2020年山东省泰安市中考数学试卷
山东省泰安市2020年中考数学试题
山东省泰安市2020年中考数学试题学校:___________姓名:___________班级:___________考号:___________ 1.12-的倒数是( ) A .B .C .12-D .122.下列运算正确的是() A .32xy xy -=B .3412x x x ⋅=C .1025x x x --÷=D .()236x x -=3.2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为() A .12410⨯元B .10410⨯元C .11410⨯元D .9410⨯元4.将含30°角的一个直角三角板和一把直尺如图放置,若150∠=︒,则2∠等于()A .80°B .100°C .110°D .120°5.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:根据统计表中的数据,这20名同学读书册数的众数,中位数分别是() A .3,3 B .3,7C .2,7D .7,36.如图,PA 是O 的切线,点A 为切点,OP 交O 于点B ,10P ∠=︒,点C 在O上,//OC AB .则BAC ∠等于()A .20°B .25°C .30°D .50°7.将一元二次方程2850x x --=化成2()x a b +=(a ,b 为常数)的形式,则a ,b 的值分别是() A .4-,21 B .4-,11C .4,21D .8-,698.如图,ABC 是O 的内接三角形,,30AB BC BAC =∠=︒,AD 是直径,8AD =,则AC 的长为()A .4B .CD .9.在同一平面直角坐标系内,二次函数2(0)y ax bx b a =++≠与一次函数y ax b=+的图象可能是()A .B .C .D .10.如图,四边形ABCD 是一张平行四边形纸片,其高2cm AG =,底边6cm BC ,45B ∠=︒,沿虚线EF 将纸片剪成两个全等的梯形,若30BEF ∠=︒,则AF 的长为()A .1cmB .3C .3)cmD .(2-11.如图,矩形ABCD 中,,AC BD 相交于点O ,过点B 作BF AC ⊥交CD 于点F ,交AC 于点M ,过点D 作//DE BF 交AB 于点E ,交AC 于点N ,连接,FN EM .则下列结论:①DN BM =;②//EM FN ;③AE FC =;④当AO AD =时,四边形DEBF 是菱形. 其中,正确结论的个数是()A .1个B .2个C .3个D .4个12.如图,点A ,B 的坐标分别为(2,0),(0,2)A B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为()A 1B 12C .1D .1213.方程组16,5372x y x y +=⎧⎨+=⎩的解是___________.14.如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为(0,3)A ,(1,1)B -,(3,1)C .A B C '''是ABC 关于x 轴的对称图形,将A B C '''绕点B '逆时针旋转180°,点A '的对应点为M ,则点M 的坐标为________.15.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.//,BC AD BE AD ⊥,斜坡AB 长26m ,斜坡AB 的坡比为12∶5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A 不动,则坡顶B 沿BC 至少向右移________m 时,才能确保山体不滑坡.(取tan50 1.2︒=)16.如图,点O 是半圆圆心,BE 是半圆的直径,点A ,D 在半圆上,且//,60,8AD BO ABO AB ∠=︒=,过点D 作DC BE ⊥于点C ,则阴影部分的面积是________.17.已知二次函数2y ax bx c =++(,,a b c 是常数,0a ≠)的y 与x 的部分对应值如下表:下列结论:①0a >;②当2x =-时,函数最小值为6-;③若点()18,y -,点()28,y 在二次函数图象上,则12y y <; ④方程25ax bx c ++=-有两个不相等的实数根.其中,正确结论的序号是__________________.(把所有正确结论的序号都填上) 18.右表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,……,我们把第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,……,第n 个数记为n a ,则4200a a +=_________.19.(1)化简:214133a a a a -⎛⎫-+÷⎪--⎝⎭; (2)解不等式:11134x x +--<. 20.如图,已知一次函数y kx b =+的图象与反比例函数my x=的图象交于点()3,A a ,点(142,2)B a -.(1)求反比例函数的表达式;(2)若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,求ACD 的面积.21.为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A :机器人;B :航模;C :科幻绘画;D :信息学;E :科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是_________名; (2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C 组最优秀的3名同学(1名男生2名女生)和E 组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.22.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍. (1)A ,B 两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?23.若ABC 和AED 均为等腰三角形,且90BAC EAD ∠=∠=︒.(1)如图(1),点B 是DE 的中点,判定四边形BEAC 的形状,并说明理由; (2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF CD =.求证:①EB DC =,②EBG BFC ∠=∠.24.小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,ACB ∠与ECD ∠恰好为对顶角,90ABC CDE ∠=∠=︒,连接BD ,AB BD =,点F 是线段CE 上一点.探究发现:(1)当点F 为线段CE 的中点时,连接DF (如图(2),小明经过探究,得到结论:BD DF ⊥.你认为此结论是否成立?_________.(填“是”或“否”) 拓展延伸:(2)将(1)中的条件与结论互换,即:若BD DF ⊥,则点F 为线段CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由. 问题解决:(3)若6,9AB CE ==,求AD 的长.25.若一次函数33y x =--的图象与x 轴,y 轴分别交于A ,C 两点,点B 的坐标为()3,0,二次函数2y ax bx c =++的图象过A ,B ,C 三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C 作//CD x 轴交抛物线于点D ,点E 在抛物线上(y 轴左侧),若BC 恰好平分DBE ∠.求直线BE 的表达式;(3)如图(2),若点P 在抛物线上(点P 在y 轴右侧),连接AP 交BC 于点F ,连接BP ,BFPBAFSmS=.①当12m 时,求点P的坐标;②求m的最大值.参考答案1.A 【解析】 【分析】根据倒数的概念求解即可. 【详解】根据乘积等于1的两数互为倒数,可直接得到-12的倒数为.故选A 2.D 【解析】 【分析】根据整式的加减乘除法则分开讨论即可得到结果. 【详解】A .32xy xy xy -=,故A 错误;B .343+47=⋅=x x x x ,故B 错误;C .12102120----=÷=x x x x ,故C 错误;D .()236x x -=,故D 正确;故答案选D . 【点睛】本题主要考查了整式加减乘除的混合运算,准确进行幂的运算公式是解题的关键. 3.C 【解析】 【分析】科学记数法就是将一个数字表示成a ×10 n 的形式,其中1≤|a|<10,n 表示整数. n 的值为这个数的整数位数减1,由此即可解答. 【详解】4000亿=400000000000=11410⨯. 故选C .【点睛】本题考查了科学记数法,科学记数法就是将一个数字表示成a×10 n的形式,正确确定a、n 的值是解决问题的关键.4.C【解析】【分析】如图,先根据平行线性质求出∠3,再求出∠4,根据四边形内角和为360°即可求解.