2020年福建省福州市初中毕业班质量检测卷(数学卷)附详细解析
2020-2021学年福建省初中毕业生学业质量检查数学试题及答案解析
最新福建省初中学业质量检查数学试卷(试卷满分:150分;考试时间:120分钟) 友情提示:所有答案必须填写到答题卡相应的位置上.一、选择题(每小题3分,共21分):每小题有四个答案,其中有且只有一个答案是正确的.请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答一律得0分. 1.-2016的倒数是().A .12016B .12016- C .2016 D .-2016.2.下图中所示的几何体是由一些小立方块搭成的,则这个几何体的主视图是( ).3.某同学一周中每天跑步所花时间(单位:分钟)分别为:35,40,45,40,55,40,48.这组数据的众数是( ).A .35B .40C .45D .55. 4.要使函数1-=x y 有意义,自变量x 的取值范围是( )A .x ≥1B .x ≤1C .x >1D .x <1. 5.已知∠1=40°,则∠1的余角的度数是() A .40°B .50° C .140° D .150°.6.如图,C 是⊙O 上一点,若圆周角∠ACB=40°, 则圆心角∠AOB 的度数是( )A .50°B .60°C .80°D .90° .7. 如图,在直角△ABC 中,∠C=90°,BC=3,AC=4,D 、E 分别 是AC 、BC 上的一点,且DE=3,若以DE 为直径的圆与斜 边AB 相交于M 、N ,则MN 的最大值为() A.58 B. 2 C.512 D. 514. 二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答. 8.比较大小:13____4(填“>”、“<”或“=”).9. 泉州湾跨海大桥全长26 700米,将26 700用科学记数法记为 . 10.分解因式:162-m =.11.不等式4x ﹣8<0的解集是 .12.计算:aa a 112+-=___________. 13.如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,BC=6 ,则DE=.14.如图,在△ABC 中,∠C=90°,AB=13,BC=5,则A sin =.15.如果关于x 的方程022=+-k x x (k 为常数)有两 个不相等的实数根,那么k 的取值范围是 . 16.若圆锥的母线长为3cm ,底面半径为2cm , 则圆锥的侧面展开图的面积 cm 2.17.平面直角坐标系中的任意两点),(111y x P ,),(222y x P ,把),(21P P d =2121y y x x -+- 称为1P ,2P 两点间的直角距离.(1)若点1P (1,2),2P (3,4),则),(21P P d =_________; (2)点M(2,3)到直线2+=x y 上的点的最小直角距离是.三、解答题(共89分):在答题卡上相应题目的答题区域内作答. 18.(9分)计算:012016224327--+⨯-÷-.19.(9分)先化简,再求值:()()3)3(42-+-+a a a ,其中43-=a .20.(9分)在一个不透明的布袋中,装有三个小球,小球上分别标有数字“2”、“3”和“4”,它们除数字不同外没有任何区别,每次实验先搅拌均匀.(1)从中任取一球,则摸出的球为“3”的概率是多少?(2)从中任取一球,将球上的数字记为x ,将此球放回盒中;再任取一球,将球上的数字记为y ,试用画树状图(或列表法)表示所有可能出现的结果,并求出5<+y x 的概率.21.(9分)如图,在△AEC 中,点D 是EC 上的一点,且AE=AD ,AB=AC ,∠1=∠2.求证:BD=EC .1 222.(9分)某校在开展师生捐书活动中,为了解所捐书籍的种类,对部分书籍进行了抽样 调查,并根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请补全条形统计图; (2)求出图1中表示文学类书籍的扇形圆心角度数;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?23.(9分)某商场购进一种每件价格为100元的商品,在商场试销发现:销售单价x (元/件)(100≤≤x 160)与每天销售量y (件)之间满足如图所示的关系: (1)求出y 与x 之间的函数关系式;(2)当销售单价定为多少元时,每天可获得700元的利润.24.(9分) 在平面直角坐标系xOy 中,直线314y x =+与x 轴交于点A ,且与反比例函数 k y x =(0>x )的图象交于点8,3B m ⎛⎫ ⎪⎝⎭. (1)求k 、m 的值;(2)若BC y //轴,且点C 到直线314y x =+ AOxyB3050150130x y O的距离为2,求点C 的纵坐标.25.(13分) 如图1,正方形ABCD 的边长为2,点E 不在正方形的外部,AE=2,过点E 作直线MN ⊥AE 交BC 、CD 分别于M 、N ,连接AM 、AN ,设BM=a . (1)正方形ABCD 的周长= . (2)求DN 的长(用含a 的式子表示).(3)如图2,过点M 作直线l ⊥BC , P 是直线l 上的动点,当△ANP 是等腰直角三角形时,求a的值.26.(13分)如图,抛物线为()()3133-+=x x y 与x 轴交于A 、B 两点(点A 在点B 左侧),点C (2,m )在抛物线上,点C 关于x 轴的对称点为D ,连结AD,CD. (1)填空:m =;(2)点E 是坐标平面的动点,若以点A 、C 、D 、E 为顶点的四边形是平行四边形,直接写出点E 坐标;(3)若P (a ,b )是抛物线上一动点,且位于A 、C 两点之间,设四边形APCD 的面积为S ,求S 与a 之间的函数关系式,并求S 的最大值; (4)若直线3y x m =+上存在动点Q ,使∠AQD=90°,求出m 的取值范围. E D C B A M N 图1 El图2N MAB CD数学试题参考答案说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题3分,共21分)1.B 2.D 3.B 4.A 5.B 6.C 7.C 二、填空题(每小题4分,共40分)8.> 9.2.67× 104 10.)4)(4(-+m m 11.2<x 1 2.2 13. 3 14.13515.k <1 16.6π 17.(1)4, (2)1 三、解答题(共89分) 18.(本小题9分)解:原式=3-2+2-18分=2 9分19.(本小题9分)解:原式=916822+-++a a a =8a +25 6分当43-=a 时,原式= 19 9分 20.(本小题9分)解:(1)根据题意得:摸出的球为“3”的情况有1个,则P(3)=31;3分 (2)画出树状图如下:6分3 4 开始2 2342 342 3 421证明:∵∠1=∠2∴∠DAB=∠EAC 3分 ∵AE=AD AB=AC 5分 ∴△EAC ≌△DAB , 7分 ∴BD=EC . 9分22.(本小题9分)(1)40,正确补充图形;4分 (2)126° 6分 (3)360本 9分答: 23.(本小题9分)解:设y 与x 之间的函数关系式为b kx y +=(0≠k ),1分 由所给函数图象可知,⎩⎨⎧=+=+3015050130b k b k 2分解得.⎩⎨⎧=-=1801b k 3分 故y 与x 的函数关系式为180+-=x y 4分 (2)∵180+-=x y ,依题意得∴(x ﹣100)(﹣x +180)=700 6分 x 2-280x +18700=0解得x 1=110,x 2=170 7分 ∵100≤≤x 160, ∴取x =110, 8分答:售价定为110元/件时,每天可获利润700元. 9分 24.(本小题9分)解: (1) 点8,3B m ⎛⎫⎪⎝⎭在直线314y x =+上m =3k =8 4分(2) 当点C 在直线AB 的上方,过点C 作CD ⊥AB,延长CB 交x 轴于E∴OE=38AE=4 BE=3 AB=5 ∵CD=2 sin ∠ABE= sin ∠CBD=BC CD =546分∴BC=25 CE=211∴点C 的纵坐标是211 7分当点C 在直线AB 的下方,过点C 作CD ⊥AB,延长BC 交x 轴于EAEC DByxOAEOxyB DCl E F P M N A DC B 同理可求得BC=25 CE=21∴点C 的纵坐标是219分 ∴点C 的纵坐标是21,21125.(本小题13分)(1)8 2分(2)如图1,BM a =,设DN=x 在正方形ABCD 中,∠B=∠C=∠D=90°,AB=BC=CD=2 ∵2=AE ,MN AE ⊥于E ∴在ABM Rt ∆和AEM Rt ∆中, AE AB =,AM AM = ∴ABM Rt ∆≌AEM Rt ∆∴a EM BM ==,a CM -=2 同理,x EN DN ==,x CN -=2 ∴x a MN += 3分在NMC Rt ∆中,222MN CN CM =+222)()2()2(x a x a +=-+- 4分解得224+-=a a x ∴DN =224+-a a5分 (3)当AN 是斜边时,PN PA =,︒=∠90APN若P 在AN 下方,如图2,过P 作AB EF ⊥于E ,交CD 于F , 则︒=∠=∠90PFN AEP ,PF =2-a ,∵︒=∠+∠90EPA NPF ,︒=∠+∠90EPA EAP ∴NPF EAP ∠=∠ ∴AEP ∆≌PFN ∆∴a PF AE -==2,a EP FN == ∵DN FN AE +=∴2242+-+=-a aa a 解得0=a , 此时P 与M 和B 重合,N 与C 重合,APN ∆是等腰直角三角形,符合题意。
福建省福州市2020年七年级第二学期期末学业质量监测数学试题含解析
福建省福州市2020年七年级第二学期期末学业质量监测数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题只有一个答案正确)1.如果点P(m﹣1,4﹣2m)在第四象限,那么m的取值范围是()A.m>1 B.m>2 C.2>m>1 D.m<2【答案】B【解析】【分析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣1,4﹣1m)在第四象限,∴10420mm-⎧⎨-⎩>①<②,解不等式①得,m>1,解不等式②得,m>1,所以不等式组的解集是:m>1,所以m的取值范围是:m>1.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.下列各数:0,32,(-5)2,-4,-|-16|,π,其中有平方根的个数是( )A.3个B.4个C.5个D.6个【答案】B【解析】【分析】由于负数没有平方根,先计算所给的数,再根据平方根的定义即可判断.【详解】∵(-5)2=25>0,-4<0,-|-16|=-16<0,题中数据非负数有0,32,(-5)2=25,π,共4个.故选B.【点睛】本题主要考查了平方根定义的运用.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根并且互为相反数,我们把正的平方根叫a的算术平方根.若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.3.如图,矩形纸片ABCD沿EF折叠后,∠FEC=25°,则∠DFD1的度数为()A.25°B.50°C.75°D.不能确定【答案】B【解析】试题分析:∵AD∥BC,∠FEC=25°,∴∠EFG=∠FEC=25°,∵∠EFG+∠EFD=180°,∴∠EFD=180°﹣25°=155°.由翻折变换的性质可知∠EFD1=∠EFD=155°,∴∠GFD1=∠EFD1﹣∠EFG=155°﹣25°=130°.∵∠DFD1+∠GFD1=180°,∴∠DFD1=180°﹣130°=50°.故选B.考点:平行线的性质4.下列实数中,是无理数的为()A.B.C.0 D.-3【答案】A【解析】试题分析:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像1.1111111111…,等有这样规律的数.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.考点:无理数5.不等式组11023x+2>-1x ⎧-≥⎪⎨⎪⎩的解集是( )A .-1<x≤2B .-2≤x<1C .x <-1或x≥2D .2≤x<-1【答案】A【解析】 11023x+2>-1x ⎧-≥⎪⎨⎪⎩①②, 由①得,x ⩽2,由②得,x>−1,所以,不等式组的解集是−1<x ⩽2.故选:A.6.已知x ,y 满足231325x y x y -=⎧⎨-=⎩①②,如果①×a+②×b 可整体得到x+11y 的值,那么a ,b 的值可以是( ) A .a 2=,b 1=-B .a 4=-,b 3=C .a 1=,b 7=-D .a 7=-,b 5= 【答案】D【解析】【分析】把a 和b 的值逐项代入①×a+②×b 验证,即可求出答案.【详解】A. 把①×2+②×(-1)得,x-4y=-3,故不符合题意;B. 把①×(-4)+②×3得,x+6y=11,故不符合题意;C.把①×1+②×(-7)得,-19x+11y=-34,故不符合题意;D.把①×(-7)+②×5得,x+11y=18,故符合题意;故选D.【点睛】本题考查了加减法解二元一次方程组,解答本题的关键是熟练掌握整式的运算法则.7.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数()x 在120200x ≤<范围内人数占抽查学生总人数的百分比为( )A .43%B .50%C .57%D .73%【答案】C【解析】 分析:用120≤x <200范围内人数除以总人数即可.详解:总人数为10+33+40+17=100人,120≤x <200范围内人数为40+17=57人,在120≤x <200范围内人数占抽查学生总人数的百分比为57100=57%. 故选C .点睛:本题考查了频数分布直方图,把图分析透彻是解题的关键.8.下列数中﹣1743π,,,0,380.316-,,,2.121221222…(每两个1之间依次多一个2)是无理数的有( ) A .3B .4C .5D .6【答案】A【解析】【分析】 38216化为4的形式,再根据无理数的定义进行解答即可.【详解】 ∵3816=4,∴﹣1π743,,,1381.316⋅, 2.121221222…(每两个1之间依次多一个2)π73,,2.121221222…(每两个1之间依次多一个2),一共3个.故选A .【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数,含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果,是解题的关键. 9.小亮从家出发步行到公交站台后,再等公交车去学校,如图,折线表示这个过程中小亮行驶的路程s (千米)与时间t (分)之间的关系.下列说法错误..的是( )A .他家离公交车站台1千米远B .他等公交车的时间为14分钟C .公交车的速度是500米/分D .他步行速度是0.1千米/分【答案】B【解析】【分析】根据图像中的条件分析即可解答.【详解】 解:已知小亮从家出发步行到公交站台后,再等公交车去学校,① 在家一千米处停下,故A 正确.② 暂停时间为14-10=4分钟,故B 错误.③ 公车行驶22-14=8分钟,行驶了5-1=4km,故速度为500m/min,C 正确.④ 十分钟步行一千米,速度为0.1km/min,D 正确.故选B.【点睛】本题考查看图分析问题,重点是看清关键点的信息与单位.10.在以下三个命题中,正确的命题有( )①,,a b c 是三条不同的直线,若a 与b 相交,b 与c 相交,则a 与c 相交②,,a b c 是三条不同的直线,若//a b ,//b c ,则//a c③若α∠与β∠互补,β∠与γ∠互补,则α∠与γ∠互补A .②B .①②C .②③D .①②③【答案】A【解析】【分析】根据直线的位置关系、平行公理的推论、补角的性质逐一进行分析判断即可得.【详解】①,,a b c 是三条不同的直线,若a 与b 相交,b 与c 相交,则a 与c 相交或平行或不在同一平面内,故①错误;②,,a b c 是三条不同的直线,若//a b ,//b c ,则//a c ,正确;③若α∠与β∠互补,β∠与γ∠互补,则α∠与γ∠相等,故③错误,故选A.【点睛】本题考查了直线的位置关系,平行公理的推论,补角的性质,熟练掌握相关知识是解题的关键.二、填空题11.已知32211a a -=-,则a 的值为________.【答案】0,±1,±2【解析】【分析】根据0,±1的立方根等于它本身解答即可. 【详解】因为321a -=1-a 2,所以1-a 2=0或1或-1.①当1-a 2=0时,a 2=1,所以a =±1; ②当1-a 2=1时,a 2=0,所以a =0;③当1-a 2=-1时,a 2=2,所以a =±2.综上所述:a 的值为0,±1,±2. 故答案为:0,±1,±2. 【点睛】本题考查了立方根的性质.熟记0,±1的立方根等于它本身是解题的关键. 12.如图,将一张长方形纸条沿某条直线折叠,若∠1=118°,则∠2等于_____.【答案】59°.【解析】【分析】根据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】如图,∵AB ∥CD ,∴∠1=∠BAC =118°,由折叠可得,∠BAD =12∠BAC =59°, ∵AB ∥CD ,∴∠2=∠BAD =59°,故答案为:59°.【点睛】本题考查了折叠的问题,掌握平行线的性质以及折叠的性质是解题的关键.13.二元一次方程23x y -+=,改写成用含x 的代数式表示y 的形式为______.【答案】23y x =+【解析】【分析】把x 看做已知数求出y 即可.【详解】解:方程-2x+y=3,解得:y=2x+3,故答案为:y=2x+3【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.14.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.【答案】()3,4-【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4).考点:象限内点的坐标特征.15.已知等式2530m x ++= 是关于x 的一元一次方程,则m=____________.【答案】-1【解析】试题分析:只含有一个未知数,且所含未知数的次数为1的整式方程叫做一元一次方程. 由题意得,.考点:一元一次方程的定义点评:本题属于基础应用题,只需学生熟练掌握一元一次方程的定义,即可完成.16.一个小球在如图所示的地砖上自由地滚动,并随机地停留在某块地砖上,那么这个小球最终停留在阴影区域的概率为____________.【答案】38【解析】【分析】先求出阴影方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】∵由图可知,阴影方砖3块,共有8块方砖, ∴阴影方砖在整个地板中所占的比值为38, ∴它停在阴影区域的概率是38, 故答案为38. 【点睛】本题考查的是几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.17.已知{21x y ==是关于x 、y 的方程230x y k -+=的解,则k =______.【答案】1-【解析】【分析】知道了方程的解,可以把这对数值代入方程, 得到一个含义未知数k 的一元一次方程,从而可以求出k 的值.【详解】 把21x y =⎧⎨=⎩代入原方程,得 22130k ⨯-+=,解得1k =-..故答案为:1【点睛】解题关键是把方程的解代入方程,关于x和y的方程转变成是关于k的一元一次方程,求解即可.三、解答题18.某学校对学生暑假参加志愿服务的时间进行抽样调查,将收集的数据分成、、、、五组进行整理,并绘制成如下的统计图表(图中信息不完整).分组统计表组别志愿服务时间(时)人数AB 40CDE 16请结合以上信息解答下列问题(1)求、、的值;(2)补全“人数分组统计图①中组的人数和图②组和组的比例值”;(3)若全校学生人数为800人,请估计全校参加志愿服务时间在的范围的学生人数.【答案】(1)a=4,m=80, n=60;(2)见解析;(3)的范围的学生人数为240人.【解析】【分析】(1)根据E组人数和E的百分比求出总人数,用总人数乘以C、D组的百分比可分別求得m、n的值,根据各组人数之和等于总人数可得a的值;(2)用a、m的值除以总人数求得A、B组的百分比,结合(1)中所求数据可补全统计图;(3)总人数乘以样本中D组的百分比可得.【详解】解:(1)∵本次调查的总人数为(人)则,∴(2)组的百分比为,组百分比为补全统计图如下:(3)估计全校参加志愿服务时间在的范围的学生人数为(人)【点睛】本题考查的是条形统计图和扇形统计图的综合运用、用样本估计总体等,读懂统计图,从不同的统计图中得到必要的信息是解决问的关键.19.如图,这是人民公园的景区示意图.以中心广场为原点,分别以正东、正北方向为x 轴、y 轴正方向建立平面直角坐标系,规定一个单位长度代表100m 长.已知各建筑物都在坐标平面网格的格点上,且东门的坐标为(400,0).(1)请写出图中下列地点的坐标:牡丹园;游乐园;(2)连接音乐台、湖心亭和望春亭这三个地点,画出所得的三角形.然后将所得三角形向下平移200m,画出平移后的图形;(3)问题(2)中湖心亭平移后的对应点的坐标为.【答案】(1)(300,300),(200,−200);(2)见解析;(3)(−300,0).【解析】【分析】(1)根据已知中心广场为原点,进而得出各点坐标即可;(2)利用平移的性质进而得出平移后三角形即可;(3)利用所画图形进而得出湖心亭平移后的对应点的坐标.【详解】(1)∵东门的坐标为(400,0),∴牡丹园坐标为:(300,300),游乐园坐标为:(200,−200);故答案为:(300,300),(200,−200);(2)如图所示:△ABC即为所求;(3)湖心亭平移后的对应点的坐标为:(−300,0).故答案为:(−300,0).【点睛】此题考查利用平移设计图案,解题关键在于掌握作图法则.20.分解因式:(1)2250a -;(2)4224816x x y y -+.【答案】(1)1(a+5)(a ﹣5);(1)(x+1y )1(x ﹣1y )1.【解析】【分析】(1)先提取公因式1,再对括号里面用平方差公式因式分解;(1)先用完全平方公式因式分解,再对括号里面用平方差公式因式分解.【详解】解:(1)原式=1(a 1-15)=1(a+5)(a -5);(1)原式=(x 1-4y 1)1=[(x+1y )(x -1y )]1=(x+1y )1(x -1y )1.【点睛】本题考查因式分解优先提取公因式,若括号里面能继续因式分解则要分解到不能继续因式分解为止. 21.如图,点B 、F 、C 、E 在直线l 上(F 、C 之间不能直接测量),点A 、D 在l 异侧,测得AB DE =,AB ∥DE ,A D ∠=∠.(1)求证:ABC ∆≌DEF ∆;(2)若10BE m =,3BF m =,求FC 的长度.【答案】(1)见解析;(2)FC=4m .【解析】【分析】(1)先证明∠ABC=∠DEF ,然后利用ASA 进行证明即可;(2)根据全等三角形的对应边相等可得BC=EF ,继而可得BF=EC ,从而即可求得答案.【详解】(1)∵AB ∥DE ,∴∠ABC=∠DEF ,在△ABC 与△DEF 中,ABC DEF AB DEA D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF ;(2)∵△ABC ≌△DEF ,∴BC=EF ,∴BF+FC=EC+FC ,∴BF=EC.∵BE=10m ,BF=3m ,∴FC=10﹣3﹣3=4m.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.22.如图,点E 、F 在AC 上,DF =BE ,AE =CF ,∠AFD =∠CEB .求证:AD ∥CB .【答案】见解析.【解析】【分析】根据等式的性质得出AF =CE ,进而利用SAS 证明△ADF 与△CBE 全等,进而利用全等三角形的性质和平行线的判定解答即可.【详解】∴AE =CF∴AE ﹣EF =CF ﹣EF ,即AF =CE ,又∵∠AFD =∠CEB ,DF =BE ,△ADF ≌△CBE (SAS ),∴∠A =∠C∴AD ∥CB .【点睛】本题主要考查了全等三角形的判定和性质,关键是根据等式的性质得出AF =CE ,进而利用SAS 证明△ADF 与△CBE 全等解答.23.“五水共治”吹响了浙江大规模环境保护的号角,小明就自己家所在的小区“家庭用水量”进行了一次调查,小明把一个月家庭用水量分成四类:A类用水量为10吨以下;B类用水量为10﹣20吨;C类用水量为20﹣30吨;D类用水量为30吨以上.图1和图2是他根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)求小明此次调查了多少个家庭?(2)已知B类,C类的家庭数之比为5:6,根据两图信息,求出B类和C类分别有多少户家庭?(3)补全条形统计图,并计算出扇形统计图中“C类”部分所对应的扇形的圆心角的度数;(4)如果小明所住小区共有1200户,请估算全小区属于A类节水型家庭有多少户?【答案】(1)小明此次调查的家庭数是90户;(2)B类的户数是30户,C类的户数是36户;(3)144°.作图见解析;(4)属于A类节水型家庭户数是300户.【解析】【分析】(1)根据D类的户数是9,所占的百分比是10%,据此即可求得调查的总户数;(2)首先求得B和C两类的总户数,然后根据二者的比值是5:6即可求解;(3)利用360°乘以对应的比例即可求解;(4)利用总户数乘以对应的比例即可求解.【详解】(1)小明此次调查的家庭数是:9÷10%=90(户);(2)B和C两类的总户数是90﹣15﹣9=66(户),则B类的户数是:66×556=30(户),则C类的户数是66﹣30=36(户);(3)扇形统计图中“C类”部分所对应的扇形的圆心角的度数是:360°×3690=144°.补图如下,(4)属于A 类节水型家庭户数是:1200×1590=300(户). 【点睛】 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.如图1,点A 、D 在y 轴正半轴上,点B 、C 分别在x 轴上,CD 平分ACB ∠,与y 轴交于D 点,90CAO BDO ∠=︒-∠. (1)求证:AC BC =.(2)如图2,点C 的坐标为(4,0),点E 为AC 上一点,且DEA DBO ∠=∠,求BC EC +的长.(3)如图3,过D 作DF AC ⊥于F 点,点H 为FC 上一动点,点G 为OC 上一动点,当H 在FC 上移动、点G 在OC 上移动时,始终满足GDH GDO FDH ∠=∠+∠,试判断FH 、GH 、OG 这三者之间的数量关系,写出你的结论并加以证明.【答案】见解析.【解析】【分析】(1)利用AAS 证明ACD 和BCD 全等,可以得到AC=BC.(2) 过D 作DM AC ⊥于M ,利用(1)的结论证明EMD 和BOD 全等,C MD 和COD 全等,利用等量代换可得BC EC +的长.(3) 由(1)可知:DF DO =,在x 轴负半轴上取OM FH =,连接DM ,证明DFH 和DOM △全等,HDG △≌MDG ,可以得到GH FH OG =+.【详解】(1)证明:∵90AOC DOB ∠=∠=︒,∴90DBO BDO ∠=︒-∠,∵90CAO BDO ∠=︒-∠,∴DBO CAO ∠=∠,∵CD 平分ACB ∠, ∴12ACD BCD ACB ∠=∠=∠, ∵DC DC =,∴ACD ≌()BCD AAS ,∴AC BC =.(2)解:过D 作DM AC ⊥于M ,由(1)得DBO CAO ∠=∠,∵DEA DBO ∠=∠,∴DEA CAO ∠=∠,∵90EMD DOB ∠=∠=︒,又∵CD 平分ACB ∠,∴DM DO =,12ACD BCD ACB ∠=∠=∠, ∴EMD ≌()BOD AAS ,∴ME BO =,∴BC EC BO OC EC +=++,BO EC OC =++,ME EC OC =++,CM CO =+,∵DC DC =,∴CMD △≌()COD AAS ,∴4CM CO ==,∴28BC EC CO +==.(3)解:由(1)可知:DF DO =,在x 轴负半轴上取OM FH =,连接DM ,在DFH 和DOM △中,90DF DO DFH DOM OM FH =⎧⎪∠=∠=︒⎨⎪=⎩,∴DFH ≌()DOM SAS ,∴DH DM =,1ODM ∠=∠,∴122GDH ODM GDM ∠=∠+∠=∠+∠=∠,∵DG DG =,∴HDG △≌()MDG SAS ,∴MH GH =,∴GH OM OG FH OG =+=+.25.五一节前夕,某商店从厂家购进A B 、两种礼盒,已知A B 、两种礼盒的单价比为2:3,单价和为200元 (1)求A B 、两种礼盒的单价分别是多少元?(2)该商店购进这两种礼盒恰好用去8800元,且购进A 种礼盒最多32个,B 种礼盒的数量不超过A 种礼盒数量的2倍,共有哪几种进货方案?(3)根据市场行情,销售一个A 种礼盒可获利10元,销售一个B 种礼盒可获利16元.为奉献爱心,该商店决定每售出一个B 种礼盒,为爱心公益基金捐款m 元,每个A 种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m 的值是多少?此时该商店可获利多少元?【答案】(1)4种礼盒单价为80元,B 种礼盒单价为120元;(2)方案有2种,第一种: A 种礼盒29个,B 种礼盒54个;第二种: A 种礼盒32个,B 种礼盒52个;(3)1m =,1100元 【解析】【分析】(1)设A 种礼盒的单价为2x 元,B 种礼盒单价为3x 元,根据题意列出方程,求出方程的解即可得到结果;(2)设A 种礼盒购进a 个,B 种礼盒购进b 个,根据题意列出不等式组,求出解集确定出所求即可; (3)设该商店获利W 元,表示出W 与b 的一次函数,根据函数性质确定出所求即可.【详解】解:()1设A 种礼盒单价为2x 元,B 种礼盒单价为3x 元,依题意得:23200x x +=解得: 40,x =经检验,符合题意.则2803120x x ==,. 答:4种礼盒单价为80元,B 种礼盒单价为120元()2设A 种礼盒购进a 个,B 种礼盒购进b 个,则801208800,a b +=依题意得:328800802120a a a ≤⎧⎪-⎨≤⎪⎩ 解得:27.532,a ≤≤礼盒个数为整数,∴符合的方案有2种,分别是:第一种: A 种礼盒29个,B 种礼盒54个; 第二种: A 种礼盒32个,B 种礼盒52个; ()3设该商店获利W 元,由()2可知:()31016110,2W a m b a b =+-=-, 则()11100W m b =-+,若使所有获利相同相同,则101,m m -==, 此时,该商店可获利1100元.【点睛】此题考查了一元一次方程、一元一次不等式组及一次函数的应用,根据题意找到数量关系是解本题的关键.。
