安川变频器的常见故障

合集下载

安川变频器维修(616G7)典型故障总结

安川变频器维修(616G7)典型故障总结

安川变频器维修(616G7)典型故障总结安川变频器维修(616G7)典型故障总结如下:一、上电无显示故障安川变频器维修中上电无显示故障比较普遍,基本上可以确定故障点分为:整流模块、控制卡、电源卡(驱动卡)。

故障排除:1.上电无显示的变频器,首先要检查整流模块,如果整流模块损坏,主回路没有直流电压,开关电源就不会工作,变频器就没有显示。

2.电源卡上直流电压正常,开关电源不工作。

检查开关电源的负载没电压,该机器型号的开关电源结构比较普通,是UC3844芯片类型,加上过流保护功能。

只要修复该部分线路就修复电源板。

3.开关电源板上各路负载电压正常后,变频器如果没有显示的情况下,就是控制卡损坏。

只要更换控制卡,就可以修复。

二、显示CPF00故障客户送过来维修修的616G7变频器加电显示CPF00故障,故障描述分为两种:1.数字式操作器通信故障,即使接通电源5秒后,也不能和数字式操作器通信。

2.CPU的外部RAM不良。

故障排除:先更换操作面板,确定是不是操作面板的故障。

如果是操作面板损坏,就更换操作面板,然后变频器开机运行。

其次看操作面板和控制卡之间的连接是否可靠,如果可靠,那么就不是连接件损坏。

最后确认是控制卡损坏。

技术服务中心接收到此类故障变频器基本上是控制卡损坏,只要修复控制卡上的周边线路或者是更换控制卡,就可以排除故障。

三、显示OH故障故障描述:散热片过热,变频器散热片的温度超过了L8-02的设定值。

故障排除:首先检查将变频器电源送上,观察散热风机是否正常运行,如果风机不运行,那么就是风机损坏导致。

其次如果风机运行正常,那么就要检查电源卡(驱动卡)上的温度检查回路工作是否正常。

四、显示VCF故障故障描述:该故障在安川616G7说明书没有说明。

故障排除:该故障目前从我们公司的维修经验总结,是直流电压检测故障或者是驱动线路损坏。

直流电压采样后经过检测回路,如果出现故障会显示OU,UU,或者是VCF故障。

「安川变频器故障的查找分析排除」

「安川变频器故障的查找分析排除」

「安川变频器故障的查找分析排除」安川变频器是一种广泛应用于工业控制系统中的电子设备,用于调节和控制电动机的转速和转矩。

然而,由于各种原因,安川变频器可能会出现故障。

因此,本文将介绍安川变频器故障的查找、分析和排除方法。

一、故障查找1.观察指示灯:安川变频器上通常有多个指示灯,通过观察指示灯的状态,可以初步判断是否存在故障。

比如,如果指示灯闪烁或者显示异常,通常表示设备存在问题。

2.检查电源:首先检查安川变频器的电源供应是否正常,包括输入电压是否稳定、电源线是否连接紧固等。

如果电源供应不稳定可能会导致变频器无法正常工作。

3.检查连接线路:检查安川变频器的连接线路是否正确连接和电缆是否正常。

如果线路接触不良或电缆损坏,会导致变频器无法正常接收和发送信号,从而造成故障。

4.使用示波器检测信号:借助示波器可以检测安川变频器的输入和输出信号,从而查找故障。

比如,可以检测输入电压、输出电压、频率和脉冲等信号是否正常。

如果信号异常,那么很可能存在故障。

5.使用故障诊断软件:安川变频器通常配备有故障诊断软件,可以通过软件对设备进行故障诊断和排错。

软件可以读取设备的故障代码和相关参数,帮助确定故障原因。

二、故障分析1.故障代码解读:安川变频器发生故障时通常会显示相应的故障代码。

通过查阅设备的技术手册或者使用故障诊断软件,可以对故障代码进行解读,了解故障的性质和原因。

2.故障记录:在变频器故障发生时,及时记录故障发生的时间、故障代码、工作状态等信息。

这样可以为故障分析提供参考依据,并帮助判断故障是否具有规律性。

3.故障分布图:根据故障记录和相关参数,可以绘制故障分布图。

通过观察故障分布图,可以发现故障发生的规律和趋势,从而判断故障的原因。

三、故障排除1.更换部件:如果确定一些部件存在问题,可以尝试更换该部件。

比如,检测到电容器损坏,可以更换新的电容器来修复故障。

2.调整参数:安川变频器通常具有多种参数设置,通过调整参数的值可以实现不同的控制效果。

安川变频器故障的查找分析排除

安川变频器故障的查找分析排除

安川变频器故障的查找分析排除安川变频器是一种广泛应用于工业控制系统中的电气设备。

当变频器发生故障时,即使整个系统的运行也会受到影响。

因此,对于变频器故障的查找、分析和排除是非常重要的。

下面将详细介绍安川变频器故障的查找、分析和排除方法。

一、查找故障1.检查电源供应:首先需要检查变频器的电源供应。

确保供电是否正常且稳定。

如果供电出现问题,可以检查电源连接线路、熔断器、开关和电缆,确保它们没有松动或损坏。

2.检查控制信号:然后需要检查变频器的控制信号。

可以用示波器检测各个控制信号的波形,并与正常波形进行比较。

如果控制信号异常,可以检查控制信号线路、接口卡和控制器,确保它们没有问题。

3.检查运行参数:接下来需要检查变频器的运行参数。

可以通过变频器的显示屏查看相关参数是否设置正确。

如输入电压、频率、输出电压、频率、电流等。

如果参数设置错误,可以重新设置正确的参数。

4.检查机械部件:还需要检查与变频器连接的机械部件。

例如电机、传动装置等。

可以检查电机是否正常工作,传动装置是否松动或损坏等。

如果发现问题,可以修理或更换相关部件。

二、分析故障1.故障现象:在查找故障后,需要对故障现象进行分析。

根据故障现象的表现,可以初步判断故障的类型。

例如是否是电源故障、控制信号故障还是参数设置错误等。

2.故障原因:根据故障现象进行分析后,需要继续深入分析故障的原因。

可以参考变频器的用户手册、技术规范和故障码表等相关资料,了解可能的故障原因。

三、排除故障1.维修方法:根据故障原因的分析结果,可以采取相应的维修方法进行故障排除。

例如修复电源线路、更换控制器、重新设置参数等。

2.测试与验证:在排除故障后,需要进行相应的测试和验证。

例如检测电压、频率、电流等参数是否正常,检查机械部件是否正常工作等。

3.预防措施:排除故障后,还需要采取相应的预防措施,以避免类似的故障再次发生。

例如定期检查设备、进行维护和保养等。

综上所述,安川变频器故障的查找、分析和排除需要综合考虑电源供应、控制信号、运行参数和机械部件等方面的问题。

安川变频器常见故障

安川变频器常见故障

安川变频器cpf01故障维修
点击数:949 更新时间:2015-3-11 9:04:35 Tag: 安川变频器cpf01故障维修安川变频器故障维修安
川变频器专业维修
安川变频器是世界知名的变频器之一,安川变频器以其卓越的控制性能和优异的产品品质,依靠安川人“以独特的技术,为社会和公共事业做贡献”的理念得到全球工业领域的认可,已成为电机驱动领域的行业先锋
安川变频器cpf01故障维修
CPF01:数字式操作器通信故障、2于数字式操作器开始通信后,发生2S以后通信故障
故障原因:1.数字式操作器跳线接触不良 2.变频器控制回路不良
维修方法:1.重新安装跳线 2.维修控制回路
相关安川变频器故障代码
BU5:选购通信件错误
故障原因:通信选购卡设定运行指令或频率指令的模式下检出通信错误
维修方法:1.检查通信机器是否正常 2.检查通信信号是否正常
CE:MEMOBUS通信错误
故障原因:在接受1S次控制数据后,2S以上无法正常接收
维修方法:1.检查通信机器是否正常 2.检查通信信号是否正常
CPF00:数字式操作器通信故障、1CPU外部RAM不良
故障原因:1.数字式操作器跳线接触不良 2.变频器控制回路不良
维修方法:1.重新安装跳线 2.维修控制回路 3.维修控制回路、更换RAM
安川变频器维修总结
安川变频器cpf01故障维修(通讯故障)。