【详解】解:如图,由题意得DE∥GF,∴∠1=∠3=50°,∴∠4=180°-∠3=130°,∴在四边形ACMN中,∠2=360°-∠A-∠C-∠4=110°.故选:C【点睛】本题考查了平行线的性质,四边形的内角和定理,熟知相关定理是解题关键.5.A【解析】【分析】由人数最多所对应的册数可得出众数,由总人数是20人可得,中位数是将数据从小到大排序后的第10和11个所对应册数的平均数即可求得结果;【详解】由表中数据可得,人数基数最大的7人所应的册数是3,所以众数是3.将数据从小到大排序后,第10和第11个数据均为3,所以中位数为:3+3=32, 故选:A .【点睛】 本题主要考查了中位数和众数的求解,准确分析表中数据得出结果是解题的关键. 6.B【解析】【分析】连接OA ,求出∠POA= 80°,根据等腰三角形性质求出∠OAB=∠OBA=50°,进而求出∠AOC=130°,得到∠C=25°,根据平行线性质即可求解.【详解】解:如图,连接OA ,∵PA 是O 的切线,∴∠PAO=90°,∵10P ∠=︒,∴∠POA=90°-∠P=80°,∵OA=OB ,∴∠OAB=∠OBA=50°,∵//OC AB ,∴∠BOC=∠ABO=50°,∴∠AOC=∠AOB+∠BOC=130°,∵OA=OC ,∴∠OAC=∠C=25°,∵//OC AB ,∴∠BAC=∠C=25°.故选:B【点睛】本题考查了切线的性质,圆的半径都相等,平行线的性质等知识,熟知各知识点是解题关键.一般情况下,在解决与圆有关的问题时,根据圆的的半径都相等,可以得到等腰三角形,进而可以进行线段或角的转化.7.A【解析】【分析】根据配方法步骤解题即可.【详解】解:2850x x --=移项得285x x -=,配方得2284516x x -+=+,即()2421x -=,∴a =-4,b =21.故选:A【点睛】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方.8.B【解析】【分析】连接BO ,根据圆周角定理可得60BOA ∠=︒,再由圆内接三角形的性质可得OB 垂直平分AC ,再根据正弦的定义求解即可.【详解】如图,连接OB ,∵ABC 是O 的内接三角形,∴OB 垂直平分AC , ∴1=2AM CM AC =,OM AM ⊥, 又∵,30AB BC BAC =∠=︒,∴30BCA ∠=︒,∴60BOA ∠=︒,又∵AD=8,∴AO=4,∴sin 6042AM AM AO ︒===,解得:AM =∴2AC AM ==故答案选B .【点睛】本题主要考查了圆的垂径定理的应用,根据圆周角定理求角度是解题的关键.9.C【解析】【分析】根据一次函数和二次函数的图象和性质,分别判断a ,b 的符号,利用排除法即可解答.【详解】解:A 、由一次函数图象可知,a >0,b >0,由二次函数图象可知,a >0,b <0,不符合题意;B 、由一次函数图象可知,a >0,b <0,由二次函数图象可知,a <0,b <0,不符合题意;C 、由一次函数图象可知,a >0,b <0,由二次函数图象可知,a >0,b <0,符合题意;D 、由一次函数图象可知,a <0,b=0,由二次函数图象可知,a >0,b <0,不符合题意; 故选:C .【点睛】本题考查二次函数的图象和一次函数的图象,解题的关键是明确一次函数和二次函数的性质. 10.D【解析】【分析】过点F 作FM BC ⊥,AG=2,45B ∠=︒,可得BG=FM=2,令AF=x ,根据30BEF ∠=︒,根据正切值可得EM 的长,加起来等于BC 即可得到结果.【详解】如图所示,过点F 作FM BC ⊥交BC 于点M ,∵AG BC ⊥,45B ∠=︒,AG=2,∴BG=FM=2,AF=GM ,令AF=x ,∵两个梯形全等,∴AF=GM=EC=x ,又∵30BEF ∠=︒,∴2=tan 30FMME =︒,∴ME =又∵BC=6,∴26BC BG GM ME EC x x =+++=+++=,∴2x =-故答案选D .【点睛】本题主要考查了利用特殊角的三角函数值及三角函数的意义进行求解,准确根据全等图形的性质判断边角是解题的关键.11.D【解析】【分析】通过判断△AND ≌△CMB 即可证明①,再判断出△ANE ≌△CMF 证明出③,再证明出△NFM ≌△MEN ,得到∠FNM=∠EMN ,进而判断出②,通过 DF 与EB 先证明出四边形为平行四边形,再通过三线合一以及内角和定理得到∠NDO=∠ABD=30°,进而得到DE=BE ,即可知四边形为菱形.【详解】∵BF ⊥AC∴∠BMC=90°又∵//DE BF∴∠EDO=∠MBO ,DE ⊥AC∴∠DNA=∠BMC=90°∵四边形ABCD 为矩形∴AD=BC ,AD ∥BC ,DC ∥AB∴∠ADB=∠CBD∴∠ADB-∠EDO=∠CBD-∠MBO 即∠AND=∠CBM在△AND 与△CMB∵90DNA BMC AND CBM AD BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AND ≌△CMB(AAS)∴AN=CM ,DN=BM ,故①正确.∵AB ∥CD∴∠NAE=∠MCF又∵∠DNA=∠BMC=90°∴∠ANE=∠CMF=90°在△ANE 与△CMF 中∵90ANE CMF AN CM NAE MCF ∠=∠=⎧⎪=⎨⎪∠=∠⎩∴△ANE ≌△CMF (ASA )∴NE=FM ,AE=CF ,故③正确.在△NFM 与△MEN 中∵90FM NE FMN ENM MN MN =⎧⎪∠=∠=︒⎨⎪=⎩∴△NFM ≌△MEN (SAS )∴∠FNM=∠EMN∴NF ∥EM ,故②正确.∵AE=CF∴DC-FC=AB-AE ,即DF=EB又根据矩形性质可知DF ∥EB∴四边形DEBF 为平行四边根据矩形性质可知OD=AO ,当AO=AD 时,即三角形DAO 为等边三角形∴∠ADO=60°又∵DN ⊥AC根据三线合一可知∠NDO=30°又根据三角形内角和可知∠ABD=180°-∠DAB-∠ADB=30°故DE=EB∴四边形DEBF 为菱形,故④正确.故①②③④正确故选D .【点睛】本题矩形性质、全等三角形的性质与证明、菱形的判定,能够找对相对应的全等三角形是解题关键.12.B【解析】【分析】如图所示,取AB 的中点N ,连接ON ,MN ,根据三角形的三边关系可知OM <ON+MN ,则当ON 与MN 共线时,OM= ON+MN 最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答.【详解】解:如图所示,取AB 的中点N ,连接ON ,MN ,三角形的三边关系可知OM <ON+MN ,则当ON 与MN 共线时,OM= ON+MN 最大,∵(2,0),(0,2)A B ,则△ABO 为等腰直角三角形,∴=N 为AB 的中点,∴ON=12AB = 又∵M 为AC 的中点,∴MN 为△ABC 的中位线,BC=1,则MN=1212BC =,∴12,∴OM 12故答案选:B .【点睛】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON 与MN 共线时,OM= ON+MN 最大.13.124x y =⎧⎨=⎩【解析】【分析】利用加减法解方程即可.【详解】解:165372x y x y +=⎧⎨+=⎩①② ①×3得3348x y += ③,②-③得224x =,解得x =12,把x =12代入①得12+y=16,y =4,∴原方程组的解为124x y =⎧⎨=⎩. 故答案为:124x y =⎧⎨=⎩【点睛】本题主要考查二元一次方程组的解法中的加减消元法,解答的关键在于根据题目特点合理消元.14.(2,1)-【解析】【分析】根据题意,画出旋转后图形,即可求解【详解】解:如图,将A B C '''绕点B '逆时针旋转180°,所以点A '的对应点为M 的坐标为(2,1)-.故答案为:(2,1)-【点睛】本题考查平面直角坐标系内图形的对称,旋转,解题关键是理解对称旋转的含义,并结合网格解题.15.10【解析】【分析】如图,设点B 沿BC 向右移动至点H ,使得∠HAD=50°,过点H 作HF ⊥AD 于点F ,根据AB 及AB 的坡比,计算出BE 和AE 的长度,再根据∠HAF=50°,得出AF 的值即可解答.【详解】解:如图,设点B 沿BC 向右移动至点H ,使得∠HAD=50°,过点H 作HF ⊥AD 于点F , ∵AB=26,斜坡AB 的坡比为12∶5,则设BE=12a ,AE=5a ,∴()()22212526a a +=,解得:a=2,∴BE=24,AE=10,∴HF=BE=24,∵∠HAF=50°, 则24tan 50 1.2HF AF AF︒===,解得:AF=20, ∴BH=EF=20-10=10,故坡顶B 沿BC 至少向右移10m 时,才能确保山体不滑坡,故答案为:10.【点睛】本题考查的是解直角三角形的应用坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.16.643π-【解析】【分析】求出半圆半径、OC 、CD 长,根据AD ∥BO ,得到ABD AOD S S =△△ ,根据=OCD AOE S S S -△阴影扇形即可求解 .