2020年福州市九年级质量检测数学试题答案及评分参考
A F D EBC 数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、选择题:共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂.1.A 2.C 3.A 4.B 5.B6.A 7.B 8.C 9.C 10.D二、填空题:共6小题,每小题4分,满分24分,请在答题卡的相应位置作答.11.112.14 13.15 14.4 15.18 16.94三、解答题:共9小题,满分86分,请在答题卡的相应位置作答.17.(本小题满分8分)解:解不等式①,得x ≤3. ······························································································ 3分解不等式②,得x >1 . ···························································································· 5分∴原不等式组的解集是1 <x ≤3, ··············································································· 6分 将该不等式组解集在数轴上表示如下:······························································· 8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE CF ,∴BE EF CF EF ,即BF CE . ········································································································· 3分在△ABF 和△DCE 中,AB DC B C BF CE ,,, ∴△ABF ≌△DCE , ······························································································· 6分∴∠A ∠D . ······································································································· 8分12345-1-2-3 -4-5019.(本小题满分8分) 解:原式221(1)(1)(1)x x x x ······················································································· 3分 2(1)(1)111x x x x x ·························································································· 4分 221111x x x x ·································································································· 5分 21x . ··········································································································· 6分当1x时,原式 ················································································· 7分. ····················································································· 8分20.(本小题满分8分)解:画法一:画法二:······························································· 4分如图,点C ,D 分别为(1),(2)所求作的点. ························································ 5分(2)证明如下:由(1)得BC ∥OA ,BC 12OA , ∴∠DBC ∠DAO ,∠DCB ∠DOA ,∴△DBC ∽△DAO , ············································································ 7分∴12DC BC DO AO , ∴OD 2CD . ····················································································· 8分21.(本小题满分8分)解:(1)由图1可得甲的速度是1202=60 m/min . ································································ 2分由图2可知,当43x 时,甲,乙两人相遇, 故4(60)2003v 乙, 解得90v 乙m/min . ···························································································· 4分答:甲的速度是60 m/min ,乙的速度是90 m/min .(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴20020909b , ······························································································· 6分 20010603a . ································································································ 8分 ∴a 的值为103,b 的值为209.22.(本小题满分10分)解:(1)依题意得100a . ······························································································ 2分这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x , ········· 6分 ∴估计这1000户家庭月均用水量的平均数是14.72.(2)解法一:不合理.理由如下: ··············································································· 7分由(1)可得14.72在12≤x <16内,∴这1000户家庭中月均用水量小于16 t 的户数有40100180280600 (户), ···························································· 8分∴这1000户家庭中月均用水量小于16 t 的家庭所占的百分比是600100%60%1000, ∴月均用水量不超过14.72 t 的户数小于60%. ············································· 9分∵该市政府希望70%的家庭的月均用水量不超过标准m ,而60%<70%,∴用14.72作为标准m 不合理. ······························································· 10分解法二:不合理.理由如下: ··············································································· 7分∵该市政府希望70%的家庭的月均用水量不超过标准m ,∴数据中不超过m 的频数应为700, ·························································· 8分即有300户家庭的月均用水量超过m .又2060100160300 ,2060100220380300 ,∴m 应在16≤x <20内. ·········································································· 9分而14.72<16,∴用14.72作为标准m 不合理. ······························································· 10分23.(本小题满分10分)(1)证明:连接OD ,AD .∵AB 为⊙O 直径,点D 在⊙O 上,∴∠ADB 90°,分∴∠ADC 90°. ∵E 是AC 的中点,∴DE =AE ,∴∠EAD ∠EDA . ·分 ∵OA OD ,∴∠OAD ∠ODA . ······················································································· 3分 ∵∠OAD ∠EAD ∠BAC 90°,∴∠ODA ∠EDA 90°,即∠ODE 90°, ···························································································· 4分 ∴OD ⊥DE .∵D 是半径OD 的外端点,∴DE 是⊙O 的切线. ····················································································· 5分(2)解法一:过点F 作FH ⊥AB 于点H ,连接OF , ∴∠AHF 90°.∵AB 为⊙O 直径,点F 在⊙O 上, ∴∠AFB 90°, ∴∠BAF ∠ABF 90°.∵∠BAC 90°,∴∠G ∠ABF 90°, ∴∠G ∠BAF . ························································································· 6分 又∠AHF ∠GAB 90°,∴△AFH ∽△GBA , ···················································································· 7分 ∴AF FH GB BA. ··························································································· 8分 由垂线段最短可得FH ≤OF , ········································································ 9分 当且仅当点H ,O 重合时等号成立.∵AC <AB , ∴ BD上存在点F 使得FO ⊥AB ,此时点H ,O 重合, ∴AF FH GB BA ≤12OF BA , ············································································ 10分即AF GB 的最大值为12. 解法二:取GB 中点M ,连接AM .∵∠BAG 90°, ∴AM 12GB . ·分 ∵AB 为⊙O 直径,点F 在⊙O 上, ∴∠AFB 90°,∴∠AFG 90°,∴AF ⊥GB .分 由垂线段最短可得AF ≤AM , ········································································ 8分 当且仅当点F ,M 重合时等号成立,此时AF 垂直平分GB ,即AG =AB .∵AC <AB , ∴ BD上存在点F 使得F 为GB 中点, ∴AF ≤12GB , ··························································································· 9分 ∴AF GB ≤12, ···························································································· 10分 即AF GB 的最大值为12.24.(本小题满分12分)(1)①证明:∵∠AED 45°,AE DE ,∴∠EDA 18045267.5°. ······································································· 1分 ∵AB AC ,∠BAC 90°,∴∠ACB ∠ABC 45°,∠DCA 22.5°, ························································· 2分 ∴∠DCB 22.5°,即∠DCA ∠DCB ,∴CD 平分∠ACB . ····················································································· 3分②解:过点D 作DF ⊥BC 于点F ,∴∠DFB 90°. ∵∠BAC 90°,∴DA ⊥CA . 又CD 平分∠ACB , ∴AD FD , ································································································· 4分 ∴AD FD DB DB. 在Rt △BFD 中,∠ABC 45°,∴sin ∠DBF FD DB ················································································ 5分 ∴AD DB . ······························································································· 6分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE 90°.又∠BAC 90°,∠AED 45°,∴∠BAG ∠CAE ,∠AGE 45°,∠AEC 135°, ·············································· 7分 ∴∠AGE ∠AEG ,∴AG AE . ······························································································· 8分 ∵AB AC ,∴△AGB ≌△AEC , ···················································································· 9分 ∴∠AGB ∠AEC 135°,CE BG ,∴∠BGE 90°. ························································································ 10分 ∵AE ⊥BE ,F B A C D E。
2020-2021学年福建省初中毕业生学业质量测查数学试题及答案解析
最新福建省初中学业质量测查(第二次)数 学 试 题(试卷满分:150分;考试时间:120分钟)友情提示:请认真作答,把答案准确地填写在答题卡上学校姓名考生号一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.化简4的结果是( )A .2B .2C .-2D .±2 2.下列计算错误..的是( ) A .6a + 2a =8aB .a – (a – 3) =3C .a 2÷a 2 = 0D .a –1·a 2 = a3. 下列四个平面图形中,三棱锥的表面展开图的是( )A .B .C .D . 4.学校团委组织“阳光助残”捐款活动,九年级一班学生捐款情况如下表:捐款金额(元)5102050人数(人) 10 13 12 15 A .13 B .12 C .10 D .20 5.下列事件发生属于不可能事件的是( ) A .射击运动员只射击1次,就命中靶心B .画一个三角形,使其三边的长分别为8cm ,6cm ,2cmC .任取一个实数x ,都有|x |≥0D .抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 6.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( ) A .8 B. 6 C. 4 D. 27.已知Rt △ABC 中,∠C =90°,AC =3,BC =4,AD 平分∠BAC ,则点B 到AD 的距离是( ) A .23 B .2 C .5 D .13136 E B O A (第6题图) (第7题图)二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.若70A ︒∠=,则A ∠的余角是度.9.我国第一艘航母“辽宁舰”的最大排水量为68000吨,用科学记数法表示这个数据是 吨. 10.计算:2-x x +x-22=. 11.分解因式:xy 2 – 9x =.12.如图,点O 是正五边形ABCDE 的中心,则∠BAO 的度数为 . 13. 如图,在△ABC 中,两条中线BE ,CD 相交于点O ,则S △DOE :S △DCE =. 14.若关于x 的方程x 2+(k -2)x -k2=0的两根互为相反数,则k = .15.如果圆锥的底面周长....为2πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是 cm 2.(结果保留π)16.如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连结DE .若DE :AC =3:5,则ABAD的值为 . 17.如图,在平面直角坐标系xoy 中,直线:l 3y kx k =-(0k <)与x 、y 轴的正半轴分别交于点A 、B ,动点D (异于点A 、B ) 在线段AB 上,DC ⊥x 轴于C .(1)不论k 取任何负数,直线l 总经过一个定点,写出该定点的坐标为 ;(2)当点C 的横坐标为2时,在x 轴上存在点P ,使得PB ⊥PD ,则k 的取值范围为 . 三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:232(2)2sin 60---+o -(2π-1)0.19.(9分)先化简,再求值:2x (x +1)+(x ﹣1)2,其中x =23.(第17题图)20.(9分)如图,已知四边形ABCD 是菱形,DE ⊥AB 于E ,DF ⊥BC 于F .求证:△ADE ≌△CDF .21.(9分)某校开展“中国梦•泉州梦•我的梦”主题教育系列活动,设有征文、独唱、绘画、手抄报四个项目,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.(1)此次有 名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是 度.请你把条形统计图补充完整.(2)经研究,决定拨给各项目活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少经费? 22.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片的背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为(x ,y ). (1)用树状图或列表法表示(x ,y )所有可能出现的结果;(2)求使分式yx yy x xy x -+--2223有意义的(x ,y )出现的概率;(第20题图)23.(9分)如图,在平面直角坐标系xoy 中,抛物线12-+=bx ax y 经过点A (2,﹣1),它的对称轴与x 轴相交于点B . (1)求点B 的坐标;(2)如果直线y =x +1与抛物线的对称轴交于点C , 与抛物线在对称轴右侧交于点D ,且∠BDC =∠ACB ,求此抛物线的表达式.24.(9分)某公司采购某商品60箱销往甲乙两地,已知某商品在甲地销售平均每箱的利润1y (百元)与销售数量x (箱)的关系为⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401),200(51011x x x x y 在乙地销售平均每箱的利2y (百元)与销售数量t (箱)的关系为⎪⎩⎪⎨⎧<≤+-≤<=)6030(8151),300(62t t t y(1)将y 2转换为以x 为自变量的函数,则y 2=;(2)设某商品获得总利润W (百元),当在甲地销售量x (箱)的范围是0<x ≤20时,求W 与x的关系式;(总利润=在甲地销售利润+在乙地销售利润)(3)经测算,在20<x ≤30的范围内,可以获得最大总利润,求这个最大总利润,并求出此时x 的值.25.(12分)如图,在平面直角坐标xoy 内,函数y =xm(x >0,m 是常数)的图象经过A (1,4),B (a ,b ),其中a >1.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,CB .(1)求m 的值;(2)求证:DC ∥AB ;(3)当AD =BC 时,求直线AB 的函数表达式.(第23题图).26.(14分)如图,矩形ABCD的边AB=3,AD=4,点E从点A出发,沿射线AD移动,以CE 为直径作圆O,点F为圆O与射线BD的公共点,连结EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连结CG.(1)求证:四边形EFCG是矩形;(2)求tan∠CEG的值;(3)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,求四边形EFCG面积的取值范围;(第26题图)数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题3分,共21分)1.B2.C3.B4.D5.B6.A7.C二、填空题(每小题4分,共40分)8.20;9. 46.810⨯;10. 1;11. (3)(y3)x y+-;12. 54°;13. 1:3;14. 2;15. 3π;16. 12;17.(1)(3,0);(2)303k-≤<.三、解答题(共89分)18.(本小题9分)解:原式23431=--+-……………………(8分)3=-……………………(9分)19.(本小题9分)解:原式=2x2+2x+x2﹣2x+1,……………………(6分)=3x2+1……………………(7分)当x=2时,原式=3×(2)2+1………………(8分)=37.……………………(9分)20.(本小题9分)解:∵四边形ABCD是菱形,∴AD=CD;∠A=∠C,……………………(6分)又∵DE⊥AB于E,DF⊥BC于F,∴∠AED=∠CFD=90°; ……………………(8分)在△ADE和△CDF中,∠A=∠C,∠AED=∠CFD, AD=CD;∴△ADE≌△CDF.……………………(9分)21.(本小题9分)解:(1)200,36.……………………(4分)画图如图:……………………(6分)(2)根据题意得:296×10+80×12+200×15+224×12=9608(元) 答:开展本次活动共需9608元经费. ……………………(9分) 22.(本小题9分) 解:(1)列表如下:-2 -1 1 -2 (-2,-2) (-2,-1) (-2,1) -1 (-1,-2) (-1,-1) (-1,1) 1 (1,-2) (1,-1) (1,1)……………………(5分)(2)由上表可知,所有等可能的情况共有9种,……………………(6分)∵使分式yx yy x xy x -+--2223有意义,∴x ≠y 且x ≠-y;……………………(7分)∴满足条件的点有4种,…………………(8分) 则P=49.………………(9分) (树状图略)23.(本小题9分)解:(1)∵抛物线经过点A (2,-1),∴ 4a +2b -1=-1,即 b =-2a ,………………(1分)∵-2b a =-22a a-=1,………………(2分) ∴点B 的坐标是(1,0). ………………(3分) (2)(解法1)如图2所示.由(1)得,抛物线的对称轴是x =1,可得直线y =x +1与x 轴的交点为E (-1,0), 与抛物线的对称轴的交点C (1,2),∴BE =BC =2, ∴△EBC 是等腰直角三角形;…………(4分)连结AB ,则∠ABC =∠BCD =135 º,且AB 2; 又∵∠BDC =∠ACB ,∴△ABC ∽△BCD .∴AB BCBC CD=,∴2BC AB CD =•;………………(5分) 过D 作DH ⊥BC 于H ,则CH =HD ,设点D 的坐标为(m ,m +1),在Rt △CHD 中,∵m >1, CH =HD =m -1,∴CD 221(m )- ∴22221(m )- , 解得m =3,………………(5分) ∴点D (3,4),………………(7分)把D (3,4)坐标代入抛物线y =ax 2-2ax -1得 9a -6a -1=4,解得a =53.………………(8分) (图2)∴此抛物线的表达式为y =53x 2-103x -1.………………(9分) (解法2)如图3所示.由(1)得,抛物线的对称轴是x =1,可得直线y =x +1与x 轴、y 轴的交点为E (-1,0), F (0,1),与抛物线的对称轴的交点C (1,2), ∴BE =BC ,BE ⊥BC ,∴△EBC 是等腰直角三角形.………………(4分) 连结BF ,则BF ⊥EC ,且BF =2;过A 作AG ⊥BC 于G ,则∠DFB =∠CGA =90º, 又∵∠BDF =∠ACG ,∴△BDF ∽△ACG . ∴BD BF AC AG =∴2213+=2 ∴BD =25.