Homotopical Intersection Theory, II equivariance
中文课程名 英文课程名 学分 学期
中文课程名英文课程名学分学期当代国际政治概论 Modern international Politics 2 1当代中国现代化发展史 Developmental History of Chinese Modernization 2 2共产国际与中国革命 The Communist International & Chinese Revolution 2 1毛泽东思想概论 The Thought of Mao Zedong 2 1统战理论与实践 United Front Theory and Practice中共党史史料学 Historical Documents of the Communist Party of China History 2 4中国革命史专题研究 Monographic Study of Chinese Revolution History 3 1中国近现代政治思想史 History of Mordern Chinese Political Thought 3 1中国土地改革史 History of Land Reform in China 2 2中国现代化思想史 Histroy of Chinese Modernization Thought 2 2当代中国史研究 Contemporary Histroy of China Studies中华人民共和国史专题研究 Monographic Study of the People's Republic of China History 3 2李群在微分方程中的应用 Applications of Lie Groups to Differential Equations . 3,4变分学 Variational Calculus 3 2抽象代数 Abstract Algebra 6 1,2代数拓扑学 Algebraic Topology 4非线性发展方程 Nonlinear Evolution Equations and Soliton 6 2,3非线性泛函分析 Nonlinear Functional Analysis 4 2非线性偏微分方程 Nonlinear Partial Differential Equations 3 3几何拓扑学 Geometric Topology 7 1,2连续统理论与动力系统 Continuum Theory and Dynamical Systems 4 3 临界点理论(二) Critical Ponit Theory (二)临界点理论(一) Critical Point Theory (一) 6 3,4流形的拓扑学 Topology of Manifold 4 3群表示论 Representation theory fo groups 4 3示性类理论 Theory of Characteristic classes 4 3算子代数 Operator Algebras 4 3算子理论 Operator Theory 4 2讨论班 Seminar套代数 Nest Algebras 4 3微分拓扑学 Differential Topology 4纤维丛理论 Theory of Fibre Bundle 4 2现代拓扑学 Modern Topology 4 1现代微分几何 Modern Differential Geometry 3 1二阶线性偏微分方程(二) Linear Second Order PDE(二)二阶线性偏微分方程(一) Linear Second Order PDE(一) 6 1,2有限群 Theory of finite groups 4 2,3置换群 Permutation groups 3自由边界问题 Some topics in Free Boundary Problems 3 3常微分方程定性理论 Qualitative Theory of ordinary Differential Equati ons 4 2代数拓扑 Algebraic Topology 4 1调和分析 Harmonic Analysis动态图形 Animation 3 4多元逼近 Multivariate Approximation多元统计分析 Multivariate Statistical Analysis 4 1分形理论及其应用 Fractal Theory and its Applications 4 3高等数理统计 Advanced Mathematical Statistics 8 1,2函数逼近论 Approximation Theory 4 2计算机图形学 Computer Graphic 8 1,2计算几何 Computational Geometry 8 1,2可靠性理论 Reliability Theory 2 3蒙特卡洛法 Monte Carlo Method曲线曲面 Curves and Surfaces 2 3三维造型 Solid Modeling 4 1时间序列分析 Time Series Analysis算法分析 Agirutgn Analysis图形工作站 Work Station微分动力系统 Introduction to Differential Dynamical Systems 4 3 稳定性理论 Stability Theory小波分析 Wavelet Analysis 4 2样条函数 Spline Functior应用概率统计 Applied Probobility and Statistics 3 3真实感图形 realistic rendering 4 1计算复杂性 Computational Complexity 4 2金融数学 Finantial Mathematic控制的几何理论 Geometric Theory of Control 4 2拟阵论 Matroid Theory 4 2微分包含 Differential Inclusions 3 3微分方程 Differential Equation 4 2稳定性-动力系统 Stability and Dynamical Systems 4 3线性系统理论 Linear System Theory 4 1运筹学 Operations Research 4 1组合优化 Combinatorial Optimization 4 3逼近论导引 Introduction to Approximation Theory 3 1非线性方程组数值解法 Numerical methods of nonlinear equation Systems 3 4分形几何 Fractal Geometry 3数值代数及其应用 Numerical Algebra and Its Applications 3 2特征值反问题 Inverse Eingen value Problems 3现代微分方程数值解 Numerical Solutions of Modern Differential Equations 3 3正负法数控绘图 Positive-Negative Algorithm for Drawing Graphs with Digital 3高等量子力学 Advanced quantum mechanics 4 1高等统计物理 Advanced staticstical Physics 3 2近代场论与凝聚态物理 Modern quantum field theory and condensed matter 3 3近代量子场论(I) Advanced Quantum Field Thoery(1) 4 2近代量子场论(Ⅱ) Advanced Quantum Field Theory (2) 4 3李群与李代数 Lie group and Lie algebras 3 2群论 Group theory 4 1统计物理中场论方法 Field Theory Methods in statistical Physics 3 2微分几何 Differential Geometry 3 2表面物理 Surface Physics 4超导电性理论 Theories of Superconductivity 4 2固体化学 Solid Chemistry 3 2固体理论 Quantum Theory of Solids:Part 5 1,2固体专门实验 Experiment of Solid Physics 2 2凝聚态物理专题 Recent Topics on Condensed Matter Physiccs 3 2弱信号检测 Weak signal detection 2 1微机应用 Principle of micro computer's applications 2 1现代凝聚态物理实验方法 Experimental Techniques on Condensed MatterPhysics 3 1非线性光学 Principte of Nonlinear Optics 3 2光电探测 Detection of optical radiation 2 2激光谱学 Laser Spectroscopy 3 2激光器件与激光技术 Laser device & Laser technique 3 1激光实验 Laser experiment 2 2激光物理学 Laser Physics 3 1原子光谱学 Atomic spectroscopy 3 1量子光学 Quantum Optics 3 1激光原理 Principle of Lasers 3 2粒子物理理论 Theory on Particle Physics 3 1量子场论基础 Basic on Quantum Field Theory 3 1X-射线衍射晶体分析 X-ray Diffractive analysis of Crystal Structure 2 2 高等分析化学 Advanced Analytical Chemistry 3 1高等无机化学 Advanced Inorganic Chemistry 3 1高等有机化学 Advanced Organic Chemistry 3 1化学热力学 Chemical Thermodynamics 3 2环境化学 Environmental Chemistry 3 2计算机化学 Computer Chemistry 3 2近代仪器分析与实验技术 Modern Instrumental Analysis and experiments 4 1,2量子化学 Quantum Chemistry 3 1配位化学研究方法 Methods in Investigation of Coordination Chemistry 3 2稀土元素化学 Rare Earth Chemistry 3 2催化化学或表面物理 Catalitic Chemistry or Surfacial Physics 3 2化学动力学 Chemical Dynamics 3 1热化学与应用 Thermal Chemistry and Applicalion 3 2溶液热力学 Solution Thermodynamics 4 2统计热力学 Statistical Thermodynamics 3 1环境监测 Environmental monitoring 3 2环境评价 Enviromental Quality Assessment 3 2表面活性剂化学 Chemistry of Surface active reagents 3 2高等有机化学实验 Advanced Organic Chanistry Experiments 3 2有机结构分析 organic Strutural Aralysis 3 2有机合成专论 Organic Synthesis 3 2有机合成实验 Advanced Organic Systhesis Experiment 2 2电化学研究方法 Methods in Investigation of Electrical Chemistry 3 2应用波谱学 Applications of Spectroscopy 3 2非线性动力系统 Nonlinear Dynamical Systems 3 1非线性随机振动 Nonlinear random vibration 2 2非线性有限元程序设计 Designing of Nonlinear Finite Element Program 4 2非线性振动 Nonlinear vibration 2 1分析动力学 Analytical Dynamics 2 1刚体系统动力学 Dynamics of Systems of Rigid Bodies 3 2结构动力学 Structural Dynamics 3 1现代控制理论与应用 Modern Control theroy and application 3 2运动稳定性 Stability of Motion 2 2弹性力学变分原理 Variational Principles of Theory of Elastcity 3 2多相流动基础 Introduction to Multiphase Flow 3 2高等流体力学 Advanced Fluid Mechanics 4 2工程与系统中的控制 Control in system and Engineering 3 2固体力学基础 Foundations of solid Mechanics 3 1固体实验力学 Experimental solid Mechanics 3 2计算传热学 Numerical Heat Transfer 3 2计算流体力学Ⅰ(有限元,边 ) Computational Fluid Mechanics(Finite Element Method and Boun 3 1计算流体力学Ⅱ(差分,网格生成) Computational Fluid Mechanics(Finite Defference Method 3 2流变学基础 Rheology Principles 3 2数据分析 Ramdon Dynamical Data Processing 3 2随机振动 Random Vibration 3 1现代流体实验测试技术 Modern Experimental and Measuring Techniquefor Fluid Flow 3 1叶轮机械气体动力学 Gas Dynamics of Turbomachinery 3 1张量分析及其力学中应用 Tensor Analysis and Its Application 3 1最优化原理与方法 Optimization Theory and Method 3 1板块构造专题 Special Topic on plate tectonics 2环境地球化学 Environmental Geochemistry 3 3前寒武纪地质 Precambrian Geology 3 3区域地质及地球物理专题 Regional Geology and Geophysics 3 3岩矿专题 Special Subject of Petrology 3 3岩石薄片研究指导 The Section Research of Rocks 2 3岩石大地构造学 Petrotectonics 3 1变质岩构造及变形构造 Structure of Metamorphic Rock and Deformation 3 3高等构造地质学 Higher Structural Geology 3 2高等同位素地质 Higher Isotope Geology 2 4古地磁实验技术 An Introduction to Paleomagneotism 2 1古地磁专题 Thematic Paleomagenefism 3 2历史大地构造学 Historical Geotectonics 3 2生物磁学及环境磁学 2 3岩石物理学 Petrophysics 3 3地理信息系统 Geographic Information System 2 2地物波谱学 Spectrual Analysis 2遥感程序设计 Remote sensing Programming 6 1,2,3遥感地学分析 Geo-Science Analyses of Remote Sensing 2 3遥感定量理论 Remote sensing Quantitative Theory 4 1,2遥感专题 Remote Sensing Special Subject 2 3环境土壤学 Environmental Pedology 2 2微量元素环境地球化学 Envionmental Geochemistry of Trace Elements 3 3水环境化学 Aqueous Environmental Chemistry 2 2高级电子电路专题 Advanced Electronic circuits 3 1数字信号处理技术 The Techniques of Digital Signal Processing 3 2微处理机应用系统设计 Design of Micro-Processor Application System 3 1智能测试仪器与系统 Intelligent Measurement and system 3 2变频器设计与应用 The Application and Design of VVVF Inverter 3 2 电机过渡过程的理论与仿真 The Theory And Simulation of Electrical Machine Transients 3 2电机计算机控制技术 Computer Control Techniques on Electric Machines 3 2电机现代设计理论 Modern Design Theory on Electric Machines 3 2电力电子装置的机辅分析 Computer Aided Analysis of Power Electronic Device 3 1电气伺服系统设计与应用 The Design and Application of Electric Servo System 3 2交流电机调速理论 The Theory of speed Adjusting of Alternating-Current Motors 3 3可编程控制器原理与应用 The principle of programmable controller and its application 3 2现代控制理论 Modern Control Theory 3 1AI在电力系统中的应用 The application of artificial intelligence to power systems 3 2电磁场数值分析 Numerical Analysis for Electromagnetic Fields 3 2电磁暂态过程数字仿真 Computer Aided Analysis of Electromagnetic Transient in Powe 3 2电力系统的计算机运行与控制 Computerized Operation and Control of Power Systems 3 2电力系统规划 Power System Planning 2 2电力系统可靠性 Reliability Evaluation of Power Systems 3 2电力系统暂态分析 Power System Transient Analysis 3 2高电压测量技术 High Voltage Measuring Techniques 2 2高电压绝缘 High Voltage insulation 3 2环境电磁学基础 Electromagnetic Compatiblity Fundamentals 2 3计算机继电保护系统 Computer Relaying for Power Systems 3 2网络理论 Electrical Network Theory 3 1直流输电原理(Ⅰ) DC Transmission(Ⅰ) 2 1直流输电原理(Ⅱ) DC Transmission(Ⅱ) 2 2电力电子微机化检测控制 Detect and Control of Power Electroic Equipment with up 2 2电力电子系统干扰抑制技术 Interference Suppression Techniques in Electronics 3 2电力电子线路及系统的计算仿真 Computer Simulation of Power Electronic Circuits 2 1高频功率变换技术最新发展 New Advances in High Frequency Power Conversion 3 2特种电源专论 Special Power Supplies 3 2现代电力电子技术 Advanced Power Electronics 3 2现代电力电子器件专题 Modern Power Devices 3 2现代功率无源元件应用 Modern Power Passive Components and Application 2 1信号与系统 Signal and System 3 1电磁场原理 Principle of Electromagnetic Field 3 2电气测量技术 Electrical Measurements 3 2非线性电路理论 Nonlinear Network Theory 3 2非线性控制系统 Nonlinear control system 3 2机器人控制 Robot Control 3 2系统辨识 System Identification 3 1线性多变量系统 Linear Multi-Variable System 3 1智能控制理论及应用 Intelligent Control Theory and Applications 3 2自适应控制与鲁棒控制 Adaptive Control and Robust Control 3 2最优控制 Optimal Control 3 2系统工程与运筹学 Systems Engineering 3 2交流调速控制系统 Control Engineering of Electrical Drives 3 2中文信息处理 Computer Processing of Chinese Language 3 2电机调速系统仿真 The Computer Simulation of Electrical Motor Drives 3 2电机电磁场 Electromagnetic Field on Electric Machines 3 1计算机实时控制系统 Computer Real-time Control 4 1测量数据的分析与处理 Data Analysis and Procossing 3 2弹性力学 Theory of Elasticity 3 1断裂理论与工程应用(2) Fracture Theory and Eng appliction 3 1断裂力学测试技术(3) Experimental Methods for Fracture Mechanics Determ 3 2焊接结构分析 Welded Construction Analysis 3 2机器故障诊断技术 Machinery Fault Diagnostic Technique 3 2机械振动 Mechanical Vibration 3 1工程流体力学 Fluid Mechanics in Engineering 3 1实用数值计算方法 Applied Numerical Method 4 1塑性力学 Engineering Plasticity 2 2微型计算机应用技术 Application of Microcomputer Technicians 2 1现代测试技术(A) Modern Testing and Measurement Technology 3 1现代动平衡技术的理论及应用 The theory and application of modren balancing tech 2 2压力容器工程优化(2) Optomization of Pressure Vessel Enginneering 3 2 有限单元法 Finite Element Methods 3 2转子动力学(1) Rotor Dynamics 3 2辨识滤波及自适应 Identification Filteryng and Adaptive Control 3 2非线性控制理论(四室必选课) Nonlinear Systems Control 3 1工业过程系统动力学(一室必选课) Industrial Process System Dynamic 3 2过程动态模型(三室必选课) Process Dynamic Modelling 3 1计算机控制系统设计 Computer Contol System Design 2 1科技英语写作 Writing Scientific Documents in English 2 2系统辨识 System Identification 3 2线性控制系统理论 Linear Systems 3 1智能控制 Intelligent Control 3 2最优化及最优控制 Optimization and Optimal Control 3 2两相流检测技术 Measurement of Two Phase Flow Parameters 3 2人工智能及应用 Artificial Intelligence and Its Applications 3 2微机化仪表设计原理 Design of microcomputer-Based Instrumentation 3 2现代电子技术 Modern Electronic Technique 3 2新型检测技术与信号处理 New Detecting Technique 3 1信号处理理论基础 System Identification and Parameter Estimation 3 1 仪表可靠性估计 Reliability Evaluation of Instruments 3 1仪表优化设计基础 Basis of Instrumental Optimum Design 2 2过程的建模与仿真 Process Modeling and Simulation 3 2接口技术与局域网 Microcomputer Interfacing for Eletronics Technicians 3 2神经元网计算导论 Introduction of Neural Networks Compution 3 3系统工程 System Engineering 3 2现代数据分析方法 Modern