衡水金卷2018年高考模拟数学(文)试题(三)有答案

合集下载

河北省2018届高三毕业班衡水金卷一模模拟演练数学(文)试题 word版含答案

河北省2018届高三毕业班衡水金卷一模模拟演练数学(文)试题 word版含答案


DF
1
AD
1,
DE
1 CD
1, ADC
90

2
3
∴ DEF 45 .
∵ CE 2 CD 2 , BC 2 , BCD 90 , 3
∴ BEC 45 .
∴ BE EF . 又平面 GBE 平面 ABED ,平面 GBE I 平面 ABED BE , EF 平面 ABED ,
∴ EF 平面 BEG .
度相等.
(1)求圆 C 的标准方程;
(2)过椭圆右焦点的动直线 l2 (其斜率不为 0)交圆 C 于 A, B 两点,试探究在 x 轴正半轴上
是否存在定点 E ,使得直线 AE 与 BE 的斜率之和为 0?若存在,求出点 E 的坐标,若不存在,
请说明理由.
21. 已知函数 f x ax2ex ( a R , e 为自然对数的底数).
知直线 l
的极坐标方程是
sin
3
1,圆
C
的参数方程为
x
y
1 r cos, r sin

为参数,
r 0 ).
(1)若直线 l 与圆 C 有公共点,求实数 r 的取值范围;
(2)当 r 2 时,过点 D 2, 0 且与直线 l 平行的直线 l 交圆 C 于 A, B 两点,求 1 1
DA DB
2018 届高三毕业班模拟演练 文科数学
第Ⅰ卷(共 60 分) 一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有 一项是符合题目要求的.
1.已知集合 M x y lg x 2 , N y y 2x 1 ,则 M U N ( )
A. R
(1)当 1 时,求证: EF BG ; 2

衡水金卷2018年高考模拟数学(文)试题(四)有答案

衡水金卷2018年高考模拟数学(文)试题(四)有答案

2018年普通高等学校招生全国统一考试模拟试题文数(四)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0,1,3A =,()(){}120B x x x =+-<,则A B =I ( ) A .{}0 B .{}0,1,3 C .{}0,1 D .{}0,1,2 2.若复数3i12iz -+=-(i 是虚数单位),则4i z +=( ) A 2610.2 D .43.若,,a b c ∈R ,且a b >,则下列不等式一定成立的是( )A .c c a b >B .20c a b >-C .22a b >D .2211a bc c >++ 4.下列结论中正确的个数是( ) ①“3x π=”是“1sin 22x π⎛⎫+= ⎪⎝⎭”的充分不必要条件; ②命题“,sin 1x x ∀∈≤R ”的否定是“,sin 1x x ∀∈>R ”; ③函数()cos f x x x =在区间[)0,+∞内有且仅有两个零点.A .1B .2C .3D .05.已知关于x 的不等式2680kx kx k -++≥对任意的x ∈R 恒成立,若k 的取值范围为区间D ,在区间[]1,3-上随机取一个数k ,则k D ∈的概率是( )A .12 B .13 C .14 D .156.我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,目取其半,万事不竭”,其意思是:一尺长木棍,每天截取一半,永远截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则空白处可填入的是( )A .S S i =-B .1S S i =- C .2S S i =- D .12S S i=-7.如图所示是一个几何体的三视图,则该几何体的体积为( )A .163π B .643 C .16643π+ D .1664π+ 8.已知某函数在[],ππ-上的图象如图所示,则该函数的解析式可能是( )A .sin 2xy = B .cos y x x =+ C .ln cos y x = D .sin y x x =+9.《九章算术》卷第五《商功》中有记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶.”现有一个刍甍,如图,四边形ABCD 为正方形,四边形ABFE 、CDEF 为两个全等的等腰梯形,4AB =,12EF AB ∥,若这个刍甍的体积为403,则CF 的长为( )A .1B .2C .3D .410.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,cos cos 2cos a B b A c C +=,7c =ABC ∆的面积为332,则ABC ∆的周长为( )A .17.27+.47+.5711.设12,F F 分别是椭圆()2222:10x y E a b a b +=>>的左,右焦点,过点1F 的直线交椭圆E 于,A B 两点,若12AF F ∆的面积是12BF F ∆的三倍,23cos 5AF B ∠=,则椭圆E 的离心率为( )A .12 B .23C .32D .2212.已知定义在区间0,2π⎛⎫⎪⎝⎭上的函数()f x ,()f x '为其导函数,且()()sin cos 0f x x f x x '->恒成立,则( ) A .226f f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭ B 3243ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C 363f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D .()12sin16f f π⎛⎫< ⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某乡镇中学有初级职称教师160人,中级职称教师30人,高级职称教师10人,要从其中抽取20人进行体检,如果采用分层抽样的方法,则高级职称教师应该抽取的人数为 .14.已知平面向量,a b r r ,7,4a b ==r r ,且6a b +=r r ,则a r 在b r方向上的投影是 .15.若双曲线()222210,0x y a b a b-=>>的渐近线与圆(2232x y -+=相交,则此双曲线的离心率的取值范围是 .16.已知三棱锥P ABC -的各顶点都在同一球面上,且PA ⊥平面ABC ,若2AB =,1AC =,60BAC ∠=︒,4PA =,则球的体积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 满足11a =,()1n n n na na a n +=-∈*N . (1)求数列{}n a 的通项公式;(2)若数列{}n b 的前n 项和为n S ,23n n S b =-,求数列{}n n b a ⋅的前n 项和n T . 18. 在直三棱柱111ABC A B C -中,AD ⊥平面1A BC ,其垂足D 落在直线1A B 上. (1)求证:BC ⊥平面1A AB ; (2)若3AD =2AB BC ==,P 为AC 的中点,求三棱锥1P A BC -的体积.19. 某市甲、乙两地为了争创“市级文明城市”,现市文明委对甲、乙两地各派10名专家进行打分评优,所得分数情况如下茎叶图所示.(1)分别计算甲、乙两地所得分数的平均值,并计算乙地得分的中位数;(2)从乙地所得分数在[)60,80间的成绩中随机抽取2份做进一步分析,求所抽取的成绩中,至少有一份分数在[)75,80间的概率;(3)在甲、乙两地所得分数超过90分的成绩中抽取其中2份分析其合理性,求这2份成绩都是来自甲地的概率.20. 已知点()00,M x y 在圆22:4O x y +=上运动,且存在一定点()6,0N ,点(),P x y 为线段MN 的中点.(1)求点P 的轨迹C 的方程;(2)过()0,1A 且斜率为k 的直线l 与点P 的轨迹C 交于不同的两点,E F ,是否存在实数k 使得12OE OF ⋅=uu u r uu u r,并说明理由.21. 已知函数()()ln f x x ax a =-∈R . (1)求函数()f x 的单调区间;(2)当1a =时,方程()()2f x m m =<-有两个相异实根12,x x ,且12x x <,证明:2122x x ⋅<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为3,sin x y αα⎧=⎪⎨=⎪⎩(α是参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 24πρθ⎛⎫-= ⎪⎝⎭. (1)将直线l 的极坐标方程化为普通方程,并求出直线l 的倾斜角; (2)求曲线C 上的点到直线l 的最大距离. 23.选修4-5:不等式选讲已知函数()()22f x x x a a =++->-,若()7f x ≥的解集是{3x x ≤-或}4x ≥. (1)求实数a 的值;(2)若x ∀∈R ,不等式()()31f x f m ≥+恒成立,求实数m 的取值范围.文数(四)答案一、选择题1-5:CBDAC 6-10:BCACD 11、12:DC二、填空题13.1 14.13815.(3 16205π三、解答题17.解:(1)∵1n n n na na a +=-, ∴11n n a n a n++=. ∴121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅L 121121n n n n n -=⋅⋅⋅⋅=--L , ∴数列{}n a 的通项公式为n a n =. (2)由23n n S b =-,得13b =, 又()11232n n S b n --=-≥, ∴1122n n n n n b S S b b --=-=-, 即()122,n n b b n n -=≥∈*N ,∴数列{}n b 是以3为首项,2为公比的等比数列, ∴()132n n b n -=⋅∈*N ,∴132n n n b a n -⋅=⋅,∴()012131222322n n T n -=⋅+⋅+⋅++⋅L ,()123231222322n n T n =⋅+⋅+⋅++⋅L ,两式相减,得()0121322222n n n T n --=++++-⋅L ()3121nn ⎡⎤=--⎣⎦,∴()3123nn T n =-+.18.解:(1)∵三棱柱111ABC A B C -为直三棱柱, ∴1A A ⊥平面ABC .又BC ⊂平面ABC ,∴1A A BC ⊥. ∵AD ⊥平面1A BC ,且BC ⊂平面1A BC , ∴AD BC ⊥.又1A A ⊂平面1A AB ,AD ⊂平面1A AB ,1A A AD A =I , ∴BC ⊥平面1A AB .(2)在直三棱柱111ABC A B C -中,1A A AB ⊥. ∵AD ⊥平面1A BC ,其垂足D 落在直线1A B 上, ∴1AD A B ⊥. 在Rt ABD ∆中,3AD =2AB BC ==,∴3sin AD ABD AB ∠== 即60ABD ∠=︒,在1Rt ABA ∆中,1tan6023A A AB =︒=由(1)知,BC ⊥平面1A AB ,AB ⊂平面1A AB , 从而BC AB ⊥, ∴1122222ABC S AB BC =⋅=⨯⨯=. ∵F 为AC 的中点, ∴112BCF ABC S S ∆==. ∴11113P A BC A PBC BCF V V S AA --∆==⋅=12312333⨯⨯=. 19.解:(1)由题得,甲地得分的平均数为()17778838580898892979986.810⨯+++++++++=, 乙地得分的平均数为()1657275798280848696918110⨯+++++++++=, 乙地得分的中位数为8280812+=. (2)由茎叶图可知,乙地得分中分数在[)60,80间的有65,72,75,79四份成绩,随机抽取2份的情况有:()65,72,()65,75,()65,79,()72,75,()72,79,()75,79,共6种,其中至少有一份分数在[)70,80间的情况有:()65,75,()65,79,()72,75,()72,79,()75,79,共5种. 故所求概率56P =. (3)甲、乙两地所得分数中超过90分的一共有5份,记甲地中的三份分别为,,A B C ,乙地中的两份分别为,a b .随机抽取其中2份,所有情况如下:(),A B ,(),A C ,(),B C ,(),a b ,(),A a ,(),A b ,(),B a ,(),B b ,(),C a ,(),C b ,一共10种.其中两份成绩都来自甲地的有3种情况:(),A B ,(),A C ,(),B C ,. 故所求概率310p =. 20.解:(1)由中点坐标公式,得00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩即()f x ,()f x .∵点()00,M x y 在圆224x y +=上运动,∴2204x y +=, 即()()222624x y -+=, 整理,得()2231x y -+=.∴点P 的轨迹C 的方程为()2231x y -+=.(2)设()11,E x y ,()22,F x y ,直线l 的方程是1y kx =+,代入圆()2231x y -+=.可得()()2212390k x k x +--+=, 由232240k k ∆=-->,得304k -<<, 且()122231k x x k -+=+,12291x x k =+, ∴()()()2212121212291111k y y kx kx k x x k x x k =++=+++=++()()22222432391111k k k k k k k --+=++++. ∴2121228610121k k AB AB x x y y k++⋅=+==+uu u r uu u r , 解得12k =或1,不满足0∆>.∴不存在实数12k =使得OF . 21.解:(1)由题得,()()110ax f x a x x x-=-=>. 当0a <时,由于0x >,可得10ax ->, 即()0f x '>.∴()f x 在区间()0,+∞内单调递增, 当0a >时,由()0f x '>,得10x a<<, 由()0f x '<,得1x a>, ∴()f x 在区间10,a ⎛⎫ ⎪⎝⎭内单调递增,在区间1,a ⎛⎫+∞ ⎪⎝⎭内单调递减. (2)由(1)可设,方程()()2f x m m =<-的两个相异实根12,x x ,满足ln 0x x m --=, 且101x <<,21x >,即1122ln ln 0x x m x x m --=--=. 由题意,可知11ln 2ln 22x x m -=<-<-,又由(1)可知,()ln f x x x =-在区间()1,+∞内单调递减,故22x >. 令()ln g x x x m =--, 则()1112211223ln ln 2g x g x x x x ⎛⎫-=-++-⎪⎝⎭. 令()()223lnt ln 22h t t t t=-++->, 则()()()2221t t h t t -+'=-. 当2t >时,()0h t '<,()h t 是减函数, ∴()()322ln 202h t h <--<. ∴当22x >时,()12220g x g x ⎛⎫-<⎪⎝⎭, 即()1212g x g x ⎛⎫<⎪⎝⎭. ∵()g x 在区间()0,1内单调递增,∴1222x x <,故2122x x ⋅<. 22.解;(1)由sin 24πρθ⎛⎫-= ⎪⎝⎭, 得sin cos 2ρθρθ-=, 将cos sin x y ρθρθ=⎧⎨=⎩代入上式,化简,得2y x =+.所以直线l 的倾斜角为4π. (2)在曲线C 上任取一点()3cos ,sin Aαα,则点A 到直线l 的距离3cos sin 22d αα-+=,当()sin 601α-︒=-时,d 取得最大值,且最大值是22. 23.解:(1)∵2a >-,∴()22,2,2,2,22,.x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪+->⎩作出函数()f x 的图象,如图所示:由()7f x ≥的解集为{3x x ≤-或4x ≥及函数图象, 可得627,827,a a +-=⎧⎨+-=⎩解得3a =.(2)由题知,x ∀∈R ,不等式()()31f x f m ≥+恒成立, 即x ∀∈R ,不等式32332x x m m ⎡++-⎤≥++-⎣⎦恒成立, 由(1)可知,235x x ++-≥(当且仅当23x -≤≤时取等号), ∴3235m m ++-≤⨯,当3m ≤-时,3215m m ---+≤, ∴8m ≥-,∴83m -≤≤-,当32m -<<时,3215m m +-+≤,成立; 当2m ≥时,3215m m ++-≤, ∴7m ≤, ∴27m ≤≤,综上所述,实数m 的取值范围为[]8,7-.。

【衡水金卷】2018届四省名校高三第三次大联考文科数学试题(解析版)

【衡水金卷】2018届四省名校高三第三次大联考文科数学试题(解析版)

【衡水金卷】2018届四省名校高三第三次大联考试题文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数满足(为虚数单位),则的虚部为()A. B. C. D.【答案】B【解析】分析:由已知等式变形得,再利用复数的四则运算法则求出z的代数形式,再写出虚部。

详解:由有,则z 的虚部为,故选B.点睛:本题主要考查了复数的四则运算以及复数的代数形式,属于容易题。

若复数,则复数的虚部为。

2. 某几何体的三视图是如图所示的三个直角三角形,若该几何体的体积为144,则()A. 14B. 13C. 12D. 11【答案】C【解析】分析:先根据已知的三视图还原得到直观图,再根据几何体的体积,利用体积计算公式,求出侧视图中一直角边的长。

详解:根据已知的三视图,作出直观图如下:由已知有平面BCD,且,且,由三棱锥的体积计算公式,求出,故选C.点睛:本题主要考查了三视图成直观图、三棱锥的体积计算公式,属于基础题。

解答本题的关键是由三视图还原成直观图。

3. 设集合,则()A. B.C. D.【答案】B【解析】分析:先由不等式求出的范围,写成集合即为N,再得出集合M,N之间的关系,最后得到正确的选项。

详解:由有,即,所以,根据全称命题的特点和子集的定义,得出正确选项为B.4. 《莱因德纸草书》()是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B. C. D.【答案】C【解析】分析:根据已知条件,设等差数列的公差为,将已知条件转化为等式,求出等差数列的首项和公差,再得出答案。

详解:设等差数列的公差为,由已知有,解得,故最小一份是,选C.点睛:本题主要考查了等差数列的基本量的计算,属于容易题。

注意从已知的条件中找出数学等式。

2018年普通高等学校招生全国统一考试模拟试题(衡水金卷调研卷)文数三(解析版)

2018年普通高等学校招生全国统一考试模拟试题(衡水金卷调研卷)文数三(解析版)

