D 数列(理科)(高考真题+模拟新题)

合集下载

高考数学分类练习 D单元 数列(理科) Word版含答案

高考数学分类练习  D单元 数列(理科) Word版含答案

数 学D 单元 数列D1 数列的概念与简单表示法 11.D1[·上海卷] 无穷数列{a n }由k 个不同的数组成,S n 为{a n }的前n 项和.若对任意n ∈N *,S n ∈{2,3},则k 的最大值为________.11.4 [解析] 由S n ∈{2,3},得a 1=S 1∈{2,3}.将数列写出至最多项,其中有相同项的情况舍去,共有如下几种情况:①a 1=2,a 2=0,a 3=1,a 4=-1; ②a 1=2,a 2=1,a 3=0,a 4=-1; ③a 1=2,a 2=1,a 3=-1,a 4=0; ④a 1=3,a 2=0,a 3=-1,a 4=1; ⑤a 1=3,a 2=-1,a 3=0,a 4=1; ⑥a 1=3,a 2=-1,a 3=1,a 4=0. 最多项均只能写到第4项,即k max =4. D2 等差数列及等差数列前n 项和 12.D2[·北京卷] 已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.12.6 [解析] 设等差数列{a n }的公差为d ,因为a 3+a 5=0,所以6+2d +6+4d =0,解得d =-2,所以S 6=6×6+6×52×(-2)=36-30=6.8.D2[·江苏卷] 已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.8.20 [解析] 因为S 5=5a 3=10,所以a 3=2,设其公差为d ,则a 1+a 22=2-2d +(2-d )2=d 2-6d +6=-3,解得d =3,所以a 9=a 3+6d =2+18=20. 3.D2[·全国卷Ⅰ] 已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .973.C [解析]a 1+a 92×9=27,可得a 5=3,所以a 10-a 5=5d =5,所以d =1,所以a 100=a 10+90d =98.19.D2,D4,H6[·四川卷] 已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *.(1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n=1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n 3n -1. 19.解:(1)由已知,S n +1=qS n +1,S n +2=qS n +1+1,两式相减得到a n +2=qa n +1,n ≥1.又由S 2=qS 1+1得到a 2=qa 1,所以a n +1=qa n 对所有n ≥1都成立,所以,数列{a n }是首项为1,公比为q 的等比数列,从而a n =q n -1.由2a 2,a 3,a 2+2成等差数列,可得2a 3=3a 2+2,即2q 2=3q +2,则(2q +1)(q -2)=0, 由已知,q >0,故q =2,所以,a n =2n -1(n ∈N *).(2)证明:由(1)可知,a n =q n -1,所以双曲线x 2-y 2a 2n=1的离心率e n =1+a 2n =1+q 2(n -1). 由e 2=1+q 2=53,解得q =43(负值舍去).因为1+q 2(k-1)>q 2(k-1),所以1+q 2(k -1)>q k -1(k ∈N *).于是e 1+e 2+…+e n >1+q +…+q n -1=q n -1q -1,故e 1+e 2+…+e n >4n -3n3n -1.17.D2[·全国卷Ⅱ] S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1000项和.17.解:(1)设{a n }的公差为d ,据已知有7+21d =28,解得d =1, 所以{a n }的通项公式为a n =n .故b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1000,3,n =1000,所以数列{b n }的前1000项和为1×90+2×900+3×1=1893.18.D2,D4[·山东卷] 已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n=b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .18.解:(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11, 所以a n =6n +5.设数列{b n }的公差为d .由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3, 即⎩⎪⎨⎪⎧11=2b 1+d 17=2b 1+3d , 解得⎩⎪⎨⎪⎧b 1=4,d =3,所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1. 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×[4+4×(1-2n )1-2-(n +1)×2n +2] =-3n ·2n +2,所以T n =3n ·2n +2. 18.D2[·天津卷] 已知{a n }是各项均为正数的等差数列,公差为d .对任意的n ∈N *,b n是a n 和a n +1的等比中项.(1)设c n =b 2n +1-b 2n ,n ∈N *,求证:数列{c n }是等差数列;(2)设a 1=d ,T n =,求证:<12d 2. 18.证明:(1)由题意得b 2n =a n a n +1,有c n =b 2n +1-b 2n =a n +1a n +2-a n a n +1=2da n +1, 因此c n +1-c n =2d(a n +2-a n +1)=2d 2,所以{c n }是等差数列.(2)T n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=2d(a 2+a 4+…+a 2n )=2d·n (a 2+a 2n )2=2d 2n(n +1),所以=12d 2·(1-1n +1)<12d 2. 6.D2[·浙江卷] 如图1-1,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n+2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *.(P ≠Q 表示点P 与Q 不重合)若d n =|A n B n |,S n 为△A n B n B nA .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n}是等差数列 6.A [解析] 由题意得,A n 是线段A n -1A n +1(n ≥2)的中点,B n 是线段B n -1B n +1(n ≥2)的中点,且线段A n A n +1的长度都相等,线段B n B n +1的长度都相等.过点A n 作高线h n .由A 1作高线h 2的垂线A 1C 1,由A 2作高线h 3的垂线A 2C 2,则h 2-h 1=|A 1A 2|sin ∠A 2A 1C 1,h 3-h 2=|A 2A 3|sin ∠A 3A 2C 2.而|A 1A 2|=|A 2A 3|,∠A 2A 1C 1=∠A 3A 2C 2,故h 1,h 2,h 3成等差数列,故{S n }是等差数列.D3 等比数列及等比数列前n 项和 20.A1、D3、D5[·江苏卷] 记U ={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T ,若T =∅,定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T ={2,4}时,S T =30.(1)求数列{a n }的通项公式;(2)对任意正整数k (1≤k ≤100),若T ⊆{1,2,…,k },求证:S T <a k +1; (3)设C ⊆U ,D ⊆U ,S C ≥S D ,求证:S C +S C ∩D ≥2S D .20.解:(1)由已知得a n =a 1·3n -1,n ∈N *.于是当T ={2,4}时,S T =a 2+a 4=3a 1+27a 1=30a 1. 又S T =30,所以30a 1=30,即a 1=1,故数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)证明:因为T ⊆{1,2,…,k },a n =3n -1>0,n ∈N *,所以S T ≤a 1+a 2+…+a k =1+3+…+3k -1=12(3k -1)<3k .因此,S T <a k +1.(3)证明:下面分三种情况证明.①若D 是C 的子集,则S C +S C ∩D =S C +S D ≥S D +S D =2S D . ②若C 是D 的子集,则S C +S C ∩D =S C +S C =2S C ≥2S D . ③若D 不是C 的子集,且C 不是D 的子集.令E =C ∩(∁U D ),F =D ∩(∁U C ),则E ≠∅,F ≠∅,E ∩F =∅. 于是S C =S E +S C ∩D ,S D =S F +S C ∩D ,进而由S C ≥S D ,得S E ≥S F . 设k 是E 中最大的数,l 为F 中最大的数,则k ≥1,l ≥1,k ≠l .由(2)知,S E <a k +1,于是3l -1=a l ≤S F ≤S E <a k +1=3k ,所以l -1<k ,即l ≤k . 又k ≠l ,故l ≤k -1,从而S F ≤a 1+a 2+…+a l =1+3+…+3l -1=3l -12≤3k -1-12=a k -12≤S E -12,故S E ≥2S F +1,所以S C -S C ∩D ≥2(S D -S C ∩D )+1, 即S C +S C ∩D ≥2S D +1.综合①②③得,S C +S C ∩D ≥2S D . 15.D3[·全国卷Ⅰ] 设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.15.64 [解析] 设该等比数列的公比为q ,则q =a 2+a 4a 1+a 3=12,可得a 1+14a 1=10,得a 1=8,所以a n =8·(12)n -1=(12)n -4.所以a 1a 2…a n =(12)-3-2-1+0+…+(n -4)=,易知当n =3或n =4时,12(n 2-7n )取得最小值-6,故a 1a 2…a n 的最大值为(12)-6=64. 17.D3、D4[·全国卷Ⅲ] 已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0.(1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=3132,求λ.17.解:(1)由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ(λλ-1)n -1.(2)由(1)得S n =1-(λλ-1)n ,由S 5=3132得1-(λλ-1)5=3132,即(λλ-1)5=132,解得λ=-1. 5.D3[·四川卷] 某公司为激励创新,计划逐年加大研发资金投入.若该公司全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A . B . C . D .5.B [解析] 设x 年后该公司全年投入的研发资金开始超过200万元, 由题可知,130(1+12%)x ≥200,解得x ≥log 1.12200130=lg 2-lg 1.3lg 1.12≈3.80,因为x 为整数,所以x 取4,故开始超过200万元的年份是.5.D3、A2[·天津卷] 设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件5.C [解析] 设数列的首项为a 1,则a 2n -1+a 2n =a 1q 2n -2(1+q )<0,即q <-1,故选C. 13.D3[·浙江卷] 设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.13.1 121 [解析] 由a n +1=2S n +1,得a n =2S n -1+1(n ≥2),两式相减得,a n +1-a n=2(S n -S n -1)=2a n ,即a n +1=3a n (n ≥2),而a 2=2a 1+1,S 2=a 1+a 2=4,解得a 1=1,a 2=3,故{a n }是首项为1,公比为3的等比数列,所以S 5=1×(1-35)1-3=121.17.D3[·上海卷] 已知无穷等比数列{a n }的公比为q ,前n 项和为S n ,且S n =S .下列条件中,使得2S n <S (n ∈N *)恒成立的是( )A .a 1>0,0.6<q <0.7B .a 1<0,-0.7<q <-0.6C .a 1>0,0.7<q <0.8D .a 1<0,-0.8<q <-0.717.B [解析] 由题意得2a 1·1-q n 1-q <a 1·11-q (0<|q |<1)对一切正整数n 恒成立.当a 1>0时,q n >12,结合选项知该不等式不恒成立,舍去;当a 1<0时,q n <12⇒q 2<12,选项B 满足要求.D4 数列求和 17.D3、D4[·全国卷Ⅲ] 已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=3132,求λ.17.解:(1)由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ(λλ-1)n -1.(2)由(1)得S n =1-(λλ-1)n ,由S 5=3132得1-(λλ-1)5=3132,即(λλ-1)5=132,解得λ=-1.19.D2,D4,H6[·四川卷] 已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *.(1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n=1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n 3n -1. 19.解:(1)由已知,S n +1=qS n +1,S n +2=qS n +1+1,两式相减得到a n +2=qa n +1,n ≥1.又由S 2=qS 1+1得到a 2=qa 1,所以a n +1=qa n 对所有n ≥1都成立,所以,数列{a n }是首项为1,公比为q 的等比数列,从而a n =q n -1.由2a 2,a 3,a 2+2成等差数列,可得2a 3=3a 2+2,即2q 2=3q +2,则(2q +1)(q -2)=0, 由已知,q >0,故q =2,所以,a n =2n -1(n ∈N *).(2)证明:由(1)可知,a n =q n -1, 所以双曲线x 2-y 2a 2n=1的离心率e n =1+a 2n =1+q 2(n -1). 由e 2=1+q 2=53,解得q =43(负值舍去).因为1+q 2(k-1)>q 2(k-1),所以1+q 2(k -1)>q k -1(k ∈N *).于是e 1+e 2+…+e n >1+q +…+q n -1=q n -1q -1,故e 1+e 2+…+e n >4n -3n3n -1.18.D2,D4[·山东卷] 已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n=b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .18.解:(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,所以a n =6n +5.设数列{b n }的公差为d .由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3, 即⎩⎪⎨⎪⎧11=2b 1+d 17=2b 1+3d , 解得⎩⎪⎨⎪⎧b 1=4,d =3,所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1. 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×[4+4×(1-2n )1-2-(n +1)×2n +2] =-3n ·2n +2,所以T n =3n ·2n +2. D5 单元综合20.D5,A1[·北京卷] 设数列A :a 1,a 2,…,a N (N ≥2).如果对小于n (2≤n ≤N )的每个正整数k 都有a k <a n ,则称n 是数列A 的一个“G 时刻”.记G (A )是数列A 的所有“G 时刻”组成的集合.(1)对数列A :-2,2,-1,1,3,写出G (A )的所有元素; (2)证明:若数列A 中存在a n 使得a n >a 1,则G (A )≠∅;(3)证明:若数列A 满足a n -a n -1≤1(n =2,3,…,N ),则G (A )的元素个数不小于a N-a 1.20.解:(1)G (A )的元素为2和5.(2)证明:因为存在a n 使得a n >a 1,所以{i ∈N *|2≤i ≤N ,a i >a 1}≠∅. 记m =min{i ∈N *|2≤i ≤N ,a i >a 1},则m ≥2,且对任意正整数k <m ,a k ≤a 1<a m . 因此m ∈G (A ),从而G (A )≠∅.(3)证明:当a N ≤a 1时,结论成立. 以下设a N >a 1. 由(2)知G (A )≠∅.设G (A )={n 1,n 2,…,n p },n 1<n 2<…<n p . 记n 0=1,则an 0<an 1<an 2<…<an p .对i =0,1,…,p ,记G i ={k ∈N *|n i <k ≤N ,a k >an i }.如果G i ≠∅,取m i =min G i ,则对任何1≤k <m i ,a k ≤an i <am i . 从而m i ∈G (A )且m i =n i +1.又因为n p 是G (A )中的最大元素,所以G p =∅.从而对任意n p ≤k ≤N ,a k ≤an p ,特别地,a N ≤an p .对i =0,1,…,p -1,an i +1-1≤an i .因此an i +1=an i +1-1+(an i +1-an i +1-1)≤an i +1. 所以a N -a 1≤an p -a 1=i =1p (an i -an i -1)≤p.因此G(A)的元素个数p 不小于a N -a 1. 20.A1、D3、D5[·江苏卷] 记U ={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T ,若T =∅,定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T ={2,4}时,S T =30.(1)求数列{a n }的通项公式;(2)对任意正整数k (1≤k ≤100),若T ⊆{1,2,…,k },求证:S T <a k +1; (3)设C ⊆U ,D ⊆U ,S C ≥S D ,求证:S C +S C ∩D ≥2S D .20.解:(1)由已知得a n =a 1·3n -1,n ∈N *.于是当T ={2,4}时,S T =a 2+a 4=3a 1+27a 1=30a 1. 又S T =30,所以30a 1=30,即a 1=1,故数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)证明:因为T ⊆{1,2,…,k },a n =3n -1>0,n ∈N *,所以S T ≤a 1+a 2+…+a k =1+3+…+3k -1=12(3k -1)<3k .因此,S T <a k +1.(3)证明:下面分三种情况证明.①若D 是C 的子集,则S C +S C ∩D =S C +S D ≥S D +S D =2S D . ②若C 是D 的子集,则S C +S C ∩D =S C +S C =2S C ≥2S D . ③若D 不是C 的子集,且C 不是D 的子集.令E =C ∩(∁U D ),F =D ∩(∁U C ),则E ≠∅,F ≠∅,E ∩F =∅. 于是S C =S E +S C ∩D ,S D =S F +S C ∩D ,进而由S C ≥S D ,得S E ≥S F . 设k 是E 中最大的数,l 为F 中最大的数,则k ≥1,l ≥1,k ≠l .由(2)知,S E <a k +1,于是3l -1=a l ≤S F ≤S E <a k +1=3k ,所以l -1<k ,即l ≤k . 又k ≠l ,故l ≤k -1,从而S F ≤a 1+a 2+…+a l =1+3+…+3l -1=3l -12≤3k -1-12=a k -12≤S E -12,故S E ≥2S F +1,所以S C -S C ∩D ≥2(S D -S C ∩D )+1, 即S C +S C ∩D ≥2S D +1.综合①②③得,S C +S C ∩D ≥2S D . 12.D5[·全国卷Ⅲ] 定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个12.C [解析] ∵a 1,a 2,…,a 8中0的个数不少于1的个数,∴a 1=0,a 8=1.先排定中间三个1,当三个0在一起时排法种数为C 12,当三个0不相邻时排法种数为C 34,当三个0分成两组时排法种数为A 23+C 12,∴不同的“规范01数列”共有C 12+C 34+A 23+C 12=14(个).20.D5[·浙江卷] 设数列{a n }满足a n -a n +12≤1,n ∈N *.(1)证明:|a n |≥2n -1(|a 1|-2),n ∈N *;(2)若|a n |≤32n ,n ∈N *,证明:|a n |≤2,n ∈N *.20.证明:(1)由⎪⎪⎪⎪a n -a n +12≤1,得|a n |-12|a n +1|≤1,故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *,所以|a 1|21-|a n |2n =|a 1|21-|a 2|22+|a 2|22-|a 3|23+…+|a n -1|2n -1-|a n |2n ≤121+122+…+12n -1<1,因此|a n |≥2n -1(|a 1|-2).(2)任取n ∈N *,由(1)知,对于任意m >n ,|a n |2n -|a m |2m =(|a n |2n -|a n +1|2n +1)+(|a n +1|2n +1-|a n +2|2n +2)+…+(|a m -1|2m -1-|a m |2m )≤12n +12n +1+…+12m -1<12n -1, 故|a n |<⎝⎛⎭⎫12n -1+|a m |2m ·2n≤[12n -1+12m ·32m ] ·2n =2+⎝⎛⎭⎫34m ·2n .从而对于任意m >n ,均有|a n |<2+⎝⎛⎭⎫34m ·2n .由m 的任意性得|a n |≤2.①否则,存在n 0∈N *,有|an 0|>2,取正整数m 0>log 34|an 0|-22n 0且m 0>n 0,则2n 0·⎝⎛⎭⎫34m 0<2n 0·⎝⎛⎭⎫34log 34|an 0|-22n 0=|an 0|-2, 与①式矛盾.综上,对于任意n ∈N *,均有|a n |≤2. 23.D5,M2[·上海卷] 若无穷数列{a n }满足:只要a p =a q (p ,q ∈N *),必有a p +1=a q +1,则称{a n }具有性质P .(1)若{a n }具有性质P ,且a 1=1,a 2=2,a 4=3,a 5=2,a 6+a 7+a 8=21,求a 3;(2)若无穷数列{b n }是等差数列,无穷数列{c n }是公比为正数的等比数列,b 1=c 5=1,b 5=c 1=81,a n =b n +c n ,判断{a n }是否具有性质P ,并说明理由;(3)设{b n }是无穷数列,已知a n +1=b n +sin a n (n ∈N *),求证:“对任意a 1,{a n }都具有性质P ”的充要条件为“{b n }是常数列”.23.解:(1)因为a 5=a 2,所以a 6=a 3,a 7=a 4=3,a 8=a 5=2, 于是a 6+a 7+a 8=a 3+3+2.又因为a 6+a 7+a 8=21,所以a 3=16.(2){b n }的公差为20,{c n }的公比为13,所以b n =1+20(n -1)=20n -19,c n =81·(13)n -1=35-n ,a n =b n +c n =20n -19+35-n . a 1=a 5=82,但a 2=48,a 6=3043,a 2≠a 6, 所以{a n }不具有性质P . (3)证明:充分性:当{b n }为常数列时,a n +1=b 1+sin a n .对任意给定的a 1,若a p =a q ,则b 1+sin a p =b 1+sin a q ,即a p +1=a q +1, 充分性得证. 必要性:用反证法证明.假设{b n }不是常数列,则存在k ∈N *,使得b 1=b 2=…=b k =b ,而b k +1≠b .下面证明存在满足a n +1=b n +sin a n 的{a n },使得a 1=a 2=…=a k +1,但a k +2≠a k +1. 设f (x )=x -sin x -b ,取m ∈N *,使得m π>|b |,则f (m π)=m π-b >0,f (-m π)=-m π-b <0,故存在c 使得f (c )=0.取a 1=c ,因为a n +1=b +sin a n (1≤n ≤k ),所以a 2=b +sin c =c =a 1, 依此类推,得a 1=a 2=…=a k +1=c .但a k +2=b k +1+sin a k +1=b k +1+sin c ≠b +sin c ,即a k +2≠a k +1. 所以{a n }不具有性质P ,矛盾. 必要性得证.综上,“对任意a 1,{a n }都具有性质P ”的充要条件为“{b n }是常数列”. 3.[·淮南一模] 已知数列{a n }中,a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是( )A. (-2,+∞)B. [-2,+∞)C. (-3,+∞)D. [-3,+∞)3.C [解析] 由题意可知a n +1>a n 对任意正整数n 恒成立,即(n +1)2+λ(n +1)>n 2+λn 对任意正整数n 恒成立,即λ>-2n -1对任意正整数n 恒成立,故λ>-3.6.[·怀化模拟] 设S n 为等差数列{}a n 的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( )A .5B .6C .7D .86.D [解析] S n +2-S n =36,即a n +2+a n +1=36,即a 1+(n +1)·d +a 1+nd =36,将a 1=1,d =2代入上式,解得n =8.15.[·淮南模拟] 在公差为d 的等差数列{}a n 中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d, a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 15.解:(1)由题意得5a 3·a 1=(2a 2+2)2, 所以d 2-3d -4=0,解得d =-1或d =4, 所以a n =-n +11或a n =4n +6. (2)设数列{a n }的前n 项和为S n .因为d <0,所以d =-1,a n =-n +11.当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n;当n ≥12时,|a 1|+|a 2|+…+|a 11|+|a 12|+…+|a n |= a 1+a 2+…+a 11-a 12-…-a n =S 11-(S n -S 11)=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+…+|a n |=⎩⎨⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.9.[·湖北七市调研] 已知等差数列{a n },等比数列{b n }满足a 1=b 1=1,a 2=b 2,2a 3-b 3=1.(1)求数列{a n },{b n }的通项公式;(2)记c n =a n b n ,求数列{c n }的前n 项和S n .9.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . ∵a 1=b 1=1,a 2=b 2,2a 3-b 3=1, ∴⎩⎪⎨⎪⎧1+d =q ,2(1+2d )-q 2=1,解得⎩⎪⎨⎪⎧d =0,q =1或⎩⎪⎨⎪⎧d =2,q =3, ∴a n =1,b n =1或a n =1+2(n -1)=2n -1,b n =3n -1.(2)当⎩⎪⎨⎪⎧d =0,q =1时,c n =a n b n =1,S n =n .第11页 共11页 当⎩⎪⎨⎪⎧d =2,q =3时,c n =a n b n =(2n -1)·3n -1, 则S n =1+3×3+5×32+…+(2n -1)·3n -1,∴3S n =3+3×32+…+(2n -3)·3n -1+(2n -1)·3n , ∴-2S n =1+2×(3+32+…+3n -1)-(2n -1)·3n =(2-2n )·3n -2, ∴S n =(n -1)·3n +1.。

高三下学期高考数学模拟试题精选汇总:数列03Word版含答案

高三下学期高考数学模拟试题精选汇总:数列03Word版含答案

数列031.设数列{a }的前n 项和为S ,且满足S =2-a ,n=1,2,3,…(1)求数列{a }的通项公式;(4分)(2)若数列{b }满足b =1,且b =b +a ,求数列{b }的通项公式;(6分) (3)设C =n (3- b ),求数列{ C }的前n 项和T 。