Methods for Data Analysis 3 2仪器分析与计量化学 Instumental Analysis and Chemometrics 3 2智能装置原理与设计 3 2传递现象 Transport Phenomena 5 1,2传质过程 Mass Transfer 3 1多相反应动力学及反应器分析 Multiphase Chemical Kinetics and Reaction Analysis 3 1多相流反应工程 Multiphase Chemical Reaction Engineering 3 2高等分离工程 Advanced Separation processes 4 2高等化工热力学 Advanced Chemical Engineering Thermodynamics 3 2 高分子选论 Selected Topics on Polymer Chemistry 3 1化工过程分析 Chemical Processe Analysis 3 2化工基础数据 Essential Data for Chemical Engineering 3 3化工选论 Selected Topics in Chemical Engineering 2 3人工智能的化工应用 Artificial Intelligence in Process Engineering 2 3 聚合反应工程 Polymerization Reaction Engineering 3 2聚合反应器的设计与放大 The Principles of design and scale up ofPolymerization reat 2 1聚合过程中的传质 Principles of Mass Transfer in Polymerization Engineering 2 2聚合物流变学 Rheology of Polymers 2 1平衡物性理论导论 Introduction on equilibrium Property theory 3 2数据的分析与处理 3 2微机原理及应用 Microprcessors and its Applications 3 2吸附分离工程 Adsorption Engineering 2 2新型分离技术 2 2催化反应动力学选论 Selected Topics of Catalitic Activity and Kinetics 2 2多相反应体系动力学及反应器分析 3 1工业结晶过程 Industrial Crystallization Proeesses 3 1吸附催化实验方法 Experimental Methods in Adsorption and Catalysis 2 2有机合成选论 Selected Lecture of Organic synthesis 2 1流体相平衡原理和应用 Principle of fluid phase equilibria and its application 3 2膜科学技术 Membrane Science and Technology 2 2生物反应过程测量、模型与控制 Modelling and Optimal Control for Bioprocesses 3 1生物分离过程 Bioseparation Engineering 2 2生物化学反应工程 Bioreaction Engineering 3 1高等环境工程 Advance Environment Enngineering 4 2环境科学导论 Introduction to Environmental Science 2 2高等钢筋混凝土结构 Advanced Reinforced Concrete Structure 3 2高等土力学 Advanced Soil Machanics 3 1基础工程 Foundation Engineering 3 2计算结构力学 Computational Structural Mechanics 3 2结构测试技术 Thechnique of Structure Test 3 2实验土力学 Experiment Soil Machanics 3 2土动力学 Soil Dynamics 3 2土木工程专家系统应用与开发 Application And Development of Civil Engineering Expert Syst 2 2土塑性力学 Soil Plasticity 3 1计算土力学 Computational Soil Mechanics 3 2工程地质与岩石力学 Enineering Geology &Rock Mechanics 3 2优化原理与方法 Optimization Theory and algonithm 4 1高等结构动力学 Advancd Dynamics of Structures 3 1工程弹塑性力学 Engineering Elasticity and Plasticity 3 1结构非线性稳定分析 Nonlinear and stability of Structures 2 2结构风工程 Structural Wind Engineering 2 2结构稳定理论 Theory of Structural Stability 3 2结构与基础工程减振技术 Control of Engineering Vibration 2 2科技软件工程 Software Engineering For Science And Technique 3 2模糊数学及其工程应用 Applications of Fuzzy Math.In Civil Engineering 3 2网架与网壳结构 Space Truss and Latticed Shell Structures 3 2高等工程流体力学 Advanced Engineering Fluid Mechanics 3 1管网分析及市政工程应用 Pipe Network Analysis 3 3环境水力学 3 2计算机辅助设计CAD Computer Aided Design 3 2计算流体力学 Computational fluid Mechanics 3 2损伤与断裂 Damage & Fracture Mechanics 3 3系统分析 Systems Analysis 3 2岩体力学与工程应用 Rock Mechanics & Engineerings 3 2结构可靠度理论与应用 Structural Reliability Theory and its application 3 2工程接触力学 Contact Mechanics In Engineering 2 2固体的变形与断裂 Educational Program for Deformation and Fracture 2 2机械优化设计 Mechanical Optimum Design 2 2计算机辅助设计 Computer Aided Design 2 2润滑理论 Theory of Lubrication 3 2现代控制理论 Modern Control Theory 3 1测试技术 Measurement and Data Processing 3 2放电加工理论基础 Theortical Basis of Electrical Discharge Machining 2 2工程摩擦学 Engineering Tribology 3 1工程软件开发方法与技术 Engineering Software Development Methodology and 2 2工程设计学 Engineering Design 3 1工程系统的模拟与仿真 Modelling and Simulating of Engineering Systems 3 2工程中有限元法 The Finite Element Method 3 2公差计算机辅助设计与优化 2 2机床热态精度控制 Control Technique for Thermal Accuracy of Machine Tools 2 2机构分析与综合 Synthesis and Analysis of Mechanisms 3 1机械故障诊断学 Mechanical Fault Diagnosis 2 2机械振动学 Mechanical Vibration Theory and Applications 3 2机械制造中的现代测试技术 Advanced Measurement and Testing in Mechanical Eng 3 1计算机辅助设计与制造 CAD/CAM 4 1计算机图形处理 Computer Graphics Processing 3 2精密机械热态理论与实验技术 Thermal Behaviour Theory of Precision Machinery an 2 2模具设计 Design for Die and Mould 3 2切削理论 Cutting Theory 2 2柔性制造技术 Flexible Manufacturing Technology 2 2时间序列与动态数据处理 Time Series and Dynamic Data Processing 3 2 数字信号处理 Digital Signal Processing 3 2随机振动 Random Vibration 2 2现代机械制造工艺理论 Modern Theory of Mechanical Manufacturing Process 3 2现代制造系统工程学 Modern Mannfacturing System Engineering 3 2小波分析及工程应用 Wavelet Analysis and its Application in Engineering 2 2制造过程控制 Manufacturing Process Control 4 2机电系统CAD导论 Introdution of CAD for Mechatronic System 3 1机电系统电液控制 Electro-Hydraulic control for Mechatronic Systems 3 2流体传动及控制 Fluid Power Transmission and Control 3 2专业英语 Scientific English 1 2弹性结构的振动与声辐射 Structural Vibration and Sound Emission 3 2 动态参数测试与分析技术 Dynamic Parameters Measurement and Analysis Technique 3 1工业噪声与振动控制 Control of Noise and Vibration in industry 3 1计算机辅助动力学分析 Computer Aided Dynamic Analysis in Mechenical Engineering 3 2CAM技术基础 CAM Technology 3 2工程计算机图形学 Engineering Computer Graphics 3 1工程图学分析 Engineering Drawing Analysis 3 1工程图纸的计算机处理 Computer Processing for Engineering Drawing 2 2工业造型学 Industrial Modelling Design 2 2基于产品特征的几何造型 Geomtry Modelling Based on Product Featurec 2 2机械产品计算机辅助设计 Computer Aided Design for Mechanical Prodution 3 3计算机辅助几何设计(CAGD) Computer Aided Geometry Design 3 2 人工智能在机械工程中的应用 Artificial Intelegent Application in Mechanical En 2 2机械故障诊断学 Mechanical Fault Diagnosis 2 2计算机辅助公差设计 Computer Aided Tolerancing 2 2现代测试技术 Measurement and Modern Instrumentation 3 2智能检测原理与技术 Intelligent Testing Principles and Technology 2 2 CAD/CAM中的曲面造型技术 Surface Modeling for CAD/CAM 2 2机械制造中的模糊技术 Fuzzy Technology in Mechanical Engineering 2 2制造企业管理及管理信息系统 Manufactory Management and Management Information Systems 2 2实用软件基础 Fundaments of Computer Software 3 2CIMS概论 Introduction of CIMS 3 2并行处理 Parllel processing 2 1超大规模IC VLSI 3 2计算机视觉 Computer Vision 3 2模式识别 Principles of Patlern Recognition 3 1人工神经网络系统 Artificial neural systems 2 1数据采集系统与接口技术 Data Acquisition systems And Interfacing Technique 2 1数据结构和数据库 Data Structure and Data Base 2 1数字通信与系统 Digital Communication and System 3 2数字图象处理(二) Digital Image Processing 3 1数字信号处理(二) Digital Signal Processing 3 2通信网 Telecommunication Networks 3 1信号检测 Signal Detection 3 2信息工程数学(二) Mathematics for Information Engincering(二) 3 2信息工程数学(一) Mathematics for Information Engincering(一) 3 1信息论与编码 Information Theory and Coding 3 1薄膜技术与器件 Thin Film Technology and Devices 3 2导波理论基础 The Fnndamentals of limeter wave and 3 1 电磁场数值计算 Numerical Analysis of Electromagnetic Field 3 2光波电子学 Optical Wave electronics 3光电子学进展 Progeress for Optoelectroinics 3 2光纤传输理论与系统 Fiber Optic Communication theory and system 3 2 光子学基础 fundamentation of photonics 3 1计算机网与互连技术 Computer Network & Interconnection Technique 3 2现代光学系统原理 Principles of Moderns Optical Systems 3 2线性系统与波动光学 Linear Systems and Wave Optics 3 1计算电磁场 Numerical Technique for Electromagnetic field 3 2微波电路CAD Computer-Aided Design of Microwave Circuits 3 2微波遥感电磁场基础 Electomagnetic Theory In Microwave Remote Sensing 3 2半导体功率器件理论 Theory of Semicmductor Power Devices 3 2半导体器件物理 Physics of Semiconductor Devices 4 1薄膜生长与晶体光学 The growth of thin films and crystal optics 3 2超大规模集成电路与系统 VLSI Circuits and Systems 3 2超快光电子学 Ultrafast Optoelectronics 2 2传感电子学与微机械 Sensor Electronics and Micromachine 2 2导波光学 Waveguide Optics 3 1固态电子学 Solid State Electronics 3 2光电子物理导论 Introduction to Physical photo-electronics 4 2集成电路计算机辅助设计 IC-CAD 3 2微细加工物理 The Physics of Microfabrication 3 2现代控制理论 Modern Control Theory 3 1知识工程 3 2ASIC系统和逻辑设计 ASIC System and Logic Designs 3 2数字系统的故障诊断 Diagnosis of Faults in Digital Systems 2 2自动测试系统与智能仪器 Infelect instrumentation and automated Measurmenent Systems 4 2光纤传感技术与系统 Fiber Optic Sensors and System现代通信原理 Principles of Modern Communication人工智能导论信道编码理论与技术 Channel Coding Theory and TechnologeATM和宽带ISDN ATM and BISDN薄膜光学 Thin film Optics 3 2薄膜技术及测试 Thin Film Technology and Measurement 3 2成像理论及像质评价 Optical Image Theory and Evaluation of Image Quanlity 3 2导波光学 Guided-Wave Optics 2 2非线性光学 Nonlinear Optics 4 2高等物理光学 Advance physical optics 4 1光全息术 Optical Holography 2 2光信息传输基础 Transmission Foundation of Optical Information 2 1红外器件与红外技术 Infrared Devices and Infrared Technology 2激光光谱学 Laser Spectroscopy 2 2激光应用技术 Laser Application Technology 2 2集成光学 Integrated Optics 3 2可靠性工程学 Engineering Reliability 3 2量子光学 Quantum Optics 3 2微弱信号检测 Weak Signal Detection 2 2光学检测 Optical Testing 3 1光学设计 Optical System Design 3 2数字图像处理及实验 Digital Image Processing and Its Experiments 4 2 现代摄影仪器原理 The principle of modern photographic instrument 3 2 编码与信息理论 Coding and Information Theory 2 2传感器的理论与设计 Theory ard Design of Transducers 3 1分布型计算机控制系统 Distributed computer control system 2机械量光电测试 Mechanical measurement photo-elelctronic Technique 2 2近代干涉测试技术 Present interference testing technique 2 2近代光谱技术 Modern Spectroscopy 2 2谱分析的工业应用 Engineering Applications of Spectral Analysis 3 2微机控制仪表的模拟信号处理 Analog singal processing for Microprocessor based新型传感器 New Type Sensors 2 2信号分析的数字方法 Digital Methods for signal Analysis 3 1智能测试仪器与系统 Intelligent Testing Instrument and System 3 1X射线学 X-Ray Diffraction 2 2材料近代研究方法 Modern Testing method of Material 2 2电子显微学 Electron Microscopy of Materials 2 2高等物理冶金(Ⅰ) Advanced Physical Metallurgy(Ⅰ) 2 1高等物理冶金(Ⅱ) Defects in Crystal(Ⅱ) 2 1固体物理 Solid State Physics 3 2化学热处理原理 Chemical Heat treatment 2 1机械零件失效分析基础 Mechanical Failure Analysis and protection 2 2计算机实用技术 Fundamentals on Computer Application 3 2金属材料的磨损 Wear of Metallic Materials and Protection Techniqu 2 2 金属材料热力学 Thermodynamics of Metallic Materials 2 1金属一氢系统 Metal-Hydrogen Systems 3 2生物医学材料 2 2玻璃化学 Chemcsding of Glass 2 2超细粉科学技术 The Science & Technology for Ultrofine Powder 3 2电子功能物理薄膜技术 Physics and Technology of Functional Film Material 3 2高等无机材料化学与物理 Advancde Chemistry and Physics of Inorganic Material 3 2硅酸盐物理化学 4 1精细陶瓷 Fine Cearmics 3 4溶胶凝胶科学技术 Sol-Gel Science and Technolgy 2 2生物陶瓷 Bioceramics 2 4无机材料导论 Introdnction to Geramics 3 4无机材料热力学与动力学 4 1高等硅酸盐物理化学 Physical Chemiting of Silicate 3 2 ?硅酸盐热工原理及窑炉设计选论 Selective Topics on Thermotechnical Principles of 4晶体生长 Grystal Growth 3 2无机材料工程研究方法 Methodology on Inorganic material Engineering 2 半导体薄膜物理与技术 Physics and Technology of Semiconductor thin Films 3 1半导体材料 Semiconductor Materials 3 2半导体发光材料与器件 Luminous Material and Device of Semiconductor3 2半导体光学性能 3 3半导体化学检测 Chemical Analysis of Semiconductors 2 3半导体输运过程 Transport Phenomena in Semiconductors 2 3半导体物理 Physics Theory of semieonductors 3 1半导体研究中的计算技术 Computer Science in Semiconductor Researches 2 3材料科学中的介电谱技术 Dielectric Spectroscopy in Materials Science 2 1晶体结构 Crystal Structure and Defect 3 3实用表面测试技术 Pratical Surface Analysis 2 1金属腐蚀与防护 Corrosion and Protection of Metals 2 2金属基复合材料 Metallic Matrix Composites 2 2金属凝固过程 Solidification Processing 3 2体视学原理 Principles and Applications of Stereology 2 2专业英语 1 1传热传质的工程计算方法 Numerical Computation of The Heat and Mass Transfe 3 1低污染燃烧技术 Low Pollution Combustion Technology 4 1高等传热学 Advanced Heat Transfer 3 1高等燃烧学 Advanced Combustion 3 2煤粉燃烧 Pulverized Coal Combustion 2,3煤气化理论及综合利用技术 Coal gasification theory and comprehensive utiliza 3 1燃烧流体力学 Combustion Flowdynamics 3 1现代热物理研究方法测试技术 Modern Research Method and Measurement Technique 3 2高等工程热力学 Advanced Thermodynamics 3 2溶液热力学 Solution Thermodynamics 3 2太阳能热利用基础 Fundamentals for Solar Thermal Applications 3 2现代热物理测试技术 Metrology of modern thermal Physics 2 2余热利用基础 Fundamentals for Heat Recovering 3 2高等流体力学(含张量分析) Advanced Engineering Fluid Mechanics 3 1 计算机辅助设计 CAD 3 2控制理论 Basic Principles of Automatic Control 3 2内燃机工作过程计算与分析 Digital Simulation in Internal Combustion Engine 3 2内燃机燃烧 Combustion in Internal Combustion Engines 3 2内燃机热负荷与热强度 Thermal Load and strength in Internal Combustion Engine 3 2内燃机热力学与气体动力学 The Advanced Thermodynamics and Gas Dynamics of Internal Com 4 