,0内恒成立. 记()x ex g x-=-,则01)('<--=-x e x g 恒成立,∴()x g 在区间[)∞+,0内单调递减, ∴()()10=≤g x g ,∴1≥a ,即实数a 的取值范围为[)∞+,1. (2)∵320<<a ,ax e x f x +-=1)(', 记)(')(x f x h =,则()01)('2>++=a x e x h x,知)('x f 在区间()+∞-,a 内单调递增. 又∵011)0('<-=a f ,01)1('>+-=aa e f , ∴)('x f 在区间()+∞-,a 内存在唯一的零点0x , 即01)('000=+-=ax e x f x, 于是ax ex +=01,()a x x +-=00ln . 当0x x a <<-时,)(,0)('x f x f <单调递减; 当0x x >时,)(,0)('x f x f >单调递增. ∴()())ln(200min 0a x a ex f x f x +--==a a ax a x x a a x 3231210000-≥-+++=+-+=, 当且仅当10=+a x 时,取等号. 由320<<a ,得032>-a , ∴()()00min >=x f x f ,即函数()x f 没有零点. 22.解:(1)由33sin =⎪⎭⎫⎝⎛π+θρ, 得3cos 23sin 21=θρ+θρ, 将θρ=θρ=sin ,cos y x 代入,得直线l 的直角坐标方程为063=-+y x . 椭圆C 的参数方程为ϕ⎩⎨⎧ϕ=ϕ=(sin 4,cos 2y x 为参数).(2)因为点M 在椭圆C 上, 所以设)sin 4,cos 2(ϕϕM ,则1sin 4cos 34132-ϕ+ϕ=-+y x913sin 8≤-⎪⎭⎫ ⎝⎛π+ϕ=,当且仅当13sin -=⎪⎭⎫⎝⎛π+ϕ时,取等号, 所以9132max=-+y x .23.解:(1)不等式()4)2(≤++x f x f ,即42≤+-x x , 此不等式等价于⎩⎨⎧≤--≤,42,0x x x或⎩⎨⎧≤+-≤<,42,20x x x 或⎩⎨⎧≤+->.42,2x x x解得01≤≤-x ,或20≤<x ,或32≤<x .所以不等式()4)2(≤++x f x f 的解集为{}31|≤≤-x x . (2)()|||2|)2()(x x x f x f x f --=+-=, 因为()2|2|2=--≤--x x x x , 当且仅当0≤x 时,取等号, 所以()2≤x g ,即2=m , 因为b a ,为正实数,所以()()22-+-=+a b b a a bf b af()()b ab a ab b ab a ab 2222---≥-+-= b a m b a -=-=2,当且仅当()()022≤--a b 时,取等号. 即()()()||b a m a bf b af -≥+.。
衡水金卷2018届全国高三大联考理科数学试题含答案
金卷 2018 届全国高三大联考理科第Ⅰ卷一、选择题:本大题共 12 个小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则 ( )A.B.C.D.【答案】C【解析】.所以,.故选 C.2. 记复数的虚部为,已知复数(为虚数单位),则 为( )A. 2 B. -3 C. D. 3【答案】B【解析】.故的虚部为-3,即.故选 B.3. 已知曲线在点处的切线的倾斜角为,则( )A. B. 2 C. D.【答案】C【解析】由,得,故.故选 C.4. 2017 年 8 月 1 日是中国人民解放军建军 90 周年,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚 8 克圆形金质纪念币,直径 22mm,面额 100 元.为了测算图中军旗部分的面积,现用 1 粒芝麻向硬币投掷 100 次,其中恰有 30 次落在军旗,据此可估计军旗的面积大约是( )A. B. C. D. 【答案】B 【解析】根据题意,可估计军旗的面积大约是. 故选 B.5. 已知双曲线 :的渐近线经过圆 :的圆心,则双曲线 的离心率为( )A.B.C. 2 D.【答案】A【解析】圆 :的圆心为 ,双曲线 的渐近线为 .依题意得 .故其离心率为.