变频器日常维护和保养,安装在温度凉快、通风透气地方、避免变频器潮湿导致损坏不能使用。

安川变频器的常见故障

安川变频器的常见故障

安川变频器的常见故障1 开关电源损坏开关电源损坏就是众多变频器最常见的故障,通常就是由于开关电源的负载发生短路造成的,在众多变频器的开关电源线路设计上,安川变频器因该说就是比较成功的。

616G3采用了两级的开关电源,有点类似于富士G5,先由第一级开关电源将直流母线侧500多伏的直流电压转变成300多伏的直流电压。

然后再通过高频脉冲变压器的次级线圈输出5V、12V、24V等较低电压供变频器的控制板,驱动电路,检测电路等做电源使用。

在第二级开关电源的设计上安川变频器使用了一个叫做TL431的可控稳压器件来调整开关管的占空比,从而达到稳定输出电压的目的。

前几期我们谈到的LG变频器也使用了类似的控制方式。

用作开关管的QM5HL-24以及TL431都就是较容易损坏的器件。

此外当我们在使用中如若听到刺耳的尖叫声,这就是由脉冲变压器发出的,很有可能开关电源输出侧有短路现象。

我们可以从输出侧查找故障。

此外当发生无显示,控制端子无电压,DC12V,24V风扇不运转等现象时我们首先应该考虑就是否开关电源损坏了。

2 SC故障SC故障就是安川变频器较常见的故障。

IGBT模块损坏,这就是引起SC故障报警的原因之一。

此外驱动电路损坏也容易导致SC故障报警。

安川在驱动电路的设计上,上桥使用了驱动光耦PC923,这就是专用于驱动IGBT模块的带有放大电路的一款光耦,安川的下桥驱动电路则就是采用了光耦PC929,这就是一款内部带有放大电路,及检测电路的光耦。

此外电机抖动,三相电流,电压不平衡,有频率显示却无电压输出,这些现象都有可能就是IGBT模块损坏。

IGBT模块损坏的原因有多种,首先就是外部负载发生故障而导致IGBT模块的损坏如负载发生短路,堵转等。

其次驱动电路老化也有可能导致驱动波形失真,或驱动电压波动太大而导致IGBT损坏,从而导致SC故障报警。

3 OH—过热过热就是平时会碰到的一个故障。

当遇到这种情况时,首先会想到散热风扇就是否运转,观察机器外部就会瞧到风扇就是否运转,此外对于30kW以上的机器在机器内部也带有一个散热风扇,此风扇的损坏也会导致OH的报警。

安川变频器常用参数及故障

安川变频器常用参数及故障

电梯控制系统中安川变频器常用参数及故障1:变频器自学习(1) 将轿厢吊起,卸下钢丝绳,确认电动机在空转时,不会出现安全故障。

(2) 将编码器按照要求装好,将编码器线对号入座。

(3) 将抱闸、抱闸强激接触器KMB和KMZ,变频器输入、输出接触器KMC和KMY 有效吸合,观察抱闸是否打开,要确认电机空转时没有磨擦阻力。

(4) 把变频器参数A1-02设置为3,并根据第一章 3.2 所述设置变频器相关参数。

(5) 设定变频器,按照4.2.1所述方法,变频器菜单出现“AUTO-TUNING”。

共需输入7个数据,依次为:Rated Voltage 电机的额定电压〔VAC〕Rated current 电机的额定电流〔AAC〕Rated Frequency 电机的额定频率〔HZ〕Rated Speed 电机的额定转速〔RPM〕Number of Poles 电机极数Selected Motor 1/2 驱动电机号PG Pulses/Rev PG数旋转编码器脉冲数2:典型案例分析:(1)电梯刚启动变频器就显示PGO故障PGO含义是反馈丢失,可能原因一:由于电气或机械原因抱闸没有张开,或电机机械性卡死。

可能原因二:编码器电源线脱落或虚接。

可能原因三:如果S曲线起动或停车时间设得太长,由于电梯起动或停车时电梯实际速度接近0速,曳引力较小,当轿厢处于重载或满载时,曳引机就有可能拖不动轿厢,此时变频器仍有速度指令输出,便出现PGO故障。

(2)电梯在运行中变频器突然显示OC故障OC含义是变频器过电流,可能原因一,编码器损坏,造成反馈不正常导致变频器在速度调节过程中过流。

可能原因二,电机绕组绝缘损坏,有短路现象也会产生过流。

可能原因三,负载太大,加速时间太短。

(3)电梯运行中变频器突然显示O V故障。

OV含义是主回路直流侧过电压。

可能原因一,模拟量给定电压有突降,可在变频器参数中加点加减速斜率,例C1-01=1S,C1-02=1S可能原因二,15KW以下的变频器输入电压E1-01参数设定不当,一般设400V,如设380V的话有可能向上减速时会出上述故障。

安川变频器的常见故障

安川变频器的常见故障

安川变频器的常见故障1 开关电源损坏开关电源损坏是众多变频器最常见的故障,通常是由于开关电源的负载发生短路造成的,在众多变频器的开关电源线路设计上,安川变频器因该说是比较成功的。

616G3采用了两级的开关电源,有点类似于富士G5,先由第一级开关电源将直流母线侧500多伏的直流电压转变成300多伏的直流电压。

然后再通过高频脉冲变压器的次级线圈输出5V、12V、24V等较低电压供变频器的控制板,驱动电路,检测电路等做电源使用。

在第二级开关电源的设计上安川变频器使用了一个叫做TL431的可控稳压器件来调整开关管的占空比,从而达到稳定输出电压的目的。

前几期我们谈到的LG变频器也使用了类似的控制方式。

用作开关管的QM5HL-24以及TL431都是较容易损坏的器件。

此外当我们在使用中如若听到刺耳的尖叫声,这是由脉冲变压器发出的,很有可能开关电源输出侧有短路现象。

我们可以从输出侧查找故障。

此外当发生无显示,控制端子无电压,DC12V,24V风扇不运转等现象时我们首先应该考虑是否开关电源损坏了。

2 SC故障SC故障是安川变频器较常见的故障。

IGBT模块损坏,这是引起SC故障报警的原因之一。

此外驱动电路损坏也容易导致SC故障报警。

安川在驱动电路的设计上,上桥使用了驱动光耦PC923,这是专用于驱动IGBT模块的带有放大电路的一款光耦,安川的下桥驱动电路则是采用了光耦PC929,这是一款内部带有放大电路,及检测电路的光耦。

此外电机抖动,三相电流,电压不平衡,有频率显示却无电压输出,这些现象都有可能是IGBT模块损坏。

IGBT模块损坏的原因有多种,首先是外部负载发生故障而导致IGBT模块的损坏如负载发生短路,堵转等。

其次驱动电路老化也有可能导致驱动波形失真,或驱动电压波动太大而导致IGBT损坏,从而导致SC故障报警。

3 OH—过热过热是平时会碰到的一个故障。

当遇到这种情况时,首先会想到散热风扇是否运转,观察机器外部就会看到风扇是否运转,此外对于30kW以上的机器在机器内部也带有一个散热风扇,此风扇的损坏也会导致OH的报警。

安川变频器维修故障汇总及处理方法

安川变频器维修故障汇总及处理方法

安川变频器维修故障汇总及处理方法安川变频器G7系列故障代码及解决方案OC故障:过电流,变频器的输入电流超越了过电流检出值(约为额定电流的百分之200,变频器输入侧发作了短路、接地短路(因电机烧损、绝缘劣化、电缆破损所惹起的接触、接地短路等)负载过大,加速时间过短,都会出现过电流的情况。