2018年普通高等学校招生全国统一考试模拟试题文数(三)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合,,则()A. B. C. D.【答案】B故选2. 设函数,则()A. B. C. 1 D. 3【答案】D【解析】由题意可得:故选3. 若向量,,,则()A. 4B. 5C. 3D. 2【答案】A【解析】,,即,则故选4. 若实数,满足约束条件,则的取值范围是()A. B. C. D.【答案】A【解析】由约束条件作出可行域,如图,易得,即故选5. 命题:若复数(为虚数单位),则复数对应的点在第二象限,命题:若复数满足为实数,则复数一定为实数,那么()A. 是真命题B. 是真命题C. 是真命题D. 是假命题【答案】B【解析】复数对应的点在第二象限命题为真命题设,则命题为假命题则是真命题故选6. 执行如图所示的程序框图,若输入的,则输出的()A. 80B. 96C. 112D. 120【答案】D【解析】由题设可知,输出时,第一次循环,,第二次循环,,第三次循环,,第四次循环,,第五次循环,,循环结束,此时输出故选7. 已知函数,将函数的图象向左平移个单位后,得到的图象对应的函数为奇函数,则的最小值为()A. B. C. D.【答案】C【解析】根据题意可得:为奇函数,,故选8. 《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马中,侧棱底面,从,,,四点中任取三点和顶点所形成的四面体中,任取两个四面体,则其中一个四面体为鳖臑的概率为()A. B. C. D.【答案】B【解析】从,,,四点中任取三点和顶点所形成个四面体为:其中四面体为鳖臑在个四面体中任取个有种情况其中一个四面体为鳖臑的情况有种则其中一个四面体为鳖臑的概率故选9. 如图,为经过抛物线焦点的弦,点,在直线上的射影分别为,,且,则直线的倾斜角为()A. B. C. D.【答案】C【解析】由抛物线定义可知:,设,,作交于,则在中,直线的倾斜角为故选10. 一个几何体的三视图如图所示,且该几何体的表面积为,则图中的()A. 1B.C.D.【答案】A【解析】由三视图可知,该几何体的直观图如图所示:故该几何体的表面积为即解得故选11. 已知数列满足,且对任意的都有,则的取值范围为()A. B. C. D.【答案】D【解析】数列满足,当时,当时,,则数列为首项为,公比为的等比数列则则的取值范围为故选点睛:本题主要考查了求数列通项和数列求和的问题,由递推关系,当给出前项的积(或和)的形式时,自需给出前项的形式进行求解,构造新的数列是等差(或等比)数列,利用公式求和,本题较为基础。

衡水金卷2018届高三四省第三次大联考数学(文)试题(含答案)

衡水金卷2018届高三四省第三次大联考数学(文)试题(含答案)

2018届四省名校高三第三次大联考文数第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数z 满足(1)(i z i i -=为虚数单位),则z 的虚部为( ) A .12-B .12C .12i - D .12i 2.一个几何体的三视图是如图所示的三个直角三角形,若该几何体的体积为3114cm ,则d =( )A .6cmB .8cmC .10cmD .12cm 3.设集合{|02}M x R x =∈<≤,2{|2}N x R x x =∈≥,则( )A .,x N x M ∀∈∈B .,x M x N ∀∈∈C .00,x N x M ∃∉∈D .00,x M x N ∃∈∉ 4.《莱因德纸草书》(Rhind Papyrus )是世界上最古老的数学著作之一,书中有这样一道题目:把100个面包分给5各人,使每个人所得成等差数列,且较大的三份之和的17等于较小的两份之和,问最小的一份为( ) A .56 B .116 C.53 D .1035.已知双曲线2221(0)y x b b-=>的一条渐近线截圆2240x y y +-=得弧长之比为1:2的两部分,则双曲线的离心率为( )A .23B .2 C.3 D .31-6.某校李老师学期任高一A 班、B 班两个班数学课数学,两个班都是50个学生,下图反映的是两个班在本学期5次数学检测中的班级平均分对比,根据图表信息,下列不正确的结论是( )A .A 班的数学成绩平均水平好于B 班 B .B 班的数学成绩没有A 班稳定C.下次B 班的数学平均分高于A 班 D .在第一次考试中,A B 、两个班总平均分为78分 7.已知()f x 为定义在R 上周期2的奇函数,当10x -≤<时,()(1)f x x ax =+,若512f ⎛⎫=- ⎪⎝⎭,则a =( ) A .6 B .4 C.1425-D .-6 8.阅读如图所示的程序,若运行结果为35,则程序中a 的取值范围是( )A .67a <≤B .67a ≤≤ C.67a ≤< D .67a << 9.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象关于点,03M π⎛⎫⎪⎝⎭对称,点M 到该函数图象的对称轴的距离的最小值为4π,则( ) A .()f x 的周期为2π B .()f x 的初相6πϕ=C.()f x 在区间2,33ππ⎡⎤⎢⎥⎣⎦上是单调递减函数 D .将()f x 的图象向左平移12π个单位长度后与函数cos 2y x =图象重合 10.设1232,ln 2,5xy z -===,则( )A .x y z <<B .y z x << C.z x y << D .z y x << 11.如图,在ABC ∆中,已知12BD DC =,P 为线段AD 上一点,且满足49CP mCA CB =+,若ABC ∆的面积为3,3ACB π∠=,则CP 的最小值为( )A .163 B .169 C.83 D .4312.设抛物线2:4E y x =的焦点为F ,准线l 与x 轴交于点K ,过点K 的直线m 与抛物线相交于A B 、两点,且32AF =,连接BF 并延长交准线l 于点C ,若记ACF ∆与ABC ∆的面积分别为12,S S ,则12S S =( )A .47 B .45 C.23 D .710第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若变量,x y 满足约束条件1,0,3250,x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩2z x y =-,则z 的最小值为 .14.设{}n a 为等比数列,n S 为其前n 项和,若352a a =,则43S S = . 15.已知3,2a ππ⎛⎫∈ ⎪⎝⎭,且满足1sin 121sin cos ααα-+=+,则2cos 2sin 2αα+= . 16.如图,已知直二面角l αβ--,点,,,,4,3A a B C l D l CD BC BD β∈∈∈∈==,60BDC ∠=.若2AC AD =,则三棱锥A BCD -的体积的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数()2cos (cos 3sin )f x x x x =+. (1)当7,2412x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域; (2)在ABC ∆中,若()1,3f B BC =-=,sin 3sin B A =,求ABC ∆的面积.18. 2018年6月14日,第二十一届足球世界杯将在俄罗斯拉开帷幕,为了了解喜爱足球运动是否与性别有关,某体育台随机抽取100名观众进行统计,得到如下2×2列联表. 男 女 合计 喜爱 30 40 不喜爱 40 合计100(1)将2×2列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关?(2)在不喜爱足球运动的观众中,按性别用分层抽样的方式抽取6人,再从这6人中随机抽取2人参加一台访谈节目,求这2人中至少有一位男性的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P K k ≥0.010 0.005 0.001 0k6.6357.87910.82819.在如图所示的几何体中,EA ⊥平面ABCD ,四边形ABCD 为等腰梯形,1//,12AD BC AD =,160,//2ABC EF AC ∠=. (1)证明:AB CF ⊥; (2)若多面体ABCDEF 的体积为338.求线段CF 的长.20.如图,在平面直角坐标系中,已知定点(1,0)F ,过直线:4l x =左侧的动点P 作PH l ⊥于点,H HPF ∠的角平分线交x 轴于点M ,且2PH MF =,记动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过点F 作直线'l 交曲线C 于A B 、两点,设AF FB λ=,若1,22λ⎡⎤∈⎢⎥⎣⎦,求AB 的取值范围.21. 已知函数2()(1)()xf x a x e a R =+-∈. (1)当12a =时,判断函数()f x 的单调性; (2)若()f x 有两个极值点1212,()x x x x <. ①求实数a 的取值范围; ②证明:111()2f x e-<<-. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在极坐标系中,曲线C 的极坐标方程为6sin ρθ=,点P 的极坐标为2,4π⎛⎫⎪⎝⎭,以坐标原点O 为极点,以x 轴正半轴为极轴,建立平面直角坐标系,(1)求曲线C 的直角坐标方程和点P 的直角坐标;(2)过点P 的直线l 与曲线C 相交于,A B 两点,若2PA PB =,求AB 的值. 23.选修4-5:不等式选讲已知函数()|2||21|f x x a x =++-,65()21x g x x -=-. (1)若3a =,解不等式()6f x ≤;(2)若对任意151,2x ⎡⎤∈⎢⎥⎣⎦,都存在2x R ∈,使得()12()g x f x =成立,求实数a 的取值范围.2018届四省名校高三第三次大联考文数答案一、选择题1-5:BDBCB 6-10:CAADC 11、12:DC二、填空题13.-3 14.3 15. 9516.863三、解答题17.解:(Ⅰ)由题得,31()2sin2cos2122f x x x⎛⎫=++⎪⎪⎝⎭2sin 216x π⎛⎫=++ ⎪⎝⎭.7,2412x ππ⎡⎤∈⎢⎥⎣⎦, 42,643x πππ⎡⎤∴+∈⎢⎥⎣⎦. 当262x ππ+=,即6x π=时,()f x 取得最大值3;当4263x ππ+=,即712x π=时, ()f x 取得最小值13-,()f x ∴的值域为13,3⎡⎤-⎣⎦.(2)设ABC ∆中角,,A B C 所对的边分别为,,a b c .()1,sin 216f B B π⎛⎫=-∴+=- ⎪⎝⎭,由于0B π<<.即22666B ππππ<+<+,3266B ππ∴+=,得23B π=. 又3BC =,即3,sin 3sin a B A ==,即3b a =,3b ∴=.由正弦定理sin sin a bA B =. 解得1sin 2A =.0,36A A ππ<<∴=,11133sin 332224ABC S ab C ∆∴==⨯⨯⨯=. 18.解:(1)补充列联表如下: 男 女 合计 喜爱301040不喜爱 20 40 60 合计5050100由列联表知()22100304010205010.828505040603K ⨯⨯-⨯==>⨯⨯⨯,故可以在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关. (2)由分层抽样知,从不喜爱足球运动的观众中抽取6人,其中男性有206260⨯=人,女性有406460⨯=人. 记男性观众分别为12,a a ,女性观众分别为12,b b ,34,b b ,随机抽取2人,其基本事件有()()()()()1213142324,,,,,,,,,b b b b b b b b b b ,()()()()()3411122122,,,,,,,,,b b b a b a b a b a ,()()3134,,,,b a b b ()()1112,,,b a b a ,()()()()()2122332241,,,,,,,,,b a b a b a b a b a ,()()4212,,,b a a a ,共15种.记至少有一位男性观众为事件A ,则事件A 包含()()()()11122122,,,,,,,b a b a b a b a ,()31,,b a()()()()32414212,,,,,,,b a b a b a a a ,共9个基本事件.由古典概型,知93()155P A ==. 19.解:(1)EA ⊥平面ABCD ,EA AB ∴⊥.作AH BC ⊥于点H ,在Rt ABH ∆中,160,2ABH BH ∠==,得1AB =.在ABC ∆中,2222cos603AC AB BC AB BC =+-=.222AB AC BC ∴+=,AB AC ∴⊥,且AC EA A =,AB ∴⊥平面ACFE .又CF ⊂平面ACFE ,AB CF ∴⊥.(2)设AE a =,作DG AC ⊥于点G . 则DG ⊥平面ACFE ,且12DG =.又11133=+3a 133224B ACFE ACFE V S AB a -⎛⎫=⨯⨯⨯⨯⨯= ⎪ ⎪⎝⎭梯形, 1113133332228D ACFEACFE V S DG a a -⎛⎫=⨯=⨯⨯+⨯⨯= ⎪ ⎪⎝⎭梯形 3333=88B ACFE D ACFE ABCDEF V V V a --∴+==多面体,得1a =. 连接FG ,则FG AC ⊥,22237122CF FG CG ⎛⎫∴=+=+= ⎪ ⎪⎝⎭. 20.解:(Ⅰ)设(,)P x y ,由题可知MF PF =,所以12PF MF PH PH ==, 即22(1)1|4|2x y x -+=-.化简整理,得22143x y +=. 即曲线C 的方程为22143x y +=. (2)由题意,直线'l 的斜率0k ≠,设直线'l 的方程为1x my =+,由221143x my x y =+⎧⎪⎨+=⎪⎩,得()2234690m y my ++-=.设1122(,),(,)A x y B x y ,所以222(6)36(34)144(1)0m m m ∆=++=+>恒成立, 且121222693434m y y y y m m --+==++, ① 又因为AF FB λ=,所以12y y λ-=. ②联立①②,消去12,y y ,得()2221434m m λλ-=+. 因为()211120,2λλλλ-⎡⎤=+-∈⎢⎥⎣⎦,所以22410342m m ≤≤+,解得2405m ≤≤. 又22121||1AB m y y m =+-=+.()2212122212124443434m y y y y m m ++-==-++,因为2324345m ≤+≤, 所以242743,348AB m ⎡⎤=-∈⎢⎥+⎣⎦. 所以AB 的取值范围是273,8⎡⎤⎢⎥⎣⎦. 21.解:(1)当12a =时,21()(1),'()12x x f x x e f x x e =+-=+-, 记()1xg x x e =+-,则'()1xg x e =-,由'()10xg x e =->,得0x <, 由'()10xg x e =-<,得0x >,()g x ∴即'()f x 在区间(),0-∞上单调递增,在区间()0,+∞上单调递减.max '()'(0)0f x f ∴==. ∴对,'()0x R f x ∀∈≤,()f x ∴在R 上单调递减.(2)①()f x 有两点个值点,∴关于x 的方程'()2(1)0x f x a x e =+-=,有两个根12,x x .设()2(1)xx a x e ϕ=+-,则'()2xx a e ϕ=-, 当0a ≤时,'()20xx a e ϕ=-<,()x ϕ即'()f x 在R 上单调递减,'()0f x ∴=最多有一根,不合题意.当0a >时,由'()0x ϕ>,得ln 2x a <,由'()0x ϕ<,得ln 2x a >,即'()f x 在区间(),ln 2a -∞上单调递增,在区间()ln 2,a +∞上单调递减.且当x →-∞时,'()f x →-∞,当x →+∞时,'()f x →-∞,要使'()0f x =有两个不同的根,必有max '()'(ln 2)2(ln 21)22ln 20f x f a a a a a a ==+-=>,解得12a >. ∴实数a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭. ②1'(1)0f e-=-<,'(0)210f a =->. 110x ∴-<<.又111'()2(1)0x f x a x e =+-=,112(1)x e a x ∴=+. 111121111111()(1)(1)(1)(10)22x x x x f x a x e x e e x e x ∴=+-=+-=--<<. 令1()(1)(10)2x h x x e x =--<<. 则1'()02x h x xe =<, ()h x ∴在区间()1,0-上单调递减.1(0)()(1)f f x f ∴<<-. 又11(0)1,(1)2f a f e=->--=-. 111()2f x e ∴-<<-. 22.解:(1)由6sin ρθ=,得26sin ρρθ=,又cos ,sin x y ρθρθ==, 226x y y ∴+=.即曲线C 的直角坐标方程为22(3)9x y +-=,P 点的直角坐标为()1,1. (2)设过点P 的直线l 的参数方程是1cos ,1sin x t y t θθ=+⎧⎨=+⎩(t 为参数),将其代入2260x y y +-=,得22(cos 2sin )40t t θθ+--=.设,A B 两点对应的参数分别为12,t t . 124t t ∴=-.2PA PB =,得122t t =-,1222,2t t ∴==-或1222,2t t =-=.1232AB t t ∴=-=.23.解:(1)当3a =时,()|23||21|f x x x =++-,3()62(23)126x f x x x ⎧≤-⎪≤⇔⎨⎪-++-≤⎩或31,2223126x x x ⎧-<<⎪⎨⎪++-≤⎩或1,223216x x x ⎧≥⎪⎨⎪++-≤⎩ , 解得21x -≤≤.即不等式()6f x ≤的解集为{}|21x x -≤≤.(2)()|2||21||221||1|f x x a x x a x a =++-≥+-+=+.当且仅当()2(21)0x a x +-≤时取等号. ()f x ∴的值域为[)|1|,a ++∞.又652()32121x g x x x -==---在51,2x ⎡⎤∈⎢⎥⎣⎦上单调递增,()g x ∴的值域为51,2⎡⎤⎢⎥⎣⎦. 由题可知,[)51,|1|,2a ⎡⎤⊆++∞⎢⎥⎣⎦, 11a ∴+≤,解得20a -≤≤.∴实数a 的取值范围为[]2,0-.。

衡水金卷2018年普通高等学校招生全国统一考试模拟试题(一)文科数学(解析版)

衡水金卷2018年普通高等学校招生全国统一考试模拟试题(一)文科数学(解析版)