故选 A.6. 已知数列 为等比数列,且,则()A.B.C.D.【答案】A【解析】依题意,得,所以 .由 ,得 ,或 (由于 与 同号,故舍去).所以..故选 A.7. 执行如图的程序框图,若输出的 的值为-10,则①中应填()A.B.C.D.【答案】C【解析】由图,可知.故①中应填 .故选 C.8. 已知函数 为 的奇函数,且当 时,,记,, ,则 , , 间的大小关系是( )A.B.C.D.【答案】D【解析】根据题意得,令.则为 的偶函数,当 时,.所以 在 单调递减.又,,.故 ,选 D.9. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为( )A.B.C.D.【答案】A 【解析】由三视图可知该几何体是一个半圆柱与一个地面是等腰直角三角形的三棱锥构成的组合体,故其体积.故选 A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.10. 已知函数的部分图象如图所示,其中 .记命题 :,命题 :将 的图象向右平移 个单位,得到函数的图象.则以下判断正确的是()A. 为真 B. 为假 C.为真 D.为真【答案】D【解析】由 ,可得 因为 ,所以.解得 . ,故 为真命题;将 图象所有点向右平移 个单位,.............................. 所以 为假, 为真,为假,为真.故选 D.11. 抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线 的焦点为 ,一条平行于 轴的光线从点 射出,经过抛物线上的点 反射后,再经抛物线上的另一点 射出,则 的周长为 ( )A.B.C.D.【答案】B【解析】令 ,得 ,即 .由抛物线的光学性质可知 经过焦点 ,设直线 的方程为,代入 .消去 ,得.则 ,所以..将 代入 得 ,故 .故.故 的周长为.故选 B.点睛:抛物线的光学性质:从抛物线的焦点发出的光线或声波在经过抛物线周上反射后,反射光线平行于抛物线的对称轴.12. 已知数列 与 的前 项和分别为 , ,且 ,,,若恒成立,则 的最小值是( )A. B. C. 49 D.【答案】B【解析】当 时,,解得由 得 .由,得两式相减得.所以.因为 ,所以.或. .即数列 是以 3 为首项,3 为公差的等差数列,所以 .所以.所以.要使恒成立,只需 .故选 B.点睛:由 和 求通项公式的一般方法为.数列求和的常用方法有:公式法;分组求和;错位相减法;倒序相加法;裂项相消法;并项求和.第Ⅱ卷本卷包括必考题和选考题两部分.第 13~21 题为必考题,每个试题考生都必须作答.第 22~23 题为选考题,考生根据要求作答.二、填空题:本大题共 4 小题,每题 5 分.13. 已知在 中,,,若边 的中点 的坐标为 ,点 的坐标为 ,则 __________.【答案】1【解析】依题意,得,故 是以 为底边的等腰三角形,故,所以.所以 .14. 已知的展开式中所有项的二项式系数之和、系数之和分别为 , ,则 的最小值为__________.【答案】16【解析】显然 .令 ,得 .所以.当且仅当 .即 时,取等号,此时的最小值为 16.15. 已知 , 满足其中 ,若的最大值与最小值分别为 , ,则实数的取值围为__________. 【答案】 【解析】作出可行域如图所示(如图阴影部分所示)设 ,作出直线,当直线过点 时, 取得最小值 ;当直线过点 时, 取得最大值 .即,当 或 时,.当 时,.所以,解得.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.16. 在《九章算术》中,将四个面都为直角三角形的三棱锥 称之为鳖臑(bie nao).已知在鳖臑 中, 平面 ,,则该鳖臑的外接球与切球的表面积之和为 __________. 【答案】 【解析】设 的中点为 ,如图,由,且 为直角三角形,得.由等体积法,知.即,解得 .故该鳖臑的外接球与切球的表面积之和为.三、解答题 :解答应写出文字说明、证明过程或演算步骤.17. 已知函数,.(Ⅰ)求函数 的最小正周期及其图象的对称轴方程;(Ⅱ)在锐角 中,角 , , 的对边分别为 , , ,已知,,,求 的面积.