PUF 保险丝熔断G7安川保险丝熔断,主回路的保险丝熔断;因为变频器输入侧的短路、接地短路,使输入晶体管被毁坏,以下的端子间能否短路如短路则引起输入晶体管的破坏B1(+3);U,V,W- U,V,W从输入侧接入了输出电源(接线错误、电机绝缘不好)查询原因、采用对策后改换变频器OV 主回路过电压,安川主回路过电压主回路直流电压超越过电压检出值200V级:约410V 400V级:约820V (E1-01≧400V)约720V (E1-01;400V)加速时间过短,来自电机的再生能量过大电机接地(接地电流畅过电源对变频器内的主回路电容停止充电)UV1 主回路低电压G7安川主回路欠电压主回路直流电压低于L2-05(欠电压检出值)的设定值200V级:约190V 400V级:约380V主回路电磁接触器举措不良变频器运转中无电磁接触器的呼应实用变频器容量200V级:37~110kW 400V级:75~300kW;输出电源时发作缺相;发作了瞬时停电;输出电源的接线端子松动;输出电源的电压动摇过大;发作冲击避免回路的举措不良;运转中主回路接触器被翻开(辅佐接点接触不良);粉尘、气体形成主回路接触器接点腐化;UV2 主回路欠电压G7安川掌握电源毛病掌握电源的电压下降;掌握电源的接线欠妥;在无瞬时停电赔偿单位(200V/400V级、7.5kW以下)的状况下,将赔偿工夫参数(l2-02)从初始值停止了延伸;试着开闭电源;若延续呈现毛病,则改换变频器;设置瞬时停电赔偿单位冲击避免回路毛病G7安川冲击避免回路毛病发作冲击避免回路的举措不良固然收回了接点ON旌旗灯号,但10秒钟没有收到接点呼应;主回路接触器的举措不良;接触器励磁线圈的毁伤;试着开闭电源;若延续呈现毛病,则改换变频器PF 输出缺相G7安川主回路电压毛病主回路直流电压在再生之外发作异常振动绝对变频器最大实用电机容量,检出约80%以上的负载(设定为L8-05=1时停止检出);输出电源时发作缺相;发作了瞬时停电;输出电源的接线端子松动;输出电源的电压动摇过大;相间电压掉衡查询拜访缘由、采用对策后复位LF 输入缺相G7安川输入缺相变频器输入侧发作缺相设定为L8-07=1或2时停止检出输入电缆断线;电机线圈断线;输入端子松动运用了容量低于变频器额外输入电流的5%的电机查询拜访缘由、采用对策后复位从新设定变频器容量或电机容量OH (OH1)散热片过热G7安川散热片过热变频器散热片的温度超越L8-02的设定值或过热保护值0H:超越L8-02 (可用L8-03选择中止形式)0H1:超越约100℃(中止形式为自(设定为L8-32=1在运转中止)变频器外部冷却电扇毛病(200V7.5kW以上,400V级5.5kW以上)时停止检出)情况温渡过高四周有发烧体变频器冷却电扇中止运转;掌握回路端子+V、-V、AC短路;掌握回路端子过载;变频器冷却电扇中止运转;冷却电扇堵转,设置冷却安装去除发烧体改换冷却电扇(请与本公司联络);确认掌握回路端子能否有接线毛病;确认频率设定用可变电阻等的电阻值以及配线(+V、-V电流应在20mA以下);改换冷却电扇(请与本公司联络);打扫冷却电扇FAN 外部电扇毛病G7安川变频器外部冷却电扇毛病检出变频器外部冷却电扇的毛病后,变频器的电子热敏器使变频器的过载保护举措(设定为L8-32=1时停止检出)变频器外部冷却电扇中止后,在过载形态下持续运转改换冷却电扇(请与本公司联络)OH3 电机过热正告G7安川电机过热警报依照L1-03的设定,变频器持续运转或中止电机过热从新设定负载的巨细、加加速工夫、周期工夫从新设定V/f特征确认E2-01(电机额外电流)的设定安川电机过热毛病依据L1-04的设定值,变频器将中止电机过热<从新设定负载的巨细、加加速工夫、周期工夫从新设定V/f特征确认E2-01(电机额外电流)的设定RR 制动晶体管毛病G7 安川内置制动晶体管毛病制动晶体管举措毛病;制动晶体管破损;变频器掌握回路不良;试着开闭电源;若延续呈现毛病,则改换变频器OL1 电机过载G7 安川电机过载由电子热敏器使电机过载保护举措负载过大加加速工夫、周期工夫过短有关速度搜刮的参数设定值欠妥/(因电机掉调而形成的过载);低速运转时过载(当为通用电机时,即便是不满额外电流的运转,也有在低速运转时发作过载的风险);运用公用电机时,电机保护功用选择(L1-01)为1(通用电机的保护)PG 与电机的扭转偏向相反(有PG的掌握)V/f特征的电压过高E2-01(电机额外电流)的设定值欠妥;掌握回路端子+V、-V、AC短路;掌握回路端子过载从新设定负载的巨细、加加速工夫、周期工夫;运用速度搜刮重试功用;调剂速度搜刮举措电流(b3-02)、速度搜刮加速工夫(b3-03);运用速度推定形搜刮功用(施行电机线间电阻自进修);从新反省负载及设定形态;运用容量更大的变频器;更正PG配线;更正电机配线;变卦PG扭转偏向设定(F1-05)从新设定V/f特征确认E2-01(电机额外电流)的设定;确认掌握回路端子能否有接线毛病确认频率设定用可变电阻等的电阻值以及配线(+V、-V电流应在20mA以下)OL2 变频器过载G7 安川变频器过载由电子热敏器使变频器过载保护举措负载过大加加速工夫、周期工夫过短有关速度搜刮的参数设定值欠妥(因电机掉调而形成的过载)PG 与电机的扭转偏向相反(有PG的掌握)V/f特征的电压过高变频器容量过小;掌握回路端子+V、-V、AC短路;掌握回路端子过载低速(缺乏6Hz)运转时过载从新设定负载的巨细、加加速工夫、周期工夫;运用速度搜刮重试功用;调剂速度搜刮举措电流(b3-02)、速度搜刮加速工夫(b3-03);运用速度推定形搜刮功用(施行电机线间电阻自进修);更正PG配线;更正电机配线;变卦PG扭转偏向设定(F1-05)从新设定V/f特征改换容量大的变频器&midd确认掌握回路端子能否有接线毛病;确认频率设定用可变电阻等的电阻值以及配线(+V、-V电流应在20mA以下);下降低速(缺乏6Hz)运转时的负载;运用容量更大的变频器;下降载波频率OL3 过转矩检出1 G7 安川过转矩检出1高于设定值(L6-02)的电流并继续超越了规则的工夫(L6-03)-;确认L6-02、L6-03的设定能否恰当;确认机械的运用情况,扫除毛病缘由OL4 过转矩检出2 G7 安川过转矩检出2高于设定值(L6-05)的电流并继续超越了规则的工夫(L6-06)-;确认L6-05、L6-06的设定能否恰当;确认机械的运用情况,扫除毛病缘由OS 电机过速G7 安川过速设定值(F1-08)以上的速度且继续工夫超越规则工夫(F1-09)发作了超调/欠调指定速渡过高F1-08、F1-09的设定值欠妥再次调剂增益从新设定指令回路及指令增益确认F1-08、F1-09的设定值PGO PG回路毛病G7 安川PG断线检出在变频器输入频率的形态下,PG脉冲不克不及输出PG接线已断开PG接线毛病PG无供电电源电机处于制动形态修缮断线处修改接线停止准确供电确认制动器(电机)能否处于;翻开&rdquo;形态DEV 电机速度偏向过大G7 安川速度偏向过大设定值(F1-10)以上的速度偏向且继续工夫超越规则工夫(F1-11)负载过大加加速工夫过短负载为锁定形态F1-10、F1-11的设定欠妥电机处于制动形态加重负载添加加加速EF3 端子S3 毛病G7 安川内部毛病(输出端子S3)从多功用输出端子输出了内部毛病;解除各多功用输出的内部毛病输出;扫除内部毛病缘由OPR 操作器衔接不良G7 安川数字式操作器衔接不良用来自数字式操作器的运转指令停止运转时,数字式操作器断线-确认数字式操作器的衔接能否正常CPF00 变频器主板损坏1 G7 安川数字式操作器通讯毛病1接通电源5秒后,也不克不及和数字式操作器停止通讯CPU的内部RAM不良数字式操作器的插头接触不良变频器掌握回路不良掌握回路破坏拆下数字式操作器后再从新装置改换变频器试着开闭电源改换变频器CPF01 操作器毛病2 G7 安川数字式操作器通讯毛病2与数字式操作器开端通讯后,发作了2秒以上的通讯毛病数字式操作器的插头接触不良变频器掌握回路不良拆下数字式操作器后再从新装置改换变频器CPF02 BB回路毛病G7 安川基极封锁回路不良掌握回路破坏试着开闭电源改换变频器CPF03 EEPROM 毛病G7 安川EEPROM不良经过通讯选购卡,在输出参数写入指令(ENTER 指令)的进程中割断了变频器的电源掌握回路破坏试着开闭电源停止初始化(A1-03)改换变频器CPF04 外部A/D1 毛病G7 安川CPU外部A/D转换器不良掌握回路破坏;掌握回路端子+V、-V、AC短路;掌握回路端子过载试着开闭电源改换变频器;确认掌握回路端子能否有接线毛病;确认频率设定用可变电阻等的电阻值以及配线(+V、-V电流应在20mCPF05 内部A/D2 毛病G7 安川CPU内部A/D转换器不良掌握回路破坏;掌握回路端子+V、-V、AC短路;掌握回路端子过载试着开闭电源改换变频器;确认掌握回路端子能否有接线毛病;确认频率设定用可变电阻等的电阻值以及配线(+V、-V电流应在20mA以下)CPF06 选择卡衔接毛病G7 安川选购卡衔接毛病选购卡衔接口衔接毛病变频器或选购卡不良封闭电源,从新插卡改换变频器或选购卡VCF VCF G7 安川主回路电容器中性点电位毛病主回路电容器的中性点电位掉衡过大主回路电容器因时效变更等而招致容量缺乏变频器部件不良输入缺相载波频率的设定值(C6-03,C6-04)欠妥在V/f和无PG的矢量掌握形式下,电机延续掉调(输入电流超越了变频器额外电流的200%)改换主回路电容器(请与本公司联络)改换变频器请参照LF(输入缺相)的章节确认C6-03,C6-04的设定值别的,当为400V级变频器时,依据载波频率的设定,可设定的最高输入频率会遭到制邀请参照6-36页加重负载延伸减速工夫从新设定V/f的设定值改换为容量更大的变频器OPERATOR ERRWATCH DOGERR G7 安川操作器毛病(Watchdog毛病)在举措中,检出了程序的运转毛病; 改换操作器操作器熄灭G7 安川掌握电源电压降低;掌握回路端子+V、-V、AC短路;掌握回路端子过载主回路端子之间的+1及+2端子间的短路片已被撤除制动单位的P及N端子接反掌握电源回路毛病掌握电源回路误举措;确认掌握回路端子的配线能否有误;确认频率设定用可变电阻等的电阻值以及配线(+V、-V电流应在20mA以下)装置短路片;确认包含衔接制动单位的电缆和转接端子等在内的配线;改换变频器(充电指导灯点亮);改换操作器;改换电路板或变频器(充电指导灯熄灭);确认输出电源电压;改换变频器电源割断后,经由5分钟今后再接通电源CALL (闪耀)SI-B通讯毛病G7 安川通讯等候中接通电源后,无法正常接纳掌握数据-反省通讯机械、通讯旌旗灯号能否正常RUNC (闪耀)内部运转输出不克不及复位G7 安川运转指令输出中,不克不及复位在输出来自内部端子等的运转指令的形态下,输出复位旌旗灯号-反省能否未输出来自内部端子等的运转指令OPE01 参数设定错误1 G7 安川变频器容量的设定毛病变频器容量的设定与主体纷歧致(请与本公司联络);OPE02 参数设定毛病2 G7 安川参数设定规模欠妥参数设定值为参数设定规模之外的值毛病显示中时,如输出操作器的ENTER键,则显示(U1-34);OPE毛病的参数;OPE03 参数设定毛病3 G7 安川多功用输出的选择欠妥在H1-01~H1-10(多功用接点输出)长进行以下的设定;对两个以上的多功用输出设定了相反的数值;UP指令和DOWN指令未同时设定;UP/DOWN指令和坚持加加速中止被同时设定;内部搜刮指令1(最高输入频率)和内部搜刮指令2(设定频率)被同时设定;b5-01(PID掌握)无效时,设定了UP/DOWN 指令;+速度指令和-速度指令未同时设定;紧迫中止指令NO/NC被同时设定。