(6分)2.已知数列的前项和为,且,数列满足,且点在直线上.(Ⅰ)求数列、的通项公式; (Ⅱ)求数列的前项和; (Ⅲ)设,求数列的前项和.n n n n n n 11+n n n n n n n n {}n a n n S *22()n n S a n N =-∈{}n b 11b =*1(,)()n n P b b n N +∈2y x =+{}n a {}n b {}n n a b ⋅n n D 22*sin cos ()22n n n n n c a b n N ππ=⋅-⋅∈{}n c 2n 2n T3.对n∈N ∗不等式所表示的平面区域为D n ,把D n 内的整点(横坐标与纵坐标均为整数的点)按其到原点的距离从近到远排成点列(x 1,y 1),(x 2,y 2),⋯,(x n ,y n ),求x n ,y n ;(2)数列{a n }满足a 1=x 1,且n≥2时a n =y n 2证明:当n≥2时, ;(3)在(2)的条件下,试比较与4的大小关系.4.数列{a n }满足4a 1=1,a n-1=[(-1)n a n-1-2]a n (n≥2),(1)试判断数列{1/a n +(-1)n}是否为等比数列,并证明;(2)设a n 2∙b n =1,求数列{b n }的前n 项和S n .⎪⎩⎪⎨⎧+-≤>>n nx y y x 2,0,0).111(212221-+++n y y y 22211)1(n n a n a n n =-++)11()11()11()11(321na a a a +⋅⋅+⋅+⋅+5.已知,点在函数的图象上,其中(1)证明数列是等比数列; (2)设,求及数列的通项;(3)记,求数列的前项和.6.设数列{}的前项和为,且满足=2-,(=1,2,3,…)(Ⅰ)求数列{}的通项公式;(Ⅱ)若数列{}满足=1,且,求数列{}的通项公式; (Ⅲ),求的前项和7.已知数列{a n }的前n 项和,数列{b n }满足.(1)求证数列{b n }是等差数列,并求数列{a n }的通项公式; (2)设数列的前n 项和为T n ,证明:且时,;(3)设数列{c n }满足(为非零常数,),问是否存在整数,使得对任意,都有.12a =1(,)n n a a +2()2f x x x =+1,2,3n ={}lg(1)n a +12(1)(1)(1)n n T a a a =+⋅+⋅⋅+n T {}n a 112n n n b a a =++{}n b n n S n a n n S n S n a n n a n b 1b 1n n n b b a +=+n b 2)b -n(3n =nc n c n nT参考答案1. (1)a =S =11分 n ≥2时,S =2-a1分S =2-a1分a =a +a 2a = a∵a =1 =1分∴a =() 1分(2)b -b =()1分1分∴b -b =()+……+()=1分=2-∴b =3-1分 ∵b =1 成立1分∴b =3-() (3)C =n () 1分T =1×()+2()+……+n ()T =1×()+……+(n-1) ()+n () 11n n 1-n 1-n n n 1-n n 1-n 11-n n a a 21n 211-n 1-n n 211-n ⎪⎪⎪⎭⎪⎪⎪⎬⎫=-=-=---21123012)21()21()21(n n n b b b b b b n 121212-n 2112111---n 221-n n 221-n 1n 212-n n 212-n n 211-210212-n 21n 210212-n 211-n=2+-n () =2+2-()-n ()∴T =8--=8-2. 【解】(Ⅰ)当,当时,∴ ,∴是等比数列,公比为2,首项∴又点在直线上,∴ ,∴是等差数列,公差为2,首项,∴(Ⅱ)∴ ∴ ① ②①—②得(Ⅲ)3.解:(1)当n=1时,(x 1,y 1)=(1,1)n=2时,(x 2,y 2)=(1,2) (x 3,y 3)=(1,3)2112111---n 211-n 212-n 211-n n 321-n 22-n n 222-+n n 1=n 21=a 2≥n 1122n n n n n a S S a a --=-=-12(2)n n a a n -=≥{}n a 12a =2nn a =*1(,)()n n P b b n N +∈2y x =+12n n b b +=+{}n b 11=b 21n b n =-(21)2nn n a b n ⋅=-⨯1234112325272(23)2(21)2n n n D n n -=⨯+⨯+⨯+⨯+-⨯+-⨯23451212325272(23)2(21)2n n n D n n +=⨯+⨯+⨯+⨯+-⨯+-⨯123411222222222(21)2n n n D n +-=⨯+⨯+⨯+⨯+⨯--⨯1114(12)22(21)22(32)612n n n n n -++-=+⨯--⨯=---1(23)26n n D n +=-+2(21)n n c n ⎧=⎨--⎩为偶数为奇数n n 21321242()()n n n T a a a b b b -=+++-++21321222222[37(41)]23n n n n n +--=+++-+++-=--n=3时,(x 4,y 4)=(1,4) n 时 (x n ,y n )=(1,n)(2)由 (3)当n=1时,时,成立 由(2)知当n≥3时,即 == == 得证4.解:(1)由即1(*)n n x n N y n=⎧∴∈⎨=⎩2222212221222221111()123(1)11111(1)()(1)123n n n n a n n a a a n n n n n ++⎧=++++⎪-⎪∴-=⎨+⎪=++++⎪+⎩11124,2n a +=<=12115(1)(1)244a a ++=⨯<1221(1)n n a a n n ++=+2211(1)n n a n a n ++=+31212312311111111(1)(1)(1)(1)nn na a a a a a a a a a a a ++++++++=⋅⋅311223411111(1)n n na a a a a a a a a a -++++⋅⋅⋅⋅+222212222123(1)2434(1)n n n a n n +-⋅⋅⋅⋅⋅+122222111122[1](1)23(1)n a n n n +⋅=++++++-2111111111(2)2[1(1)()()](1)12231n n n n n nn n<=-≥<+-+-++----122(2)44n n-=-<112(1)n n n a a -=--1111[(1)]2[(1)]n n n n a a --+-=---111(1)2(*2)1(1)n nn n a n N n a --+-=-∈≥+-且另: 是首项为3公比为-2的等比数列 (2)由=5. (Ⅰ)由已知,,两边取对数得 ,即是公比为2的等比数列.(Ⅱ)由(Ⅰ)知 (*)=由(*)式得(Ⅲ)又 1111111(1)21(1)(1)2(1)2211(1)1(1)(1)n nn n n n n n nn n n n n a a a a a a a ---------+-+---===--++-+-1(1)n n a ⎧⎫∴+-⎨⎬⎩⎭11111(1)3(2)3(2)(1)n n n n n na a ---+-=-∴=-+-21n n a b =112194621n n n nb a --∴==⋅+⋅+9(41)6(21)4121n n n S n --=++--34629(*)nnn n N ⋅+⋅+-∈212n n n a a a +=+211(1)n n a a +∴+=+12a =11n a ∴+>1lg(1)2lg(1)n n a a ++=+1lg(1)2lg(1)n n a a ++=+{lg(1)}n a ∴+11lg(1)2lg(1)n n a a -+=⋅+1122lg3lg3n n --=⋅=1213n n a -∴+=12(1)(1)n T a a ∴=++n …(1+a )012222333=⋅⋅⋅⋅n-12 (32)1223+++=n-1…+2n 2-131231n n a -=-212n n n a a a +=+1(2)n n n a a a +∴=+11111()22n n n a a a +∴=-+11122n n n a a a +∴=-+112n n n b a a =++1112()n n n b a a +∴=-.6.解: (Ⅰ)∵n=1时,a 1+S 1=a 1+a 1=2∴a 1=1∵S n =2-a n 即a n +S n =2 ∴a n+1+S n+1=2 两式相减:a n+1-a n +S n+1-S n =0 即a n+1-a n +a n+1=0,故有2a n+1=a n ∵a n ≠0 ∴(n ∈N *) 所以,数列{a n }为首项a 1=1,公比为的等比数列.a n =(n ∈N *) b n -b 1=1+又∵b 1=1,∴b n =3-2()n-1(n=1,2,3,…) (3)所以 7.解:(1)在中,令n=1,可得,即12n S b b ∴=++n …+b 122311111112()n n a a a a a a +=-+-+-…+11112()n a a +=-1221131,2,31n nn n a a a -+=-==-22131nn S ∴=--211=+n n a a 211)21(-n 11232)21(22211)21(1)21()21()21(21----=--=++++n n n 211-2n n n c =21211111222144222222n n n n n n n n n n n T T T -----+=-=++++-=--=-当时,,∴,∴,即.∵,∴,即当时,.又,∴数列{b n}是首项和公差均为1的等差数列.于是,∴.(2)由(1)得,所以①②由①-②得∴于是确定T n与的大小关系等价于比较与2n+1的大小由可猜想当时,.证明如下:证法1:①当n=3时,由上验算显示成立.②假设n=k+1时所以当n=k+1时猜想也成立综合①②可知,对一切的正整数,都有.证法2:当时综上所述,当n=1,2时,当时(3)∵∴∴①当n=2k-1,k=1,2,3,……时,①式即为②依题意,②式对k=1,2,3……都成立,∴当n=2k,k=1,2,3,……时,①式即为③依题意,③式对k=1,2,3……都成立,∴∴,又∴存在整数,使得对任意有.。

高考数学(理科)模拟试题含答案(一)精编版

高考数学(理科)模拟试题含答案(一)精编版

高考数学(理科)模拟试题含答案(一)精编版高考理科数学模拟试题精编(一)注意事项:1.作答选择题时,在答题卡上涂黑对应选项的答案信息点。

如需改动,先擦干净再涂其他答案。

不得在试卷上作答。

2.非选择题用黑色钢笔或签字笔作答,写在答题卡指定区域内。

如需改动,先划掉原答案再写新答案。

不得用铅笔或涂改液。

不按要求作答无效。

3.答题卡需整洁无误。

考试结束后,交回试卷和答题卡。

第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.设全集Q={x|2x²-5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A。

3B。

4C。

7D。

82.若复数z=m(m-1)+(m-1)i是纯虚数,其中m是实数,则z=()A。

iB。

-iC。

2iD。

-2i3.已知等差数列{an}的公差为5,前n项和为Sn,且a1,a2,a5成等比数列,则S6=()A。

80B。

85C。

90D。

954.XXX每天上学都需要经过一个有交通信号灯的十字路口。

已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒。

如果XXX每天到路口的时间是随机的,则XXX上学时到十字路口需要等待的时间不少于20秒的概率是()A。

4/5B。

3/4C。

2/3D。

3/56.已知p:a=±1,q:函数f(x)=ln(x+a²+x²)为奇函数,则p 是q成立的()A。

充分不必要条件B。

必要不充分条件C。

充分必要条件D。

既不充分也不必要条件7.(省略了一个选项) 327.(1+x²+4x)²的常数项为()A。

120B。

160C。

200D。

2408.我们可以用随机模拟的方法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为()A。

3.119B。

2023年高中数学理科高考模拟试题4(附答案)

2023年高中数学理科高考模拟试题4(附答案)

2023年高中数学理科高考模拟试题(附答案)姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间90分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)1.如图,已知全集,集合,则图中阴影部分表示的集合的子集个数为()A、5;B、6;C、7;D、82.已知x,y为正数,且xy=1,则的最小值为()A.4;B.6;C.2;D.3.已知为执行如图所示的程序框图输出的结果,则二项式的展开式中含项的系数是()A.48;B.72;C.-120;D.-1924.已知椭圆的离心率为,直线与椭圆交于两点且线段的中点为,则直线的斜率为()A.;B.; C.;D.5.函数的定义域为开区间,导函数在内的图象如下图所示,则函数在开区间内有极小值点()A.1个B.0个C.2个D.3个6.三名同学到五个社区参加社会实践活动,要求每个社区有且只有一名同学,每名同学至多去两个社区,则不同的派法共有()A.90种B.60种C.45种D.30种7.在正三棱柱中,,点E是的中点,点F是上靠近点B的三等分点,则异面直线与所成角的余弦值是()A.B.C.D.8.已知复数,在复平面内对应点分别为,,则()A.1B.C.2D.39.已知是椭圆的两个焦点,P为椭圆上一点,且,则点P到y轴的距离为()A.2B.C.D.110.已知为锐角,若,则()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二、填空题(每题5分,共25题)11.已知向量满足,且对于任意x,不等式恒成立,设的夹角为,则___________12.已知圆C1:与C2:,若C1与圆C2有且仅有一个公共点,则实数a的值为___________.13.已知函数,其中,若在区间(,)上恰有2个零点,则的取值范围是____________.14.设,使不等式取等号的的取值范围__________.15.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.且D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.评卷人得分三、综合题(每题15分,共75分)16.中内角的对边分别为,向量且(Ⅰ)求锐角的大小,(Ⅱ)如果,求的面积的最大值17.如图,在四棱柱中,底面是正方形,侧棱与底面垂直,点是正方形对角线的交点,,点,分别在和上,且.(Ⅰ)求证:∥平面;(Ⅱ)若,求的长;(Ⅲ)在(Ⅱ)的条件下,求二面角的余弦值.18.已知数列的前项和,是等差数列,且(1)求数列的通项公式;(2)令求数列的前项和.19.已知椭圆的离心率,短轴长为.(1)求椭圆方程;(2)若椭圆与轴正半轴、轴正半轴的交点分别为、,经过点且斜率k的直线与椭圆交于不同的两点、.是否存在常数,使得向量20.已知函数(1)讨论当a>0时,函数的单调性;(2)若曲线上两点A、B处的切线都与y轴垂直,且线段AB与x轴有公共点,求实数a的取值范围.参考答案一、选择题第1题第2题第3题第4题第5题D A D AA二、填空题第11题:第12题:6,或-6;第13题:或,第14题:第15题:三、解答题第16题:(1)即:第6题第7题第8题第9题第10题ABBCA为锐角(2)代入上式,得到,(当且仅当a=c=2时成立)(当且仅当a=c=2时成立)第17题:(I)证明:取,连结和,因为,EE1‖BC,BC=AD,BC‖AD,所以EE1=AD,EE1‖AD,所以四边形为平行四边形;所以AE1‖DE,在矩形中,A1F=BE1,所以四边形为平行四边形,所以B1F‖AE1,B1F‖DE,因为DE⊂平面BDE,B1F⊄BDE所以B1F‖平面BDE(2)连接,在四棱柱中,平面,因为,,所以平面,所以,已知得,平面,所以,,在△与△中,,,所以△∽△,所以,即。

高考理科数学模拟试题含答案及解析5套).pptx

高考理科数学模拟试题含答案及解析5套).pptx

AF 4 15.抛物线 y2 4x 的焦点为 F ,过 F 的直线与抛物线交于 A , B 两点,且满足 BF ,
点 O 为原点,则 △AOF 的面积为

f x 2 3 sin xcosx 2cos2 x0
16.已知函数
22
2
的周期为
2π 3
,当
x
0,π3
时,函
数 g x f x m 恰有两个不同的零点,则实数m 的取值范围是
第Ⅰ卷(选择题 共 60 分)
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.已知a , b 都是实数,那么“ 2a 2b ”是“ a2 b2 ”的(

A.充分不必要条件 B.必要不充分条件 C.充要条件 条件
2.抛物线 x 2 py2 ( p 0) 的焦点坐标为( )
的距离相等,则
1 2
y1
y2
1 2
,即
y 1
y 2 1
.有
2x1 2x2 1 .由基本不等式 得: 2x1 2x2 ≥2 2x1 2x2 ,整理得 2x1x2 ≤ 1 ,解得
4
x1 x2 2 .(因为 x1 x2 ,等号取不到).故选 B.
10、【答案】C
学海无涯
【解析】如图所示,该四面体的四个顶点为长方体的四个顶点,设长、宽、高分
19、某高校在 2017 年自主招生考试成绩中随机抽取 100 名学生的笔试成绩,按成绩共分为
五组,得到如下的频率分布表:

号分
组频
数频

第一组 [145,155)
5
0.05
第二组 [155,165)

高考数学模拟试卷(理科)(九)(解析版)

高考数学模拟试卷(理科)(九)(解析版)

吉林省实验中学高考数学模拟试卷(理科)(九)一、选择题:(本大题共12小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的)1.设集合A={x|1<x<4}, 集合B={x|x2﹣2x﹣3≤0}, 则A∩(∁R B)=()A.(1, 4)B.(3, 4)C.(1, 3)D.(1, 2)∪(3, 4)2.已知命题p:∀x1, x2∈R, (f(x2)﹣f(x1))(x2﹣x1)≥0, 则¬p是()A.∃x1, x2∈R, (f(x2)﹣f(x1))(x2﹣x1)≤0B.∀x1, x2∈R, (f(x2)﹣f(x1))(x2﹣x1)≤0C.∃x1, x2∈R, (f(x2)﹣f(x1))(x2﹣x1)<0D.∀x1, x2∈R, (f(x2)﹣f(x1))(x2﹣x1)<03.若复数z满足z(2﹣i)=11+7i(i为虚数单位), 则z为()A.3+5iB.3﹣5iC.﹣3+5iD.﹣3﹣5i4.已知{a n}是等差数列, 公差d不为零, 前n项和是S n, 若a3, a4, a8成等比数列, 则()A.a1d>0, dS4>0B.a1d<0, dS4<0C.a1d>0, dS4<0D.a1d<0, dS4>05.已知x, y满足约束条件, 若z=ax+y的最大值为4, 则a=()A.3B.2C.﹣2D.﹣36.阅读如图所示的程序图, 运行相应的程序输出的结果s=()A.1B.4C.9D.167.学校为了调查学生在课外读物方面的支出情况, 抽出了一个容量为n的样本, 其频率分布直方图如图所示, 其中支出在[50, 60)元的同学有30人, 则n的值为()A.100B.1000C.90D.9008.关于正态曲线性质的叙述:①曲线关于直线x=μ对称, 这个曲线在x轴上方;②曲线关于直线x=σ对称, 这个曲线只有当x∈(﹣3σ, 3σ)时才在x轴上方;③曲线关于y轴对称, 因为曲线对应的正态密度函数是一个偶函数;④曲线在x=μ时处于最高点, 由这一点向左右两边延伸时, 曲线逐渐降低;⑤曲线的对称轴由μ确定, 曲线的形状由σ确定;⑥σ越大, 曲线越“矮胖”, σ越小, 曲线越“高瘦”.上述说法正确的是()A.①④⑤⑥B.②④⑤C.③④⑤⑥D.①⑤⑥9.节日前夕, 小李在家门前的树上挂了两串彩灯, 这两串彩灯的第一次闪亮相互独立, 且都在通电后的4秒内任一时刻等可能发生, 然后每串彩灯以4秒为间隔闪亮, 那么这两串彩灯同时通电后, 它们第一次闪亮的时候相差不超过2秒的概率是()A.B.C.D.10.抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1D.11.若某几何体的三视图(单位:cm)如图所示, 则此几何体的体积等于______cm2.()A.16B.18C.24D.2612.函数f(x)=﹣cosx在[0, +∞)内()A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点二、填空题:(本大题共4小题, 每小题5分, 共20分)13.已知向量夹角为45°, 且, 则=.14.(1+x)8(1+y)4的展开式中x2y2的系数是.15.sinxdx=.16.已知半球内有一内接正方体, 则这个半球的表面积与正方体的表面积之比是.三、解答题:(本大题共5小题, 共70分.解答应写出说明文字, 证明过程或演算步骤)17.在平面直角坐标系xOy中, 已知向量=(, ﹣), =(sinx, cosx), x∈(0, ).(1)若⊥, 求tanx的值;(2)若与的夹角为, 求x的值.18.在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.(Ⅰ)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(Ⅱ)X表示3号歌手得到观众甲、乙、丙的票数之和, 求X的分布列和数学期望.19.如图, 在直三棱柱A1B1C1﹣ABC中, AB⊥AC, AB=AC=2, AA1=4, 点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.20.如图, 点P(0, ﹣1)是椭圆C1:+=1(a>b>0)的一个顶点, C1的长轴是圆C2:x2+y2=4的直径, l1, l2是过点P且互相垂直的两条直线, 其中l1交圆C2于A、B两点, l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.21.设x1, x2(x1≠x2)是函数f(x)=ax3+bx2﹣a2x(a>0)的两个极值点.(1)若x1=﹣1, x2=2, 求函数f(x)的解析式;(2)若, 求b的最大值.(3)若x1<x<x2, 且x2=a, g(x)=f'(x)﹣a(x﹣x1), 求证:.请考生在第22, 23, 24三题中任选一题作答, 如果多做, 则按所做的第一题计分.[选修4-1:几何证明选讲]22.如图, △ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE, 求∠BAC的大小.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中, 直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位, 且以原点O为极点, 以x轴正半轴为极轴)中, 圆C的方程为ρ=2sinθ.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B, 若点P的坐标为(3, ), 求|PA|+|PB|.[选修4-5:不等式选讲]24.例3.设a>0, b>0, 解关于x的不等式:|ax﹣2|≥bx.吉林省实验中学高考数学模拟试卷(理科)(九)参考答案与试题解析一、选择题:(本大题共12小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的)1.设集合A={x|1<x<4}, 集合B={x|x2﹣2x﹣3≤0}, 则A∩(∁R B)=()A.(1, 4)B.(3, 4)C.(1, 3)D.(1, 2)∪(3, 4)【考点】交、并、补集的混合运算.【分析】由题意, 可先解一元二次不等式, 化简集合B, 再求出B的补集, 再由交的运算规则解出A∩(∁R B)即可得出正确选项【解答】解:由题意B={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3}, 故∁R B={x|x<﹣1或x>3},又集合A={x|1<x<4},∴A∩(∁R B)=(3, 4)故选B2.已知命题p:∀x1, x2∈R, (f(x2)﹣f(x1))(x2﹣x1)≥0, 则¬p是()A.∃x1, x2∈R, (f(x2)﹣f(x1))(x2﹣x1)≤0B.∀x1, x2∈R, (f(x2)﹣f(x1))(x2﹣x1)≤0C.∃x1, x2∈R, (f(x2)﹣f(x1))(x2﹣x1)<0D.∀x1, x2∈R, (f(x2)﹣f(x1))(x2﹣x1)<0【考点】命题的否定.【分析】由题意, 命题p是一个全称命题, 把条件中的全称量词改为存在量词, 结论的否定作结论即可得到它的否定, 由此规则写出其否定, 对照选项即可得出正确选项【解答】解:命题p:∀x1, x2∈R, (f(x2)﹣f(x1))(x2﹣x1)≥0是一个全称命题, 其否定是一个特称命题,故¬p:∃x1, x2∈R, (f(x2)﹣f(x1))(x2﹣x1)<0.故选:C.3.若复数z满足z(2﹣i)=11+7i(i为虚数单位), 则z为()A.3+5iB.3﹣5iC.﹣3+5iD.﹣3﹣5i【考点】复数代数形式的乘除运算.【分析】等式两边同乘2+i, 然后化简求出z即可.【解答】解:因为z(2﹣i)=11+7i(i为虚数单位),所以z(2﹣i)(2+i)=(11+7i)(2+i),即5z=15+25i,z=3+5i.故选A.4.已知{a n}是等差数列, 公差d不为零, 前n项和是S n, 若a3, a4, a8成等比数列, 则()A.a1d>0, dS4>0B.a1d<0, dS4<0C.a1d>0, dS4<0D.a1d<0, dS4>0【考点】等差数列与等比数列的综合.【分析】由a3, a4, a8成等比数列, 得到首项和公差的关系, 即可判断a1d和dS4的符号.【解答】解:设等差数列{a n}的首项为a1, 则a3=a1+2d, a4=a1+3d, a8=a1+7d,由a3, a4, a8成等比数列, 得, 整理得:.∵d≠0, ∴,∴,=<0.故选:B.5.已知x, y满足约束条件, 若z=ax+y的最大值为4, 则a=()A.3B.2C.﹣2D.﹣3【考点】简单线性规划.【分析】作出不等式组对应的平面区域, 利用目标函数的几何意义, 利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).则A(2, 0), B(1, 1),若z=ax+y过A时取得最大值为4, 则2a=4, 解得a=2,此时, 目标函数为z=2x+y,即y=﹣2x+z,平移直线y=﹣2x+z, 当直线经过A(2, 0)时, 截距最大, 此时z最大为4, 满足条件,若z=ax+y过B时取得最大值为4, 则a+1=4, 解得a=3,此时, 目标函数为z=3x+y,即y=﹣3x+z,平移直线y=﹣3x+z, 当直线经过A(2, 0)时, 截距最大, 此时z最大为6, 不满足条件,故a=2,故选:B6.阅读如图所示的程序图, 运行相应的程序输出的结果s=()A.1B.4C.9D.16【考点】程序框图.【分析】模拟执行程序, 依次写出每次循环得到的n, s, a的值, 当n=3时, 不满足条件n<3, 退出循环, 输出s的值为9.【解答】解:模拟执行程序框图, 可得a=1, s=0, n=1s=1, a=3满足条件n<3, n=2, s=4, a=5满足条件n<3, n=3, s=9, a=7不满足条件n<3, 退出循环, 输出s的值为9,故选:C.7.学校为了调查学生在课外读物方面的支出情况, 抽出了一个容量为n的样本, 其频率分布直方图如图所示, 其中支出在[50, 60)元的同学有30人, 则n的值为()A.100B.1000C.90D.900【考点】用样本的频率分布估计总体分布.【分析】根据频率直方图的意义, 由前三个小组的频率可得样本在[50, 60)元的频率, 计算可得样本容量.【解答】解:由题意可知:前三个小组的频率之和=(0.01+0.024+0.036)×10=0.7,∴支出在[50, 60)元的频率为1﹣0.7=0.3,∴n的值=;故选A.8.关于正态曲线性质的叙述:①曲线关于直线x=μ对称, 这个曲线在x轴上方;②曲线关于直线x=σ对称, 这个曲线只有当x∈(﹣3σ, 3σ)时才在x轴上方;③曲线关于y轴对称, 因为曲线对应的正态密度函数是一个偶函数;④曲线在x=μ时处于最高点, 由这一点向左右两边延伸时, 曲线逐渐降低;⑤曲线的对称轴由μ确定, 曲线的形状由σ确定;⑥σ越大, 曲线越“矮胖”, σ越小, 曲线越“高瘦”.上述说法正确的是()A.①④⑤⑥B.②④⑤C.③④⑤⑥D.①⑤⑥【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据正态曲线的性质, 分析选项, 即可得出结论.【解答】解:根据正态曲线的性质, 曲线关于直线x=μ对称, 当x∈(﹣∞, +∞)时, 正态曲线全在x轴上方, 故①正确, ②不正确;只有当μ=0时, 正态曲线才关于y轴对称, 故③不正确;曲线关于直线x=μ对称, 曲线在x=μ时处于最高点, 由这一点向左右两边延伸时, 曲线逐渐降低, 故④正确;曲线的对称轴由μ确定, 曲线的形状由σ确定;σ越大, 曲线越“矮胖”, σ越小, 曲线越“高瘦”.故⑤⑥正确.故选:A.9.节日前夕, 小李在家门前的树上挂了两串彩灯, 这两串彩灯的第一次闪亮相互独立, 且都在通电后的4秒内任一时刻等可能发生, 然后每串彩灯以4秒为间隔闪亮, 那么这两串彩灯同时通电后, 它们第一次闪亮的时候相差不超过2秒的概率是()A.B.C.D.【考点】几何概型.【分析】设两串彩灯第一次闪亮的时刻分别为x, y, 由题意可得0≤x≤4, 0≤y≤4, 要满足条件须|x﹣y|≤2, 作出其对应的平面区域, 由几何概型可得答案.【解答】解:设两串彩灯第一次闪亮的时刻分别为x, y,由题意可得0≤x≤4, 0≤y≤4,它们第一次闪亮的时候相差不超过2秒, 则|x﹣y|≤2,由几何概型可得所求概率为上述两平面区域的面积之比,由图可知所求的概率为:=故选C10.抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1D.【考点】抛物线的简单性质;双曲线的简单性质.【分析】根据抛物线的标准方程, 算出抛物线的焦点F(1, 0).由双曲线标准方程, 算出它的渐近线方程为y=±x, 化成一般式得:, 再用点到直线的距离公式即可算出所求距离.【解答】解:∵抛物线方程为y2=4x∴2p=4, 可得=1, 抛物线的焦点F(1, 0)又∵双曲线的方程为∴a2=1且b2=3, 可得a=1且b=,双曲线的渐近线方程为y=±, 即y=±x,化成一般式得:.因此, 抛物线y2=4x的焦点到双曲线渐近线的距离为d==故选:B11.若某几何体的三视图(单位:cm)如图所示, 则此几何体的体积等于______cm2.()A.16B.18C.24D.26【考点】由三视图求面积、体积.【分析】根据三视图得出该几何体是直三棱柱, 去掉一个底面相同的三棱锥, 求出它的体积即可.【解答】解:根据几何体的三视图得:该几何体是底面为直角三角形, 高为5的直三棱柱,去掉一个底面为相同的直角三角形, 高为3的三棱锥,∴该几何体的体积为:V几何体=V三棱柱﹣V三棱锥=×4×3×5﹣××4×3×3=24故选:C.12.函数f(x)=﹣cosx在[0, +∞)内()A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点【考点】函数零点的判定定理.【分析】根据余弦函数的最大值为1, 可知函数在[π, +∞)上为正值, 在此区间上函数没有零点, 问题转化为讨论函数在区间[0, π)上的零点的求解, 利用导数讨论单调性即可.【解答】解:f′(x)=+sinx①当x∈[0.π)时, >0且sinx>0, 故f′(x)>0∴函数在[0, π)上为单调增取x=<0, 而>0可得函数在区间(0, π)有唯一零点②当x≥π时, >1且cosx≤1故函数在区间[π, +∞)上恒为正值, 没有零点综上所述, 函数在区间[0, +∞)上有唯一零点二、填空题:(本大题共4小题, 每小题5分, 共20分)13.已知向量夹角为45°, 且, 则=3.【考点】平面向量数量积的运算;平面向量数量积的坐标表示、模、夹角.【分析】由已知可得, =, 代入|2|====可求【解答】解:∵, =1∴=∴|2|====解得故答案为:314.(1+x)8(1+y)4的展开式中x2y2的系数是168.【考点】二项式系数的性质.【分析】根据(1+x)8和(1+y)4的展开式的通项公式可得x2y2的系数.【解答】解:根据(1+x)8和(1+y)4的展开式的通项公式可得, x2y2的系数为C82•C42=168, 故答案为:16815.sinxdx=0.【考点】定积分.【分析】直接根据定积分的计算法则计算即可.【解答】解:sinxdx=﹣cosx|=0,故答案为:016.已知半球内有一内接正方体, 则这个半球的表面积与正方体的表面积之比是3π:4.【考点】球的体积和表面积.【分析】将半球补成整个的球, 同时把原半球的内接正方体再补接一同样的正方体, 构成的长方体刚好是这个球的内接长方体, 那么这个长方体的对角线便是它的外接球的直径.【解答】解:将半球补成整个的球, 同时把原半球的内接正方体再补接一同样的正方体, 构成的长方体刚好是这个球的内接长方体, 那么这个长方体的对角线便是它的外接球的直径.设原正方体棱长为a, 球的半径是R, 则根据长方体的对角线性质, 得(2R)2=a2+a2+(2a)2, 即4R2=6a2, ∴R=\frac{\sqrt{6}}{2}a从而S半球的表面积=3πR2=πa2, S正方体=6a2,因此S半球的表面积:S正方体=3π:4,故答案为:3π:4.三、解答题:(本大题共5小题, 共70分.解答应写出说明文字, 证明过程或演算步骤)17.在平面直角坐标系xOy中, 已知向量=(, ﹣), =(sinx, cosx), x∈(0, ).(1)若⊥, 求tanx的值;(2)若与的夹角为, 求x的值.【考点】平面向量数量积的运算;数量积表示两个向量的夹角.【分析】(1)若⊥, 则•=0, 结合三角函数的关系式即可求tanx的值;(2)若与的夹角为, 利用向量的数量积的坐标公式进行求解即可求x的值.【解答】解:(1)若⊥,则•=(, ﹣)•(sinx, cosx)=sinx﹣cosx=0,即sinx=cosxsinx=cosx, 即tanx=1;(2)∵||=, ||==1, •=(, ﹣)•(sinx, cosx)=sinx﹣cosx,∴若与的夹角为,则•=||•||cos=,即sinx﹣cosx=,则sin(x﹣)=,∵x∈(0, ).∴x﹣∈(﹣, ).则x﹣=即x=+=.18.在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.(Ⅰ)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(Ⅱ)X表示3号歌手得到观众甲、乙、丙的票数之和, 求X的分布列和数学期望.【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【分析】(I)设事件A表示:“观众甲选中3号歌手且观众乙未选中3号歌手”, 观众甲选中3号歌手的概率为, 观众乙未选中3号歌手的概率为1﹣=, 利用互斥事件的概率公式,即可求得结论;(II)由题意, X可取0, 1, 2, 3, 求出相应的概率, 即可得到X的分布列与数学期望.【解答】解:(Ⅰ)设事件A表示:“观众甲选中3号歌手且观众乙未选中3号歌手”,观众甲选中3号歌手的概率为, 观众乙未选中3号歌手的概率为1﹣=,∴P(A)=,∴观众甲选中3号歌手且观众乙未选中3号歌手的概率为;(Ⅱ)X表示3号歌手得到观众甲、乙、丙的票数之和, 则X可取0, 1, 2, 3.观众甲选中3号歌手的概率为, 观众乙选中3号歌手的概率为,当观众甲、乙、丙均未选中3号歌手时, 这时X=0, P(X=0)=(1﹣)(1﹣)2=,当观众甲、乙、丙只有一人选中3号歌手时, 这时X=1,P(X=1)=(1﹣)2+(1﹣)(1﹣)+(1﹣)(1﹣)=,当观众甲、乙、丙只有二人选中3号歌手时, 这时X=2,P(X=2)=•(1﹣)+(1﹣)•+(1﹣)=,当观众甲、乙、丙都选中3号歌手时, 这时X=3,P(X=3)=•()2=,X的分布列如下:X 0 1 2 3P∴数学期望EX=0×+1×+2×+3×=.19.如图, 在直三棱柱A1B1C1﹣ABC中, AB⊥AC, AB=AC=2, AA1=4, 点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.【考点】与二面角有关的立体几何综合题;异面直线及其所成的角.【分析】(1)以{}为单位正交基底建立空间直角坐标系A﹣xyz, 利用向量法能求出异面直线A1B与C1D所成角的余弦值.(2)分别求出平面ABA1的法向量和平面ADC1的法向量, 利用向量法能求出平面ADC1与ABA1所成二面角的余弦值, 再由三角函数知识能求出平面ADC1与ABA1所成二面角的正弦值.【解答】解:(1)以{}为单位正交基底建立空间直角坐标系A﹣xyz,则由题意知A(0, 0, 0), B(2, 0, 0), C(0, 2, 0),A1(0, 0, 4), D(1, 1, 0), C1(0, 2, 4),∴, =(1, ﹣1, ﹣4),∴cos<>===,∴异面直线A1B与C1D所成角的余弦值为.(2)是平面ABA1的一个法向量,设平面ADC1的法向量为,∵,∴, 取z=1, 得y=﹣2, x=2,∴平面ADC1的法向量为,设平面ADC1与ABA1所成二面角为θ,∴cosθ=|cos<>|=||=,∴sinθ==.∴平面ADC1与ABA1所成二面角的正弦值为.20.如图, 点P(0, ﹣1)是椭圆C1:+=1(a>b>0)的一个顶点, C1的长轴是圆C2:x2+y2=4的直径, l1, l2是过点P且互相垂直的两条直线, 其中l1交圆C2于A、B两点, l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(1)由题意可得b=1, 2a=4, 即可得到椭圆的方程;(2)设A(x1, y1), B(x2, y2), D(x0, y0).由题意可知:直线l1的斜率存在, 设为k, 则直线l1的方程为y=kx﹣1.利用点到直线的距离公式和弦长公式即可得出圆心O到直线l1的距离和弦长|AB|, 又l2⊥l1, 可得直线l2的方程为x+kx+k=0, 与椭圆的方程联立即可得到点D的横坐标, 即可得出|PD|, 即可得到三角形ABD的面积, 利用基本不等式的性质即可得出其最大值, 即得到k的值.【解答】解:(1)由题意可得b=1, 2a=4, 即a=2.∴椭圆C1的方程为;(2)设A(x1, y1), B(x2, y2), D(x0, y0).由题意可知:直线l1的斜率存在, 设为k, 则直线l1的方程为y=kx﹣1.又圆的圆心O(0, 0)到直线l1的距离d=.∴|AB|==.又l2⊥l1, 故直线l2的方程为x+ky+k=0, 联立, 消去y得到(4+k2)x2+8kx=0, 解得,∴|PD|=.∴三角形ABD的面积S△==,令4+k2=t>4, 则k2=t﹣4,f(t)===,∴S△=, 当且仅, 即, 当时取等号,故所求直线l1的方程为.21.设x1, x2(x1≠x2)是函数f(x)=ax3+bx2﹣a2x(a>0)的两个极值点.(1)若x1=﹣1, x2=2, 求函数f(x)的解析式;(2)若, 求b的最大值.(3)若x1<x<x2, 且x2=a, g(x)=f'(x)﹣a(x﹣x1), 求证:.【考点】函数在某点取得极值的条件;函数解析式的求解及常用方法;一元二次方程的根的分布与系数的关系.【分析】(1)求导函数, 根据x1=﹣1, x2=2是函数f(x)的两个极值点, 即可求得函数f(x)的解析式;(2)根据x1, x2是函数f(x)的两个极值点, 可知x1, x2是方程3ax2+2bx﹣a2=0的两根, 从而, 利用, 可得b2=3a2(6﹣a), 令h(a)=3a2(6﹣a), 利用导数, 即可求得b的最大值;(3)根据x1, x2是方程3ax2+2bx﹣a2=0的两根, 可得f'(x)=3a(x﹣x1)(x﹣x2), 根据, 可得, 进而有=, 利用配方法即可得出结论.【解答】解:(1)求导函数, 可得f′(x)=3ax2+2bx﹣a2,∵x1=﹣1, x2=2是函数f(x)的两个极值点,∴f'(﹣1)=0, f'(2)=0,∴3a﹣2b﹣a2=0, 12a+4b﹣a2=0,解得a=6, b=﹣9.∴f(x)=6x3﹣9x2﹣36x.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)∵x1, x2是函数f(x)的两个极值点, ∴f'(x1)=f'(x2)=0.∴x1, x2是方程3ax2+2bx﹣a2=0的两根, 故有△=4b2+12a3>0对一切a>0, b∈R恒成立.∴,∵a>0, ∴x1•x2<0,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由得,∴b2=3a2(6﹣a).∵b2≥0, ∴3a2(6﹣a)≥0, ∴0<a≤6.令h(a)=3a2(6﹣a), 则h′(a)=36a﹣9a2.当0<a<4时, h′(a)>0, ∴h(a)在(0, 4)内是增函数;当4<a<6时, h′(a)<0, ∴h(a)在(0, 4)内是减函数;∴当a=4时, h(a)是极大值为96,∴h (a)在(0, 6)上的最大值是96, ∴b的最大值是.…(3)∵x1, x2是方程3ax2+2bx﹣a2=0的两根.∴f'(x)=3a(x﹣x1)(x﹣x2)∵, ∴∴…∵x1<x<x2,∴═=﹣3a请考生在第22, 23, 24三题中任选一题作答, 如果多做, 则按所做的第一题计分.[选修4-1:几何证明选讲]22.如图, △ABC的角平分线AD的延长线交它的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD•AE, 求∠BAC的大小.【考点】圆內接多边形的性质与判定.【分析】(1)要判断两个三角形相似, 可以根据三角形相似判定定理进行证明, 但注意观察已知条件中给出的是角的关系, 故采用判定定理1更合适, 故需要再找到一组对应角相等, 由圆周角定理, 易得满足条件的角.(2)根据(1)的结论, 我们可得三角形对应对成比例, 由此我们可以将△ABC的面积转化为S=AB•AC, 再结合三角形面积公式, 不难得到∠BAC的大小.【解答】证明:(1)由已知△ABC的角平分线为AD,可得∠BAE=∠CAD因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD故△ABE∽△ADC.解:(2)因为△ABE∽△ADC,所以,即AB•AC=AD•AE.又S=AB•ACsin∠BAC,且S=AD•AE,故AB•ACsin∠BAC=AD•AE.则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.[选修4-4:坐标系与参数方程]24.例3.设a>0, b>0, 解关于x的不等式:|ax﹣2|≥bx.【考点】绝对值不等式.【分析】首先分析题目由a>0, b>0, 解关于x的不等式:|ax﹣2|≥bx, 去绝对值号得到ax﹣2≥bx或ax﹣2≤﹣bx, 对于不等式ax﹣2≤﹣bx, 可直接解得.对于不等式ax﹣2≥bx, 需要分别讨论当a>b>0时, 当a=b>0时, 当0<a<b时的解集, 然后取它们的并集即得到答案.【解答】解:原不等式|ax﹣2|≥bx可化为ax﹣2≥bx或ax﹣2≤﹣bx,(1)对于不等式ax﹣2≤﹣bx, 即(a+b)x≤2 因为a>0, b>0即:.(2)对于不等式ax﹣2≥bx, 即(a﹣b)x≥2①当a>b>0时, 由①得, ∴此时, 原不等式解为:或;当a=b>0时, 由①得x∈ϕ, ∴此时, 原不等式解为:;当0<a<b时, 由①得, ∴此时, 原不等式解为:.综上可得, 当a>b>0时, 原不等式解集为,当0<a≤b时, 原不等式解集为.23.在直角坐标系xOy中, 直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位, 且以原点O为极点, 以x轴正半轴为极轴)中, 圆C的方程为ρ=2sinθ.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B, 若点P的坐标为(3, ), 求|PA|+|PB|.【考点】直线的参数方程;简单曲线的极坐标方程.【分析】(I)由⊙C的方程可得:, 利用极坐标化为直角坐标的公式x=ρcosθ, y=ρsinθ即可得出..(II)把直线l的参数方程(t为参数)代入⊙C的方程得到关于t的一元二次方程, 即可得到根与系数的关系, 根据参数的意义可得|PA|+|PB|=|t1|+|t2|即可得出.【解答】解:(I)由⊙C的方程可得:, 化为.(II)把直线l的参数方程(t为参数)代入⊙C的方程得=0, 化为.∴.(t1t2=4>0).根据参数的意义可得|PA|+|PB|=|t1|+|t2|=|t1+t2|=.[选修4-5:不等式选讲]。