1燃烧理论 Combustion Theory 3 2现代热物理量测 Advanced Measuring System in Thermophysical Engine 2 2传热和流动的共商分析 Analysis on Entropy Generation Through Heat Transfer and Fln 2 2近代低温制冷技术 Modern cryo-refrigeration technique 2 2制冷及低温技术选论 A Special topics on refrigeration and Cryogenic Engine 3 2单片微机的应用技术 Application Techniques for Single-Chip Microcompute 2 2电厂故障诊断与分析 Defect Diagnotics and Analytics for Power Stations 2 2电厂计算机实时控制系统 Power Plant Computer Real/Time Control System 2 2发电厂热力过程仿真技术 Simulating Technology for process of power plant 2 2发电厂热力设备的优化运行 Optimal operation for thermoeletric power station 2 2汽轮机变工况运行特性 Performance of Steam Turbine in Transient andoff-Designed 2 2燃气一蒸汽联合循环 Gas and steam Combined Cycle 2 2热工过程控制与数字信号处理 Thermo-process Control and Digital Signal Processe 2 2现代控制理论 Modern Control Theory 3 2分析与节能原理 Exergetic Analysis and Principle of Saving-Energy 2 2 转子动力学 Rotordynamics 2定量生理学Ⅰ Quantitative Physiology(Ⅰ) 3 2定量生理学Ⅱ Quantitative Physiology(Ⅱ) 3 3功能材料与微电子技术 Functional Material & Microelectronic Technology 3 2人工智能在医学中的应用 Artificial Intelligence and Application 3 3数字图象处理 Digital Image Processing 3 2数字信号处理Ⅱ Digital Signal ProcessingⅡ 3 3微机处理系统设计与开发 Design and Developing of Microprocessor system 3 1现代传感器技术 Advanced sensor Mitderb cibtrik Tgeory Technology 3 1现代控制理论 3 3现代医学仪器 4 3医学图象处理 Medical Image Processing 3 2数字图象处理 3 2最优方法及应用 Optimizntion methods and its Application并发程序设计 Concurrent Programming 2 2多媒体计算机技术 Multimedia Computing and Technology 3 2高级计算机图形学 Advanced computer Graphics 2 2计算机图形学 Computer Graphics 3 1计算机网络与开放系统互连 Computer Network and open system Interconnection 2 1计算理论 Theory of computing 3 1面向对象软件技术 Object-Oriented Software Technology 3 2模糊数学 Fuzzy Mathmatics 2 2软件工具与开发环境 Software Engineering Tool and Environment 2 2 数据库设计 Database Design 2 2形式语义学 Formal Semantics 3 1形态数学及其应用 Mathematical Morphology and Its Application 2 2 VLSI原理与专用集成电路设计 VLSI and Application Specific Integrated Circuit 3 1操作系统分析与设计 2多媒体计算机系统设计 System Design of Mulitmedia Computer 2 2高级计算机系统结构 Advanced Computer System Architecture 3 1工程工作站一硬件与软件设计 Engineering Workstation--Hardware and Software 3 1计算机网络与分布处理 Computer Network & Distributed Processing 3 1 容错与可靠性技术 Fault Tolerant and Reliability Technology 2 2平行工程与产品设计 concurrent Engineering & Product Design 2 2平行处理与并行算法 Parallel Processing and algorthms 2 2微型计算机系统分析 System Analysis of Micro-Computer 2 2系统实验 System Exercises 1 2新型微处理器体系结构 Advanced Microprocessor's Architecture 3 1组合数学 Combination Mathmatics 3CAD系统与方法 The CAD system and method 3 1多媒体技术 Multimedia technology in Computer System 2 2分布式系统与网络 The Distributed Systems and Computer Networks 2 2 工程数据库 Engineering Databases 2 2。
Canonical rational equivalence of intersections of divisors
a rXiv:alg-ge o m/971011v24Dec1997Canonical rational equivalence of intersections of divisors Andrew Kresch 13December 19970Introduction One way to define an operation in intersection theory is to define a map on the group of algebraic cycles together with a map on the group of rational equivalences which commutes with the boundary operation.Assuming the maps commute with smooth pullback,the extension of the operation to the setting of algebraic stacks is automatic.The goal of the first section of this paper is to present the operation of intersecting with a principal Cartier divisor in this light.We then show how this operation lets us obtain a rational equivalencewhich is fundamental to intersection theory.A one-dimensional family of cycles on an algebraic variety always admits a unique limiting cycle,but a family of cycles over the punctured affine plane may yield different limiting cycles if one approaches the origin from different directions.An important step in the historical development of intersection theory was realizing how to prove that any two such limiting cycles are rationally equivalent.The results of the first section yield,as a corollary,a new,explicit formula for this rational equivalence.Another important rational equivalence in intersection theory is the one that is used to demonstrate commutativity of Gysin maps associated to reg-ularly embedded subschemes.In section2,we exhibit a two-dimensional family of cycles such that the cycles we obtain from specializing in two dif-ferent ways are precisely the ones we need to show to be rationally equivalent to obtain the commutativity result.Our explicit rational equivalence respects smooth pullback,and hence the generalization to stacks is automatic.This simplifies intersection theory on Deligne-Mumford stacks as in[7],where con-struction of such a rational equivalencefills the most difficult section of that important paper.Since our rational equivalence arises by considering families of cycles on a larger total space,we are able to deduce(section3)that the rational equiv-alence is invariant under a certain naturally arising group action.The key observation is that we can manipulate the situation so that the group action extends to the total space.This equivariance result is used,but appears with mistaken proof,in[2],where an important new tool of modern intersection theory—the theory of virtual fundamental classes—is developed.The author would like to thank S.Bloch,W.Fulton,T.Graber,and R. Pandharipande for helpful advice and the organizers and staffof the Mittag-Leffler Institute for hospitality during the1996–97program in algebraic ge-ometry.1Intersection with divisorsIn this section we work exclusively on schemes offinite type over afixed basefield.The term variety denotes integral scheme,and by a subvariety we mean an integral closed subscheme.We denote by Z∗X,W∗X,and A∗X,re-spectively,the group of algebraic cycles,group of rational equivalences,and Chow group of a scheme X.The boundary map W∗X→Z∗X is denoted∂. We refer to[3]for basic definitions and properties from intersection theory. Given a Cartier divisor D we denote by[D]the associated Weil divisor(it is important to note that the notion of Weil divisor makes sense on arbi-trary varieties,[3]§1.2).If X is a variety then we denote by X1the set of subvarieties of codimension1.2Definition1.1.Let X be a variety and let D be a Cartier divisor.Let π: X→X be the normalization map.The support of D,denoted|D|,is defined to beπ( W∈ X1ord Wπ∗D=0W).Remark1.2.This agrees with the na¨ıve notion of support(the union of all subvarieties appearing with nonzero coefficient in[D])when X is normal or when D is effective.Remark1.3.There is yet another notion of support which appears in[3]. There,the support of a divisor is a piece of data that must be specified along with the divisor.Given a Cartier divisor D on a variety X,let Z be any closed subscheme such that away from Z the canonical section of O(D)is well-defined and nonvanishing.Then,[3]defines an intersection operation A k(X)→A k−1(Z).Unfortunately,the support|D|which we have defined is not generally a support in this sense.Hence in the definition below we require that our divisors be specified by defining functions which are regular away from their supports.We shall denote by|D|0the set of irreducible components of|D|.Definition1.4.Let X be a variety.A P-divisor on X is a tuple(U,U′,x) such that(i)U and U′are nonempty open subschemes of X such that U∪U′=X; (ii)x∈k(U)∗;(iii)x|U∩U′∈O∗(U∩U′);and(iv)the data(x∈k(U)∗,1∈k(U′)∗)specifies a Cartier divisor D such that |D|=X\U′.By abuse of terminology,we call D a P-divisor if D is the Cartier divisor associated to a P-divisor as in(iv).Given a P-divisor as above,we call x the local defining function.A P-divisor may be pulled back via a morphism of varieties provided that the image of the morphism is not contained in the support of the underlying Cartier divisor.Examples.(i)Let X be a normal variety.Let x∈k(X)∗specify a principal Cartier divisor D.Then(X,X\|D|,x)is a P-divisor.3(ii)Let X be a variety.Every effective principal Cartier divisor is a P-divisor.(iii)Let X be a variety,and letπ:X→P1be a dominant morphism.Then thefiber ofπover{0}is a P-divisor.The operation of intersecting with a Cartier divisor is generally defined only on the level of rational equivalence classes of cycles.When V⊂|D|, we have D·[V]=c1(O(D)|V)∩[V],and there is generally no way to pick canonically a cycle representing thisfirst Chern class.The exception is when O(D)||D|is trivial,or in our terminology,D is a P-divisor.Then,we may define a cycle-level intersection operation(see[3],Remark2.3).Definition1.5.Let X be a variety,and let D be a P-divisor on X.The cycle-level intersection operationD·−:Z k(X)→Z k−1(|D|)is given byD·[V]= [D|V]if V⊂|D|;0if V⊂|D|.The claim that this map passes to rational equivalence and hence gives an intersection operation D·:A k(X)→A k−1(|D|)is proved in[3],but not in a way that makes it easy to see how D·αis to be rationally equivalent to zero ifαis a cycle that is rationally equivalent to zero.Following the program set out in the introduction,we would like to demonstrate this fact by giving an explicit map on rational equivalences which commutes with the boundary operation.Definition1.6.Let X be a variety,and let D be a P-divisor on X with local defining function x.Say V is a subvariety of X with normalization π: V→V,and suppose y∈k(V)∗.We define the intersection operation on the level of rational equivalencesD·−:W k(X)→W k−1(|D|)byD·y= π∗ W∈|π∗D|0(y ord W x/x ord W y)|W if V⊂|D|;(1)0if V⊂|D|.4Here,π∗:W∗ V→W∗V is pushforward of rational equivalence.Remark1.7.This definition explains why we a require the definition of a P-divisor to include more data than just that of the underlying Cartier divisor. The map(1)actually depends on the choice of defining function.Proposition1.8.Let X be a variety and let D be a P-divisor on X.Then the diagramW k(X)D·W k−1(|D|)∂Z k−1(|D|)commutes.This follows easily fromProposition1.9.Let X be a normal variety and let x and y be rational functions with associated principal Cartier divisors D and E.For V∈X1 set a V=ord V x and b V=ord V y.ThenV∈X1∂(y a V/x b V|V)=0;(2)(3)∂(D·y)=D·(∂y);(4)D·[E]−E·[D]= V∈|D|0∩|E|0∂(y a V/x b V|V).Proof.If we split the sum in(2)into a sum over V∈|D|0and a sum over V∈|D|0we obtain(3).Similarly if we split away the terms with V∈|D|0∩|E|0we obtain(4)from(2).So,for afixed variety X andfixed divisors D and E,the three assertions are equivalent.Now,we get(2)as a consequence of the tame symbol in K-theory,cf.[6]§7,or by the following elementary geometric argument.We quickly reduce to the case where D and E are effective.Then,when D and E meet properly,(4)follows from[3], Theorem2.4,case1.An induction on excess of intersectionε(D,E)=maxa V·b VV∈X15completes the proof:if we denote the normalized blow-up along the ideal (x,y)byσ:X′→X and denote the exceptional divisor by Z then we may writeσ∗D=Z+D′andσ∗E=Z+E′,and now|D′|∩|E′|=∅and max(ε(D′,Z),ε(E′,Z))<ε(D,E)(assuming D and E do not meet prop-erly),cf.