2018年普通高等学校招生全国统一考试模拟试题文数(一)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】由题意得又,所以,选B.2. 若,,则角是()A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角【答案】D【解析】由,得,又,所以,所以为第四象限角,选D.3. 已知复数,(其中为虚数单位,),若的模等于,则实数的值为()A. B. C. D.【答案】C【解析】,所以,所以选C.4. 已知向量,,若,则()A. B. C. D.【答案】A【解析】由,得,即,代入下式,选A.5. 已知函数是定义在上的偶函数,且在区间上单调递增,记,,,则,,的大小关系为()A. B. C. D.【答案】A【解析】函数是定义在上的偶函数,所以f(x)=f(-x)=f(|x|),所以,而且在区间上单调递增,所以,选A.【点睛】由函数的单调性比较函数值的大小,关键要把所以x值全转化到函数的同一个单调区间,通过比较x的大小,进一步比较出函数值的大小。

6. 《九章算术》卷第六《均输》中,有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”若将这五人从上到下分别记为甲、乙、丙、丁、戊,且五人所得依次成等差数列,则乙与丙两人共分得()A. 钱B. 钱C. 钱D. 钱【答案】C【解析】设甲、乙、丙、丁、戊五人所得分别为,公差为,则有则,所以,故选C.【点睛】本题的关键是转化为等差数列型,而对于等差数列,我们常用基本量,用这两个基本量来表示所有量。

7. 已知双曲线:(,)的左右焦点分别为,,双曲线与圆()在第一象限交于点,且,则双曲线的离心率是()A. B. C. D.【答案】A【解析】由题意得,,根据双曲线定义,有即,故选C. 8. 已知一几何体的正视图、侧视图如图所示,则该几何体的俯视图不可能是()A. B.C. D.【答案】D【解析】由图可知,选项D对的几何体为长方体与三棱柱的组合,其侧视图中间的线不可视,应为虚线,故该几何体的俯视图不可能是D,选D.9. 定义运算为执行如图所示的程序框图输出的值,则的值为()A. B. C. D.【答案】A【解析】因为,所以=,而,所以= ,所以=,选A.10. 已知函数有两个零点,,且满足,,则的取值范围为()A. B. C. D.【答案】A【解析】由题意得,画出可行域,如下图,B(1,0),C(-,0).目标函数z=几何意义为可行域内的点到定义P(-2,2)连线的斜率,由图可知,,选A.【点睛】线性规划中常见目标函数的转化公式:(1)截距型:,与直线的截距相关联,若,当的最值情况和z的一致;若,当的最值情况和的相反;(2)斜率型:与的斜率,常见的变形:,,.(3)点点距离型:表示到两点距离的平方;11. 已知抛物线:的焦点为,准线为,过点作直线分别交抛物线与直线于点,(如图所示),若,则()A. B. C. D.【答案】C【解析】过点P作PA垂直于直线于点A,设直线与x轴交于点B,由抛物线的定义,可知|PA|=|PF|,易知所以,设|PF|=t,由,得|QP|=2t,所以,故选C.【点睛】过焦点的直线与准线相交,常通过抛物线上的点向准线作垂线,这样可以用抛物线定义与两直角三角形相似的几何方法解题。

衡水金卷2018年高考模拟数学(文)试题(五)有答案

衡水金卷2018年高考模拟数学(文)试题(五)有答案

2018年普通高等学校招生全国统一考试模拟试题文数(五)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集R U =,集合{}10A xx =+≥,101x B xx ⎧+⎫=<⎨⎬-⎩⎭,则图中阴影部分所表示人集合为A .{}1x x ≥- B .{}1x x <- C .{}11x x -≤≤- D .﹛1x x <-或1x ≥﹜ 2.已知复数123z i =+,2z a i =+(a R ∈,i 为虚数单位),若1218z z i =+,则a 的值为 A .12B .1C .2D .4 3.已知函数()f x 的图象关于原点对称,且在区间[]5,2--上单调递减,最小值为5,则()f x 在区间[]2,5上 A .单调递增,最大值为5 B .单调递减,最小值为5- C .单调递减,最大值为5- D .单调递减,最小值为54.已知直线231x +=与x ,y 轴的正半轴分别交于点A ,B ,与直线0x y +=交于点C ,若OC OA OB λμ=+u u u r u u u r u u u r(O 为坐标原点),则λ,μ的值分别为A .2λ=,1μ=-B .4λ=,3μ=- C. 2λ=-,3μ= D .1λ=-,2μ=5.已知122log 3a =,22log 3b =,1232c ⎛⎫= ⎪⎝⎭,32d e =,则A .d c a b >>>B .d b c a >>> C.c d a b >>> D .a c b d >>>6.已知0a >,0b >,则点(2P 在直线by x a=的右下方是双曲线22221x y a b -=的离心率e 的取值范围为)3,+∞的A .充要条件B .充分不必要条件 C.必要不充分条件 D .既不充分也不必要条件 7.已知α、β是两个不同的平面,给出下列四个条件:①存在一条直线a ,a α⊥,a β⊥;②存在一个平面γ,γα⊥,γβ⊥;③存在两条平行直线a 、b ,a α⊂,b β⊂,//a β,//b α;④存在两条异面直线a 、b ,a α⊂,b β⊂,//a β,//b α,则可以推出//αβ的是A .①③B .②④ C. ①④ D .②③ 8.已知直线2y =与函数()()tan 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭图象的相邻两个交点间的距离为6,点()1,3P 在函数()f x 的图像上,则函数()()12log g x f x =的单调递减区间为A .()()6,26k k k Z ππππ-+∈B .(),63k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭C. ()11,63k k k Z ⎛⎫-+∈ ⎪⎝⎭D .()()61,26k k k Z -+∈ 9.在如图所求的程序框图中,若输出n 的值为4,则输入的x 的取值范围为A .13,84⎡⎤⎢⎥⎣⎦ B .[]3,13 C.[)9,33 D .913,84⎡⎫⎪⎢⎣⎭10.已知某几何体的三视图如图所求,则该几何体的表面积为A .29593714a ππ⎫-⎪⎪⎝⎭ B .295914a ππ⎫-⎪⎪⎝⎭C.29593744a ππ⎛⎫+⎪ ⎪⎝⎭ D .295937144a ππ⎛⎫- ⎪ ⎪⎝⎭11.甲、乙两人各自在400米长的直线形跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是 A .18 B .1136 C.1564D .14 12.已知定义在R 上的可导函数()f x 的导函数为()'fx ,满足()()'f x f x <,且()102f =,则不等式()102x f x e -<的解集为A .1,2⎛⎫-∞ ⎪⎝⎭ B .()0,+∞ C.1,2⎛⎫+∞ ⎪⎝⎭D .(),0-∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()2log ,2,2,2,x x f x x x ≥⎧⎪=⎨+<⎪⎩则()()()3ff f -的值为 .14.已知命题:P x R ∀∈,()22log 0x x a ++>恒成立,命题[]0:2,2Q x ∃∈-,使得022xa ≤,若命题P Q ∧为真命题,则实数a 的取值范围为 .15.已知()222210x y a b a b +≤>>表示的区域为1D ,不等式组0,0,0,bx cy bc bx cy bc bx cy bc bx cy bc -+≥⎧⎪--≤⎪⎨+-≤⎪⎪++≥⎩表示的区域为2D ,其中()2220a b c c =+>,记1D 与2D 的公共区域为D ,且D 的面积S 为232234x y +=内切于区域D 的边界,则椭圆()2222:10x y C a b a b+=>>的离心率为 .16.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一个三角形沙田,三边分别为13里,14里,15里,假设1里按500米计算,则该三角形沙田外接圆的半径为 米.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 满足11a =,134n n a a +=+,*n N ∈.(1)证明:数列{}2n a +是等比数列,并求数列{}n a 的通项公式; (2)设()3log 22n n n a b a +=+,求数列{}n b 的前n 项和n T .18. 现从某医院中随机抽取了七位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量y 表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量x 表示,数据如下表: 特征量1 2 3 4 5 6 7 x98 88 96 91 90 92 96 y9.98.69.59.09.19.29.8(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1);(3)现要从医护专业知识考核分数95分以下的医护人员中选派2人参加组建的“九寨沟灾后医护小分队”培训,求这两人中至少有一人考核分数在90分以下的概率.附:回归方程$$y bx a=+$中斜率和截距的最小二乘法估计公式分别为()()()121ni iiniix x y ybx x==--=-∑∑$,$$a y bx=-$.19. 如图,在四棱锥P ABCD-中,底面ABCD是边长为a的菱形,PD⊥平面ABCD,60BAD∠=o,2PD a=,O为AC与BD的交点,E为棱PB上一点.(1)证明:平面EAC⊥平面PBD;(2)若//PD平面EAC,三棱锥P EAD-的体积为183a的值.20. 已知动圆C恒过点1,02⎛⎫⎪⎝⎭,且与直线12x=-相切.(1)求圆心C的轨迹方程;(2)若过点()3,0P的直线交轨迹C于A,B两点,直线OA,OB(O为坐标原点)分别交直线3x=-于点M,N,证明:以MN为直径的圆被x轴截得的弦长为定值.21. 已知函数()()322316f x x a x ax=-++,a R∈.(1)若对于任意的()0,x∈+∞,()()6lnf x f x x+-≥恒成立,求实数a的取值范围;(2)若1a>,设函数()f x在区间[]1,2上的最大值、最小值分别为()M a、()m a,记()()()h a M a m a=-,求()h a的最小值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,已知直线11,2:322x tly⎧=--⎪⎪⎨⎪=+⎪⎩(t为参数),曲线12cos,:22sinxCyϕϕ=+⎧⎨=-⎩(ϕ为参数),以原点O为极点,x轴的正半轴为极轴建立坐标系.(1)写出直线l的普通方程与曲线C的极坐标方程;(2)设直线l与曲线C交于A,B两点,求ABC∆的面积.23.选修4-5:不等式选讲已知函数()21f x x x=+--.(1)求不等式()2f x≥的解集;(2)记()f x 的最大值为k ,证明:对任意的正数a ,b ,c ,当a b c k ++=a b c k 成立.试卷答案一、选择题1-5:BCCCA 6-10:ACDDA 11、12:CB二、填空题13.2log 3 14.5,24⎛⎤⎥⎝⎦15.12或32 16.4062.5 三、解答题17.解:(1)由134n n a a +=+, 得()1232n n a a ++=+, 即1232n n a a ++=+,且123a +=,所以数列{}2n a +是以3为首项,3为公比的等比数列.所以12333n nn a -+=⨯=,故数列{}n a 的通项公式为()*32n n a n N --∈.(2)由(1)知,23nn a +=,所以3log 333n n n n nb ==. 所以1231231233333n n nnT b b b b =++++=++++L L .① 234111231333333n n n n nT +-=+++++L .② ①-②,得234211111333333n n T =+++++L 13n n+=11111331113223313nn n n n n ++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=-=--⋅-, 所以332323044343443n n n nn n T +=-=-⋅⋅⋅. 故数列{}n b 的前n 项和323443n nn T +=-⋅. 18.解:(1)由题得,98889691909296937x ++++++==.9.98.69.59.09.19.29.89.37y ++++++==.()()()()198939.99.3niii x x y y =--=-⨯-+∑()()()()88938.69.396939.59.3-⨯-+-⨯-+ ()()()()91939.09.390939.19.3-⨯-+-⨯-+ ()()()()92939.29.396939.89.39.9-⨯-+-⨯-=()()()()22221989388939693ni i x x=-=-+-+-∑()()()()2222919390939293969382+-+-+-+-=.所以()()()1219.90.1282niii nii x x y y bx x ==--==≈-∑∑$. $9.30.1293 1.86a=-⨯=-. 所以线性回归方程为$0.12 1.86y x =-.(2)由于0.120b=>$. 所以随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心,因此关爱患者的考核分数也会稳步提高.当95x =时,$0.1295 1.869.5y =⨯-≈.(3)由于95分以下的分数有88,90,91,92,共4个,则从中任选两个的所有情况有()88,90,()88,91,()88,92,()90,91,()90,92,()91,92,共6种.则这两个人中至少有一个分数在90分以下的情况有()88,90,()88,91,()88,92,共3种.故选派的这两个人中至少有一人考核分数在90分以下的概率3162P ==. 19.解:(1)因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD AC ⊥. 又四边形ABCD 为菱形,所以AC BD ⊥, 又PD BD D =I , 所以AC ⊥平面PBD . 而AC ⊂平面EAC , 所以平面EAC ⊥平面PBD .(2)因为//PD 平面EAC ,平面EAC I 平面PBD OE =. 所以//PD OE .又O 为AC 与BD 的交点, 所以O 是BD 的中点,所以E 是PB 的中点. 因为四边形ABCD 是菱形,且60BAD ∠=o , 所以取AD 的中点H ,连接BH ,可知BH AD ⊥,又因为PD ⊥平面ABCD , 所以PD BH ⊥. 又PD PD D =I , 所以BH ⊥平面PAD . 由于AB a =,所以32BH a =. 因此E 到平面PAD 的距离113322d BH ===, 所以3111332183332P EAD E PAD PAD V V S d a a --∆==⨯=⨯⨯⨯==. 解得6a =,故a 的值为6. 20.解:(1)由题意得,点C 与点1,02⎛⎫⎪⎝⎭的距离始终等于点C 到直线12x =-的距离.因此由抛物线的定义,可知圆心C 的轨迹为以1,02⎛⎫⎪⎝⎭为焦点,12x =-为准线的抛物线.所以122p =,即1p =. 所以圆心C 的轨迹方程为22y x =.(2)由圆心C 的轨迹方程为22y x =,可设()2112,2A t t ,()2222,2B t t ,()120t t ≠, 则()21323,2PA t t =-u u u r,()22223,2PB t t =-u u u r,由A ,P ,B 三点花线,可知()()2212232322320t t t t -⋅--⋅=,即()()()()22122231122312123223230230230t t t t t t t t t t t t t t t t --+=⇒-+-=⇒+-=.因为12t t ≠,所以1232t t =-. 又依题得,直线OA 的方程为11y x t =. 令3x =-,得133,M t ⎛⎫--⎪⎝⎭. 同理可知133,N t ⎛⎫--⎪⎝⎭. 因此以MN 为直径的圆的方程可设为()()1233330x x y y t t ⎛⎫⎛⎫+++++= ⎪⎪⎝⎭⎝⎭. 化简得()22121233930x y y t t t t ⎛⎫+++++=⎪⎝⎭,即()()212212123930t t x y y t t t t +++++=. 将1232t t =-代入上式,可知()()22123260x y t t y ++-+-=, 在上式中令0y =,可知136x =-236x =-因此以MN 为直径的圆被x 轴截得的弦长为12363626x x -=-=. 21.解:(1)因为()()()2616ln f x f x a x x +-=-+≥对任意的()0,x ∈+∞恒成立,所以()2ln 1xa x -+≥. 令()2ln x g x x =,0x >,则()'212ln x g x x -=. 令()'0g x =,则x e =当(x e ∈时,()'0g x >,()g x 在区间(e 上单调递增;当),x e ∈+∞时,()'0g x <,()g x 在区间(),e +∞上单调递减.所以()max 12g x g e e ==,所以()112a e -+≥,即112a e≤--, 所以实数a 的取值范围为1,12e ⎛⎤-∞--⎥⎝⎦. (2)因为()()322316f x x a x ax =-++, 所以()131f a =-,()24f =. 所以()()()()'2661661f x x a x a x x a =-++=--.令()'0fx =,则1x =或a .①若513a <≤, 当()1,x a ∈时,()'0f x <,()f x 在区间()1,a 上单调递减;当(),2x a ∈时,()'0fx >,()f x 在区间(),2a 上单调递增.又因为()()12f f ≤,所以()()24M a f -=,()()323m a f a a a ==-+, 所以()()()()32324334h a M a m a a a a a =-=--+=-+. 因为()()'236320h a a a a a =-=-<,所以()h a 在区间51,3⎛⎤⎥⎝⎦上单调递减,所以当51,3a ⎛⎤∈ ⎥⎝⎦时,()h a 的最小值为58327h ⎛⎫= ⎪⎝⎭.②若523a <<, 当()1,x a ∈时,()'0f x <,()f x 在区间()1,a 上单调递减;当(),2x a ∈时,()'0fx >,()f x 在区间(),2a 上单调递增.又因为()()12f f >,所以()()131M a f a =--,()()323m a f a a a -=-+. 因为()()2'2363310h a a a a =-+=->, 所以()h a 在区间5,23⎛⎫ ⎪⎝⎭上单调递增.所以当5,23a ⎛⎫∈ ⎪⎝⎭时,()58327h a h ⎛⎫>= ⎪⎝⎭. ③若2a ≥, 当()1,2x ∈时,()'0fx <,()f x 在区间()1,2上单调递减,所以()()131M a f a ==-,()()24m a f -=. 所以()()()31435h a M a m a a a =-=--=-, 所以()h a 在区间[)2,+∞上的最小值为()21h =. 综上所述,()h a 的最小值为827. 22.解:(1)将直线11,2:32x t l y ⎧=--⎪⎪⎨⎪=+⎪⎩消去参数t ,3320x y ++=,故直线l 3320x y ++=. 将曲线12cos ,:22sin x C y ϕϕ=+⎧⎨=-⎩化为普通方程为()()22124x y -+-=,即222410x y x y +--+=,将222x y ρ=+,cos x ρθ=,sin y ρθ=代入上式, 可得曲线C 的极坐标方程为22cos 4sin 10ρρθρθ--+=.(2)由(1)可知,圆心()1,2C 到直线3320l x y ++=的距离为()23232331d ++-==+.则222432AB R d =-=-=(R 为圆C 半径).所以1123322ABC S AB d ∆=⨯=⨯=. 故所求ABC ∆面积为ABC ∆323.解:(1)由题知,()3,2,21,21,3. 1.x f x x x x -<-⎧⎪=+-≤≤⎨⎪>⎩所以()2f x ≥,即32,2x -≥⎧⎨<-⎩或212,21x x +≥⎧⎨-≤≤⎩或32,1.x ≥⎧⎨>⎩解得12x ≥.故原不等式的解集为1,2⎡⎫+∞⎪⎢⎣⎭.(2)因为()21213f x x x x x =+--≤+-+=(当且仅当()()210x x +-≥时取等号), 所以3k =,因此有3a b c ++=. 111a b c a b c =⋅⋅⋅111333322222a b c a b c +++++++≤++===(当且仅当1a b c ===时取等号), a b c k ≤得证.。