【答案】(1)最小正周期,对称轴方程为;(2) .【解析】试题分析:(1)化简函数得,其最小正周期,令即可解得对称轴;(2)由,解得 ,由正弦定理及,得,利用即可得解.试题解析:(1)原式可化为,,,,故其最小正周期,令,解得,即函数 图象的对称轴方程为,.(2)由(1),知,因为 ,所以.又,故得,解得 .由正弦定理及,得.故.18. 如图,在四棱锥中,底面 为直角梯形,其中,侧面 平面 ,且,动点 在棱 上,且.(1)试探究 的值,使 平面 ,并给予证明;(2)当 时,求直线 与平面 所成的角的正弦值.【答案】(1)见解析;(2) .【解析】试题分析:(1)连接 交 于点 ,连接 通过证得 ,即可证得 平面 ;(2)取 的中点 ,连接 ,可得两两垂直,建立空间直角坐标系,设 与平面 所成的角为 ,则, 为平面 的一个法向量.试题解析:(1)当 时, 平面 .证明如下:连接 交 于点 ,连接 .∵,∴.∵,∴.∴.又∵ 平面 , 平面 ,∴ 平面 .(2)取 的中点 ,连接 .则.∵平面 平面 ,平面 平面,且,∴ 平面 .∵ ,且,∴四边形 为平行四边形,∴ .又∵,∴ .由两两垂直,建立如图所示的空间直角坐标系 .则,,,,,.当 时,有 ,∴可得 .∴,,.设平面 的一个法向量为,则有即令 ,得 , .即.设 与平面 所成的角为 ,则.∴当 时,直线 与平面 所成的角的正弦值为 .点睛:高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.19. 如今我们的互联网生活日益丰富,除了可以很方便地网 购,网上叫外卖也开始成为不少人日常生活中不可或缺的一 部分.为了解网络外卖在 市的普及情况, 市某调查机构借 助网络进行了关于网络外卖的问卷调查,并从参与调查的网 民中抽取了 200 人进行抽样分析,得到下表:(单位:人)(Ⅰ)根据以上数据,能否在犯错误的概率不超过 0.15 的前提下认为 市使用网络外卖的情况与性别有关?(Ⅱ)①现从所抽取的女网民中利用分层抽样的方法再抽取5 人,再从这 5 人中随机选出 3 人赠送外卖优惠卷,求选出的 3 人中至少有 2 人经常使用网络外卖的概率②将频率视为概率,从 市所有参与调查的网民中随机抽取10 人赠送礼品,记其中经常使用网络外卖的人数为 ,求 的数学期望和方差.参考公式:,其中.参考数据:【答案】(1)见解析;(2)① ,②见解析. 【解析】试题分析:(1)计算 的值,进而可查表下结论;(2)①由分层抽样的抽样比计算即可;②由 列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从 市市民中任意抽取 1 人,恰好抽到经常使用网络外卖的市民的概率为 ,由题意得.试题解析:(1)由列联表可知 的观测值,.所以不能在犯错误的概率不超过 0.15 的前提下认为 市使用网络外卖情况与性别有关.(2)①依题意,可知所抽取的 5 名女网民中,经常使用网络外卖的有(人),偶尔或不用网络外卖的有(人).则选出的 3 人中至少有 2 人经常使用网络外卖的概率为.②由 列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从 市市民中任意抽取 1 人,恰好抽到经常使用网络外卖的市民的概率为 .由题意得,所以;.20. 已知椭圆 :的左、右焦点分别为点 , ,其离心率为 ,短轴长为 .(Ⅰ)求椭圆 的标准方程;(Ⅱ)过点 的直线 与椭圆 交于 , 两点,过点 的直线与椭圆 交于 , 两点,且 ,证明:四边形 不可能是菱形.【答案】(1);(2)见解析.【解析】试题分析:(1)由 , 及,可得方程;(2)易知直线 不能平行于 轴,所以令直线 的方程为与椭圆联立得,令直线 的方程为,可得,进而由 是菱形,则,即,于是有由韦达定理代入知无解.试题解析:(1)由已知,得 , ,又,故解得,所以椭圆 的标准方程为.(2)由(1),知 ,如图,易知直线 不能平行于 轴.所以令直线 的方程为,,.联立方程,得,所以,.此时,同理,令直线 的方程为,,,此时,,此时.故.所以四边形 是平行四边形.若 是菱形,则,即,于是有.又,,所以有,整理得到,即,上述关于 的方程显然没有实数解,故四边形 不可能是菱形.21. 已知函数,其中 为自然对数的底数.