[3],Lemma2.4.The result pushes forward.Corollary1.10.Let D and E be P-divisors on a variety X,with respective local defining functions x and y.Letπ: X→X be the normalization map. ThenD·[E]−E·[D]=∂ωwhereω∈W∗(|D|∩|E|)is given byω= V∈|π∗D|0∩|π∗E|0π∗(y ord V x/x ord V y|V).2Application to intersection theory on stacksAll stacks(and schemes)in this section are algebraic stacks of Artin type, [1],[5],which are locally offinite type over the basefield.The notion of P-divsor on a stack makes sense(it is as in Definition1.4with“open sub-scheme”replaced by“open substack,”where by“Cartier divisor”in part(iv) of the definition we mean a global section of the sheaf K∗/O∗for the Zariski topology,and where normalization,order along a substack of codimension1, and support of a Cartier divisor are well defined on stacks because they all respect smooth pullback and hence can be defined locally).Since an Artin stack possesses a smooth cover by a scheme,the operation of intersecting with a P-divisor on a stack comes for free once we know that this operation on schemes commutes with smooth pullback.Also for free we get Corollary 1.10in the setting of stacks:the formation ofωfrom X,D,and E commutes with smooth pullback.Proposition2.1.Let X be a variety,let Y be a scheme,and let f:Y→X be a smooth morphism.Let D be a P-divisor on X.Then f∗◦D·=(f∗D)·◦f∗, both as maps on cycles and as maps on rational equivalences.6We now turn to an application of Corollary1.10to intersection theory on Deligne-Mumford stacks(where a reasonable intersection theory exists, cf.[4],[7]).Central to intersection theory on schemes is the Gysin map corresponding to a regularly embedded subscheme,since the diagonal of a smooth scheme is a regular embedding and this way we obtain an intersection product on smooth schemes.The diagonal morphism for a smooth Deligne-Mumford stack is not generally an embedding,but it is representable and unramified.Lemma2.2.Let f:F→G be a representable morphism of Artin stacks. Then f is unramified if and only if there exists a commutative diagramU g VGsuch that the vertical maps are smooth surjective,g is a closed immersion of schemes,and the induced morphism U→F×G V is´e tale.Proof.This is[7],Lemma1.19.Because this is such a basic fact about properties of morphisms in algebraic geometry,we present an elementary proof in the Appendix.To describe a representable morphism,we use the terminology local im-mersion as a synonym for unramified and call f above a regular local im-mersion if moreover g is a regular embedding of schemes.Since formation of normal cone is of a local nature,an obvious patching construction produces the normal cone C X Y to a local immersion X→Y;the cone is a bundle in case X→Y is a regular local immersion.To get Fulton-MacPherson-style intersection theory on Deligne-Mumford stacks we clearly need to have Gysin maps for regular local immersions.In [7],the author supplies this needed Gysin map by giving a(long,difficult) proof of the stack analogue of[3],Theorem6.4,namelyProposition2.3.Let X→Y and Y′→Y be local immersions of Artin stacks.Then[C X×C Y′Y]=[C C X Y×Y Y′C X Y]in A∗(C X Y×Y C Y′Y).Y C Y′Y7Remark2.4.Though our focus is on applications to intersection theory on Deligne-Mumford stacks,we continue to make use of constructions which behave well locally with respect to smooth pullback,and hence our results are valid in the more general setting of Artin stacks.Remark2.5.Given a stack X which is only locally offinite type over a base field,we must take Z∗X to be the group of locallyfinite formal linear com-binations of integral closed substacks.More intrinsically,Z∗X is the group of global sections of the sheaf for the smooth topology Z∗which associates to a stack offinite type the free abelian group on integral closed substacks. Similarly,W∗X is the group of global sections of sheaf W∗.As always,A∗X is defined to be Z∗X/∂W∗X.The methods of the last section allow us to supply a new,simpler proof of this proposition.Proof.Recall that given a closed immersion X→Y there are associated spacesM X Y=BℓX×{0}Y×P1,M◦X Y=M X Y\BℓX×{0}Y×{0},cf.[3]§5.1.Given a locally closed immersion,say with U is an open sub-scheme of Y and X a closed subscheme of U,then M◦X Y:=M◦X U∐U×A1Y×A1makes sense and is independent of the choice of U.This lets us define M◦F G when F→G is a local immersion of stacks,as follows.Assume we have a diagram as in the statement of Lemma2.2,and set R=U×F U and S=V×G V.There are projections q1,q2:S→G.Defines i:M◦R S→M◦U V(i=1,2)to be the composite M◦R S→M◦U×G V S→M◦U V,where thefirst map is induced by the open immersion R→U×G V and the second,by pullback via q i.Then[M◦R S⇉M◦U V]is the smooth groupoid presentation of a stack which we denote M◦F G.We have,by descent,a morphism M◦F G→P1,which isflat and has as generalfiber a copy of G and as specialfiber the normal cone C F G.In the situation at hand,this construction gives(s×t):M◦X Y×Y M◦Y′Y→P1×P1,8and hence a pair of P-divisors,D(corresponding to s)and E(corresponding to t).We note that(s×t)−1({0}×{0})=C X Y×Y C Y′Y.Since the restriction of s×t to P1×P1\{0}×{0}isflat,we have[D]=[C X Y×Y M◦Y′Y]mod Z∗(C X Y×Y C Y′Y),[E]=[M◦X Y×Y C Y′Y]mod Z∗(C X Y×Y C Y′Y).We examine thefiber of s×t over P1×{0}more closely.Thefiber squarei∗C Y′Y C Y′YYgives rise to a closed immersion f makingM◦i∗CY′YC Y′Y fRemark2.6.The map M◦F G→G associated to a local immersion of stacks is not generally separated,though this should cause the reader no concern,since intersection theory is valid even on non-separated schemes and stacks.In fact, even those operations of[7]which require a so-calledfinite parametrization may be carried out on arbitrary Deligne-Mumford stacks which are offinite type over afield(no such operations show up in this paper).This is so thanks to the proof,[5](10.1),that every Deligne-Mumford stack offinite type over afield possesses afinite parametrization,i.e.,admits afinite surjective map from a scheme.Remark2.7.The reader who wishes greater generality may see easily that all results in this section are valid in the setting of Artin stacks which are locally offinite type over an excellent Dedekind domain.3Equivariance for tangent bundle actionWe continue to work with stacks which are locally offinite type over some basefield.A special case of Proposition2.3is when i:X→Y is a local immersion of smooth Deligne-Mumford stacks.Suppose j:Y′→Y is a local immersion,with Y′an arbitrary Deligne-Mumford stack.Recall that the local immersion j gives rise to a natural group action of j∗T Y on C Y′Y.In short,the action is given locally(say Y is an affine scheme and Y′is the closed subscheme given by the ideal I)by considering the action of T Y|Y′on Spec Sym(I/I2)induced by the map I/I2→Ω1Y and proving([2],Lemma 3.2)that the normal cone Spec I k/I k+1is invariant under the group action.If we let N X Y be the normal bundle to X in Y and denote simply by N its pullback to X′:=X×Y Y′,then C X Y×Y C Y′Y is identified with N×X′i∗C Y′Y.Viewing T Y′as a subbundle of j∗T Y,we have the natural action of T Y′|X′on i∗C Y′Y.This plus the trivial action on N gives an action of T Y′|X′on N×X′i∗C Y′Y.Theorem3.1.The rational equivalence between[C i∗CY′YC Y′Y]and[N×X′C X′Y′]produced in the proof of Proposition2.3is invariant under the action of T Y′|X′on N×X′C X′Y′described above.As a consequence,the rational equivalence descends to a rational equiv-10alence on the stack quotient[N×X′i∗C Y′Y/T Y′|X′].This fact is exploited in[2](Lemma5.9,where the authors invoke the incorrect stronger claim appearing in Proposition3.5that the rational equivalence is equivariant for the bigger group T Y|X′).Proof.The question is local,so we may assume Y is an irreducible scheme, smooth and offinite type over the basefield,X is an smooth irreducible closed subscheme of Y,and Y′is a closed subscheme of Y.If X⊂Y′then the group action is trivial and there is nothing to prove,so we assume the contrary.Lemma3.2.Let Y be a smooth irreducible scheme offinite type over afield k,of dimension n,let X be a smooth irreducible closed subscheme of Y of codimension d,and let Y′be a closed subscheme of Y such that X⊂Y′.Let x be a closed point of Y′∩X.Then,after suitable base change by afinite separable extension of the basefield,and after shrinking Y to a neighborhood of x in Y,there exists an´e tale map f:Y→A n such that X maps into a linear subspace of A n of codimension d and such that Y′→f(Y′)is´e tale.Proof.We may assume x is a k-valued point,and moreover that Y sits in A l with X=A l−d∩Y(for suitable l).We may take x to be the origin of A l.We consider as candidates for f all linear functions mapping theflag A l−d⊂A l into theflag A n−d⊂A n.Those f with f∗:T x,Y→T f(x),A n surjective form an open subscheme U of A nl−dl+d2.Define locally closed subschemes V1and V2of Y×U byV1={(y,f)∈(Y′∩X\{x})×U|f(y)=0}andV2={(y,f)∈(Y′\X)×U|f(y)=0},and let pr2:Y×U→U be projection.A dimension count using the fact that X⊂Y′gives dim(V1)<dim(U)and dim(V2)<dim(U),and hence U\ pr2(V2) is nonempty.Since the rational equivalence of the proof of Proposition2.3commutes with´e tale base change,we are reduced by the Lemma to the case where Y=A n and X=A m(as a linear subspace of A n).Now we need the11Key Observation.Assume Y=A n and Y′is a closed subscheme of Y. Identify T Y,as a group scheme over Y,with the additive group A n.Then there is a group action of A n on M◦Y′Y(which we define to be thefiber of M◦Y′Y→P1over A1)which restricts to the natural action of T Y on C Y′Y.Indeed,we let A n act on Y×A1by(a1,...,a n)·(x1,...,x n,t)=(x1+ta1,...,x n+ta n).By the universal property of blowing up,this extends uniquely to an action of A n on M◦Y′Y.If Y′is given by the ideal(f1,...,f k),and if we view M◦Y′Y as the closure of the graph of(f1/t,...,f k/t):Y×(A1\{0})→A k= Spec k[z1,...,z k],then the action is given coordinatewise bya=(a1,...,a n):z i→z i+(f i(x+t a)−f i(x))/t,so at t=0we recover z i→z i+D a f i(x).This is the natural action of T Y on C Y′Y.Concluding the proof of equivariance,we observe that M◦A m A nfits into thefiber diagramM◦A m A n×A n M◦Y′A n M◦Y′A nM◦{0}A n−m4Appendix:unramified morphismsWe give an elementary algebraic proof of the following fact.Lemma4.1.Let S→T be an unramified morphism of affine schemes which are offinite type over a basefield k.Then there exists a commutative diagram of affine schemesU g VTsuch that the vertical maps are´e tale surjective and such that g is a closed immersion.This fact plus the local nature of the property of being unramified gives us Lemma2.2.Proof.Say S=Spec A,T=Spec B,and f is given algebraically by f∗:B→A.Recall that for f to be unramified means that for every maximal ideal p of A with q=f(p),we have f∗(q)·A p=p A p,and the inducedfield extension B/q→A/p is separable.Case1:The inducedfield extension B/q→A/p is an isomorphism. Then,if x1,...,x n are generators of A as a k-algebra,we may writex i=f∗(t i)+w iwith t i∈B and w i∈p,for each i.Since f is unramified,we havew i=m ij=1f∗(y ij)p ijP ij (x 1,...,x n )=p ij and Q i (x 1,...,x n )=q i .LetV =Spec B [X 1,...,X n ] X 1Q 1−t 1Q 1−m 1 j =1y 1j P 1j ,...,X n Q n −t n Q n −m n j =1y nj P nj ,and define g :S →V by B f ∗→A and X i →x i ,and let ϕ:V →T be given byinclusion of B .Then g is a closed immersion,and by the Jacobian criterion ϕis ´e tale in some neighborhood of g (p ).Case 2:The field extension B/q →A/p is separable.Let k ′be the maximal subfield of A/p which is separable over k ,and make the ´e tale base change Spec k ′→Spec k to get f ′:S ′→T ′.Now S ′has an A/p -valued point which maps to p ∈S ,and since k ′together with B/q generates all of A/p we are now in the situation of Case 1.References[1]M.Artin,Versal deformations and algebraic stacks,Invent.Math.27(1974),165–189.[2]K.Behrend and B.Fantechi,The intrinsic normal cone,Invent.Math.128(1997),45–88.[3]W.Fulton,Intersection Theory ,Springer-Verlag,Berlin,1984.[4]H.Gillet,Intersection theory on algebraic stacks and Q -varieties,J.Pure Appl.Algebra 34(1984),193–240.[5]umon and L.Moret-Bailly,Champs Alg´e briques ,Pr´e publ.math.de l’Universit´e de Paris-Sud,1995.[6] D.Quillen,Higher algebraic K -theory,I,in Algebraic K -theory (Seattle,Wash.,1972),pp.85–147,Lect.Notes in Math.341,Springer-Verlag,Berlin,1973.14[7] A.Vistoli,Intersection theory on algebraic stacks and on their modulispaces,Invent.Math.97(1989),613–670.Department of MathematicsUniversity of Chicago5734S.University AvenueChicago,IL60637kresch@15。