安川变频器跳闸故障排除经验

安川变频器跳闸故障排除经验

安川变频器跳闸故障排除经验安川变频器跳闸故障排除经验1、跳闸(1)重新启动时,一升速就跳闸。

这是过电流十分严重的现象。

主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。

(2)上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。

(3)重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(v/f)设定较高。

分析与维修:打开机盖没有发现任何烧坏的迹象,在线测量IGBT 基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。

在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦a3120输出脚与电源负极短路,更换后三路基本一样。

模块装上上电运行一切良好。

分析与维修:首先检查逆变模块没有发现问题。

其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。

2、过压过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。

变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(et191)时发现已击穿,更换后上电运行,且快速停车都没有问题。

3、欠压欠压也是我们在使用中经常碰到的问题。

主要是因为主回路电压太低(220v系列低于200v,380v系列低于400v),主要原因:整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电电阻上面有可能导致欠压.还有就是电压检测电路发生故障而出现欠压问题。

安川变频器故障表

安川变频器故障表
确定L6-02,L6-03设定值是否适当。
确认机械系统使用状况,找出异常原因并解决。
OL4 Overorque Det 2过力矩2。
确定L6-05,L6-06设定值是否适当。
确认机械系统使用状况,找出异常原因并解决。
OS Over speed过速度发生了过冲/不足。
*指定速度太高。
*F1-08,F1-09的设定值不适当。
从多功能端子处被输入了[外部异常]
解除从各多功能输入来的外部异常输入。
EF4外部故障(输入端子4)EF5外部故障(输入端子5)EF6外部故障(输入端子6)EF7外部故障(输入端子7)EF8外部故障(输入端子8)
从多功能端子处被输入了[外部异常]
消除外部异常的原因。
CPF 00 COM-ERR(OP&INV)操作器传送异常1
*将变频器ON/OFF试一下
*连续发生异常情况时请更换变频器。
PF Input Pha Loss主回路电压异常,主回路直流电压在再生状态以外有异常
*输入电源的接线端子太松。
*输入电源发生了欠相
*输入电源的电压变动太大。
*相间电源的平衡太差。
调查原因,实施对策后复位。
LF Output Pha Loss输出欠相。
故障情况内容
故障的原因
消除故障的方法OC
Over current过电流
变频器的输出电流超过了过电流检出值
*变频器输出侧发生短路,接地(电机烧毁,绝缘劣化,电缆破损而引起的接触,接地等)。
*负载太大,加速时间太短。
*变频器输出侧电磁开关已动作。
调查原因,实施对策后复位。
GF Ground Fault接地
调查原因,实施对策后复位。
OV Over voltage主回路过电压主回路直流电压超过过电压检出值400V级:约800V