2022新高考地区模拟试题精选(数列)原卷

2022新高考地区模拟试题精选(数列)原卷

2022新高考地区模拟试题精选(数列)原卷1.(2022·河北保定·一模)已知数列{}1n a -是递增的等比数列,25a =且3426a a +=.(1)求数列{}n a 的通项公式;(2)求数列{}n na 的前n 项和n S .2.12022·广东肇庆·二模)已知数列{}n a 满足112a =,121n n a a +=+. (1) 证明:数列{}1n a -是等比数列;(2)求数列{}n na 的前n 项和n T .3.(2022·湖南岳阳·一模)数列{}n a 满足11a =,143n n S a +=+.(1)求证:数列{}12n n a a +-是等比数列;(2)求数列{}n a 的通项公式.4.(2022·湖南常德·一模)设各项非负的数列{}n a 的前n 项和为n S ,已知212n n S a n +=-*()n N ∈,且235,,a a a 成等比数列.(1)求{}n a 的通项公式;(2)若12nn n a a b +=,数列{}n b 的前n 项和n T .5.(2022·广东茂名·二模)已知数列{}n a 的前n 项和为n S ,且()()2*112,210n n n a S a S n +=+-+=∈N . (1)求证:数列11n S ⎧⎫⎨⎬-⎩⎭为等差数列;(2)求数列21n n S ⎧⎫⎨⎬-⎩⎭的前n 项和n T .6.(2022·江苏·南京市宁海中学二模)数列{}n a 的前n 项和为n S ,111, 21n n a a S +==+. (1)求n a ,n S ;(2)设1n n n n a b S S +=,数列{}n b 的前n 项和为n T .证明:1143n T <.7.(2022·辽宁抚顺·一模)已知等差数列{}n a 的前n 项和为n S ,又对任意的正整数,m n ,都有2n m a a n m-=--,且530S =. (1)求数列{}n a 的通项公式;(2)设22n a nb =,求数列{}n b 的前n 项和n T .8.(2022·江苏南京市、盐城市·二模)已知数列{}n a ,当12[)2k k n -∈,时,2k n a =,N k *∈.记数列{}n a 的前n 项和为n S . (1)求2a ,20a ;(2)求使得2022n S <成立的正整数n 的最大值.。

高考数学分类练习 D单元 数列(理科)含答案2

高考数学分类练习  D单元 数列(理科)含答案2

数 学D 单元 数列D1 数列的概念与简单表示法17.D1、D4、D5 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n+2b n +1b n =0.(1)令c n =a n b n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .17.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1. (2)由b n =3n -1,知a n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n,将两式相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n=-2-(2n -2)×3n,所以S n =(n -1)3n+1.17.D1、D2 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ.(2)是否存在λ,使得{a n }为等差数列?并说明理由.17.解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1. 因为a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得 a 2=λ-1, 由(1)知,a 3=λ+1.若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.17.D1、D3、D5 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.17.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎪⎫a n +12.又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此数列{a n }的通项公式为a n =3n-12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n-1≥2×3n -1,所以13n -1≤12×3n -1,即1a n =23n-1≤13n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32.所以1a 1+1a 2+…+1a n <32.22.D1,D2,M3 设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *). (1)若b =1,求a 2,a 3及数列{a n }的通项公式.(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论. 22.解:(1)方法一:a 2=2,a 3=2+1. 再由题设条件知 (a n +1-1)2=(a n -1)2+1.从而{(a n -1)2}是首项为0,公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). 方法二:a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1,这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *).(2)方法一:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 令c =f (c ),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明命题a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数,从而c =f (c )>f (a 2k +1)>f (1)=a 2,即1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1, 故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1,这就是说,当n =k +1时结论成立. 综上,存在 c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立. 假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2, a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立. 由②得a 2n <a 22n -2a 2n +2-1, 即(a 2n +1)2<a 22n -2a 2n +2, 因此a 2n <14. ③又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2.所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1>14. ④综上,由②③④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.D2 等差数列及等差数列前n 项和12.D2、D3 数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.12.1 因为数列{a n }是等差数列,所以a 1+1,a 3+3,a 5+5也成等差数列.又 a 1+1,a 3+3,a 5+5构为公比为q 的等比数列,所以a 1+1,a 3+3,a 5+5为常数列,故q =1.12.D2 若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.12.8 ∵a 7+a 8+a 9=3a 8>0,a 7+a 10=a 8+a 9<0,∴a 8>0,a 9<0,∴n =8时,数列{a n }的前n 项和最大.3.D2 等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .143.C 设等差数列{a n }的公差为d ,由等差数列的前n 项和公式,得S 3=3×2+3×22d=12,解得d =2,则a 6=a 1+(6-1)d =2+5×2=12.18.D2、D3、D5 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.18.解:(1)设数列{a n }的公差为d , 依题意得,2,2+d ,2+4d 成等比数列, 故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2.从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800,此时不存在正整数n ,使得S n >60n +800成立. 当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 20.D2、D5 已知数列{a n }满足a 1=1,|a n +1-a n |=p n,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.20.解:(1)因为{a n }是递增数列,所以a n +1-a n =|a n +1-a n |=p n.而a 1=1,因此a 2=p +1,a 3=p 2+p +1.又a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,因而3p 2-p =0,解得p =13或p =0.当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾,故p =13.(2)由于{a 2n -1}是递增数列,因而a 2n +1-a 2n -1>0,于是(a 2n +1-a 2n )+(a 2n -a 2n -1)>0.① 因为122n <122n -1,所以|a 2n +1-a 2n |<|a 2n -a 2n -1|.②由①②知,a 2n -a 2n -1>0,因此a 2n -a 2n -1=⎝ ⎛⎭⎪⎫122n -1=(-1)2n22n -1.③ 因为{a 2n }是递减数列,同理可得,a 2n +1-a 2n <0,故a 2n +1-a 2n =-⎝ ⎛⎭⎪⎫122n=(-1)2n +122n.④由③④可知,a n +1-a n =(-1)n +12n.于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-122+…+(-1)n2n -1=1+12·1-⎝ ⎛⎭⎪⎫-12n -11+12=43+13·(-1)n2n -1. 故数列{a n }的通项公式为a n =43+13·(-1)n2n -1. 8.D2 设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( ) A .d <0 B .d >0 C .a 1d <0 D .a 1d >08.C 令b n =2a 1a n ,因为数列{2a 1a n }为递减数列,所以b n +1b n =2a 1a n +12a 1a n=2a 1(a n +1-a n )=2a 1d <1,所得a 1d <0.18.D2、D4 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0, 解得-103≤d ≤-52,因此d =-3.故数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 17.D1、D2 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ.(2)是否存在λ,使得{a n }为等差数列?并说明理由.17.解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1. 因为a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得 a 2=λ-1, 由(1)知,a 3=λ+1.若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.19.D2,D3,D4 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .19.解: (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12, 由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知,b n =(-1)n -14na n a n +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝⎛12n -3+⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n=2n +1+(-1)n -12n +116.D2,D3,C8 △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值. 16.解:(1)∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sin B . ∵sin B =sin =sin(A +C ), ∴sin A +sin C =2sin(A +C ). (2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立, ∴cos B 的最小值为12.11.D2、D3 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.11.-12 ∵S 2=2a 1-1,S 4=4a 1+4×32×(-1)=4a 1-6,S 1,S 2,S 4成等比数列,∴(2a 1-1)2=a 1(4a 1-6),解得a 1=-12.22.D1,D2,M3 设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *). (1)若b =1,求a 2,a 3及数列{a n }的通项公式.(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论. 22.解:(1)方法一:a 2=2,a 3=2+1. 再由题设条件知 (a n +1-1)2=(a n -1)2+1.从而{(a n -1)2}是首项为0,公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). 方法二:a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1,这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *).(2)方法一:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 令c =f (c ),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明命题a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数,从而c =f (c )>f (a 2k +1)>f (1)=a 2,即1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1, 故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1,这就是说,当n =k +1时结论成立. 综上,存在 c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立. 假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2, a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立. 由②得a 2n <a 22n -2a 2n +2-1, 即(a 2n +1)2<a 22n -2a 2n +2, 因此a 2n <14. ③又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2.所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1>14. ④综上,由②③④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.D3 等比数列及等比数列前n 项和2.D3 对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9,成等比数列2.D 因为在等比数列中a n ,a 2n ,a 3n ,…也成等比数列,所以a 3,a 6,a 9成等比数列.12.D2、D3 数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.12.1 因为数列{a n }是等差数列,所以a 1+1,a 3+3,a 5+5也成等差数列.又 a 1+1,a 3+3,a 5+5构为公比为q 的等比数列,所以a 1+1,a 3+3,a 5+5为常数列,故q =1.13.D3、B7 若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.13.50 本题考查了等比数列以及对数的运算性质.∵{a n }为等比数列,且a 10a 11+a 9a 12=2e 5,∴a 10a 11+a 9a 12=2a 10a 11=2e 5,∴a 10a 11=e 5, ∴ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)= ln(a 10a 11)10=ln(e 5)10=ln e 50=50.10.D3 等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .310.C 设数列{a n }的首项为a 1,公比为q ,根据题意可得,⎩⎪⎨⎪⎧a 1q 3=2,a 1q 4=5,解得⎩⎪⎨⎪⎧a 1=16125,q =52,所以a n =a 1qn -1=16125×⎝ ⎛⎭⎪⎫52n -1=2×⎝ ⎛⎭⎪⎫52n -4,所以lg a n =lg 2+(n -4)lg 52,所以前8项的和为8lg 2+(-3-2-1+0+1+2+3+4)lg 52=8lg 2+4lg 52=4lg ⎝ ⎛⎭⎪⎫4×52=4.18.D2、D3、D5 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.18.解:(1)设数列{a n }的公差为d , 依题意得,2,2+d ,2+4d 成等比数列, 故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2.从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立. 当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 17.D1、D3、D5 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.17.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎪⎫a n +12.又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此数列{a n }的通项公式为a n =3n-12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1,即1a n =23n-1≤13n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32.所以1a 1+1a 2+…+1a n <32.19.D2,D3,D4 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .19.解: (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12, 由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知,b n =(-1)n -14na n a n +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝⎛12n -3+⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1=1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n=2n +1+(-1)n -12n +116.D2,D3,C8 △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值. 16.解:(1)∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sin B . ∵sin B =sin =sin(A +C ), ∴sin A +sin C =2sin(A +C ). (2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立, ∴cos B 的最小值为12.11.D2、D3 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.11.-12 ∵S 2=2a 1-1,S 4=4a 1+4×32×(-1)=4a 1-6,S 1,S 2,S 4成等比数列,∴(2a 1-1)2=a 1(4a 1-6),解得a 1=-12.19.A1、D3、E7 已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n qn -1,x i ∈M ,i =1,2,…,n }.(1)当q =2,n =3时,用列举法表示集合A . (2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n qn -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .19.解:(1)当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3},可得A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n qn -1,a i ,b i ∈M ,i=1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1≤(q -1)+(q -1)q +…+(q -1)q n -2-qn -1=(q -1)(1-q n -1)1-q -q n -1=-1<0, 所以s <t .D4 数列求和17.D1、D4、D5 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n+2b n +1b n =0.(1)令c n =a n b n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .17.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1. (2)由b n =3n -1,知a n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n,将两式相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n=-2-(2n -2)×3n,所以S n =(n -1)3n+1.18.D2、D4 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0, 解得-103≤d ≤-52,因此d =-3.故数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 19.D2,D3,D4 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .19.解: (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12, 由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知,b n =(-1)n -14na n a n +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝ ⎛⎭⎪⎫12n -1+12n +1. 当n 为偶数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝⎛12n -3+⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1 =1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1.所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n=2n +1+(-1)n -12n +1D5 单元综合20.D2、D5 已知数列{a n }满足a 1=1,|a n +1-a n |=p n,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.20.解:(1)因为{a n }是递增数列,所以a n +1-a n =|a n +1-a n |=p n.而a 1=1,因此a 2=p +1,a 3=p 2+p +1.又a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,因而3p 2-p =0,解得p =13或p =0.当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾,故p =13.(2)由于{a 2n -1}是递增数列,因而a 2n +1-a 2n -1>0,于是(a 2n +1-a 2n )+(a 2n -a 2n -1)>0.① 因为122n <122n -1,所以|a 2n +1-a 2n |<|a 2n -a 2n -1|.②由①②知,a 2n -a 2n -1>0,因此a 2n -a 2n -1=⎝ ⎛⎭⎪⎫122n -1=(-1)2n22n -1.③ 因为{a 2n }是递减数列,同理可得,a 2n +1-a 2n <0,故a 2n +1-a 2n =-⎝ ⎛⎭⎪⎫122n=(-1)2n +122n.④由③④可知,a n +1-a n =(-1)n +12n.于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-122+…+(-1)n2n -1=1+12·1-⎝ ⎛⎭⎪⎫-12n -11+12=43+13·(-1)n2n -1. 故数列{a n }的通项公式为a n =43+13·(-1)n2n -1.21.B11、M3、D5 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p>1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p.21.证明:(1)用数学归纳法证明如下.①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立. ②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k>1+kx 成立. 当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x .所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p>1+px 均成立. (2)方法一:先用数学归纳法证明a n >c 1p.①当n =1时,由题设知a 1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p 成立.由a n +1=p -1p a n +c pa 1-p n 易知a n >0,n ∈N *. 当n =k +1时,a k +1a k =p -1p +c pa -pk = 1+1p ⎝ ⎛⎭⎪⎫c a p k -1.由a k >c 1p >0得-1<-1p <1p ⎝ ⎛⎭⎪⎫c a p k-1<0.由(1)中的结论得⎝ ⎛⎭⎪⎫a k +1a k p=⎣⎢⎡⎦⎥⎤1+1p ⎝ ⎛⎭⎪⎫c a p k -1p>1+p · 1p ⎝ ⎛⎭⎪⎫c a p k -1=ca p k . 因此a pk +1>c ,即a k +1>c 1p,所以当n =k +1时,不等式a n >c 1p也成立.综合①②可得,对一切正整数n ,不等式a n >c 1p均成立.再由a n +1a n =1+1p ⎝ ⎛⎭⎪⎫c a p n -1可得a n +1a n<1, 即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *.方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p,则x p ≥c ,所以f ′(x )=p -1p +c p (1-p )x -p=p -1p ⎝ ⎛⎭⎪⎫1-c x p >0.由此可得,f (x )在 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.18.解:(1)设数列{a n }的公差为d , 依题意得,2,2+d ,2+4d 成等比数列, 故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2.从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立. 当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.17.D1、D4、D5 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n+2b n +1b n =0.(1)令c n =a n b n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .17.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1. (2)由b n =3n -1,知a n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n,将两式相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n=-2-(2n -2)×3n,所以S n =(n -1)3n+1.17.D1、D3、D5 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.17.解:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎪⎫a n +12.又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此数列{a n }的通项公式为a n =3n-12.(2)证明:由(1)知1a n =23n -1.因为当n ≥1时,3n-1≥2×3n -1,所以13n -1≤12×3n -1,即1a n =23n-1≤13n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32.所以1a 1+1a 2+…+1a n <32.19.D5,B11 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图像上(n ∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .19.解:(1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,所以 2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2, 所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 其在x 轴上的截距为a 2-1ln 2. 由题意有a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1. 从而a n =n ,b n =2n,所以数列{a n b n }的通项公式为a n b n =n2n ,所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1,因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n. 19.D5 已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2.(1)求a n 与b n .(2)设c n =1a n -1b n(n ∈N *).记数列{c n }的前n 项和为S n .(i)求S n ;(ii)求正整数k ,使得对任意n ∈N *均有S k ≥S n . 19.解:(1)由题意a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去),所以数列{a n }的通项为a n =2n(n ∈N *). 所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). (2)(i)由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *). 所以S n =1n +1-12n (n ∈N *). (ii)因为c 1=0,c 2>0,c 3>0,c 4>0, 当n ≥5时,c n =1n (n +1)⎣⎢⎡⎦⎥⎤n (n +1)2n -1, 而n (n +1)2n-(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0,得n (n +1)2n≤5×(5+1)25<1,所以,当n ≥5时,c n <0.综上,若对任意n ∈N *恒有S k ≥S n ,则k =4.3. 若数列{a n }的前n 项和为S n =23a n +13,则数列{a n }的通项公式为( )A .a n =-2n -1B .a n =(-2)n -1C .a n =(-2)nD .a n =-2n3.B 由a n =S n -S n -1(n≥2),得a n =23a n -23a n -1.∴a n =-2a n -1.又a 1=1,∴a n =(-2)n -1(n≥2).又a 1=(-2)1-1=1,∴a n =(-2)n -1.6. 已知数列{a n }满足a 1=1,a n +1=a na n +2(n ∈N *).若b n +1=(n -λ)⎝ ⎛⎭⎪⎫1a n +1,b 1=-λ,且数列{b n }是递增数列,则实数λ的取值范围为( )A .λ<2B .λ>3C .λ>2D .λ<36.A 易知1a n +1=2a n +1,∴1a n +1+1=21a n+1. 又a 1=1,∴1a n +1=1a 1+12n -1=2n ,∴b n +1=(n -λ)2n , ∴b n +1-b n =(n -λ)2n -(n -1-λ)2n -1=(n -λ+1)2n -1>0,∴n-λ+1>0.又n∈N *,∴λ<2.4. 已知数列{a n }满足a 1=35,a n +1=3a n 2a n +1,n ∈N *. (1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列. (2)是否存在互不相等的正整数m ,s ,t ,使m ,s ,t 成等差数列,且a m -1,a s -1,a t -1成等比数列?如果存在,求出所有符合条件的m ,s ,t ;如果不存在,请说明理由.4.解:(1)证明:因为a n +1=3a n 2a n +1,所以1a n +1=13a n +23, 所以1a n +1-1=131a n -1. 因为a 1=35,所以1a 1-1=23, 所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为23,公比为13的等比数列. (2)由(1)知,1a n -1=23×13n -1=23n ,所以a n =3n3n +2. 假设存在互不相等的正整数m ,s ,t 满足条件,则有⎩⎪⎨⎪⎧m +t =2s ,(a s -1)2=(a m -1)(a t -1). 由a n =3n 3n +2与(a s -1)2=(a m -1)(a t -1), 得3s 3s +2-12=3m 3m +2-13t 3t +2-1, 即3m +t +2×3m +2×3t =32s +4×3s .因为m +t =2s ,所以3m +3t =2×3s .又3m +3t ≥2 3m +t =2×3s,当且仅当m =t 时,等号成立, 这与m ,s ,t 互不相等矛盾,所以不存在互不相等的正整数m ,s ,t 满足条件.2. 已知递增数列{a n }满足a 1+a 2+a 3+…+a n =12(a 2n +n ). (1)求a 1及数列{a n }的通项公式;(2)设c n =⎩⎪⎨⎪⎧a n +1,n 为奇数,a n -1·2a n -1+1,n 为偶数,求数列{c n }的前2n 项和T 2n .2.解:(1)当n =1时,a 1=12(a 21+1),解得a 1=1. 当n ≥2时,a 1+a 2+a 3+…+a n -1=12(a 2n -1+n -1), a 1+a 2+a 3+…+a n =12(a 2n +n ),所以a n =12(a 2n -a 2n -1+1), 即(a n -1)2-a 2n -1=0,所以a n -a n -1=1或a n +a n -1=1(n ≥2).又因为数列{a n }为递增数列,所以a n -a n -1=1,所以数列{a n }是首项为1,公差为1的等差数列,所以a n =n .(2)由c n =⎩⎪⎨⎪⎧a n +1,n 为奇数,a n -1·2a n -1+1,n 为偶数, 得c n =⎩⎪⎨⎪⎧n +1,n 为奇数,(n -1)2n -1+1,n 为偶数, 则T 2n =(2+4+…+2n )++n =n (n +1)++n .记S n =1×21+3×23+…+(2n -1)×22n -1,① 则4S n =1×23+3×25+…+(2n -1)×22n +1.②由①-②,得-3S n =2+24+26+…+22n -(2n -1)22n +1, =22+24+26+…+22n -(2n -1)22n +1-2, 所以-3S n =4(1-4n )1-4-(2n -1)22n +1-2, 所以S n =4(1-4n )9+(2n -1)22n +13+23, 即S n =(6n -5)22n +19+109, 故T 2n =(6n -5)22n +19+n 2+2n +109. 7. 已知数列{a n }是公差为2的等差数列,且a 1,a 2,a 5成等比数列,则a 2的值为( )A .3B .-3C .2D .-27.A ∵a 1,a 2,a 5成等比数列,∴a 22=a 1·a 5,∴a 22=(a 2-2)(a 2+6),解得a 2=3.10. 已知各项不为0的等差数列{a n }满足a 4-2a 27+3a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11等于( )A .1B .2C .4D .810.D 由已知,得2a 27=a 4+3a 8=a 1+3d +3a 1+21d =4a 1+24d =4(a 1+6d )=4a 7,∴a 7=2或a 7=0(舍去),∴b 7=2,∴b 2b 8b 11=b 1q ·b 1q 7·b 1q 10=b 31q 18=(b 1q 6)3=b 37=8.17. 已知二次函数f (x )=ax 2+bx 的图像过点(-4n ,0),且f ′(0)=2n ,n ∈N *,数列{a n }满足1a n +1=f ′⎝ ⎛⎭⎪⎫1a n ,且a 1=4. (1)求数列{a n }的通项公式;(2)记b n =a n a n +1,求数列{b n }的前n 项和T n .17.解:(1)f ′(x )=2ax +b .由题意知f ′(0)=b =2n ,16n 2a -4nb =0,∴a =12,b =2n ,∴f (x )=12x 2+2nx ,n ∈N *. 又数列{a n }满足1a n +1=f ′1a n,f ′(x )=x +2n ,∴1a n +1=1a n+2n , ∴1a n +1-1a n =2n .由叠加法可得1a n -14=2+4+6+…+2(n -1)=n 2-n ,化简可得a n =4(2n -1)2(n ≥2). 当n =1时,a 1=4也符合上式,∴a n =4(2n -1)2(n ∈N *). (2)∵b n =a n a n +1=4(2n -1)(2n +1)=212n -1-12n +1, ∴T n =b 1+b 2+…+b n =a 1a 2+a 2a 3+…+a n a n +1=21-13+13-15+…+12n -1-12n +1=21-12n +1=4n 2n +1.。