【详解】解:连接OA ,∵60ABO ∠=︒,OA=OB ,∴△OAB 是等边三角形,∴OA=AB=8,∠AOB=60°∵AD ∥BO ,∴∠DAO=∠AOB=60°,∵OA=OD ,∴△OAD 是等边三角形,∴∠AOD=60°,∴∠DOE=60°,∴在Rt △OCD 中,sin 6043,cos 604CD OD OC OD =︒==︒=,∵AD ∥BO ,∴ABD AOD S S =△△ ,∴21208164=436023OCD AOE S S S ππ-=-⨯⨯=-△阴影扇形.故答案为:643π- 【点睛】 本题考查了不规则图形面积的求法,解题的关键是根据根据AD ∥BO ,得到ABD AOD S S =△△ ,从而将阴影面积转化为扇形面积与三角形面积的差.17.①③④【解析】【分析】先根据表格中的数据利用待定系数法求出抛物线的解析式,进而可直接判断①;由抛物线的性质可判断②;把点()18,y -和点()28,y 代入解析式求出y 1、y 2即可③;当y =﹣5时,利用一元二次方程的根的判别式即可判断④,进而可得答案.【详解】解:由抛物线过点(﹣5,6)、(2,6)、(0,﹣4),可得:25564264a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得:134a b c =⎧⎪=⎨⎪=-⎩,∴二次函数的解析式是234y x x =+-,∴a =1>0,故①正确; 当32x =-时,y 有最小值254-,故②错误; 若点()18,y -,点()28,y 在二次函数图象上,则136y =,284y =,∴12y y <,故③正确; 当y =﹣5时,方程2345x x +-=-即2310x x ++=,∵23450∆=-=>,∴方程25ax bx c ++=-有两个不相等的实数根,故④正确;综上,正确的结论是:①③④.故答案为:①③④.【点睛】本题以表格的形式考查了待定系数法求二次函数的解析式、二次函数的性质以及一元二次方程的根的判别式等知识,属于常考题型,熟练掌握二次函数与一元二次方程的基本知识是解题的关键.18.20110【解析】【分析】根据所给数据可得到关系式()12n n n a +=,代入即可求值. 【详解】由已知数据1,3,6,10,15,……,可得()12n n n a +=, ∴445102a ⨯==,200200201201002a ⨯==, ∴420020100+10=20110+=a a .故答案为20110.【点睛】本题主要考查了数字规律题的知识点,找出关系式是解题的关键.19.(1)22a a -+;(2)5x < 【解析】【分析】(1)先把小括号内的分式通分后,再把除法转化为乘法,约分后即可把分式化为最简; (2)先去掉不等式中的分母,然后去括号,移项,合并同类项,最后化系数为1即可求出不等式的解.【详解】 (1)解:214133a a a a -⎛⎫-+÷ ⎪--⎝⎭ (1)(3)1(2)(2)333a a a a a a a --+-⎡⎤=+÷⎢⎥---⎣⎦ 243133(2)(2)a a a a a a -++-=⨯-+- 2(2)(2)(2)a a a -=+- 22a a -=+ (2)解:不等式两边都乘以12,得4(1)123(1)x x +-<-即441233x x +-<-4383x x -<-解得5x <∴原不等式的解集是5x <.【点睛】第(1)题考查了分式的化简,熟练运用分式的运算法则是解决问题的关键;第(2)题考查了一元一次不等式的解法,熟知解一元一次不等式的一般步骤是解决问题的关键. 20.(1)12y x=;(2)18 【解析】【分析】(1)根据点A 、B 都在反比例函数图象上,得到关于a 的方程,求出a ,即可求出反比例函数解析式;(2)根据点A 、B 都在一次函数y kx b =+的图象上,运用待定系数法求出直线解析式,进而求出点C 坐标,求出CD 长,即可求出ACD 的面积.【详解】解:(1)∵点()3,A a ,点(142,2)B a -在反比例函数m y x =的图象上, ∴3(142)2a a ⨯=-⨯.解得4a =.∴3412m =⨯=.∴反比例函数的表达式是12y x =. (2)∵4a =,∴点A ,点B 的坐标分别是(3,4),(6,2).∵点A ,点B 在一次函数y kx b =+的图象上,∴43,26.k b k b =+⎧⎨=+⎩ 解得2,36.k b ⎧=-⎪⎨⎪=⎩∴一次函数的表达式是263y x =-+. 当0x =时,6y =.∴点C 的坐标是()0,6.∴6OC =.∵点D 是点C 关于原点O 的对称点,∴2CD OC =.作AE y ⊥轴于点E ,∴3AE =.12ACD S CD AE =⋅ CO AE =⋅63=⨯18=【点睛】本题为一次函数与反比例函数综合题,难度不大,解题关键是根据点A 、B 都在反比例函数图象上,得到关键a 的方程,求出a ,得到点A 、B 坐标.21.(1)80;(2)见解析;(3)72º;(4)图表见解析,59【解析】【分析】(1)根据题目中已知B 的占比和人数已知,可求出总人数;(2)用总人数减去其他人数可求出D 的人数,然后补全条图即可;(3)先算出A 的占比,再用占比乘以360°即可;(4)根据列表法进行求解即可;【详解】(1)由题可知:1822.5%=80÷(人),∴参加学生的人数是80人;(2)由(1)可得:D 的人数为80-16-18-20-8=18,画图如下:(3)由(1)可得,A 的占比是1680, ∴163607280α︒︒=⨯=. (4)列表如下:得到所有等可能的情况有9种,其中满足条件的有5种:(C 女1,E 男1),(C 女2,E 男1),(C 女1,E 男2),C 女2,E 男2),(C 男,E 女)所以所选两名同学中恰好是1名男生1名女生的概率是59. 【点睛】本题主要考查了条形统计图与扇形统计图的结合,在解题过程中准确理解题意,列表格求概率是关键.22.(1)A ,B 两种茶叶每盒进价分别为200元,280元;(2)第二次购进A 种茶叶40盒,B 种茶叶60盒【解析】【分析】(1)设A 种茶叶每盒进价为x 元,则B 种茶叶每盒进价为1.4x 元,根据“4000元购进了A 种茶叶若干盒,用8400元购进B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒”列出分式方程解答,并检验即可;(2)设第二次A 种茶叶购进m 盒,则B 种茶叶购进()100m -盒,根据题意,表达出打折前后,A ,B 两种茶叶的利润,列出方程即可解答.【详解】解:(1)设A 种茶叶每盒进价为x 元,则B 种茶叶每盒进价为1.4x 元.根据题意,得4000840010 1.4x x+=. 解得200x =.经检验:200x =是原方程的根.∴1.4 1.4200280x =⨯=(元).∴A ,B 两种茶叶每盒进价分别为200元,280元.(2)设第二次A 种茶叶购进m 盒,则B 种茶叶购进()100m -盒.打折前A 种茶叶的利润为100502m m ⨯=. B 种茶叶的利润为1001206000602m m -⨯=-. 打折后A 种茶叶的利润为1052m m ⨯=. B 种茶叶的利润为0.由题意得:5060006055800m m m +-+=.解方程,得:40m =.∴1001004060m -=-=(盒).∴第二次购进A 种茶叶40盒,B 种茶叶60盒.【点睛】本题考查了分式方程及一元一次方程的实际应用问题,解题的关键是设出未知数,找出等量关系,列出方程,并注意分式方程一定要检验.23.(1)四边形BEAC 是平行四边形,证明见解析;(2)①见解析;②见解析【解析】【分析】(1)利用等腰直角三角形的性质证得45BAE ∠=︒,45CBA ∠=︒,推出//BC EA ,再根据平行于同一直线的两直线平行即可推出结论;(2)①利用“SAS ”证得AEB ADC △≌△,即可证明结论;②延长FG 至点H ,使GH FG =,证得EHG CFG ≌,推出BFC H CF EH ∠=∠=,,利用①的结论即可证明EBG BFC ∠=∠.【详解】(1)证明:四边形BEAC 是平行四边形.理由如下:∵EAD 为等腰三角形且90EAD ∠=︒,∴45E ∠=︒,∵B 是DE 的中点,∴AB DE ⊥,∴45BAE ∠=︒,∵ABC 是等腰三角形,90BAC ∠=︒,∴45CBA ∠=︒,∴BAE CBA =∠∠,∴//BC EA ,又∵AB DE ⊥,∴90EBA BAC ∠=∠=︒.∴//BE AC .∴四边形BEAC 是平行四边形.(2)证明:①∵AED 和ABC 为等腰三角形,∴AE AD AB AC ==,,∵90EAD BAC ∠=∠=︒,∴EAD DAB BAC DAB ∠+∠=∠+∠,即EAB DAC ∠=∠,∴AEB ADC △≌△,∴EB DC =;②延长FG 至点H ,使GH FG =.∵G 是EC 中点,∴=EG CG ,又EGH FGC ∠=∠,∴EHG CFG ≌,∴BFC H CF EH ∠=∠=,,∵CF CD =,∴BE CF =,∴BE EH =,∴EBG H ∠=∠,∴EBG BFC ∠=∠.【点睛】本题考查了平行四边形的判定,等腰直角三角形的判定和性质,全等三角形的判定和性质,正确作出辅助线构建全等三角形是解答(2)②的关键.24.