(Ⅰ)讨论函数 的单调性及极值;(Ⅱ)若不等式 在 恒成立,求证: .【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)函数求导得,讨论和 演技单调性及极值即可;(2)当 时, 在 单调递增,可知 在 不恒成立,当 时,,即,所以.令,进而通过求导即可得最值.试题解析:(1)由题意得.当 ,即 时, , 在 单调递增,没有极值.当 ,即 ,令 ,得,当时, , 单调递减;当时, , 单调递增,故当时, 取得最小值,无极大值.综上所述,当 时, 在 单调递增,没有极值;当 时, 在区间单调递减,在区间单调递增, 的极小值为,无极大值.(2)由(1),知当 时, 在 单调递增,当 时,成立.当 时,令 为 和 中较小的数,所以 ,且 .则,.所以,与 恒成立矛盾,应舍去.当 时,,即,所以.令,则.令 ,得,令 ,得 ,故 在区间 单调递增,在区间 单调递减.故,即当时,.所以.所以 .而,所以 .点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若 就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若 恒成立;(3)若恒成立,可转化为请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修 4-4:坐标系与参数方程在平面直角坐标系 中,已知曲线 的参数方程为( , 为参数).以坐标原点 为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.(Ⅰ)当 时,求曲线 上的点到直线的距离的最大值;(Ⅱ)若曲线 上的所有点都在直线的下方,数的取值围.【答案】(1) ;(2) .【解析】试题分析:(1)将直线的极坐标方程化为普通方程,进而由圆的参数方程得曲线 上的点到直线的距离,,利用三角函数求最值即可;(2)曲线 上的所有点均在直线的下方,即为对 ,有恒成立,即(其中 )恒成立,进而得.试题解析:(1)直线的直角坐标方程为.曲线 上的点到直线的距离,,当时,,即曲线 上的点到直线的距离的最大值为 .(2)∵曲线 上的所有点均在直线的下方,∴对 ,有恒成立,即(其中 )恒成立,∴.又 ,∴解得,∴实数的取值围为 .23. 选修 4-5:不等式选讲已知函数.(Ⅰ)解不等式 ;(Ⅱ)记函数的值域为 ,若 ,证明:.【答案】(1);(2)见解析.【解析】试题分析:(1)分段去绝对值解不等式即可;(2)利用绝对值三角不等式得 ..用作差法比较大小得到,即可证得.试题解析:(1)依题意,得于是得或或解得.即不等式的解集为.(2),当且仅当时,取等号,∴.原不等式等价于,. ∵,∴,.∴.∴.。
(衡水金卷)2018年普通高等学校招生全国统一考试模拟数学试题五 理
(衡水金卷)2018年普通高等学校招生全国统一考试模拟数学试题五 理第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R =,集合{}223,A y y x x x R ==++∈,集合1,(1,3)B y y x x x ⎧⎫==-∈⎨⎬⎩⎭,则()U C A B =( )A .(0,2)B .80,3⎛⎫ ⎪⎝⎭C .82,3⎛⎫⎪⎝⎭D .(,2)-∞2. 已知3sin(3)2sin 2a a ππ⎛⎫+=+ ⎪⎝⎭,则sin()4sin 25sin(2)2cos(2)a a a a ππππ⎛⎫--+ ⎪⎝⎭=++-( )A .12B .13C .16D .16-3。
设i 为虚数单位,现有下列四个命题:1p :若复数z 满足()()5z i i --=,则6z i =; 2p :复数22z i=-+的共轭复数为1+i 3p :已知复数1z i =+,设1(,)ia bi ab R z-+=∈,那么2a b +=-;4p :若z 表示复数z 的共轭复数,z 表示复数z 的模,则2zz z =。