安川变频器故障处理

安川变频器故障处理

目录安川变频器UV2故障 (5)安川变频器UV3故障 (5)安川变频器PF故障 (5)安川变频器报UV1故障名称: (6)安川变频器OV故障名称: (7)安川变频器GF故障名称 (8)安川变频器COF故障名称: (9)安川变频器OC故障名称: (9)LF (11)LF2 (11)RR (12)安川变频器OH故障 (12)安川变频器OH1故障 (12)安川变频器OH3故障 (12)安川变频器OH4故障 (13)安川变频器RH故障 (13)安川变频器报OL1故障名称: (13)安川变频器OL2故障名称: (14)安川变频器OL3故障名称: (15)安川变频器OL4故障名称: (15)安川变频器UL3故障名称: (15)安川变频器UL4故障名称: (15)安川变频器OL5故障名称: (16)安川变频器OL7故障名称: (16)安川变频器UL5故障名称: (16)安川变频器STO故障 (16)安川变频器OS故障 (17)安川变频器PGO故障 (17)安川变频器DEV故障 (17)安川变频器CF故障 (18)安川变频器FBL故障 (18)FBH (18)安川变频器EF0故障 (18)安川变频器EF1~EF7故障 (19)安川变频器CE故障 (19)安川变频器BUS故障 (19)安川变频器SER故障 (20)安川变频器ERR故障 (20)安川变频器DWFL DRIVEWORKSEZ故障 (20)安川变频器OFA00故障 (21)安川变频器OFA01故障 (21)安川变频器OFA03故障 (21)安川变频器CPF02故障 (21)安川变频器CPF03故障 (22)安川变频器CPF06故障 (22)安川变频器CPF07故障 (22)安川变频器CPF08故障 (22)安川变频器CPF12故障 (22)安川变频器CPF13故障 (22)安川变频器CPF14故障 (23)安川变频器CPF16故障 (23)安川变频器CPF17故障 (23)安川变频器CPF18故障 (23)安川变频器CPF19故障 (23)安川变频器CPF20或CPF21故障 (23)安川变频器CPF22故障 (23)安川变频器CPF23故障 (24)安川变频器CPF24故障 (24)安川变频器UV故障名称 (24)安川变频器EF故障 (25)安川变频器OV故障 (25)安川变频器OH故障 (25)安川变频器OH2故障 (26)安川变频器OL3、OL4、UL3、UL4故障 (27)安川变频器OS故障 (28)安川变频器PGO故障 (28)安川变频器DEV故障 (28)安川变频器EF0故障 (29)安川变频器EF1~EF7故障 (29)安川变频器FBL故障 (30)安川变频器CE故障 (30)安川变频器BUS故障 (31)安川变频器CALL故障 (32)安川变频器RUNC故障 (32)安川变频器HCA故障 (32)安川变频器RUN故障 (33)安川变频器PASS故障 (33)安川变频器BB故障 (33)安川变频器DNE故障 (33)安川变频器HBB故障 (34)安川变频器HBBF故障 (34)安川变频器SE故障 (34)安川变频器OPE01故障 (34)安川变频器OPE02故障 (34)安川变频器OPE03故障名称 (35)安川变频器OPE04故障 (35)安川变频器OPE05故障 (36)安川变频器OPE07故障 (36)安川变频器OPE08故障 (37)安川变频器OPE09故障 (38)安川变频器OPE10故障 (38)安川变频器OPE11故障 (39)安川变频器OPE13故障 (39)安川变频器ER-01自学习故障 (39)安川变频器ER-03故障 (40)安川变频器ER-04、ER-05、ER-08故障名称 (40)安川变频器ER-09故障 (41)安川变频器ER-11故障 (41)安川变频器ER-12故障 (41)安川END1故障 (41)安川END2故障 (42)安川END3故障 (42)安川变频器Uv2故障控制电源故障控制电源的电压降低安川变频器Uv2故障原因1:200V/400V 级 7.5 kW 以下的变频器时:在没有设置瞬时停电补偿单元的状态下,将L2-02 (瞬时停电补偿时间)设定得比初始值大对策:设置瞬时停电补偿单元。

安川变频器常见故障及解决方法-邹长发

安川变频器常见故障及解决方法-邹长发

安川变频器常见故障及解决方法安川变频器是我公司应用得比较广泛的变频器,在长期的使用过程中难免会出现元件的老化,外围设备的安装出现接触不良,或者损坏,以及工作的外部温度湿度等因素,都会引起变频器报故障。

我就关于在广州办事处这段时间所遇到的一些问题,以及解决的方法作为讨论,希望对于以后的售后工作带来一些帮助。

1)OC Over Current 过电流这是变频器最为频繁的故障,在原因的分析上我将其分为外部原因和内部原因。

外部原因:机械结构和参数设置,开环控制主要检查负载是否存在短路,如果是一台变频器带多个电机,还应分别检查各个电机的线是否存在绝缘不好,检查机械部位被卡住(制动器是否未能完全打开),电动机的转矩过小,加速时间设置太短,电流上限设置太小和转矩补偿(V/F)设定偏高。

如果是闭环控制还应检查编码器的线,主要检查对地的绝缘,以及编码器是否固定得很好,如果在运行中观察到U1-05有跳变或不能反馈速度,除了要考虑编码器本身外还有可能是PG卡坏了。

内部原因:变频器本身的检测元件损坏,变频器一上电就跳闸,这时一般不复位。

产生这种现象的原因有:模块损坏、驱动电路(驱动板)损坏和电流检测电路(交流互感器)损坏。

如果是由于这方面的原因则需要跟换相关元件2)OV DC Bus Fuse Open 主回路过电压主回路过电压主要是因为制动单元不能放电,减速时间设置得过短,或者制动单元已经损坏。

首先我们检查减速时间是否过短,对于大车,旋转机构的减速时间设置最好大于6S。

检查制动单元在操作时我们可以观察制动单元上的红色指示灯,在减速和停止时是否闪烁,如果不能闪烁,需要检查制动单元到制动电阻的连接线是否存在断路情况,绝缘是否良好。

如果是多个制动单元还应注意是不是每个制动单元都不放电。

如果制动电阻侧连接出现短路或对地短路情况,则制动单元多半已经被烧坏,其检测方法是,拆开制动单元,测量制动单元内部的保险是否已经烧坏,IGBT 是否已经烧坏。

安川变频器常见故障

安川变频器常见故障

安川变频器常见故障UV1 主回路低电压(PUV)运转中主回路电压低于“低电压检出标准”15ms,(瞬停保护1)检查电源电压及配线ADc Bus undervolt 护2S)低电压检出标准200V级:约190V以下400V级:约380V 以下UV2 控制回路低电压(CUV)控制回路电压低于低电压检出标准2)检查电源容量CTL Ps UndervoltUV3 内部电磁接触器故障运转时预充电接触器开路 AMC AnsewerbackUV 瞬时停电检出中1)主回路直流电低于低电压检出标准2)预充电接触器 BUnder Volatage 3)控制回路电压低于低电压检出标准OC 过电流(OC)变频器输出电流超过OC标准1)检查电机的阻抗绝缘是否正常AOvercurrent 2)延长加减速时间GF 接地故障(GF)变频器输出侧接地电流超过变频器额定电流的50%以上1)检查电机是否绝缘劣化AGround fault 2)变频器及电机间配线是否有破损OV 过电压(OV)主回路直流电压高于过电压检出标准200V级:约400V 400V级:约延长减速时间,加装制动控制器及制动电阻AOvervoltage 800VSC 负载短路(SC)变频器输出侧短路检查电机的绝缘及阻抗是否正常 AShort CircuitPUF 保险丝断(FI)1)主回路晶体模块故障2)直流回路保险丝熔断1)检查晶体模块是否正常ADC Bus Fuse open 2)检查负载侧是否有短路,接地等情形OH 散热座过热(OH1)晶体模块冷却风扇的温度超过允许值检查风扇功能是否正常,及周围是否在额定温度内AHeatsink Over tmpOL1 电机过负载(OL1)输出电流超过电机过载容量减小负载AMotor OverloadedOL2 变频器过负载(OL2)输出电流超过变频器的额定电流值150%1分钟减少负载及延长加速时间Ain OverloadedPF 输入欠项1)变频器输入电源欠相2)输入电压三相不平衡1)检查电源电压是否正常 Ainut Pha Loss 2)检查输入端点螺丝是否销紧LF 输出欠项变频器输出侧电源欠相1)检查输出端点螺丝及配线是否正常AOutput Pha Loss 2)电机三相阻抗检查RR 制动晶体管异常制动晶体管动作不良变频器送修ADyn Brk TansistrRH 制动控制器过热制动控制器的温度高于允许值检查制动时间与制动电阻使用率ADyn Brk ResistorOS 过速度(OS)电机速度超过速度标准(F1-08) AOverspeed DetPGO PG断线(PGO)PG断线(PGO)1)检查PG连线2)检查电机轴心是否堵住APG OpenDEV 速度偏差过大(DEV)速度指令与速度回馈之值相差超过速度偏差(F1-10)检查是否过载。