衡水金卷2018年高考模拟数学(文)试题(二)-有答案

衡水金卷2018年高考模拟数学(文)试题(二)-有答案

2018年普通高等学校招生全国统一考试模拟试题(衡水金卷调研卷)文数二第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}3,2,1,0,1,2,3A =---,集合{}1,0,1,3A =-,集合{}3,2,1,3B =---,则()U C A B ⋃=( ) A .{}3,2,1-- B .{}2,1,1-- C .{}2 D .{}1,2,3-2. 已知复数z 满足()20181z i i +=(i 是虚数单位),则复数z 在复平面内对应的点所在象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.函数()()ln 21f x x =++的定义域为( )A .1,22⎡⎤-⎢⎥⎣⎦B .1,22⎡⎫-⎪⎢⎣⎭C .1,22⎛⎤- ⎥⎝⎦D .1,22⎛⎫- ⎪⎝⎭4.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法.如图是刘徽利用正六边形计算圆周率时所画的示意图,现项园中随机投掷一个点,则该点落在正六边形内的概率为( )A B C5.已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线4310x y ++=垂直,且焦点在圆()22126x y +-=上,则该双曲线的标准方程为( )A .221916x y -= B .221169x y -= C .22134x y -= D .22143x y -= 6.执行如图所示的程序框图,若输入的0.05t =,则输出的n 为( )A .3B .4C .5D .67.已知数列{}n a 的前n 项和为n S ,1133,2n n a a S ++==,则5a =( ) A .33 B .43 C .53 D .638.已知将函数()()sin 206f x x πωω⎛⎫=+> ⎪⎝⎭的图象向左平移3π个单位长度得到函数()g x 的图象,若函数()g x 图象的两条相邻的对称轴间的距离为2π,则函数()g x 的—个对称中心为( ) A .,06π⎛⎫- ⎪⎝⎭ B .,06π⎛⎫ ⎪⎝⎭ C .,012π⎛⎫- ⎪⎝⎭ D .,012π⎛⎫ ⎪⎝⎭9.榫卯是在两个木构件上所采用的一中凹凸结合的连接方式,凸出部分叫榫,凹进部分叫卯,榫和卯咬合,起到连接作用,代表建筑有:北京的紫禁城、天坛祈年殿、山西悬空寺等,如图所示是一种榫卯的三视图,其表面积为( )A .812π+B .816π+C .912π+D .916π+10.已知实数,x y 满足约束条件0,20,3,x y x y x -≥⎧⎪+-≥⎨⎪≤⎩当且仅当1x y ==时,目标函数z kx y =+取大值,则实数k 的取值范围是( )A .(),1-∞B .(),1-∞-C .()1,-+∞D .()1,+∞11.已知0a >,命题:p 函数()()2lg 23f x ax x =++的值域为R ,命题:q 函数()ag x x x=+在区间()1,+∞内单调递增.若p q ⌝∧是真命题,则实数a 的取值范围是( )A .(],0-∞B .1,3⎛⎤-∞ ⎥⎝⎦C .10,3⎛⎤ ⎥⎝⎦D .1,13⎛⎤⎥⎝⎦12.若函数()ln ,0x x f x x >⎧⎪=⎨≤⎪⎩与()1g x x a =++的图像上存在关于y 轴对称的点,则实数a 的取值范围是( )A .RB .(],e -∞-C .[),e +∞D .∅第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知在ABC ∆中,D 为BC 边上的点,20BD CD +=,若(),AD mAB nAC m n R =+∈,则n = .14.已知焦点在x 轴上的椭圆222121x y m m +=+20y -+=上,则椭圆的离心率为 .15.在锐角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若()sin cos sin 1cos C A B C =-,且,3A b π==,则c = .16.如图,在矩形ABCD 中,2AD =,E 为AB 边上的点,项将ADE ∆沿DE 翻折至A DE '∆,使得点A '在平面EBCD 上的投影在CD 上,且直线A D '与平面EBCD 所成角为30︒,则线段AE 的长为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{}n a 的前n 项和为n S ,15965,3a a a S =+=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11n n n b a a ++=,且16b a =,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .18.如图,四棱锥P ABCD -的底面ABCD 是边长为2的正方形,平面PAB ⊥平面ABCD ,点E 是PD 的中点,棱PA 与平面BCE 交于点F .(1)求证://AD EF ;(2)若PAB ∆是正三角形,求三棱锥P BEF -的体积.19.某市统计局就某地居民的收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[)1000,1500).(1)求居民收入在[)3000,3500的频率;(2)根据频率分布直方图算出样本数据的中位数及样本数据的平均数;(3)为了分析居民的收人与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在[)2500,3000内应抽取多少人?20.已知点F 为抛物线()2:20C y px p =>的焦点,过F 的直线l 交抛物线于,A B 两点. (1)若直线l 的斜率为1,8AB =,求抛物线C 的方程;(2)若抛物线C 的准线与x 轴交于点()1,0P -,(:2:1APF BPF S S ∆∆=,求PA PB ⋅的值. 21.已知函数()2ln ,f x x x ax a R =++∈.(1)当1a =时,求曲线()f x 在1x =处的切线方程;(2)若()1212,x x x x <是函数()f x 的导函数()f x '的两个零点,当(),3a ∈-∞-时,求证:()()123ln 24f x f x ->-. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线1C 的参数方程为2143x t y t =-⎧⎨=-+⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4πρθ⎛⎫=- ⎪⎝⎭.(1)求曲线1C 的普通方程与2C 的直角坐标方程; (2)判断曲线12,C C 是否相交,若相交,求出相交弦长. 23.选修4-5:不等式选讲 已知函数()212f x x x =-++. (1)求不等式()0f x >的解集;(2)若对任意的[),x m ∈+∞,都有()f x x m ≤-成立,求实数m 的取值范围.试卷答案一、选择题1-5: CBDAB 6-10: CCDBB 11、12:DC二、填空题13.1314. 23三、解答题17. 解:(1)设等差数列{}n a 的公差为d , 由15965,3a a a S =+=, 得 ()()6535458652d d d ⨯+++=⨯+, 解得2d =.所以()()()*1152123n a a n d n n n N =+-=+-=+∈. (2)由(1)得,1626315b a ==⨯+=. 又因为11n n n b a a ++=,所以当2n ≥时,()()12321n n n b a a n n -==++ 当1n =时,15315b =⨯=,符合上式, 所以()()2321n b n n =++. 所以()()11111232122123n b n n n n ⎛⎫==- ⎪++++⎝⎭. 所以1111111235572123n T n n ⎛⎫=-+-++- ⎪++⎝⎭()1112323323n n n ⎛⎫=-= ⎪++⎝⎭. 18. 解:(1)因为底面ABCD 是边长为2的正方形, 所以//BC AD .又因为BC ⊄平面PAD ,AD ⊂平面PAD , 所以//BC 平面PAD .又因为,,,B C E F 四点共面,且平面BCEF ⋂平面PAD EF =,所以//BC EF .又因为//BC AD ,所以//AD EF . (2)因为//AD EF ,点E 是PD 的中点, 所以点F 为PA 的中点,112EF AD ==. 又因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB AD AB =⊥, 所以AD ⊥平面PAB ,所以EF ⊥平面PAB . 又因为PAB ∆是正三角形, 所以2PA PB AB ===,所以12PBF PBA S S ∆∆==又1EF =,所以113P BEF B PEF V V --===故三棱锥P BEF -. 19.解:(1)由题知,月收入在[)3000,3500的频率为0.00035000.15⨯=.(2)从左数第一组的频率为0.00025000.1⨯=,第二组的频率为0.00045000.2⨯=, 第三组的频率为0.00055000.25⨯=, ∴中位数在第三组, 设中位数为2000x +,则0.00050.50.10.2x ⨯=--,解得400x =, ∴中位数为2400.由12500.117500.222500.2527500.2532500.1537500.052400⨯+⨯+⨯+⨯+⨯+⨯=, 得样本数据的平均数为2400.(3)月收入在[)2500,3000的频数为0.25100002500⨯=(人), ∵抽取的样本容量为100, ∴抽取的比例为100110000100=, ∴月收入在[)2500,3000内应抽取的人数为1250025100⨯=(人). 20.解:(1)由题意知,直线l 的方程为2p y x =-. 联立2,22,p y x y px ⎧=-⎪⎨⎪=⎩得22304p x px -+=. 设,A B 两点的坐标分别为()(),,,A A B B x y x y , 则3A B x x p +=.由抛物线的性质,可得4822A B A B p pAB FA FB x x x x p p =+=+++=++==, 解得2p =,所以抛物线C 的方程为24y x =.(2)由题意,得()1,0F ,抛物线2:4C y x =, 设直线l 的方程为1x my =+,()()1122,,,A x y B x y , 联立21,4,x my y x =+⎧⎨=⎩得2440y my --=.所以12124,4,y y m y y +=⎧⎨=-⎩①因为(:2:1APF BPF S S ∆∆=,所以2AF BF=因为,,A F B 三点共线,且,AF FB 方向相同, 所以()23AF FB =-,所以()(()11221,231,x y x y --=-, 所以)122y y =,代入①,得))222314,2 4.y m y⎧=⎪⎨=-⎪⎩解得212m =, 又因为()1,0P -,所以()()11221,,1,PA x y PB x y =+=+, 所以()()11221,1,PA PB x y x y ⋅=+⋅+()1212121x x x x y y =++++()()()1212111114my my my my =+++++++- ()212122m y y m y y =++2224842m m m =-+==.21.解:(1)当1a =-时,()2ln f x x x x =+-,()121f x x x'=+-, 所以()1ln1110f =+-=,()11212f '=+-=. 所以曲线()f x 在1x =处的切线方程为()21y x =-,即220x y --=.(2)由题得,()()212120x ax f x x a x x x++'=++=>.因为12,x x 是导函数()f x '的两个零点, 所以12,x x 是方程210ax ax ++=的两根, 故121210,22a x x x x +=->=. 令()221g x x ax =++, 因为(),3a ∈-∞-,所以13022a g +⎛⎫=< ⎪⎝⎭,()130g a =+<,所以()1210,,1,2x x ⎛⎫∈∈+∞ ⎪⎝⎭,且22112221,21ax x ax x =--=--, 所以()()()()()2222111212121222ln ln x x f x f x x x ax ax x x x x -=+-+-=--+, 又因为1212x x =,所以1212x x =,所以()()()()2212121221ln 2,1,4f x f x x x x x -=--∈+∞, 令()2222,t x =∈+∞,()()()121ln 22t h t f x f x t t=-=--. 因为()()22211110222t h t t t t -'=+-=>, 所以()h t 在区间()2,+∞内单调递增, 所以()()32ln 24h t h >=-, 即()()123ln 24f x f x ->-. 22.解:(1)由题知,将曲线1C 的参数方程消去参数t , 可得曲线1C 的普通方程为210x y +-=.由4πρθ⎛⎫=- ⎪⎝⎭,得()22cos sin ρρθρθ=+.将222x y ρ=+,cos ,sin x y ρθρθ==代入上式, 得2222x y x y +=+, 即()()22112x y -+-=.故曲线2C 的直角坐标方程为()()22112x y -+-=. (2)由(1)知,圆2C 的圆心为()1,1,半径R , 因为圆心到直线1C的距离d ==<, 所以曲线12,C C 相交,所以相交弦长为23.解:(1)当2x ≤-时,不等式转化为()()2120x x --++>,解得2x ≤-; 当122x -<<时,不等式转化为()()2120x x ---+>,解得123x -<<-; 当12x ≥时,不等式转化为()()2120x x --+>,解得3x >. 综上所述,不等式()0f x >的解集为{13x x <-或}3x >.(2)由(1)得,()3,2,131,2,213,,2x x f x x x x x ⎧⎪-+≤-⎪⎪=---<<⎨⎪⎪-≥⎪⎩作出其函数图象如图所示:令y x m =-,若对任意的[),x m ∈+∞,都有()f x x m ≤-成立,即函数()f x 的图象在直线y x m =-的下方或在直线y x m =-上. 当2m ≤-时,30m -+≤,无解; 当122m -<<时,310m --≤,解得1132m -≤<; 当12m ≥时,30m -≤,解得132m ≤≤. 综上可知,当133m -≤≤时满足条件,故实数m 的取值范围是1,33⎡⎤-⎢⎥⎣⎦.。

衡水金卷2018届高三大联考word答案全数学(文)

衡水金卷2018届高三大联考word答案全数学(文)
A. B. C. D.
12.已知 的内角 的对边分别是 ,且 ,若 ,则 的取值范围为( )
A. B. C. D.
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.已知向量 , ,若 ,则 .
14.已知函数 ,若曲线 在点 处的切线经过圆 : 的圆心,则实数 的值为.
15.已知实数 满足约束条件 则 的取值范围为(用区间表示).
二、填空题
13.1 14. 15. 16.
三、解答题
17.解:(1)设数列 的公比为 ,
则 ,
又 ,
∴ , 或 , (舍).
∴ ,即 .
故 ( ).
(2)由(1)得, .

.
18.解:(1)连接 交 于点 ,连接 .
在三棱柱 中,四边形 是平行四边形.
∴点 是 的中点.
∵点 为 的中点,
∴ .
(2)记 ,求数列 的前 项和 .
18.如图,在三棱柱 中, 平面 , , ,点 为 的中点.
(1)证明: 平面 ;
(2)求三棱锥 的体积.
19.随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在 市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到下表(单位:人):
A. B. C. D.
6.下列函数中,与函数 的定义域、单调性与奇偶性均一致的函数是( )
A. B.
C. D.
7.如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )
A. B. C. D.
8.设 , , ,则 的大小关系为( )
A. B. C. D.