(1)是;(2)结论成立,理由见解析;(3)5【解析】【分析】(1)利用等角的余角相等求出∠A=∠E ,再通过AB=BD 求出∠A=∠ADB ,紧接着根据直角三角形斜边的中线等于斜边的一半求出FD=FE=FC ,由此得出∠E=∠FDE ,据此进一步得出∠ADB=∠FDE ,最终通过证明∠ADB +∠EDC=90°证明结论成立即可;(2)根据垂直的性质可以得出BDC CDF ∠+∠=90°,EDF CDF ∠+∠=90°,从而可得BDC EDF ∠=∠,接着证明出A EDF ∠=∠,利用A E ∠=∠可知E EDF ∠=∠,从而推出=EF FD ,最后通过证明ECD CDF ∠=∠得出CF DF =,据此加以分析即可证明结论;(3)如图,设G 为EC 的中点,连接GD ,由(1)得DG BD ⊥,故而92GD GC ==,在Rt GDB △中,利用勾股定理求出152GB =,由此得出159322CB =-=,紧接着,继续通过勾股定理求出AC ==ABC EDC ,再根据相似3CD =,从而求出CD =,最后进一步分析求解即可. 【详解】(1)∵∠ABC=∠CDE=90°,∴∠A +∠ACB=∠E +∠ECD ,∵∠ACB=∠ECD ,∴∠A=∠E ,∵AB=BD ,∴∠A=∠ADB ,在Rt ECD △中,∵F 是斜边CE 的中点,∴FD=FE=FC ,∴∠E=∠FDE ,∵∠A=∠E ,∴∠ADB=∠FDE ,∵∠FDE +∠FDC=90°,∴∠ADB +∠FDC=90°,即∠FDB=90°,∴BD ⊥DF ,结论成立,故答案为:是;(2)结论成立,理由如下:∵BD DF ⊥,ED AD ⊥∴BDC CDF ∠+∠=90°,EDF CDF ∠+∠=90°,∴BDC EDF ∠=∠,∵AB BD =,∴A BDC ∠=∠.∴A EDF ∠=∠.又∵A E ∠=∠,∴E EDF ∠=∠.∴=EF FD .又E ECD ∠+∠=90°,EDF FDC ∠+∠=90°,E EDF ∠=∠,∴ECD CDF ∠=∠,∴CF DF =.∴CF EF =.∴F 为CE 的中点;(3)如图,设G 为EC 的中点,连接GD ,由(1)可知DG BD ⊥,∴1922GD EC EG GC ====, 又∵6BD AB ==,在Rt GDB △中,152GB ==, ∴159322CB =-=,在Rt ABC 中,AC ==在ABC 与EDC △中,∵∠ABC=∠EDC ,∠ACB=∠ECD ,∴ABC EDC ,∴39CD=,∴5CD =,∴55AD AC CD =+=+= 【点睛】 本题主要考查了直角三角形的性质和相似三角形的性质及判定的综合运用,熟练掌握相关方法是解题关键.25.(1)223y x x =--;(2)113y x =-;(3)①点(2,3)P -或(1,4)-P ;②916m =最大值 【解析】【分析】(1)先求的点A 、C 的坐标,再用待定系数法求二次函数的解析式即可;(2)设BE 交OC 于点M .由(3,0),(0,3)B C -可得OB OC =,45OBC OCB ︒∠=∠=.再由//CD AB ,根据平行线的性质可得45BCD ︒∠=,所以OCB BCD ∠=∠.已知BC 平分DBE ∠,根据角平分线的定义可得EBC DBC ∠=∠.利用AAS 证得MBC DBC ≌.由全等三角形的性质可得CM CD =. 由此即可求得点M 的坐标为(0,-1).再由(3,0)B ,即可求得直线BE 解析式为113y x =-; (3)①由12BFP BAF S S =可得12PF AF =.过点P 作//PN AB 交BC 于点N ,则ABF PNF ∽.根据相似三角形的性质可得2AB NP =.由此即可求得2NP =.设()2,23P t t t --,可得2233N t t x --=-.所以22N x t t =-.由此即可得()22PN t t t =--=2,解得122,1t t ==.即可求得点(2,3)P -或(1,4)-P ;②由①得4PN m =.即()22213442169t t t m t --⎛⎫==--+ ⎪⎝⎭.再根据二次函数的性质即可得916m =最大值. 【详解】(1)解:令330x --=,得1x =-.令0x =时,3y =-.∴(1,0),(0,3)A C --.∵抛物线过点(0,3)C -,∴3c =-.则23y ax bx =+-,将(1,0),(3,0)A B -代入得03,093 3.a b a b =--⎧⎨=+-⎩ 解得1,2.a b =⎧⎨=-⎩∴二次函数表达式为223y x x =--.(2)解:设BE 交OC 于点M .∵(3,0),(0,3)B C -,∴OB OC =,45OBC OCB ︒∠=∠=.∵//CD AB ,∴45BCD ︒∠=.∴OCB BCD ∠=∠.∵BC 平分DBE ∠,∴EBC DBC ∠=∠.又∵BC BC =,∴MBC DBC ≌.∴CM CD =.由条件得:(2,3)D -.∴2CD CM ==.∴321OM =--.∴(0,1)M -.∵(3,0)B ,∴直线BE 解析式为113y x =-.(3)①12BFP BAF S S =,∴12PF AF =. 过点P 作//PN AB 交BC 于点N ,则ABF PNF ∽.∴2AB NP =.∵4AB =,∴2NP =.∵直线BC 的表达式为3y x =-,设()2,23P t t t --,∴2233N t t x --=-.∴22N x t t =-.∴()22PN t t t =--,则()222t t t --=,解得122,1t t ==. ∴点(2,3)P -或(1,4)-P . ②由①得:4PN m =. ∴()()222222331391344442442916t t t t t t t m t t ----⎡⎤-+⎛⎫⎛⎫====⨯--+=--+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦. ∴m 有最大值,916m =最大值. 【点睛】 本题是二次函数综合题,主要考查了一次函数与坐标轴的交点坐标、待定系数法求二次函数及一次函数的解析式,相似三角形的判定与性质,解决第(2)问时,求得点M 的坐标是关键;解决(3)①问时,作出辅助线求得2NP =是解题的关键;解决(3)②问时,构建函数模型是解决问题的关键.。
2020年山东省泰安市中考数学试卷(含解析)
2020年山东省泰安市中考数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.的倒数是()A.﹣2 B.﹣C.2 D.2.下列运算正确的是()A.3xy﹣xy=2 B.x3•x4=x12C.x﹣10÷x2=x﹣5D.(﹣x3)2=x63.2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A.4×1012元B.4×1010元C.4×1011元D.40×109元4.将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()A.80°B.100°C.110°D.120°5.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册 1 2 3 4 5人数/人 2 5 7 4 2根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3 B.3,7 C.2,7 D.7,36.如图,PA是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC∥AB.则∠BAC 等于()A.20°B.25°C.30°D.50°7.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,698.如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为()A.4 B.4C.D.29.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()A.B.C.D.10.如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC=6cm,∠B=45°,沿虚线EF将纸片剪成两个全等的梯形,若∠BEF=30°,则AF的长为()A.lcm B.cm C.(2﹣3)cm D.(2﹣)cm11.如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE ∥BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM∥FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是()A.1个B.2个C.3个D.4个12.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.+1 B.+C.2+1 D.2﹣二、填空题(每小题4分,共24分)13.方程组的解是.14.如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(﹣1,1),C(3,1).△A'B'C′是△ABC关于x轴的对称图形,将△A'B'C'绕点B'逆时针旋转180°,点A'的对应点为M,则点M的坐标为.15.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移m 时,才能确保山体不滑坡.(取tan50°=1.2)16.