数列(解答题)(2018-2022)高考真题汇编(新高考卷与全国理科)

数列(解答题)(2018-2022)高考真题汇编(新高考卷与全国理科)

数列(解答题)——大数据之五年(2018-2022)高考真题汇编(新高考卷与全国理科)一、解答题(共21题;共180分)1.(10分)已知{a n}为等差数列,{b n}是公比为2的等比数列,且a2−b2=a3−b3=b4−a4.(1)(5分)证明:a1=b1;(2)(5分)求集合{k|b k=a m+a1,1≤m≤500}中元素个数.2.(10分)记S n为数列{a n}的前n项和.已知2S n n+n=2a n+1.(1)(5分)证明:{a n}是等差数列;(2)(5分)若a4,a7,a9成等比数列,求S n的最小值.3.(10分)记S n为数列{a n}的前n项和,已知a1=1,{S na n}是公差为13,的等差数列.(1)(5分)求{a n}的通项公式;(2)(5分)证明:1a1+1a2+⋯+1a n<24.(10分)记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(1)(5分)求数列{a n}的通项公式a n;(2)(5分)求使S n>a n成立的n的最小值.5.(10分)设{a n}是首项为1的等比数列,数列{b n}满足b n=na n3,已知a1,3 a2,9 a3成等差数列.(1)(5分)求{a n}和{b n}的通项公式;(2)(5分)记S n和T n分别为{a n}和{b n}的前n项和.证明:T n< S n2.6.(5分)记S n为{a n}的前n项和,已知a n>0,a2=3a1,且数列{√S n}是等差数列.证明:{a n}是等差数列.7.(5分)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列:②数列{ √S n}是等差数列;③a2=3a1注:若选择不同的组合分别解答,则按第一个解答计分.8.(10分)记S n 为数列{a n }的前n 项和,b n 为数列{S n }的前n 项积,已知2S n +1b n=2. (1)(5分)证明:数列{b n }是等差数列; (2)(5分)求{a n }的通项公式.9.(10分)已知 {a n } 是公差为2的等差数列,其前8项和为64. {b n } 是公比大于0的等比数列, b 1=4,b 3−b 2=48 .(1)(5分)求 {a n } 和 {b n } 的通项公式;(2)(5分)记 c n =b 2n +1b n,n ∈N ∗ .(i )证明 {c n 2−c 2n } 是等比数列;(ii )证明 ∑√a k a k+1c k 2−c 2knk=1<2√2(n ∈N ∗) 10.(10分)已知数列{ a n }满足 a 1 =1, a n+1={a n +1,n 为奇数a n +2,n 为偶数(1)(5分)记 b n = a 2n ,写出 b 1 , b 2 ,并求数列 {b n } 的通项公式; (2)(5分)求 {a n } 的前20项和11.(10分)设数列{a n }满足a 1=3, a n+1=3a n −4n .(1)(5分)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)(5分)求数列{2n a n }的前n 项和S n .12.(10分)设 {a n } 是公比不为1的等比数列, a 1 为 a 2 , a 3 的等差中项.(1)(5分)求 {a n } 的公比;(2)(5分)若 a 1=1 ,求数列 {na n } 的前n 项和.13.(10分)已知公比大于 1 的等比数列 {a n } 满足 a 2+a 4=20,a 3=8 .(1)(5分)求 {a n } 的通项公式;(2)(5分)求 a 1a 2−a 2a 3+⋯+(−1)n−1a n a n+1 .14.(10分)已知公比大于1的等比数列 {a n } 满足 a 2+a 4=20,a 3=8 .(1)(5分)求 {a n } 的通项公式;(2)(5分)记 b m 为 {a n } 在区间 (0,m](m ∈N ∗) 中的项的个数,求数列 {b m } 的前100项和 S 100 .15.(5分)已知 {a n } 为等差数列, {b n } 为等比数列, a 1=b 1=1,a 5=5(a 4−a 3),b 5=4(b 4−b 3) .(Ⅰ)求 {a n } 和 {b n } 的通项公式;(Ⅰ)记 {a n } 的前 n 项和为 S n ,求证: S n S n+2<S n+12(n ∈N ∗) ;(Ⅰ)对任意的正整数 n ,设 c n ={(3a n −2)b na n a n+2,n 为奇数,an−1b n+1,n 为偶数. 求数列 {c n } 的前2n 项和. 16.(5分)设 {a n } 是等差数列, {b n } 是等比数列,公比大于0,已知 a 1=b 1=3 , b 2=a 3 ,b 3=4a 2+3 .(Ⅰ)求 {a n } 和 {b n } 的通项公式;(Ⅰ)设数列 {c n } 满足 c n ={1,n 为奇数b n 2,n 为偶数求 a 1c 1+a 2c 2+⋯+a 2n c 2n (n ∈N ∗) . 17.(10分)已知数列{a n }和{b n }满足a 1=1,b 1=0, 4a n+1=3a n −b n +4 , 4b n+1=3b n −a n −4 .(1)(5分)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)(5分)求{a n }和{b n }的通项公式.18.(5分)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(I )求{a n }的通项公式;(Ⅰ)记{a n }的前n 项和为S n ,求S n 的最小值.19.(10分)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.(1)(5分)求{a n }的通项公式; (2)(5分)求S n ,并求S n 的最小值。

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)高考理科数学模拟试卷(含答案)本试卷共分为选择题和非选择题两部分,第Ⅰ卷(选择题)在1至2页,第Ⅱ卷(非选择题)在3至4页,共4页,满分150分,考试时间为120分钟。

注意事项:1.答题前,请务必填写自己的姓名和考籍号。

2.答选择题时,请使用2B铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,请使用橡皮擦擦干净后再选涂其他答案标号。

3.答非选择题时,请使用0.5毫米黑色签字笔,在答题卡规定位置上书写答案。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,请只将答题卡交回。

第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={-1.0.1.2.3.4},B={y|y=x,x∈A},则A2B=A){0.1.2}B){0.1.4}C){-1.0.1.2}D){-1.0.1.4}2.已知复数z=1/(1+i),则|z|=A)2B)1C)2D)23.设函数f(x)为奇函数,当x>0时,f(x)=x-2,则f(f(1))=A)-1B)-2C)1D)24.已知单位向量e1,e2的夹角为π/2,则e1-2e2=A)3B)7C)3D)75.已知双曲线2x^2-y^2=1(a>0,b>0)的渐近线方程为y=±3x,则双曲线的离心率是A)10B)10/10C)10D)3/96.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是A)i≤6?B)i≤5?C)i≤4?D)i≤3?8.已知a、b为两条不同直线,α、β、γ为三个不同平面,则下列命题中正确的是①若α//β,α//γ,则β//γ;②若a//α,a//β,则α//β;③若α⊥γ,β⊥γ,则α⊥β;④若a⊥α,XXXα,则a//b。

2022届全国高考模拟信息卷 数学(理)试题(一)

2022届全国高考模拟信息卷 数学(理)试题(一)

高考模拟信息卷01(理)(本卷满分150分,考试时间120分钟。

)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为( ) A .3B .4C .7D .82.设复数12i z =-(i 是虚数单位),则z z +的值为( ) A .32B .22C .1D .23.已知3sin 22sin 2παα⎛⎫=+ ⎪⎝⎭,则cos2=α( )A .79-B .79 C .13-D .134.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“< ”和“> ”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若0a b >>,则下列结论错误..的是( ) A .11a b< B .2log ()0a b -> C .1122a b >D .33a b >5.如图是某个闭合电路的一部分,每个元件出现故障的概率为110,则从A 到B 这部分电源能通电的概率为( )A .97929100000B .97919100000C .98029100000D .980191000006.一动圆P 过定点(4,0)M -,且与已知圆22:(4)16N x y -+=相切,则动圆圆心P 的轨迹方程是A .221(2)412x y x -=B .221(2)412x y x -=-C .221412x y -=D .221412y x -=7.若直角坐标平面内A 、B 两点满足①点A 、B 都在函数()f x 的图像上;②点A 、B 关于原点对称,则点(),A B 是函数()f x 的一个“姊妹点对”.点对(),A B 与(),B A 可看作是同一个“姊妹点对”,已知函数()()()22020x x x x f x x e ⎧+<⎪=⎨≥⎪⎩,则()f x 的“姊妹点对”有( )A .0个B .1个C .2个D .3个8.运用祖暅原理计算球的体积时,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图1)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图2),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等.现将椭圆2211636x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图3),类比上述方法,运用祖暅原理可求得其体积等于( )A .64πB .148πC .128πD .32π9.如图,在一个凸四边形ABCD 内,顺次连接四边形各边中点E ,F ,G ,H 而成的四边形是一个平行四边形,这样的平行四边形被称为瓦里尼翁平行四边形.如图,现有一个面积为12的凸四边形ABCD ,设其对应的瓦里尼翁平行四边形为1111D C B A ,记其面积为1a ,四边形为1111D C B A 对应的瓦里尼翁平行四边形为2222A B C D ,记其面积为2a ,…,依次类推,则由此得到的第四个瓦里尼翁平行四边形4444A B C D 的面积为( )A .1B .427C .34D .不确定10.已知函数()()cos 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭,()()()3F x f x f x '=为奇函数,则下述四个结论中说法正确的是( )A .tan 3ϕ=B .()f x 在[],a a -上存在零点,则a 的最小值为6πC .()F x 在,4ππ⎛⎫⎪⎝⎭上单调递增D .()f x 在0,2π⎛⎫⎪⎝⎭有且仅有一个极大值点11.对于棱长为1的正方体1111ABCD A B C D -,有如下结论,其中错误的是( ) A .以正方体的顶点为顶点的几何体可以是每个面都为直角三角形的四面体; B .过点A 作平面1A BD 的垂线,垂足为点H ,则1,,A H C 三点共线; C .过正方体中心的截面图形不可能是正六边形; D .三棱锥11A B CD -与正方体的体积之比为1:3.12.锐角ABC 的三边分别为,,a b c ,2cos a b B =,则cb 的取值范围是( )A .[)1,3B .1,22⎛⎫⎪⎝⎭C .3,33⎛⎫⎪ ⎪⎝⎭D .[)1,2二、填空题:本题共4小题,每小题5分,共20分。

全国卷Ⅰ新高考理科数学仿真模拟试卷含答案解析 (3)

全国卷Ⅰ新高考理科数学仿真模拟试卷含答案解析 (3)

全国卷Ⅰ新高考理科数学仿真模拟试卷一、选择题(共12题,每题5分,共60分)1.如图,已知R是实数集,集合A={x|lo g12(x-1)>0},B={x|2x-3x<0},则阴影部分表示的集合是A.[0,1]B.[0,1)C.(0,1)D.(0,1] 2.已知复数z满足1+iz=(1-i)2,则复数z的虚部是A.-12B.12C.12i D.-12i3.设a=log32,b=log52,c=log23,则A.a>c>bB.b>c>aC.c>b>aD.c>a>b4.已知向量a和向量b的夹角为30°,|a|=2,|b|=√3,则向量a和向量b的数量积a·b= A.1 B.2 C.3 D.45.函数f(x)=x 2|x|e x的大致图象是A. B.C.D.6.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为A.35B.710C.45D.9107.若l 1,l 2,l 3表示三条不同的直线,则下列命题正确的是A.l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3B.l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3C.l 1∥l 2∥l 3⇒l 1,l 2,l 3共面D.l 1,l 2,l 3共点⇒l 1,l 2,l 3共面8.若执行如图的程序框图,则输出i 的值等于A.2B.3C.4D.59.已知各项均为正数的数列{a n }的前n 项和为S n ,且a n 2-9=4(S n -n ),数列{1a n ·a n+1}的前n 项和为T n ,则T 10=A.13B.17C.235D.22510.已知椭圆C :x 2m+y 2m -4=1(m >4)的右焦点为F ,点A (-2,2)为椭圆C 内一点.若椭圆C 上存在一点P ,使得|PA |+|PF |=8,则m 的取值范围是A.(6+2√5,25]B.[9,25]C.(6+2√5,20]D.[3,5]11.已知定义在[0,π4]上的函数f (x )=sin(ωx -π6)(ω>0)的最大值为ω3,则正实数ω的取值个数最多为A.4B.3C.2D.112.已知三棱锥S-ABC 中,AB ⊥BC ,AB =BC =2,SA =SC =2√2,二面角B-AC-S 的大小为2π3,则三棱锥S-ABC 的外接球的表面积为A.124π9B.105π4C.105π9D.104π9第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(共4题,每题5分,共20分)13.过点M(2,0)作函数f(x)=e x(x-6)的图象的切线,则切线的方程为. 14.已知在等比数列{a n}中,a n>0且a3+a4=a1+a2+3,记数列{a n}的前n项和为S n,则S6-S4的最小值为.15.某统计调查组从A,B两市各随机抽取了6个大型商品房小区调查空置房情况,并记录他们的调查结果,得到如图所示的茎叶图.已知A市被调查的商品房小区中空置房套数的平均数为82,B市被调查的商品房小区中空置房套数的中位数为77,则x-y=.16.已知抛物线y2=2px(p>0)的焦点为F,准线与x轴的交点为Q,双曲线x 2a2−y2b2=1(a>0,b>0)的一条渐近线被抛物线截得的弦为OP,O为坐标原点.若△PQF为直角三角形,则该双曲线的离心率等于.三、解答题(共7题,共70分)17.(本题12分)在△ABC中,a=7,b=8,cos B=-17.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.18.(本题12分)如图,在直三棱柱ABC-A1B1C1中,D为BC的中点,AB=AC,BC1⊥B1D.求证:(1)A1C∥平面ADB1;(2)平面A1BC1⊥平面ADB1.19.(本题12分)2018年11月27日~28日,2018“未来信息通信技术国际研讨会”在北京召开,本届大会以“5G应用生态与技术演进”为主题,全球5G大咖齐聚一堂,进行了深入探讨.为了给5G手机的用户提供更好的服务,我国的移动、联通、电信三大运营商想通过调查了解现有4G手机用户对传输速度的满意度,随机抽取了100名手机用户进行调查评分(满分100分,单位:分),其频数分布表如下所示.(1)作出频率分布直方图,并求这100名4G 手机用户评分的平均数(同一组中的评分用该组区间的中点值作代表);(2)以样本的频率作为概率,认为评分“不低于80分”为“满意度高”,现从所有4G 手机用户中随机抽取5名用户进行进一步访谈,用X 表示抽出的5名用户中“满意度高”的人数,求X 的分布列和数学期望.20.(本题12分)已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的离心率为√32, 且过点A (2,1).(1)求椭圆C 的方程;(2) 若P ,Q 是椭圆C 上的两个动点,且使∠PAQ 的角平分线总垂直于x 轴, 试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,请说明理由.21.(本题12分)已知函数f (x )=e x -a ln(x -1).(其中常数e=2.718 28…是自然对数的底数) (1)若a ∈R ,求函数f (x )的极值点个数;(2)若函数f (x )在区间(1,1+e -a )上不单调,证明:1a +1a+1>a .请考生在第 22、23 三题中任选二道做答,注意:只能做所选定的题目。

数列-2024年数学高考真题和模拟好题分类汇编(解析版)

数列-2024年数学高考真题和模拟好题分类汇编(解析版)