终极理论 物理学术语
终极理论物理学术语终极理论英语名称是the Theory of Ultimate,在物理学中,终极理论又称万有理论,是二十世纪六十年代以后,量子论物理学家们提出的一个标准模型理论。
物理学家们即将把引力、电磁力与原子核力用单独一项数学定律来描述。
那么万物的理论是什么?万物理论是科学界广泛使用的术语。
实际上,有一个著名物理学家史蒂芬·霍金教授的传记,以该理论命名。
如果你认为万物理论是对物理学中所有问题的解答,并且它将标志着人类长期以来对宇宙的好奇心的终结,那么你是错的。
万物理论并不能解决所有问题,这就像可以推导出其他一切的基本定律一样。
例如,库仑定律是静电的基本定律,可以从高斯定理中得出,反之亦然。
实际上,科学家说,万物理论仅仅是个开始。
从技术上讲,万物理论是一个假设框架,涵盖了宇宙的所有物理方面。
简而言之,就是极限理论告诉我们宇宙是如何工作的。
现在,让我们深入研究所有重要的理论以了解其含义。
描述物理学万物理论都有哪些最初描述万物理论的是20世纪的量子力学和相对论,在自远古时代以来,人类一直对它们的存在及其在宇宙中的地位感到好奇。
但是,将自然的工作描述为基本定律并不总是哲学家的趋势。
可能,第一个提供描述自然规律的理论框架的哲学家是阿基米德原理中的阿基米德,阿基米德原理是流体力学的基本定律。
我们可以清楚地描述某些物理现象,但是万物理论的主要目的是使它们统一。
例如,我们可以使用爱因斯坦的相对论通论来定义重力,并可以使用麦克斯韦定律来定义电磁力,但是当我们试图统一它们时就会出现主要问题。
爱因斯坦竭尽全力统一这两个基本力量,但他失败了。
假设我们需要创建一个融合的电引力理论。
我们该怎么做?一个理论必须是极简主义的,这意味着我们需要创建可以结合重力和电磁学的定律。
在我们建立了可以成功地结合重力和电磁学并定义了电引力各个方面的定律之后,我们就成功地发现了一个新理论。
现在,这种新理论具有导出电磁定律和重力定律的能力,这使其成为非常重要的理论。
第八讲 第四章 二烯烃 共轭体系 共振论(1)
越低,分子越稳定。
有 机
共振能:能量最低的极限结构与共振杂化体(分子的真实结构)之间的 能差。共振能越大说明该分子比最稳定的极限结构越稳定。
化
常用CH2=CH-CH=CH2表示,与电子衍射测的事实不符。鲍林指出,
学 这些共振结构本身是不存在的,是假想的。因此,共振论是用假想的共振
结构去近似的描述真实物质的结构理论。
八 讲
CH2 CH CH2
CH2 CH Cl
CH2 CH O R
烯丙基碳正离子
氯乙烯
乙烯基醚
(9)
其电子离域方向如下:
CH2 CH CH2 CH2 CH Cl CH2 CH O R
有 4.3.3 超共轭
机
在C–H 键与 键直接相连的体系中也存在与 , -共轭体系类似的电
化 学
子离域现象。如图4-5所示:
丙二烯
1,2-丁二烯
其结构形式为: C C C C
(3)
CH3
CH2=CH-CH=CH2
CH2 C CH CH2
1,3-丁二烯(或丁二烯)
2-甲基-1,3-戊二烯(或异戊二烯)
4.1.2 二烯烃的命名
有
原则:系统命名与烯烃相似,不同之处在于:分子中含有两个双键,
机 化 学
用二烯代替烯,选择主链时必须包括两个双键在内,同时应标明两个双键 的位次。存在顺反异构时要逐个标明其构型。例如:
H
S-顺-1,3-丁二烯
H
CH2
CC
CH2
H
S-反-1,3-丁二烯
1, 3-环己二烯
或S-(Z)-1,3 -丁二烯 或S-(E)- 1,3-丁二烯
二环 [4.4.0]-1,9-癸二烯
spatial theory
在佐伦的理论体系之中,场景(scene)是构
成空间复合体的基本单位。与地形层面相关 的场景是地点(place)。地点是空间中可以 被度量的一点,如:房子、城市、山林或河 流等。地点之间往往有清晰的分界。与时空 体层面相关的空间单位是行动幅度(zone of action)。行动幅度依据事件发生的区域,而 不是空间的连续性和清晰的地质疆界来划分 。对于空间单位的最重要的研究在于视角场 (field of vision),即一个空间单位是从地
The Critique of everyday life
One of Lefebvre's most important contributions to social thought is the idea of the "critique of everyday life," which he pioneered in the 1930s. This work was influential in French theory, particularly for the Situationists, as well as in politics (e.g. for the May 1968 student revolts). While the theme presented itself in many works, it was most notably outlined in his eponymous 3 volume study, which came out in individual installments, decades apart, in 1947, 1961, and 1981.
语言的选择会对文本空间建构的效果产生影
社会学理论考研名词解释知识点整理(9)
一级构想:亦称“常识构想”。
美国舒茨用语。
根据日常生活中库存的常识经验所作的构想。
是人们从这个世界之中的一种此在出发构造的。
舒茨认为社会学研究的出发点不是社会事实,而是社会事实的意义,是对互为主体性的人们的互动过程进行研究。
行动的意义与特定社会场景的制度化相联系,使不同视角的人们能够相互理解。
人将不断变化的场景标准化变成例行的情况,即把在社会中产生的并且在社会中得到人们认可的知识储备视为理所当然的,然后按照“库存知识”即常识来处理。
这些常识知识构想所涉及的是主观成分,指涉的是从行动者的观点出发对行动者行动的“理解”。
舒茨认为,这种构想包含在人们日常生活中对主体间性世界的常识经验之中,是构想系统中的第一个层次即一级构想。
二级构想:美国舒茨用语。
指关于行动者在社会环境中所做出的构想的构想,建立在主观解释的基本假设的基础之上。
处在二级层次上的构想,必然包含着对一种行动的行动者来说所具有的主观意义的指涉。
舒茨认为,社会科学的构想是二级构想,也就是说,社会科学构想是关于社会舞台上那些演员所构造的构想的构想,社会科学家必须观察这些演员的行动并根据他的科学的程序规则作出说明。
自然态度:指人们在其普通的日常生活中自然而然具有的一种态度。
也就是人们对生活所持有的最初的、朴素的和未经反思批判的一种原初性态度。
设置自然态度是现象学研究的重要方法,要直面社会现实,就要找出人们的自然态度。
民族方法论:亦称“本土方法论”、“日常生活现象学”。
美国加芬克尔的社会学说。
主张社会学应研究区域社会成员的日常生活世界、生活过程以及他们理解日常生活的方法,分析个人是如何理解其生活场所和社会情境并与他人取得行动上的一致性的。
英文ethno 一词除有“民族”的意义外,也可以指文化集团,因为在人类学上,一个民族就是一个文化集团,因此这里的民族一词是广义的理解。
民族方法论就是一个社会团体的成员理解他们的社会世界的方法。
加芬克尔认为社会现实的形成是由一个社会的成员经常使用某种形成意义的方法所决定的。
布尔迪厄学术人(Homo
布爾迪厄《學術人》(Homo Academicus)導讀黃庭康南華大學社會學研究所布爾迪厄的《學術人》一書是他其中一部主要的教育社會學作品。
該書的法文版於一九八四年出版。
四年後英文版面世,由Polity Press出版。
布氏《學術人》一書以法國高等教育體系為研究對象,內容涉及不同等級學校教授與學生的出身背景、大學與階級再製、大學內部的權力關係、高等教育的再製(reproduction)模式、以及教授們的政治行為等。
《學術人》一書的價值可以分為幾方面。
首先,傳統上教育社會學一般以中、小學為研究的對象。
就是研究大學,焦點也偏重於學生,極少深入剖析教授。
這是教育社會學發展的一大遺憾,因為高等教育的教研人員扮演文化生產及再製(cultural production and reproduction)的重要角色,對他們認識不足有礙我們對教育與權力的了解。
《學術人》一書填補教育社會學的這一個重要的空白,也打破了不少我們對大學的迷思。
1其次,布爾迪厄與不少晚近的教育社會學學者一樣,都注意到教育體系的矛盾性格---它一方面灌輸保守的意識型態、維持不平等的社會現狀;但同時又鼓吹批判、懷疑既有的權力關係(Apple, 1985; Carnoy and Levin, 1985)。
《學術人》一書的其中一大貢獻就是以布爾迪厄之前發展出的資本(capital)、場域(field)、生存心態(habitus)、及策略(strategy)等概念解釋大學這矛盾的性格。
布氏以各類型大學教授所擁有的資本、在場域所占的位置、他們的生存心態、及由此而衍生的策略解釋為何有些教授傾向保守、有些教授思想離經叛道。
此外,《學術人》一書亦豐富了關於教育體系相對自主性(relative autonomy)的討論。
自從鮑爾斯與堅迪斯(Samuel Bowles and Herbert Gintis)於一九七六年出版《資本主義美國的學校教育》(Schooling in Capitalist America)後,批判取向的教育社會學學者一直為了對抗符應理論(correspondence theory)而討論教育體系的相對自主性(Apple, 1979, 1985, 1993; Bernstein, 1986, 1996; Girous, 1983; Willis, 1977)。
组合数学中的论问题
组合数学中的论问题组合数学是数学的一个分支,研究的是离散的结构和对象的组合方式。
在组合数学中,有一个重要的研究方向就是论问题(lattice theory)。
论问题是组合数学中的一种数学结构,它研究的是具有特定关系的元素的集合。
论问题的基本定义是一个集合,其中的元素满足一定的条件。
所谓关系,可理解为定义在两个元素之间的一种关联。
在论问题中,这种关联通常被表示为一个特定的关系矩阵。
这个关系矩阵可以用来描述元素之间的连接方式,以及它们之间的一些属性。
例如,考虑一个论问题的例子:假设有一个有限集合A={a, b, c, d},并且存在一个关系R,其中元素之间的关系定义如下:R={(a,a),(a,b),(a,c),(b,b),(b,d),(c,c),(c,d),(d,d)}在这个例子中,集合A中的元素之间的关系被表示为R集合中的元素对。
例如,(a, b)表示元素a和元素b之间存在关系。
论问题的研究目标是分析并研究集合中元素之间关系的特性。
通过对关系矩阵的分析,我们可以获得关于元素之间关系的一些重要信息,比如传递性、反对称性、等价关系和偏序关系等。
传递性是指如果两个元素a和b之间存在关系,且元素b和c之间也存在关系,那么元素a和c之间也应该存在关系。
反对称性是指如果两个元素a和b之间存在关系,那么元素b和a之间不存在关系。
等价关系指的是一个关系满足自反性、对称性和传递性。
自反性是指每个元素与自身之间存在关系,对称性是指如果元素a和b之间存在关系,那么元素b和a之间也存在关系。
传递性的定义在之前已经提到过了。
偏序关系是指一个关系满足自反性、反对称性和传递性。
自反性和传递性的定义也在之前提到过了。
论问题研究的一个重要应用是在计算机科学中的任务调度和资源分配问题。
通过建立适当的关系模型,可以对任务之间的依赖关系进行建模和分析,进而对任务的优先级和调度顺序进行决策。
除了任务调度和资源分配问题,论问题还在许多其他领域有着广泛的应用,如社交网络分析、数据挖掘、图论等。
武林秘籍与代数几何
武林秘籍与代数几何这篇文章的作者是位在Stanford念代数几何的博士,网名Quillen。
引至博士家园。
笔者是代数几何工作者..认为代数几何比微分几何有趣得多. 虽然微分几何的重要性是无庸置疑,但是代数几何有更多巧妙得构思,也有更有趣的问题.. 让我来说几本代数几何的好书: ( 在书号后是金庸小说密籍的类比,书评之后有两个星号数.第一个是困难度.第二个是重要(趣味)性, 第三个是读了投资报酬率从1 到5 是易到难(无聊到有趣) .. )1 武当长拳( 基本功夫) Atiyah&McDonald 的Introduction to Commutative Algebra和Matsumura 的Commutative Algebra 是代数几何中代数部份的背景知识. 两本书只重视代数而不提及几何,但第一本书的习题有很多引出几何背后意义的好问题. 事实上任何一个交换代数的定理都有几何意义. A&M 的书写的很短, 但是把所有的内容都做了简介, Matsumura 的书内容非常丰富,如果念完她就可以开始交换代数的现代研究,可以开始看文章,这本书比A&M 多了一些重要的章节如"flatness" 和"Struture 定理".-----------------------------困难度中趣味性***2 梯云纵(练了想进哪个分支都可以...) Robin Hartshorne 的Algebraic Geometry是代数几何的经典教科书.任何一个年纪不到五十的代数几何学家都是学这本书长大的.这本书是Grothendick 的EGA 和SGA 一部分的一个非常有系统的总结. Grothendick的书包含的内容很齐全但是失于不实际: 也就是讨论的对象过于一般有时没有几何意义, 这一点十分不好. 但是Hartshorne 的书把整个Grothendick 的Scheme 纲领作了一个最恰当的诠释.这本书的习题也非常重要不管将来对算数几何或复几何或更深入的代数几何这本书的习题都是永远有用的.本书的菁华在前三章,很好的处理了scheme的基础性质,最重要的大定理是第三章的最后一节"上同调与基转换" 定理, 是一个来自复几何的定理. 四五章分别是曲线和曲面, 但是这两个专题都有更好的专书介绍.-----------------------------困难度中等趣味性***3 一套武术服饰(行走江湖要穿衣服)Gunning 的Lectures on Riemann surface 或Forster 或Farkas 或Jost 的Riemann Surface: 黎曼曲面是数学的核心. 跟一切的数学分支都有重大关系. 上述四个作者的书都有相当深度. 笔者只念过Gunning 的, 是一本比较重视"上同调群" 的好书. 其他几本又或重视黎曼面的"双曲几何" 或"黎曼曲面的自同构" 或"曲线上的特殊线性系", 都非常有意思. 很多中国人还喜欢伍鸿禧写的黎曼曲面引论. 但笔者并不是非常喜欢. Gunning 书的优点是把层的上同调做了很快但很详尽的介绍,该书证明Serre对偶定理和Riemann Roch 定理的方法使用了广义函数,和一般的证明不大一样,适合喜欢广义函数多过椭圆方程的读者.------------------------------困难度易趣味性***4 全真派基本内功(一定要练) Griffith& Haris 的Principles inAlgebraic Geometry. 这本书是经典中的经典.是复几何的基本教材. 这本书的每一章都写的很完美. 第一章是Hodge 理论..是复几何中最深奥的理论. 第二章是Kodaira 嵌入定理复流形的嵌入比实流形的嵌入有趣很多. 第三章是current 和spectral sequence, 是很现代的工具. 第四章是曲面论. 写的很详尽但是有更好的书(见6).第五张是特殊专题对袋鼠几何中不同方向的人有不同功用.这本书是学习复几何的必备教材.但是学袋鼠几何的人如果读了这本书,却能对袋鼠几何有一个更全盘更清晰的认识.也就是所谓站在更高的角度.-------------------------------困难度中等趣味性**** 投资报酬率****5 九阳神功Barth & Hulek & Peters 的Compact complex surfaces. 这本书是经典中的经典中的经典. 讲的是代数曲面的各种专题. 每个章节都写的无限完美. 可以说如果学代数几何没念过这本书. 甚至是学几何没念过这本书..可以考虑换行.是百年难得一见的好书. 内容包括曲面里的曲线,相交数,霍奇分解,pojectivity,有理曲面分类,Kodaira分类,general 曲面,K3&Enrique曲面. 笔者以为此书新版的最后两张写的尤其好. 一是K3 曲面另一个是Doanaldson 和Seiber Witten 理论. 后者是来自模空间的不变量理论.现在都是热门的专题.------------------------------困难度中等趣味性***** 投资报酬率*****6 少林派罗汉拳(如果没事可以练练) Robert Friedman 的Algebraic Surfaces and Holomorphic Vector Bundles 这本书是讲曲面和上面的向量丛. 曲面的部分讲得有点乱,事实上没有人把曲面讲的比Barth 还好的. 向量丛的部分有"稳定性条件"的介绍和刻画,值得一看.--------------------------------困难度易投资报酬率***7 双手互博(可以连结两样功夫) William Fulton 的Intersection Theory 相交理论是代数几何1960-1990发展的一套基本理论,阅读很多的专门书籍都需要用到他,本书是相交理论的大家Fulton 的代表作, 介绍了Chow Group 的性质,代数陈省身类, 还有Fulton 发现的deformation to normal cone, 用它来做子簇的香蕉理论,还有很多专题,这些专题都很现代,相交理论是Gromov Witten 不变量,Donaldson 不变量,模空间理论等的基本知识, 基于这些不变量和模空间是现代袋鼠几何的发展潮流, 这本书前六章的必读性并不亚于Griffith & Harris 或是Hartshorne 的书.------------------- 困难舵一点点难, 趣味性***(主要趣味在应用) 报酬率*****8 吸星大法(练完就可以吸取微分拓墣学家的内功以为己用) Donaldson & Kroheimer 的The Geometry of Four manifold. 这是微分拓墣中的圣经.两人都是大家. 此书引出了四维流形的Gauge Invariant (规范不变量), Donaldson因为他在此书的工作,对四维流行的微分结构增加了了解,因而获得菲尔兹奖,而复曲面是四维流形中的一大类..因此也属于代数几何. 现代做这个领域的人不多,但是却是将来几盒和拓墣发展的重大方向,Aityah 曾说"21世纪的数学是规范理论的世纪".--------------------------------困难度难趣味性***** 投资报酬率0 (本书效益在五十年后)9 乾坤大挪移(练到一半就够强了全部练完你也吐血而亡) John Morgan 和Robert Friedman 的Smooth four manifold and Complex surfaces. 这本书讲得是椭圆曲面和其上Donaldson 规范不变量理论.作者利用此理论得到了曲面的一个大定理, 证明了最多只能有有限个复变形类共用一个微分结构. 是一本很专门的书, 内容非常紧凑而且很不容易念,笔者还在努力学习.--------------------------- 困难度极难趣味性**** 投资报酬率**10 Kashiwara的Sheaves on manifolds 这本书非常厚,写的相关层的拓扑性质,有Riemann-Hilbert correspondence, 各种层, 变态层和可建构函数, 笔者没有念过所以无法做更多介绍.11 Hartshorne 的Residues and Dualities 介绍Derived category 和其上的?#092;算,一些对偶定理.和Kashiwara 的书有内容上的重叠,因为Kontsevich 的Homological Mirror Symmetry , 所谓的Derived Category逐渐受到大家的重视.对直攻现代研究有帮助.12 筋肉人和加菲猫的无敌风火轮(练前请三思) Haris 的The Geometry of Algebraic Curves. 是有一点点狭窄的领域. 研究代数曲线上的特殊线性系统. 有很多细节的一本书. 念完后的最大用处就是研究曲线的模空间Mg, 是现在最热门的专题,但是做的人非常多,所以可能入手会很艰辛.也就是很有可能找到你作的题目有其他的大头也一起在做.不论如何,念完此书可以成为一个代数曲线的专家.将来的发展也不少.这个Mg的延续就是Gromov Witten 不变量,以及所谓的保角场论中的\sigma 模型. (来自弦论)------------------- 困难度难趣味性** 投资报酬率***13 五岳派剑法(有用处但是相当杂乱.拼拼凑凑) Joe Harris & David Morrison 的Moduli of Curves 是讲曲线的模空间的经典.但笔者念的有一点头昏脑胀. 这本书的原是前一本书的第二册.也就是研究Mg (亏格g的曲线的模空间)的入门书.里面有Enumerative Geometry (记数几何) 的一个全面介绍. 有曲线模空间上的相交数和各种性质. 该书写的相当有几何风味,至少是Harris 的几何风味.------------- 困难度中等趣味性*** 投资报酬率*****14 九阴真经(练完后可以开始真正研究问题)John Morgan 和Robert Friedman 的Gauge Theory and the Topology of Four-Manifolds. 里面有Gieseker 写几何不变量理论. 李骏的Uhlenbeck 紧化和Gesieker紧化的比较定理. Morgan 讨论Donaldson 规范不变量和对此量的计算结果. 此书的分量不多,也没有太多繁琐的性质.各章都直接介绍最重要的结果和想法.不要求太多细节的验证.-------------------- 困难度中等趣味性***** 投资报酬率*****15 太极拳(一法通万法通) Daniel Huybrecht 的The Geoemtry of Moduli Space of Sheaves. 是向量丛模空间的经典用书. 第二部分有此学科最先进的结果. 各章的附录都有很重要又有趣的结果.主要内容包括半稳定丛的分解成稳定丛,稳定丛的陈数不等式(Bogomorov Inequality), Mumford 的几何不变量理论, 稳定向量丛模空间的制造, 曲面上向丛模空间的平滑性,不可约性(李骏的定理), K3曲面上向量丛模空间的性质. 这本书的语言有点形式化,有可能读的时候会失去几何直观.所以读者可以参考其他比较几何的书,比如Robert Friedman 的向量丛的书.------------------------- 困难度难趣味性*** 投资报酬率*****16 MK47 步枪Joyce, Gross & Huybrecht 的Calabi-Yau Manifolds and Related Geometries. 是最新的Mirror symmetry 的专题书. 讲Calabi Yau 流形的各种相关问题. 有Yau 解决Calabi 猜想的概述. 有Mirror 猜想和SYZ (Strominger& Yau& Zaslow) 猜想. 还有HyperKaeler 流形性质的讨论.这是二十一世纪的数学.想要了解Calabi Yau 流形的相关性质的人一定不想错过这本书.--------------------------------困难度难趣味性***** 投资报酬率*****17 机关枪(可以抢银行)Pandharipande, Sheldon Katz, Hori... 一群人合写的Mirror Symmetry . 除了Mirror conjecture 在五次三微流形(quintic three fold )的证明外, 还包括了Gopakuma Vafa 猜想, Homological Mirror Symmetry 猜想, 甚至Mirror Symmetry 的源头: 高能物理中的弦论和保角场论, 全都由专家执笔.. 从难到易..笔者也在修练中.----------------- 困难度极难(物理部分) 趣味性***** 投资报酬率*****18、原子弹(请在没有人类的地方阅读) Griffith 的Topics in Trascendental Geometry是霍奇结构(Hodge structure) 的一本经典书. 在1985年左右有一大票数学家想解决霍奇猜想(没错就是那个一百万问题).她们虽然没有解出来但对猜想有很深入的了解. 本书是她们工作的简述. 内容包括霍奇结构的变形,霍奇丛,Monodromy,混霍奇结构,Torelli定理, 霍奇结构的退化,是一本难读却很值得读的书. 如果想要解决霍奇猜想或者是其相关问题,就得阅读此书. 镜对称的一办理论其实就是卡拉比-丘流形的霍奇变形所制造的不变量.难度极难趣味性**********************投资报酬率****************************================================================== ========================另外还有几本书没有介绍..例如有关Hodge 理论有Claire Voisin 的Hodge Theory and Complex Algebraic Geometry 两册书, 是很新的Hodge 理论和cycle 理论的书,写的很详细.又比如Shrinivas 的Algebraic K theory, 论述了Quillen 连结K-theory 和Chow group 的工作. 这两样都是以后很有发展的方向. 一个刚解决的方向是Mori 的三维代数流形的Minimal Model Programm , 有非常多的专书.但因为这个问题刚刚被萧荫堂以及其他四个外国人解决(所有维度) 其投资报酬率已经是负的了.也就是说大家可以不用去管它因为没有问题可以做了.其实有很多书笔者并没有介绍,很大的原因是也没有读过所以无从介绍. 比如说KaiBehrend 最近写了Gromov Witten 专书, Tian Gang 写了Calabi 猜想相关的书.Dominic Joyce 也写了关于"special holonomy" 的书. Daniel Huybrecht写了一本关于曲面上层的Derived category的性质的书. 另外笔者认为, 所谓的Homotopical algebra(Andrew 和Quillen 在60 年代的专著书), Noncommutative Geometry(Allaine Cone 的工作也有专著), Flow 理论和Minimal Surface (比如Halmilton的Ricci flow, 或是Kaheler flow), 一种叫做Microlocal analysis (Kashiwara 有专著) 的理论, 无限维李代数的表示理论(Kacs Moody algebra), 数论相关的Motivic理论, Yang Mills 和Chern Simon 方程的理论, 都将对一百年内的袋鼠几何发生影响. 其中任何一个方向要学好都是非常花时间的事情,经通两项就已经难如登天了,希望各位袋鼠可以找到最喜欢的方向.。