其中的真命题为( )A .13,p pB .14,p pC .23,p pD . 24,p p4.在中心为O 的正六边形ABCDEF 的电子游戏盘中(如图),按下开关键后,电子弹从O 点射出后最后落入正六边形的六个角孔内,且每次只能射出一个,现视A ,B ,C ,D ,E ,F 对应的角孔的分数依次记为1,2,3,4,5,6,若连续按下两次开关,记事件M 为“两次落入角孔的分数之和为偶数”,事件N 为“两次落入角孔的分数都为偶数”,则(|)P N M =( )A .23B .14 C. 13 D .125。
某几何体的正视图与俯视图如图,则其侧视图可以为( )A .B . C. D .6. 河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟。
2018年普通高等学校招生全国统一考试模拟试题(衡水金卷信息卷)理数三(解析版)
2018年普通高等学校招生全国统一考试模拟试题理数(三)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,集合,则()A. B. C. D.【答案】D【解析】则故选2.设为虚数单位,给出下面四个命题:;为纯虚数的充要条件为;共轭复数对应的点为第三象限内的点;的虚部为.其中真命题的个数为()A. B. C. D.【答案】B【解析】【详解】虚数不能比较大小,故错误,为纯虚数,则,解得,故正确,,,为第三象限内的点,故正确,,故其虚部为,故错误故真命题个数为故选3.某同学从家到学校途经两个红绿灯,从家到学校预计走到第一个红绿灯路口遇到红灯的概率为,两个红绿灯路口都遇到红灯的概率为,则在第一个路口遇到红灯的前提下,第二个路口也遇到红灯的概率为()A. B. C. D.【答案】B【解析】设“第一个路口遇见红灯”为事件,“第二个路口遇见红灯”为事件,,则故选4.在区间上随机取一个数,则方程表示焦点在轴上的椭圆的概率为()A. B. C. D.【答案】B【解析】若方程表示焦点在轴上的椭圆则,解得故方程表示焦点在轴上的椭圆的概率为故选5.已知抛物线的焦点到双曲线的渐近线的距离为,则双曲线的离心率为A. B.C. D.【答案】C【解析】由题意可得,抛物线的焦点为双曲线的渐近线为,化简得:故则故选6.已知,,若,则在的展开式中,含项的系数为()A. B. C. D.【答案】B【解析】令,则根据二项式定理,得:的通项公式为,令,得,故项的系数为,故选7.已知,是以为周期的奇函数,且定义域为,则的值为()A. B. C. D.【答案】A【解析】可知的周期为,故选8.已知函数,把函数的图象的横坐标伸长到原来的倍,然后将图象向右平移个单位,纵坐标不变,得到函数的图象,若当时,方程有两个不同的实根,则的取值范围为()A. B. C. D.【答案】D【解析】可得根据函数的图象,可知时,有两个不同的根故选9.运行如图所示的程序框图,输出的值为()A. B. C. D.【答案】D【解析】第一次运行结果为,第二次运行结果为,第一次运行结果为,...可知输出结果为两式相减可得可得故选10.已知几何体的三视图如图所示,则该几何体的外接球的表面积为()A. B. C. D.【答案】D【解析】根据几何体的三视图可知,该几何体为三棱锥其中,且底面,根据余弦定理可知:可知根据正弦定理可知外接圆直径,如图,设三棱锥外接球的半径为,球心为,过球心向作垂线,则垂足为的中点,在中,外接球的表面积故选点睛:本题主要考查了三视图与几何体外接球的体积问题,有一定的难度,先由三视图推得几何体为三棱锥,结合题目中的长度利用正弦定理和余弦定理解三角形,求出三角形外接圆的半径,进而求出球体的半径,需要一定的观察能力和计算能力11.已知抛物线,过点作该抛物线的切线,,切点为,,若直线恒过定点,则该定点为()A. B. C. D.【答案】C【解析】设的坐标为,,,的方程为,由,,可得,切线都过点,,故可知过,两点的直线方程为,当时,直线恒过定点故选点睛:本题主要考查了直线与抛物线的位置关系并求出直线恒过定点坐标,在解答过程中运用了求导来计算切线的斜率,然后给出切线的直线方程,由过点计算出直线的方程,从而计算出定点坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试模拟试题理综(三)
生物试题
一、选择题
1. 下列关于蛋白质与核酸的叙述,错误的是
A. 有的蛋白质具有催化功能,有的核酸也具有催化功能
B. 蛋白质和核酸的合成都需要搬运各自组成单位的工具
C. 有些蛋白质具有调节功能,它们在生物体内含量较少