专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成a 1和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由S 9=1,根据等差数列的求和公式,S 9=9a 1+9×82d =1⇔9a 1+36d =1,又a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =29(9a 1+36d )=29.故选:D 方法二:利用等差数列的性质根据等差数列的性质,a 1+a 9=a 3+a 7,由S 9=1,根据等差数列的求和公式,S 9=9(a 1+a 9)2=9(a 3+a 7)2=1,故a 3+a 7=29.故选:D 方法三:特殊值法不妨取等差数列公差d =0,则S 9=1=9a 1⇒a 1=19,则a 3+a 7=2a 1=29.故选:D2(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.2【答案】B【分析】由S 5=S 10结合等差中项的性质可得a 8=0,即可计算出公差,即可得a 1的值.【详解】由S 10-S 5=a 6+a 7+a 8+a 9+a 10=5a 8=0,则a 8=0,则等差数列a n 的公差d =a 8-a 53=-13,故a 1=a 5-4d =1-4×-13 =73.故选:B .3(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1=2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;【答案】C【分析】根据题意分析可得n 1=eS -12.1n 2=eS -12.2,讨论S 与1的大小关系,结合指数函数单调性分析判断.【详解】由题意可得d 1=S -1ln n 1=2.1d 2=S -1ln n 2=2.2 ,解得n 1=e S -12.1n 2=e S -12.2,若S >1,则S -12.1>S -12.2,可得e S -12.1>e S -12.2,即n 1>n 2;若S =1,则S -12.1=S -12.2=0,可得n 1=n 2=1;若S <1,则S -12.1<S -12.2,可得e S -1 2.1<e S -12.2,即n 1<n 2;结合选项可知C 正确,ABD 错误;故选:C .二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.【答案】95【分析】利用等差数列通项公式得到方程组,解出a 1,d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列a n 为等差数列,则由题意得a 1+2d +a 1+3d =73a 1+d +a 1+4d =5,解得a 1=-4d =3 ,则S 10=10a 1+10×92d =10×-4 +45×3=95.故答案为:95.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.【答案】q ≥2【分析】当n ≥2时,不妨设x ≥y ,则x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,结合I n 为闭区间可得q -2≥-1q n -2对任意的n ≥2恒成立,故可求q 的取值范围.【详解】由题设有a n =a 1q n -1,因为a 1>0,q >1,故a n +1>a n ,故a n ,a n +1 =a 1q n -1,a 1q n ,当n =1时,x ,y ∈a 1,a 2 ,故x -y ∈a 1-a 2,a 2-a 1 ,此时I 1为闭区间,当n ≥2时,不妨设x ≥y ,若x ,y ∈a 1,a 2 ,则x -y ∈0,a 2-a 1 ,若y ∈a 1,a 2 ,x ∈a n ,a n +1 ,则x -y ∈a n -a 2,a n +1-a 1 ,若x ,y ∈a n ,a n +1 ,则x -y ∈0,a n +1-a n ,综上,x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,又I n 为闭区间等价于0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n 为闭区间,而a n +1-a 1>a n +1-a n >a 2-a 1,故a n +1-a n ≥a n -a 2对任意n ≥2恒成立,故a n +1-2a n +a 2≥0即a 1q n -1q -2 +a 2≥0,故q n -2q -2 +1≥0,故q -2≥-1qn -2对任意的n ≥2恒成立,因q >1,故当n →+∞时,-1q n -2→0,故q -2≥0即q ≥2.故答案为:q ≥2.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)1,2 ,1,6 ,5,6 (2)证明见解析(3)证明见解析【分析】(1)直接根据i ,j -可分数列的定义即可;(2)根据i ,j -可分数列的定义即可验证结论;(3)证明使得原数列是i ,j -可分数列的i ,j 至少有m +1 2-m 个,再使用概率的定义.【详解】(1)首先,我们设数列a 1,a 2,...,a 4m +2的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形a k =a k -a 1d+1k =1,2,...,4m +2 ,得到新数列a k =k k =1,2,...,4m +2 ,然后对a 1,a 2,...,a 4m +2进行相应的讨论即可.换言之,我们可以不妨设a k =k k =1,2,...,4m +2 ,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和j i <j ,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的i ,j 就是1,2 ,1,6 ,5,6 .(2)由于从数列1,2,...,4m +2中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,4,7,10 ,3,6,9,12 ,5,8,11,14 ,共3组;②15,16,17,18 ,19,20,21,22 ,...,4m -1,4m ,4m +1,4m +2 ,共m -3组.(如果m -3=0,则忽略②)故数列1,2,...,4m +2是2,13 -可分数列.(3)定义集合A =4k +1 k =0,1,2,...,m =1,5,9,13,...,4m +1 ,B =4k +2 k =0,1,2,...,m =2,6,10,14,...,4m +2 .下面证明,对1≤i <j ≤4m +2,如果下面两个命题同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列:命题1:i ∈A ,j ∈B 或i ∈B ,j ∈A ;命题2:j -i ≠3.我们分两种情况证明这个结论.第一种情况:如果i ∈A ,j ∈B ,且j -i ≠3.此时设i =4k 1+1,j =4k 2+2,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+1<4k 2+2,即k 2-k 1>-14,故k 2≥k 1.此时,由于从数列1,2,...,4m +2中取出i =4k 1+1和j =4k 2+2后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+2,4k 1+3,4k 1+4,4k 1+5 ,4k 1+6,4k 1+7,4k 1+8,4k 1+9 ,...,4k 2-2,4k 2-1,4k 2,4k 2+1 ,共k 2-k 1组;③4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,4m +2是i ,j -可分数列.第二种情况:如果i ∈B ,j ∈A ,且j -i ≠3.此时设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+2<4k 2+1,即k 2-k 1>14,故k 2>k 1.由于j -i ≠3,故4k 2+1 -4k 1+2 ≠3,从而k 2-k 1≠1,这就意味着k 2-k 1≥2.此时,由于从数列1,2,...,4m +2中取出i =4k 1+2和j =4k 2+1后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+1,3k 1+k 2+1,2k 1+2k 2+1,k 1+3k 2+1 ,3k 1+k 2+2,2k 1+2k 2+2,k 1+3k 2+2,4k 2+2 ,共2组;③全体4k 1+p ,3k 1+k 2+p ,2k 1+2k 2+p ,k 1+3k 2+p ,其中p =3,4,...,k 2-k 1,共k 2-k 1-2组;④4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含k 2-k 1-2个行,4个列的数表以后,4个列分别是下面这些数:4k 1+3,4k 1+4,...,3k 1+k 2 ,3k 1+k 2+3,3k 1+k 2+4,...,2k 1+2k 2 ,2k 1+2k 2+3,2k 1+2k 2+3,...,k 1+3k 2 ,k 1+3k 2+3,k 1+3k 2+4,...,4k 2 .可以看出每列都是连续的若干个整数,它们再取并以后,将取遍4k 1+1,4k 1+2,...,4k 2+2 中除开五个集合4k 1+1,4k 1+2 ,3k 1+k 2+1,3k 1+k 2+2 ,2k 1+2k 2+1,2k 1+2k 2+2 ,k 1+3k 2+1,k 1+3k 2+2 ,4k 2+1,4k 2+2 中的十个元素以外的所有数.而这十个数中,除开已经去掉的4k 1+2和4k 2+1以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,4m +2是i ,j -可分数列.至此,我们证明了:对1≤i <j ≤4m +2,如果前述命题1和命题2同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列.然后我们来考虑这样的i ,j 的个数.首先,由于A ∩B =∅,A 和B 各有m +1个元素,故满足命题1的i ,j 总共有m +1 2个;而如果j -i =3,假设i ∈A ,j ∈B ,则可设i =4k 1+1,j =4k 2+2,代入得4k 2+2 -4k 1+1 =3.但这导致k 2-k 1=12,矛盾,所以i ∈B ,j ∈A .设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m ,则4k 2+1 -4k 1+2 =3,即k 2-k 1=1.所以可能的k 1,k 2 恰好就是0,1 ,1,2 ,...,m -1,m ,对应的i ,j 分别是2,5 ,6,9 ,...,4m -2,4m +1 ,总共m 个.所以这m +1 2个满足命题1的i ,j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的i ,j 的个数为m +1 2-m .当我们从1,2,...,4m+2中一次任取两个数i和j i<j时,总的选取方式的个数等于4m+24m+12=2m+14m+1.而根据之前的结论,使得数列a1,a2,...,a4m+2是i,j-可分数列的i,j至少有m+12-m个.所以数列a1,a2,...,a4m+2是i,j-可分数列的概率P m一定满足P m≥m+12-m2m+14m+1=m2+m+12m+14m+1>m2+m+142m+14m+2=m+12222m+12m+1=18.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.7(新课标全国Ⅱ卷)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...,过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n.(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意的正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n的取值为与n无关的定值即可.思路二:使用等差数列工具,证明S n的取值为与n无关的定值即可.【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n 2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV ⋅UW 1-UV ⋅UW UV ⋅UW2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2 c 2+d 2 -ac +bd 2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc 2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m.而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1=12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1=12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2 .这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n -121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k =x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.(1)求a n 的通项公式;(2)求数列S n 的通项公式.【答案】(1)a n =53n -1(2)3253 n -32【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求S n .【详解】(1)因为2S n =3a n +1-3,故2S n -1=3a n -3,所以2a n =3a n +1-3a n n ≥2 即5a n =3a n +1故等比数列的公比为q =53,故2a 1=3a 2-3=3a 1×53-3=5a 1-3,故a 1=1,故a n =53n -1.(2)由等比数列求和公式得S n =1×1-53 n1-53=3253 n -32.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .【答案】(1)a n =4⋅(-3)n -1(2)T n =(2n -1)⋅3n +1【分析】(1)利用退位法可求a n 的通项公式.(2)利用错位相减法可求T n .【详解】(1)当n =1时,4S 1=4a 1=3a 1+4,解得a 1=4.当n ≥2时,4S n -1=3a n -1+4,所以4S n -4S n -1=4a n =3a n -3a n -1即a n =-3a n -1,而a 1=4≠0,故a n ≠0,故an a n -1=-3,∴数列a n 是以4为首项,-3为公比的等比数列,所以a n =4⋅-3 n -1.(2)b n =(-1)n -1⋅n ⋅4⋅(-3)n -1=4n ⋅3n -1,所以T n =b 1+b 2+b 3+⋯+b n =4⋅30+8⋅31+12⋅32+⋯+4n ⋅3n -1故3T n =4⋅31+8⋅32+12⋅33+⋯+4n ⋅3n所以-2T n =4+4⋅31+4⋅32+⋯+4⋅3n -1-4n ⋅3n=4+4⋅31-3n -11-3-4n ⋅3n =4+2⋅3⋅3n -1-1 -4n ⋅3n=(2-4n )⋅3n -2,∴T n =(2n -1)⋅3n +1.10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.【答案】(1)ΩA :3,4,4,5,8,4,3,10(2)不存在符合条件的Ω,理由见解析(3)证明见解析【分析】(1)直接按照ΩA 的定义写出ΩA 即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【详解】(1)由题意得ΩA :3,4,4,5,8,4,3,10;(2)假设存在符合条件的Ω,可知ΩA 的第1,2项之和为a 1+a 2+s ,第3,4项之和为a 3+a 4+s ,则a 1+2 +a 2+6 =a 1+a 2+sa 3+4 +a 4+2 =a 3+a 4+s,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列T k ...T 2T 1A 为a k ,n 1≤n ≤8 ,特别规定a 0,n =a n 1≤n ≤8 .必要性:若存在序列Ω:ω1,ω2,...,ωs ,使得ΩA 为常数列.则a s ,1=a s ,2=a s ,3=a s ,4=a s ,5=a s ,6=a s ,7=a s ,8,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.根据T k ...T 2T 1A 的定义,显然有a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....所以不断使用该式就得到,a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,必要性得证.充分性:若a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8.由已知,a 1+a 3+a 5+a 7为偶数,而a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,所以a 2+a 4+a 6+a 8=4a 1+a 2 -a 1+a 3+a 5+a 7 也是偶数.我们设T s ...T 2T 1A 是通过合法的序列Ω的变换能得到的所有可能的数列ΩA 中,使得a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 最小的一个.上面已经证明a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....从而由a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8可得a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.同时,由于i k +j k +s k +t k 总是偶数,所以a k ,1+a k ,3+a k ,5+a k ,7和a k ,2+a k ,4+a k ,6+a k ,8的奇偶性保持不变,从而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数.下面证明不存在j =1,2,3,4使得a s ,2j -1-a s ,2j ≥2.假设存在,根据对称性,不妨设j =1,a s ,2j -1-a s ,2j ≥2,即a s ,1-a s ,2≥2.情况1:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 =0,则由a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,知a s ,1-a s ,2≥4.对该数列连续作四次变换2,3,5,8 ,2,4,6,8 ,2,3,6,7 ,2,4,5,7 后,新的a s +4,1-a s +4,2 +a s +4,3-a s +4,4 +a s +4,5-a s +4,6 +a s +4,7-a s +4,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 减少4,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 >0,不妨设a s ,3-a s ,4 >0.情况2-1:如果a s ,3-a s ,4≥1,则对该数列连续作两次变换2,4,5,7 ,2,4,6,8 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2-2:如果a s ,4-a s ,3≥1,则对该数列连续作两次变换2,3,5,8 ,2,3,6,7 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有a s ,2j -1-a s ,2j ≤1.假设存在j =1,2,3,4使得a s ,2j -1-a s ,2j =1,则a s ,2j -1+a s ,2j 是奇数,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8都是奇数,设为2N +1.则此时对任意j =1,2,3,4,由a s ,2j -1-a s ,2j ≤1可知必有a s ,2j -1,a s ,2j =N ,N +1 .而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,故集合m a s ,m =N 中的四个元素i ,j ,s ,t 之和为偶数,对该数列进行一次变换i ,j ,s ,t ,则该数列成为常数列,新的a s +1,1-a s +1,2 +a s +1,3-a s +1,4 +a s +1,5-a s +1,6 +a s +1,7-a s +1,8 等于零,比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 更小,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.综上,只可能a s ,2j -1-a s ,2j =0j =1,2,3,4 ,而a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8,故a s ,n =ΩA 是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .【答案】(1)S n =2n -1(2)①证明见详解;②S ni =1b i =3n -1 4n+19【分析】(1)设等比数列a n 的公比为q >0,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知a k =2k -1,b n =k +1,b n -1=k 2k -1 ,利用作差法分析证明;②根据题意结合等差数列求和公式可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1,再结合裂项相消法分析求解.【详解】(1)设等比数列a n 的公比为q >0,因为a 1=1,S 2=a 3-1,即a 1+a 2=a 3-1,可得1+q =q 2-1,整理得q 2-q -2=0,解得q =2或q =-1(舍去),所以S n =1-2n1-2=2n -1.(2)(i )由(1)可知a n =2n -1,且k ∈N *,k ≥2,当n =a k +1=2k≥4时,则a k =2k -1<2k -1=n -1n -1=a k +1-1<a k +1 ,即a k <n -1<a k +1可知a k =2k -1,b n =k +1,b n -1=b a k+a k +1-a k -1 ⋅2k =k +2k 2k -1-1 =k 2k -1 ,可得b n -1-a k ⋅b n =k 2k -1 -k +1 2k -1=k -1 2k -1-k ≥2k -1 -k =k -2≥0,当且仅当k =2时,等号成立,所以b n -1≥a k ⋅b n ;(ii )由(1)可知:S n =2n -1=a n +1-1,若n =1,则S 1=1,b 1=1;若n ≥2,则a k +1-a k =2k -1,当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列,可得∑2k -1i =2k -1b i =k ⋅2k -1+2k 2k -12k -1-1 2=k ⋅4k -1=193k -1 4k -3k -4 4k -1 ,所以∑S ni =1b i =1+195×42-2×4+8×43-5×42+⋅⋅⋅+3n -1 4n -3n -4 4n -1=3n -1 4n+19,且n =1,符合上式,综上所述:∑Sni =1b i =3n -1 4n +19.【点睛】关键点点睛:1.分析可知当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列;2.根据等差数列求和分析可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1.12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.【答案】(1)x |1<x <2 (2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【详解】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.266【答案】A【分析】令n =1得S 2=1,当n ≥2时,结合题干作差得S n +1-S n -1=2n -1,从而利用累加法求解S 24=即可.【详解】∵a 1=S 1=1,又∵S n +S n +1=n 2+1,当n =1时,S 1+S 2=12+1=2,解得S 2=1;当n ≥2时,S n -1+S n =(n -1)2+1,作差得S n +1-S n -1=2n -1,∴S 24=S 24-S 22 +S 22-S 20 +⋯+S 4-S 2 +S 2=223+21+⋯+3 -11+1=276.故选:A2(2024·河北张家口·三模)已知数列a n的前n项和为S n,且满足a1=1,a n+1=a n+1,n为奇数2a n,n为偶数,则S100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-103【答案】A【分析】分奇数项和偶数项求递推关系,然后记b n=a2n+a2n-1,n≥1,利用构造法求得b n=6×2n-1-3,然后分组求和可得.【详解】因为a1=1,a n+1=a n+1,n为奇数2a n,n为偶数 ,所以a2k+2=a2k+1+1=2a2k+1,a2k+1=2a2k=2a2k-1+2,k∈N*,且a2=2,所以a2k+2+a2k+1=2a2k+a2k-1+3,记b n=a2n+a2n-1,n≥1,则b n+1=2b n+3,所以b n+1+3=2b n+3,所以b n+3是以b1+3=a1+a2+3=6为首项,2为公比的等比数列,所以b n+3=6×2n-1,b n=6×2n-1-3,记b n的前n项和为T n,则S100=T50=6×20+6×21+6×22+⋅⋅⋅+6×249-3×50=3×251-156.故选:A【点睛】关键点点睛:本题解题关键在于先分奇数项和偶数项求递推公式,然后再并项得b n的递推公式,利用构造法求通项,将问题转化为求b n的前50项和.3(2024·山东日照·三模)设等差数列b n的前n项和为S n,若b3=2,b7=6,则S9=()A.-36B.36C.-18D.18【答案】B【分析】利用等差数列的前n项和公式,结合等差数列的性质求解.【详解】解:S9=b1+b9×92=b3+b7×92=36,故选:B.4(2024·湖北武汉·二模)已知等差数列a n的前n项和为S n,若S3=9,S9=81,则S12=() A.288 B.144 C.96 D.25【答案】B【分析】利用等差数列的前n项和列方程组求出a1,d,进而即可求解S12.【详解】由题意S3=3a1+3×22d=9S9=9a1+9×82d=81,即a1+d=3a1+4d=9,解得a1=1d=2.于是S12=12×1+12×112×2=144.故选:B.5(2024·江西赣州·二模)在等差数列a n中,a2,a5是方程x2-8x+m=0的两根,则a n的前6项和为()A.48B.24C.12D.8【答案】B【分析】利用韦达定理确定a2+a5=8,根据等差数列性质有a2+a5=a1+a6=8,在应用等差数列前n项和公式即可求解.【详解】因为a 2,a 5是方程x 2-8x +m =0的两根,所以a 2+a 5=8,又因为a n 是等差数列,根据等差数列的性质有:a 2+a 5=a 1+a 6=8,设a n 的前6项和为S 6,则S 6=a 1+a 6 ×62=3×8=24.故选:B6(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.64【答案】D【分析】根据题意,由条件可得a n +1=4a n ,再由等比数列的定义即可得到结果.【详解】由2n a n +1-2n +2a n =0可得a n +1=4a n ,则a 2024a 2021=4×4×4a 2021a 2021=64.故选:D7(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <100【答案】C【分析】由题意可得H (3)=7,判断A ;归纳得到H n =2n -1,结合等差数列以及等比数列的概念可判断B ,C ;求出H 7 ,判断D .【详解】由题意知若有1个圆盘,则需移动一次:若有2个圆盘,则移动情况为:A →C ,A →B ,C →B ,需移动3次;若有3个圆盘,则移动情况如下:A →B ,A →C ,B →C ,A →B ,C →A ,C →B ,A →B ,共7次,故H (3)=7,A 错误;由此可知若有n 个圆盘,设至少移动a n 次,则a n =2a n -1+1,所以a n +1=2a n -1+1 ,而a 1+1=1+1=2≠0,故a n +1 为等比数列,故a n =2n -1即H n =2n -1,该式不是n 的一次函数,则H (n ) 不为等差数列,B 错误;又H n =2n -1,则H n +1=2n ,H n +1 +1H n +1=2,则H (n )+1 为等比数列,C 正确,H 7 =27-1=127>100,D 错误,故选:C8(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.12【答案】A【分析】分别利用等比数列的通项公式和前n 项和公式,解方程组可得q =1或q =-12.【详解】设等比数列a n 的首项为a 1,公比为q ,依题意得a 3=a 1q 2=3S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=9 ,解得q =1或q =-12.故选:A .9(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.88【答案】B【分析】将a 1,a 4,a 9用a 1和d 表示,计算出a 6的值,再由S 11=11a 6得S 11的值.【详解】依题意,a n 是等差数列,设其公差为d ,由a 1+2a 4+3a 9=24,所以a 1+2a 1+3d +3a 1+8d =6a 1+30d =6a 6=24,即a 6=4,S 11=11a 1+10×112d =11a 1+5d =11a 6=11×4=44,故选:B .10(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列【答案】C【分析】对于ABD :举反例说明即可;对于C :根据题意分析可得a m 2>a m 1,结合单调性可得m 2>m 1,即可得结果.【详解】对于选项AB :例题a n =1,可知a n 即为等差数列也为等比数列,则a 1+a 2=2,但不存在m ∈N *,使得a m =2,所以a n 不为内和数列,故AB 错误;对于选项C :因为a n >0,对任意n 1,n 2∈N *,n 1<n 2,可知存在m 1,m 2∈N *,使得a m 1=a 1+a 2+a 3+⋯+a n 1,a m 2=a 1+a 2+a 3+⋯+a n 2,则a m 2-a m 1=a n 1+1+a n 1+2+⋯+a n 2>0,即a m 2>a m 1,且内和数列a n 为递增数列,可知m 2>m 1,所以其伴随数列b n 为递增数列,故C 正确;对于选项D :例如2,1,3,4,5,⋅⋅⋅,显然a n 是所有正整数的排列,可知a n 为内和数列,且a n 的伴随数列为递增数列,但an 不是递增数列,故D 错误;故选:C.【点睛】方法点睛:对于新定义问题,要充分理解定义,把定义转化为已经学过的内容,简化理解和运算.11(2024·广东茂名·一模)已知T n为正项数列a n的前n项的乘积,且a1=2,T2n=a n+1n,则a5=() A.16 B.32 C.64 D.128【答案】B【分析】利用给定的递推公式,结合对数运算变形,再构造常数列求出通项即可得解.【详解】由T2n=a n+1n,得T2n+1=a n+2n+1,于是a2n+1=T2n+1T2n=a n+2n+1a n+1n,则a n n+1=a n+1n,两边取对数得n lg a n+1=(n+1)lg a n,因此lg a n+1n+1=lg a nn,数列lg a nn是常数列,则lg a nn=lg a11=lg2,即lg a n=n lg2=lg2n,所以a n=2n,a5=32.故选:B12(2024·湖南常德·一模)已知等比数列a n中,a3⋅a10=1,a6=2,则公比q为()A.12B.2 C.14D.4【答案】C【分析】直接使用已知条件及公比的性质得到结论.【详解】q=1q3⋅q4=a3a6⋅a10a6=a3⋅a10a26=122=14.故选:C.二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p【答案】BCD【分析】根据题意,得到a k+2<0,a k+1>0,a k+1+a k+2>0且a n是递减数列,结合等差数列的性质以及等差数列的求和公式,逐项判定,即可求解.【详解】由S k+1>S k+2>S k,可得a k+2=S k+2-S k+1<0,a k+1=S k+1-S k>0,且a k+1+a k+2=S k+2-S k>0,即a k+2<0,a k+1>0,a k+1+a k+2>0又由a n+a n+2=2a n+1,可得数列a n是等差数列,公差d=a k+2-a k+1<0,所以a n是递减数列,所以a1是最大项,且随着n的增加,a n无限减小,即a n≤a1,所以A错误、D正确;因为当n≤k+1时,a n>0;当n≥k+2时,a n<0,所以S n的最大值为S k+1,所以B正确;因为S2k+1=(2k+1)(a1+a2k+1)2=(2k+1)a k+1>0,S2k+3=(2k+3)a k+2<0,且S 2k +2=a 1+a 2k +22×2k +2 =k +1 ⋅a k +1+a k +2 >0,所以当n ≤2k +2时,S n >0;当n ≥2k +3时,S n <0,所以C 正确.故选:BCD .14(2024·山东泰安·模拟预测)已知数列a n 的通项公式为a n =92n -7n ∈N *,前n 项和为S n ,则下列说法正确的是()A.数列a n 有最大项a 4B.使a n ∈Z 的项共有4项C.满足a n a n +1a n +2<0的n 值共有2个D.使S n 取得最小值的n 值为4【答案】AC【分析】根据数列的通项公式,作差判断函数的单调性及项的正负判断A ,根据通项公式由整除可判断B ,根据项的正负及不等式判断C ,根据数列项的符号判断D .【详解】对于A :因为a n =92n -7n ∈N *,所以a n +1-a n =92n -5-92n -7=-182n -5 2n -7,令a n +1-a n >0,即2n -5 2n -7 <0,解得52<n <72,又n ∈N *,所以当n =3时a n +1-a n >0,则当1≤n ≤2或n ≥4时,a n +1-a n <0,令a n =92n -7>0,解得n >72,所以a 1=-95>a 2=-3>a 3=-9,a 4>a 5>a 6>⋯>0,所以数列a n 有最大项a 4=9,故A 正确;对于B :由a n ∈Z ,则92n -7∈Z 又n ∈N *,所以n =2或n =3或n =4或n =5或n =8,所以使a n ∈Z 的项共有5项.故B 不正确;对于C :要使a n a n +1a n +2<0,又a n ≠0,所以a n 、a n +1、a n +2中有1个为负值或3个为负值,所以n =1或n =3,故满足a n a n +1a n +2<0的n 的值共有2个,故C 正确;对于D :因为n ≤3时a n <0,n ≥4时a n >0,所以当n =3时S n 取得最小值,故D 不正确.故选:AC .15(2024·山东临沂·二模)已知a n 是等差数列,S n 是其前n 项和,则下列命题为真命题的是()A.若a 3+a 4=9,a 7+a 8=18,则a 1+a 2=5B.若a 2+a 13=4,则S 14=28C.若S 15<0,则S 7>S 8D.若a n 和a n ⋅a n +1 都为递增数列,则a n >0【答案】BC【分析】根据题意,求得d =98,结合a 1+a 2=a 3+a 4 -4d ,可判定A 错误;根据数列的求和公式和等差数列的性质,可判定B 正确;由S 15<0,求得a 8<0,可判定C 正确;根据题意,求得任意的n ≥2,a n >0,结合a 1的正负不确定,可判定D 错误.【详解】对于A 中,由a 3+a 4=9,a 7+a 8=18,可得a 7+a 8 -a 3+a 4 =8d =9,所以d =98,又由a 1+a 2=a 3+a 4 -4d =9-4×98=92,所以A 错误;对于B 中,由S 14=14a 1+a 14 2=14a 2+a 132=28,所以B 正确;对于C 中,由S 15=15(a 1+a 15)2=15a 8<0,所以a 8<0,又因为S 8-S 7=a 8<0,则S 7>S 8,所以C 正确;对于D 中,因为a n 为递增数列,可得公差d >0,因为a n a n +1 为递增数列,可得a n +2a n +1-a n a n +1=a n +1⋅2d >0,所以对任意的n ≥2,a n >0,但a 1的正负不确定,所以D 错误.故选:BC .16(2024·山东泰安·二模)已知等差数列a n 的前n 项和为S n ,a 2=4,S 7=42,则下列说法正确的是()A.a 5=4B.S n =12n 2+52n C.a nn为递减数列 D.1a n a n +1 的前5项和为421【答案】BC【分析】根据给定条件,利用等差数列的性质求出公差d ,再逐项求解判断即可.【详解】等差数列a n 中,S 7=7(a 1+a 7)2=7a 4=42,解得a 4=6,而a 2=4,因此公差d =a 4-a 24-2=1,通项a n =a 2+(n -2)d =n +2,对于A ,a 5=7,A 错误;对于B ,S n =n (3+n +2)2=12n 2+52n ,B 正确;对于C ,a n n =1+2n ,a n n 为递减数列,C 正确;对于D ,1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,所以1a n a n +1 的前5项和为13-14+14-15+⋯+17-18=13-18=524,D 错误.故选:BC17(2024·江西·三模)已知数列a n 满足a 1=1,a n +1=2a n +1,则()A.数列a n 是等比数列B.数列log 2a n +1 是等差数列C.数列a n 的前n 项和为2n +1-n -2D.a 20能被3整除【答案】BCD【分析】利用构造法得到数列a n +1 是等比数列,从而求得通项,就可以判断选项,对于数列求和,可以用分组求和法,等比数列公式求和完成,对于幂的整除性问题可以转化为用二项式定理展开后,再加以证明.【详解】由a n +1=2a n +1可得:a n +1+1=2a n +1 ,所以数列a n +1 是等比数列,即a n =2n -1,则a 1=1,a 2=3,a 3=7,显然有a 1⋅a 3≠a 22,所以a 1,a 2,a 3不成等比数列,故选项A 是错误的;由数列a n +1 是等比数列可得:a n +1=2n ,即log 2a n +1 =log 22n =n ,故选项B 是正确的;由a n =2n -1可得:前n 项和S n =21-1+22-1+23-1+⋅⋅⋅+2n-1=21-2n 1-2-n =2n +1-n -2,故选项C是正确的;由a 20=220-1=3-1 20-1=C 020320+C 120319⋅-1 +C 220318⋅-1 2+⋅⋅⋅+C 19203⋅-1 19+C 2020-1 20-1=3×C 020319+C 120318⋅-1 +C 220317⋅-1 2+⋅⋅⋅+C 1920-1 19 ,故选项D 是正确的;方法二:由210=1024,1024除以3余数是1,所以10242除以3的余数还是1,从而可得220-1能补3整除,故选项D 是正确的;故选:BCD .18(2024·湖北·二模)无穷等比数列a n 的首项为a 1公比为q ,下列条件能使a n 既有最大值,又有最小值的有()A.a 1>0,0<q <1B.a 1>0,-1<q <0C.a 1<0,q =-1D.a 1<0,q <-1【答案】BC【分析】结合选项,利用等比数列单调性分析判断即可.【详解】a 1>0,0<q <1时,等比数列a n 单调递减,故a n 只有最大值a 1,没有最小值;a 1>0,-1<q <0时,等比数列a n 为摆动数列,此时a 1为大值,a 2为最小值;a 1<0,q =-1时,奇数项都相等且小于零,偶数项都相等且大于零,所以等比数列a n 有最大值,也有最小值;a 1<0,q <-1时,因为q >1,所以a n 无最大值,奇数项为负无最小值,偶数项为正无最大值.故选:BC 三、填空题19(2024·山东济南·三模)数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则数列a n 的前20项的和为.【答案】210【分析】数列a n 的奇数项、偶数项都是等差数列,结合等差数列求和公式、分组求和法即可得解.【详解】数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则a 2=a 4-2=4-2=2,所以数列a n 的奇数项、偶数项分别构成以1,2为首项,公差均为2的等差数列所以数列a n 的前20项的和为a 1+a 2+⋯+a 20=a 1+a 3+⋯+a 19 +a 2+a 4+⋯+a 20=10×1+10×92×2+10×2+10×92×2=210.故答案为:210.20(2024·云南·二模)记数列a n 的前n 项和为S n ,若a 1=2,2a n +1-3a n =2n ,则a 82+S 8=.【答案】12/0.5【分析】构造得a n +12n -1-4=34a n2n -2-4,从而得到a n 2n -2=4,则a n =2n ,再利用等比数列求和公式代入计算即可.【详解】由2a n +1-3a n =2n ,得a n +12n -1=34×a n 2n -2+1,则a n +12n -1-4=34a n2n -2-4,又a 12-1-4=0,则a n 2n -2=4,则a n =2n ,a 8=28,S 8=21-28 1-2=29-2,a 82+S 8=2829=12,故答案为:12.21(2024·上海·三模)数列a n 满足a n +1=2a n (n 为正整数),且a 2与a 4的等差中项是5,则首项a 1=。