homothetic数学
homothetic数学
在数学中,homothetic是一个用来描述两个图形之间的相似性
的术语。
当一个图形可以通过缩放和平移来变换成另一个图形时,
我们可以说这两个图形是homothetic的。
具体来说,如果存在一个
比例因子k和一个平移向量,使得一个图形通过乘以k的比例因子
和平移向量的变换可以变成另一个图形,那么我们称这两个图形是homothetic的。
在平面几何中,homothetic变换可以用来描述两个图形之间的
相似性。
如果两个图形是homothetic的,那么它们的形状是相似的,只是尺寸不同。
这个概念在几何学和拓扑学中都有重要的应用。
在线性代数中,homothetic变换也可以用矩阵来表示。
一个矩
阵A对向量x进行homothetic变换,相当于对向量x进行线性变换
后再乘以一个比例因子。
这种变换在向量空间中有着重要的作用,
可以用来描述空间中的拉伸和压缩。
总之,homothetic是一个描述图形相似性和尺寸变换的重要数
学概念,它在几何学、线性代数和拓扑学等领域都有着重要的应用。
希望这个回答能够满足你对homothetic的疑问。
巴拿赫空间理论
巴拿赫空间理论(Banach space)是192O年由波兰数学家巴拿赫(S.Banach)一手创立的,数学分析中常巴拿赫空间用的许多空间都是巴拿赫空间及其推广,它们有许多重要的应用。
大多数巴拿赫空间是无穷维空间,可看成通常向量空间的无穷维推广。
编辑本段线性空间巴拿赫空间(Banach space)是一种赋有“长度”的线性空间﹐泛函分析研究的基本对象之一。
数学分析各个分支的发展为巴拿赫空间理论的诞生提供了许多丰富而生动的素材。
从外尔斯特拉斯﹐K.(T.W.)以来﹐人们久已十分关心闭区间[a﹐b ]上的连续函数以及它们的一致收敛性。
甚至在19世纪末﹐G.阿斯科利就得到[a﹐b ]上一族连续函数之列紧性的判断准则﹐后来十分成功地用于常微分方程和复变函数论中。
巴拿赫空间1909年里斯﹐F.(F.)给出[0﹐1]上连续线性泛函的表达式﹐这是分析学历史上的重大事件。
还有一个极重要的空间﹐那就是由所有在[0﹐1]上次可勒贝格求和的函数构成的空间(1<p <∞)。
在1910~1917年﹐人们研究它的种种初等性质﹔其上连续线性泛函的表示﹐则照亮了通往对偶理论的道路。
人们还把弗雷德霍姆积分方程理论推广到这种空间﹐并且引进全连巴拿赫空间续算子的概念。
当然还该想到希尔伯特空间。
正是基于这些具体的﹑生动的素材﹐巴拿赫﹐S.与维纳﹐N.相互独立地在1922年提出当今所谓巴拿赫空间的概念﹐并且在不到10年的时间内便发展成一部本身相当完美而又有着多方面应用的理论。
编辑本段Banach空间完备的线性赋范空间称为巴拿赫空间。
是用波兰数学家巴拿赫(Stefan Banach )的名字命名的。
巴拿赫空间巴拿赫的主要贡献是引进了线性赋范空间概念,建立了其上的线性算子理论,证明了作为泛函分析基础的三个定理,哈恩--巴拿赫延拓定理,巴拿赫--斯坦豪斯定理即共鸣之定理、闭图像定理。
这些定理概括了许多经典的分析结果,在理论上和应用上都有重要价值。
常用离散数学名词中英文对照
常用离散数学名词中英文对照集合:set元素:element严格定义:well defined成员:member外延原理:principle of extension泛集(全集):universal set空集:empty set(null set)子集:subset文氏图:venn diagram并:union交:intersection相对补集:relative complement绝对补集:absolute complement补集:complement对偶性:duality幂等律:idempotent laws组合律:associative laws交换律:commutative laws分配律:distributive laws同一律:identity laws对合律:involution laws求补律:complement laws对偶原理:principle of duality有限集:finite set计算原理:counting principle类:class幂集:power set子类:subclass子集合:subcollection命题:proposition命题计算:proposition calculus语句:statement复合:compound子语句:substatement合取:conjunction析取:disjuction否定:negation真值表:truth table重言式:tautology矛盾:contradiction逻辑等价:logical equivalence命题代数:algebra of propositions 逻辑蕴涵:logicalimplication关系:relation有序对:ordered pair划分:parti-on偏序:partial order整除性:divisibility常规序:usual order上确界:supremum下确界:infimum上(下)界:upper(lower) bound乘积集:product set笛卡儿积:cartesian product笛卡儿平面:cartesian plane二元关系:binary relation定义域:domain值域:range相等:equality恒等关系:identity relation全关系:universal ralation空关系:empty ralation图解:graph坐标图:coordinate diagram关系矩阵:matrix of the relation 连矢图:arrow diagram有向图:directed graph逆关系:inverse relation转置:transpose复合:composition自反:reflexive对称的:symmetric反对称的:anti-symmetric可递的:transitive等价关系:equivalence relation半序关系:partial ordering relation 函数:function映射:mapping变换:transformation像点:image象:image自变量:independent variable因变量:dependent variable函数图象:graph of a function合成函数:composition function可逆函数:invertible function一一对应:one to one correspondence 内射:injective满射:surjective双射:bijective基数度:cardinality基数:cardinal number图论:graph theory多重图:multigraphy顶点:vertix(point,node)无序对:unordered pair边:edge相邻的adjacent端点:endpoint多重边:multiple edge环:loop子图:subgraph生成子图:generated subgraph平凡图:trivial graph入射:incident孤立点:isolated vertex连通性:connectivity通路:walk长度:length简单通路:chain(trail)圈:path回路:cycle连通的:connected连通分支:connected component距离:distance欧拉图:eulerian graph欧拉链路:eulerian trail哈密顿图:hamilton graph哈密顿回路:hamilton cycle货郎行程问题:traveling salesman完全图:complete graph正则图:regular graph偶图:bipartive graph树图:tree graph加权图:labeled graph同构图:isomorphic graph同构:isomorphism同胚的:homeomorphic平面图:planar graph着色问题:colortion区域:region地图:map非平面图:nonplanargraph着色图:colored graphs顶点着色:vertex coloring色散:chromatic number四色原理:four color theorem对偶地图:dual map退化树:degenerate tree生成树:spanning tree有根树:rooted tree根:root水平(深度):level(depth)叶子:leaf分支:branch有序有根树:ordered rooted tree二元运算符:binary operational symbol半群:semigroup单位元素:identity element右(左)单位元素:right(left) identity左(右)消去律:left(right) cancellation law) 逆:inverse并列:juxtaposition有限群:finite group正规子群:normal subgroup非平凡子群:nontrivial subgroup循环群:cyclic group环:ring整环:integral domain域:field交换环:commutative ring加性环:additive group汇合:meet格:lattice有界格:bounded lattice分配格:distributeve lattice补格:complemented lattice表示定理:representation theorem。
群论对称性
3.完备集(complete set)或基(basis)
若有线性无关矢量
a1
,
a
2
,,
a
m
R
,对任何
x
R
,均
有
x
x1
a
1
x2
a
2
x
m
a
m
存在,则a i 称为完备集
或基,m称为该空间的维数。
4.基(basis)
如果基矢量e , e ,, e 中,任意一个基均有
12
m
e i
1
,
且
(单位矩阵), 即Aˆ Aˆ 1, Aˆ 称
为么正矩阵
②正交变换(即实空间中的么正变换)
x
x
,
x
,
x
,
x
x,
x,,
x
12
n
12
n
n
n
令
x2 i
x2 1
i 1
i 1
即
a11a21 an1 a11a12 a1n x1
n xi2
i 1
x1, x2 ,, xn
a12a22 an2 a a 21 22 a2n x2
a
2
--------
a
的模(modulus)
**
if
a,b
0
,称
a
b
or a 的范数(norm)
--------orthogonal
2.Schwarz不等式 a,b R ,则 a,b
a ·b
。其中:a,
a
a,
b,b b
证明:
a,b
a
b,
a,b
突变理论
改良型技术创新虽然能很快会被市场上的主流消费者所接受,但随着技术创新的不断改进,改良型创新可能 会导致产品的性能过剩。就变革而言,渐进式的改进其实有一个根本的前提,那就是企业的发展方向是正确的, 对大格局的研判是准确的。否则,南辕北辙,拾遗补缺式的改良只会导致在错误的道路上渐行渐远,改良的后果 只是在原本已经盘根错节积弊深沉的系统中加剧复杂,使问题的解决变得更加困难。
许多年来,自然界许多事物的连续的、渐变的、平滑的运动变化过程,都可以用微积分的方法给以圆满解决。 例如,地球绕着太阳旋转,有规律地周而复始地连续不断进行,使人能极其精确地预测未来的运动状态,这就需 要运用经典的微积分来描述。但是,自然界和社会现象中,还有许多突变和飞跃的过程,飞越造成的不连续性把 系统的行为空间变成不可微的,微积分就无法解决。例如,水突然沸腾,冰突然融化,火山爆发,某地突然地震, 房屋突然倒塌,病人突然死亡……。
多年以来,如何看待世界,存在两种截然对立的观点,达尔文主要从 “渐变”或“连续性”的角度考察世 界,认为自然界的演变是十分缓慢的,这种“渐变论”是当时学术界的主导思想。然而,19世纪末,以达尔文进 化论为基础的连续变异进化观,既无法解释古生物学中大量存在的“化石断层”现象,亦无从说明变异的遗传本 质,正是在这一背景下,荷兰植物学家雨果·德弗里斯 (Hugo De Vries,1848-1935)建立了以“物种的突发产 生”为主要内容的进化学说突变论。
coalescent theory名词解释(一)
coalescent theory名词解释(一)Coalescent theory名词解释1. Coalescent theoryCoalescent theory是基因演化中的一个重要理论模型,其研究的是种群中个体之间的共同祖先关系。
该理论模型通过回溯推断,解释了如何从现有的物种或个体群,推断出它们的共同祖先。
2. AlleleAllele指的是一个基因座上的一个或多个变种。
在基因组的不同位置上,我们可以有不同的allele。
例如,人类眼睛颜色的基因座上可以有褐色allele和蓝色allele。
3. Gene treeGene tree是一种表示基因演化过程中不同个体之间关系的树状图。
在coalescent theory中,gene tree用于描述共同祖先与后代之间的关系。
例如,假设我们研究某个人群中的多个基因座,我们可以通过分析这些基因座的变异情况,重建出一个表示个体之间共同祖先关系的gene tree。
4. Coalescent eventCoalescent event指的是两个或多个个体的基因共同祖先的合并事件。
在coalescent theory中,coalescent event是基因演化过程中的重要事件,它代表了共同祖先关系的形成。
例如,假设我们研究了一个人群的基因演化,我们可以通过观察基因座的变异情况,确定共同祖先在不同个体之间合并的coalescent event。
5. Neutral mutationNeutral mutation是指发生在基因组中没有显著影响个体适应度的突变。
在coalescent theory中,假设大多数的突变是中性的,对个体的适应度没有显著影响。
例如,人类基因组中的一些基因座上的突变,如常见的单核苷酸多态性(SNP),很可能是中性突变。
6. Effective population sizeEffective population size是指一个理想化的概念,用于估计一个群体中的基因演化过程。
巡游电子的磁性理论ppt
关于
2B
铁磁性的表述。根据公式(11.11.16),以
为单位的磁化强度
M
1 2
(
N
N )
1 2
Nm
(11.11.34)
其中N 代表自旋取向为的电子数,N为格点数,而m仍代表相对磁化,
在这里N n N。考虑到总电子数Ne N N , 平均每格点的电子 浓度为n (Ne / N )。斯通纳引入下列量纲为1的磁序参量:
(
T TF
)2
2 ( T )2 12 TF
(11.11.27)
代表费米面上的态密度。顺磁与铁磁相的转T变C 温度
1 0
(TC
)
0
(11.11.28)
决定。从式(11.11.28)可定出
TC TF
12
2
(
IF 1) IF
(11.11.29)
将此结果代入式(11.11.27),经整理后得到磁化率与温度T的定性关系
3
的集体激发。根据第三章的讨M论~ ,T 2
时著名的布洛赫规律,
它代表色 散 D曲q 2线为
的自旋波激发所产生的磁化强度下降
规律,这是自旋的集体激发效应。人们必须超出哈特利-福克近似,计
及电子-空穴对的互作用,才能求得金属中的自旋波。
(v)斯通纳表述
为了便于读者阅读有关金属磁性的文献,我们将介绍斯通纳
项的存E~k在 ,
旋取向有关。这时能带按自旋取向分裂U,导n致能带分裂的原因是由于反平行自旋
电子之间的库仑排斥作用。不难证明,
项将给出一个与磁化强度M
成正比
的分子场。
(i)分子场 令
n n n m n n
(11.11.8)
其中n为平均每个元胞中的巡游电子数,m代表相对磁化。当元胞数为N、样品取 单位体积时,磁化强度
拓扑学中的同伦与范畴论-教案
拓扑学中的同伦与范畴论-教案一、引言1.1拓扑学的发展历程1.1.1拓扑学的起源1.1.2拓扑学的主要研究领域1.1.3拓扑学在现代数学中的地位1.1.4拓扑学与其他数学分支的关系1.2同伦概念的重要性1.2.1同伦概念的定义1.2.2同伦概念在拓扑学中的作用1.2.3同伦概念的应用领域1.2.4同伦概念的发展历程1.3范畴论的基本概念1.3.1范畴论的定义1.3.2范畴论的基本性质1.3.3范畴论在数学中的应用1.3.4范畴论的发展历程二、知识点讲解2.1同伦的基本性质2.1.1同伦的基本定义2.1.2同伦的等价性2.1.3同伦的不变性2.1.4同伦的运算性质2.2范畴论的基本结构2.2.1范畴的定义2.2.2范畴的对象和态射2.2.3范畴的复合和恒等态射2.2.4范畴的例子2.3同伦与范畴论的关系2.3.1同伦与范畴论的联系2.3.2同伦范畴的定义2.3.3同伦范畴的性质2.3.4同伦范畴的应用三、教学内容3.1同伦的基本概念3.1.1同伦的定义3.1.2同伦的等价性3.1.3同伦的不变性3.1.4同伦的运算性质3.2范畴论的基本概念3.2.1范畴的定义3.2.2范畴的对象和态射3.2.3范畴的复合和恒等态射3.2.4范畴的例子3.3同伦与范畴论的应用3.3.1同伦的应用领域3.3.2范畴论的应用领域3.3.3同伦与范畴论的交叉应用3.3.4同伦与范畴论在教学中的应用四、教学目标4.1理解同伦与范畴论的基本概念4.1.1掌握同伦的定义及其等价性4.1.2理解范畴论的基本结构4.1.3了解同伦与范畴论的关系4.1.4能够运用同伦与范畴论的基本知识解决实际问题4.2培养学生的抽象思维能力4.2.1通过同伦与范畴论的学习,提高学生的抽象思维能力4.2.2培养学生从具体问题中抽象出数学模型的能力4.2.3培养学生运用数学语言表达数学概念的能力4.2.4培养学生运用数学方法解决问题的能力4.3提高学生的数学素养4.3.1通过同伦与范畴论的学习,提高学生的数学素养4.3.2培养学生对数学的兴趣和热爱4.3.3培养学生的数学思维习惯和数学审美观4.3.4培养学生的数学创新意识和数学应用能力五、教学难点与重点5.1教学难点5.1.1同伦与范畴论的基本概念的理解5.1.2同伦与范畴论的关系的把握5.1.3同伦与范畴论的抽象思维能力的培养5.1.4同伦与范畴论在实际问题中的应用5.2教学重点5.2.1同伦与范畴论的基本概念的理解5.2.2同伦与范畴论的关系的把握5.2.3同伦与范畴论的抽象思维能力的培养5.2.4同伦与范畴论在实际问题中的应用六、教具与学具准备6.1教具准备6.1.1多媒体设备6.1.2白板和笔6.1.3教学课件6.1.4教学视频6.2学具准备6.2.1笔和纸6.2.2数学教材6.2.3数学笔记本6.2.4数学参考书七、教学过程7.1导入新课7.1.1通过引入同伦与范畴论的实际问题,激发学生的兴趣7.1.2通过回顾已学的相关知识,为新课的学习做好铺垫7.1.3通过提出问题,引导学生思考,为新课的学习做好铺垫7.1.4通过介绍同伦与范畴论的发展历程,为新课的学习做好铺垫7.2讲解新课7.2.1讲解同伦与范畴论的基本概念7.2.2讲解同伦与范畴论的关系7.2.3讲解同伦与范畴论的抽象思维能力7.2.4讲解同伦与范畴论在实际问题中的应用7.3课堂练习7.3.1安排学生进行同伦与范畴论的练习题7.3.2引导学生运用同伦与范畴论的知识解决实际问题7.3.3组织学生进行小组讨论,共同解决同伦与范畴论的问题7.3.4对学生的练习进行点评和指导,解答学生的疑问7.4.2对学生的学习情况进行反思7.4.3对教学方法和教学效果进行反思7.4.4对下一节课的学习进行展望八、板书设计8.1板书设计要点8.1.1清晰展示同伦与范畴论的基本概念8.1.2突出同伦与范畴论的关系8.1.3强调同伦与范畴论的抽象思维能力8.1.4通过实例展示同伦与范畴论的应用8.2板书内容安排8.2.1同伦与范畴论的基本概念8.2.2同伦与范畴论的关系8.2.3同伦与范畴论的抽象思维能力8.2.4同伦与范畴论的应用实例8.3板书设计要求8.3.1板书内容要简洁明了8.3.2板书结构要清晰有序8.3.3板书要与讲解内容紧密结合8.3.4板书要注意美观大方九、作业设计9.1作业设计要点9.1.1巩固同伦与范畴论的基本概念9.1.2深化对同伦与范畴论关系的理解9.1.3培养学生的抽象思维能力9.1.4提高学生运用同伦与范畴论解决实际问题的能力9.2作业内容安排9.2.1同伦与范畴论的基本概念练习题9.2.2同伦与范畴论的关系思考题9.2.3同伦与范畴论的抽象思维能力训练题9.2.4同伦与范畴论的应用实例分析题9.3作业设计要求9.3.1作业内容要难易适中9.3.2作业量要适当9.3.3作业要具有启发性和思考性9.3.4作业要及时批改和反馈十、课后反思及拓展延伸10.1课后反思10.1.1反思教学目标的达成情况10.1.2反思教学方法和教学效果10.1.3反思学生的学习情况和反馈10.1.4反思教学中的不足和改进之处10.2拓展延伸10.2.1引导学生进一步深入研究同伦与范畴论的相关内容10.2.2提供相关的学习资源和资料,供学生自主学习10.2.3组织学生进行相关的学术讨论和交流活动10.2.4鼓励学生将同伦与范畴论的知识运用到实际问题中重点关注环节的补充和说明:1.教学难点与重点:在教学过程中,需要重点关注同伦与范畴论的基本概念的理解,同伦与范畴论的关系的把握,同伦与范畴论的抽象思维能力的培养以及同伦与范畴论在实际问题中的应用。
试论耗散结构·协同学·突变论的哲学意义(转载)
试论耗散结构·协同学·突变论的哲学意义(转载)本文从唯物辩证法分析新三论的哲学意义耗散结构是比利时布鲁塞尔学派的领导人普利高津,在本世纪60年代末创立的一门新兴学科。
他突破了传统物理学以封闭系统和平衡结构为主要研究对象的框架,而以远离平衡态的开放系统为研究对象。
这种开放系统通过不断与外界进行物质和能量交换而形成新的稳定有序结构,称耗散结构。
所谓“耗散”,是指系统维持这种新型结构,需要外界输入物质和能量。
这种系统能够自行产生的组织性,称为自组织现象。
因而,耗散结构又称为非平衡系统的自组织理论。
协同学是联邦德国著名理论物理学家哈肯于1977年提出的新概念。
他认为,相变现象不仅在热力学系统中,而且在远离平衡态系统中也同样普遍存在。
其研究导致了协同学理论的创立。
协同学汲取了耗散结构理沦的观点,对开放系统进行更深层次的研究,深刻揭示了非平衡系统从无序转化为有序的微观机制,表明序参量与子系统以及序参量之间的竞争、协同是形成自组织结构的内在根据。
哈肯在研究中发现,非平衡系统和平衡系统相变有惊人的相似的统一性,因而可以用同样的理论案和数学模型进行处理。
这—来,不仅扩大了研究范围,具有了更大的概括性,而且进一步解决了耗散结构尚未解决的问题——系统稳定性和目的性的具体机制问题。
突变论是法国数学家勒内·托姆在本世纪60年代末提出的。
突变论比耗散结构和协同学独特之处,就在于它运用拓扑学、奇点理论和结构稳定性等先进数学工具,研究自然界和社会各种非连续性的突然变化的现象,建立起形象而精确的数学模型,直观描述了系统怎样随着外部条件的连续变化而引起结构突然的飞跃式变化。
这种崭新的数学描述方法,不仅弥补了单纯描述连续变化的微积分方程的不足,而且也弥补了单纯描述突然飞跃变化的概率论和离散数学的不足之处。
它不仅在科学方法论方面有创新,而且对描述物态演化过程作出了新的贡献。
正因为如此,它和耗散结构、协同学共同对系统科学的发展起了重大的推动作用。
希尔伯特公里体系简介
希尔伯特公理体系希尔伯特(Hilbert,公元1862~1943) 在历代数学家所积累的极其丰富的公理资料基础上,德国数学家希尔伯特(Hilbert,公元1862~1943)完成了几何学的基础构造工作。
他于1899年出版名著《几何基础》,建立了几何学完善的公理体系——“希尔伯特公理体系”。
希尔伯特的公理体系建立在基本概念和公理的基础上,基本概念由两部分组成:一部分是几何学研究对象(也称基本元素),如点、线、面等;另一部分是元素间的基本关系,如结合关系、合同关系等。
公理共有5组20条。
希尔伯特公理体系满足他自己提出的三个基本要求,即相容性(公理间互不矛盾)、独立性(每条公理都不能从其余的公理推出)、完备性(公理体系所有模型都是互相同构的)。
基本元素:点,线,面。
基本关系:结合关系(如点在直线上,直线在面上等),顺序关系(如一点在两点之间,一射线在两射线之间等),合同关系(如两线段合同,两角合同等)基本公理:Ⅰ、结合公理8条几何基本元素“点”、“直线”、“平面”之间的结合关系就是:“点在直线上”可以说成“直线通过点或直线含有点或点属于直线”;点和平面也有这种关系,结合公理要求满足8条公理:(1)通过不同两点必有一条直线。
(2)通过不同两点的直线至多有一条。
(3)每一条直线上至少有两点;至少有三点不在同一条直线上。
(4)通过不共线的三点必有一个平面;每一个平面上至少有一点。
(5)至多有一个平面通过不共线的三点。
(6)若一直线有不同两点在某个平面上,则该直线上所有点都在这平面上。
(7)若两个平面有一个公共点,则至少还有一个公共点。
(8)至少有四个点不同在一个平面上。
Ⅱ、顺序公理4条直线上的点与点之间有一种“介于”关系,通常用“介于……之间”的语言来表示。
“介于”关系表示点与点之间的“顺序关系”,它们必须满足4条顺序公理。
(1)若点B介于两点A、C之间,则A、B、C是同一直线上的三个不同点,并且B也介于C和A之间。
第二讲马克思主义自然观的发展演示文稿
系统的基本因素
➢ 系统的组成
第二十三页,共62页。
系统的结构
世界不是由物组成的而是由物及物之间的关系 来组成的
➢ “世界不是物的总和,而是事态的总
和。”——维特根斯坦
➢ 系统的结构对于元素具有相对的独立性。
第二十四页,共62页。
系统的环境
➢ 与系统发生相互作用又不属于这个系统的所 有事物的总和。
第四十三页,共62页。
人类所面临的全球性问题
第四十四页,共62页。
全球气候变暖
第四十五页,共62页。
臭氧层的耗损与破坏
第四十六页,共62页。
生物多样性减少
第四十七页,共62页。
酸雨蔓延
第四十八页,共62页。
森林锐减
第四十九页,共62页。
土地荒漠化
第五十页,共62页。
大气污染
第五十一页,共62页。
请分析:1.产生环境库兹涅茨曲线现象的原因;2.环境库兹涅茨曲线现象的产生 是必然的吗?3.经济发展与环境保护能否并行?