【配套K12】[学习](衡水金卷)2018年普通高等学校招生全国统一考试模拟数学试题三 文

【配套K12】[学习](衡水金卷)2018年普通高等学校招生全国统一考试模拟数学试题三 文

(衡水金卷)2018年普通高等学校招生全国统一考试模拟数学试题三 文第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{|13}A x x =<≤,{|02}B x x =≤<,则AB =( )A .{|02}x x ≤<B .{|03}x x ≤≤C .{|12}x x <<D .{|13}x x <≤2.设函数1,0()1,02x x x f x x +≥⎧⎪=⎨<⎪⎩,则[(1)]f f -=( )A .32B1 C .1 D .3 3.若向量(1,0)a =,(0,1)b =,2(2,3)c xa yb =+=(,)x y R ∈,则x y +=( ) A .4 B .5 C .3 D .24.若实数x ,y 满足约束条件113x y x y ≥⎧⎪≥⎨⎪+≤⎩,则y x 的取值范围是( )A .1,22⎡⎤⎢⎥⎣⎦B .1,23⎡⎤⎢⎥⎣⎦C .1,22⎡⎫-⎪⎢⎣⎭D .1,32⎡⎤⎢⎥⎣⎦5.命题p :若复数21iz i=-(i 为虚数单位),则复数z 对应的点在第二象限,命题q :若复数z 满足z z ⋅为实数,则复数z 一定为实数,那么( )A .p q ∧是真命题B .()p q ∧⌝是真命题C .()p q ⌝∨是真命题D .()p q ∨⌝是假命题 6.执行如图所示的程序框图,若输入的40n =,则输出的S =( )A .80B .96C .112D .120 7.已知函数()cos 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移(0)ϕϕ>个单位后,得到的图象对应的函数()g x 为奇函数,则ϕ的最小值为( ) A .6π B .56π C .3π D .23π8.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,从A ,B ,C ,D 四点中任取三点和顶点P 所形成的四面体中,任取两个四面体,则其中一个四面体为鳖臑的概率为( )A .14 B .23 C .35 D .3109.如图,AB 为经过抛物线22(0)y px p =>焦点F 的弦,点A ,B 在直线2px =-上的射影分别为1A ,1B ,且113AA BB =,则直线AB 的倾斜角为( )A .6π B .4π C .3π D .512π10.一个几何体的三视图如图所示,且该几何体的表面积为32π++x =( )A .1 B.32 D.211.已知数列{}n a 满足2*1232()n n a a a a n N ⋅⋅⋅=∈,且对任意的*n N ∈都有12111nt a a a ++⋅⋅⋅+<,则t 的取值范围为( ) A .1,3⎛⎫+∞ ⎪⎝⎭ B .1,3⎡⎫+∞⎪⎢⎣⎭ C .2,3⎛⎫+∞⎪⎝⎭ D .2,3⎡⎫+∞⎪⎢⎣⎭12.若存在1,x e e ⎡⎤∈⎢⎥⎣⎦,不等式22ln 30x x x mx +-+≥成立,则实数m 的最大值为( )A .132e e +- B .32e e++ C .4 D .21e - 第Ⅱ卷二、填空题:本题共4小题,每小题5分.13.已知{}n a 是等差数列,n S 是其数列的前n 项和,且4103S =-,1221a a +=,则3a = .14.已知圆C 的方程为22(2)(1)1x y ++-=,则圆上的点到直线0x y -=的距离的最小值为 .15.观察三角形数组,可以推测:该数组第八行的和为 .16.已知双曲线1C :2212x y -=,曲线2C :1y x =+,P 是平面内一点,若存在过点P 的直线与1C ,2C 都有公共点,则称点P 为“差型点”.下面有4个结论: ①曲线1C 的焦点为“差型点”; ②曲线1C 与2C 有公共点;③直线y kx =与曲线2C 有公共点,则1k >; ④原点不是“差型点”.其中正确结论的个数是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知ABC ∆A ,B ,C 的对边分别为a ,b ,c ,且2b =. (1)若2cos cos cos a A c B b C =+,求角C ; (2)若B 为锐角,3a c +=,求ABC ∆的面积.18.已知某地区中小学生人数和近视情况如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生作为样本进行调查.(1)求样本容量和抽取的高中生近视人数分别是多少?(2)在抽取的n 名高中生中,平均每天学习时间超过9小时的人数为310n,其中有12名学生近视,请完成高中生平均每天学习时间与近视的列联表:(3)根据(2)中的列联表,判断是否有95%的把握认为高中生平均每天学习时间与近视有关?附:22()()()()()n ad bc K a b c d a c b d-=++++,其中n a b c d =+++.19.如图,在三棱锥A BCD -中,AB ⊥平面BCD ,6DBC ∠=,2BD BC ==,2AB =,E 为AC 的中点,F 在棱CD 上,且BC EF ⊥.(1)求证:BF CF =; (2)求三棱锥A BEF -的体积.20.已知椭圆22221(0)x y a b a b +=>>的左,右焦点分别为1F ,2F ,过1F 的直线交椭圆于A ,B 两点.(1)若直线AB 与椭圆的长轴垂直,12AB a =,求椭圆的离心率;(2)若直线AB 的斜率为1,3222a AB a b =+,求椭圆的短轴与长轴的比值.21.已知曲线()xmx m f x e -=在点(1,(1))f 处的切线斜率为1e-. (1)求函数()f x 的极小值; (2)当(0,)x π∈时,求证:21()cos sin f x x x x e +>-. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C ,2C 的极坐标方程分别为4cos ρθ=,2sin ρθ=.(1)将直线l 的参数方程化为极坐标方程,将2C 的极坐标方程化为参数方程; (2)当6πα=时,直线l 与1C 交于O ,A 两点,与2C 交于O ,B 两点,求AB .23.选修4-5:不等式选讲 已知函数()23b cf x x a x =-+++的最小值为7(a ,b ,c 为正数). (1)求222a b c ++的最小值;(2)求证:444222222a b c a b c b c a++≥++.文数(三)一、选择题1-5: BDAAB 6-10: DCBCA 11、12:DA 二、填空题13. 43-14. 1215. 1296 16. 3 三、解答题17.解:(1)∵2cos cos cos a A c B b C =+,由正弦定理,可得2sin cos sin cos sin cos A A C B B C =+, 即2sin cos sin()sin A A B C A =+=. ∵sin 0A ≠,∴1cos 2A =. ∵0A π<<,∴3A π=.又2sin bR B=(R 为外接圆半径),2b =,R =,∴sin 2B =,∴4B π=或34π(舍).∴5()12C A B ππ=-+=. (2)由(1)知,4B π=或34π, 又B 为锐角,∴4B π=.由余弦定理,可得2222cos b a c ac B =+-,即24()2a c ac =+-.∵3a c +=,∴49(2ac =-,∴(25ac =, ∴ac =.∴1sin2ABC S ac B ∆===.18.解:(1)由图1可知,高中生占学生总数的20%, ∴学生总数为300020%15000÷=人, ∴样本容量为150002%300⨯=.∵抽取的高中生人数为30002%60⨯=人, 由于近视率为60%,∴抽取的高中生近视人数为6060%36⨯=人. (2)列联表如下:(3)由列联表可知,2260(1812246)0.47624364218K ⨯⨯-⨯=≈⨯⨯⨯, ∵0.476 3.841<,∴没有95%的把握认为高中生平均每天学习时间与近视有关. 19.解:(1)取BC 的中点G ,连接EG ,GF .∵E 为AC 的中点,∴//EG AB . ∵AB ⊥平面BCD ,∴EG ⊥平面BCD ,∴EG BC ⊥. 又∵BC EF ⊥,EFEG E =,∴BC ⊥平面EFG ,∴BC GF ⊥. 又∵G 是BC 的中点, ∴BF CF =.(2)由图可知,三棱锥A BEF -体积与三棱锥F ABE -体积相等.∵FG BC ⊥,FG AB ⊥,AB BC B =,∴FG ⊥平面ABC .∵150DBC ∠=,且2BD BC ==, ∴15BCD ∠=.在Rt FGC ∆中,1CG =,∴tan152GF ==. ∴13A BEF F ABE ABE V V S FG --∆-=⨯⨯11111232322ABC S FG ∆=⨯⨯=⨯⨯⨯1(2(26⨯⨯=,即三棱锥A BEF -的体积为16.20.解:(1)由题意,直线AB 的方程为x c =-,∴2212b AB a a ==, 即224a b =,故c e a ====(2)设1(,0)F c -,则直线AB 的方程为y x c =+,联立22221y x c x y a b=+⎧⎪⎨+=⎪⎩,得22222222()20a b c a cx a c a b +++-=,42222222444()()8a b a a b c b a b ∆=-+-=.设11(,)A x y ,22(,)B x y ,则212222a c x x a b +=-+,2221222()a cb x x a b-=+.∴12AB x =-=22a b=+22222242ab a a b a b ==++. ∴222a b =,∴2212b a =,∴b a =21.解:(1)由题得,()f x 的定义域为R ,(2)'()x m x f x e --=,∴'(1)mf e=.∵曲线()f x 在点(1,(1))f 处的切线斜率为1e-, ∴1m e e=-,∴1m =-. ∴1()x x f x e -=,2'()x x f x e-=,当2x >时,'()0f x >,()f x 单调递增, 当2x <时,'()0f x <,()f x 单调递减,∴()f x 的极小值为21(2)f e =-. (2)由(1)可知,21()f x e+在2x =处取得最小值0,设()cos sin g x x x x =-,(0,)x π∈, 则'()cos sin cos sin g x x x x x x x =--=-, ∵(0,)x π∈,∴'()0g x <, ∴()g x 在区间(0,)π上单调递减, 从而()(0)0g x g <=, ∴21()cos sin f x x x x e +>-. 22.解:(1)由直线l 的参数方程cos sin x t y t αα=⎧⎨=⎩(t 为参数),精品K12教育教学资料精品K12教育教学资料 得直线l 的极坐标方程为()R θαρ=∈. 由曲线2C 的极坐标方程2sin ρθ=, 得直角坐标方程为22(1)1x y +-=,∴曲线2C 的参数方程为cos 1sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数).(2)当6πα=时,直线l 的极坐标方程为()6R πθρ=∈. 当6πθ=时,4cos 6OA π==2sin 16OB π==,∴1AB OA OB =-=.23.解:(1)∵2323b cb c x a x a -+++≥++(当且仅当()023b c x a x ⎛⎫-++≤ ⎪⎝⎭时取等号), 由题意,得723b c a ++=. 根据柯西不等式,可知22222211()123a b c ⎡⎤⎛⎫⎛⎫++++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦24923b c a ⎛⎫≥++= ⎪⎝⎭, ∴22236a b c ++≥.∴222a b c ++的最小值为36. (2)∵42222a b a b +≥,42222b c b c +≥,42222c a c a+≥, ∴444222222a b c a b c b c a+++++2222()a b c ≥++, ∴444222222a b c a b c b c a++≥++.。

经典文档衡水金卷2018年普通高等学校招生全国统一考试模拟试题(压轴卷)文科数学(一)

经典文档衡水金卷2018年普通高等学校招生全国统一考试模拟试题(压轴卷)文科数学(一)

2018 年普通高等学校招生全国统一考试模拟试题文科数学(一)本试卷共 4 页,23 题(含选考题)。

全卷满分150 分。

考试用时120 分钟。

第Ⅰ卷一、选择题:本题共12 小題,毎小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 A (x, y) y x ,B(x, y) y 2 ,则AI BA. 2B. 2,2C. ( 2,2) D, ( 2,2),(2,2)2.已知i为虚数单位,若复数复数为2z (a 2a 3) (a 3)i是纯虚数,则复数12a ii的共轭A.475 5i或3155iB.4755iC.3155iD.3155i3.在某次月考中,一名生物老师从他所任教的某班中抽取了甲、乙两组学生的生物成绩(每组恰好各10 人),并将获取的成绩制作成如图所示的茎叶图.观察茎叶图,下面说法错误的是A.甲组学生的生物成绩高分人数少于乙组B.甲组学生的生物成绩比乙组学生的生物成绩更稳定C.甲组学生与乙组学生的生物平均成绩相同D.甲组学生与乙组学生生物成绩的中位数相同4.已知双曲线C:2 2x y2 2 1(a 0,b 0)a b的渐近线与动曲线y (x 2) 3( R) 在第一象限内相交于一定点A,则双曲线 C 的离心率为A. 54B.53C. 2D.435.如图,在长方体ABCD -A1B1C1D1 中,点E,F 分别为B1C1,C1D1 的中点,则四棱锥A -B1FFD1 的正视图与侧视图分別为A.②,③B,④,② C. ②,① D. ②,④6.已知等差数列a n 的前孢项和为S n ,且a1 10, a2 a3 a4 a5 a6 20 ,则“S n取得最小值’的’一个充分不必要条件是A .n=5 或6 B.n=5 或6 或7 C.n=6 D.n=117.我国古代《九章算术》里,记载了一个例子:今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何? 该问题中的羡除是如图所示的五面体ABCDEF ,其三个侧面皆为等腰梯形,两个底面为直角三角形,其中.AB=6 尺,CD=10 尺,EF=8 尺,AB ,CD 之间的距离为 3 尺,CD,EF’间的距离为7 尺,则异面直线DF‘与AB 所成的角的正弦值为A .9130130B.7130130C.97D.798.设3a log ,b ln 3,执行如图所示的程序框图,则输出的S 的值为2A .9+ln 3B.3-ln 3C.11D.1x x9.函数 f (x) 2 2 2的部分图象可能是10.将函数 f (x) 2cos x 的图象向右平移 6 个单位,再将所得图象上所有点的横坐标变为原来的1( 0) 倍,得到函数g(x)的图象,若函数g(x)在区间3( , )4 4上是增函效,则则的取值范围是A.2[ ,2]9B.2(0, ]9C.26 32[ , ]9 9D.2 26 14(0, ] U[ , ]9 9 311.已知函数2,x 1f (x) x22x ,x 1,若方程 2[ f ( x)] mf (x) 1 0(m R) 恰有 4 个不同的实根,则实数m 的取值范围为A,5(0, )2B.5(2, )2C. (2, )D.5( , )212.若过抛物线 2 2 ( 0)x py p 或2 2 ( 0)y px p 的焦点 F 的直与该抛物线交于A,B两点,则称线段AB 为该抛物线的焦点弦,此时有以下性质成立:1 1 2AF BF P。