如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是.17.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:x ﹣5 ﹣4 ﹣2 0 2y 6 0 ﹣6 ﹣4 6下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是.(把所有正确结论的序号都填上)18.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=.三、解答题(本大题共7小题,满分78分)19.(10分)(1)化简:(a﹣1+)÷;(2)解不等式:﹣1<.20.(9分)如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A(3,a),点B(14﹣2a,2).(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求△ACD的面积.21.(11分)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.22.(11分)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?23.(12分)若△ABC和△AED均为等腰三角形,且∠BAC=∠EAD=90°.(1)如图(1),点B是DE的中点,判定四边形BEAC的形状,并说明理由;(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.求证:①EB=DC,②∠EBG=∠BFC.24.(12分)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD⊥DF.你认为此结论是否成立?.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.25.(13分)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.①当m=时,求点P的坐标;②求m的最大值.参考答案与试题解析一、选择题1.【解答】解:的倒数是﹣2.故选:A.2.【解答】解:A.3xy﹣xy=2xy,故本选项不合题意;B.x3•x4=x7,故本选项不合题意;C.x﹣10÷x2=x﹣12,故本选项不合题意;D.(﹣x3)2=x6,故本选项符合题意.故选:D.3.【解答】解:4000亿=400000000000=4×1011,故选:C.4.【解答】解:如图所示,∵AB∥CD∴∠ABE=∠1=50°,又∵∠2是△ABE的外角,∴∠2=∠ABE+∠E=50°+60°=110°,故选:C.5.【解答】解:这20名同学读书册数的众数为3册,中位数为=3(册),故选:A.6.【解答】解:连接OA,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∴∠AOP=90°﹣∠P=80°,∵OA=OB,∴∠OAB=∠OBA=50°,∵OC∥AB,∴∠BOC=∠OBA=50°,由圆周角定理得,∠BAC=∠BOC=25°,故选:B.7.【解答】解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.8.【解答】解:连接CD,∵AB=BC,∠BAC=30°,∴∠ACB=∠BAC=30°,∴∠B=180°﹣30°﹣30°=120°,∴∠D=180°﹣∠B=60°,∴∠CAD=30°,∵AD是直径,∴∠ACD=90°,∵AD=8,∴CD=AD=4,∴AC===4,故选:B.9.【解答】解:A、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故A错误;B、∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,且与二次函数交于y轴负半轴的同一点,故B错误;C、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故C正确;∵D、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故D错误;故选:C.10.【解答】解:过F作FH⊥BC于H,∵高AG=2cm,∠B=45°,∴BG=AG=2cm,∵FH⊥BC,∠BEF=30°,∴EH=,∵沿虚线EF将纸片剪成两个全等的梯形,∴AF=CE,∵AG⊥BC,FH⊥BC,∴AG∥FH,∵AG=FH,∴四边形AGHF是矩形,∴AF=GH,∴BC=BG+GH+HE+CE=2+2AF+2=6,∴AF=2﹣(cm),故选:D.11.【解答】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∠DAE=∠BCF=90°,OD=OB=OA=OC,AD=BC,AD∥BC,∴∠DAN=∠BCM,∵BF⊥AC,DE∥BF,∴DE⊥AC,∴∠DNA=∠BMC=90°,在△DNA和△BMC中,,∴△DNA≌△BMC(AAS),∴DN=BM,∠ADE=∠CBF,故①正确;在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=FC,DE=BF,故③正确;∴DE﹣DN=BF﹣BM,即NE=MF,∵DE∥BF,∴四边形NEMF是平行四边形,∴EM∥FN,故②正确;∵AB=CD,AE=CF,∴BE=DF,∵BE∥DF,∴四边形DEBF是平行四边形,∵AO=AD,∴AO=AD=OD,∴△AOD是等边三角形,∴∠ADO=∠DAN=60°,∴∠ABD=90°﹣∠ADO=30°,∵DE⊥AC,∴∠ADN=ODN=30°,∴∠ODN=∠ABD,∴DE=BE,∴四边形DEBF是菱形;故④正确;正确结论的个数是4个,故选:D.12.【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,∵OB=OD=2,∠BOD=90°,∴BD=2,∴CD=2+1,∴OM=CD=,即OM的最大值为+;故选:B.二、填空题13.【解答】解:②﹣3×①,得2x=24,∴x=12.把x=12代入①,得12+y=16,∴y=4.∴原方程组的解为.故答案为:.14.【解答】解:将△A'B'C'绕点B'逆时针旋转180°,如图所示:所以点M的坐标为(﹣2,1),故答案为:(﹣2,1).15.【解答】解:在BC上取点F,使∠FAE=50°,过点F作FH⊥AD于H,∵BF∥EH,BE⊥AD,FH⊥AD,∴四边形BEHF为矩形,∴BF=EH,BE=FH,∵斜坡AB的坡比为12:5,∴=,设BE=12x,则AE=5x,由勾股定理得,AE2+BE2=AB2,即(5x)2+(12x)2=262,解得,x=2,∴AE=10,BE=24,∴FH=BE=24,在Rt△FAH中,tan∠FAH=,∴AH==20,∴BF=EH=AH﹣AE=10,∴坡顶B沿BC至少向右移10m时,才能确保山体不滑坡,故答案为:10.16.【解答】解:连接OA,∵∠ABO=60°,OA=OB,∴△AOB是等边三角形,∵AB=8,∴⊙O的半径为8,∵AD∥OB,∴∠DAO=∠AOB=60°,∵OA=OD,∴∠AOD=60°,∵∠AOB=∠AOD=60°,∴∠DOE=60°,∵DC⊥BE于点C,∴CD=OD=4,OC==4,∴BC=8+4=12,S阴影=S△AOB+S扇形OAD+S扇形ODE﹣S△BCD=×+2×﹣=﹣8故答案为﹣8.17.【解答】解:将(﹣4,0)(0,﹣4)(2,6)代入y=ax2+bx+c得,,解得,,∴抛物线的关系式为y=x2+3x﹣4,a=1>0,因此①正确;对称轴为x=﹣,即当x=﹣时,函数的值最小,因此②不正确;把(﹣8,y1)(8,y2)代入关系式得,y1=64﹣24﹣4=36,y2=64+24﹣4=84,因此③正确;方程ax2+bx+c=﹣5,也就是x2+3x﹣4=﹣5,即方x2+3x+1=0,由b2﹣4ac=9﹣4=5>0可得x2+3x+1=0有两个不相等的实数根,因此④正确;正确的结论有:①③④,故答案为:①③④.18.【解答】解:观察“杨辉三角”可知第n个数记为a n=(1+2+…+n)=n(n+1),则a4+a200=×4×(4+1)+×200×(200+1)=20110.故答案为:20110.三、解答题19.【解答】解:(1)原式=[+]÷=(+)•=•=;(2)去分母,得:4(x+1)﹣12<3(x﹣1),去括号,得:4x+4﹣12<3x﹣3,移项,得:4x﹣3x<﹣3﹣4+12,合并同类项,得:x<5.20.【解答】解:(1)∵点A(3,a),点B(14﹣2a,2)在反比例函数上,∴3×a=(14﹣2a)×2,解得:a=4,则m=3×4=12,故反比例函数的表达式为:y=;(2)∵a=4,故点A、B的坐标分别为(3,4)、(6,2),设直线AB的表达式为:y=kx+b,则,解得,故一次函数的表达式为:y=﹣x+6;当x=0时,y=6,故点C(0,6),故OC=6,而点D为点C关于原点O的对称点,则CD=2OC=12,△ACD的面积=×CD•x A=×12×3=18.21.