第六十一页,共62页。
生态自然观的观点和特征
➢ 生态系统是由人及其他生命体、非生命体以及所在的 环境构成的整体。
➢ 人类通过遵守可持续性、共同性和公平性等原则,通 过实施节能减排和发展低碳经济,构建和谐社会和建 设生态文明,实现人类与环境的协调发展。
第十二页,共62页。
耗散结构理论
普利高津(I.Prigogine,1917-) 比利时物理学家 哈肯(Hermann Haken,1927-) 西德学
者 “协同学”
第十三页,共62页。
突变论
托姆(Rene Thom,1923-)
法国数学家 《结构稳定性与形态发生学》(1968)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rXiv:083.17v2[mat h.A T]18Apr28HOMOTOPICAL INTERSECTION THEORY,II:EQUIVARIANCE JOHN R.KLEIN AND BRUCE WILLIAMS Abstract.This paper is a sequel to [KW].We develop here an intersection theory for manifolds equipped with an action of a finite group.As in [KW],our approach will be homotopy theoretic,enabling us to circumvent the specter of equivariant transversality.We give applications of our theory to embedding problems,equi-variant fixed point problems and the study of periodic points of self maps.Contents 1.Introduction 12.Preliminaries 123.The proof of Theorem A 164.Naive versus Equivariant stabilization 215.Parametrized G -spectra over a complete universe 226.Poincar´e Duality 247.The equivariant complement formula 268.The proof of Theorem B and Addendum C 279.The proof of Theorems D and E 2810.The proof of Theorem H 3111.The proof of Theorem I 34References 371.IntroductionIntersection problems.Suppose N is a compact smooth manifold equipped with a closed submanifold Q ⊂N .An intersection problem2JOHN R.KLEIN AND BRUCE WILLIAMSfor(N,Q)consists of a map f:P→N,where P is a closed manifold.A solution to the problem consists of a homotopy of f to a map g satisfying g(P)∩Q=∅.We depict the situation byN−QHOMOTOPICAL INTERSECTION THEORY,II:EQUIVARIANCE3 ifφH(x)≤ψH(x)for all x∈X H.IfφH≤ψH for all H,then we write φ•≤ψ•.Here are some examples:Dimension.If M is a locally smooth G-manifold,then for any subgroup H⊂G the components of thefixed point set M H are manifolds[B, Ch.4].The dimensions of the components can vary.If x∈M H,then the dimension of the component containing x defines a locally constant function m H.The collection m•:={m H}H⊂G is called the dimension function of M.If M H is empty,our convention is to set m H=−∞. Codimension.Let i Q:Q⊂N be as above.Letcd•(i Q)be the indexing function on Q in which cd H(i Q)(x)is the dimension of the normal space to the embedding Q H⊂N H at x∈Q H(if Q H is empty but N H isn’t,our convention is to set cd H(i Q)=+∞). Pullback.Suppose f:X→Y is a G-map.Given an indexing function α•on Y,we obtain an indexing function f∗α•on X which is given by f∗αH(x)=αH(f(x)).Pushforward.Given f:X→Y as above,letβ•be an indexing function on X.For y∈Y we let[y]denote the associated path component.Let I f,y be the set of those[x]for which[f(x)]=[y].That is,I f,y is the inverse image of f∗:π0(X)→π0(Y)at[y].Define an indexing function f!β•on Y by the rulef!βH(y)= inf I f,yβH(x)if I f,y is nonempty,∞otherwise.Note f!f∗α•≥α•,with equality holding when f∗is a surjection, whereas f∗f!β•≤β•with equality holding when f∗is an injection. Stable intersections.Just as in the unequivariant case,equivariant intersections can be removed when the codimension is sufficiently large. The equivariant intersection problem(f,i Q)is said to be stable ifp H≤f∗(i Q)!cd H(i Q)−1for every(H)∈I(G;P)(Roughly,this means the dimension of the transverse intersection of f(P H)and Q H is negative).If the intersection problem is stable,one can use elementary equi-variant obstruction theory to show f equivariantly deforms offof Q, yielding a solution.4JOHN R.KLEIN AND BRUCE WILLIAMSA“cohomological”result.Ourfirst main result gives a complete obstruction to solving equivariant intersection problems in the equi-variant metastable range.The obstruction lies in the cohomology of P with coefficients in a certain parametrized equivariant spectrum over N.A reader who is not familiar with this technology should consult§3. Theorem A.To an equivariant intersection problem(f,i Q),there is a naive parametrized G-spectrum E(i Q)over N,which is constructed from the inclusion i Q:Q⊂N,and an obstructione G(f)∈H0G(P;E(i Q))which vanishes when the intersection problem has a solution.Conversely,if e G(f)=0andp H≤2f∗(i Q)!cd H(i Q)−3for all(H)∈I(G;P),then the intersection problem has a solution. Remark.The word naive here is used indicate that the parametrized spectrum is indexed over a trivial universe;the equivariant cohomology theory of the theorem is therefore of“Bredon type.”The inequalities of Theorem A define the equivariant metastable range.When G is the trivial group,one has the sole inequality2p≤2n−2q−3,which is just the unequivariant metastable range. Homotopical equivariant bordism.Since naive equivariant coho-mology theories are not indexed over representations,they are not fully “stable.”From our viewpoint,a crucial deficiency of naive theories is their lack of Poincar´e duality.To get around this,we impose additional conditions to get a more tractible invariant residing in a theory which does possess Poincar´e du-ality.We will map the equivariant cohomology theory of Theorem A into a similarly defined RO(G)-graded one.The additional constraints will insure the map is injective.Applying duality to our pushed-forward invariant,we obtain another invariant living in RO(G)-graded homol-ogy.We then identify the homology theory with the homotopical G-bordism groups of a certain G-space.To a G-space X equipped with real G-vector bundleξ,one has an associated equivariant Thom spectrumXξ,whose spaces XξVare indexed by representations V ranging over a com-plete G-universe U(compare[M,Chap.XV]).Here,XξV denotes theThom space ofξ⊕V.Equivalently,Xξis the equivariant suspensionHOMOTOPICAL INTERSECTION THEORY,II:EQUIVARIANCE5 spectrum of the Thom space ofξ.More generally,Xξis defined when-everξis an equivariant virtual bundle over X.For a virtual G-representationα=V−W,the homotopical G-bordism group of(X,ξ)in degreeαis given byΩGα(X;ξ):=colimU [S V+U,XξW+U]G,where[S V+U,XξW+U]G denotes the homotopy classes of based G-mapsS V+U→XξW+U (in which S V+U is the one point compactification ofthe direct sum of V and U),and the colimit is indexed over thefinite dimensional subrepresentations U of U using the partial ordering de-fined by inclusion.Actually,we will only need consider the case when α=0is the trivial representation of rank zero.Remarks.(1).There is a related object,N Gα(X;ξ),called the geometric bordism group of(X,ξ).It is generated by G-manifolds M equipped with G-map u:M→X and a stable G-bundle isomorphismu∗ξ⊕τM⊕ǫW∼=ǫV,whereǫV denotes the G-bundle whose total space is X×V.The Pontryagin-Thom construction defines a homomorphismN Gα(X;ξ)→ΩGα(X;ξ).In constrast with the unequivariant case,this map can fail to be an isomorphism because of the lack of equivariant transversality(see[P], [CW],[M,p.156]).(2).Whenξis a G-vector bundle(not virtual),then Xξis the equivari-ant suspension spectrum of the Thom space ofξ.In particular,when ξis trivial of rank zero,we getΣ∞G(X+),the equivariant suspension spectrum of X∐∗.In this case,the map from the equivariant geo-metric bordism group to the homotopical one is an isomorphism[Ha],[Ko].The k-th homotopy group ofΣ∞G(X+)coincides withΩG,frk (X),the k-dimensional equivariant framed bordism group of X.(3).When G=e is the trivial group,andξhas virtual rank n,Ωe0(X;ξ)=Ω0(X;ξ)is the bordism group generated by mapsα:M→X,with M a compact n-manifold,together with a(stable)isomor-phismα∗ξwith the stable normal bundle of M.Note the indexing convention used here is different from the one of[KW].We now specialize to the equivariant bordism groups arising from in-tersection problems.Given an equivariant intersection problem(f,i Q), defineE(f,i Q)6JOHN R.KLEIN AND BRUCE WILLIAMSto be the homotopyfiber product(a.k.a.homotopy pullback)of f and i Q.A point in E(f,i Q)is a triple(x,λ,y)in which x∈P,y∈Q and λ:[0,1]→N is a path such thatλ(0)=f(x)andλ(1)=y.There is an evident action of G on E(f,i Q).There are forgetful maps j P:E(f,i Q)→P and j Q:E(f,i Q)→Q, both equivariant.There is also an equivariant map j N:E(f,i Q)→N given by(x,λ,y)→λ(1/2).Using these,we obtain an equivariant virtual bundle over E(f,i Q)byξ:=j∗NτN−j∗QτQ−j∗PτP.If Q⊂N is heldfixed,thenξis completely determined by f:P→N. A“homological”result.Theorem B.Given an equivariant intersection problem(f,i Q),there is an invariantχG(f)∈ΩG0(E(f,i Q);ξ)which vanishes when f is equivariantly homotopic to a map whose im-age is disjoint from Q.Conversely,assumeχG(f)=0and•for each(H)∈I(G;P),we havep H≤2f∗(i Q)!cd H(i Q)−2;•for each(H)∈I(G;P)and each proper subgroup K H,wehavep H≤f∗(i Q)!cd K(i Q)−2.Then f is equivariantly homotopic to a map whose image is disjoint from Q.Remarks.(1).The assignment f→χG(f)is a global section of a locally constant sheaf over the equivariant mapping space map(P,N)G.The stalk of this sheaf at f isΩG0(E(f,i Q);ξ).This explains the sense in whichχG(f)is an invariant.(2).The second set of inequalities of Theorem B can be regarded as a gap condition.Boundary conditions.There is also a version of Theorem B when N is compact,possibly with boundary,and P is compact with boundary ∂P=∅satisfying f(∂P)∩Q=∅.In this instance one seeks an equivariant deformation of f,fixed on∂P,to a new map whose image is disjoint from Q.HOMOTOPICAL INTERSECTION THEORY,II:EQUIVARIANCE7Addendum C.Theorem B also holds when P and N are compact manifolds with boundary,where it is assumed f(∂P)∩Q=∅and Q is embedded in the interior of N.Sparse isotropy.When the action of G on P has few isotropy types, the inequalities in Theorem B unravel somewhat.Free actions.Suppose the action of G on P is free.Then the trivial group is the only isotropy group and the inequalities of Theorem B reduce to a single inequalityp≤2(n−q)−3=2n−2q−3.Furthermore,the equivariant bordism group of Theorem B is isomor-phic to the unequivariant bordism groupΩ0(EG×G E(f,i Q);id EG×Gξ),where EG×G E(f,i Q)is the Borel construction.This bordism group is generated by maps u:M→EG×G E(f,i Q)together with a stable isomorphismνM∼=u∗(id EG×Gξ),where M has dimension p+q−n andνM denotes the stable normal bundle.The identification of these groups is obtained using a transfer construction.Trivial actions.If P has a trivial G-action,then the only isotropy group is G.In this instance,P has image in N G and the intersection problem becomes an unequivariant one,involving the map f:P→N G and the submanifold Q G⊂N G.Assume for simplicity that N G and Q G are connected.Then by[KW],the intersection problem admits a solution whenχ(f)∈Ω0(E(f,i Q G);ξ)is trivial and p≤2n G−2q G−3. Prime order groups.Let G be a cyclic group of prime order.By the above,we can assume both the trivial group and G appear as stabilizer groups.Then∅=P G P.For simplicity,assume Q G and N G are connected.Then thefirst set of inequalities of Theorem B becomesp≤2n−2q−3,p G≤2n G−2q G−3,and the second set amounts to the single inequalityp G≤n−q−2.8JOHN R.KLEIN AND BRUCE WILLIAMSLocal intersection theory.Suppose an equivariant intersection prob-lem(f,i Q)has been partially solved in the following sense:there is G-subspace U⊂P such that f(U)is disjoint from Q.One can then ask whether the solution extends to a larger subspace of P.A local equivariant intersection problem amounts to these data.A systematic approach to such questions provided by the isotropy stratification of P.The isotropy stratification.The relation of subconjugacy describes a partial ordering I(G;P):we will write(H)<(K)if K is properly subconjugate to H.We then choose a total ordering which is compatible with the partial ordering.Let(H1)<(H2)<···<(Hℓ)be the maximal chain coming from the total ordering of I(G;P).Let P i⊂P be the set of points x having stabilizer group G x in which(G x)≤(H i).Then we have afiltration of G-spaces∅=P0 P1 P2 ··· Pℓ=P,where each inclusion P i⊂P i+1possesses the equivariant homotopy extension property(cf.[D],[I]).The local obstruction.Suppose(f,i Q)is an equivariant intersection problem with f(P i−1)∩Q=∅for some i≥1.We seek a deformation of f relative to P i−1to a new map f′such that f′(P i)∩Q=∅.The map f′is then a solution to the local problem.Let H be a representative of(H i)and let f H:P H→N denote the restriction of f to P H.The Weyl group W(H)=N(H)/H acts on P H and freely on P H.Let Hξbe the virtual W(H)-bundle over E(f H,i Q) defined byj∗NτN−j∗QτQ−j∗PH τPH.Theorem D.There is an invariantχi G(f)∈ΩW(H)(E(f H,i Q);Hξ))which is trivial when the local problem at P i relative to P i−1can be solved.Conversely,assumeχi G(f)=0andp H≤2f∗(i Q)!cd H(i Q)−3for(H)=(H i).Then the local problem admits a solution.HOMOTOPICAL INTERSECTION THEORY,II:EQUIVARIANCE9 Descent.The global invariantχG(f)is an assemblage of all the local invariants.Although the local invariants may contain more informa-tion,they can fail to provide a solution to the global question.To address this point,we will give criteria for deciding when the vanishing of the global invariants implies the vanishing of the local ones.In com-bination with Theorem D the criteria yield a kind of descent theory for equivariant intersection problems.Let H∈I(G;P)be and consider the inclusionP H⊂P H.The corresponding inclusion E(P H,Q)⊂E(P H,Q)by t H.The map f H:P H→N will denote the restriction of f to P H.Define a virtualW(H)-bundle Hξover E(f H,i Q)by j∗NτN−j∗QτQ−j∗P H τP H.Since thepullback of Hξalong t H is Hξ,we get an induced homomorphism(t H)∗:ΩW(H)0(E(f H,i Q);Hξ)→ΩW(H)(E(f H,i Q);Hξ).Theorem E(“Global-to-Local”).Assume•f(P i−1)∩Q=∅for some i≥1(soχi G(f)is defined).