新课标高考理科数学模拟试题含答案

新课标高考理科数学模拟试题含答案

新课标高考理科数学模拟试题含答案The following text is amended on 12 November 2020.2017年普通高等学校招生全国统一考试理科数学模拟试卷(一)第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知命题:p x ∀∈R ,sin x ≤1,则( )A .:p x ⌝∃∈R ,sin x ≥1B .:p x ⌝∀∈R ,sin x ≥1C .:p x ⌝∃∈R ,sin x >1 不能D .:p x ⌝∀∈R ,sin x >12.已知平面向量a =(1,1),b (1,-1),则向量1322-=a b ( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2)3.函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )4.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d =( )A .23-B .13-C .13D .235.如果执行右面的程序框图,那么输出的S=( )A .2450B .2500 y x11-2π-3π-O6ππyx11-2π-3π-O 6ππy x11-2π-3πO 6π-πy xπ2π-6π-1O1-3π A.B.C .D .6.已知抛物线22(0)y px p =>的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3, 则有( )A .123FP FP FP +=B .222123FP FP FP += C .2132FP FP FP =+ D .2213FPFP FP =· 7.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则2()a b cd+的最小值是( )A .0B .1C .2D .48.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .34000cm 3 B .38000cm 3C .2000cm 3D .4000cm 3 9.若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+的值为( ) A .7.12- C .12D 7 10.曲线12e x y =在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A .29e 2年B .4e 2, C .2e 2 D .e 2s 1,s 2,s 3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )甲的成绩 环数7 8 9 10 频数 5 5 5 5 乙的成绩 环数7 8 9 1频数 6 4 4 6 丙的成绩 环数7 8 9 1频数4 6 6 412.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等。

2020年山东新高考数列精选模拟试题(含解析)

2020年山东新高考数列精选模拟试题(含解析)

专题8 数列数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系;解答题的难度中等或稍难,将稳定在中等难度.往往在利用方程思想解决数列基本问题后,进一步数列求和,在求和后可与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要. 预测2020年将保持稳定,注意主观题与不等式、函数等相结合.一、单选题1.(2020届山东省淄博市高三二模)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为 ABC.D.2.(2020届山东省潍坊市高三下学期开学考试)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的最大值为( ) A .3-B .1-C .3D .13.(2020届山东省济宁市高三3月月考)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法错误的是( ) A .此人第二天走了九十六里路 B .此人第一天走的路程比后五天走的路程多六里.C .此人第三天走的路程占全程的18D .此人后三天共走了42里路若存在两项,m n a a32=,则14m n+的最小值为 A .34B .910C .32D .955.(2020届山东省青岛市高三上期末)已知数列{}n a 中,32a =,71a =.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5a =( ) A .23B .32C .43D .34二、多选题6.(2020届山东省潍坊市高三模拟一)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则下列正确的是( ) A .12a =-B .12a =C .4d =D .4d =-7.(2020·山东曲阜一中高三3月月考)在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路B .此人第三天走的路程站全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了42里路8.(2020届山东省潍坊市高三模拟二)将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+- 9.(2020届山东省济宁市第一中学高三一轮检测)等差数列{}n a 是递增数列,满足753a a =,前n 项和为n S ,下列选择项正确的是( ) A . 0d >B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为810.(2020·山东滕州市第一中学高三3月模拟)已知数列{}{},n n a b 满足1111312,2ln(),0n n n n n n n a a b b a b n N a b n*+++=+=++∈+> 给出下列四个命题,其中的真命题是( ) A .数列{}n n a b -单调递增; B .数列{}n n a b + 单调递增; C .数{}n a 从某项以后单调递增; D .数列{}n b 从某项以后单调递增.三、填空题11.(2020届山东省烟台市高三模拟)已知数列{}n a 的前n 项和公式为221n S n n =-+,则数列{}n a 的通项公式为___.12.(2020届山东省潍坊市高三模拟一)九连环是我国从古至今广泛流传的一种益智游戏.在某种玩法中,用n a 表示解下()*9,n n n N≤∈个圆环所需移动的最少次数,{}na 满足11a=,且()()112122n n n a n a a n --⎧-⎪=⎨+⎪⎩为偶数为奇数,则解下5个圆环需最少移动________次.四、解答题13.(2020·山东高三模拟)已知各项均不相等的等差数列{}n a 的前4项和为414S =, 且137,,a a a 成等比数列.(1)求数列{}n a 的通项公式; (2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .14.(2020届山东省烟台市高三模拟)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T . 15.(2020届山东省高考模拟)已知数列{}n a 的前n 项和为n S ,且12n n S a a =-(*n N ∈),数列{}n b 满足16b =,14n n nb S a =++(*n N ∈). (Ⅰ)求数列{}n a 通项公式; (Ⅱ)记数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:12nT <. 16.(2020届山东省济宁市第一中学高三一轮检测)已知{}n a 是等差数列,{}n b 是等比数列,且23b =,39b =,11a b =,144a b =.(1)求{}n a 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和.17.(2020届山东省济宁市第一中学高三二轮检测)已知数列{}n a 中,11a =,121n n a a n +=+-,n n b a n =+.(1)求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .18.(2020·山东滕州市第一中学高三3月模拟)已知等差数列{}n a 的公差0d ≠,其前n 项和为n S ,若2822a a +=,且4712,,a a a 成等比数列.(1)求数列{}n a 的通项公式; (2)若12111n n T S S S =+++,证明:34n T <. 19.(2020届山东省泰安市肥城市一模)记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式;(2)求n S 的最大值及对应n 的大小.20.(2020届山东省济宁市高三3月月考)已知数列{}n a 为公差不为0的等差数列,且139a a a 、、成等比数列,246a a +=.(1)求数列{}n a 的通项n a ; (2)设()21cos3n n n a b a π+=,求数列{}nb 的前2020项的和2020S.21.(2020届山东省菏泽一中高三2月月考)设数列{}n a 的前n 项和为n S ,已知11a =,121n n S S +-=,n *∈N . (1)证明:{}1n S +为等比数列,求出{}n a 的通项公式; (2)若n nn b a =,求{}n b 的前n 项和n T ,并判断是否存在正整数n 使得1250n n T n -⋅=+成立?若存在求出所有n 值;若不存在说明理由.22.(2020届山东省潍坊市高三模拟一)已知等差数列{}n a 的前n 项和为n S ,34a =,627S =. (1)求{}n a 的通项公式;(2)设2n an b =,记n T 为数列{}n b 的前n 项和.若124m T =,求m .23.(2020届山东省潍坊市高三模拟二)已知数列{a n }的首项为a 1=1,且*12(1)()n n a a n N +=+∈.(Ⅰ)证明:数列{a n +2}是等比数列,并求数列{a n }的通项公式; (Ⅱ)设b n =log 2(a n +2)﹣log 23,求数列32n n b a ⎧⎫⎨⎬+⎩⎭的前n 项和n T .24.(2020届山东省六地市部分学校高三3月线考)数列{}n a 满足:123a a a +++()1312nn a +=- (1)求{}n a 的通项公式; (2)若数列{}n b 满足3n na b n a =,求{}n b 的前n 项和n T .25.(2020届山东省潍坊市高三下学期开学考试)已知函数()log k f x x =(k 为常数,0k >且1k ≠). (1)在下列条件中选择一个________使数列{}n a 是等比数列,说明理由; ①数列(){}n f a 是首项为2,公比为2的等比数列; ②数列(){}n f a 是首项为4,公差为2的等差数列;③数列(){}n f a 是首项为2,公差为2的等差数列的前n 项和构成的数列.(2)在(1)的条件下,当k =12241+=-n n n a b n ,求数列{}n b 的前n 项和n T . 26.(2020届山东济宁市兖州区高三网络模拟考)在①325256a a a b =+=,;②234323b a a b =+=,;③345298S a a b =+=,,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为()1d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b d q ==,,____________.(1)求数列{}n a ,{}n b 的通项公式. (2)记nn na cb =,求数列{}n c ,的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 27.(2020·山东高三下学期开学)已知数列{}n a 满足123123252525253n n na a a a ++++=----….(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:11226n T ≤<. 28.(2020届山东省淄博市高三二模)已知数列{}n a 满足132a =,且()1112,22n n n a a n n *--=+≥∈N .(1)求证:数列{}2nn a 是等差数列,并求出数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S .29.(2020届山东省淄博市部分学校高三3月检测)已知数列{}n a 满足11a =,1431n n a a n +=+-,n n b a n =+.(1)证明:数列{}n b 为等比数列; (2)求数列{}n a 的前n 项和.30.(2020·2020届山东省淄博市高三二模)(本小题满分12分)设函数()()22ln 11x f x x x =+++.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)如果对所有的x ≥0,都有()f x ≤ax ,求a 的最小值;(Ⅲ)已知数列{}n a 中, 11a =,且()()1111n n a a +-+=,若数列{}n a 的前n 项和为n S ,求证:11ln 2n n n na S a a ++>-.一、单选题1.(2020届山东省淄博市高三二模)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为 ABC. D.【答案】D 【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为所以1(2,)n n a n n N -+=≥∈, 又1a f =,则7781a a q f === 故选D.2.(2020届山东省潍坊市高三下学期开学考试)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的最大值为( ) A .3- B .1-C .3D .1【答案】C 【解析】当2n ≥ 时,1121,,33n n n n n n S a S a --++== 两式作差可得:11211213311n n n n n a n n n a a a a n n --+++=-⇒==+-- , 据此可得,当2n = 时,1nn a a -的最大值为33.(2020届山东省济宁市高三3月月考)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法错误的是( )A .此人第二天走了九十六里路B .此人第一天走的路程比后五天走的路程多六里.C .此人第三天走的路程占全程的18D .此人后三天共走了42里路【答案】C 【解析】由题意可知,每天走的路程里数构成以12为公比的等比数列,由S 6=378求得首项,再由等比数列的通项公式求第二天的,第三天的,后三天的路程,即可得到答案.4.(2020届山东省济宁市第一中学高三二轮检测)已知正项等比数列{}n a 满足:2853516,20a a a a a =+=,若存在两项,m n a a 32=,则14m n+的最小值为 A .34B .910C .32D .95【答案】A 【解析】因为数列{}n a 是正项等比数列,28516a a a ,3520a a +=,所以2285516a a a a ,516a =,34a =,所以253a a q =,2q ,451a a q ,11a =,1112n n n a a q --==,32=,所以1110222m n,12m n +=,414114112125n m mnm n mnm n431124520,0n m mnm n ,当且仅当2n m =时“=”成立, 所以14mn的最小值为34,故选A 。

全国普通高等学校高考数学模拟试卷(理科)及答案

全国普通高等学校高考数学模拟试卷(理科)及答案

全国普通高等学校高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的•1. (5 分)已知集合A={x| - x2+4x> 0},片&|占<3玄丈歼} , C=(x|x=2n, n€81N},贝U(A U B)n C=()A. {2,4}B. {0,2}C. {0,2,4}D. {x|x=2n, n € N}2. (5分)设i是虚数单位,若-- ' ― ,x,y€ R,则复数x+yi的共轭复数2^1是()A. 2 - iB.- 2 - iC. 2+iD.- 2+i3. (5分)已知等差数列{a n}的前n项和是S h,且%+a5+a6+a z=18,贝U下列命题正确的是()A. a5是常数B. S5是常数C. a i0是常数D. Si o是常数4. (5分)七巧板是我们祖先的一项创造,被誉为东方魔板”它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,贝吐匕点取自黑色部分的概率是()BCD2 25. (5分)已知点F为双曲线C: = 一一(a>0,b>0)的右焦点,直线x=aa b与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,贝U双曲线的离心率为()A. "B. I ■:C. I」订D. - % -6. (5分)已知函数f&)二sinx, K E [-冗50]诋(0t i]A . 7 .nJTD.——-74 一(5分)执行如图所示的程序框图,则输出的S的值为()2+ n B. C.盒2*出£产〔筠棗)*>201A.二7B. 「」C.. - 厂D. +-8 (5分)已知函数f仗)二sin 3葢X^\/3C^OS23(3> 0) 的相邻两个零点差的绝对值为二,则函数f (x)的图象(4A . 可由函数(X)=cos4x的图象向左平移个单位而得B. 可由函数(X)=cos4x的图象向右平移C. 可由函数(X)=cos4x的图象向右平移D . 可由函数(X)=cos4x的图象向右平移丄个单位而得24丄个单位而得245兀个单位而得9. (5 分)(羽-3)(1的展开式中剔除常数项后的各项系数和为(A . —73 B.—61 C.—55 D.—6310. (5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是(nanA . 317£~6~B.31兀C.481K D丑価兀. ■:6411. (5分)已知抛物线C: y 2=4x 的焦点为F ,过点F 分别作两条直线l i , I 2,直 线l i 与抛物线C 交于A 、B 两点,直线12与抛物线C 交于D 、E 两点,若l i 与12 的斜率的平方和为1,则|AB|+| DE 的最小值为( )A . 16 B. 20 C. 24 D . 3212. (5分)若函数y=f (x ), x € M ,对于给定的非零实数a ,总存在非零常数T , 使得定义域M 内的任意实数x ,都有af (x ) =f (x+T )恒成立,此时T 为f (x ) 的类周期,函数y=f (x )是M 上的a 级类周期函数.若函数y=f (x )是定义在 区间[0 , + %)内的2级类周期函数,且T=2,当x € [0 , 2 )时,zg ■-2,,1 ©卄比)二戈函数.若? X 1€ [6, 8] , ?X 2€L<Y <2’二、填空题(每题5分,满分20分,将答案填在答题纸上) 13 . ( 5分)已知向量, ^占口),-1),且旦丄1,则1)-=为 ______ .15. (5分)在等比数列{a n }中,a 2?a 3=2a 1,且a 4与2a 7的等差中项为17,设b n =a 2n -1- a 2n , n € N*,则数列{b n }的前2n 项和为 ______ .16.(5分)如图,在直角梯形 ABCD 中,AB 丄BC, AD // BC,一二亍「二,点14. ( 5分)已知x , y 满足约束条件(0, +x ),使g (X 2)- f (X 1)w 0成立,则实数m 的取值范围是( 的最小值E是线段CD上异于点C, D的动点,EF丄AD于点^将厶DEF沿EF折起到△ PEF 的位置,并使PF丄AF,则五棱锥P-ABCEF勺体积的取值范围为________ .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (12分)已知△ ABC的内角A, B, C的对边a, b, c分别满足c=2b=2.2bcosA+acosC+ccosA=Q 又点D 满足■ /(1)求a及角A的大小;18. (12分)在四棱柱ABCD- A i B i C i D i中,底面ABCD是正方形,且匚-:-,/ A1AB=Z A1AD=6C°.(1)求证:BD丄CG;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB所成角的正弦值为I .19. (12分)过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数「(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N (卩,d2),利用该正态分布,求Z落在(14.55, 38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这 4 包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为^=V142. 75^11-95;②若〜N — b 2 ),贝U P (卩―crV Z< p+ o)=0.6826,P (卩―2 o< Z< (J+2 C)=0.9544.0e030 ・-0-025 ・*0.020 - 0.0150.01010 2030 4050各水饺质量指标丄一,且以两焦点为直20. (12分)已知椭圆C: 亏〔呂0)的离心率为径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线I: y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.21. (12分)已知函数f (x) =e x- 2 (a- 1) x- b,其中e为自然对数的底数.(1)若函数f (x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g (x) =e x-(a- 1) x2- bx- 1,且g (1) =0,若函数g (x)在区间[0,1]上恰有3个零点,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22. (10分)在平面直角坐标系xOy中,圆C i的参数方程为\ K-_Uacos® ( 0ty=-l+asin9为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为p =2^2^05 ( .(1)求圆C i的极坐标方程和圆C2的直角坐标方程;(2)分别记直线I: ^吕,P€ R与圆C i、圆C2的异于原点的焦点为A,B,若圆C i与圆C2外切,试求实数a的值及线段AB的长.[选修4-5:不等式选讲]23. 已知函数f (x) =|2x+1| .(1)求不等式f (x)< 10-| x-3|的解集;(2)若正数m,n 满足m+2n=mn,求证:f (m) +f (- 2n)》16.2018年全国普通高等学校高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的•1. (5 分)已知集合A={x| - x2+4x> 0}, B二丘|丄<罗<27} , C={x|x=2n, n€31N},贝U(A U B)n C=()A. {2,4}B. {0,2}C. {0,2,4}D. {x|x=2n, n € N}【解答】解:A={x| - x2+4x> 0} ={x| 0< x< 4},駐〔兀I去V3y 27} ={x| 3-4v 3x v 33}={x| - 4<x< 3},oJL则A U B={x| - 4< x<4},C={x| x=2n, n € N},可得(A U B)n C={0, 2, 4},故选C.2. (5分)设i是虚数单位,若' ,x, y€ R,则复数x+yi的共轭复数2-1是()A. 2 - iB.- 2 - iC. 2+iD.- 2+i【解答】解:由一「2-1得x+yi= — -i —-! ■=2+i得x+yi= =2+i,•••复数x+yi的共轭复数是2 -i.3(5分)已知等差数列{a n}的前n项和是S,且a4+a5+a e+a7=18,则下列命题正确的是()A. a5是常数B. S5是常数C. a10是常数D. Si0是常数故选:A.【解答】解:•••等差数列{a n }的前n 项和是S n ,且a 4+a 5+a 6+a 7=18, 二 a 4+a 5+a 6+a 7=2 (a i +a io ) =18, --a i +a io =9, …Sg 二乎(有十^10)=45- 故选:D .4. (5分)七巧板是我们祖先的一项创造,被誉为 东方魔板”它是由五块等腰 直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形) 、- 块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,贝吐匕点取自黑色部分的概率是()【解答】解:设AB=2,则BC=CD=DE=EF=1V B —订,S 平行四边形EFG 阳2S BC =2 X — , •••所求的概率为口 +S 平行四边形EPGH g 正方形AB5 =2x7故选:A .2 25. (5分)已知点F 为双曲线C : 云丄尹1 (a >0, b >0)的右焦点,直线x=a 与双曲线的渐近线在第一象限的交点为 A ,若AF 的中点在双曲线上,贝U 双曲线 的离心率为()16BCDA. . 1B. I ■:C.「'.打D. I 口2 2【解答】解:设双曲线C:青冬二1的右焦点F (c, 双曲线的渐近线方程为y丄x,a由x=a代入渐近线方程可得y=b,则A(a,b),可得AF的中点为(誓,寺b),代入双曲线的方程可得卄J -丄=1,可得4a2- 2ac- c2=0,由e*,可得e2+2e- 4=0,a解得e= !.- 1 (- 1 —汀舍去),故选:D. 0),6. (5分)已知函数f&)二则.A. 2+ nB. JT T-2J Ql-/dK=/ cOSdt= J 1 址齐t芒1 2+',J 2开£(只),xE [-TT , 0]2,址© 1]^rcsinx *兀4+ (- COSX:=(2. 故选:D.7. (5分)执行如图所示的程序框图,则输出的 S 的值为()A ...工7B .C.. -厂 D . m【解答】解:第1次循环后,S=-,不满足退出循环的条件,k=2; 第2次循环后,S= -;,不满足退出循环的条件,k=3; 第3次循环后,S= =2,不满足退出循环的条件,k=4;第n 次循环后,S= ,不满足退出循环的条件,k=n+1 ; 第2018次循环后,S=,3.「儿 不满足退出循环的条件,k=2019第2019次循环后,S==2「|「,满足退出循环的条件, 故输出的S 值为2厂「, 故选:C& (5分)已知函数f (瓷)sin® xug®負7勺(3> 0)的相邻两个 零点差的绝对值为「则函数f (x )的图象()A. 可由函数g (x ) =cos4x 的图象向左平移卑匚个单位而得B. 可由函数g (x ) =cos4x 的图象向右平移2二个单位而得24C. 可由函数g (x ) =cos4x 的图象向右平移丄?个单位而得D. 可由函数g (x ) =cos4x 的图象向右平移一个单位而得O【解答】 解:函数 f (7) =sinseesxVsccs5 工=寺 sin7T=sin (2^)-—)(3>0)的相邻两个零点差的绝对值为才?爲=:,二①=2 f (x ) =sin (4x -中=cos[(2 3X )]=cos (4x普).故把函数g (x ) =cos4x 的图象向右平移竺个单位,可得f (X )的图象,24 故选:B.9・(5分)©-3)(代/的展开式中剔除常数项后的各项系数和为( )A .- 73B .- 61C.- 55D .- 63【解答】解:丄广展开式中所有各项系数和为(2- 3) (1+1) 6=- 64; ⑵-3)(1 丄)社(2x -3) (1忑碍+•••),工工/其展开式中的常数项为-3+12=9,• ••所求展开式中剔除常数项后的各项系数和为 -64 - 9=- 73.故选:A . 6【解答】解:如图,可得该几何体是六棱锥 P -ABCDEF 底面是正六边形,有一 PAF 侧面垂直底面,且P 在底面的投影为AF 中点,过底面中心N 作底面垂线, 过侧面PAF 的外心M 作面PAF 的垂线,两垂线的交点即为球心 0, 设厶PAF 的外接圆半径为r ,/二(2P )牛(寺严,解得r #,•価二0昨茅6 (5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF 是边长为 1的正六边形,点G 为AF 的中点,则该几何体的外接球的表面积是()A .B .312Z8 C.鋁1叽64D.48MAS11. (5分)已知抛物线C: y 2=4x 的焦点为F ,过点F 分别作两条直线11, 12,直 线11与抛物线C 交于A 、B 两点,直线12与抛物线C 交于D 、E 两点,若11与12 的斜率的平方和为1,则|AB|+| DE 的最小值为()A . 16 B. 20 C. 24 D . 32【解答】解:抛物线C: y 2=4x 的焦点F (1, 0),设直线11: y=k i (x- 1),直线 12: y=k 2 (x - 1),由题意可知,贝U 叭Jk 『二1,设 A (X 1 , y 1), B (X 2 , y 2),贝 U X 1+X 2= -------k l 4设 D (X 3 , y 3), E (X 4 , y 4),同理可得:X 3+X 4=2+ ° ,k2由抛物线的性质可得:丨AB | =X 1+x 2+p=4+则该几何体的外接球的半径•••表面积是则该几何体的外接球的表面积是7 V4M+1 FS=4冗 R =°*l 兀.64联立丿y=k] (i-lj,整理得:k 12x 2-( 2k 12+4) x+k 12=0,R= I :. 故选:C.C,| DE | =X 3+X 4+pk l=84 ,当且仅当k®目时,上式“我立• ••• | AB|+| DE 的最小值 24, 故选:C.12. (5分)若函数y=f (x ), x € M ,对于给定的非零实数a ,总存在非零常数T , 使得定义域M 内的任意实数x ,都有af (x )=f (x+T )恒成立,此时T 为f (x ) 的类周期,函数y=f (x )是M 上的a 级类周期函数.若函数y=f (x )是定义在区间[0 , + %)内的2级类周期函数,且T=2,当x € [0 , 2 )时,f(2-Kb 1<X<2(0 , +x),使g (x 2)- f (X 1)w 0成立,贝U 实数m 的取值范围是(【解答】解:根据题意,对于函数f(x ),当x € [0 , 2)时,f k)弓2fCE-s), Kx<2-2,有最大值f (0)二,最小值f (1)2,当1v x v 2时,f (x ) =f (2 -x ),函数f (x )的图象关于直线x=1对称,则此时 有-一v f (x )v又由函数y=f (x )是定义在区间[0, +7 内的2级类周期函数,且T=2; 则在€ [6, 8) 上, f (x ) =23?f (x -6),则有—12<f (x )w 4,则 f (8) =2f (6) =4f (4) =8f (2) =16f (0) =8,则函数f (x )在区间[6 , 8]上的最大值为8,最小值为-12;A .—] B. (a, 13 ] C. 〔a,32 J2」2」D .[普g| AB|+| DE =8+1 k 24(ki 2+k 2Z ) 8P4、412 J一 _ _ •若? xi € [ 6, 8] , ? X 2 €函数 =-21nx分析可得:当O w x < 1时,f (x) --=84 ,对于函数山)二-加4^5切,有g'(x) =-Z +X+1」®之-炉1)3切L x x x分析可得:在(0 , 1)上,g (x)v0,函数g (x)为减函数,在(1 , +x)上,g r (x)>0,函数g (x)为增函数,则函数g (x )在(0, +x )上,由最小值f (1) =_ +m ,2若? x i € [6, 8] , ? X 2 €(0, +x ),使 g (X 2)— f (x i )< 0 成立, ,即一+m < 8, ,即m 的取值范围为(-x,必有 g (x ) min < f (x ) max 故选:B. 解可得m 13 2 、填空题(每题5分,满分20分,将答案填在答题纸上) 13. (5 分)已知向重.I _ d •二二「,,| 丄---,且-一、,则! . I I ]【解答】解:根据题意,向重 丁(2営cgd ),b=(l, -1), 若;丄卞,则 ^?b=2sin a cos a =0 则有 tan a又由 sin 2 a +COS 2 a=1 则有 则 则 |..|-: 2^5sina=^ a" COS Cl - !_ 亍),或 = sin a 二芈^ 5 n _砸 C0S 或(— 5则崙丄)2=3品2- 21?工半 5故答案为: 14. (5分)已知x , y 满足约束条件 的最小值为L_. 【解答】解:由约束条件作出可行域如图,X = — 22n -4,联立fxWQ ,解得A (2, 4), J 23<2,令t=5x -3y ,化为y 专富诗,由图可知,当直线宾耳过A 时, 」 J "J 直线在y 轴上的截距最大,t 有最小值为-2. •••目标函数 玄二彳; 的最小值为2~^-^. 故答案为:丄.15. (5分)在等比数列{a n }中,a 2?a 3=2a i ,且a 4与2a 7的等差中项为17,设b n =a 2n -1- a 2n , n € N*,则数列{b n }的前2n 项和为—亠〕/" _.丄ka【解答】解:等比数列{a n }中,a 2?a 3=2a i ,且a 4与2a 7的等差中项为17, 设首项为a 1,公比为q , 则:整理得:+血]<1 二 34解得: 则: 所以:b n =a 2n -1 — a 2n =屯一」116. (5分)如图,在直角梯形 ABCD 中,AB 丄BC, AD // BC,上-二一二-_,点 E 是线段CD 上异于点C , D 的动点,EF 丄AD 于点^将厶DEF 沿 EF 折起到△ PEF 的位置,并使PF 丄AF ,则五棱锥P -ABCEF 的体积的取值范围为【解答】 解:T PF 丄AF , PF 丄EF, AF G EF=F 二PF 丄平面ABCD 设 PF=x 贝U O v x v 1, 且 EF=DF=x•五棱锥P-ABCEF 的体积V 丄 丄(3-x 2) x 设 f (x ) (3x - x 3),贝U f ' (x) — (3 - 3x 2)6 6•••当 O v x v 1 时,f'(x )>0,则:T 2n = I' 1-4 故答案为: 討护). (0,丄) •五边形ABCEF 的面积为S=S 弟形ABCD - x( 1+2)x 1-—X 2丄(3-x 2). (3x — x 3), (1-x 2),••• f(x)在(0, 1)上单调递增,又f (0)=0, •五棱锥P-ABCEF的体积的范围是(0,丄).故答案为:三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (12分)已知△ ABC的内角A, B, C的对边a, b, c分别满足c=2b=2.2bcosA+acosC+ccosA=Q 又点 D 满足 【解答】 解:(1)由2bcosA+acosC+ccosA=0及正弦定理得-2sinBcosA=sinAcos&osAsinC 即—2si nBcosA=si n( A+C ) =s inB, 在厶 ABC 中,sinB >0,所以一”二二. 在厶 ABC 中,c=2b=2,由余弦定理得 a 2=b 2+c 2 - 2bccosA=k J +c 2+bc=7, 18. (12分)在四棱柱ABCD — A i B i C i D i 中,底面ABCD 是正方形,且匚-■-,/ A 1AB=Z A 1AD=6C °.(1) 求证:BD 丄CG ;(2) 若动点E 在棱C 1D 1上,试确定点E 的位置,使得直线DE 与平面BDB 所成 角的正弦值为….又A €(0, n),所以(1)求a 及角A 的大小; C所以一 I【解答】解:(1)连接A i B, A i D, AC,因为AB=AA=AD,/ A i AB=Z A i AD=60,所以△ A i AB和厶A i AD均为正三角形,于是A i B=A i D.设AC与BD的交点为0,连接A i O,则A i O丄BD,又四边形ABCD是正方形,所以AC丄BD, 而A i O n AC=O,所以BD丄平面A i AC.又AA i?平面A i AC,所以BD丄AA i, 又CG // AA i,所以BD丄CG.(2)由,及BDW2AB=2,知A i B丄A i D,结合A i O丄BD, AO n AC=O 得A i O丄底面ABCD, 所以OA、OB、OA i两两垂直.如图,以点O为坐标原点,| &的方向为x轴的正方向,建立空间直角坐标系 -xyz 则A (i, 0, 0), B (0 , i , 0), D (0 , - i , 0), A i (0 , 0 , i) , C(- i , 0 , DB=(O, 2, 0),瓦二瓯二(一1・ 0, 1), D]C[二磋(T, 1;",由i 丨,得Di (- i, - i , i).设:,I- ■:.:'(疋[0 , i]),则(X E+i , y E+i , Z E- i)=入(-i , i , 0),即 E (-入—i,入—i , i), 所以;「―■•亠.设平面B i BD的一个法向量为|• • •'!,O 0),B,从而A i O丄AO,设直线DE 与平面BDB 所成角为9, 则血*k^<运,(—'—D+oy m 丨申, V2XV X 2+(-1-\)£+1 14 解得二二或•,二丄(舍去),2 3所以当E 为D i C i 的中点时,直线DE 与平面BDBi 所成角的正弦值为「.19. ( 12分)过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节 前夕,A 市某质检部门随机抽取了 100包某种品牌的速冻水饺,检测其某项质量 指标,(1) 求所抽取的100包速冻水饺该项质量指标值的样本平均数■:(同一组中的 数据用该组区间的中点值作代表);(2) ①由直方图可以认为,速冻水饺的该项质量指标值 Z 服从正态分布N(卩, ;),利用该正态分布,求Z 落在(14.55, 38.45)内的概率;②将频率视为概率,若某人从某超市购买了 4包这种品牌的速冻水饺,记这 4 包速冻水饺中这种质量指标值位于(10, 30)内的包数为X ,求X 的分布列和数 学期望. 附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为②若(卩,^ ),贝U P (卩―eV Z w p+ o ) =0.6826, P (卩―2 eV Z w (J +2 o ) =0.9544.得n=(l, 0, 1),n ・ E6=0 {十…… n • &B-i =0 L得 产。