河北省衡水金卷2018年普通高等学校理数招生全国统一考试模拟试题(3)及解析

河北省衡水金卷2018年普通高等学校理数招生全国统一考试模拟试题(3)及解析

第1页,总19页河北省衡水金卷2018年普通高等学校理数招生全国统一考试模拟试题(3)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知复数 z 满足 z(2+i)=3+i ( i 为虚数单位),其共轭复数为 z ¯,则 z ¯为( ) A.75−15i B.−75−15iC.75+15i D.−75+15i2.已知 cos(π−α)=13, sin(π2+β)=23(其中, α , β∈(0,π) ),则 sin(α+β)的值为( ) A.4√2−√59 B.4√2+√59 C.−4√2+√59 D.−4√2−√593.已知集合 A ={x ∈R|x 2−3x −4≤0 } , B ={x ∈R|x ≤a } ,若 A ∪B =B ,则实数 a 的取值范围为( ) A.(4,+∞) B.[4,+∞) C.(−∞,4) D.(−∞,4]4.某高三学生进行考试心理素质测试,场景相同的条件下每次通过测试的概率为 45 ,则连续测试4次,至少有3次通过的概率为( )答案第2页,总19页A.512625 B.256625 C.64625 D.641255.已知 12+22=2×3×56, 12+22+32=3×4×76, 12+22+33+42=4×5×96, ⋯ ,若 12+22+32+42+⋯+n 2=385(n ∈N ∗) ,则 n 的值为( )A.8B.9C.10D.116.已知椭圆 x 2a 2+y 2b 2=1(a >b >0) 的左顶点为 M ,上顶点为 N ,右焦点为 F ,若NM ⇀⋅NF ⇀=0 ,则椭圆的离心率为( )A.√32 B.√2−12 C.√3−12 D.√5−127.将函数 f(x)=sin2x 图像上的所有点向右平移 π4 个单位长度后得到函数 g(x) 的图像,若 g(x) 在区间 [0,a] 上单调递增,则 a 的最大值为( ) A.π8 B.π4 C.π6 D.π28.如图是计算 11×2+12×3+13×4+⋯+1n(n+1) 的程序框图,若输出的 S 的值为 99100 ,则判断框中应填入的条件是( )第3页,总19页外…………○…………装…………○………………线…………○…学校:___________姓名:___________班级:__内…………○…………装…………○………………线…………○…A.n >98?B.n >99?C.n >100?D.n >101?9.朱世杰是历史上有名的数学家之一,他所著的《四元玉鉴》卷中“如像招数一五间”,有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日?”其大意为:“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始,每天派出的人数比前一天多7人,修筑堤坝的每人每天发大米3升,共发出大米40392升,问修筑堤坝多少天”,在这个问题中,第8天应发大米( ) A.350升 B.339升 C.2024升 D.2124升10.已知三棱锥的三视图如图所示,则该三棱锥内切球的半径为( )A.3+4√3+√6B.6+2√3+√6C.2+3√3+2√6D.4+3√3+2√611.如图所示,在矩形 ABCD 中, AB =4 , AD =2 , P 为边 AB 的中点,现将 ΔDAP 绕直线 DP 翻转至 ΔDA′P 处,若 M 为线段 A′C 的中点,则异面直线 BM 与 PA′ 所成角的正切值为( )答案第4页,总19页外…………○…………装…○…………线…………○※※请※※不※※※※内…………○…………装…○…………线…………○A.12 B.2 C.14 D.412.若函数 y =f(x) 图像上存在两个点 A , B 关于原点对称,则对称点 (A,B) 为函数y =f(x) 的“孪生点对”,且点对 (A,B) 与 (B,A) 可看作同一个“孪生点对”.若函数 f(x)= {2,x <0−x 3+6x 2−9x +2−a,x ≥0恰好有两个“孪生点对”,则实数 a 的值为( A.0 B.2 C.4 D.6第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.(2x +1)(x −2)3 的展开式中含 x 2 项的系数为 .14.如图所示,在正方形 ABCD 中,点 E 为边 BC 的中点,点 F 为边 CD 上的靠近点C 的四等分点,点 G 为边 AE 上的靠近点 A 的三等分点,则向量 FG ⇀ 用 AB ⇀ 与 AD ⇀表示为 .15.已知在等腰梯形 ABCD 中, AB//CD , |AB|=2|CD|=4 , ∠ABC =60∘ ,双曲线以 A , B 为焦点,且与线段 AD , BC (包含端点 D , C )分别有一个交点,则该双曲线的离心率的取值范围是 .第5页,总19页…○…………外……装…………○…………订………姓名:___________班级:___________考号:______…○…………内……装…………○…………订………16.已知数列 {a n } 满足 a 1=1 , a n =a n−12+2a (n ≥2)n−1 ,若 b n =1a n+1+1an +2(n ∈N ∗) ,则数列 {b n } 的前 n 项和 S n = .三、解答题(题型注释)17.在 ΔABC 中,角 A , B , C 的对边分别为 a , b , c ,且 (sinA −cosA)cosC+(cosA +sinA)sinC =√2 , D 为边 AB 上一点, BC =2 , BD =2√2 .(1)求 ΔBCD 的面积;(2)若 DA =DC ,求角 A 的大小.18.如图所示,在三棱锥 P −ABC 中,平面 PAB ⊥ 平面 ABC , AC ⊥CB , AB =4 ,PA =4√2 , ∠PAB =45∘ .(1)证明: AC ⊥ 平面 PCB ;(2)若二面角 A −PB −C 的平面角的大小为 60∘,求直线 PB 与平面 PAC 所成角的正弦值.19.某葡萄基地的种植专家发现,葡萄每株的收获量 y (单位: kg )和与它“相近”葡萄的株数 x 具有线性相关关系(所谓两株作物“相近”是指它们的直线距离不超过 1m ),(1)求该葡萄每株的收获量 y 关于它“相近”葡萄的株数 x 的线性回归方程及 y 的方差 s 2 ;答案第6页,总19页(2)某葡萄专业种植户种植了1000株葡萄,每株“相近”的葡萄株数按2株计算,当年的葡萄价格按10元/ kg 投入市场,利用上述回归方程估算该专业户的经济收入为多少万元;(精确到0.01)(3)该葡萄基地在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株葡萄,其中每个小正方形的面积都为 1m 2 ,现在所种葡萄中随机选取一株,求它的收获量的分布列与数学期望.(注:每株收获量以线性回归方程计算所得数据四舍五入后取的整数为依据)20.已知抛物线 C:x 2=4y 的焦点为 F ,直线 l:y =kx +a(a >0) 与抛物线 C 交于A ,B 两点.(1)若直线 l 过焦点 F ,且与圆 x 2+(y −1)2=1 交于 D , E (其中 A , D 在y 轴同侧)两点,求证: |AD|⋅|BE| 是定值;(2)设抛物线 C 在点 A 和点 B 处的切线交于点 P ,试问在 y 轴上是否存在点 Q ,使得四边形 APBQ 为菱形?若存在,求出此时直线 l 的斜率和点 Q 的坐标;若不存在,请说明理由.21.已知函数 f(x)=a(x −1)2+lnx , a ∈R .(1)当 a =2 时,求函数 y =f(x) 在点 P(1,f(1)) 处的切线方程;(2)当 a =−1 时,令函数 g(x)=f(x)+lnx −2x +1+m ,若函数 g(x) 在区间[1e,e] 上有两个零点,求实数 m 的取值范围.22.在平面直角坐标系 xOy 中,已知点 P(2+cosα,sinα) ( α 为参数).以 O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线 l 的极坐标方程为 ρsin(θ+π4)=2√2 .(1)求点 P 的轨迹 C 的方程及直线 l 的直角坐标方程; (2)求曲线 C 上的点到直线 l 的距离的最大值.第7页,总19页…………○…………线…………○…:___________…………○…………线…………○…23.已知函数 f(x)=5−|x +1|−|x −2| .(1)在给出的平面直角坐标系中作出函数 y =f(x) 的图像;(2)记函数 y =f(x) 的最大值为 M ,是否存在正数 a , b ,使 2a +b =M ,且1a +2b=3 ,若存在,求出 a , b 的值,若不存在,说明理由.答案第8页,总19页……装……………………订……………………线…※※不※※要※※在※※装※订※※线※※内※※答※※题※※……装……………………订……………………线…参数答案1.C【解析】1. z =3+i 2+i=(3+i)(2−i)(2+i)(2−i)=7−i 5,故 z ¯=75+15i . 所以答案是:C【考点精析】掌握复数的定义是解答本题的根本,需要知道形如的数叫做复数,和分别叫它的实部和虚部. 2.A【解析】2.由诱导公式得 cosα=−13〈0,cosβ=23〉0 ,故 α 为钝角, β 为锐角.且sinα=√1−cos 2α=2√23 , sinβ=√1−cos 2β=√53, sin(α+β)=sinαcosβ+cosαsinβ=2√23⋅23+(−13)⋅√53=4√2−√59. 所以答案是:A【考点精析】解答此题的关键在于理解两角和与差的正弦公式的相关知识,掌握两角和与差的正弦公式:.3.B【解析】3.对于集合 A , x 2−3x −4=(x −4)(x +1)≤0 ,解得 −1≤x ≤4 .由于 A ∪B =B 故 a ≥4 . 所以答案是:B【考点精析】通过灵活运用集合的并集运算,掌握并集的性质:(1)A A∪B,B A∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则A B ,反之也成立即可以解答此题.4.A【解析】4. 4 次独立重复实验,故概率为 C 43(45)3⋅15+C 44(45)4=512625 . 所以答案是:A5.C【解析】5.通过归纳得 ∑k=1nk 2=16n(n +1)(2n +1) ,故 16n(n +1)(2n +1)=385 解得 n =10 . 所以答案是:C【考点精析】认真审题,首先需要了解归纳推理(根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理). 6.D第9页,总19页…………线…………○……………线…………○…【解析】6.依题意 M(−a,0),N(0,b),F(c,0) ,代入 NM ⇀⋅NF ⇀=0 得 (a,b)(c,−b)=ac −b 2=0 ,即 ac −(a 2−c 2)=0 ,两边除以 a 2 得 e 2+e −1=0 ,解得 e =√5−12. 所以答案是:D【考点精析】认真审题,首先需要了解椭圆的概念(平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆,这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距). 7.D【解析】7.右移 π4 个单位得到 g(x)=sin[2(x −π4)]=−cos2x ,根据余弦函数的图像可知, 0≤2x ≤π ,即 0≤x ≤π2时递增,故 a 的最大值为 π2 . 故答案为:D 首先利用函数的平移性质得到 g(x) 的代数式,再结合余弦函数的图像和性质即可得到函数的增区间,进而求出a 的最大值即可。

河北省衡水市衡水金卷2018届高三大联考数学(文)试卷及答案

河北省衡水市衡水金卷2018届高三大联考数学(文)试卷及答案

河北省衡水市衡水金卷2018届高三大联考数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2540M x x x =-+≤,{}0,1,2,3N =,则集合M N I 中元素的个数为( )A .1B .2C .3D .42.已知命题p :x ∀∈R ,()1220x -<,则命题p ⌝为( ) A .0x ∃∈R ,()12020x -> B .x ∀∈R ,()1210x -> C .x ∀∈R ,()1210x -≥ D .0x ∃∈R ,()12020x -≥ 3.已知复数5i2i 1z =-(i 为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.已知双曲线C :()2221016x y a a -=>的一个焦点为()5,0,则双曲线C 的渐近线方程为( ) A .430x y ±= B .1690x y ±=C .40x =D .4312x y ±=5.2017年8月1日是中国人民解放军建军90周年,中国人民银行发行了以此为主题的金银纪念币.如图所示的是一枚8克圆形金质纪念币,直径22毫米,面额100元.为了测算图中军旗部分的面积,现向硬币内随机投掷100粒芝麻,已知恰有30粒芝麻落在军旗内,据此可估计军旗的面积大约是( )A .2726mm 5π B.2363mm 10π C .2363mm 5π D .2363mm 20π6.下列函数中,与函数122x x y =-的定义域、单调性与奇偶性均一致的函数是( )A .sin y x =B .2y x =C .1y x =D .()()2200x x y x x ⎧-≥⎪=⎨<⎪⎩7.如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )A .B .C .D .8.设55log 4log 2a =-,2ln ln 33b =+,1lg5210c =,则a b c ,,的大小关系为( ) A .a b c << B .b c a << C .c a b << D .b a c << 9.执行如图所示的程序框图,则输出的S 值为( )A .1819 B .1920 C .2021 D .12010.将函数()2sin 43f x x ⎛⎫=-⎪⎝⎭π的图象向左平移6π个单位,再把所有点的横坐标伸长到原来的2倍,得到函数()y g x =的图象,则下列关于函数()y g x =的说法错误的是( ) A .最小正周期为π B .图象关于直线12x =π对称C .图象关于点,012⎛⎫⎪⎝⎭π对称 D .初相为3π11.抛物线有如下光学性质:由焦点射出的光线经抛物线反射后平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线发射后必经过抛物线的焦点.已知抛物线24y x =的焦点为F ,一平行于x 轴的光线从点()3,1M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则直线AB 的斜率为( ) A .43 B .43- C .43± D .169- 12.已知ABC ∆的内角A B C ,,的对边分别是a b c ,,,且()()222cos cos ab c a B b A abc +-⋅+=,若2a b +=,则c 的取值范围为( )A .()0,2B .[)1,2C .1,22⎡⎫⎪⎢⎣⎭D .(]1,2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量sin ,cos 36a ⎛⎫= ⎪⎝⎭ππr ,(),1b k =r,若a b ∥r r ,则k = .14.已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆C :()222x y a +-=的圆心,则实数a 的值为 .15.已知实数x y ,满足约束条件3,,60,x y x y +≤⎧⎪⎪≥⎨⎪≥⎪⎩ππ则()sin x y +的取值范围为 (用区间表示).16.在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.若四棱锥M ABCD -为阳马,侧棱MA ⊥底面ABCD ,且2MA BC AB ===,则该阳马的外接球与内切球表面积之和为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在递增的等比数列{}n a 中,1632a a ⋅=,2518a a ⋅=,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)记21log n n n b a a +=+,求数列{}n b 的前n 项和n T .18.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,AC BC ⊥,12AC BC CC ===,点D 为AB 的中点.(1)证明:1AC ∥平面1B CD ; (2)求三棱锥11A CDB -的体积.19.随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在A 市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到下表(单位:人):(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为A 市使用共享单车情况与年龄有关?(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人. (i )分别求这5人中经常使用、偶尔或不用共享单车的人数;(ii )从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:()20P K k ≥0.15 0.10 0.05 0.025 0.010 0k2.0722.7063.8415.0246.63520.已知椭圆C :()222210x y a b a b+=>>过点()2,12,直线l :20kx y -+=与椭圆C 交于A B ,两点. (1)求椭圆C 的标准方程;(2)是否存在实数k ,使得OA OB OA OB +=-uu r uu u r uu r uu u r(其中O 为坐标原点)成立?若存在,求出实数k 的值;若不存在,请说明理由.21.已知函数()2ln 23f x x x =-+,()()()4ln 0g x f x x a x a '=++≠. (1)求函数()f x 的单调区间;(2)若关于x 的方程()g x a =有实数根,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知曲线C 的参数方程为2cos sin x y =⎧⎨=⎩αα(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线lsin 34⎛⎫+= ⎪⎝⎭πθ. (1)求曲线C 的普通方程及直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值. 23.选修4-5:不等式选讲 已知函数()211f x x x =-++. (1)解不等式()3f x ≤;(2)记函数()()1g x f x x =++的值域为M ,若t M ∈,试证明:223t t -≥.衡水金卷2018届全国高三大联考文数参考答案及评分细则一、选择题1-5:CDDAB 6-10:DAABC 11、12:BB 二、填空题13.1 14.2- 15.1,12⎡⎤⎢⎥⎣⎦16.36-π 三、解答题17.解:(1)设数列{}n a 的公比为q ,则251632a a a a ⋅=⋅=, 又2518a a +=,∴22a =,516a =或216a =,52a =(舍). ∴3528a q a ==,即2q =. 故2122n n n a a q--==(*n ∈N ).(2)由(1)得,12n n b n -=+.∴12n n T b b b =+++L()()211222123n n -=+++++++++L L()112122n n n +-=+- 2212nn n +=-+.18.解:(1)连接1BC 交1B C 于点O ,连接OD .在三棱柱111ABC A B C -中,四边形11BCC B 是平行四边形. ∴点O 是1BC 的中点. ∵点D 为AB 的中点, ∴1OD AC ∥.又OD ⊂平面1B CD ,1AC ⊄平面1B CD ,∴1AC ∥平面1B CD .(2)∵AC BC =,AD BD =, ∴CD AB ⊥.在三棱柱111ABC A B C -中,由1AA ⊥平面ABC ,得平面11ABB A ⊥平面ABC . 又平面11ABB A I 平面ABC AB =. ∴CD ⊥平面11ABB A .∴点C 到平面11A DB 的距离为CD ,且sin 4CD AC ==π∴11111113A CDB C A DB A DB V V S CD --∆==⨯1111132A B AA CD =⨯⨯⨯⨯=14263⨯=. 19.解:(1)由列联表可知,()2220070406030 2.19813070100100K ⨯⨯-⨯=≈⨯⨯⨯.因为2.198 2.072>,所以能在犯错误的概率不超过0.15的前提下认为A 市使用共享单车情况与年龄有关. (2)(i )依题意可知,所抽取的5名30岁以上的网友中,经常使用共享单车的有6053100⨯=(人), 偶尔或不用共享单车的有4052100⨯=(人).(ii )设这5人中,经常使用共享单车的3人分别为a b c ,,;偶尔或不用共享单车的2人分别为d e ,.则从5人中选出2人的所有可能结果为(),a b ,(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,(),c d ,(),c e ,(),d e ,共10种.其中没有1人经常使用共享单车的可能结果为(),d e ,共1种.故选出的2人中至少有1人经常使用共享单车的概率1911010P =-=. 20.解:(1)依题意,得22222211,,2,a b caa b c ⎧+=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得24a =,22b =,22c =,故椭圆C 的标准方程为22142x y +=. (2)假设存在符合条件的实数k .依题意,联立方程222,24,y kx x y =+⎧⎨+=⎩消去y 并整理,得()2212840k xkx +++=.则()226416120k k∆=-+>,即2k >或2k <-. 设()11,A x y ,()22,B x y ,则122812k x x k +=-+,122412x x k=+. 由OA OB OA OB +=-uu r uu u r uu r uu u r ,得0OA OB ⋅=uu r uu u r.∴12120x x y y +=.∴()()1212220x x kx kx +++=. 即()()212121240kx xk x x ++++=.∴()22224116401212k k k k+-+=++. 即2284012k k -=+. 即22k =,即k =故存在实数k =OA OB OA OB +=-uu r uu u r uu r uu u r成立.21.解:(1)依题意,得()21144x f x x x x -'=-=()()1212x x x+-=,()0,x ∈+∞. 令()0f x '>,即120x ->. 解得102x <<; 令()0f x '<,即120x -<. 解得12x >. 故函数()f x 的单调递增区间为10,2⎛⎫ ⎪⎝⎭,单调递减区间为1,2⎛⎫+∞ ⎪⎝⎭. (2)由题得,()()4ln g x f x x a x '=++=1ln a x x+. 依题意,方程1ln 0a x a x +-=有实数根, 即函数()1ln h x a x a x=+-存在零点.又()2211a ax h x x x x -'=-+=.令()0h x '=,得1x a=.当0a <时,()0h x '<.即函数()h x 在区间()0,+∞上单调递减,而()110h a =->,111111e 1a ah a a a e --⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭1111110e e a-=-<-<.所以函数()h x 存在零点;当0a >时,()h x ',()h x 随x 的变化情况如下表:所以11ln ln h a a a a a a a ⎛⎫=+-=- ⎪⎝⎭为函数()h x 的极小值,也是最小值. 当10h a ⎛⎫> ⎪⎝⎭,即01a <<时,函数()h x 没有零点; 当10h a ⎛⎫≤⎪⎝⎭,即1a ≥时,注意到()110h a =-≤, ()11e 0e eh a a =+-=>, 所以函数()h x 存在零点.综上所述,当()[),01,a ∈-∞+∞U 时,方程()g x a =有实数根.22.解:(1)由曲线C 的参数方程2cos sin x y =⎧⎨=⎩αα(α为参数),得曲线C 的普通方程为2214x y +=. 2sin 34⎛⎫+= ⎪⎝⎭πρθ, 得()sin cos 3+=ρθθ,即3x y +=.∴直线l 的普通方程为30x y +-=.(2)设曲线C 上的一点为()2cos ,sin αα,则该点到直线l的距离d ==(其中tan 2=ϕ).当()sin 1+=-αϕ时,max d ==. 即曲线C 上的点到直线l. 23.解:(1)依题意,得()3,1,12,1,213,.2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩ 则不等式()3f x ≤即为1,33x x ≤-⎧⎨-≤⎩或11,223x x ⎧-<<⎪⎨⎪-≤⎩或1,23 3.x x ⎧≥⎪⎨⎪≤⎩ 解得11x -≤≤.故原不等式的解集为{}11x x -≤≤. (2)由题得,()()121g x f x x x =++=-+2221223x x x +≥---=, 当且仅当()()21220x x -+≤.即112x -≤≤时取等号. ∴[)3,M =+∞.∴()()22331t t t t --=-+. ∵t M ∈,∴30t -≥,10t +>. ∴()()310t t -+≥. ∴223t t -≥.。