………………(5分)过D 作DH ⊥BC 于H ,设点D 的坐标为(m ,m +1),在Rt △BDH 中,BH 2+HD 2=BD 2, ∴(m +1)2+(m -1)2=20,解得m =±3(负数不合题意,舍去),∴点D (3,4)………………(7分) 把D (3,4)坐标代入抛物线y =ax 2-2ax -1得9a -6a -1=4,解得a =53.………………(8分) ∴此抛物线的表达式为y =53x 2-103x -1.………………(9分)24.(本小题9分)解:(1)⎪⎩⎪⎨⎧<≤≤<+=)6030(6),300(41512x x x y ……………………(2分)(2)综合⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401),200(51011x x x x y 和(1)中 y 2,当对应的x 范围是0<x ≤20 时,W 1=(110x +5)x +(115x +4)(60-x )……………………(4分) =130x 2+5x +240;……………………(6分) (3)当20<x ≤30 时,W 2=(-140x +75)x +(115x +4)(60-x )……………………(7分) (图3)=-11120x 2+75x +240……………………8分 ∵x =-2b a =45011>30,∴W 在20<x ≤30随x 增大而增大 ∴当x =30时,W 2取得最大值为832.5(百元).……………………………(9分)25.(本小题12分) 解:(1)∵函数xmy =(x >0,m 是常数)图象经过)4,1(A ∴4=m ……………………(2分)(2)(解法1) 设AC BD ,交于点E ,则在Rt △AEB 中,tan ∠EAB =1;444BE a aAE a-==-在Rt △CED 中,tan ∠ECD =1;44DE aCE a==……………………(5分) ∴;EAB ECD ∠=∠……………………(6分) ∴AB DC //.……………………(7分)(解法2)设AC BD ,交于点E ,根据题意,可得B 点的坐标为)4,(aa ,D 点的坐标为)4,0(a ,E 点的坐标为)4,1(a ……………………(3分),a AE 44-=,4;CE a =1,1;EB a ED =-=……………………(4分)∴441;4AE a a CEa-==-∴1-==a ED EB CE AE ……………………(5分) 又∵;AEB CED ∠=∠∴△AEB ∽△CED ∴;EAB ECD ∠=∠……………………(6分) ∴AB DC //.……………………(7分)(3)(解法1)∵AB DC // ∴当BC AD =时,有两种情况:①当BC AD //时,由中心对称的性质得:BE =DE ,则11=-a ,得2=a . ∴点B 的坐标是(2,2).……………………(8分)设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=b k b k 22,4解得⎩⎨⎧=-=.6,2b k∴直线AB 的函数表达式是.62+-=x y ……………………(9分) ②当AD 与BC 所在直线不平行时,由轴对称的性质得:AC BD =, ∴4=a ,∴点B 的坐标是(4,1).……………………(10分) 设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入, 得⎩⎨⎧+=+=.41,4b k b k 解得⎩⎨⎧=-=5,1b k∴直线AB 的函数表达式是.5+-=x y ……………………(11分)综上所述,所求直线AB 的函数表达式是62+-=x y 或.5+-=x y ……………(12分) (解法2)当BC AD =时,AD 2=BC 2.在Rt △AED 中,222DE AE AD +=;在Rt △BEC 中,222CE BE BC +=∴222244(4)1(1)(),a aa-+=-+……………………(8分) 整理得:32216320,a a a ---=∴(2)(4)(4)0;a a a -+-= ∴244a a a ==-=或或,∴24a a ==或……………………(9分)① 当2=a 时,点B 的坐标是(2,2).设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入, 得⎩⎨⎧+=+=b k b k 22,4解得⎩⎨⎧=-=.6,2b k∴直线AB 的函数解析式是62+-=x y .……………………(10分) ②当4=a 时,点B 的坐标是(4,1).设直线AB 的函数解析式为b kx y +=,分别把点B A ,的坐标代入, 得⎩⎨⎧+=+=.41,4b k b k 解得⎩⎨⎧=-=5,1b k∴直线AB 的函数表达式是.5+-=x y ……………………(11分)综上所述,所求直线AB 的函数表达式是62+-=x y 或.5+-=x y ……………(12分)26.(本小题14分)解:(1)证明:∵CE 为⊙O 的直径,∴∠CFE =∠CGE =90°.……………………(1分)∵EG ⊥EF ,∴∠FEG =90°.∴∠CFE =∠CGE =∠FEG =90°.……………………(2分)∴四边形EFCG 是矩形.……………………(3分)(2)由(1)知四边形EFCG 是矩形.∴CF ∥EG ,∴∠CEG =∠ECF ,∵∠ECF =∠EDF ,∴∠CEG =∠EDF ,……………………(4分)在Rt △ABD 中,AB =3,AD =4,∴tan 34AB BDA AD ∠==,……………………(5分) ∴tan ∠CEG = 34;……………………(6分) (3)∵四边形EFCG 是矩形,∴FC ∥EG .∴∠FCE =∠CEG .∴tan ∠FCE =tan ∠CEG =34 ∵∠CFE =90°,∴EF =34CF ,……………………(7分) ∴S 矩形EFCG = 234CF ;……………………(8分) 连结OD ,如图2①,∵∠GDC =∠CEG ,∠FCE =∠FDE ,∴∠GDC =∠FDE .∵∠FDE +∠CDB =90°,∴∠GDC +∠CDB =90°.∴∠GDB =90°……………………(9分)(Ⅰ)当点E 在点A (E ′)处时,点F 在点B (F ′)处,点G 在点D (G ′)处,如图2①所示. 此时,CF =CB =4.……………(10分)(Ⅱ)当点F 在点D (F ″)处时,直径F ″G ″⊥BD ,如图2②所示,此时⊙O 与射线BD 相切,CF =CD =3.……………(11分)(Ⅲ)当CF ⊥BD 时,CF 最小,如图2③所示.S △BCD =12BC ×CD =12BD ×CF , ∴4×3=5×CF ∴CF =125.……………(12分) ∴125≤CF ≤4.……………(13分) ∵S 矩形EFCG =234CF ,∴34×(125)2≤S 矩形EFCG ≤34×42. ∴10825≤S 矩形EFCG ≤12.……………(14分)。
【附20套中考模拟试题】福建省福州市2020年5月初中毕业班质量检测数学试题含解析
福建省福州市2020年5月初中毕业班质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列手机手势解锁图案中,是轴对称图形的是( )A.B.C.D.2.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数3.矩形具有而平行四边形不具有的性质是()A.对角相等B.对角线互相平分C.对角线相等D.对边相等4.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )A.60°B.65°C.55°D.50°5.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤6.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A.B.C.D.7.等腰三角形底角与顶角之间的函数关系是()A.正比例函数B.一次函数C.反比例函数D.二次函数8.已知抛物线y=ax2+bx+c与反比例函数y= bx的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.9.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70°B.80°C.110°D.140°10.估计624的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间11.下列计算正确的是()A.(﹣2a)2=2a2B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a212.关于x的不等式2(1)4xa x><-⎧⎨-⎩的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3D.a≤3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x的一元二次方程(k-1)x2+6x+k2-k=0的一个根是0,则k的值是______.14.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=_____.15.化简:2222-2-2+1-121x x xx x x x-÷-+=_____.16.若分式方程x a2x4x4=+--的解为正数,则a的取值范围是______________.17.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.18.如果a c eb d f===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为22的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.20.(6分)如图,在△ABC中,BC=12,tanA=34,∠B=30°;求AC和AB的长.21.(6分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.请判断:AF与BE的数量关系是,位置关系;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且E A=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.22.(8分)如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB 求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.23.(8分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.24.(10分)关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.求m的取值范围;若m为正整数,求此方程的根.25.(10分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.26.(12分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.27.(12分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D 作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.2.C【解析】【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.3.C【解析】试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;∴矩形具有而平行四边形不一定具有的性质是对角线相等,故选C.4.A【解析】试题分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE )=120°,∴∠P=180°﹣120°=60°.故选A .考点:多边形内角与外角;三角形内角和定理.5.A【解析】【分析】由抛物线的开口方向判断a 与2的关系,由抛物线与y 轴的交点判断c 与2的关系,然后根据对称轴判定b 与2的关系以及2a+b=2;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >2.【详解】①∵对称轴在y 轴右侧,∴a 、b 异号,∴ab <2,故正确; ②∵对称轴1,2b x a=-= ∴2a+b=2;故正确;③∵2a+b=2,∴b=﹣2a ,∵当x=﹣1时,y=a ﹣b+c <2,∴a ﹣(﹣2a )+c=3a+c <2,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am 2+bm+c≤a+b+c ,所以a+b≥m (am+b )(m 为实数).故正确.⑤如图,当﹣1<x <3时,y 不只是大于2.故错误.故选A .【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当a >2时,抛物线向上开口;当a <2时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >2),对称轴在y 轴左; 当a 与b 异号时(即ab <2),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(2,c ).6.B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.7.B【解析】【分析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键. 8.B【解析】分析: 根据抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解: ∵抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.9.C【解析】分析:作»AC对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.详解:作»AC对的圆周角∠APC,如图,∵∠P=12∠AOC=12×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.C【解析】【分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】624562636=54=,∵49<54<64,∴54,∴6247和8之间,故选C.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.11.C【解析】【详解】解:选项A,原式=24a;选项B,原式=a3;选项C,原式=-2a+2=2-2a;选项D,原式=3a故选C12.D【解析】分析:先解第一个不等式得到x >3,由于不等式组的解集为x >3,则利用同大取大可得到a 的范围. 详解:解不等式2(x-1)>4,得:x >3,解不等式a-x <0,得:x >a ,∵不等式组的解集为x >3,∴a≤3,故选D .点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2.【解析】试题解析:由于关于x 的一元二次方程()22160k x x k k -++-=的一个根是2,把x=2代入方程,得20k k -= ,解得,k 2=2,k 2=2当k=2时,由于二次项系数k ﹣2=2,方程()22160k x x k k -++-=不是关于x 的二次方程,故k≠2. 所以k 的值是2.故答案为2.14.﹣1【解析】【分析】根据一元二次方程的解的定义把x =1代入x 1+mx +1n =0得到4+1m +1n =0得n +m =−1,然后利用整体代入的方法进行计算.【详解】∵1(n≠0)是关于x 的一元二次方程x 1+mx +1n =0的一个根,∴4+1m +1n =0,∴n +m =−1,故答案为−1.【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.15.1 x【解析】【分析】先算除法,再算减法,注意把分式的分子分母分解因式【详解】原式=2 22(11(11)(2)x xx x x x x---⨯++--))(=212(1)1(1)(1)x x xx x x x x-----=+++=1 x【点睛】此题考查分式的混合运算,掌握运算法则是解题关键16.a<8,且a≠1【解析】分式方程去分母得:x=2x-8+a,解得:x=8- a,根据题意得:8- a>2,8- a≠1,解得:a<8,且a≠1.故答案为:a<8,且a≠1.【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a 的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.17.4.8或64 11【解析】【分析】根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.【详解】①CP和CB是对应边时,△CPQ∽△CBA,所以CPCB=CQCA,即16216t-=12t,解得t=4.8;②CP和CA是对应边时,△CPQ∽△CAB,所以CPCA=CQCB,即16212t-=16t,解得t=64 11.综上所述,当t=4.8或6411时,△CPQ与△CBA相似.【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论. 18.3【解析】∵a c eb d f===k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),∵a+c+e=3(b+d+f),∴k=3,故答案为:3.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.作图见解析;CE=4.【解析】分析:利用数形结合的思想解决问题即可.详解:如图所示,矩形ABCD和△ABE即为所求;CE=4.点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.20.3【解析】【分析】如图作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解决问题;【详解】解:如图作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH=12BC=6,BH=22BC CH-=63,在Rt△ACH中,tanA=34=CHAH,∴AH=8,∴AC=22AH CH+=10,【点睛】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21.(1)AF=BE,AF⊥BE;(2)证明见解析;(3)结论仍然成立【解析】试题分析:(1)根据正方形和等边三角形可证明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,进而通过直角可证得BE⊥AF;(2)类似(1)的证法,证明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此结论还成立;(3)类似(1)(2)证法,先证△AED≌△DFC,然后再证△ABE≌△DAF,因此可得证结论.试题解析:解:(1)AF=BE,AF⊥BE.(2)结论成立.证明:∵四边形ABCD是正方形,∴BA="AD" =DC,∠BAD =∠ADC = 90°.在△EAD和△FDC中,,{,,EA FDED FCAD DC===∴△EAD≌△FDC.∴∠EAD=∠FDC.∴∠EAD+∠DAB=∠FDC+∠CDA ,即∠BAE=∠ADF .在△BAE 和△ADF 中,,{,,BA AD BAE ADF AE DF =∠=∠=∴△BAE ≌△ADF .∴BE = AF ,∠ABE=∠DAF .∵∠DAF +∠BAF=90°,∴∠ABE +∠BAF=90°,∴AF ⊥BE .(3)结论都能成立.考点:正方形,等边三角形,三角形全等22.(1)见解析;(2)【解析】分析:(1)如下图,连接OD ,由OA=OD 可得∠DAO=∠ADO ,结合∠CAD=∠DAB ,可得∠CAD=∠ADO ,从而可得OD ∥AC ,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD 是⊙O 的切线;(2)如下图,连接BD ,由AB 是⊙O 的直径可得∠ADB=90°=∠C ,结合∠CAD=∠DAB 可得△ACD ∽△ADB ,由此可得AD AB CD BD=,在Rt △ABD 中由AD=6,AB=9易得BD=,由此即可解得CD 的长了.详解:(1)如下图,连接OD .∵OA=OD ,∴∠DAB=∠ODA ,∵∠CAD=∠DAB ,∴∠ODA=∠CAD∴AC ∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD ⊥CD ,∴CD是⊙O的切线.(2)如下图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=9,AD=6,∴BD=2296-=45=35,∵∠CAD=∠BAD,∠C=∠ADB=90°,∴△ACD∽△ADB,∴AD AB CD BD=,∴635 CD=,∴CD=185=25.点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.23.112.1【解析】试题分析:(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<11;(2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.试题解析:解:(1)y=30﹣2x(6≤x<11).(2)设矩形苗圃园的面积为S,则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.24.(1)98m£且0m≠;(2)10x=,21x=-.【解析】【分析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且()()22341m m m =----⎡⎤⎣⎦V ≥0,然后求出两个不等式的公共部分即可;(2)利用m 的范围可确定m=1,则原方程化为x 2+x=0,然后利用因式分解法解方程.【详解】(1)∵2=[(23)]4(1)m m m ∆---- =89m -+. 解得98m ≤且0m ≠. (2)∵m 为正整数, ∴1m =.∴原方程为20x x +=.解得10x =,21x =-.【点睛】考查一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.25.(1)0.3 ,45;(2)108°;(3)16. 【解析】【分析】(1)首先根据A 组频数及其频率可得总人数,再利用频数、频率之间的关系求得a 、b ;(2)B 组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=30100=0.3,b=100×0.45=45(人). 故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B 组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A 、B ,另外两学生记为C 、D ,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(1)证明见解析;(2)四边形BDCF是矩形,理由见解析.【解析】(1)证明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.27.(1)证明见解析;(23【解析】试题分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC 的面积,继而求得答案.试题解析:(1)证明:连接OD,CD,∵BC为⊙O直径,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵D点在⊙O上,∴DE为⊙O的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=12BC=2,3,∴3,3∴S△ABC=12AB•CD=12×3×3∵DE⊥AC,∴DE=12AD=12×33,AE=AD•cos30°=3,∴S△ODE=12OD•DE=12×2×33S△ADE=12AE•DE=12×333∵S △BOD =12S △BCD =12×12S △ABC =14×∴S △OEC =S △ABC -S △BOD -S △ODE -S △ADE 2=2.中考模拟数学试卷数 学 试 题(时间120分钟,满分120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答卷前,考生务必将自己的姓名、准考证号填写在试题卷上.3.选择题每小题选出答案后,将正确答案填写在第Ⅱ卷填空题上方的表格里,答在原题上无效.4.填空题和解答题答案用黑色或蓝黑色墨水钢笔书写.第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12小题,共36分. 在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,填在第Ⅱ卷的表格里,每小题选对得3分. 错选、不选或多选均记零分.)1.化简12-的结果是( ).A .2B .2-C .12D .12- 2.下列运算正确的是( ).A .235x x x +=B .222()x y x y +=+C .2336(2)6xy x y =D .()x y x y --=-+3.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地( ).A .350mB .100 mC .150mD .3100m4.已知关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( ). A. 43>m B. 43≥m C. 43>m 且2≠m D. 43≥m 且2≠m 5.如图,组合体的俯视图是( ).6.在边长为2的小正方形组成的格中,有如图所示的A ,B 两点,在格点上任意放置点C ,恰好能使得△ABC 的面积为2的概率为( ).A .163 B .83C .41D .1657.点P (a ,b )是直线y=-x -5与双曲线6y x=的一个交点,则以a 、b 两数为根的一元二次方程是( ). A .x 2-5x+6=0 B .x 2+5x+6=0 C .x 2-5x-6=0 D .x 2+5x-6=08.如图,AB 的中垂线为CP 交AB 于点P ,且AC =2CP .甲、乙两人想在AB 上取D 、E 两点,使得AD=DC=CE=EB ,其作法如下:甲作∠ACP 、∠BCP 的角平分线,分别交AB 于D 、E 两点,则D 、E 即为所求;乙作AC 、BC 的中垂线,分别交AB 于D 、E 两点,则D 、E 即为所求.对于甲、乙两人的作法,下列正确的是( ). A. 两人都正确 B. 两人都错误 C. 甲正确,乙错误 D. 甲错误,乙正确9.已知四边形ABCD ,对角线AC 与BD 互相垂直. 顺次连接其四条边的中点,得到新四边形的形状一定是( ).A .梯形B .矩形C .菱形D .正方形10.二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y +=的图象不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限11.如图,在Rt △ABC 中,∠C=90°,∠B=30°,BC= 4 cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是( ). A .相切 B .相离 C .相交 D .相切或相交12.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),∠AOC=60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC 的两边分别交于点M ,N (点M 在点N 的上方),若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t≤4),则能大致反映S 与t 的函数关系的图象是( ).数 学 试 题题号一二三总分1920 21 22 23 24 得分阅卷人一、请把选择题答案填在下列表格中题号123456789101112答案第Ⅱ卷 (非选择题 共84分)二、填空题(本大题共6小题,共18分. 