•(t H)∗is injective for(H)=(H i).ThenχG(f)=0impliesχi G(f)=0.Corollary F(“Descent”).Let(f,i Q)be an equivariant intersection problem.Assume•χG(f)=0,•(t H)∗is injective,•p H≤2f∗(i Q)!cd H(i Q)−3,for every(H)∈I(G;P).Then there is an equivariant deformation of f to a map whose image is disjoint from Q.Applications.Embeddings.Suppose f:P→N is a smooth immersion.Equipping P with a Riemannian metric,we identify the total space of the unit tangent disk bundle of P with a compact tubular neighborhood of the diagonal∆P⊂P×P.With respect to this identification,the involution of P×P corresponds to the one on the tangent bundle that maps a tangent vector to its negative.Let S(2)be the total space of the unit spherical tangent bundle of P,and let P(2)be the effect of deleting the interior of the tubular neighborhood from P×P.Then (P(2),S(2))is a free Z2-manifold with boundary.If we rescale the metric,then f×f determines an equivariant map (f(2),f(2)|S(2)):(P(2),S(2))→(N×2,N×2−∆N),10JOHN R.KLEIN AND BRUCE WILLIAMSwhich yields relative Z2-equivariant intersection problem with free do-main.Thefiber product E(f(2),i∆N )in this case coincides with thespace of triples(x,γ,y)with x,y∈P(2)andγa path from f(x)to f(y). The involution is given by(x,γ,y)→(y,¯γ,x),where¯γ(t):=γ(1−t).We set E′(f,f):=E(f(2),i∆N ).Applying Addendum B and observing the action is free,we have an obstructionµ(f)∈Ω0(E Z2×Z2E′(f,f);id×Z2ξ)whose vanishing suffices forfinding an equivariant deformation of f(2),fixed on S(2),to a map whose image is disjoint from∆N,provided 3p+3≤2n.By a theorem of Haefliger[H],f is regularly homotopic to an em-bedding in the metastable range3p+3≤2n if and only if the above equivariant intersection problem admits a solution.Consequently, Corollary G(compare[HQ,th.2.3]).If f is regularly homotopic to an embedding,thenµ(f)is trivial.Conversely,in the metastable range,the vanishing ofµ(f)implies f is regularly homotopic to an embedding.Equivariantfixed point theory.Let M be a closed smooth manifold equipped a smooth action of afinite group G.Letmap♭(M,M)Gdenote the space offixed point free G-maps from M to itself.Equi-variantfixed point theory studies the extent to which the inclusionmap♭(M,M)G→map(M,M)Gis a surjection on path components.For an equivariant self map f:M→M,letL f Mbe the space of pathsλ:[0,1]→M satisfying the constraint f(λ(0))=λ(1).Then G acts on L f M pointwise.Let(L f M)+be the effect of adding a disjoint basepoint to L f M,andfinally,letΩG,fr(L f M))be the G-equivariant framed bordism of L f M in dimension zero. Theorem H.There is an invariantℓG(f)∈ΩG,fr(L f M)which vanishes when f is equivariantly homotopic to afixed point free map.Conversely,assumeℓG(f)=0.IfHOMOTOPICAL INTERSECTION THEORY,II:EQUIVARIANCE11•m H≥3for all(H)∈I(G;M).•m H≤m K−2for proper inclusions K H with K,H∈I(G;M),then f is equivariantly homotopic to afixed point free map. Remarks.(1).The above can be regarded as an equivariant analog ofa classical theorem of Wecken[We].(2).Our result bears close similarity to a theorem of Fadell and Wong [FW](see also[F],[W]).Their result uses the Nielsen numbers N(f H) with(H)∈I(G;M)in place of ourℓG(f).(2).A formula of tom Dieck splitsΩG,fr0(L f M)into a direct sum of un-equivariant framed bordism groups indexed over the conjugacy classes of subgroups of G.The summand corresponding to a conjugacy class (H)isΩfr0(EW(H)×W(H)L f H M),where EW(H)×W(H)L f H M is the Borel construction of the Weyl group W(H)acting on L f H M(see[tD],[M]).Consequently,ℓG(f)decom-poses as a sum of invariants indexed in the same way.We conjecture the Nielsen number N(f H)can be computed from the projection of ℓG(f)onto the displayed summand.Periodic Points.A fundamental problem in discrete dynamics is to enumerate the periodic orbits of a self map f:M→M,where M is a closed manifold.Let n≥2be an integer.A point x∈M is said to be n-periodic if x is afixed point of the n-th iterate of f,i.e.,f n(x)=x.The set of n-periodic points of f is denotedP n(f).The cyclic group Z n acts on P n(f):if t∈Z n is a generator,then the action is defined by t·x:=f(x).The homotopy n-periodic point set of f is the Z n-spaceho P n(f)consisting of n-tuples(λ1,λ2,...,λn),in whichλi:[0,1]→M is a path and the data are subject to the constraintsf(λi+1(0))=λi(1)),i=1,2,...Here we interpret the subscript i as being taken modulo n.The action of Z n on ho P n(f)is given by cyclic permutation of factors.12JOHN R.KLEIN AND BRUCE WILLIAMSThere is a map P n(f)→ho P n(f)given by sending an n-periodic point x to the n-tuple(c x,c f(x),c f2(x),...,c f n−1(x))in which c x denotes the constant path with value x.For a self map f:M→M,as above,letΩZ n,fr(ho P n(f))be the Z n-equivariant framed bordism group of ho P n(f)in dimension 0.Theorem I.There is a homotopy theoretically defined invariantℓn(f)∈ΩZ n,fr(ho P n(f))which is an obstruction to deforming f to an n-periodic point free self map.Remarks.At the time of writing,we do not know the extent to which ℓn(f)is the complete obstruction to making f n-periodic point free. When dim M≥3,Jezierski[J]has shown the vanishing of the Nielsen numbers N(f k)for all divisors k|n implies f is homotopic to an n-periodic point free map(here f k denotes the k-fold composition of f with itself).We conjectureℓn(f)determines N(f k).In§11will give a more explicit description of the equivariant bor-dism groupΩZ n,fr0(ho P n(f))in terms of fundamental group data.Thedescription supports the conjecture.2.PreliminariesG-Universes.The G-representations of this paper are assumed to come equipped with a G-invariant inner product.A G-universe U is a countably infinite dimensional real representation of G which contains the trivial representation and which contains infinitely many copies of each of itsfinite dimensional subrepresentations.We will be interested in two kinds of universes.A complete universe is one that contains infinitely many copies of representatives for the irreducible representations of G(in this instance one can take U to be the countable direct sum of the regular representation).A trivial universe contains only trivial representations.HOMOTOPICAL INTERSECTION THEORY,II:EQUIVARIANCE13 Spaces.We work in the category of compactly generated topological spaces.The empty space is(−2)-connected and every non-empty space is(−1)-connected.A map A→B of spaces(with B nonempty)isr-connected if for any choice of basepoint in B,the homotopyfiberwith respect to this choice of basepoint is an(r−1)-connected spaceIn particular,any map A→B is(−1)-connected.A weak homotopyequivalence is an∞-connected map.G-spaces.Let G be afinite group.A G-space is a space X equipped with a left action of G.A map of G-spaces is a G-equivariant map.Let T be a transitive G-set.The T-cell of dimension j is the G-spaceT×D j,where G acts diagonally with trivial action on D j.Remark 2.1.If a choice of basepoint t∈T is given,then one hasa preferred isomorphism G/H∼=T,where H=G t is the stabilizer of t.Given another choice of basepoint t′,the stabilizer group G t′is conjugate to H.We will call the conjugacy class(H)the type of T.Two transitive G-sets are isomorphic if and only if they have the sametype.Given a G-map f:T×S j−1→Y,one may formY∪f(T×D j).This is called an T-cell attachment.If j=0,we interpret the above asa disjoint union.A relative G-cell complex(X,Y)is a pair in which X is obtainedfrom Y by iterated equivariant cell attachments(where we allow T to vary over different transitive G-sets;the collection of attached cells is allowed to be a class).The order of attachment defines a partial ordering on the collection of cells.If this order is dimension preserving (i.e.,no cell of dimension j is attached after a cell of dimension j′when j<j′),then(X,Y)is a relative G-CW complex.When the collection of such attachments isfinite,one says(X,Y)isfinite.When Y is the empty space,X is a G-cell complex and when the attachments are self-indexing,X is a G-CW complex.The cellular dimension function d•for(X,Y)is the indexing func-tion whose value at H is the maximal dimension of the cells of type(H)appearing in the collection of attached cells.We set d H=−∞if (X,Y)has no cells of type(H).14JOHN R.KLEIN AND BRUCE WILLIAMSRemark2.2.Let M be a closed smooth G-manifold with dimension function m•.A result of Illman[I]shows that M possesses an equi-variant triangulation.If d•is the cellular dimension function of this triangulation,then d H=m H for all H∈I(G;M).Quillen model structure.Let T(G)be the category of G-spaces.A morphism f:X→Y is a weak equivalence if for every subgroup H⊂G the induced map offixed pointsf H:X H→Y His a weak homotopy equivalence.Similarly,a morphism f is afibration if f H is a Serrefibration for every H.A morphism f:X→Y is a cofibration if there is a relative G-cell complex(Z,X)such that Y is a retract of Z relative to X.Let R(G)be the category of based G-spaces.A morphism X→Y of R(G)is a weak equivalence,cofibration orfibration if and only if it is so when considered as a morphism of T(G).Proposition2.3([DK],[M,Ch.VI§5]).With respect to the above structure,both T(G)and R(G)are Quillen model categories. Connectivity.One says an indexing function r•is a connectivity func-tion for a G-space Y if Y H is r H-connected for H⊂G a subgroup(if Y H is empty,we set r H=−2).If f:Y→Z is a morphism of T(G), then a connectivity function for f is an indexing function r•such that f H:Y H→Z H is an r H-connected map of spaces(one can always assume r H≥−1since every map of spaces is at least(−1)-connected). Lemma 2.4.Let Y→Z be afibration of T(G)with connectivity function r•.Suppose(X,A)is a relative G-cell complex with cellular dimension function d•.Assume d H≤r H for all subgroups H⊂G. Then given a factorization problem of the formA YHOMOTOPICAL INTERSECTION THEORY,II:EQUIVARIANCE15 reduced to solving an equivariant lifting problem of the kindG/H×S j−1YfD j Z HThe latter lift exists because f H is r H-connected and j≤r H. Corollary2.6.Consider the lifting problemA Y16JOHN R.KLEIN AND BRUCE WILLIAMSFiberwise G-spaces.Fix a G-space B.A G-space over B is a G-space X equipped with G-map X→B,usually denoted p X.A morphism X→Y of G-spaces over B is a G-map which commutes with the structure maps p X and p Y.LetT(B;G)be the category of G-spaces over B.We also have a“retractive”version of this category,denotedR(B;G).An object of the latter consists of a G-space X and maps p X:X→B, s X:B→X such that p X s X=id B.A morphism X→Y is an equivariant map compatible with both structure maps.In either of these categories,a morphism X→Y is said to be a weak equivalence/cofibration/fibration if it is so when considered as a morphism of T(G)by means of the forgetful functor.With respect to these definitions,T(B;G)and R(B;G)are Quillen model categories.An object X in either of these categories is said to be r•-connected if the structure map X→B is(r•+1)-connected.A morphism is said to be r•-connected if the underlying map of T(G)is.The category R(B;G)has internal smash products,constructed as follows:let X,Y∈R(B;G)be objects.ThenX∧B Y∈R(B;G)is the object given by the pushout of the diagramB←−−−X∪B Y⊂−−−→X×B Ywhere X×B Y is thefiber product of X and Y.Since R(B;G)is a model category,one can form homotopy classes of morphisms.If X,Y∈R(B;G),we let[X,Y]R(B;G)denote the set of homotopy classes of morphisms.Recall the definition requires us to replace X by its cofibrant approximation and Y by its fibrant approximation.3.The proof of Theorem AUnreducedfiberwise suspension.Let E∈T(B;G)be an object. The unreducedfiberwise suspension of E over B is the object S B E∈T(B;G)given by the double mapping cylinderS B E:=B×0∪E×[0,1]∪B×1.HOMOTOPICAL INTERSECTION THEORY,II:EQUIVARIANCE17 The two evident inclusions s−,s+:B→S B E are morphisms of T(B;G). Using s−,we will consider S B E as an object of R(B;G).Obstruction to sectioning.LetB+denote B∐B considered as an object of R(B;G)using the left sum-mand to define a section.Thens:=s−∐s+:B+→S B Eis a morphism of R(B;G).We consider the associated homotopy class[s]∈[B+,S B E]R(B;G).The following proposition is an equivariant version of results of Lar-more([L,th.4.2-4.3];see also[KW,prop.3.1]).Proposition3.1.Assume E∈T(B;G)isfibrant.If E→B admits an equivariant section,then[s]is trivial.Conversely,assume•[s]is trivial,•B is a G-cell complex with dimension function b•,•the object E∈T(B;G)is r•-connected,and•b•≤2r•+1.Then E→B admits an equivariant section.Proof.Letσ:B→E be a section.Apply the functor S B and note S B B=B×[0,1].We then get a mapS Bσ:B×[0,1]→S B Ewhich gives a homotopy from s−to s+through morphisms of T(B;G). This is the same thing as establishing the triviality of[s].Conversely,the diagramE Bs+S B Eis preferred homotopy commutative in the category T(B;G).As a diagram of G-spaces it is a homotopy pushout.Let H⊂G be a18JOHN R.KLEIN AND BRUCE WILLIAMSsubgroup.Taking H-fixed points,we obtain a homotopy pushoutE H B Hs H+S B H E Hin the category R(B H;e)where e is the trivial group.Since E is an r•-connected object,the map E H→B H is(r H+1)-connected.By the Blakers-Massey theorem(see e.g.,[G,p.309]),the second diagram is(2r H+1)-cartesian.Consequently,thefirst diagram is(2r•+ 1)-cartesian.Let P denote the homotopy inverse limit of the diagram←−−−B.B s−−−−→S B E s+Then we conclude the map E→P is(2r•+1)-cartesian.If we assume [s]=0,then the map P→B admits a section up to homotopy(using the universal property of the homotopy pullback).By the assumptions on B and Corollary2.6,the G-map E→B admits a section up to homotopy.Since E isfibrant,this homotopy section can be converted into a strict section. Naive stabilization.The reducedfiberwise suspensionΣB E of an ob-ject E∈R(B;G)is given by considering E as an object of T(B;G), taking its unreducedfiberwise suspension S B E and taking the pushout of the diagramB←S B B→S B Ewhere S B B→S B E arises by applying S B to the structure map B→E.A naive parametrized G-spectrum E is a collection of objectsE n∈R(B;G)equipped with mapsΣB E n→E n+1.Example3.2.Let Y∈R(B;G)be an object.Its naive parametrized suspension spectrumΣ∞B Y has n-th objectΣn B Y,the n-th iteratedfiber-wise suspension of Y.Definition3.3.Let X∈T(B;G)be an object.The zeroth cohomol-ogy of X with coefficients in E is the abelian group given by[Σn B X+,E n]R(B;G)H0G(X;E):=colimn→∞where X+=X∐B and the maps in the colimit arise from the structure maps of E.。