【解答】解:(1)本次参加比赛的学生人数为18÷22.5%=80(名);故答案为:80;(2)D组人数为:80﹣16﹣18﹣20﹣8=18(名),把条形统计图补充完整如图:(3)扇形统计图中表示机器人的扇形圆心角α的度数为360°×=72°;(4)画树状图如图:共有9个等可能的结果,所选两名同学中恰好是1名男生1名女生的结果有5个,∴所选两名同学中恰好是1名男生1名女生的概率为.22.【解答】解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.23.【解答】解:(1)四边形BEAC是平行四边形,理由如下:∵△AED为等腰三角形,∠EAD=90°,B是DE的中点,∴∠E=∠BAE=45°,∠ABE=90°,∵△ABC是等腰三角形,∠BAC=90°,∴∠ABC=∠BAE=45°,∠ABE=∠BAC=90°,∴BC∥AE,AC∥BE,∴四边形BEAC是平行四边形;(2)①∵△ABC和△AED均为等腰三角形,∠BAC=∠EAD=90°,∴AE=AD,AB=AC,∠BAE=∠CAD,∴△AEB≌△ADC(SAS),∴BE=CD;②延长FG至点H,使GH=FG,∵G是EC的中点,∴EG=DG,又∵∠EGH=∠FGC,∴△EGH≌△CGF(SAS),∴∠BFC=∠H,CF=EH,∵CF=CD,CD=BE,∴EH=BE,∴∠H=∠EBG,∴∠EBG=∠BFC.24.【解答】解:(1)如图(2)中,∵∠EDC=90°,EF=CF,∴DF=CF,∴∠FCD=∠FDC,∵∠ABC=90°,∴∠A+∠ACB=90°,∵BA=BD,∴∠A=∠ADB,∵∠ACB=∠FCD=∠FDC,∴∠ADB+∠FDC=90°,∴∠FDB=90°,∴BD⊥DF.故答案为是.(2)结论成立:理由:∵BD⊥DF,ED⊥AD,∴∠BDC+∠CDF=90°,∠EDF+∠CDF=90°,∴∠BDC=∠EDF,∵AB=BD,∴∠A=∠BDC,∴∠A=∠EDF,∵∠A+∠ACB=90°,∠E+∠ECD=90°,∠ACB=∠ECD,∴∠A=∠E,∴∠E=∠EDF,∴EF=FD,∵∠E+∠ECD=90°,∠EDF+∠FDC=90°,∴∠FCD=∠FDC,∴FD=FC,∴EF=FC,∴点F是EC的中点.(3)如图3中,取EC的中点G,连接GD.则GD⊥BD.∴DG=EC=,∵BD=AB=6,在Rt△BDG中,BG===,∴CB==3,在Rt△ABC中,AC===3,∵∠ACB=∠ECD,∠ABC=∠EDC,∴△ABC∽△EDC,∴=,∴=,∴CD=,∴AD=AC+CD=3=.25.【解答】解:(1)一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(﹣1,0)、(0,﹣3),将点A、B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设直线BE交y轴于点M,从抛物线表达式知,抛物线的对称轴为x=2,∵CD∥x轴交抛物线于点D,故点D(2,﹣3),由点B、C的坐标知,直线BC与AB的夹角为45°,即∠MCB=∠DCD=45°,∵BC恰好平分∠DBE,故∠MBC=∠DBC,而BC=BC,故△BCD≌△BCM(AAS),∴CM=CD=2,故OM=3﹣2=1,故点M(0,﹣1),设直线BE的表达式为:y=kx+b,则,解得,故直线BE的表达式为:y=x﹣1;(3)过点P作PN∥x轴交BC于点N,则△PFN∽△AFB,则,而S△BFP=mS△BAF,则=,解得:m=PN,①当m=时,则PN=2,设点P(t,t2﹣2t﹣3),由点B、C的坐标知,直线BC的表达式为:y=x﹣3,当x=t﹣2时,y=t﹣5,故点N(t﹣2,t﹣5),故t﹣5=t2﹣2t﹣3,解得:t=1或2,故点P(2,﹣3)或(1,﹣4);②m=PN=[t﹣(t2﹣2t)]=﹣(t﹣)2+,∵<0,故m的最大值为。
山东省泰安市2020年数学中考试题及答案
泰安市2020年数学中考试题第Ⅰ卷(选择题共48分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.12-的倒数是( ) A.-2B.12-C.2D.122.下列运算正确的是( ) A.32xy xy -= B.3412x x x ⋅= C.1025xx x --÷=D.()236xx -=3.2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为( ) A.12410⨯元B.10410⨯元C.11410⨯元D.94010⨯元4.将含30°角的一个直角三角板和一把直尺如图放置,若150∠=︒,则∠2等于( )A.80°B.100°C.110°D.120°5.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册 1 2 3 4 5 人数/人 25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( ) A.3,3B.3,7C.2,7D.7,36.如图,PA 是O 的切线,点A 为切点,OP 交O 于点B ,10P ∠=︒,点C 在O 上,//OC AB .则BAC ∠等于( )A.20°B.25°C.30°D.50°7.将一元二次方程2850x x --=化成2()x a b +=(a ,b 为常数)的形式,则a ,b 的值分别是( )A.-4,21B.-4,11C.4,21D.-8,698.如图,ABC ∆是O 的内接三角形,AB BC =,30BAC ∠=︒,AD 是直径,8AD =,则AC 的长为( )A.4B.43C.833D.239.在同一平面直角坐标系内,二次函数2y ax bx b =++(0a ≠)与一次函数y ax b =+的图象可能( )A. B. C. D.10.如图,四边形ABCD 是一张平行四边形纸片,其高2cm AG =,底边6cm BC =,45B ∠=︒,沿虚线EF 将纸片剪成两个全等的梯形,若30BEF ∠=︒,则AF 的长为( )A.1cm6C.(233)cmD.(23)cm11.如图,矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF AC ⊥交CD 于点F ,交AC 于点M ,过点D 作//DE BF 交AB 于点E ,交AC 于点N ,连接FN ,EM .则下列结论: ①DN BM =; ②//EM FN ; ③AE FC =;④当AO AD =时,四边形DEBF 是菱形. 其中,正确结论的个数是( )A.1个B.2个C.3个D.4个12.如图,点A ,B 的坐标分别为(2,0)A ,(0,2)B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )21122+C.221D.122第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分)13.方程组16,5372x y x y +=⎧⎨+=⎩的解是_________.14.如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为(0,3)A ,(1,1)B -,(3,1)C .A B C '''∆是ABC ∆关于x 轴的对称图形,将A B C '''∆绕点B '逆时针旋转180°,点A '的对应点为M ,则点M 的坐标为_________.15.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.//BC AD ,BE AD ⊥,斜坡AB 长26m ,斜坡AB 的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A 不动,则坡顶B 沿BC 至少向右移_________m 时,才能确保山体不滑坡.(取tan50 1.2︒=)16.如图,点O 是半圆圆心,BE 是半圆的直径,点A ,D 在半圆上,且//AD BO ,60ABO ∠=︒,8AB =,过点D 作DC BE ⊥于点C ,则阴影部分的面积是_________.17.已知二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的y 与x 的部分对应值如下表:x-5 -4 -2 0 2 y6-6-46下列结论: ①0a >;②当2x =-时,函数最小值为-6;③若点()18,y -,点()28,y 在二次函数图象上,则12y y <; ④方程25ax bx c ++=-有两个不相等的实数根.其中,正确结论的序号是_________.(把所有正确结论的序号都填上)18.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,……,我们把第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,……,第n 个数记为n a ,则4200a a +=_________.三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19.(1)化简:214133a a a a -⎛⎫-+÷⎪--⎝⎭; (2)解不等式:11134x x +--<. 20.如图,已知一次函数y kx b =+的图象与反比例函数my x=的图象交于点(3,)A a ,点(142,2)B a -.