只要求填写最后结果,每小题填对得3分.) 13.分解因式:3214x x x +-=__________________.14.关于x 、y 的方程组32452335x y xy⎧+=⎪⎪⎨⎪+=⎪⎩,那么11x y -=__________________.15.如图,△ABC 中,AC BC =,︒=∠90C .O 是AB 的中点,⊙O 与AC ,BC 分别相切于点D 与点E .与AB 的一个交点为F ,连结DF 并延长交CB 的延长线于点G .若AB =42,则=BG __________________.16.如图,正方形AFCE 中,D 是边CE 上一点,B 是CF 延长线上一点,且AB=AD ,若四边形ABCD 的面积是24cm 2. 则AC 长是__________________cm .17.已知二次函数()()221y x a a =-+-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.下图分别是当1a =-,0a =,1a =,2a =时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y =__________________.18.式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为∑=1001n n ,这里的符号“∑”是求和的符号,如“1+3+5+7+…+99”即从1开始的100以内的连续奇数的和,可表示为∑=-501)12(n n .通过对以上材料的阅读,请计算:=+∑=20131)1(1n n n _________________________(填写最后的计算结果).三、解答题(本大题共6小题,共66分. 解答应写出文字说明、证明过程或演算步骤.)19.(本题满分10分)下列图表是某校今年参加中考体育的男生1000米跑、女生800米跑的成绩中分别抽取的10个数据.考生1 2 3 4 5 6 7 8 9 10编号男生3′05〞3′11〞3′53〞3′10〞3′55〞3′30〞3′25〞3′19〞3′27〞3′55〞成绩(1)求出这10名女生成绩的中位数、众数和极差;(2)按规定,男生1000米跑成绩不超过3′35〞就可以得满分.该校学生有490人,男生比女生少70人.请你根据上面抽样的结果,估算该校考生中有多少名男生该项考试得满分?20.(本题满分10分)在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一三角尺的直角顶点放在点M 处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.(1)求证:MA=MB;(2)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.21.(本题满分10分)学校240名师生集体外出活动,准备租用45座大客车或30座小客车,共租用6辆. 据调查:租用1辆大车和2辆小车共需租车费1000元;租用2辆大车1辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若总租车费用不超过...2300元,求最省钱的租车方案.22.(本题满分12分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求∠P的度数;(3)点M是弧AB的中点,CM交AB于点N,AB=4,求线段BM、CM及弧BC所围成的图形面积.23.(本题满分12分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y=1001x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a≤40),当月销量为x (件)时,每月还需缴纳1001x 2元的附加费,设月利润为w 外(元). (1)当x=1000时,y= 元/件,w 内 = 元;(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围);(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值.24.(本题满分12分)如图,⊙C 的内接△AOB 中,AB =AO =4,tan ∠AOB =43,抛物线y =ax 2+bx 经过点A (4,0)与点(-2,6).(1)求抛物线的函数解析式;(2)直线m 与⊙C 相切于点A 交y 轴于点D ,动点P 在线段OB 上,从点O 出发向点B 运动;同时动点Q 在线段DA 上,从点D 出发向点A 运动,点P 的速度为每秒1个单位长,点Q 的速度为每秒2个单位长,当PQ ⊥AD 时,求运动时间t 的值;(3)点R 在抛物线位于x 轴下方部分的图象上,当△ROB 面积最大时,求点R 的坐标.一、选择题(本大题共12小题,共36分.)题号123456789101112二、填空题(本大题共6小题,共18分.)13.2)21(-x x 14.10 15.222- 16.34 17.121-=x y 18.20142013三、解答题(本大题共6小题,共66分.) 19.(10分)解:(1)女生的中位数、众数及极差分别是3′21〞、3′10〞、39〞. ………5分(2)设男生有x 人,女生有x +70人,由题意得:x +x +70=490, x =210.男生得满分人数:210×70%=147(人). ………10分20.(10分)解:(1)证明:连接OM ∵ Rt△POQ 中,OP =OQ =4,M 是PQ 的中点(2)解:△AOB 的周长存在最小值所以⊿AOB 的周长存在最小值为4+22 ………………………………10分 21.(10分)解:(1)设大、小车每辆的租车费各是x 、y 元,根据题意得:⎩⎨⎧=+=+1100210002y x y x 解得⎩⎨⎧==300400y x ……………………………………3分 答:大、小车每辆的租车费分别是400元、300元. …………………………5分 (2)租车总数是6辆,设大车辆数是m 辆,则租小车(6-m )辆,根据题意得:⎩⎨⎧≤-+≥-+2300)6(300400240)6(3045m m m m 解得⎩⎨⎧≤≥54m m ∴4≤m ≤5∵m 是正整数 ∴m =4或5 ……………………………………8分 于是有两种租车方案,方案1:大车4辆 小车2辆 总租车费用2200元;方案2:大车5辆 小车1辆 总租车费用2300元.可见最省钱的是方案1……10分 22.(12分)解:(1)证明:∵OA =OC ,∴∠A =∠ACO∵∠COB =2∠A ,∠COB =2∠PCB ∴∠A =∠ACO =∠PCB ∵AB 是⊙O 的直径 ∴∠ACO +∠OCB =90° ∴∠PCB +∠OCB =90°,即OC ⊥CP∵OC 是⊙O 的半径 ∴PC 是⊙O 的切线 ……4分 (2)解:∵PC =AC ,∴∠A =∠P ∴∠A =∠ACO =∠P ∵∠A +∠ACO +∠PCO +∠P =180° ∴3∠P =90° ∴∠P =30° ……………………………………6分(3)解:∵点M 是半圆O 的中点,∴CM 是∠ACB 的角平分线,∴∠BCM =45° 由(2)知∠BMC =∠A =∠P =30°,∴BC =AB 21=2 ………………………………8分 作BD ⊥CM 于D ,∴CD =BD =22BC =2,∴DM =3BD = 6 ∴CM =2+6,∴S △BCM =21CM •BD = 3+1 ……………………………………10分 ∵∠BOC =2∠A =60°,∴弓形BmC 的面积=32π-3∴线段BM 、CM 及弧BC 所围成的图形面积为32π+1 …………………………12分23.(本题满分12分)解:(1)140 57500; …………………………………………………………4分(2)w 内=x (y -20)-62500=1001-x 2+130x 62500-, w 外=1001-x 2+(150a -)x .…………………………………………8分 (3)当x =)1001(2130-⨯-= 6500时,w 内最大由题意得 2214()(62500)1300(150)100114()4()100100a ⨯-⨯----=⨯-⨯-,解得a 1=30,a 2=270(不合题意,舍去).所以a =30. ……………………………………………12分 24.(本题满分12分)解:(1)∵抛物线y =ax 2+bx 经过点A (4,0)与点(-2,6), ∴ ⎩⎨⎧=-=+6240416b a b a解得a =21,b =-2。
2020年福州市中考数学试卷含答案
2020年福州市初中毕业会考、高级中等学校招生考试数学试卷(全卷共4页,三大题,共22小题,满分150分,考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本卷上一律无效。
毕业学校姓名考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.2的倒数是A. 12B. 12- C. 2 D.-22. 今年我省规划重建校舍约3890000平方米,3890000用科学记数法表示为A. 70.38910⨯ B. 63.8910⨯ C. 43.8910⨯ D.438910⨯3.下面四个图形中,能判断∠1 > ∠2的是4.下面四个中文艺术字中,不是..轴对称图形的是5.若二次根式1x -有意义,则x 的取值范围为A.1x ≠ B.1x ≥ C.1x < D.全体实数6.下面四个立体图形中,主视图是三角形的是7.已知反比例函数k y x=的图像过点P (1,3),则反比例函数图像位于A.第一、二象限B.第一、三象限C.第二、四象限 D.第三、四象限8. 有人预测2010年南非世界杯足球赛巴西国家队夺冠的概率是70%他们的理解正确的是A.巴西国家队一定夺冠B.巴西国家队一定不会夺冠C.巴西国家队夺冠的可能性比较大D.巴西国家队夺冠的可能性比较小 9.分式方程312x =-的解是 A.5x = B. 1x = C. 1x =- D. 2x =10.已知二次函数2y ax bx c =++的图像如图所示,则下列结论正确的是A.0a >B. 0c <C.240b ac -<D.0a b c ++>二、填空题(共5小题,每题4分,满分20分。
请将答案填入答题卡相应的位置)11.实数a 、b 在数轴上对应点的位置如图所示,则a b(填“>”、“<”或“=”)。
12.因式分解:21x -= 。
13.某校七年(2班)6位女生的体重(单位:千克)是:36,38,40,42,42,45,这组数据的众数为 。
2020年福州市九年级质量检测数学试题答案及评分参考(0526)
2020 年福州市九年级质量检测数学试题答案及评分参考评分说明: 1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考 查内容比照评分参考制定相应的评分细则. 2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半; 如果后继部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:共 10 小题,每小题 4 分,满分 40 分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂.1.A2.C3.A4.B5.B6.A7.B8.C9.C10.D二、填空题:共 6 小题,每小题 4 分,满分 24 分,请在答题卡的相应位置作答.11.112. 1 413.1514.415.1816. 9 4三、解答题:共 9 小题,满分 86 分,请在答题卡的相应位置作答.17.(本小题满分 8 分) 解:解不等式①,得 x≤3. ······························································································3 分 解不等式②,得 x> 1.····························································································5 分 ∴原不等式组的解集是 1<x≤3,···············································································6 分 将该不等式组解集在数轴上表示如下:-5 -4 -3 -2 -1 0 1 2 3 4 5·······························································8 分18.(本小题满分 8 分)证明:∵点 E,F 在 BC 上,BE CF,∴BE EF CF EF,即 BF CE.·········································································································3 分在△ABF 和△DCE 中,AD AB DC,B C,BF CE,BEFC∴△ABF≌△DCE, ·······························································································6 分∴∠A ∠D.·······································································································8 分九年级数学试题答案及评分参考第1页(共 6 页)19.(本小题满分 8 分)解:原式x2 1 (x 1)2 (x 1)(x1)······················································································· 3分 x2 1 (x 1)(x 1) ··························································································4 分x 1x 1 x2 1 x2 1 ··································································································5 分 x 1 x 1x2 1. ··········································································································· 6分当 x 3 1时,原式 2 ·················································································7 分 3 112 323 3. ·····················································································8分20.(本小题满分 8 分) 解: 画法一:M AOC DBN画法二:M AOCD BN·······························································4 分如图,点 C,D 分别为(1),(2)所求作的点.························································5 分(2)证明如下:由(1)得 BC∥OA,BC 1 OA, 2∴∠DBC ∠DAO,∠DCB ∠DOA,∴△DBC∽△DAO, ············································································7 分∴DC DOBC AO1 2,∴OD 2CD.·····················································································8 分21.(本小题满分 8 分)解:(1)由图 1 可得甲的速度是120 2=60 m/min.································································2 分由图2可知,当x4 3时,甲,乙两人相遇,故(60v乙 )4 3200,解得 v乙 90 m/min.····························································································4 分 答:甲的速度是 60 m/min,乙的速度是 90 m/min. (2)由图 2 可知:乙走完全程用了 b min,甲走完全程用了 a min,∴b200 9020 9,······························································································· 6分a200 6010 3. ································································································ 8分∴a的值为10 3,b的值为20 9.22.(本小题满分 10 分) 解:(1)依题意得 a 100 .······························································································2 分 这 1000 户家庭月均用水量的平均数为:九年级数学试题答案及评分参考第2页(共 6 页)x24061001018014280 18 1000220221002660302014.72,········· 6分∴估计这 1000 户家庭月均用水量的平均数是 14.72.(2)解法一:不合理.理由如下: ···············································································7 分由(1)可得 14.72 在 12≤x<16 内,∴这 1000 户家庭中月均用水量小于 16 t 的户数有40 100 180 280 600(户),····························································8 分∴这1000户家庭中月均用水量小于16t的家庭所占的百分比是600 1000100%60%,∴月均用水量不超过 14.72 t 的户数小于 60%. ·············································9 分∵该市政府希望 70%的家庭的月均用水量不超过标准 m,而 60%<70%,∴用 14.72 作为标准 m 不合理.·······························································10 分解法二:不合理.理由如下: ···············································································7 分∵该市政府希望 70%的家庭的月均用水量不超过标准 m,∴数据中不超过 m 的频数应为 700, ··························································8 分即有 300 户家庭的月均用水量超过 m.又 20 60 100 160 300 , 20 60 100 220 380 300,∴m 应在 16≤x<20 内.··········································································9 分而 14.72<16,∴用 14.72 作为标准 m 不合理.·······························································10 分23.(本小题满分 10 分)(1)证明:连接 OD,AD.∵AB 为⊙O 直径,点 D 在⊙O 上,B∴∠ADB 90°, ····························································································1 分∴∠ADC 90°. ∵E 是 AC 的中点,F OD∴DE=AE,∴∠EAD ∠EDA.····················································A········E·······C··········G···········2 分 ∵OA OD,∴∠OAD ∠ODA. ·······················································································3 分∵∠OAD ∠EAD ∠BAC 90°,∴∠ODA ∠EDA 90°,即∠ODE 90°, ····························································································4 分∴OD⊥DE.∵D 是半径 OD 的外端点,∴DE 是⊙O 的切线. ·····················································································5 分(2)解法一:过点 F 作 FH⊥AB 于点 H,连接 OF,∴∠AHF 90°.B∵AB 为⊙O 直径,点 F 在⊙O 上, ∴∠AFB 90°, ∴∠BAF ∠ABF 90°.HFO D∵∠BAC 90°,∴∠G ∠ABF 90°,A ECG∴∠G ∠BAF.·························································································6 分又∠AHF ∠GAB 90°,∴△AFH∽△GBA, ····················································································7 分∴AF GBFH BA.··························································································· 8分由垂线段最短可得 FH≤OF, ········································································9 分当且仅当点 H,O 重合时等号成立.∵AC<AB,∴ B»D 上存在点 F 使得 FO⊥AB,此时点 H,O 重合,∴AF GBFH BA≤OF BA1 2,············································································10分九年级数学试题答案及评分参考第3页(共 6 页)即 AF 的最大值为 1 .GB2解法二:取 GB 中点 M,连接 AM.∵∠BAG 90°,∴AM 1BGB.···························································································6分2∵AB 为⊙O 直径,点 F 在⊙O 上, ∴∠AFB 90°,FOMD∴∠AFG 90°,∴AF⊥GB. ···························································A········E········C·········G··········7 分 由垂线段最短可得 AF≤AM, ········································································8 分当且仅当点 F,M 重合时等号成立,此时 AF 垂直平分 GB,即 AG=AB.∵AC<AB,∴ B»D 上存在点 F 使得 F 为 GB 中点,∴AF≤1 2GB,··························································································· 9分∴AF GB≤1 2,····························································································10分即 AF 的最大值为 1 .GB224.(本小题满分 12 分)(1)①证明:∵∠AED 45°,AE DE,∴∠EDA 180 45 67.5°. ·······································································1 分 2∵AB AC,∠BAC 90°,∴∠ACB ∠ABC 45°,∠DCA 22.5°,·························································2 分 ∴∠DCB 22.5°,即∠DCA ∠DCB,∴CD 平分∠ACB. ·····················································································3 分②解:过点 D 作 DF⊥BC 于点 F,A∴∠DFB 90°.∵∠BAC 90°,D∴DA⊥CA.E又 ∴ACDD平FD分,∠·A··C··B·,····················································B········F······················C·········4 分∴ AD FD . DB DB在 Rt△BFD 中,∠ABC 45°,∴sin∠DBF FD DB2 2, ················································································5分∴ AD DB2 2.······························································································· 6分(2)证法一:过点 A 作 AG⊥AE 交 CD 的延长线于点 G,连接 BG,∴∠GAE 90°.又∠BAC 90°,∠AED 45°,∴∠BAG ∠CAE,∠AGE 45°,∠AEC 135°,··············································7 分∴∠AGE ∠AEG,∴AG AE.·······························································································8 分∵AB AC,∴△AGB≌△AEC, ····················································································9 分∴∠AGB ∠AEC 135°,CE BG,∴∠BGE 90°. ························································································10 分∵AE⊥BE,九年级数学试题答案及评分参考第4页(共 6 页)。
2020年福建省九年级初中学业质量检查数学试卷
5、阅读使人充实,会谈使人敏捷,写作使人精确。
Tuesday, June 16, 2020June 20Tuesday, June 16,
花一样2020美6/16/2丽020 ,感谢你的阅读。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。
10 时 17 分 10 时 17 分 16-Jun-206.16.2020
7、自知之明是最难得的知识。 20.6.1620.6.1620.6.16 。 2020 年 6 月 16 日星期二二〇二〇年六月十六日
8、勇气通往天堂,怯懦通往地狱。
22:1722:17:186.16.2020Tuesday, June 16, 2020
2020 的 相 反 数 为
()
1
B.