D. 分化程度不同的细胞内核酸和蛋白质的种类均有差异
2. 蜜蜂种群中包括蜂王(2n=32,可育)、雄蜂(n=l6,可育)和工蜂(2n=32,不育),蜂王产生的卵细胞与雄蜂产生的精子结合成受精卵,然后发育成蜂王或工蜂,而未受精的卵细胞会发育成雄蜂。
下列相关叙述,正确的是
A. 蜂王与雄蜂在产生配子的过程中都会出现联会现象
B. 蜜蜂体内处于分裂后期的细胞内都会出现着丝点分裂现象
C. 工蜂不育是因为其细胞内没有同源染色体而不能产生可育配子
D. 工蜂的遗传物质中来自母本的多于来自父本的
3. 科学家在进行生物实验时所采用的方法多种多样。
科学家——实验方法——实验结果或结论对应关系正确的是
A. 孟德尔利用假说一演绎法得出了遗传学的分离定律和自由组合定律
B. 鲁宾和卡门利用同位素标记法证实光合作用的产物中有氧气和淀粉
C. 沃森和克里克利用构建数学模型的方法得出了DNA的双螺旋结构
D. 萨顿先后利用类比推理的方法和杂交实验的方法得出了基因在染色体上
4. 有一显性基因仅在肝细胞中表达,决定某种酶的合成。
下列相关叙述错误的是
A. 该基因突变后,在肝细胞内表达出的酶空间结构可能不变
B. 该基因内某个碱基对被替换,表达出的酶活性可能更高
C. 该基因突变后,不会表达出肝细胞内特有的结构蛋白
D. 该基因所在的染色体片段丢失,其等位基因也会随之丢失
5. 在水库的上游,将废弃农田和盐碱地改造成大面积芦苇湿地,通过生物降解、吸收,可以有效解决城市生活污水和农业生产对水质造成的污染问题,使水库水质得到明显改善。
下列相关叙述错误的是
A. 湿地中生物种类多样,维持其结构和功能稳定的能力较强
B. 从废弃的农田和盐碱地到芦苇湿地的变化属于次生演替
C. 芦苇湿地构成了一个在物质和能量上自给自足的生态系统
D. 该湿地不同地段物种组成上的差异是群落水平结构的体现
6. 如图所示为某家族系谱图,甲、乙两病均为单基因遗传病,其中一种遗传病在自然人群中男性患者多于女性患者。
下列相关叙述,正确的是
A. 甲病和乙病的致病基因分别位于X染色体和常染色体上
B. Ⅲ-10的乙病致病基因和甲病致病基因的完全相同
C. 若Ⅱ-5和Ⅱ-6再生一个孩子,则该孩子正常的概率为9/16
D. 若Ⅰ-4是乙病基因携带者,则Ⅲ-13是乙病基因携带者的概率为1/8
二、非选择题
7. 某同学设计了三套实验方案(见下表),用于验证酶的高效性或专一性。
请回答下列问题:
方案目的组别催化剂反应底物反应条件检测材料或试剂
一验证酶的高效
性
A 过氧化氢酶过氧化氢90℃水浴带火星的香
B 氯化铁溶液过氧化氢常温带火星的香
二验证淀粉酶的
专一性
C 淀粉酶淀粉常温斐林试剂
D 蔗糖酶淀粉常温斐林试剂
三验证酶的专一
性
E 胰蛋白酶蛋白块pH=7 无
F 胶原蛋白酶蛋白块pH=7 无
(1)方案一____________(填“可行”或“不可行”),理由是______________。
(2)方案二___________(填“可行”或“不可行”),理由是______________。
(3)方案三____________(填“可行”或“不可行”),理由是______________。
8. 图1为在水分充足的白天,测得某植物幼苗的光合速率、蒸腾作用强度和气孔导度(气孔导度越大,气孔开启程度越大)的日变化趋势曲线;图2是某兴趣小组取株高、生理状态等相近的该种植株若干,分别放在密闭的玻璃容器内进行的实验示意图,已知二氧化碳传感器用于测量装置内二氧化碳的含量。
请回答下列问题:
(1)据图1分析,直接导致蒸腾速率变化的生理指标是_________________。
(2)某同学推测导致12:00光合速率降低的原因是C02供应不足,你认为他的判断是否正确?______,理由是___________________。
(3)已知药物AMI可以明显减小气孔导度,有利于植物度过干旱环境,但使用AMI同时会直接影响光合作用的______________阶段。
(4)下表为图2实验中的相关数据,序号2〜7所对应的实验前后CO2浓度的变化值表示的生理指标是12h 内_____________,在第_______组所对应的光照强度下,给植物以光照和黑暗各12h处理后装罝中的C02浓度保持不变。
序号温度/(℃)光照强度(%) 开始时CO2浓度(%) 12h后C02浓度(%) 植物叶片数