(1)求反比例函数的表达式;(2)若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,求ACD ∆的面积.21.为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A :机器人;B :航模;C :科幻绘画;D :信息学;E :科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是_________名; (2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C 组最优秀的3名同学(1名男生2名女生)和E 组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率. 22.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍 (1)A ,B 两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?23.若ABC ∆和AED ∆均为等腰三角形,且90BAC EAD ∠=∠=︒.(1)如图(1),点B 是DE 的中点,判定四边形BEAC 的形状,并说明理由;(2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF CD =. 求证:①EB DC =,②EBG BFC ∠=∠.24.小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,ACB ∠与ECD ∠恰好为对顶角,90ABC CDE ∠=∠=︒,连接BD ,AB BD =,点F 是线段CE 上一点.探究发现:(1)当点F 为线段CE 的中点时,连接DF (如图(2)),小明经过探究,得到结论:BD DF ⊥.你认为此结论是否成立?_________.(填“是”或“否”) 拓展延伸:(2)将(1)中的条件与结论互换,即:若BD DF ⊥,则点F 为线段CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由. 问题解决:(3)若6AB =,9CE =,求AD 的长.25.若一次函数33y x =--的图象与x 轴,y 轴分别交于A ,C 两点,点B 的坐标为(3,0),二次函数2y ax bx c =++的图象过A ,B ,C 三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C 作//CD x 轴交抛物线于点D ,点E 在抛物线上(y 轴左侧),若BC 恰好平分DBE ∠.求直线BE 的表达式;(3)如图(2),若点P 在抛物线上(点P 在y 轴右侧),连接AP 交BC 于点F ,连接BP ,BFP BAF S mS ∆∆=.①当12m =时,求点P 的坐标; ②求m 的最大值.参考答案一、选择题(本大题共12小题,每小题选对得4分,满分48分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 ADCCABABCDDB二、填空题(本大题共6小题,每小题填对得4分,满分24分)13.124x y =⎧⎨=⎩14.(2,1)- 15.1016.64833π-17.①③④ 18.20110三、解答题(本大题共7小题,满分78分)19.(1)解:214133a a a a -⎛⎫-+÷⎪--⎝⎭(1)(3)1(2)(2)333a a a a a a a --+-⎡⎤=+÷⎢⎥---⎣⎦ 243133(2)(2)a a a a a a -++-=⨯-+-2(2)(2)(2)a a a -=+- 22a a -=+ (2)解:不等式两边都乘以12,得4(1)123(1)x x +-<-即441233x x +-<-4383x x -<-解得5x <∴原不等式的解集是5x <.20.解:(1)∵点(3,)A a ,点(142,2)B a -在反比例函数my x=的图象上, ∴3(142)2a a ⨯=-⨯. 解得4a =. ∴3412m =⨯=.∴反比例函数的表达式是12y x=. (2)∵4a =,∴点A ,点B 的坐标分别是(3,4),(6,2). ∵点A ,点B 在一次函数y kx b =+的图象上,∴43,26.k b k b =+⎧⎨=+⎩解得2,36.k b ⎧=-⎪⎨⎪=⎩∴一次函数的表达式是263y x =-+. 当0x =时,6y =. ∴点C 的坐标是(0,6). ∴6OC =∵点D 是点C 关于原点O 的对称点, ∴2CD OC =. 作AE y ⊥轴于点E , ∴3AE =.12ACD S CD AE ∆=⋅CO AE =⋅63=⨯18=21.(1)80;(2)(3)163607280a︒=⨯=︒(4)列表如下:C男C女1 C女2E男1 (C男E男1)(C女1,E男1)(C女2,E男1)E男2 (C男,E男2)(C女1,E男2)(C女2,E男2)E女(C男,E女)(C女1,E女)(C女2,E女)得到所有等可能的情况有9种,其中满足条件的有5种:(C女1,E男1),(C女2,E男1),(C女1,E男2),(C女2,E男2),(C男,E女)所以所选两名同学中恰好是1名男生1名女生的概率是5 9 .22.解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元. 根据题意,得4000840010 1.4x x+=. 解得200x =.经检验:200x =是原方程的根.∴1.4 1.4200280x =⨯=(元).∴A ,B 两种茶叶每盒进价分别为200元,280元.(2)设第二次A 种茶叶购进m 盒,则B 种茶叶购进(100)m -盒.打折前A 种茶叶的利润为10050m 2m ⨯=. B 种茶叶的利润为1001206000602m m -⨯=-. 打折后A 种茶叶的利润为1052m m ⨯=. B 种茶叶的利润为0.由题意得:5060006055800m m m +-+=.解方程,得:40m =.∴1001004060m -=-=(盒).∴第二次购进A 种茶叶40盒,B 种茶叶60盒.23.(1)证明:四边形BEAC 是平行四边形.理由如下:∵EAD ∆为等腰三角形且90EAD ∠=︒,∴45E ∠=︒.∵B 是DE 的中点,∴AB DE ⊥.∴45BAE ∠=︒.∵ABC ∆是等腰三角形,90BAC ∠=︒,∴45CBA ∠=︒.∴BAE CBA ∠=∠.∴//BC EA .又∵AB DE ⊥,∴90EBA BAC ∠=∠=︒.∴//BE AC .∴四边形BEAC 是平行四边形.(2)证明:①∵AED ∆和ABC ∆为等腰三角形, ∴AE AD =,AB AC =.∵90EAD BAC ∠=∠=︒,∴EAD DAB BAC DAB ∠+∠=∠+∠.即EAB DAC ∠=∠.∴AEB ADC ∆∆≌.∴EB DC =.②延长FG 至点H ,使GH FG =.∵G 是EC 中点,∴EG CG =.又EGH FGC ∠=∠,∴EHG CFG ∆∆≌.∴BFC H ∠=∠,CF EH =.∵CF CD =,∴BE CF =.∴BE EH =.∴EBG H ∠=∠.∴EBG BFC ∠=∠.24.解:(1)是(2)结论成立.理由如下:∵BD DF ⊥,ED AD ⊥,∴90BDC CDF ∠+∠=︒,90EDF CDF ∠+∠=︒. ∴BDC EDF ∠=∠.∵AB BD =,∴A BDC ∠=∠.∴A EDF ∠=∠.又∵A E ∠=∠,∵E EDF ∠=∠.∴EF FD =.又90E ECD ∠+∠=︒,∴ECD CDF ∠=∠.∴CF DF =.∴CF EF =.∴F 为CE 的中点.(3)在备用图中,设G 为EC 的中点,则DG BD ⊥. ∴1922GD EC ==. 又6BD AB ==,在Rt GDB ∆中,22915622GB ⎛⎫=+= ⎪⎝⎭∴159322CB =-= 在Rt ABC ∆中,226335AC =+=.由条件得:ABC EDC ∆∆∽.∴3539CD =.∴955CD =.∴952453555AD AC CD =+=+=.25.(1)解:令330x --=,得1x =-.令0x =时,3y =-.∴(1,0)A -,(0,3)C -.∵抛物线过点(0,3)C -,∴3c =-.则23y ax bx =+-,将(1,0)A -,(3,0)B 代入 得03,093 3.a b a b =--⎧⎨=+-⎩解得1,2.a b =⎧⎨=-⎩∴二次函数表达式为223y x x =--.(2)解:设BE 交OC 于点M .∵(3,0)B ,(0,3)C -,∴OB OC =,45OBC OCB ∠=∠=︒.∵//CD AB ,∴45BCD ∠=︒.∴OCB BCD ∠=∠.∵BC 平分DBE ∠,∴EBC DBC ∠=∠.又∵BC BC =,∴MBC DBC ∆∆≌.∴CM CD =.由条件得:(2,3)D -.∴2CD CM ==.∴321OM =--.∴(0,1)M -.∵(3,0)B ,∴直线BE 解析式为113y x =-.(3)①∵12BFP BAF S S ∆∆=, ∴12PF AF =. 过点P 作//PN AB 交BC 于点N ,则ABF PNF ∆∆∽. ∴2AB NP =.∵4AB =,∴2NP =.∵直线BC 的表达式为3y x =-,设()2,23P t t t --,∴2233N t t x --=-.∴22N x t t =-. ∴()22PN t t t =--,则()222t t t --=,解得12t =,21t =. ∴点(2,3)P -或(1,4)P -. ②由①得:4PN m =. ∴()()222233444t t t t t t t m -----+===221391394244216t t ⎡⎤⎛⎫⎛⎫=⨯--+=--+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦. ∴m 有最大值,916m =最大值.。