2020
C.
-2020
D.
± 2020
2、地球与月球平均距离约为 384000 千米,将数字 384000 用科学记数法表示为 ( )
A. 3.84 ×106
B. 3.84 ×105
C. 3.84 ×104
D. 3.84 ×105
3、下列运算正确的是 ( )
A. ??+ ??+ ??= ??3
C. 140 °
D. 150 °
10、已知点 A(a-m,y1)、B(a-n,y2)、C(a+b,y3)都在二次函数 ??= ??2 - 2???+? 1的图象上 ,若 0<m<b<n, 则 y1、 y2、y3 的大小关系是 ( )
A. y1<y2<y3
B. y1<y3<y2
二、填空题 (4 ×6=24)
最新
Word
亲爱的用户: 1、只要朝着一个方向奋斗,一切都会变得得心应手。
2020年福州市九年级质量检测数学试题答案及评分参考
A F D EB C2020年福州市九年级质量检测数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂. 1.A 2.C 3.A 4.B 5.B 6.A 7.B 8.C 9.C 10.D二、填空题:共6小题,每小题4分,满分24分,请在答题卡的相应位置作答. 11.1 12.1413.15 14.415.1816.94三、解答题:共9小题,满分86分,请在答题卡的相应位置作答. 17.(本小题满分8分)解:解不等式①,得x ≤3. ······························································································ 3分解不等式②,得x >1-. ···························································································· 5分 ∴原不等式组的解集是1-<x ≤3, ··············································································· 6分······························································· 8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE =CF ,∴BE +EF =CF +EF , 即BF =CE . ········································································································· 3分在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ABF ≌△DCE , ······························································································· 6分∴∠A =∠D . ······································································································· 8分19.(本小题满分8分)解:原式221(1)(1)(1)x x x x +=⋅+--+ ······················································································· 3分2(1)(1)111x x x x x -++=-++ ·························································································· 4分 221111x x x x +-=-++ ·································································································· 5分 21x =+. ··········································································································· 6分当1x =时,原式 ················································································· 7分=. ····················································································· 8分 20.(本小题满分8分) 解:画法一:画法二:······························································· 4分如图,点C ,D 分别为(1),(2)所求作的点. ························································ 5分 (2)证明如下:由(1)得BC ∥OA ,BC =12OA ,∴∠DBC =∠DAO ,∠DCB =∠DOA , ∴△DBC ∽△DAO , ············································································ 7分 ∴12DC BC DO AO ==, ∴OD =2CD . ····················································································· 8分21.(本小题满分8分) 解:(1)由图1可得甲的速度是1202=60÷m/min . ································································ 2分由图2可知,当43x =时,甲,乙两人相遇,故4(60)2003v +⨯=乙,解得90v =乙m/min . ···························································································· 4分 答:甲的速度是60 m/min ,乙的速度是90 m/min .(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴20020909b ==, ······························································································· 6分20010603a ==. ································································································ 8分∴a 的值为103,b 的值为209.22.(本小题满分10分) 解:(1)依题意得100a =. ····························································································· 2分这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==, ········· 6分∴估计这1000户家庭月均用水量的平均数是14.72. (2)解法一:不合理.理由如下: ··············································································· 7分由(1)可得14.72在12≤x <16内,∴这1000户家庭中月均用水量小于16 t 的户数有40100180280600+++=(户), ···························································· 8分 ∴这1000户家庭中月均用水量小于16 t 的家庭所占的百分比是600100%60%1000⨯=,∴月均用水量不超过14.72 t 的户数小于60%. ············································· 9分 ∵该市政府希望70%的家庭的月均用水量不超过标准m , 而60%<70%,∴用14.72作为标准m 不合理. ······························································· 10分解法二:不合理.理由如下: ··············································································· 7分∵该市政府希望70%的家庭的月均用水量不超过标准m , ∴数据中不超过m 的频数应为700, ·························································· 8分 即有300户家庭的月均用水量超过m .又2060100160300++=<,2060100220380300+++=>, ∴m 应在16≤x <20内. ·········································································· 9分 而14.72<16,∴用14.72作为标准m 不合理. ······························································· 10分23.(本小题满分10分)(1)证明:连接OD ,AD .∵AB 为⊙O 直径,点D 在⊙O 上,∴∠ADB =90°, ······················································· 1分∴∠ADC =90°.∵E 是AC 的中点, ∴DE =AE ,∴∠EAD =∠EDA . ··················································· 2分 ∵OA =OD ,∴∠OAD =∠ODA . ······················································································· 3分 ∵∠OAD +∠EAD =∠BAC =90°, ∴∠ODA +∠EDA =90°, 即∠ODE =90°, ···························································································· 4分 ∴OD ⊥DE .∵D 是半径OD 的外端点, ∴DE 是⊙O 的切线. ····················································································· 5分(2)解法一:过点F 作FH ⊥AB 于点H ,连接OF ,∴∠AHF =90°.∵AB 为⊙O 直径,点F 在⊙O 上,∴∠AFB =90°, ∴∠BAF +∠ABF =90°.∵∠BAC =90°, ∴∠G +∠ABF =90°, ∴∠G =∠BAF . ························································································· 6分 又∠AHF =∠GAB =90°, ∴△AFH ∽△GBA , ···················································································· 7分 ∴AF FH GB BA=. ··························································································· 8分 由垂线段最短可得FH ≤OF , ········································································ 9分 当且仅当点H ,O 重合时等号成立. ∵AC <AB ,∴»BD上存在点F 使得FO ⊥AB ,此时点H ,O 重合,∴AF FH GB BA =≤12OF BA =, ············································································ 10分 即AF GB 的最大值为12. 解法二:取GB 中点M ,连接AM .∵∠BAG =90°,∴AM =12GB . ······················································ 6分 ∵AB 为⊙O 直径,点F 在⊙O 上, ∴∠AFB =90°, ∴∠AFG =90°, ∴AF ⊥GB . ························································· 7分 由垂线段最短可得AF ≤AM , ········································································ 8分 当且仅当点F ,M 重合时等号成立, 此时AF 垂直平分GB , 即AG =AB . ∵AC <AB ,∴»BD上存在点F 使得F 为GB 中点, ∴AF ≤12GB , ··························································································· 9分∴AF GB ≤12, ···························································································· 10分 即AF GB 的最大值为12.24.(本小题满分12分)(1)①证明:∵∠AED =45°,AE =DE ,∴∠EDA 180452︒-︒==67.5°. ······································································· 1分∵AB =AC ,∠BAC =90°, ∴∠ACB =∠ABC =45°,∠DCA =22.5°,························································· 2分 ∴∠DCB =22.5°, 即∠DCA =∠DCB , ∴CD 平分∠ACB . ····················································································· 3分②解:过点D 作DF ⊥BC 于点F ,∴∠DFB =90°.∵∠BAC =90°,∴DA ⊥CA . 又CD 平分∠ACB , ∴AD =FD , ································································································· 4分 ∴AD FD DB DB=. 在Rt △BFD 中,∠ABC =45°, ∴sin ∠DBF FD DB==, ················································································ 5分∴AD DB = ······························································································· 6分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE =90°. 又∠BAC =90°,∠AED =45°, ∴∠BAG =∠CAE ,∠AGE =45°,∠AEC =135°,·············································· 7分 ∴∠AGE =∠AEG , ∴AG =AE . ······························································································· 8分 ∵AB =AC ,∴△AGB ≌△AEC , ···················································································· 9分F B A C D E。
福建省福州市2020年八年级第二学期期末学业质量监测数学试题含解析
所以,AC=AE.
∵E为AB中点,∴AC=AE= AB,
所以,∠B=30° .
∵DE为AB中线且DE⊥AB,
∴AD=BD=3cm,
∴DE= BD= ,
∴BE= cm.
故选A.
【点睛】
本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,及勾股定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.
点睛:本题考查了翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.
13.1
【解析】
分析:根据平行四边形的性质和已知,可求出∠B,再进一步利用直角三角形的性质求解即可.
详解:∵AD∥BC,
∴∠A+∠B=180°,
试题解析:根据题意可知y=5x+1.
考点:列代数式.
12.1
【解析】
解:如图,过B作BP⊥EH于P,连接BE,交FH于N,则∠BPG=90°.∵四边形ABCD是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC,∴∠BCD=∠BPG=90°.∵GB平分∠CGE,∴∠EGB=∠CGB.又∵BG=BG,∴△BPG≌△BCG,∴∠PBG=∠CBG,BP=BC,∴AB=BP.∵∠BAE=∠BPE=90°,BE=BE,∴Rt△ABE≌Rt△PBE(HL),∴∠ABE=∠PBE,∴∠EBG=∠EBP+∠GBP= ∠ABC=15°,由折叠得:BF=EF,BH=EH,∴FH垂直平分BE,∴△BNM是等腰直角三角形.∵BM=2 ,∴BN=NM=2 ,∴BE=1 .∵AE=8,∴Rt△ABE中,AB= =12,∴AD=12,∴DE=12﹣8=1.故答案为1.