安川变频器的操作方法调试及故障排除

安川变频器的操作方法调试及故障排除

安川变频器的操作方法调试及故障排除一、安川变频器的操作方法:1.设定运行频率:首先,打开安川变频器的电源开关,接通电源。

然后按下“UP”按钮,选择需要设置的频率。

通过“UP”、“DOWN”按钮可以调整频率的大小,也可以直接输入需要设置的频率值。

最后按下“ENTER”按钮,保存设置的频率。

2.设定电机转速:在上述步骤中,设置好运行频率后,可以按下“MON”按钮,选择需要设定的电流,通过“UP”、“DOWN”按钮调整电流的大小,最后按下“ENTER”按钮保存设置。

3.启动电机:在设置好频率和电流后,按下“RUN”按钮,可以启动电机。

同时也可以按下“STOP”按钮停止电机的运行。

4.调整加速度和减速度:在启动电机后,可以通过调整加速度和减速度来控制电机的启停速度。

按下“SET”按钮,选择需要调整的参数,通过“UP”、“DOWN”按钮调整参数的大小,最后按下“ENTER”按钮保存设置。

5.监控电机工作状态:安川变频器还具有监控电机工作状态的功能,通过按下“MON”按钮可以查看电机的转速、电流等参数,并可以通过“UP”、“DOWN”按钮切换显示的参数。

二、安川变频器的调试:1.校正频率:在初次使用或更换变频器后,可能需要进行频率校正。

按下“SET”按钮选择“Fr1”,然后按下“UP”、“DOWN”按钮调整频率校正参数,最后按下“ENTER”按钮保存设置。

2.调整电流保护:根据实际需求,可以调整电流保护参数,以保护电机的安全运行。

按下“SET”按钮选择“Cr1”,然后按下“UP”、“DOWN”按钮调整电流保护参数,最后按下“ENTER”按钮保存设置。

3.调整加速度和减速度:根据实际需求,可以调整加速度和减速度参数,以控制电机的启停速度。

按下“SET”按钮选择“ATr”或“dTr”,然后按下“UP”、“DOWN”按钮调整参数,最后按下“ENTER”按钮保存设置。

三、安川变频器的故障排除:1.故障代码查看:如果安川变频器发生故障,可以按下“MON”按钮查看故障代码。

安川变频器常见故障

安川变频器常见故障

1 引言福州青州港区新购进的1台桥式起重机(以下简称QC)与6台轮胎式龙门起重机(以下简称RTG),都是使用安川变频器驱动。

虽然型号各异,(有6R6CR5、616G5、616H5等),但其主回路都一样,只是控制板与驱动板不一样,所以了解变频器的结构、主要器件的电气特性和常用参数的作用及常见故障排除,对于实际工作越来越重要。

现根据笔者随机调试及维修保养时的经验进行介绍,为该类设备的运行提供参考。

2 安川变频调速结构及其工作原理根据n=120f/p(其中n=电机转速、f=电机定子侧供电频率、p=电机极对数)可知,在异步电动机的极对数不变情况下,只要改变电源频率f,就可以实现对异步电动机的调速。

在集装箱装卸起重机上,给异步电动机供电(电压、频率可调)的主回路中包含有安川变频器,该变频器工作形式为交-直-交,而给变频器提供各种控制信号的回路称为控制回路,如图1所示,其包括以下几个部分:(1)整流桥:使三相交流电UAC经过整流变成直流电UDC。

(2)充电抑制电阻R1:据公式i=(UAC-UDC)/r可知,因r为整流桥等值电阻很小,因此充电电流I变成很大。

为了防止电解电容被击穿,必须加装充电抑制电阻R1与旁路接触器MC,由此起限流作用。

(3)旁路接触器MC:当电容充电达到80%时,MC闭合,将R1旁路,所以说该元件必须定期保养。

(4)滤波电容C:具有储能功能,寿命可达5~8年,当电网电压跌落30%时,可以维持电容两端电压UC达到10s供变频器工作;当电网电压跌落50%时,可以维持电容两端电压UC达到2s供变频器工作。

(5)充电指示灯:当充电电压达到27V以上,该指示灯会亮,所以在切断变频器电源后,还应等该指示灯完全熄灭时,才可以维修变频器内部元件,以免触电。

(6)逆变回路(桥)主器件(IGBT):全称为大功率双极性绝缘栅场效应馆,包括栅极、源极、漏极,其特点为电压控制器件,门极触发功率低、开关频率高、特性抑制性好,即通态压降、断开漏电流都很小,寿命可达20年。

YASKAWA安川G7变频器故障分析及解决

YASKAWA安川G7变频器故障分析及解决

YASKAWA安川G7变频器故障分析及解决安川G7变频器是一种高性能的变频控制器,常用于驱动各类机械设备。

然而,在使用过程中,G7变频器也会出现一些故障。

本文将对常见的G7变频器故障进行分析,并提供相应的解决方法。

第一种故障是G7变频器无法启动或无法运行。

这可能是由于电源供应中断、主电路故障、参数设置错误等原因引起的。

解决方法如下:首先,检查电源供应是否正常,确保变频器接入正确的电源线路。

其次,检查主电路电源模块是否工作正常,如果有故障则需要更换。

最后,检查参数设置是否正确,确保参数设置与实际需求匹配。

第二种故障是G7变频器输出电流异常。

这可能是由于负载过重、电机故障、输出电路故障等原因引起的。

解决方法如下:首先,检查负载是否过重,如果是,则需要减少负载以降低电流。

其次,检查电机是否有故障,如轴承磨损、绝缘故障等,如有故障则需要修理或更换电机。

最后,检查输出电路是否有松动或短路,如有故障则需要修理或更换输出电路。

第三种故障是G7变频器过热。

这可能是由于外部环境温度过高、散热器堵塞、散热风扇故障等原因引起的。

解决方法如下:首先,检查外部环境温度是否过高,如是,则需要降低温度。

其次,检查散热器是否堵塞,如有堵塞则需要清洁散热器。

最后,检查散热风扇是否正常工作,如有故障则需要修理或更换散热风扇。

第四种故障是G7变频器发生电压波动或电流波动。

这可能是由于电源电压不稳定、电流浪涌、电磁干扰等原因引起的。

解决方法如下:首先,检查电源电压是否稳定,如不稳定则需要更换稳定的电源。

其次,安装过滤器以减少电流浪涌或电磁干扰。

最后,检查接线是否接触良好,如有松动则需要重新连接。

总之,G7变频器故障的解决方法主要包括修理或更换故障部件、调整参数、降低负载、清洁散热器等。

在实际应用中,需要根据具体情况选择合适的解决方法。

为了保证变频器的正常运行,建议定期对G7变频器进行检查和维护。

这样可以提高设备的可靠性和使用寿命。

安川G7变频器故障解析

安川G7变频器故障解析

安川G7变频器故障分析及解决日本安川公司G系列变频器广泛用于起重类控制系统中。

一、常见故障篇(1)OC Over current 过电流描述:变频器的输出电流超过了过电流检出值。

常见原因:1、变频器输出侧发生短路,接地(电机烧毁,绝缘劣化,电缆破损而引起的接触,接地等)。

2、负载太大,加速时间太短。

(通常是见于调试加速过程中报,调长加速时间和检查L2-03)3、变频器输出侧电磁开关已动作。

4、电机短时堵转,如开闸制动器动作缓慢(有可能是制动器有问题,或是调试的程序有问题,制动器刹车皮摩擦,或是关闸时没有零速抱闸,没有零速抱闸通常都是参数或程序有问题)5、变频器的V/F特性设定偏高,请调整E1组参数。

6、闭环系统中,常见于编码器到PG卡之间的环节出现了问题(通常A+和B+接反了,会报PGO或OC,编码器打滑,或是PG卡坏了,要尽量避免编码器线受干扰),可以监视U1-05的参数是否均匀地变化,不能滞留或跳动,比较U1-02与U1-05之间的值是否接近一致。