高考数学理科模拟试题(附答案)

高考数学理科模拟试题(附答案)

高三年级第一次模拟考试数 学 试 题(理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。

第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案涂在答题卡上.........。

1.复数23()1i i +-= ( )A .-3-4iB .-3+4iC .3-4iD .3+4i2.已知条件:|1|2,:,p x q x a +>>⌝⌝条件且p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .1a ≥ B .1a ≤ C .1a ≥- D .3a ≤-3.函数()|2|ln f x x x =--在定义域内零点可能落在下列哪个区间内( )A .(0,1)B .(2,3)C .(3,4)D .(4,5) 4.如右图,是一程序框图,则输出结果为( )A .49B .511 C .712 D .613 5.已知n S 为等差数列{}n a 的前n 项和,若641241,4,S S S S S ==则 的值为( )A .94B .32C .54D .46.要得到函数()sin(2)3f x x π=+的导函数'()f x 的图象,只需将()f x 的图象( )A .向左平移2π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)B .向左平移2π个单位,再把各点的纵坐标缩短到原来的12倍(横坐标不变)C .向右平移4π个单位,再把各点的纵坐标伸长到原来的12倍(横坐标不变)D .向右平移4π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) 7.过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 引它的渐近线的垂线,垂足为M ,延长FM 交y 轴于E ,若|FM|=2|ME|,则该双曲线的离心率为( )A .3B .2C .3D .28.如图所示的每个开关都有闭合与不闭合两种可能,因此5个开关共有25种可能,在这25种可能中电路从P 到Q 接通的情况有( )A .30种B .10种C .24种D .16种第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6小题,每小题5分,共30分,将答案填写在答题纸上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D 数列D1 数列的概念与简单表示法21.D1、D3、E1、M3[2012·重庆卷] 设数列{a n }的前n 项和S n 满足S n +1=a 2S n +a 1,其中a 2≠0.(1)求证:{a n }是首项为1的等比数列;(2)若a 2>-1,求证:S n ≤n2(a 1+a n ),并给出等号成立的充要条件.21.解:(1)证法一:由S 2=a 2S 1+a 1得a 1+a 2=a 2a 1+a 1,即a 2=a 2a 1.因a 2≠0,故a 1=1,得a 2a 1=a 2.又由题设条件知S n +2=a 2S n +1+a 1,S n +1=a 2S n +a 1, 两式相减得S n +2-S n +1=a 2(S n +1-S n ), 即a n +2=a 2a n +1,由a 2≠0,知a n +1≠0,因此a n +2a n +1=a 2.综上,a n +1a n=a 2对所有n ∈N *成立,从而{a n }是首项为1,公比为a 2的等比数列.证法二:用数学归纳法证明a n =a n -12,n ∈N *.当n =1时,由S 2=a 2S 1+a 1,得a 1+a 2=a 2a 1+a 1,即a 2=a 2a 1,再由a 2≠0,得a 1=1, 所以结论成立.假设n =k 时,结论成立,即a k =a k -12,那么当n =k +1时,a k +1=S k +1-S k =(a 2S k +a 1)-(a 2S k -1+a 1)=a 2(S k -S k -1)=a 2a k =a k 2, 这就是说,当n =k +1时,结论也成立.综上可得,对任意n ∈N *,a n =a n -12.因此{a n }是首项为1,公比为a 2的等比数列.(2)当n =1或2时,显然S n =n2(a 1+a n ),等号成立.设n ≥3,a 2>-1且a 2≠0,由(1)知a 1=1,a n =a n -12,所以要证的不等式化为1+a 2+a 22+…+a n -12≤n 2(1+a n -12)(n ≥3),即证:1+a 2+a 22+…+a n2≤n +12(1+a n 2)(n ≥2).当a 2=1时,上面不等式的等号成立.当-1<a 2<1时,a r 2-1与a n -r2-1(r =1,2,…,n -1)同为负;当a 2>1时,a r 2-1与a n -r2-1(r =1,2,…,n -1)同为正.因此当a 2>-1且a 2≠1时,总有(a r 2-1)(a n -r2-1)>0,即a r 2+a n -r 2<1+a n2(r =1,2,…,n -1). 上面不等式对r 从1到n -1求和得2(a 2+a 22+…+a n -12)<(n -1)(1+a n2),由此可得1+a 2+a 22+…+a n 2<n +12(1+a n2).综上,当a 2>-1且a 2≠0时,有S n ≤n2(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.证法二:当n =1或2时,显然S n ≤n 2(a 1+a n ),等号成立.当a 2=1时,S n =n =n2(a 1+a n ),等号也成立.当a 2≠1时,由(1)知S n =1-a n21-a 2,a n =a n -12,下证:1-a n21-a 2<n 2(1+a n -12)(n ≥3,a 2>-1且a 2≠1).当-1<a 2<1时,上面不等式化为(n -2)a n 2+na 2-na n -12<n -2(n ≥3).令f (a 2)=(n -2)a n 2+na 2-na n -12.当-1<a 2<0时,1-a n -22>0,故f (a 2)=(n -2)a n 2+na 2(1-a n -22)<(n -2)|a 2|n<n -2, 即所要证的不等式成立.当0<a 2<1时,对a 2求导得f ′(a 2)=n [(n -2)a n -12-(n -1)a n -22+1]=ng (a 2).其中g (a 2)=(n -2)a n -12-(n -1)a n -22+1,则g ′(a 2)=(n -2)(n -1)(a 2-1)a n -32<0,即g (a 2)是(0,1)上的减函数,故g (a 2)>g (1)=0,从而f ′(a 2)=ng (a 2)>0,进而f (a 2)是(0,1)上的增函数,因此f (a 2)<f (1)=n -2,所要证的不等式成立.当a 2>1时,令b =1a 2,则0<b <1,由已知的结论知1-⎝⎛⎭⎫1a 2n1-1a 2<n 2⎣⎡⎦⎤1+⎝⎛⎭⎫1a 2n -1, 两边同时乘以a n -12得所要证的不等式.综上,当a 2>-1且a 2≠0时,有S n ≤n2(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.23.M2、D1[2012·上海卷] 对于数集X ={-1,x 1,x 2,…,x n },其中0<x 1<x 2<…<x n ,n ≥2,定义向量集Y ={a |a =(s ,t ),s ∈X ,t ∈X },若对任意a 1∈Y ,存在a 2∈Y ,使得a 1·a 2=0,则称X 具有性质P ,例如{-1,1,2}具有性质P .(1)若x >2,且{-1,1,2,x }具有性质P ,求x 的值;(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(3)若X 具有性质P ,且x 1=1、x 2=q (q 为常数),求有穷数列x 1,x 2,…,x n 的通项公式.23.解:(1)选取a 1=(x,2),Y 中与a 1垂直的元素必有形式(-1,b ), 所以x =2b ,从而x =4.(2)证明:取a 1=(x 1,x 1)∈Y ,设a 2=(s ,t )∈Y ,满足a 1·a 2=0. 由(s +t )x 1=0得s +t =0,所以s ,t 异号.因为-1是X 中唯一的负数,所以s ,t 之中一个为-1,另一个为1,故1∈X . 假设x k =1,其中1<k <n ,则0<x 1<1<x n .选取a 1=(x 1,x n )∈Y ,并设a 2=(s ,t )∈Y 满足a 1·a 2=0,即sx 1+tx n =0, 则s ,t 异号,从而s ,t 之中恰有一个为-1. 若s =-1,则x 1=tx n >t >x 1,矛盾; 若t =-1,则x n =sx 1<s ≤x n ,矛盾. 所以x 1=1.(3)设a 1=(s 1,t 1),a 2=(s 2,t 2),则a 1·a 2=0等价于s 1t 1=-t 2s 2,记B =⎩⎨⎧st|}s ∈X ,t ∈X ,|s |>|t |,则数集X 具有性质P 当且仅当数集B 关于原点对称.注意到-1是X 中的唯一负数,B ∩(-∞,0)={-x 2,-x 3,…,-x n }共有n -1个数,所以B ∩(0,+∞)也只有n -1个数.由于x n x n -1<x n x n -2<…<x n x 2<xn x 1,已有n -1个数,对以下三角数阵x n x n -1<x n x n -2<…<x n x 2<x n x 1, x n -1x n -2<x n -1x n -3<…<x n -1x 1,… x 2x 1. 注意到x n x 1>x n -1x 1>…>x 2x 1,所以x n x n -1=x n -1x n -2=…=x 2x 1,从而数列的通项为x k =x 1⎝⎛⎭⎫x 2x 1k -1=qk-1,k =1,2,…,n .7.D2、E1[2012·浙江卷] 设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是( ) A .若d <0,则数列{S n }有最大项B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列7.C [解析] 本题考查等差数列的通项、前n 项和,数列的函数性质以及不等式知识,考查灵活运用知识的能力,有一定的难度.法一:特值验证排除.选项C 显然是错的,举出反例:-1,0,1,2,3,…满足数列{S n }是递增数列,但是S n >0不恒成立.法二:由于S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n ,根据二次函数的图象与性质知当d <0时,数列{S n }有最大项,即选项A 正确;同理选项B 也是正确的;而若数列{S n }是递增数列,那么d >0,但对任意的n ∈N *,S n >0不成立,即选项C 错误;反之,选项D 是正确的;故应选C.[点评] 等差数列的求和公式与二次函数的图象的关系是解决本题的重要依据.图1-2D2 等差数列及等差数列前n 项和6.D2[2012·辽宁卷] 在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A .58 B .88 C .143 D .1766.B [解析] 本小题主要考查等差数列的性质和求和公式.解题的突破口为等差数列性质的正确应用.由等差数列性质可知,a 4+a 8=a 1+a 11=16,S 11=11×(a 1+a 11)2=88.5.D2[2012·全国卷] 已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101C.99100D.1011005.A [解析] 本小题主要考查等差数列的前n 项和公式与裂项相消求和法,解题的突破口为等差数列前奇数项和与中间项的关系及裂项相消求和法.由S 5=5a 3得a 3=3,又a 5=5,所以a n =n .∴1a n a n +1=1n (n +1)=1n -1n +1,∴1a 1a 2+1a 2a 3+…+1a 100a 101=11-12+12-13+…+1100-1101=1-1101=100101,故选A. 10.D2[2012·北京卷] 已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则a 2=________.10.1 [解析] 本题考查等差数列基本公式和基础运算,设等差数列{a n }的公差为d ,由S 2=a 3可得,a 1=a 3-a 2=d =12,所以a 2=2d =2×12=1.2.D2[2012·福建卷] 等差数列 {a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3 D .42.B [解析] 根据已知条件得:⎩⎪⎨⎪⎧ a 1+a 1+4d =10,a 1+3d =7, 即⎩⎪⎨⎪⎧2a 1+4d =10,a 1+3d =7, 解得2d =4,所以d =2.所以选择B.11.D2[2012·广东卷] 已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.11.2n -1 [解析] 设等差数列的公差为d ,由于数列是递增数列,所以d >0,a 3=a 1+2d =1+2d ,a 2=a 1+d =1+d ,代入已知条件:a 3=a 22-4得:1+2d =(1+d )2-4,解得d 2=4,所以d =2(d =-2舍去),所以a n =1+(n -1)×2=2n -1.12.B3、D2[2012·四川卷] 设函数f (x )=2x -cos x ,{a n }是公差为π8的等差数列,f (a 1)+f (a 2)+…+f (a 5)=5π,则[f (a 3)]2-a 1a 5=( )A .0 B.116π2C.18π2D.1316π2 12.D [解析] 设a 3=α,则a 1=α-π4,a 2=α-π8,a 4=α+π8,a 5=α+π4,由f (a 1)+f (a 2)+…+f (a 5)=5π,得2×5α-cos ⎝⎛⎭⎫α-π4+cos ⎝⎛⎭⎫α-π8+cos α+cos ⎝⎛⎭⎫α+π8+cos ⎝⎛⎭⎫α+π4=5π, 即10α-(2+2+2+1)cos α=5π.当0≤α≤π时,左边是α的增函数,且α=π2满足等式;当α>π时,10α>10π,而(2+2+2+1)cos α<5cos α≤5,等式不可能成立; 当α<0时,10α<0,而-(2+2+2+1)cos α<5,等式也不可能成立.故a 3=α=π2.[f (a 3)]2-a 1a 5=π2-⎝⎛⎭⎫α-π4⎝⎛⎭⎫α+π4=1316π2.19.D2、D5[2012·广东卷] 设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <32.19.解:(1)∵a 1,a 2+5,a 3成等差数列, ∴2(a 2+5)=a 1+a 3.又∵2a 1=2S 1=a 2-22+1,2(a 1+a 2)=2S 2=a 3-23+1, ∴a 2=2a 1+3,a 3=6a 1+13. 因此4a 1+16=7a 1+13,从而 a 1=1.(2)由题设条件知,n ≥2时,2S n -1=a n -2n+1,2S n =a n +1-2n +1+1.∴2a n =a n +1-a n -2n,于是 a n +1=3a n +2n (n ≥2).而由(1)知,a 2=2a 1+3=5=3a 1+2,因此对一切正整数n ,有a n +1=3a n +2n,所以a n +1+2n +1=3(a n +2n). 又∵a 1+21=3,∴{a n +2n }是以3为首项,3为公比的等比数列. 故a n +2n =3n ,即a n =3n -2n . (3)∵a n =3n -2n =3·3n -1-2n =3n -1+2(3n -1-2n -1)≥3n -1, ∴1a n ≤13n -1. ∴1a 1+1a 2+…+1a n ≤1+13+132+…+13n -1=1-13n1-13<32.18.D2、D3、D5[2012·湖北卷] 已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.18.解:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,解得⎩⎪⎨⎪⎧ a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7. 故a n =-3n +5,或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+(n -2)[2+(3n -7)]2=32n 2-112n +10.当n =2时,满足此式.综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.19.D2、D3、M2[2012·湖南卷] 已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,n =1,2,….(1)若a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )组成等差数列,求数列{a n }的通项公式;(2)证明:数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.19.解:(1)对任意n ∈N *,三个数A (n ),B (n ),C (n )是等差数列,所以B (n )-A (n )=C (n )-B (n ),即a n +1-a 1=a n +2-a 2,亦即a n +2-a n +1=a 2-a 1=4.故数列{a n }是首项为1,公差为4的等差数列. 于是a n =1+(n -1)×4=4n -3.(2)①必要性:若数列{a n }是公比为q 的等比数列,则对任意n ∈N *,有a n +1=a n q .由a n>0知,A (n ),B (n ),C (n )均大于0,于是B (n )A (n )=a 2+a 3+…+a n +1a 1+a 2+…+a n =q (a 1+a 2+…+a n )a 1+a 2+…+a n=q , C (n )B (n )=a 3+a 4+…+a n +2a 2+a 3+…+a n +1=q (a 2+a 3+…+a n +1)a 2+a 3+…+a n +1=q , 即B (n )A (n )=C (n )B (n )=q .所以三个数A (n ),B (n ),C (n )组成公比为q 的等比数列. ②充分性:若对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列,则 B (n )=qA (n ),C (n )=qB (n ).于是C (n )-B (n )=q [B (n )-A (n )],得a n +2-a 2=q (a n +1-a 1),即a n +2-qa n +1=a 2-qa 1. 由n =1有B (1)=qA (1),即a 2=qa 1, 从而a n +2-qa n +1=0.因为a n >0,所以a n +2a n +1=a 2a 1=q .故数列{a n }是首项为a 1,公比为q 的等比数列.综上所述,数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.12.D2[2012·江西卷] 设数列{a n },{b n }都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.12.35 [解析] 考查等差数列的定义、性质;解题的突破口是利用等差数列的性质,将问题转化为研究数列的项与项数之间的关系求解.方法一:设c n =a n +b n ,∵{a n },{b n }是等差数列,∴{c n }是等差数列,设其公差为d ,则c 1=7,c 3=c 1+2d =21,解得d =7,因此,c 5=a 5+b 5=7+(5-1)×7=35.故填35.方法二:设c n =a n +b n ,∵{a n },{b n }是等差数列,∴{c n }是等差数列,∴2(a 3+b 3)=(a 1+b 1)+(a 5+b 5),即42=7+(a 5+b 5),因此a 5+b 5=42-7=35.故填35.17.D2、D5[2012·陕西卷] 设{a n }是公比不为1的等比数列,其前n 项和为S n ,且a 5,a 3,a 4成等差数列.(1)求数列{a n }的公比;(2)证明:对任意k ∈N +,S k +2,S k ,S k +1成等差数列.17.解:(1)设数列{a n }的公比为q (q ≠0,q ≠1),由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4,即2a 1q 2= a 1q 4+a 1q 3,由a 1≠0,q ≠0得q 2+q -2=0,解得q 1=-2,q 2=1(舍去),所以q =-2.(2)证法一:对任意k ∈N +,S k +2+S k +1-2S k = (S k +2-S k )+(S k +1-S k ) =a k +1+a k +2+a k +1 =2a k +1+a k +1·(-2) =0,所以,对任意k ∈N +,S k +2,S k ,S k +1成等差数列.证法二: 对任意k ∈N +,2S k =2a 1(1-q k)1-q,S k +2+S k +1=a 1(1-q k +2)1-q +a 1(1-q k +1)1-q =a 1(2- q k +2-q k +1)1-q,2S k -(S k +2+S k +1)=2a 1(1-q k )1-q -a 1(2-q k +2-q k +1)1-q=a 11-q [2(1-q k )-(2-q k +2-q k +1)] =a 1q k 1-q(q 2+q -2)=0, 因此,对任意k ∈N +,S k +2,S k ,S k +1成等差数列.1.D2[2012·重庆卷] 在等差数列{a n }中,a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20 D .251.B [解析] 因为{a n }是等差数列,所以a 2+a 4=a 1+a 5=1+5=6,所以S 5=5(a 1+a 5)2=5×62=15,选B.D3 等比数列及等比数列前n 项和13.D3[2012·浙江卷] 设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.13.32[解析] 本题主要考查等比数列的求和以及二元方程组的求解.当q =1时,由S 2=3a 2+2得a 2=-2,由S 4=3a 4+2得a 4=2,两者矛盾,舍去,则q ≠1,联立方程⎩⎪⎨⎪⎧a 1+a 1q =3a 1q +2,a 1(1-q 4)1-q=3a 1q 3+2,可解得⎩⎪⎨⎪⎧a 1=-1,q =32,故应填32.[点评] 注意分类,必须对q =1加以讨论,否则直接利用等比数列的求和公式容易导致遗漏.14.D3[2012·辽宁卷] 已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式为a n =________.14.2n [解析] 本小题主要考查等比数列的概念与性质.解题的突破口为灵活应用等比数列通项变形式,是解决问题关键.由已知条件{}a n 为等比数列,可知,2(a n +a n +2)=5a n +1⇒2(a n +a n ·q 2)=5a n q ⇒2q 2-5q+2=0⇒q =12或2,又因为{}a n 是递增数列, 所以q =2.由a 25=a 10得a 5=q 5=32,所以a 1=2,a n =a 1q n -1=2n.7.D3[2012·湖北卷] 定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x;③f (x )=|x |;④f (x )=ln|x |. 则其中是“保等比数列函数”的f (x )的序号为( ) A .①② B .③④ C .①③ D .②④7.C [解析] 设数列{a n }的公比为q .对于①,f (a n +1)f (a n )=a 2n +1a 2n =q 2,故数列{f (a n )}是公比为q 2的等比数列;对于②,f (a n +1)f (a n )=2a n +12a n=2a n +1-a n (不为常数),故数列{f (a n )}不是等比数列;对于③,f (a n +1)f (a n )=|a n +1||a n |=⎪⎪⎪⎪a n +1a n =|q |,故数列{f (a n )}是等比数列;对于④,f (a n +1)f (a n )=ln|a n +1|ln|a n |(不为常数),故数列{f (a n )}不是等比数列.由“保等比数列函数”的定义知应选C.4.D3[2012·安徽卷] 公比为32的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 16=( )A .4B .5C .6D .74.B [解析] 本题考查等比数列,等比中项的性质,对数运算等.(解法一)由等比中项的性质得a 3a 11=a 27=16,又数列{}a n 各项为正,所以a 7=4.所以a 16=a 7×q 9=32.所以log 2a 16=5.(解法二)设等比数列的公比为q ,由题意,a n >0,则a 3 · a 11 = a 27 = ⎝⎛⎭⎫a 16 q 92 = 126a 216= 24,所以a 216 = 210,解得a 16=25.故log 2a 16=5.6.D3 [2012·上海卷] 有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则lim n →∞ (V 1+V 2+…+V n )=________.6.87[解析] 考查等比数列和无穷递缩等比数列的极限,此题只要掌握极限公式即可解决,是简单题型.由已知可知V 1,V 2,V 3,…构成新的等比数列,首项V 1=1,公比q =18,由极限公式得lim n →∞ (V 1+V 2+…+V n )=V 11-q =11-18=87. 21.D1、D3、E1、M3[2012·重庆卷] 设数列{a n }的前n 项和S n 满足S n +1=a 2S n +a 1,其中a 2≠0.(1)求证:{a n }是首项为1的等比数列;(2)若a 2>-1,求证:S n ≤n2(a 1+a n ),并给出等号成立的充要条件.21.解:(1)证法一:由S 2=a 2S 1+a 1得a 1+a 2=a 2a 1+a 1,即a 2=a 2a 1.因a 2≠0,故a 1=1,得a 2a 1=a 2.又由题设条件知S n +2=a 2S n +1+a 1,S n +1=a 2S n +a 1, 两式相减得S n +2-S n +1=a 2(S n +1-S n ), 即a n +2=a 2a n +1,由a 2≠0,知a n +1≠0,因此a n +2a n +1=a 2.综上,a n +1a n=a 2对所有n ∈N *成立,从而{a n }是首项为1,公比为a 2的等比数列.证法二:用数学归纳法证明a n =a n -12,n ∈N *.当n =1时,由S 2=a 2S 1+a 1,得a 1+a 2=a 2a 1+a 1,即a 2=a 2a 1,再由a 2≠0,得a 1=1, 所以结论成立.假设n =k 时,结论成立,即a k =a k -12,那么当n =k +1时,a k +1=S k +1-S k =(a 2S k +a 1)-(a 2S k -1+a 1)=a 2(S k -S k -1)=a 2a k =a k 2, 这就是说,当n =k +1时,结论也成立.综上可得,对任意n ∈N *,a n =a n -12.因此{a n }是首项为1,公比为a 2的等比数列.(2)当n =1或2时,显然S n =n2(a 1+a n ),等号成立.