2020年福建省初中学业质量测查数学试题(附答案)
福建省初中学业质量测查数学试题(试卷满分:150分;考试时间:120分钟)温馨提示:所有答案必须填写到答题卡相应的位置上,答在本试卷上一律无效.毕业学校 姓名 考生号一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.-2015的相反数是( )A .-2015B .2015C .12015 D .12015- 2.下列运算正确的是( )A .a 3+a 3=a 6B . a 6÷a 2=a 4C .a 3•a 5=a 15D .(a 3)4=a 73.如图所示几何体的俯视图是( )A .B .C .D . 4.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为( ) A .10° B .15° C .20° D .25° 5.关于x 的方程01322=--x x 的解的情况,正确的是( ).A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根6.如图所示,把一张长方形纸片对折,折痕为AB ,再以AB 的中点O 为顶点,把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是( )A .正三角形B .正方形C .正五边形D .正六边形7.已知二次函数y=﹣x 2+2bx +c ,当x >1时,y 的值随x 值的增大而减小,则实数b 的取值范围是( )A .b ≥﹣1B . b ≤﹣1C .b ≥1D .b ≤1二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为 .(第3题图) (第4题图)(第6题图)219.若正n 边形的中心角等于24°,则这个正多边形的边数为 . 10.分解因式:x x 42+ = .11.若a <13<b ,且a ,b 为连续正整数,则b 2﹣a 2= .12. 计算:_______x yx y x y +=++.13.在《中国梦•我的梦》演讲比赛中,由6个评委对某选手打分,得分情况如下:8,9,7,8,9,10 (单位:分),则该选手得分的中位数是 分. 14. 不等式组⎩⎨⎧≤-≥+0201x x 的解集是 . 15.菱形ABCD 的边长AB =5cm ,则菱形ABCD 的周长为 cm .16.如图,P A 、PB 是⊙O 的切线,切点是A 、B ,已知60P ∠=︒,P A =63,那么AB 的长为 .17.如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为2的等边三角形,边AO 在y 轴上,点B 1,B 2,B 3,…都在直线kx y =上,则(1)k = ,(2)A 2015的坐标是 . 三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:10)31(28)2(|3|-+⨯--+-π.19.(9分)先化简,再求值:)22(2)2(2-++a a a ,其中3=a .20.(9分)如图,已知:点B 、F 、C 、E 在一条直线上,∠B =∠E ,BF =CE ,AB =DE .求证:△ABC ≌△DEF .21.(9分)为了解我县八年级学生参加社会实践活动情况,随机抽查了部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图(如图所示).A OP B(第16题图)ECABDFA 1A 2 A OB 1 B 2B3 AO BP (第17题图)请根据图中提供的信息,解答下列问题:(1)直接填写:a =____%,该扇形所对圆心角的度数为____度,并补全条形图;(2)如果全县共有八年级学生7000人,请你估计“活动时间不少于...7天”的学生人数大约有多少人?22.(9分)第14届亚洲艺术节计划于2015年11月底在泉州举行.现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人. (1)若从这20人中随机选取一人作为联络员,直接写出选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.23.(9分)已知反比例函数xm y 1-=(m 为常数)的图象在第一、三象限内. (1)求m 的取值范围;(2)如图,若该反比例函数的图象经过平行四边形ABOD 的顶点D ,点A 、B 的坐标分别为a(0,3),(﹣2,0).①求出该反比例函数解析式;②设点P 是该反比例函数图象上的一点,且在ΔDOP 中,OD=OP ,求点P 的坐标. 24.(9分)甲,乙两辆汽车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2小时后休息,与甲车相遇后,继续行驶.设甲,乙两车与B 地的路程分别为y 甲(km ),y 乙(km ),甲车行驶的时间为x (h ),y 甲,y 乙与x 之间的函数图象如图所示,结合图象解答下列问题: (1)乙车休息了 h ;(2)求乙车与甲车相遇后y 乙与x 的函数解析式,并写出自变量x 的取值范围;(3)当两车相距40km 时,求出x 的值.25.(13分)如图,已知抛物线c bx x y ++-=221图象经过A (﹣1,0),B (4,0)两点. (1)求抛物线的解析式;y/km y(2)若C (m ,m ﹣1)是抛物线上位于第一象限内的点,D 是线段AB 上的一个动点(不与端点A 、B 重合),过点D 分别作DE ∥BC 交AC 于E ,DF ∥AC 交BC 于F .①求证:四边形DECF 是矩形; ②试探究:在点D 运动过程中,DE 、DF 、CF 的长度之和是否发生变化?若不变,求出它的值;若变化,试说明变化情况.A O D BF EC x26.(13分)在平面直角坐标系中,O 为坐标原点,直线33+-=k kx y 交y 轴正半轴于点A ,交x 轴于点B (如图1)(1)不论k 取何值,直线AB 总经过一个定点C ,请直接写出点C 坐标; (2)当OC ⊥AB 时,求出此时直线AB 的解析式;(3)如图2,在(2)条件下,若D 为线段AB 上一动点(不与端点A 、B 重合),经过O 、D 、B 三点的圆与过点B 垂直于AB 的直线交于点E ,求ΔDOE 面积的最小值.(图1)(图2)参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分) 1.B 2.B 3.C 4.D 5.A 6.A 7.D 二、填空题(每小题4分,共40分)8. 5101.1⨯ 9. 15 10. )4(+x x 11.7 12. 1 13. 8.5 14. 21≤≤-x 15. 20 16. π4 17.(1)33(2))2017,32015( 三、解答题(共89分) 18.(本题9分)解:原式=3+1-4+3…………………………………………………………8分 =3…………………………………………………………………… 9分 19.(本题9分)解:原式=a a a a 444422-+++…………………………………………………4分=452+a ………………………………………………………………6分当3=a 时,原式=4)3(52+⨯………………………………………7分=19…………………………………………………9分 20.(本题9分)证明:∵CE BF =, ∴CF CE CF BF +=+即EF BC =……………4分又∵E B DE AB ∠=∠=,……………7分 ∴△ABC ≌△DEF . ………………………9分21.(本题9分)解:(1)10,36°,补图如右;(填空各2分,补图2分, 共6分)(2)7000×(25%+10%+5%)=7000×40%=2800人. 答:“活动时间不少于7天”的学生人数大约有2800人……………………9分 22. (本题9分)ECA BDF解 :(1)P (女生)=53;……………………………………………………3分 (2)解法一: 画树状图…………………………………………………………………………6分由树状图可知,共有12种机会均等的情况,其中和为偶数的有4种情况,P ∴(甲参加)=31124=,P (乙参加)=32128=. P (甲参加)<P (乙参加),∴这个游戏不公平. ……………………………………………………9分解法二:列表(略)23. (本题9分)解:(1)根据题意得01>-m解得1>m …………………3分(2)①∵四边形ABOC 为平行四边形, ∴AD ∥OB ,AD =OB =2 又A 点坐标为(0,3)∴D 点坐标为(2,3)………………5分∴1-m =2×3=6∴反比例函数解析式为xy 6=………………6分 ②(法一)如图所示,以O 为圆心,OD 长为半径作圆O ,与双曲线xy 6=分别交于321,,,P P P D 四点. 根据图形的对称性,得点D (2,3)关于直线y =x 对称点1P 的坐标为(3,2);………………7分 点D (2,3)关于原点中心对称点2P 的坐标为(﹣2,﹣3);点1P (3,2)关于原点中心对称点3P 的坐标为(﹣3,﹣2). ………….8分 由于O 、D 、2P 三点共线.,所以符合题意的P 点只有两点, 其坐标分别为(3,2),(﹣3,﹣2). …………..9分(法二)2 第1张第2张 3 4 53 4 52 4 52 3 52 3 4和 5 6 7 5 7 8 6 7 9 7 8 9∵直线y =x 是反比例函数x y 6=图象的对称轴, D (2,3)在反比例函数xy 6=图象上, ∴点D (2,3)关于直线y =x 对称点的坐标为(3,2),则此时满足条件OP =OD 的P 点坐标为(3,2)………………..7分 ∵反比例函数xy 6=的图象是以原点为对称中心的中心对称图形 ∴当点P 与点D 关于原点中心对称,则OD =OP ,但此时O 、D 、P 三点共线. 而点(3,2)关于原点中心对称的点的坐标为(﹣3,﹣2)即此时满足条件OP =OD 的P 点坐标为(﹣3,﹣2)…………………8分综上,符合题意的P 点有两点,其坐标分别为(3,2),(﹣3,﹣2).………………9分 24. (本题9分)解:(1)0.5;………………………3分(2)设乙车与甲车相遇后y 乙与x 的函数解析式y 乙=kx +b ,y 乙=kx +b 图象过点(2.5,200),(5,400),得⎩⎨⎧=+=+4005,2005.2b k b k 解得⎩⎨⎧==0,80b k ∴乙车与甲车相遇后y 乙与x 的函数解析式y 乙=80x (2.5≤x ≤5);………………6分(其中自变量取值范围1分)(3)设乙车与甲车相遇前y 乙与x 的函数解析式y 乙=kx ,图象过点(2,200),所以200=2k 解得k =100 ∴乙车与甲车相遇前y 乙与x 的函数解析式y 乙=100x可求y 甲与x 的函数解析式y 甲=-80x +400…………………7分 ①当0≤x <2.5时,y 甲减y 乙等于40千米即﹣80x +400﹣100x =40,解得 x =2………………………8分 ②当2.5≤x ≤5时,y 乙减y 甲等于40千米即80x ﹣(﹣80x +400)=40,解得x =…………………9分综上,x =2或x =.25. (本题13分) 解:∵抛物线y=﹣221x +bx +c 图象经过A (﹣1,0),B (4,0)两点, 根据题意,得⎪⎩⎪⎨⎧++-=+--=c b c b 480,210 解得⎪⎩⎪⎨⎧==.2,23c b ∴抛物线的解析式为:223212++-=x x y ;…………3分(2)①证明:把C (m ,m ﹣1)代入223212++-=x x y 得 2232112++-=-m m m ,解得:m =3或m =﹣2,∵C (m ,m ﹣1)位于第一象限,∴⎩⎨⎧-01,0 m m ∴m >1,∴m =﹣2不合舍去,只取m =3, ∴点C 坐标为(3,2),…………4分(法一)如图,过C 点作CH ⊥AB ,垂足为H ,则∠AHC =∠BHC =90°, 由A (﹣1,0)、B (3,0)、C (3,2)得 AH =4,CH =2,BH =1,AB =5 ∵,2==BHCH CH AH ∠AHC =∠BHC =90°∴△AHC ∽△CHB ,∴∠ACH =∠CBH , ∵∠CBH +∠BCH =90°∴∠ACH +∠BCH =90°∴∠ACB =90°,…………6分 ∵DE ∥BC ,DF ∥AC ,即四边形DECF 是平行四边形,…………7分 ∴四边形DECF 是矩形;…………8分 (法二)∵202=AC ,52=BC ,AB =5, ∴222AB BC AC =+=25, ∴∠ACB =90°.以下解法同上.(法三)由1-=∙BC AC k k ,证得∠ACB =90°. 以下解法同上.(3)(法一) ∵DE ∥BC ∴ΔAED ∽ΔACB ∴AB AD BC ED = (1)…………9分同理:ABBDAC DF =(2) 设n AD =, 则n BD -=5由(1)得55n ED =………10分∴55nED FC ==由(2)得5)5(52n DF -=………11分 ∴52=++FC DF ED ………12分∴DE 、DF 、CF 的长度之和不变. …………13分(法二)∵DE ∥BC ∴ΔAED ∽ΔACB∴AB AD BC ED = (1)…………9分 同理:ABBDAC DF =(2) 由(1)+(2)得:1=+ACDF BC ED …………10分又∵5,52==BC AC ,CF =ED ∴522=+DF ED …………11分 ∴52=++FC DF ED ………12分∴DE 、DF 、CF 的长度之和不变. …………13分26. (本题13分)解:(1))3,3(C …………3分(2)(法一)如图,作CF ⊥OB 于F ,则3=OF ,CF =3 在Rt ΔOCF 中,tan ∠COF =333==OF CF∴∠COF = 60………4分又∵AB OC ⊥∴∠ABO = 30………5分在Rt ΔBCF 中,tan ∠ABO =33=BF CF ∴33=BF ∴34=OB ∴)0,34(B …………6分 把)0,34(B 代入33+-=k kx y ,得33-=k …………7分 ∴433+-=x y …………8分(法二)由BF OF CF ∙=2,得33=BF(法三)设B )0,(a ,由222OB CB OC =+,得22222)3(33)3(a a =-+++ 解得34=a(法四)可求直线OC 解析式为x y 3=,由AB OC ⊥,得13-=k ,∴33-=k(3)∵O 、D 、B 、E 四点共圆∴ 180=∠+∠DBE DOE ……………………9分又∵AB ⊥BE ∴ 90=∠ABE ∴ 90=∠DOE∵ 30=∠=∠ABO DEO ……………………10分在Rt ΔDOE 中,tan ∠DEO =33=OE OD ∴OD OE 3= ∴22321OD OE OD S DOE =∙=∆……………………11分 ∴当OD ⊥AB 时,ΔDOE 的面积最小,即点D 与点C 重合, 此时32==OC OD ……………………12分∴ΔDOE 面积的最小值为36.……………………13分。
福州市2020年初中毕业班4月质量检测数学试题含答案
福州市初中毕业班质量检测数学试卷(考试时间:120分钟,满分:150分)注意事项:1.全卷三大题,27小题,试卷共4页,另有答题卡.2.答案必须写在答题卡上,否则不能得分.一、选择题(共12小题,每题3分,满分36分;每小题只有一个正确选项,请在答题卡的相应位置填涂)1.下列算式中,与-1+2相等的是A.2-1B.-1-2C.-(2-1) D.-(1+2)2.已知圆周率π=3.1415926…,将π精确到干分位的结果是A. 3.1B.3.14C.3.141D.3.1423.下列图形中,么l与么2是同位角的是A B4.下列运算结果是a6的式子是A. a2.a3 B.(-a)6 C.(a3)3 D.a12-a65.方程(x - 2)2 +4 =0的解是A. x1=x2=0 B.x1=2,x2=-2 C.x1=0,x2 =4 D.没有实数根6.将∠AOB绕点O顺时针旋转15°,得到∠COD,若∠COD= 45°,则∠AOB的度数是A. 15° B.30° C.45° D.60°7.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是A.3 B.9 C.12 D.188.函数y=1x的图象是A B C D9.如图,△ABC中,∠A =50°,O是BC的中点,以O为圆心,OB长为半径画弧,分别交AB,AC于点D,E连接OD,OE,测量∠DOE的度数是A.50° B.60° C.70° D.80°10.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定发生变化的是11.无论m为何值,点A(m,5 -2m)不可能在A.第一象限 B.第二象限 C.第三象限 D.第四象限12.如图,Rt△ABC中,∠C =90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是A.3 B.4 C.25 D.1213 13二、填空题(共6小题,每题4分,满分24分)13.分解因式:x2-1= :.14.若二次根式2x-有意义,则x的取值范围是___ _.15. 2月上旬福州地区空气质量指数(AQI)如下表所示,空气质量指数不大于100表示空气质量优良,2月上旬福州地区空气质量指数(AQI)日期 1 2 3 4 5 6 7 8 9 10ug/m3 26 34 43 41 34 48 78 1 15 59 45如果小王该月上旬来福州度假三天那么他在福州度假期间空气质量都是优良的概率是____.16.已知平行四边形ABCD中,点A,B,C的坐标分别是A(-1,1), B(1,-2),C(4,2),则点D的坐标是____.17.如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(α+β) tanα+tanβ.(填“>”“=”“<”)18.如图,点A在二次函数y=ax2(a>O)第一象限的图象上, AB⊥x轴,AC⊥y轴,垂足分别为B,C,连接BC.交函数图象于点D,则CDCB的值为.三、解答题(共9小题,满分90分)19.(7分)计算:-22-38- +(-1)0.20.(7分)化简:22a b a ba b-+--21.(8分)如图,∠A CB= 900,AC =BC,AD上CE,BE⊥CE,垂足分别为D,E.求证:△A CD≌△CBE.22.(8分)顺风旅行社组织200人到花果岭和云水洞旅游,到花果岭的人数是到云水洞的人数的2倍少1人,到两地旅游的人数各是多少?23. (10分) 3月,某中学以“每天阅读l小时”为主题,对学生最喜爱的书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2 提供的信息,解答下列问题:图1 图2(1)请把折线统计图(图1)补充完整;(2)如果这所中学共有学生900名,那么请你估算最喜爱科普类书籍的学生人数.24.(12分)已知点A(m,n)在y=6x的图象上,且m(n-1)≥0.(1)求m的取值范围;(2)当m,n为正整数时,写出所有满足题意的A点坐标,并从中随机抽取一个点,求该点在直线y= -x+6下方的概率.25.(12分)如图,△ABC中,∠A =30°,AB=AC,以B为圆心,BC长为半径画弧,交AC于点D,交AB于点E(1)求∠ABD的度数;(2)当BC=2时,求线段AE,AD与»DE围成阴影部分的面积.普学育术它类型26.(13分)如图,矩形ABCD中,AB=3,BC =2,点M在BC上,连接AM,作∠AMN = ∠AMB,点N在直线AD上,MN交CD于点E(1)求证:△AMN是等腰三角形;(2)求BM ·AN的最大值;(3)当M为BC中点时,求ME的长.27. (13分)如图,抛物线y=a(x-2)2 -1过点C(4,3),交x轴于A,B两点(点A在点B的左侧).(1)求抛物线的解析式,并写出顶点M的坐标;(2)连接OC, CM,求tan ∠OCM的值;(3)若点P在抛物线的对称轴上,连接BP,CP,BM,当∠CPB= ∠PMB时,求点P的坐标.ABD N。
2020年福建省中考数学试卷(附答案与解析)
绝密★启用前2020年福建省初中学业水平考试数学第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.15-的相反数为()A.5B.15C.15-D.5-2.如图所示的六角螺母,其俯视图是()A B C D3.如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则DEF△的面积是()A.1B.12C.13D.144.下列给出的等边三角形、平行四边形、圆及扇形中,既是轴对称图形又是中心对称图形的是()A B C D5.如图,AD是等腰三角形ABC的顶角平分线,5BD=,则CD等于()A.10B.5C.4D.36.如图,数轴上两点M,N所对应的实数分别为m,n,则m n-的结果可能是()A.1-B.1C.2D.37.下列运算正确的是()A.2233a a-=B.()222a b a b+=+C.()222436ab a b-=-D.()110a a a-=≠8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6 210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6 210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.()621031xx-=B.621031x=-毕业学校_____________姓名________________考生号_____________________________________________ -------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------C .621031x x-=D .62103x= 9.如图,四边形ABCD 内接于O ,AB CD =,A 为BD 中点,60BDC ∠=,则ADB ∠等于( )A .40°B .50°C .60°D .70°10.已知()111P x y ,,()222P x y ,是抛物线22y ax ax =-上的点,下列命题正确的是( )A .若1211x x -->,则12y y >B .若1211x x -->,则12y y <C .若1211x x -=-,则12y y =D .若12y y =,则12x x =第Ⅰ卷二、填空题:本题共6小题,每小题4分,共24分. 11.计算:8-=________.12.若从甲、乙、丙3位“爱心辅学”志愿者中随机选1位为学生在线辅导功课,则甲被选到的概率为________.13.一个扇形的圆心角是90°,半径为4,则这个扇形的面积为________.(结果保留π) 14.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10 907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米,根据题意,“海斗一号”下潜至最大深度10 907米处,该处的高度可记为________米.15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则ABC ∠等于________度.16.设A ,B ,C ,D 是反比例函数ky x=图象上的任意四点,现有以下结论: ①四边形ABCD 可以是平行四边形; ②四边形ABCD 可以是菱形; ③四边形ABCD 不可能是矩形; ④四边形ABCD 不可能是正方形.其中正确的是________.(写出所有正确结论的序号)三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解不等式组:()321261x x x x -⎧⎪⎨⎪-⎩+①>.②≤,18.(本小题满分8分)如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE DF =.求证:BAE DAF ∠=∠.19.(本小题满分8分)先化简,再求值:211122x x x -⎛⎫-÷⎪++⎝⎭,其中1x . 20.(本小题满分8分)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨. (1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润. 21.(本小题满分8分)如图,AB 与O 相切于点B ,AO 交O 于点C ,AO 的延长线交O 于点D ,E 是BCD 上不与B ,D 重合的点,1sin 2A =.(1)求BED ∠的大小;(2)若O 的半径为3,点F 在AB的延长线上,且BF =DF 与O相切.22.(本小题满分10分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3 218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如下图所示的条形图.(1)如果该地区尚未脱贫的家庭共有1 000户,试估计其中家庭人均年纯收入低于2 000元(不含2 000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如下面的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2020年农村脱贫标准为农民人均年纯收入4 000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在------------------此-------------------卷------------------上------------------答-------------------题------------------无-------------------效----------------23.(本小题满分10分)如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得∥CD AB ,且2CD AB =;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为M ,N ,求证:M ,P ,N 三点在同一条直线上.24.(本小题满分12分)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求BDE ∠的度数;(2)F 是EC 延长线上的点,且CDF DAC ∠=∠.①判断DF 和PF 的数量关系,并证明;②求证:EP PCPF CF=. 25.(本小题满分14分)已知直线1210:l y x =-+交y 轴于点A ,交x 轴于点B ,二次函数的图象过A ,B 两点,交x 轴于另一点C ,4BC =,且对于该二次函数图象上的任意两点()111,P x y ,()222,P x y ,当125>≥x x 时,总有12>y y . (1)求二次函数的表达式;(2)若直线()210:l y mx n n =+≠,求证:当2m =-时,21∥l l ;(3)E 为线段BC 上不与端点重合的点,直线32:l y x q =-+过点C 且交直线AE 于点F ,求△ABE 与△CEF 面积之和的最小值.2020年福建省初中学业水平考试数学答案解析一、1.【答案】B【解析】根据相反数的定义:只有符号不同的两个数互为相反数即得.A选项与15-的符号和符号后的数值均不相同,不符合题意;B选项与15-只有符号不同,符合题意,B选项正确;C选项与15-完全相同,不符合题意;D选项与15-符号相同,不符合题意.故选:B.【考点】相反数的定义2.【答案】B【解析】根据图示确定几何体的三视图即可得到答案.由几何体可知,该几何体的三视图依次为.主视图为:左视图为:俯视图为:故选:B..D,【解析】根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、不是轴对称图形,是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:C.【考点】中心对称图形与轴对称图形的概念5.【答案】B【解析】根据等腰三角形三线合一的性质即可判断CD的长.AD是等腰三角形ABC 的顶角平分线,5CD BD∴==.故选:B.【考点】等腰三角形的三线合一6.【答案】C【解析】根据数轴确定m和n的范围,再根据有理数的加减法即可做出选择.解:根据数轴可得01m<<,21n-<<-,则13m n-<<.故选:C.【考点】数轴7.【答案】D【解析】根据整式的加减乘除、完全平方公式、()1ppa aa-=≠逐个分析即可求解.解:选项A:22232a a a-=,故选项A错误;选项B:()2222a b a ab b+=++,故选项B错误;选项C:()222439ab a b-=,故选项C错误;选项D:()1110a a a aa-==≠,故选项D正确.故选:D.【考点】整式的加减乘除及完全平方公式,负整数指数幂8.【答案】A【解析】根据“这批椽的价钱为6 210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答.解:由题意得:()621031xx-=,故选A.【考点】分式方程的应用9.【答案】A【解析】根据AB CD=,A为BD中点求出CBD ADB ABD∠=∠=∠,再根据圆内接四边形的性质得到180ABC ADC ∠+∠=,即可求出答案.A 为BD 中点,AB AD ∴=,ADB ABD ∴∠=∠,AB AD =,AB CD =,CBD ADB ABD ∴∠=∠=∠,四边形ABCD 内接于O ,180ABC ADC ∴∠+∠=, 360180ADB ∴∠+=,40ADB ∴∠=,故选:A .【考点】圆周角定理 10.【答案】C【解析】分别讨论0a >和0a <的情况,画出图象根据图象的增减性分析x 与y 的关系. 根据题意画出大致图象:当0a >时,1x =为对称轴,1x -表示为x 到1的距离,由图象可知抛物线上任意两点到1x =的距离相同时,对应的y 值也相同, 当抛物线上的点到1x =的距离越大时,对应的y 值也越大,由此可知A 、C 正确.当0a <时,1x =为对称轴,1x -表示为x 到1的距离,由图象可知抛物线上任意两点到1x =的距离相同时,对应的y 值也相同, 当抛物线上的点到1x =的距离越大时,对应的y 值也越小,由此可知B 、C 正确. 综上所述只有C 正确. 故选C .【考点】二次函数图象的性质 二、 11.【答案】8【解析】根据绝对值的性质解答即可.88-=.故答案为8. 【解析】利用概率公式即可求得答案.解:从甲、乙、丙3位同学中随机选取1人进行在线辅导功课共有3种等可能结果,其中甲被选中的只有1种可能,故答案为:13. 【考点】概率公式 13.【答案】4π【解析】根据扇形的面积公式2360n r S π=进行计算即可求解.解:扇形的半径为4,圆心角为90,∴扇形的面积是:29044360S ππ⨯⨯==.故答案为:4π. 【考点】扇形面积的计算 14.【答案】10907-【解析】海平面以上的高度用正数表示,海平面以下的高度用负数表示.据此可求得答案. 解:高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米,∴“海斗一号”下潜至最大深度10907米处,可记为10907-,故答案为:10907-. 【考点】正数,负数的意义及其应用 15.【答案】30【解析】先证出内部的图形是正六边形,求出内部小正六边形的内角,即可得到ACB∠的度数,根据直角三角形的两个锐角互余即可求解. 解:由题意六边形花环是用六个全等的直角三角形拼成, 可得BD AC =,BC AF =,CD CF ∴=,同理可证小六边形其他的边也相等,即里面的小六边形也是正六边形,()11621801206∴∠=-⨯=, 218012060∴∠=-=, 30ABC ∴∠=,故答案为:30.【考点】正多边形的证明,多边形的内角和,三角形的内角和 16.【答案】①④【解析】利用反比例函数的对称性,画好图形,结合平行四边形,矩形,菱形,正方形的判定可以得到结论,特别是对②的判断可以利用反证法. 解:如图,反比例函数ky x=的图象关于原点成中心对称, OA OC ∴=,OB OD =,∴四边形ABCD 是平行四边形,故①正确,如图,若四边形ABCD 是菱形, 则AC BD ⊥,90COD ∴∠=,显然:90COD ∠<,所以四边形ABCD 不可能是菱形,故②错误,如图,反比例函数ky x=的图象关于直线y x =成轴对称, 当CD 垂直于对称轴时,OC OD ∴=,OA OB = OA OC =,OA OB OC OD ∴===,AC BD ∴=,∴四边形ABCD 是矩形,故③错误,四边形ABCD 不可能是菱形,∴四边形ABCD 不可能是正方形,故④正确,故答案为:①④.【考点】平行四边形,矩形,菱形,正方形的判定,反比例函数的对称性 三、17.【答案】解:由①得23x x x x +≤6,≤6,≤2., 由②得312232213.x x x x x +----->,>,>,∴原不等式组的解集是32x -<≤.【解析】分别求出各不等式的解集,再找到其公共解集即可求解.具体解题过程参照答案. 【考点】一元一次不等式组的解法 【考查能力】运算18.【答案】解:证明:四边形ABCD 是菱形,B D ∴∠=∠,AB AD =.在ABE △和ADF △中,AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩ABE ADF ∴△≌△,BAE DAF ∴∠=∠.【解析】根据菱形的性质可知AB AD =,B D ∠=∠,再结合已知条件BE DF =即可证明ABE ADF △≌△后即可求解.解题过程参考答案。