7、电动机转矩过小。

(本人没遇过这种)8、变频器内部的电流互感器出现故障(互感器的简单测量方法是用万用表比较三个互感器四个角之间的阻值是否都差不多,挑出异常的,注意:量出来时坏的就是坏的,好的不代表是好的,等于废话,呵呵!)9、为了搞得神秘些,这个请到特殊故障篇看。

(2)GF Groun Favlt 接地描述:变频器输出侧发生接地的接地电流超过变频器额定输出电流的50%。

常见原因:1、变频器输出侧对地(电机烧毁,绝缘劣化,电缆破损而引起的接触,接地等)在变频器柜内用摇表检查电机进线有无接地现象,电机接线是否潮湿;2、如电机不存在接地现象,可能由于检测回路故障引起,请更换驱动板。

(3) PUF DC Bus Fuse Open 保险丝熔断描述:装在主回路的保险丝熔断了由于变频器输出侧的短路,接地造成输出晶体管损坏。

常见原因:保险烧毁,可能由于IGBT短路引起直流母线大电流经过,造成保险烧毁,IGBT短路的原因有几个:1、元器件质量问题、老化等;2、环境恶劣,如潮湿、温度过高、粉尘多、震动、外部环境剧变,如停电后被空调对着对风,上电后运行就容易报故障,如果变频器所处的环境振动比较大时,也容易对IGBT造成损坏。

安川变频器故障表示

安川变频器故障表示

故障表
BB Circuit Err 控制回路损坏交换变频器将电源 ON/OFF 试 CPF03 EEPROM Error EEPROM 不良控制回路损坏 ---一下交换变频器将电源 ON/OFF 试 ---一下控制回路损坏交换变频器将电源 ON/OFF 试 ---一下控制回路损坏交换变频器电源 OFF 后再插入交换不良品电源 OFF 后再插入换一块选择卡 CPF04 CPU 内部A/D 变换器 Internal A/D Err 不良 CPF05 CPU 内部 A/D 变换器 External A/D Err 不良 CPF06 Option Error 选择卡的端子接触不良选择卡连接异常变频器或选择卡不良选择卡的端子接触不良 CPF20 Option A/D Err 选择卡异常选择卡的 A/D 变换器不良传送选择卡的自己诊断异 CPF21 Option CPU down 常 CPF22 传送选择卡的机种形式异选择卡的故障交换选择卡 Option Type Err 常 CPF23 传送选择卡的相互诊断不 Option DPRAM Err 良。

安川变频器A1000

安川变频器A1000

安川变频器A10001. 简介安川变频器A1000是由日本安川电机公司研发生产的一款高性能变频器。

它采用先进的矢量控制技术,能够实现精确的电机控制和高效的能量转换。

A1000广泛应用于工业自动化领域,能够提供可靠的驱动力和稳定的运行。

2. 特性•高性能: A1000采用了先进的矢量控制技术,具有出色的动态响应和高精度的控制能力。

它可以满足各种复杂的驱动应用需求,确保设备的稳定运行。

•节能环保: A1000的高效能量转换功能可以显著降低能耗。

它采用了先进的PWM技术和无功功率补偿技术,最大限度地提高了整机的能效水平,减少了对环境的影响。

•多功能: A1000具有丰富的功能和灵活的配置选项,可适应各种应用需求。

它支持多种通信接口,如Modbus、Profibus和EtherCAT,能够与其他设备进行无缝连接。

•可靠性高: A1000采用了先进的故障检测和自愈功能,能够及时识别和解决问题,提高设备的可靠性和稳定性。

它还具有过载保护、短路保护和过压保护等多重保护措施,为设备提供全面的安全保障。

3. 安装和使用3.1 安装在安装A1000变频器之前,需要确保以下条件符合要求:•电源电压和频率符合变频器的要求;•变频器的安装位置能够正常通风,无阻挡物;•变频器与电机之间使用合适的电缆进行连接。

然后,按照以下步骤进行安装:1.检查变频器的外观是否完好,并检查包装中是否有配套的安装和使用手册;2.根据变频器的尺寸和安装孔距,选择合适的安装位置,并确保固定可靠;3.使用正确的工具连接电源和信号线;4.对变频器进行基本的参数设置。

3.2 使用使用A1000变频器时,应按照以下步骤进行操作:1.将变频器接通电源,并确保电器设备的电源和变频器的控制信号正确连接;2.检查变频器的工作状态指示灯,确保变频器正常运行;3.根据实际需求,设置变频器的运行参数,如频率、转速、加速度等;4.在启动变频器之前,先设置合适的电机保护参数,以避免电机过载或过热;5.在启动变频器之后,观察设备运行情况,如有异常情况出现,及时处理;6.在停止设备之前,先将变频器逐渐降低到零频率,然后切断电源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 安川变频器的常见故障2.1 开关电源损坏开关电源损坏是众多变频器最常见的故障,通常是由于开关电源的负载发生短路造成的,在众多变频器的开关电源线路设计上,安川变频器因该说是比较成功的。

616G 3采用了两级的开关电源,有点类似于富士G5,先由第一级开关电源将直流母线侧500多伏的直流电压转变成300多伏的直流电压。

然后再通过高频脉冲变压器的次级线圈输出5V、12V、24V等较低电压供变频器的控制板,驱动电路,检测电路等做电源使用。

在第二级开关电源的设计上安川变频器使用了一个叫做TL431的可控稳压器件来调整开关管的占空比,从而达到稳定输出电压的目的。

前几期我们谈到的LG变频器也使用了类似的控制方式。

用作开关管的QM5HL-24以及TL431都是较容易损坏的器件。

此外当我们在使用中如若听到刺耳的尖叫声,这是由脉冲变压器发出的,很有可能开关电源输出侧有短路现象。

我们可以从输出侧查找故障。

此外当发生无显示,控制端子无电压,DC12V,24V 风扇不运转等现象时我们首先应该考虑是否开关电源损坏了。

2.2 SC故障SC故障是安川变频器较常见的故障。

IGBT模块损坏,这是引起SC故障报警的原因之一。

此外驱动电路损坏也容易导致SC故障报警。

安川在驱动电路的设计上,上桥使用了驱动光耦PC923,这是专用于驱动IGBT模块的带有放大电路的一款光耦,安川的下桥驱动电路则是采用了光耦PC929,这是一款内部带有放大电路,及检测电路的光耦。

此外电机抖动,三相电流,电压不平衡,有频率显示却无电压输出,这些现象都有可能是IGBT模块损坏。

IGBT模块损坏的原因有多种,首先是外部负载发生故障而导致IGBT模块的损坏如负载发生短路,堵转等。

其次驱动电路老化也有可能导致驱动波形失真,或驱动电压波动太大而导致IGBT损坏,从而导致SC故障报警。

2.3 OH—过热过热是平时会碰到的一个故障。

当遇到这种情况时,首先会想到散热风扇是否运转,观察机器外部就会看到风扇是否运转,此外对于30kW以上的机器在机器内部也带有一个散热风扇,此风扇的损坏也会导致OH的报警。

2.4 UV—欠压故障当出现欠压故障时,首先应该检查输入电源是否缺相,假如输入电源没有问题那我们就要检查整流回路是否有问题,假如都没有问题,那就要看直流检测电路上是否有问题了。

对于200V级的机器当直流母线电压低于190VDC,UV报警就要出现了;对于400V级的机器,当直流电压低于380VDC则故障报警出现。

主要检测一下降压电阻是否断路。

2.5 GF—接地故障接地故障也是平时会碰到的故障,在排除电机接地存在问题的原因外,最可能发生故障的部分就是霍尔传感器了,霍尔传感器由于受温度,湿度等环境因数的影响,工作点很容易发生飘移,导致GF报警。

变频器在运行的过程中,可能会出现种种问题,需要进行维修和检修; 而变频器在停机较长时间后,由于各种原因,也可能会造成故障。

本文将介绍一种所遇到的变频器在停机4个月后,恢复运行时出现的故障。

2 故障现象一台拖动潜污泵的安川616P5变频器,在线停机4个多月恢复运行时发现,自开机的整个运行过程中,屏显50Hz的频率,表显78A 电流。

按照工艺要求泵机应在50Hz以下范围内运行变化。

显然,变频器的变频功能失控。

3 故障分析与检测变频器能运行在50Hz的工频中且输出380V的电压,泵机运行。

这些现象表明功率模块输出正常,控制电路失常。

616P5是通用型变频器,它的控制电路核心元件是一块内含CPU的产生脉宽调制信号的专用大规模集成电路L 7300526A 。

该变频器通常处在远程传输控制中,从控制端子接受4~20mA的电流信号。

根据通用型变频器工作原理,“频率设定不可调”故障现象,可能来自两个单元电路: (1) A/D转换器(2) PWM的调制信号。

本着先易后难的检修思路, 为排除A/D转换电路的隐患,采用排斥法检测, 即首先卸掉控制端子相关电缆, 改用键盘〈即数字操作器〉输入频率设定植, 屏显故障现象依旧。