衡水金卷2018年高考模拟卷(二)数学(文)试题Word版含答案

衡水金卷2018年高考模拟卷(二)数学(文)试题Word版含答案

衡水金卷2018年高考模拟卷(二)数学(文)试题Word版含答案2018年普通高等学校招生全国统一考试模拟试题(衡水金卷调研卷)文数二第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $A=\{-3,-2,-1,0,1,2,3\}$,集合 $A=\{-1,0,1,3\}$,集合 $B=\{-3,-2,-1,3\}$,则 $C\cup(A\cup B)$ 的结果为()A。

$\{-3,-2,1\}$ B。

$\{-2,-1,1\}$ C。

$\{2\}$ D。

$\{-1,2,3\}$2.已知复数 $z$ 满足 $z(1+i)=i^{2018}$(其中 $i$ 是虚数单位),则复数 $z$ 在复平面内对应的点所在象限为()A。

第一象限 B。

第二象限 C。

第三象限 D。

第四象限3.函数 $f(x)=\frac{1}{4-x^2}+\ln(2x+1)$ 的定义域为()A。

$\left\{1\right\}\cup(-\infty,2)$ B。

$(-\infty,-2)\cup\left\{2\right\}$ C。

$(-\infty,-2)\cup(2,\infty)$ D。

$(-\infty,2)\cup\left\{2\right\}$4.三世纪中期,魏晋时期的数学家XXX首创割圆术,为计算圆周率建立了严密的理论和完善的算法。

所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法。

如图是XXX利用正六边形计算圆周率时所画的示意图,现在在圆中随机投掷一个点,则该点落在正六边形内的概率为()A。

$\frac{33}{\pi}$ B。

$\frac{323}{333}$ C。

$\frac{2}{\pi}$ D。

$\frac{2}{\pi^2}$5.已知双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的一条渐近线与直线$4x+3y+1=0$ 垂直,且焦点在圆 $x^2+(y-1)^2=26$ 上,则该双曲线的标准方程为()A。

衡水金卷2018年高考模拟数学(文)试题(五)含答案

衡水金卷2018年高考模拟数学(文)试题(五)含答案
衡水金卷 2018 年高考模拟数学(文)试题(五)含答案
2018 年普通高等学校招生全国统一考试模拟试题 文数(五)
第Ⅰ卷(共 60 分) 一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项 中,只有一项是符合题目要求的.
1.设全集 U R ,集合 A x x 1 0 , B x 合为
1 2
B. 1
C. 2
D. 4
3.已知函数 f x 的图象关于原点对称, 且在区间 5, 2 上单调递减, 最小值为 5 , 则 f x 在区间 2,5 上 A.单调递增,最大值为 5 C.单调递减,最大值为 5 B.单调递减,最小值为 5 D.单调递减,最小值为 5


bx cy bc 0, bx cy bc 0, x y 15.已知 2 2 1 a b 0 表示的区域为 D1 ,不等式组 表示的区域为 bx cy bc 0, a b bx cy bc 0
2 2
D2 ,其中 a 2 b2 c 2 c 0 ,记 D1 与 D2 的公共区域为 D ,且 D 的面积 S 为 2 3 ,圆
C. k

1 1 , k k Z 6 3
D. 6k 1, 2 6k k Z
9.在如图所求的程序框图中,若输出 n 的值为 4 ,则输入的 x 的取值范围为
A. , 8 4
1 3
B. 3,13
C. 9,33
D. ,

图象的相邻两个交点间的距 2
2
离为 6 ,点 P 1, 3 在函数 f x 的图像上,则函数 g x log 1 f x 的单调递减区间为 A. 6k , 2 6k k Z B. k

(衡水金卷)2018年普通高等学校招生全国统一考试模拟数学试题四 文

(衡水金卷)2018年普通高等学校招生全国统一考试模拟数学试题四 文

(衡水金卷)2018年普通高等学校招生全国统一考试模拟数学试题四 文第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0,1,3A =,()(){}120B x x x =+-<,则A B =I ( ) A .{}0 B .{}0,1,3 C .{}0,1 D .{}0,1,2 2.若复数3i12iz -+=-(i 是虚数单位),则4i z +=( )A B .2 D .43.若,,a b c ∈R ,且a b >,则下列不等式一定成立的是( )A .c c a b >B .20c a b >-C .22a b >D .2211a bc c >++ 4.下列结论中正确的个数是( ) ①“3x π=”是“1sin 22x π⎛⎫+= ⎪⎝⎭”的充分不必要条件; ②命题“,sin 1x x ∀∈≤R ”的否定是“,sin 1x x ∀∈>R ”;③函数()cos f x x =在区间[)0,+∞内有且仅有两个零点.A .1B .2C .3D .05.已知关于x 的不等式2680kx kx k -++≥对任意的x ∈R 恒成立,若k 的取值范围为区间D ,在区间[]1,3-上随机取一个数k ,则k D ∈的概率是( ) A .12 B .13 C .14 D .156.我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,目取其半,万事不竭”,其意思是:一尺长木棍,每天截取一半,永远截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则空白处可填入的是( ) A .S S i =- B .1S S i =- C .2S S i =- D .12S S i=-7.如图所示是一个几何体的三视图,则该几何体的体积为( )A .163π B .643 C .16643π+ D .1664π+ 8.已知某函数在[],ππ-上的图象如图所示,则该函数的解析式可能是( )A .sin 2xy = B .cos y x x =+ C .ln cos y x = D .sin y x x =+9.《九章算术》卷第五《商功》中有记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶.”现有一个刍甍,如图,四边形ABCD 为正方形,四边形ABFE 、CDEF 为两个全等的等腰梯形,4AB =,12EF AB ∥,若这个刍甍的体积为403,则CF 的长为( )A .1B .2C .3D .410.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,cos cos 2cos a B b A c C +=,c =且ABC ∆,则ABC ∆的周长为( )A .1+.2+.4.511.设12,F F 分别是椭圆()2222:10x y E a b a b+=>>的左,右焦点,过点1F 的直线交椭圆E于,A B 两点,若12AF F ∆的面积是12BF F ∆的三倍,23cos 5AF B ∠=,则椭圆E 的离心率为( )A .12 B .23C .212.已知定义在区间0,2π⎛⎫⎪⎝⎭上的函数()f x ,()f x '为其导函数,且()()sin cos 0f x x f x x '->恒成立,则( )A .226f f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭ B 43ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C 63f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭ D .()12sin16f f π⎛⎫< ⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某乡镇中学有初级职称教师160人,中级职称教师30人,高级职称教师10人,要从其中抽取20人进行体检,如果采用分层抽样的方法,则高级职称教师应该抽取的人数为 .14.已知平面向量,a b r r ,4a b ==rr ,且6a b +=r r ,则a r 在b r 方向上的投影是 .15.若双曲线()222210,0x y a b a b-=>>的渐近线与圆(222x y +=相交,则此双曲线的离心率的取值范围是 .16.已知三棱锥P ABC -的各顶点都在同一球面上,且PA ⊥平面ABC ,若2AB =,1AC =,60BAC ∠=︒,4PA =,则球的体积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列{}n a 满足11a =,()1n n n na na a n +=-∈*N . (1)求数列{}n a 的通项公式;(2)若数列{}n b 的前n 项和为n S ,23n n S b =-,求数列{}n n b a ⋅的前n 项和n T . 18. 在直三棱柱111ABC A B C -中,AD ⊥平面1A BC ,其垂足D 落在直线1A B 上. (1)求证:BC ⊥平面1A AB ;(2)若AD =2AB BC ==,P 为AC 的中点,求三棱锥1P A BC -的体积.19. 某市甲、乙两地为了争创“市级文明城市”,现市文明委对甲、乙两地各派10名专家进行打分评优,所得分数情况如下茎叶图所示.(1)分别计算甲、乙两地所得分数的平均值,并计算乙地得分的中位数;(2)从乙地所得分数在[)60,80间的成绩中随机抽取2份做进一步分析,求所抽取的成绩中,至少有一份分数在[)75,80间的概率;(3)在甲、乙两地所得分数超过90分的成绩中抽取其中2份分析其合理性,求这2份成绩都是来自甲地的概率.20. 已知点()00,M x y 在圆22:4O x y +=上运动,且存在一定点()6,0N ,点(),P x y 为线段MN 的中点.(1)求点P 的轨迹C 的方程; (2)过()0,1A 且斜率为k 的直线l 与点P 的轨迹C 交于不同的两点,E F ,是否存在实数k使得12OE OF ⋅=uu u r uu u r,并说明理由.21. 已知函数()()ln f x x ax a =-∈R . (1)求函数()f x 的单调区间;(2)当1a =时,方程()()2f x m m =<-有两个相异实根12,x x ,且12x x <,证明:2122x x ⋅<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为,sin x y αα⎧=⎪⎨=⎪⎩(α是参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 4πρθ⎛⎫-= ⎪⎝⎭. (1)将直线l 的极坐标方程化为普通方程,并求出直线l 的倾斜角; (2)求曲线C 上的点到直线l 的最大距离. 23.选修4-5:不等式选讲已知函数()()22f x x x a a =++->-,若()7f x ≥的解集是{3x x ≤-或}4x ≥. (1)求实数a 的值;(2)若x ∀∈R ,不等式()()31f x f m ≥+恒成立,求实数m 的取值范围.文数(四)答案一、选择题1-5:CBDAC 6-10:BCACD 11、12:DC 二、填空题 13.1 14.13815.( 16.3三、解答题17.解:(1)∵1n n n na na a +=-, ∴11n n a n a n++=. ∴121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅L 121121n n n n n -=⋅⋅⋅⋅=--L , ∴数列{}n a 的通项公式为n a n =. (2)由23n n S b =-,得13b =, 又()11232n n S b n --=-≥, ∴1122n n n n n b S S b b --=-=-, 即()122,n n b b n n -=≥∈*N,∴数列{}n b 是以3为首项,2为公比的等比数列, ∴()132n n b n -=⋅∈*N ,∴132n n n b a n -⋅=⋅,∴()012131222322n n T n -=⋅+⋅+⋅++⋅L ,()123231222322n n T n =⋅+⋅+⋅++⋅L ,两式相减,得()0121322222n n n T n --=++++-⋅L ()3121nn ⎡⎤=--⎣⎦,∴()3123nn T n =-+.18.解:(1)∵三棱柱111ABC A B C -为直三棱柱,∴1A A ⊥平面ABC .又BC ⊂平面ABC ,∴1A A BC ⊥. ∵AD ⊥平面1A BC ,且BC ⊂平面1A BC , ∴AD BC ⊥.又1A A ⊂平面1A AB ,AD ⊂平面1A AB ,1A A AD A =I , ∴BC ⊥平面1A AB .(2)在直三棱柱111ABC A B C -中,1A A AB ⊥. ∵AD ⊥平面1A BC ,其垂足D 落在直线1A B 上, ∴1AD A B ⊥.在Rt ABD ∆中,AD =2AB BC ==,∴sin 2AD ABD AB ∠==, 即60ABD ∠=︒,在1Rt ABA ∆中,1tan60A A AB =︒=由(1)知,BC ⊥平面1A AB ,AB ⊂平面1A AB , 从而BC AB ⊥, ∴1122222ABC S AB BC =⋅=⨯⨯=. ∵F 为AC 的中点, ∴112BCF ABC S S ∆==.∴11113P A BC A PBC BCF V V S AA --∆==⋅=113⨯⨯=.19.解:(1)由题得,甲地得分的平均数为()17778838580898892979986.810⨯+++++++++=, 乙地得分的平均数为()1657275798280848696918110⨯+++++++++=,乙地得分的中位数为8280812+=. (2)由茎叶图可知,乙地得分中分数在[)60,80间的有65,72,75,79四份成绩,随机抽取2份的情况有:()65,72,()65,75,()65,79,()72,75,()72,79,()75,79,共6种,其中至少有一份分数在[)70,80间的情况有:()65,75,()65,79,()72,75,()72,79,()75,79,共5种.故所求概率56P =. (3)甲、乙两地所得分数中超过90分的一共有5份,记甲地中的三份分别为,,A B C ,乙地中的两份分别为,a b .随机抽取其中2份,所有情况如下:(),A B ,(),A C ,(),B C ,(),a b ,(),A a ,(),A b ,(),B a ,(),B b ,(),C a ,(),C b ,一共10种.其中两份成绩都来自甲地的有3种情况:(),A B ,(),A C ,(),B C ,. 故所求概率310p =. 20.解:(1)由中点坐标公式,得00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩即()f x ,()f x .∵点()00,M x y 在圆224x y +=上运动,∴22004x y +=,即()()222624x y -+=, 整理,得()2231x y -+=.∴点P 的轨迹C 的方程为()2231x y -+=.(2)设()11,E x y ,()22,F x y ,直线l 的方程是1y kx =+,代入圆()2231x y -+=.可得()()2212390kxk x +--+=,由232240k k ∆=-->,得304k -<<, 且()122231k x x k -+=+,12291x x k =+, ∴()()()2212121212291111k y y kx kx k x x k x x k =++=+++=++()()22222432391111k k k k k k k --+=++++.∴2121228610121k k AB AB x x y y k++⋅=+==+uu u r uu u r , 解得12k =或1,不满足0∆>. ∴不存在实数12k =使得OF .21.解:(1)由题得,()()110axf x a x x x-=-=>.当0a <时,由于0x >,可得10ax ->, 即()0f x '>.∴()f x 在区间()0,+∞内单调递增, 当0a >时,由()0f x '>,得10x a<<, 由()0f x '<,得1x a>, ∴()f x 在区间10,a ⎛⎫ ⎪⎝⎭内单调递增,在区间1,a ⎛⎫+∞ ⎪⎝⎭内单调递减.(2)由(1)可设,方程()()2f x m m =<-的两个相异实根12,x x ,满足ln 0x x m --=, 且101x <<,21x >,即1122ln ln 0x x m x x m --=--=. 由题意,可知11ln 2ln 22x x m -=<-<-,又由(1)可知,()ln f x x x =-在区间()1,+∞内单调递减,故22x >.令()ln g x x x m =--, 则()1112211223ln ln 2g x g x x x x ⎛⎫-=-++-⎪⎝⎭. 令()()223lnt ln 22h t t t t =-++->, 则()()()2221t t h t t -+'=-. 当2t >时,()0h t '<,()h t 是减函数, ∴()()322ln 202h t h <--<. ∴当22x >时,()12220g x g x ⎛⎫-<⎪⎝⎭, 即()1212g x g x ⎛⎫<⎪⎝⎭. ∵()g x 在区间()0,1内单调递增, ∴1222x x <, 故2122x x ⋅<.22.解;(1)由sin 4πρθ⎛⎫-= ⎪⎝⎭, 得sin cos 2ρθρθ-=,将cos sin x y ρθρθ=⎧⎨=⎩代入上式,化简,得2y x =+.所以直线l 的倾斜角为4π. (2)在曲线C上任取一点),sin Aαα,则点A 到直线l的距离d =当()sin 601α-︒=-时,d取得最大值,且最大值是23.解:(1)∵2a >-,∴()22,2,2,2,22,.x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪+->⎩作出函数()f x 的图象,如图所示:由()7f x ≥的解集为{3x x ≤-或4x ≥及函数图象, 可得627,827,a a +-=⎧⎨+-=⎩解得3a =.(2)由题知,x ∀∈R ,不等式()()31f x f m ≥+恒成立,即x ∀∈R ,不等式32332x x m m ⎡++-⎤≥++-⎣⎦恒成立,由(1)可知,235x x ++-≥(当且仅当23x -≤≤时取等号), ∴3235m m ++-≤⨯,当3m ≤-时,3215m m ---+≤,∴8m ≥-,∴83m -≤≤-,当32m -<<时,3215m m +-+≤,成立;当2m ≥时,3215m m ++-≤,∴7m ≤,∴27m ≤≤,综上所述,实数m 的取值范围为[]8,7-.百度文库是百度发布的供网友在线分享文档的平台。