〖汇总3套试卷〗福州市2020年中考学业质量监测数学试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在六张卡片上分别写有13,π,1.5,5,0六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .56 【答案】B【解析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π共2个,∴卡片上的数为无理数的概率是21=63. 故选B.【点睛】本题考查了无理数的定义及概率的计算.2.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 【答案】C【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键. 3.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=25°,则∠2的度数是( )A.25°B.30°C.35°D.55°【答案】C【解析】根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.【详解】解:∵直线m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故选C.【点睛】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.4.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是()A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=﹣x成轴对称【答案】D【解析】分析:根据反比例函数的性质一一判断即可;详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D.正确,本选项符合题意.故选D.点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.5.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >4【答案】C 【解析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y 1=kx+b 与直线y 2=mx+n 分别交x 轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x <4,故选C .【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.6.平面直角坐标系内一点()2, 3P -关于原点对称点的坐标是( )A .()3,2-B .()2,3C .()2,3--D .()2,3- 【答案】D【解析】根据“平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:根据关于原点对称的点的坐标的特点,∴点A (-2,3)关于原点对称的点的坐标是(2,-3), 故选D .【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.7.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】试题分析:根据y 随x 的增大而减小得:k <0,又kb >0,则b <0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.考点:一次函数图象与系数的关系.8.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°【答案】A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.9.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是()A.2402008x x=-B.2402008x x=+C.2402008x x=+D.2402008x x=-【答案】B【解析】根据题意设出未知数,根据甲所用的时间=乙所用的时间,用时间列出分式方程即可. 【详解】设乙每天完成x个零件,则甲每天完成(x+8)个.即得,2402008x x+=,故选B.【点睛】找出甲所用的时间=乙所用的时间这个关系式是本题解题的关键.10.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A .B .C .D .【答案】A【解析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案. 【详解】该几何体的俯视图是:. 故选A .【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.二、填空题(本题包括8个小题)11.若直角三角形两边分别为6和8,则它内切圆的半径为_____.【答案】27-1【解析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8226+8=10,∴内切圆的半径为:6+810=22-; 若8228627=-∴内切圆的半径为:6+278712. 故答案为27-1.【点睛】本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键. 12.若2a ﹣b=5,a ﹣2b=4,则a ﹣b 的值为________.【答案】1.【解析】试题分析:把这两个方程相加可得1a-1b=9,两边同时除以1可得a-b=1.考点:整体思想.13.如图,a ∥b ,∠1=40°,∠2=80°,则∠3= 度.【答案】120【解析】如图,∵a ∥b ,∠2=80°,∴∠4=∠2=80°(两直线平行,同位角相等)∴∠3=∠1+∠4=40°+80°=120°.故答案为120°.14.27的立方根为 .【答案】1【解析】找到立方等于27的数即可.解:∵11=27,∴27的立方根是1,故答案为1.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算15.计算:cos 245°-tan30°sin60°=______.【答案】0【解析】直接利用特殊角的三角函数值代入进而得出答案.【详解】2cos 45tan30sin60︒-︒︒=2233110222-=-= . 故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.16.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg【答案】20【解析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg17.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________.【答案】【解析】设降价的百分率为x,则第一次降价后的单价是原来的(1−x),第二次降价后的单价是原来的(1−x)2,根据题意列方程解答即可.【详解】解:设降价的百分率为x,根据题意列方程得:100×(1−x)2=81解得x1=0.1,x2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用.找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.还要判断所求的解是否符合题意,舍去不合题意的解.18.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.【答案】1【解析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.故填1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.三、解答题(本题包括8个小题)19.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.20.新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.【答案】(1)30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数);(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.【解析】解:(1)当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数)(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W 1<W 2时,即485760﹣a <475200,解得:a >10560,∴当0<a <10560时,方案二合算;当a >10560时,方案一合算.【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.21.小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在ABC ∆中,AD 是BC 边上的中线,若AD BD CD ==,求证:90BAC ∠=︒.如图②,已知矩形ABCD ,如果在矩形外存在一点E ,使得AE CE ⊥,求证:BE DE ⊥.(可以直接用第(1)问的结论)在第(2)问的条件下,如果AED ∆恰好是等边三角形,请求出此时矩形的两条邻边AB 与BC 的数量关系.【答案】(1)详见解析;(2)详见解析;(3)3BC AB =【解析】(1)利用等腰三角形的性质和三角形内角和即可得出结论;(2)先判断出OE=12AC ,即可得出OE=12BD ,即可得出结论; (3)先判断出△ABE 是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.【详解】(1)∵AD=BD ,∴∠B=∠BAD ,∵AD=CD ,∴∠C=∠CAD ,在△ABC 中,∠B+∠C+∠BAC=180°,∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°∴∠B+∠C=90°,∴∠BAC=90°,(2)如图②,连接AC 与BD ,交点为O ,连接OE四边形ABCD 是矩形 1122OA OB OC OD AC BD ∴===== AE CE ⊥90AEC ∴∠=︒12OE AC ∴=12OE BD ∴= 90BED ∴∠=︒BE DE ∴⊥(3)如图3,过点B 做BF AE ⊥于点F四边形ABCD 是矩形AD BC ∴=,90BAD ∠=︒ADE ∆是等边三角形AE AD BC ∴==,60DAE AED ∠=∠=︒ 由(2)知,90BED ∠=︒30BAE BEA ∴∠=∠=︒2AE AF ∴=在Rt ABF ∆中,30BAE ∠=︒2AB AF ∴=,3AF BF =3AE ∴=AE BC =3BC AB ∴=【点睛】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD ,解(2)的关键是判断出OE=12AC ,解(3)的关键是判断出△ABE 是底角为30°的等腰三角形,进而构造直角三角形. 22.先化简,再求值:22211·1441x x x x x x -++--+-,其中x 是从-1、0、1、2中选取一个合适的数. 【答案】12-. 【解析】先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=12x -,由于x 不能取±1,2,所以把x=0代入计算即可. 【详解】22211·1441x x x x x x -++--+-, =()()2211•11(2)1x x x x x x -+++--- =12(1)(2)(1)(2)x x x x x -+---- =()()112x x x --- =12x -, 当x=0时,原式=11022=--. 23.水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W (L )与滴水时间t (h )的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W 与t 之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图 ① 图②【答案】(1)0.3 L ;(2)在这种滴水状态下一天的滴水量为9.6 L.【解析】(1)根据点()0,0.3的实际意义可得;(2)设W 与t 之间的函数关系式为W kt b =+,待定系数法求解可得,计算出24t =时W 的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3 L.(2)由图象可知W 与t 之间的函数图象经过点(0,0.3),故设函数关系式为W =kt +0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k +0.3=0.9,解得k =0.4.故W 与t 之间的函数关系式为W =0.4t +0.3.当t =24时,W =0.4×24+0.3=9.9(L ),9.9-0.3=9.6(L ),即在这种滴水状态下一天的滴水量为9.6 L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.24.如图,已知()()()3,3,2,1,1,2A B C ------是直角坐标平面上三点.将ABC ∆先向右平移3个单位,再向上平移3个单位,画出平移后的图形111A B C ∆;以点()0,2为位似中心,位似比为2,将111A B C ∆放大,在y 轴右侧画出放大后的图形222A B C ∆;填空:222A B C ∆面积为 .【答案】(1)详见解析;(2)详见解析;(3)6.【解析】(1)分别画出A 、B 、C 三点的对应点即可解决问题;(2)由(1)得111A B C ∆各顶点的坐标,然后利用位似图形的性质,即可求得222A B C ∆各点的坐标,然后在图中作出位似三角形即可.(3)求得222A B C ∆所在矩形的面积减去三个三角形的面积即可.【详解】(1)如图,111A B C ∆即为所求作;(2)如图,222A B C ∆即为所求作;(3)222A B C ∆面积=4×4-12×2×4-12×2×2-12×2×4=6. 【点睛】 本题主要考查了利用平移变换作图、位似作图以及求三角形的面积,作图时要先找到图形的关键点,把这几个关键点按平移的方向和距离确定对应点后,再顺序连接对应点即可得到平移后的图形.25.如图,在直角坐标系xOy 中,直线y mx =与双曲线n y x=相交于A (-1,a )、B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1. 求m 、n 的值;求直线AC 的解析式.【答案】(1)m =-1,n =-1;(2)y =-12x +12 【解析】(1)由直线y mx =与双曲线n y x=相交于A(-1,a)、B 两点可得B 点横坐标为1,点C 的坐标为(1,0),再根据△AOC 的面积为1可求得点A 的坐标,从而求得结果;(2)设直线AC 的解析式为y =kx +b ,由图象过点A (-1,1)、C (1,0)根据待定系数法即可求的结果.【详解】(1)∵直线y mx =与双曲线n y x =相交于A(-1,a)、B 两点, ∴B 点横坐标为1,即C(1,0)∵△AOC 的面积为1,∴A(-1,1)将A(-1,1)代入y mx =,n y x=可得m =-1,n =-1; (2)设直线AC 的解析式为y =kx +b∵y =kx +b 经过点A (-1,1)、C (1,0)∴1,{0,k b k b -+=+=解得k =-12,b =12. ∴直线AC 的解析式为y =-12x +12. 【点睛】本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.26.《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.【答案】(1)35%,126;(2)见解析;(3)1344人【解析】(1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360即可得到结果;(2)求出3小时以上的人数,补全条形统计图即可;(3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以2100即可得到结果.【详解】(1)根据题意得:1﹣(40%+18%+7%)=35%,则“玩游戏”对应的圆心角度数是360°×35%=126°,故答案为35%,126;(2)根据题意得:40÷40%=100(人),∴3小时以上的人数为100﹣(2+16+18+32)=32(人),补全图形如下:;(3)根据题意得:2100×3232100=1344(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人.【点睛】本题考查了条形统计图,扇形统计图,以及用样本估计总体,准确识图,从中找到必要的信息进行解题是关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°【答案】A【解析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.2.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=210【答案】B【解析】设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.3.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.8【答案】C【解析】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DEBC EF=,即123EF =,解得EF=6,故选C.4.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为()米A.5B.3C.5+1 D.3【答案】C【解析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则BC=2222125AC AB+=+=m;∴AC+BC=(1+5)m.答:树高为(1+5)米.故选C.5.如图,已知线段AB,分别以A,B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )A .40°B .50°C .60°D .70°【答案】B 【解析】解:∵由作法可知直线l 是线段AB 的垂直平分线,∴AC=BC ,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B .6.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .7.如图所示的图形,是下面哪个正方体的展开图( )A .B .C .D .【答案】D 【解析】根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A. 因为A 选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B. 因为B 选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;C .因为C 选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;故选D.【点睛】本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.8.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y1B.y2C.y3D.y4【答案】A【解析】由图象的点的坐标,根据待定系数法求得解析式即可判定.【详解】由图象可知:抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=34(x+2)2-2;抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;综上,解析式中的二次项系数一定小于1的是y1故选A.【点睛】本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.9.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E∠=,90C∠=,45A∠=,30D∠=,则12∠+∠等于()A .150B .180 C .210 D .270【答案】C 【解析】根据三角形的内角和定理和三角形外角性质进行解答即可.【详解】如图:1D DOA ∠∠∠=+,2E EPB ∠∠∠=+,DOA COP ∠∠=,EPB CPO ∠∠=,∴12D E COP CPO ∠∠∠∠∠∠+=+++=D E 180C ∠∠∠++-=309018090210++-=,故选C .【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.10.不等式组123122x x -<⎧⎪⎨+≤⎪⎩的正整数解的个数是( ) A .5B .4C .3D .2 【答案】C【解析】先解不等式组得到-1<x≤3,再找出此范围内的正整数.【详解】解不等式1-2x <3,得:x >-1, 解不等式12x +≤2,得:x ≤3, 则不等式组的解集为-1<x≤3,所以不等式组的正整数解有1、2、3这3个,故选C .【点睛】本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集.二、填空题(本题包括8个小题)11.若正六边形的内切圆半径为2,则其外接圆半径为__________.【答案】433【解析】根据题意画出草图,可得OG=2,60OAB ∠=︒,因此利用三角函数便可计算的外接圆半径OA.【详解】解:如图,连接OA 、OB ,作OG AB ⊥于G ;则2OG =,∵六边形ABCDEF 正六边形,∴OAB 是等边三角形,∴60OAB ∠=︒,∴43sin 603OG OA ===︒, ∴正六边形的内切圆半径为2,则其外接圆半径为433. 故答案为433. 【点睛】 本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.12.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.【答案】1【解析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【详解】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形; ②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;故腰长为1.故答案为:1.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验. 13.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD为矩形,则它的面积为.【答案】2【解析】如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线1y=上,∴四边形AEOD的面积为1x∵点B在双曲线3y=上,且AB∥x轴,∴四边形BEOC的面积为3x∴四边形ABCD为矩形,则它的面积为3-1=214.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是.【答案】(﹣b,a)【解析】解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),设∠AOX=α,∠A1OD=β,A1坐标(x,y)则α+β="90°sinα=cosβ" cosα="sinβ" sinα==cosβ=同理cos α==sinβ=所以x=﹣b,y=a,故A1坐标为(﹣b,a).【点评】重点理解三角函数的定义和求解方法,主要应用公式sinα=cosβ,cosα=sinβ.15.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_____【答案】18 5【解析】分析题意,如图所示,连接BF,由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式1122AB BE AE BH⨯⨯=⨯⨯可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BF.∵△AEF是由△ABE沿AE折叠得到的,∴BF⊥AE,BE=EF.∵BC=6,点E为BC的中点,∴BE=EC=EF=3根据勾股定理有AE2=AB2+BE2代入数据求得AE=5根据三角形的面积公式1122AB BE AE BH ⨯⨯=⨯⨯得BH=12 5即可得BF=24 5由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC2-BF2=CF2代入数据求得CF=18 5故答案为18 5【点睛】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质16.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P= 40°,则∠BAC= .【答案】20°【解析】根据切线的性质可知∠PAC=90°,由切线长定理得PA=PB,∠P=40°,求出∠PAB的度数,用∠PAC ﹣∠PAB得到∠BAC的度数.【详解】解:∵PA是⊙O的切线,AC是⊙O的直径,∴∠PAC=90°.∵PA,PB是⊙O的切线,∴PA=PB.∵∠P=40°,∴∠PAB=(180°﹣∠P)÷2=(180°﹣40°)÷2=70°,∴∠BAC=∠PAC﹣∠PAB=90°﹣70°=20°.故答案为20°.【点睛】本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数.17.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,BE的长为.【答案】1或32.【解析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.。
2020福建省福州市初中毕业班质检数学卷
2,3,4,5 中任取 3 个数,则这 3 个数能构成一组勾股数的概
E
F
率是
.