第二步,采用比较法检测,即用MODEL100信号发生器分别从控制端子FI-FC,FV-FC输入4~2mA,0~10V模拟信号,结果屏显故障现象依旧。

从键盘输入数码〈参数设定值〉,是通过编码扫描程序进入CPU系统,控制端子输入的模拟信号则是经过A/D转换后并经逻辑电路处理进入CPU系统。

通过排斥法和比较法的检测,可以确认A/D转换电路正常。

芯片L 7300526A 采用数字双边沿调制载波方式产生脉宽调制信号,驱动晶体管功率模块构成的三相逆变器。

载波频率等于输出频率和载波倍数的乘积。

对于载波倍数的每个值,芯片内部的译码器都保存一组相应的δ值(δ值是一个可调的时间间隔量,用于调制脉冲边沿)。

每个δ值都是以数字形式存储,与它相应的脉冲调制宽度由对应数值的计数速率所确定。

译码器根据载波频率和δ调制,最终得出控制信号。

译码器总共产生3个控制信号,每个输出级分配1个,它们彼此相差120°相位角。

616P5的载波参数n050设定的载波变化区间分别是[1、2、4~6]、[8]、[7~9]。

[1、2、4~6]载波频率=设定值×⒉5kHz(固定),(同理8、7~9省略)。

输出频率=载波频率/载波倍数。

根据616P5的载波参数n050的含义,重新核查载波设置值,结果发现屏显输出的是一个非有效值“ 10” 且不可调(616P5载波变化区间的有效值为1-9); 由此可见“屏显输出50Hz不可变”的故障显然与载波倍数的δ有关。

现以附图作进一步的分析,载波在一个周期内有9个脉冲,它的两个边沿都用一个可调的时间间隔量δ加以调制而且使δ∝sinθ。

θ为未被调制时载波脉冲边沿所处的时间或称为相位角。

sinθ为正值时,该处的脉冲变宽,sinθ为负值时,该处的脉冲变窄。

输出的三相脉冲边沿及周期性显然为δ∝sinθ所调制。

如附图三相输出电压所示。

从附图中可以看出变频器若在基频下运行,载波调制的脉冲个数必然要足够的多。

附图中的VR-Y就是R相和Y相相减的线电压。

这显然也表明了在一个周期内载波脉冲的个数越多,线电压平均值波形越接近正弦。

综上所述,载波调制功能的正常与否直接影响功率晶体管开关频率的变化,从而影响输出电压(即频率)的变化。

4 结束语该故障的根本原因是L 7300526A 的CPU 系统内部的译码器δ调制程序读出异常。

像雷电的感应波、电网峰、谷浪涌、4~20mA 电流异常等,这些干扰性的因素冲击都有可能造成CPU 程序异常。

( 限于资料方面的技术原因,笔者无法利用笔记本电脑手段诊断该变频器的CPU 程序,以作更为具体的查证) 。

更换主控板ETC615162-S3013 。

变频器恢复正常运行。

安川变频器的结构形式安川变频器主回路及控制回路构成1)整流器:AC---DC二极管整流UO=Ed2)充电限流电阻R:抑制di/dt3)旁路接触器MC:线圈控制过程,电压检测方式80﹪Edn4)滤波电容C:滤波、储能、抑制电压突变(瞬停保护)5) F快速熔断器:保护IGBT以防故障进一步扩展。

6)AC、CT1、DC、CT2:电流互感器,因DC中电流含有较高谐波分量,AC电流是变频F变化,且不是规范的50HZ正弦波,因此备件定货时,安川变频器一定采用同类产品。

7)主功率器件IGBT:检查方法,器件更换时,型号、导热胶、三菱(CM)、东芝、富士电压等级(CM400HA-24G。

CM300HA-12G)8)浪涌尖峰噪声吸收模块(R、C、D)开关速度过快(频率过高)9)安川变频器充电指示灯:DC27V以上10)冷却风机检测、温度检测、MC辅助触点检测。

11) PG及PG卡:600P/RA相、B相脉冲。

12)驱动板,供电电源由UPN提供并向主控板手持编程器提供门极驱动板与主回路相关联,因此易损坏。

13)通讯卡(P-2161/F)安全、可靠、速度快。

14)安川变频器制动单元及制动电阻。

制动单元电压跳线器设置考虑,制动电阻温升阻15)手持全数字编程器安川变频器的保养与维护1.安川变频器由功率晶体管、可控硅、 IC 等半导体零件、电容、电阻等电子零件以及风扇、继电器等大量的零件构成。

这些所有零件不能正常动作,则无法发挥其原有的性能。

但是,这些所有零件不是永久可使用的,就是在正常使用环境中使用年限超过后也会发生特性变化和异常动作。

为了防止这些故障,预防保养及日常维护定期维护,零件的交换是必要的。

2.日常维护和定期维护一般的使用条件下(周围温度:年平均 30 摄氏度,负载率 80% 以下,工作率每天 12 小时以下)的日常维护3.预防保养的零件替换安川变频器使用的主要零件的标准年数如下表:表中的交换年数是上图(故障类型)所示的偶发故障期间 Ta---Tb ,此期间过后如替换新品,可以高概率防止磨损故障的发生。

安川变频器的常见故障及维修对策1 开关电源损坏开关电源损坏是众多变频器最常见的故障,通常是由于开关电源的负载发生短路造成的,在众多变频器的开关电源线路设计上,安川变频器因该说是比较成功的。

616G3采用了两级的开关电源,有点类似于富士G5,先由第一级开关电源将直流母线侧500多伏的直流电压转变成300多伏的直流电压。

然后再通过高频脉冲变压器的次级线圈输出5V、12V、24V等较低电压供变频器的控制板,驱动电路,检测电路等做电源使用。

在第二级开关电源的设计上安川变频器使用了一个叫做TL431的可控稳压器件来调整开关管的占空比,从而达到稳定输出电压的目的。

前几期我们谈到的LG变频器也使用了类似的控制方式。

用作开关管的QM5HL-24以及TL431都是较容易损坏的器件。

此外当我们在使用中如若听到刺耳的尖叫声,这是由脉冲变压器发出的,很有可能开关电源输出侧有短路现象。

我们可以从输出侧查找故障。

此外当发生无显示,控制端子无电压,DC12V,24V风扇不运转等现象时我们首先应该考虑是否开关电源损坏了。

2 SC故障SC故障是安川变频器较常见的故障。

IGBT模块损坏,这是引起SC故障报警的原因之一。

此外驱动电路损坏也容易导致SC故障报警。

安川在驱动电路的设计上,上桥使用了驱动光耦PC923,这是专用于驱动IGBT模块的带有放大电路的一款光耦,安川的下桥驱动电路则是采用了光耦PC929,这是一款内部带有放大电路,及检测电路的光耦。

此外电机抖动,三相电流,电压不平衡,有频率显示却无电压输出,这些现象都有可能是IGBT模块损坏。

IGBT模块损坏的原因有多种,首先是外部负载发生故障而导致IGBT模块的损坏如负载发生短路,堵转等。

其次驱动电路老化也有可能导致驱动波形失真,或驱动电压波动太大而导致IGBT损坏,从而导致SC故障报警。

3 OH—过热过热是平时会碰到的一个故障。

相关文档
最新文档