衡水金卷高考模拟卷(三)数学(文)试题Word版含答案

衡水金卷高考模拟卷(三)数学(文)试题Word版含答案

衡水金卷高考模拟卷(三)数学(文)试题Word版含答案2018年普通高等学校招生全国统一考试模拟试题文数(三)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.)A2.)A.1 D.33.)A.4 B.5 C.3 D.24.)A5.)ABCD6.)A .80B .96C .112D .120 7.已知函数()cos 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移(0)ϕϕ>个单位后,得到的图象对应的函数()g x 为奇函数,则ϕ的最小值为( )A .6π B .56π C .3πD .23π8.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,从A ,B ,C ,D 四点中任取三点和顶点P 所形成的四面体中,任取两个四面体,则其中一个四面体为鳖臑的概率为( )A .14 B .23 C .35 D .3109.如图,AB 为经过抛物线22(0)y px p =>焦点F 的弦,点A ,B 在直线2px =-上的射影分别为1A ,1B ,且113AA BB =,则直线AB 的倾斜角为( )A .6π B .4π C .3πD .512π10.一个几何体的三视图如图所示,且该几何体的表面积为3242π++,则图中的x =( )A .1B .2C .32D .2211.已知数列{}n a 满足2*1232()n n a a a a n N ⋅⋅⋅=∈,且对任意的*n N ∈都有12111nt a a a ++⋅⋅⋅+<,则t 的取值范围为( ) A .1,3⎛⎫+∞ ⎪⎝⎭ B .1,3⎡⎫+∞⎪⎢⎣⎭ C .2,3⎛⎫+∞⎪⎝⎭ D .2,3⎡⎫+∞⎪⎢⎣⎭12.若存在1,x e e⎡⎤∈⎢⎥⎣⎦,不等式22ln 30x x x mx +-+≥成立,则实数m 的最大值为( )A .132e e +- B .32e e++ C .4 D .21e - 第Ⅱ卷二、填空题:本题共4小题,每小题5分.13.已知{}n a 是等差数列,n S 是其数列的前n 项和,且4103S =-,1221a a +=,则3a = .14.已知圆C 的方程为22(2)(1)1x y ++-=,则圆上的点到直线0x y -=的距离的最小值为 .15.观察三角形数组,可以推测:该数组第八行的和为 .16.已知双曲线1C :2212x y -=,曲线2C :1y x =+,P 是平面内一点,若存在过点P 的直线与1C ,2C 都有公共点,则称点P 为“差型点”.下面有4个结论: ①曲线1C 的焦点为“差型点”; ②曲线1C 与2C 有公共点;③直线y kx =与曲线2C 有公共点,则1k >; ④原点不是“差型点”.其中正确结论的个数是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知ABC ∆的外接圆半径为2,内角A ,B ,C 的对边分别为a ,b ,c ,且2b =. (1)若2cos cos cos a A c B b C =+,求角C ; (2)若B 为锐角,3a c +=,求ABC ∆的面积.18.已知某地区中小学生人数和近视情况如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生作为样本进行调查.(1)求样本容量和抽取的高中生近视人数分别是多少?(2)在抽取的n 名高中生中,平均每天学习时间超过9小时的人数为310n,其中有12名学生近视,请完成高中生平均每天学习时间与近视的列联表:平均学习时间不超过9小时平均学习时间超过9小时 总计 不近视 近视 总计(3)根据(2)中的列联表,判断是否有95%的把握认为高中生平均每天学习时间与近视有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P K k ≥0.10 0.05 0.025 0.010 0.001 0k2.7063.8415.0246.63510.82819.如图,在三棱锥A BCD -中,AB ⊥平面BCD ,56DBC π∠=,2BD BC ==,32AB =+,E 为AC 的中点,F 在棱CD 上,且BC EF ⊥.(1)求证:BF CF =; (2)求三棱锥A BEF -的体积.20.已知椭圆22221(0)x y a b a b+=>>的左,右焦点分别为1F ,2F ,过1F 的直线交椭圆于A ,B 两点.(1(21.21.(1(2请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程(1(223.选修4-5:不等式选讲.(1(2文数(三)一、选择题1-5: BDAAB 6-10: DCBCA 11、12:DA 二、填空题三、解答题17.解:(1.(2)由(1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试模拟试题文数(三)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{|13}A x x =<≤,{|02}B x x =≤<,则A B =U ( )A .{|02}x x ≤<B .{|03}x x ≤≤C .{|12}x x <<D .{|13}x x <≤2.设函数1,0()1,02xx x f x x+≥⎧⎪=⎨<⎪⎩,则[(1)]f f -=( )A .32B .21+C .1D .3 3.若向量(1,0)a =r ,(0,1)b =r ,2(2,3)c xa yb =+=r r r(,)x y R ∈,则x y +=( )A .4B .5C .3D .24.若实数x ,y 满足约束条件113x y x y ≥⎧⎪≥⎨⎪+≤⎩,则y x 的取值范围是( )A .1,22⎡⎤⎢⎥⎣⎦B .1,23⎡⎤⎢⎥⎣⎦C .1,22⎡⎫-⎪⎢⎣⎭D .1,32⎡⎤⎢⎥⎣⎦5.命题p :若复数21iz i=-(i 为虚数单位),则复数z 对应的点在第二象限,命题q :若复数z 满足z z ⋅为实数,则复数z 一定为实数,那么( )A .p q ∧是真命题B .()p q ∧⌝是真命题C .()p q ⌝∨是真命题D .()p q ∨⌝是假命题 6.执行如图所示的程序框图,若输入的40n =,则输出的S =( )A .80B .96C .112D .120 7.已知函数()cos 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移(0)ϕϕ>个单位后,得到的图象对应的函数()g x 为奇函数,则ϕ的最小值为( ) A .6π B .56π C .3πD .23π8.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,从A ,B ,C ,D 四点中任取三点和顶点P 所形成的四面体中,任取两个四面体,则其中一个四面体为鳖臑的概率为( )A .14 B .23 C .35 D .3109.如图,AB 为经过抛物线22(0)y px p =>焦点F 的弦,点A ,B 在直线2px =-上的射影分别为1A ,1B ,且113AA BB =,则直线AB 的倾斜角为( )A .6π B .4π C .3πD .512π10.一个几何体的三视图如图所示,且该几何体的表面积为3242π++,则图中的x =( )A .1B 2C .32D .2211.已知数列{}n a 满足2*1232()n n a a a a n N ⋅⋅⋅=∈,且对任意的*n N ∈都有12111nt a a a ++⋅⋅⋅+<,则t 的取值范围为( )A .1,3⎛⎫+∞ ⎪⎝⎭ B .1,3⎡⎫+∞⎪⎢⎣⎭ C .2,3⎛⎫+∞⎪⎝⎭ D .2,3⎡⎫+∞⎪⎢⎣⎭12.若存在1,x e e ⎡⎤∈⎢⎥⎣⎦,不等式22ln 30x x x mx +-+≥成立,则实数m 的最大值为( )A .132e e +- B .32e e++ C .4 D .21e - 第Ⅱ卷二、填空题:本题共4小题,每小题5分.13.已知{}n a 是等差数列,n S 是其数列的前n 项和,且4103S =-,1221a a +=,则3a = . 14.已知圆C 的方程为22(2)(1)1x y ++-=,则圆上的点到直线0x y -=的距离的最小值为 . 15.观察三角形数组,可以推测:该数组第八行的和为 .16.已知双曲线1C :2212x y -=,曲线2C :1y x =+,P 是平面内一点,若存在过点P 的直线与1C ,2C 都有公共点,则称点P 为“差型点”.下面有4个结论: ①曲线1C 的焦点为“差型点”; ②曲线1C 与2C 有公共点;③直线y kx =与曲线2C 有公共点,则1k >; ④原点不是“差型点”.其中正确结论的个数是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知ABC ∆2,内角A ,B ,C 的对边分别为a ,b ,c ,且2b =. (1)若2cos cos cos a A c B b C =+,求角C ; (2)若B 为锐角,3a c +=,求ABC ∆的面积.18.已知某地区中小学生人数和近视情况如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生作为样本进行调查.(1)求样本容量和抽取的高中生近视人数分别是多少?(2)在抽取的n 名高中生中,平均每天学习时间超过9小时的人数为310n,其中有12名学生近视,请完成高中生平均每天学习时间与近视的列联表:平均学习时间不超过9小时 平均学习时间超过9小时总计 不近视 近视 总计95%附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P K k ≥0.10 0.05 0.025 0.010 0.001 0k2.7063.8415.0246.63510.82819.如图,在三棱锥A BCD -中,AB ⊥平面BCD ,6DBC ∠=,2BD BC ==,32AB =+,E 为AC 的中点,F 在棱CD 上,且BC EF ⊥.(1)求证:BF CF =; (2)求三棱锥A BEF -的体积.20.已知椭圆22221(0)x y a b a b+=>>的左,右焦点分别为1F ,2F ,过1F 的直线交椭圆于A ,B 两点.(1)若直线AB 与椭圆的长轴垂直,12AB a =,求椭圆的离心率;(2)若直线AB 的斜率为1,3222a AB a b =+,求椭圆的短轴与长轴的比值.21.已知曲线()x mx m f x e -=在点(1,(1))f 处的切线斜率为1e-. (1)求函数()f x 的极小值; (2)当(0,)x π∈时,求证:21()cos sin f x x x x e+>-. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C ,2C 的极坐标方程分别为4cos ρθ=,2sin ρθ=. (1)将直线l 的参数方程化为极坐标方程,将2C 的极坐标方程化为参数方程; (2)当6πα=时,直线l 与1C 交于O ,A 两点,与2C 交于O ,B 两点,求AB .23.选修4-5:不等式选讲 已知函数()23b cf x x a x =-+++的最小值为7(a ,b ,c 为正数). (1)求222a b c ++的最小值;(2)求证:444222222a b c a b c b c a++≥++.文数(三)一、选择题1-5: BDAAB 6-10: DCBCA 11、12:DA二、填空题13. 43-三、解答题17.解:(1)∵2cos cos cos a A c B b C =+,由正弦定理,可得2sin cos sin cos sin cos A A C B B C =+, 即2sin cos sin()sin A A B C A =+=. ∵sin 0A ≠,∴1cos 2A =. ∵0A π<<,∴3A π=.又2sin bR B=(R 为外接圆半径),2b =,R =∴sin B =4B π=或34π(舍). ∴5()12C A B ππ=-+=. (2)由(1)知,4B π=或34π, 又B 为锐角,∴4B π=.由余弦定理,可得2222cos b a c ac B =+-,即24()2a c ac =+-.∵3a c +=,∴49(2ac =-+,∴(25ac =, ∴ac =∴1sin2ABC S ac B ∆==54=. 18.解:(1)由图1可知,高中生占学生总数的20%, ∴学生总数为300020%15000÷=人, ∴样本容量为150002%300⨯=.∵抽取的高中生人数为30002%60⨯=人, 由于近视率为60%,∴抽取的高中生近视人数为6060%36⨯=人. (2)列联表如下:平均学习时间不超过9小时 平均学习时间超过9小时总计 不近视 18 6 24 近视 24 12 36 总计421860(3)由列联表可知,260(1812246)0.47624364218K ⨯⨯-⨯=≈⨯⨯⨯, ∵0.476 3.841<,∴没有95%的把握认为高中生平均每天学习时间与近视有关. 19.解:(1)取BC 的中点G ,连接EG ,GF .∵E 为AC 的中点,∴//EG AB . ∵AB ⊥平面BCD ,∴EG ⊥平面BCD ,∴EG BC ⊥. 又∵BC EF ⊥,EF EG E =I , ∴BC ⊥平面EFG ,∴BC GF ⊥. 又∵G 是BC 的中点, ∴BF CF =.(2)由图可知,三棱锥A BEF -体积与三棱锥F ABE -体积相等. ∵FG BC ⊥,FG AB ⊥,AB BC B =I , ∴FG ⊥平面ABC .∵150DBC ∠=o,且2BD BC ==,∴15BCD ∠=o.在Rt FGC ∆中,1CG =, ∴tan1523GF ==o∴13A BEF F ABE ABE V V S FG --∆-=⨯⨯11111232322ABC S FG ∆=⨯⨯=⨯⨯⨯1(23)(23)6⨯+⨯=,即三棱锥A BEF -的体积为16. 20.解:(1)由题意,直线AB 的方程为x c =-,∴2212b AB a a ==, 即224a b =,故2c e a ====. (2)设1(,0)F c -,则直线AB 的方程为y x c =+,联立22221y x c x y a b=+⎧⎪⎨+=⎪⎩,得22222222()20a b c a cx a c a b +++-=,42222222444()()8a b a a b c b a b ∆=-+-=.设11(,)A x y ,22(,)B x y ,则212222a c x x a b +=-+,2221222()a cb x x a b-=+.∴12AB x =-=22a b=+22222242ab a a b a b ==++. ∴222a b =,∴2212b a =,∴b a =. 21.解:(1)由题得,()f x 的定义域为R ,(2)'()x m x f x e --=,∴'(1)mf e=. ∵曲线()f x 在点(1,(1))f 处的切线斜率为1e-, ∴1m e e=-,∴1m =-. ∴1()x x f x e -=,2'()x x f x e-=,当2x >时,'()0f x >,()f x 单调递增, 当2x <时,'()0f x <,()f x 单调递减, ∴()f x 的极小值为21(2)f e=-. (2)由(1)可知,21()f x e+在2x =处取得最小值0, 设()cos sin g x x x x =-,(0,)x π∈, 则'()cos sin cos sin g x x x x x x x =--=-, ∵(0,)x π∈,∴'()0g x <, ∴()g x 在区间(0,)π上单调递减, 从而()(0)0g x g <=, ∴21()cos sin f x x x x e +>-. 22.解:(1)由直线l 的参数方程cos sin x t y t αα=⎧⎨=⎩(t 为参数),得直线l 的极坐标方程为()R θαρ=∈. 由曲线2C 的极坐标方程2sin ρθ=, 得直角坐标方程为22(1)1x y +-=, ∴曲线2C 的参数方程为cos 1sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数).(2)当6πα=时,直线l 的极坐标方程为()6R πθρ=∈.当6πθ=时,4cos6OA π==2sin16OB π==,∴1AB OA OB =-=. 23.解:(1)∵2323b c b c x a x a -+++≥++(当且仅当()023b c x a x ⎛⎫-++≤ ⎪⎝⎭时取等号), 由题意,得723b ca ++=. 根据柯西不等式,可知22222211()123a b c ⎡⎤⎛⎫⎛⎫++++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦24923b c a ⎛⎫≥++= ⎪⎝⎭,∴22236a b c ++≥. ∴222a b c ++的最小值为36.(2)∵42222ab ab+≥,42222bc bc+≥,42222ca ca+≥,∴444222222a b ca b cb c a+++++2222()a b c≥++,∴444222 222a b ca b cb c a++≥++.。

相关文档
最新文档