13.一副三角尺如图摆放,D 是 BC 延长线上一点,E 是 AC 上一点,∠ B
B ∠EDF 90°,∠A 30°,∠F 45°,若 EF∥BC,则∠CED 等
于
度.
CD
E F D
14.若 m(m 2) 3,则(m 1)2 的值是
第Ⅰ卷
一、选择题:本题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符 合题目要求的.
1.在实数 π , 22 ,2.02002, 3 8 中,无理数的是 47
A. π 4
B. 22 7
C.2.02002
D. 3 8
2.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是
x
1
,其中
x
3 1.
BE
FC
20.(本小题满分 8 分)
如图,已知∠MON,A,B 分别是射线 OM,ON 上的点.
M
(1)尺规作图:在∠MON 的内部确定一点 C,使得 BC∥OA
且 BC 1 OA;(保留作图痕迹,不写作法)
A
2
(2)在(1)中,连接 OC,用无刻度直尺在线段 OC 上确定一
赵爽弦图
笛卡尔心形线
科克曲线
斐波那契螺旋线
A
B
C
D
3.下列运算中,结果可以为 3-4 的是
A.32÷36
B.36÷32
Hale Waihona Puke C.32×36D.( 3 )×( 3 )×( 3 )×( 3 )
4.若一个多边形的内角和是 540°,则这个多边形是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年福建省(福州市)初中毕业班质量检测数 学 试 题(测试范围:中考范围 测试时间:120分钟 满分:150分)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在实数π4,-227,2.02002,38中,无理数的是( )A .π4B .-227C .2.02002D .382.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .赵爽弦图 笛卡尔心形线 科克曲线 斐波那契螺旋线3.下列运算中,结果可以为3-4的是( ) A .32÷36B .36÷32C .32×36D .(-3)×(-3)×(-3)×(-3)4.若一个多边形的内角和是540°,则这个多边形是( ) A .四边形B .五边形C .六边形D .七边形5.若a <28-7<a +1,其中a 为整数,则a 的值是( ) A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六。
问人数、鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为( )A .⎩⎪⎨⎪⎧9x -11=y 6x +16=yB .⎩⎪⎨⎪⎧9x -11=y 6x -16=yC .⎩⎪⎨⎪⎧9x +11=y 6x +16=yD .⎩⎪⎨⎪⎧9x +11=y 6x -16=y7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是( ) A .b 一定增大,c 可能增大 B .b 可能不变,c 一定增大C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变8.若一个粮仓的三视图如图所示(单位:m),则它的体积(参考公式:V 圆锥=13S 底h ,V 圆柱=S 底h )是( )A .21πm 3B .36πm 3C .45πm 3D .63πm 39.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 长为半径作⌒EF ,交CD 于点F ,连接AE ,AF .若AB =6,∠B =60°,则阴影部分的面积是( ) A .63+2πB .63+3πC .93-3πD .93-2π第8题 第9题10.小明在研究抛物线y =-(x -h )2-h +1(h 为常数)时,得到如下结论,其中正确的是( ). A .无论x 取何实数,y 的值都小于0B .该抛物线的顶点始终在直线y =x -1上C .当-1<x <2时,y 随x 的增大而增大,则h <2D .该抛物线上有两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2,x 1+x 2>2h ,则y 1>y 2 二、填空题:本题共6小题,每小题4分,共24分. 11.计算:2-1+cos60°= .12.能够成为直角三角形三条边长的三个正整数称为勾股数,若从2,3,4,5中任取3个数,则这3个数能够构成一组勾股数的概率是 .13.一副三角尺如图摆放,D 是BC 延长线上一点,E 是AC 上一点,∠B =∠EDF =90°,∠A =30°,∠F =45°,若EF ∥BC ,则∠CED 等于 度.第13题15.如图,在⊙O 中,C 是⌒AB 的中点,作点C 关于弦AB 的对称点D ,连接AD 并延长交⊙O 于点E ,过点B 作BF ⊥AE 于点F ,若∠BAE =2∠EBF ,则∠EBF 等于 度.16.如图,在平面直角坐标系xOy 中,□ABCD 的顶点A ,B 分别在x ,y 轴的负半轴上,C ,D 在反比例函数y =k x(x>0)的图像上,AD 与y 轴交于点E ,且AE =23AD ,若△ABE 的面积是3,则k 的值是 .第15题 第16题三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解不等式组⎩⎪⎨⎪⎧2x ≤6, ①3x +12>x . ②并把不等式组的解集在数轴上表示出来.18.(本小题满分8分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:∠A =∠D .19.(本小题满分8分)先化简,再求值:x 2+1x 2+2x +1÷1x +1-x +1,其中x =3-1.20.(本小题满分8分)如图,已知∠MON ,A ,B ,分别是射线OM ,ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD =2CD ,并证明OD =2CD .21.(本小题满分8分)甲,乙两人从一条长为200m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息,图1是甲出发后行走的路程y (单位:m)与行走时间x (单位:min)的函数图象,图2是甲,乙两人之间的距离s (单位:m)与甲行走时间x (单位:min)的函数图象. (1)求甲,乙两人的速度; (2)求a ,b 的值.图1 图222.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m(单位:t)的部分按平价收费,超出m的部分按议价收费,为此拟召开听证会,以确定一个合理的月均用水量标准m,通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t),将这1000个数据按照0≤x<4,4≤x<8…,28≤x<32分成8组,制成了如图所示的频数分布直方图.(1)写出a的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m,请判断若以(1)中所求得的平均数作为标准m是否合理?并说明理由.23.(本小题满分10分)如图,在Rt△ABC中,AC<AB,∠BAC=90°,以AB为直径作⊙O交BC于点D,E是AC的中点,连接ED,点F在⌒BD上,连接BF并延长交AC的延长线于点G.(1)求证:DE是⊙O的切线;(2)连接AF,求AFBG的最大值.24.(本小题满分12分)已知△ABC ,AB =AC ,∠BAC =90°,D 是AB 边上一点,连接CD ,E 是CD 上一点,且∠AED =45°. (1)如图1,若AE =DE , ①求证:CD 平分∠ACB ; ②求ADDB的值;(2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.图1 图225.(本小题满分14分)在平面直角坐标系xOy中,抛物线C:y=kx2+(4k2-k)x的对称轴是y轴,过点F(0,2)作一直线与抛物线C相交于点P,Q两点,过点Q作x轴的垂线与直线OP相交于点A.(1)求抛物线C的解析式;(2)判断点A是否在直线y=-2上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,过抛物线C上的任意一点(除顶点外)作该抛物线的切线l,分别交直线y=2和直线y=-2于点M,N,求MF2-NF2的值.2019-2020学年度福建省质量检测数学试题参考答案一、选择题(本题共10小题,每小题4分,共40分,每小题只有一个选项正确)1 2 3 4 5 6 7 8 9 10 ACABBABCCD二、填空题(本题共6小题,每小题4分,共24分)11.1 12.14 13.15 14.4 15.18 16.94三、解答题(共9题,满分86分) 17.(本小题满分8分)解:解不等式①,得x ≤3. ……………………………………………………………………3分解不等式②,得 x >-1. …………………………………………………………………5分 ∴原不等式组的解集是-1<x ≤3, ………………………………………………………6分 将该不等式组解集在数轴上表示如下:……………………………………………………………8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE =CF ∴BE +EF =CF +EF∴BF =CE ……………………………………………………………………………………3分在△ABF 和△DCE 中, ⎩⎪⎨⎪⎧AB =DC ∠B =∠C BF =CE∴△ABF ≌△DCE ……………………………………………………………………………6分 ∴∠A =∠D …………………………………………………………………………………8分 19.(本小题满分8分)x 2+1=x 2+1x +1-(x +1)(x -1)x +1…………………………………………………………………4分=x 2+1x +1-x 2-1x +1…………………………………………………………………………5分=2x +1…………………………………………………………………………………6分 当x =3-1时,原式=23-1+1………………………………………………………………7分=23=233…………………………………………………………………………8分20.(本小题满分8分) 解:画法一: 画法二:………………………………………4分 (1)如图,点C 、D 分别为(1),(2)所求作的点. ……………………………5分(2)证明如下:由(1)得BC ∥OA ,BC =12OA ,∴∠DBC =∠DAO ,∠DCB =∠DOA ,∴△DBC ∽△DAO ,…………………………………………………………7分 ∴DC DO =BC AO =12, ∴OD =2CD ……………………………………………………………………8分21.(本小题满分8分)解:(1)由图1可得甲的速度是120÷2=60m /min . …………………………………………………2分由图2可知,当x =43时,甲,乙两人相遇,故(60+v 乙)×43=200,解得v 乙=90m /min . …………………………………………………………………………4分(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴b =20090=209,………………………………………………………………………………6分 a =20060=103. ………………………………………………………………………………8分 ∴a 的值为103,b 的值为209. 22.(本小题满分10分)(1)依题意a =100 ·································································································· 2 分 这1000户家庭月均用水量的平均数 为:72.141000203060261002222018280114180101006402=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=x , ∴估计这1000户家庭月均用水量的平均数是14.72.·······················································6分(2)解法一:不合理.理由如下·····················································································7分 由(1)可得14.72在12≤x <16内,这1000户家庭中月均用水量小于16t 的户数有40+100+180+280=600(户),····················································································8分 ∴这1000家庭中月均用水量小于16t 的家庭所占的百分比是%60%10010060=⨯ ∴月均用水量不超过14.72t 的户数小于60%··································································9分 ∵该市政府希望70%的家庭的月均用水量不超过标准m而60%<70%,∴用14.72作为标准m 不合理.····················································································10分 解法二:不合理.理由如下··························································································7分 ∵该市政府希望70%的家庭的月均用水量不超过标准m∴数据中不超过m 的频数应为700,·············································································8分 即有300户家庭的月均用水量超过m又20+60+100=160<300,20+60+100+220=380>300∴m 应在16≤x <20内·································································································9分 而14.72<16∴用14.72作为标准m 不合理.·····················································································10分23.(本小题满分10分)(1)证明:连接OD ,AD∵AB 为⊙O 直径,点D 在⊙O 上∴∠ADB=90°…………………………………………………………………………………………1分∴∠ADC=90°∵E是AC的中点∴DE=AE∴∠EAD=∠EDA……………………………………………………………………………………2分∵OA=OD∴∠OAD=∠ODA……………………………………………………………………………………3分∵∠OAD+∠EAD=∠BAC=90°∴∠ODA+∠EAD=90°即∠ODE=90°…………………………………………………………………………………………4分∴OD⊥DE∵D是半径OD的外端点∴DE是⊙O的切线……………………………………………………………………………………5分(2)解法一:过点F作FH⊥AB于点H,连接OF∴∠AHF=90°∵AB为⊙O的直径,点F⊙O在上∴∠AFB=90°∴∠BAF+∠ABF=90°∵∠BAC=90°∴∠G+∠ABF=90°∴∠G=∠BAF…………………………………………………………………………………………6分∵∠AHF=∠GAB=90°∴△AFH∽△GBA ……………………………………………………………………………………7分∴AFGB=FHBA………………………………………………………………………………………………8分由垂线段最短可得FH≤OF……………………………………………………………………………9分当且仅当点H,O重合时等号成立∵AC<AB∴⌒BD上存在点F使得FO⊥AB,此时点H,O重合∴AFGB=FHBA≤OFBA=12……………………………………………………………………………………10分即AFGB的最大值为12解法二:取GB 中点M ,连接AM∵BAG =90°∴AM =12GB ……………………………………………………………………………………………6分 ∵AB 为⊙O 的直径,点F ⊙O 在上∴∠AFB =90°∴∠AFG =90°∴AF ⊥GB ………………………………………………………………………………………………7分 由垂线段最短可得AF ≤AM …………………………………………………………………………8分 当且仅当点F ,M 重合时等号成立此时AF 垂直平分GB即AG =AB∵AC <AB∴⌒BD 上存在点F 使得F 为GB 中点∴AF ≤12GB ……………………………………………………………………………………………9分 ∴AF GB ≤12………………………………………………………………………………………………10分 即AF GB 的最大值为1224.(本小题满分12分)(1)①证明:∵∠AED =45°,AE =DE ,∴∠EDA =180°-45°2=67.5°·················································································· 1 分 ∵AB =AC ,∠BAC =90°,∴∠ACB =∠ABC =45°,∠DCA =22.5°, ································································· 2 分 ∴∠DCB =22.5°,即∠DCA =∠DCB ,∴CD 平分∠ACB . ······························································································· 3 分 ②解:过点D 作DF ⊥BC 于点F ,∴∠DFB =90°.∵∠BAC =90°,∴DA ⊥CA .又CD 平分∠ACB ,∴AD =FD ,········································································································· 4分 ∴ AD DB =FD DB在Rt △BFD 中,∠ABC =45°,∴sin ∠DBF =FD DB =22····························································································· 5 分 ∴ AD DB =22··········································································································· 6 分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE =90°.又∠BAC =90°,∠AED =45°,∴∠BAG =∠CAE ,∠AGE =45°,∠AEC =135°, ························································ 7 分 ∴∠AGE =∠AEG ,∴AG =AE . ··········································································································8 分 ∵AB =AC ,∴△AGB ≌△AEC , ································································································ 9 分 ∴∠AGB =∠AEC =135°,CE =BG ,∴∠BGE =90°. ·····································································································10 分 ∵AE ⊥BE ,∴∠AEB =90°,∴∠BEG =45°,在Rt △BEG 和Rt △AGE 中,BE =GE cos45°=2GE ,AE =GE •cos 45°=22GE , ······························································ 11 分 在Rt △ABE 中,tan ∠ABE =AE BE =22GE GE =12. ································································ 12 分 (也可以将△AEB 绕点 A 逆时针旋转 90°至△AFC 得到AE =22EF ,CF =2EF ) 证法二:∵AE ⊥BE ,∴∠AEB =90°,∴∠BAE =∠ABE =90°.∵∠AED =45°,∴∠BED =45°,∠EAC =∠ECA =45°,∴∠AEC =∠BEC =135°. ······················································································ 7 分∵∠BAC =90°,∴∠BAE =∠EAC =90°,∴∠ABE =∠EAC .∵∠ABC =45°,∴∠ABE +∠EBC =45°,∴∠ECA =∠EBC , ······························································································· 8 分 ∴△BEC ∽△CEA ,∴ BE CE =EC EA =BC CA. ································································································ 9 分 在Rt △ABC 中,BC =CA cos45°=2CA , ··································································· 10 分 ∴BE CE =EC EA =2, ∴ BE =2CE ,AE =22CE . ·················································································· 11 分 在Rt △ABE 中,tan ∠ABE =AE BE =22CE CE =12································································ 12 分 25.(本小题满分14分)解:(1)∵抛物线C 的对称轴是y 轴,∴-4k 2-k 2k= 0且k ≠0,…………………………………………………………………………1分 ∴4k -12=0 解得k =14,………………………………………………………………………………………3分 ∴抛物线C 的解析式为y =14x 2……………………………………………………………………4分 (2)点A 在直线y =-2上……………………………………………………………………………5分 理由如下:∵过F (0,2)的直线与抛物线C 交于P ,Q 两点∴直线PQ 与x 轴不垂直设直线PQ 的解析式为y =tx +2将y =tx +2带入y =14x 2得x 2-4tx -8=0 ∴ △ =16t 2+32>0∴该方程有两个不相等的实数根x 1,x 2不妨设P (x 1,y 1),Q (x 2,y 2)∴直线OP 的解析式为 y =y 1x 1x ………………………………………………………………………6分设A (m ,n ),∵QA ⊥x 轴交直线OP 于点A∴m =x 2∴n =y 1x 1•x 2=14x 12•x 2x 1=14x 1x 2……………………………………………………………………………7分 又方程x 2-4tx -8=0的解为x =2t ±2t 2+2∴x 1x 2=(2t +2t 2+2)(2t -2t 2+2)=4t 2-4(t 2+2)=-8∴14x 1x 2=-2 即点A 的纵坐标为-2………………………………………………………………………………9分 ∴点A 在直线y =-2上(3)∵切线l 不过抛物线C 的顶点∴设切线l 的解析式为y =ax +b (a≠0)将y =ax +b 代入y =14x 2 得x 2-4ax -4b =0………………………………………………10分 依题意得△=0即(-4a )2-4×(-4b )=16a 2+16b =0∴b =-a 2∴切线l 的解析式为y =ax -a 2……………………………………………………………………11分当y =2时,x =a 2+2a ,∴(a 2+2a,2)………………………………………………………………12分 当y =-2时,x =a 2-2a ,∴(a 2-2a,2) …………………………………………………………13分 ∵F (0,2)∴MF 2=(a 2+2a)2, 由勾股定理得NF 2=(a 2-2a )2+(-2-2)2 ∴MF 2-NF 2=(a 2+2a )2-[(a 2-2a)2+(-2-2)2] =(a 2+2a +a 2-2a )(a 2+2a -a 2-2a)-16 =2a 2a •4a-16 =8-16=-8……………………………………………………………………………14分。