1 25 0 0.350 0.368 5
2 25 10 0.350 0.350 5
3 25 20 0.350 0.332 5
4 2
5 40 0.350 0.289 5
5 25 60 0.350 0.282 5
6 25 80 0.350 0.280 5
7 25 95 0.350 0.279 5
9. 某生态系统有较为复杂的食物网,而图甲只是其中的6条食物链,图乙为该生态系统的第一、二和三营养级(用A、B、C表示)同化能量的分配情况,其中数字代表能量值,单位略。
请回答下列问题:
(1)该生态系统的组成成分包括___________________。
(2)鹰和狐_______(填“是”或“不是”)该生态系统的顶级消费者,理由是____________。
(3)图乙中A对应的数据为________,第二营养级同化的能量中_______%以热能的形式散失。
(4)狐和兔子可以根据对方的气味或行为特征捕猎或躲避猎捕,该现象体现出生态系统的信息能够_____,以维持生态系统的稳定。
10. 野生型果蝇均为圆眼,为了探究果蝇眼形的遗传方式,科研人员让棒眼雄蝇与野生型圆眼雌蝇杂交,所得F1均为圆眼果蝇,F l雌雄果蝇杂交,但将F2的记录信息丢失。
已知果蝇的性染色体X与Y有同源区段(Ⅰ区)和非同源区段(X特有的Ⅱ-1区,Y特有的Ⅱ-2区),棒眼和圆眼这对相对性状由一对等位基因(D)和(d)控制。
分析该科研人员的杂交实验,请回答下列问题:
(1)①若F2中雌果蝇均为圆眼,雄果蝇既有圆眼也有棒眼,则D和d可能位于__________。
②若
_____________,则D和d位于常染色体上。
(2)进一步研究发现,D和d位于性染色体的Ⅱ-1区,该科研人员又进行了如图实验(重复多次均得到相同的结果),其中果蝇的长翅和残翅这对相对性状由一对常染色体上的等位基因(T和t)控制。
①长翅与残翅和圆眼与棒眼中,显性性状分别是_________________。
②若该果蝇群体中有一种基因型是致死的,则致死个体的基因型可能为__________。
让F1中圆眼长翅雌果蝇与F1中棒眼残翅雄果蝇杂交,分别统计每对果蝇的杂交后代的表现型及其比例,若出现__________,则致死个体的基因型为______________________。
11. 胡萝卜中含有大量的β-胡萝卜素,被摄入到人体消化器官后,可以转化成维生素A。
β-胡萝卜素可以维持眼睛和皮肤的健康,改善夜肓症、皮肤粗糙的状况,有助于身体免受自由基的伤害。
请回答下列问题:
(1)从植物体内提取有效成分的常用方法有水蒸气蒸馏法、_________和萃取法等,其中水蒸气蒸馏又可划分为水中蒸馏、水上蒸馏和__________,以柑橘和柠檬为材料提取精油不宜用水中蒸馏的原因是______。
(2)利用萃取法提取胡萝卜素的主要步骤包括:胡萝卜→粉碎干燥→萃取→过滤→浓缩→胡萝卜素。
如图装置可用于上述的_________步骤,但该装置有一处明显错误,如何改正?________。
装置中锥形瓶收集的是______________。
(3)在萃取的过程中,应严格将温度和时间控制在一定范围内,原因是_______________。
(4)利用纸层析法对获得的胡萝卜素进行鉴定时,需要用________________对照。
12. 如图所示为培育转AFPs基因(抗冻基因)甜菜的示意图,外源DNA和质粒上的箭头表示酶切位点,请回答下列问题:
(1)图中①过程得到的A中有一些特殊的DNA片段,比如目的基因、标记基因和启动子等,其中启动子的作用是______________。
对图中质粒和外源DNA进行切割时,所用的限制酶是_________。
(2)图中的质粒A还应含有T—DNA,T-DNA的作用是_____________。
(3)图中②过程需用钙离子处理农杆菌,目的是_________________。
(4)经④和⑤过程得到转AFPs基因甜菜幼苗的原理是________________。
(5)若要获得抗冻能力更强的抗冻基因,可以对AFPs基因进行改造,最终得到相应的蛋白质,该过程需用到_________工程,该工程的基本途径是从预期的蛋白质功能出发→设计预期的蛋白质结构→________→找到相应的脱氧核苷酸序列(基因)。