设n ≥3,a 2>-1且a 2≠0,由(1)知a 1=1,a n =a n -12,所以要证的不等式化为1+a 2+a 22+…+a n -12≤n 2(1+a n -12)(n ≥3),即证:1+a 2+a 22+…+a n2≤n +12(1+a n 2)(n ≥2).当a 2=1时,上面不等式的等号成立.当-1<a 2<1时,a r 2-1与a n -r2-1(r =1,2,…,n -1)同为负;当a 2>1时,a r 2-1与a n -r2-1(r =1,2,…,n -1)同为正.因此当a 2>-1且a 2≠1时,总有(a r 2-1)(a n -r2-1)>0,即a r 2+a n -r 2<1+a n2(r =1,2,…,n -1). 上面不等式对r 从1到n -1求和得2(a 2+a 22+…+a n -12)<(n -1)(1+a n2),由此可得1+a 2+a 22+…+a n 2<n +12(1+a n2).综上,当a 2>-1且a 2≠0时,有S n ≤n2(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.证法二:当n =1或2时,显然S n ≤n 2(a 1+a n ),等号成立.当a 2=1时,S n =n =n2(a 1+a n ),等号也成立.当a 2≠1时,由(1)知S n =1-a n 21-a 2,a n =a n -12,下证:1-a n 21-a 2<n 2(1+a n -12)(n ≥3,a 2>-1且a 2≠1). 当-1<a 2<1时,上面不等式化为(n -2)a n 2+na 2-na n -12<n -2(n ≥3).令f (a 2)=(n -2)a n 2+na 2-na n -12.当-1<a 2<0时,1-a n -22>0,故f (a 2)=(n -2)a n 2+na 2(1-a n -22)<(n -2)|a 2|n<n -2, 即所要证的不等式成立.当0<a 2<1时,对a 2求导得f ′(a 2)=n [(n -2)a n -12-(n -1)a n -22+1]=ng (a 2).其中g (a 2)=(n -2)a n -12-(n -1)a n -22+1,则g ′(a 2)=(n -2)(n -1)(a 2-1)a n -32<0,即g (a 2)是(0,1)上的减函数,故g (a 2)>g (1)=0,从而f ′(a 2)=ng (a 2)>0,进而f (a 2)是(0,1)上的增函数,因此f (a 2)<f (1)=n -2,所要证的不等式成立.当a 2>1时,令b =1a 2,则0<b <1,由已知的结论知1-⎝⎛⎭⎫1a 2n1-1a 2<n 2⎣⎡⎦⎤1+⎝⎛⎭⎫1a 2n -1, 两边同时乘以a n -12得所要证的不等式.综上,当a 2>-1且a 2≠0时,有S n ≤n2(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.22.D3、M3 [2012·全国卷] 函数f (x )=x 2-2x -3.定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5)、Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x n +1<3; (2)求数列{x n }的通项公式.22.解:(1)用数学归纳法证明:2≤x n <x n +1<3. ①当n =1时,x 1=2,直线PQ 1的方程为y -5=f (2)-52-4(x -4),令y =0,解得x 2=114,所以2≤x 1<x 2<3.②假设当n =k 时,结论成立,即2≤x k <x k +1<3.直线PQ k +1的方程为y -5=f (x k +1)-5x k +1-4(x -4),令y =0,解得x k +2=3+4x k +12+x k +1.由归纳假设知x k +2=3+4x k +12+x k +1=4-52+x k +1<4-52+3=3,x k +2-x k +1=(3-x k +1)(1+x k +1)2+x k +1>0,即x k +1<x k +2.所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立. 由①、②知对任意的正整数n,2≤x n <x n +1<3.(2)由(1)及题意得x n +1=3+4x n2+x n.设b n =x n -3,则1b n +1=5b n +1, 1b n +1+14=5⎝⎛⎭⎫1b n +14, 数列⎩⎨⎧⎭⎬⎫1b n +14是首项为-34,公比为5的等比数列,因此1b n +14=-34·5n -1,即b n =-43·5n -1+1,所以数列{x n }的通项公式为x n =3-43·5n -1+1.18.D2、D3、D5[2012·湖北卷] 已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.18.解:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,解得⎩⎪⎨⎪⎧ a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7. 故a n =-3n +5,或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+(n -2)[2+(3n -7)]2=32n 2-112n +10.当n =2时,满足此式.综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.19.D2、D3、M2[2012·湖南卷] 已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,n =1,2,….(1)若a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )组成等差数列,求数列{a n }的通项公式;(2)证明:数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.19.解:(1)对任意n ∈N *,三个数A (n ),B (n ),C (n )是等差数列,所以B (n )-A (n )=C (n )-B (n ),即a n +1-a 1=a n +2-a 2,亦即a n +2-a n +1=a 2-a 1=4.故数列{a n }是首项为1,公差为4的等差数列. 于是a n =1+(n -1)×4=4n -3.(2)①必要性:若数列{a n }是公比为q 的等比数列,则对任意n ∈N *,有a n +1=a n q .由a n>0知,A (n ),B (n ),C (n )均大于0,于是B (n )A (n )=a 2+a 3+…+a n +1a 1+a 2+…+a n =q (a 1+a 2+…+a n )a 1+a 2+…+a n=q , C (n )B (n )=a 3+a 4+…+a n +2a 2+a 3+…+a n +1=q (a 2+a 3+…+a n +1)a 2+a 3+…+a n +1=q , 即B (n )A (n )=C (n )B (n )=q .所以三个数A (n ),B (n ),C (n )组成公比为q 的等比数列. ②充分性:若对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列,则 B (n )=qA (n ),C (n )=qB (n ).于是C (n )-B (n )=q [B (n )-A (n )],得a n +2-a 2=q (a n +1-a 1),即a n +2-qa n +1=a 2-qa 1. 由n =1有B (1)=qA (1),即a 2=qa 1, 从而a n +2-qa n +1=0.因为a n >0,所以a n +2a n +1=a 2a 1=q .故数列{a n }是首项为a 1,公比为q 的等比数列.综上所述,数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.5.D3[2012·课标全国卷] 已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-75.D [解析] 设数列{a n }的公比为q .由题意,⎩⎪⎨⎪⎧a 1q 3+a 1q 6=2,a 1q 4×a 1q 5=a 1q 3×a 1q 6=-8, 得⎩⎪⎨⎪⎧ a 1q 3=-2,a 1q 6=4或⎩⎪⎨⎪⎧ a 1q 3=4,a 1q 6=-2,解得⎩⎪⎨⎪⎧a 1=1,q 3=-2或⎩⎪⎨⎪⎧a 1=-8,q 3=-12.当⎩⎪⎨⎪⎧a 1=1,q 3=-2 时,a 1+a 10=a 1(1+q 9)=1+(-2)3=-7;当⎩⎪⎨⎪⎧a 1=-8,q =-12时,a 1+a 10=a 1(1+q 9)=(-8)×⎝⎛⎭⎫1+⎝⎛⎭⎫-123=-7.综上,a 1+a 10=-7.故选D.图1-1 D4 数列求和18.D4[2012·上海卷] 设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100 18.D [解析] 考查数列求和和转化思想,关键是发现数列为振幅越来越小的摆动数列.令b n =sin n π25,周期为50,前n 项和记作:T n =b 1+b 2+…+b n ,根据三角函数图象的对称性,可知T 1,T 2,…,T 49均大于0,只有两个T 50=0,T 100=0,数列a n =1n sin n π25为振幅越来越小的摆动数列,||a n ≤||b n ,只有当n =1,50,100时相等,故S 1,S 2,…,S 100中正数个数为100.14.D4[2012·福建卷] 数列{a n }的通项公式a n =n cos n π2+1,前n 项和为S n ,则S 2 012=________.14.3 018 [解析] a 1=1cos π2+1=1,a 2=2cos π+1=-1,a 3=3cos 3π2+1=1,a 4=4cos2π+1=5,a 5=5cos 5π2+1=1,a 6=6cos3π+1=-5,a 7=7cos 7π2+1=1,a 8=8cos 8π2+1=9;该数列每四项的和为6,2 012 ÷4=503,所以S 2 012=6×503=3 018.16.D4、D5[2012·课标全国卷] 数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为________.16.[答案] 1 830[解析] 令b n =a 4n -3+a 4n -2+a 4n -1+a 4n , 则b n +1=a 4n +1+a 4n +2+a 4n +3+a 4n +4. 因为a n +1+(-1)n a n =2n -1, 所以a n +1=-(-1)n a n +2n -1.所以a 4n -3=-a 4n -4+2(4n -4)-1, a 4n -2=a 4n -3+2(4n -3)-1, a 4n -1=-a 4n -2+2(4n -2)-1, a 4n =a 4n -1+2(4n -1)-1, a 4n +1=-a 4n +2×4n -1, a 4n +2=a 4n +1+2(4n +1)-1, a 4n +3=-a 4n +2+2(4n +2)-1, a 4n +4=a 4n +3+2(4n +3)-1,所以a 4n +4=a 4n +3+2(4n +3)-1=-a 4n +2+2(4n +2)-1+2(4n +3)-1 =-a 4n +1-2(4n +1)+1+2(4n +2)-1+2(4n +3)-1=a 4n -2×4n +1-2(4n +1)+1+2(4n +2)-1+2(4n +3)-1 =a 4n +8,即a 4n +4=a 4n +8.同理,a 4n +3=a 4n -1,a 4n +2=a 4n -2+8,a 4n +1=a 4n -3.所以a 4n +1+a 4n +2+a 4n +3+a 4n +4=a 4n +a 4n -1+a 4n -2+a 4n -3+16. 即b n +1=b n +16.故数列{b n }是等差数列. 又a 2-a 1=2×1-1,① a 3+a 2=2×2-1,② a 4-a 3=2×3-1,③②-①得a 3+a 1=2;②+③得a 2+a 4=8, 所以a 1+a 2+a 3+a 4=10, 即b 1=10.所以数列{a n }的前60项和即为数列{b n }的前15项和,即S 15=10×15+15×142×16=1830.20.B3、D4、M4[2012·北京卷] 设A 是由m ×n 个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记S (m ,n )为所有这样的数表构成的集合.对于A ∈S (m ,n ),记r i (A )为A 的第i 行各数之和(1≤i ≤m ),c j (A )为A 的第j 列各数之和(1≤j ≤n );记k (A )为|r 1(A )|,|r 2(A )|,…,|r m (A )|,|c 1(A )|,|c 2(A )|,…,|c n (A )|中的最小值. (1)对如下数表A ,求k (A )的值;1 1 -0.8 0.1 -0.3 -1(2)设数表A ∈S (2,3)形如1 1 c ab-1求k (A )的最大值;(3)给定正整数t ,对于所有的A ∈S (2,2t +1),求k (A )的最大值.20.解:(1)因为r 1(A )=1.2,r 2(A )=-1.2,c 1(A )=1.1,c 2(A )=0.7,c 3(A )=-1.8, 所以k (A )=0.7.(2)不妨设a ≤b .由题意得c =-1-a -b . 又因c ≥-1,所以a +b ≤0,于是a ≤0. r 1(A )=2+c ≥1,r 2(A )=-r 1(A )≤-1,c 1(A )=1+a ,c 2(A )=1+b ,c 3(A )=-(1+a )-(1+b )≤-(1+a ). 所以k (A )=1+a ≤1.当a =b =0且c =-1时,k (A )取得最大值1.(3)对于给定的正整数t ,任给数表A ∈S (2,2t +1)如下:a 1 a 2 … a 2t +1b 1 b 2 … b 2t +1任意改变A 的行次序或列次序,或把A 中的每个数换成它的相反数,所得数表A *∈S (2,2t +1),并且k (A )=k (A *).因此,不妨设r 1(A )≥0,且c j (A )≥0(j =1,2,…,t +1).由k (A )的定义知,k (A )≤r 1(A ),k (A )≤c j (A )(j =1,2,…,t +1). 又因为c 1(A )+c 2(A )+…+c 2t +1(A )=0,所以(t +2)k (A )≤r 1(A )+c 1(A )+c 2(A )+…+c t +1(A )=r 1(A )-c t +2(A )-…-c 2t +1(A )=∑j =1t +1a j -∑j =t +22t +1b j≤(t +1)-t ×(-1)=2t +1.所以k (A )≤2t +1t +2.对数表A 0:第1列 第2列 … 第t +1列第t +2列… 第2t +1列1 1 (1)-1+t -1t (t +2)… -1+t -1t (t +2)t -1t +2t -1t +2…t -1t +2 -1…-1则A 0∈S (2,2t +1),且k (A 0)=2t +1t +2.综上,对于所有的A ∈S (2,2t +1),k (A )的最大值为2t +1t +2.D5 单元综合18.D5[2012·天津卷] 已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a n b 1+a n -1b 2+…+a 1b n ,n ∈N *,证明T n +12=-2a n +10b n (n ∈N *).18.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d .由条件,得方程组⎩⎪⎨⎪⎧ 2+3d +2q 3=27,8+6d -2q 3=10,解得⎩⎪⎨⎪⎧d =3.q =2, 所以a n =3n -1,b n =2n ,n ∈N *.(2)证明:(方法一) 由(1)得T n =2a n +22a n -1+23a n -2+…+2n a 1,①2T n =22a n +23a n -1+…+2n a 2+2n +1a 1,② 由②-①,得T n =-2(3n -1)+3×22+3×23+…+3×2n+2n +2=12(1-2n -1)1-2+2n +2-6n +2=10×2n-6n -10.而-2a n +10b n -12=-2(3n -1)+10×2n -12=10×2n -6n -10,故T n +12=-2a n +10b n ,n ∈N *.(方法二:数学归纳法)①当n =1时,T 1+12=a 1b 1+12=16,-2a 1+10b 1=16,故等式成立; ②假设当n =k 时等式成立,即T k +12=-2a k +10b k ,则当n =k +1时, 有T k +1=a k +1b 1+a k b 2+a k -1b 3+…+a 1b k +1 =a k +1b 1+q (a k b 1+a k -1b 2+…+a 1b k ) =a k +1b 1+qT k=a k +1b 1+q (-2a k +10b k -12) =2a k +1-4(a k +1-3)+10b k +1-24 =-2a k +1+10b k +1-12,即T k +1+12=-2a k +1+10b k +1, 因此n =k +1时,等式也成立.由①和②,可知对任意n ∈N *,T n +12=-2a n +10b n 成立. 20.D5[2012·山东卷] 在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(9m,92m )内的项的个数记为b m ,求数列{b m }的前m 项和S m .20.解:(1)因为{a n }是一个等差数列,a 3+a 4+a 5=84, 所以a 3+a 4+a 5=3a 4=84,即a 4=28. 设数列{a n }的公差为d ,则5d =a 9-a 4=73-28=45, 故d =9.由a 4=a 1+3d 得28=a 1+3×9,即a 1=1,所以a n =a 1+(n -1)d =1+9(n -1)=9n -8(n ∈N *).(2)对m ∈N *,若9m <a n <92m, 则9m +8<9n <92m +8,因此9m -1+1≤n ≤92m -1.故得b m =92m -1-9m -1. 于是S m =b 1+b 2+b 3+…+b m=(9+93+…+92m -1)-(1+9+…+9m -1)=9×(1-81m )1-81-(1-9m)1-9=92m +1-10×9m +180.20.D5[2012·四川卷] 已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n都成立.(1)求a 1,a 2的值;(2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg10a 1a n 的前n 项和为T n ,当n 为何值时,T n 最大?并求出T n 的最大值.20.解:(1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2, ② 由②-①,得a 2(a 2-a 1)=a 2. ③ (i)若a 2=0,由①知a 1=0.(ii)若a 2≠0,由③知a 2-a 1=1.④由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2.综上可得,a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. (2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), 所以a n =a 1(2)n -1=(2+1)·(2)n -1.令b n =lg 10a 1a n ,则b n =1-lg(2)n -1=1-12(n -1)lg2=12lg 1002n -1.所以数列{b n }是单调递减的等差数列公差为-12lg2,从而b 1>b 2>…>b 7=lg 108>lg1=0,当n ≥8时,b n ≤b 8=12lg 100128<12lg1=0,故n =7时,T n 取得最大值,且T n 的最大值为T 7=7(b 1+b 7)2=7(1+1-3lg2)2=7-212lg2.16.D5[2012·江西卷] 已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .16.解:(1)当n =k ∈N +时,S n =-12n 2+kn 取最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,因此k =4,从而a n =S n -S n -1=92-n (n ≥2),又a 1=S 1=72,所以a n =92-n .(2)因为b n =9-2a n 2n =n2n -1,T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n2n -1,所以T n =2T n -T n =2+1+12+…+12n -2-n 2n -1=4-12n -2-n2n -1=4-n +22n -1.20.D5[2012·江苏卷] 已知各项均为正数的两个数列{a n }和{b n }满足:a n +1=a n +b na 2n +b 2n,n∈N *.(1)设b n +1=1+b n a n,n ∈N *,求证:数列⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫b n a n 2是等差数列;(2)设b n +1=2·b n a n,n ∈N *,且{a n }是等比数列,求a 1和b 1的值.20.解:(1)由题设知a n +1=a n +b n a 2n +b 2n =1+b na n1+⎝⎛⎭⎫b n a n 2=b n +11+⎝⎛⎭⎫b n a n 2,所以b n +1a n +1=1+⎝⎛⎭⎫b n a n 2,从而⎝⎛⎭⎫b n +1a n +12-⎝⎛⎭⎫b n a n 2=1(n ∈N *), 所以数列⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫b n a n 2是以1为公差的等差数列.(2)因为a n >0,b n >0,所以(a n +b n )22≤a 2n +b 2n <(a n +b n )2,从而1<a n +1=a n +b na 2n +b 2n≤ 2. (*)设等比数列{a n }的公比为q ,由a n >0知q >0.下证q =1.若q >1,则a 1=a 2q <a 2≤2,故当n >log q 2a 1时,a n +1=a 1q n >2,与(*)矛盾;若0<q <1,则a 1=a 2q >a 2>1,故当n >log q 1a 1时,a n +1=a 1q n <1,与(*)矛盾.综上,q =1,故a n =a 1(n ∈N *),所以1<a 1≤ 2.又b n +1=2·b n a n =2a 1·b n (n ∈N *),所以{b n }是公比为2a 1的等比数列.若a 1≠2,则2a 1>1,于是b 1<b 2<b 3.又由a 1=a 1+b n a 21+b 2n得b n =a 1±a 212-a 21a 21-1, 所以b 1,b 2,b 3中至少有两项相同,矛盾.所以a 1=2,从而b n =a 1±a 212-a 21a 21-1= 2.所以a 1=b 1= 2.16.D5、E9[2012·四川卷] 记[x ]为不超过实数x 的最大整数,例如,[2]=2,[1.5]=1,[-0.3]=-1.设a 为正整数,数列{x n }满足x 1=a ,x n +1=⎣⎢⎡⎦⎥⎤x n +⎣⎡⎦⎤a x n 2(n ∈N *).现有下列命题: ①当a =5时,数列{x n }的前3项依次为5,3,2;②对数列{x n }都存在正整数k ,当n ≥k 时总有x n =x k ; ③当n ≥1时,x n >a -1;④对某个正整数k ,若x k +1≥x k ,则x k =[a ].其中的真命题有________.(写出所有真命题的编号)16.①③④ [解析] 对于①,x 1=a =5,x 2=⎣⎡⎦⎤5+12=3,x 3=⎣⎢⎡⎦⎥⎤3+⎣⎡⎦⎤532=⎣⎡⎦⎤3+12=2,①正确;对于②,取a =3,则x 1=3,x 2=⎣⎢⎡⎦⎥⎤3+⎣⎡⎦⎤332=⎣⎡⎦⎤3+12=2,x 3=⎣⎢⎡⎦⎥⎤2+⎣⎡⎦⎤322=⎣⎡⎦⎤2+12=1,x 4=⎣⎢⎡⎦⎥⎤1+⎣⎡⎦⎤312=⎣⎡⎦⎤1+32=2. 由此可知,n ≥2时,该数列所有奇数项等于1,所有偶数项等于2,故②错误; 对于③,由[x ]的定义知[x ]>x -1,而a 是正整数,故x n ≥0,且x n 是整数,又n =1时,x 1=a ≥a >a -1,命题为真,于是,x n +1=⎣⎢⎡⎦⎥⎤x n +⎣⎡⎦⎤a x n 2,由于x n 和⎣⎡⎦⎤a x n 都是整数, 故x n +1=⎣⎢⎡⎦⎥⎤x n +⎣⎡⎦⎤a x n 2≥x n +⎣⎡⎦⎤a x n 2-12>x n +a x n -12-12≥2x n ·a x n2-1=a -1,③正确;对于④,当x k +1≥x k 时,得⎣⎢⎡⎦⎥⎤x k +⎣⎡⎦⎤a x k 2≥x k ,从而x k +⎣⎡⎦⎤a x k 2-x k ≥0,即⎣⎡⎦⎤a x k -x k ≥0,∴a x k -x k ≥⎣⎡⎦⎤a x k -x k ≥0,即ax k-x k ≥0,解得x k ≤a , 结合③得:a -1<x k ≤a ,故x k =[]a . ④正确. 17.D2、D5[2012·陕西卷] 设{a n }是公比不为1的等比数列,其前n 项和为S n ,且a 5,a 3,a 4成等差数列.(1)求数列{a n }的公比;(2)证明:对任意k ∈N +,S k +2,S k ,S k +1成等差数列.17.解:(1)设数列{a n }的公比为q (q ≠0,q ≠1),由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4,即2a 1q 2= a 1q 4+a 1q 3,由a 1≠0,q ≠0得q 2+q -2=0,解得q 1=-2,q 2=1(舍去),所以q =-2. (2)证法一:对任意k ∈N +,S k +2+S k +1-2S k = (S k +2-S k )+(S k +1-S k ) =a k +1+a k +2+a k +1 =2a k +1+a k +1·(-2) =0,所以,对任意k ∈N +,S k +2,S k ,S k +1成等差数列.证法二: 对任意k ∈N +,2S k =2a 1(1-q k )1-q,S k +2+S k +1=a 1(1-q k +2)1-q +a 1(1-q k +1)1-q =a 1(2- q k +2-q k +1)1-q,2S k -(S k +2+S k +1)=2a 1(1-q k )1-q -a 1(2-q k +2-q k +1)1-q=a11-q [2(1-q k )-(2-q k +2-q k +1)] =a 1q k 1-q(q 2+q -2)=0, 因此,对任意k ∈N +,S k +2,S k ,S k +1成等差数列.16.D4、D5[2012·课标全国卷] 数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为________.16.[答案] 1 830[解析] 令b n =a 4n -3+a 4n -2+a 4n -1+a 4n , 则b n +1=a 4n +1+a 4n +2+a 4n +3+a 4n +4.因为a n +1+(-1)na n =2n -1, 所以a n +1=-(-1)n a n +2n -1.所以a 4n -3=-a 4n -4+2(4n -4)-1, a 4n -2=a 4n -3+2(4n -3)-1,。

相关文档
最新文档