2020年山东省泰安市中考数学试卷
2020年山东省泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)12-的倒数是( )A .2-B .12-C .2D .122.(4分)下列运算正确的是( ) A .32xy xy -=B .3412x x x =C .1025x x x --÷=D .326()x x -=3.(4分)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为( ) A .12410⨯元B .10410⨯元C .11410⨯元D .94010⨯元4.(4分)将含30︒角的一个直角三角板和一把直尺如图放置,若150∠=︒,则2∠等于()A .80︒B .100︒C .110︒D .120︒5.(4分)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表: 册数/册 1 2 3 4 5 人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( ) A .3,3B .3,7C .2,7D .7,36.(4分)如图,PA 是O 的切线,点A 为切点,OP 交O 于点B ,10P ∠=︒,点C 在O 上,//OC AB .则BAC ∠等于( )A .20︒B .25︒C .30︒D .50︒7.(4分)将一元二次方程2850x x --=化成2()(x a b a +=,b 为常数)的形式,则a ,b 的值分别是( ) A .4-,21B .4-,11C .4,21D .8-,698.(4分)如图,ABC ∆是O 的内接三角形,AB BC =,30BAC ∠=︒,AD 是直径,8AD =,则AC 的长为( )A .4B .43C .833D .239.(4分)在同一平面直角坐标系内,二次函数2(0)y ax bx b a =++≠与一次函数y ax b=+的图象可能是( )A .B .C .D .10.(4分)如图,四边形ABCD 是一张平行四边形纸片,其高2AG cm =,底边6BC cm =,45B ∠=︒,沿虚线EF 将纸片剪成两个全等的梯形,若30BEF ∠=︒,则AF 的长为( )A .lcmB 6C .33)cmD .(23)cm11.(4分)如图,矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF AC ⊥交CD 于点F ,交AC 于点M ,过点D 作//DE BF 交AB 于点E ,交AC 于点N ,连接FN ,EM .则下列结论: ①DN BM =; ②//EM FN ; ③AE FC =;④当AO AD =时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个12.(4分)如图,点A ,B 的坐标分别为(2,0)A ,(0,2)B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .21+B .122+C .221+D .1222-二、填空题(本大题共6小题,满分24分.只要求写出最后结果,每小题填对得4分) 13.(4分)方程组16,5372x y x y +=⎧⎨+=⎩的解是 .14.(4分)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为(0,3)A ,(1,1)B -,(3,1)C .△A B C '''是ABC ∆关于x 轴的对称图形,将△A B C '''绕点B '逆时针旋转180︒,点A '的对应点为M ,则点M 的坐标为 .15.(4分)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.//BC AD ,BE AD ⊥,斜坡AB 长26m ,斜坡AB 的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50︒时,可确保山体不滑坡.如果改造时保持坡脚A 不动,则坡顶B 沿BC 至少向右移 m 时,才能确保山体不滑坡.(取tan50 1.2)︒=16.(4分)如图,点O 是半圆圆心,BE 是半圆的直径,点A ,D 在半圆上,且//AD BO ,60ABO ∠=︒,8AB =,过点D 作DC BE ⊥于点C ,则阴影部分的面积是 .17.(4分)已知二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的y 与x 的部分对应值如下表:x5-4-2- 0 2 y66- 4-6下列结论: ①0a >;②当2x =-时,函数最小值为6-;③若点1(8,)y -,点2(8,)y 在二次函数图象上,则12y y <; ④方程25ax bx c ++=-有两个不相等的实数根.其中,正确结论的序号是 .(把所有正确结论的序号都填上)18.(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,⋯,我们把第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,⋯,第n 个数记为n a ,则4200a a += .三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19.(10分)(1)化简:214 (1)33aaa a--+÷--;(2)解不等式:11134x x+--<.20.(9分)如图,已知一次函数y kx b=+的图象与反比例函数myx=的图象交于点(3,)A a,点(142,2)B a-.(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求ACD∆的面积.21.(11分)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题: (1)本次参加比赛的学生人数是 名; (2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C 组最优秀的3名同学(1名男生2名女生)和E 组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.22.(11分)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界 共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍. (1)A ,B 两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?23.(12分)若ABC ∆和AED ∆均为等腰三角形,且90BAC EAD ∠=∠=︒. (1)如图(1),点B 是DE 的中点,判定四边形BEAC 的形状,并说明理由; (2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF CD =. 求证:①EB DC =, ②EBG BFC ∠=∠.24.(12分)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,ACB ∠与ECD ∠恰好为对顶角,90ABC CDE ∠=∠=︒,连接BD ,AB BD =,点F 是线段CE 上一点.探究发现:(1)当点F 为线段CE 的中点时,连接DF (如图(2)),小明经过探究,得到结论:BD DF ⊥.你认为此结论是否成立? .(填“是”或“否” ) 拓展延伸:(2)将(1)中的条件与结论互换,即:BD DF ⊥,则点F 为线段CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由. 问题解决:(3)若6AB =,9CE =,求AD 的长.25.(13分)若一次函数33y x =--的图象与x 轴,y 轴分别交于A ,C 两点,点B 的坐标为(3,0),二次函数2y ax bx c =++的图象过A ,B ,C 三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C 作//CD x 轴交抛物线于点D ,点E 在抛物线上(y 轴左侧),若BC 恰好平分DBE ∠.求直线BE 的表达式;(3)如图(2),若点P 在抛物线上(点P 在y 轴右侧),连接AP 交BC 于点F ,连接BP ,BFP BAF S mS ∆∆=.①当12m =时,求点P 的坐标; ②求m 的最大值.2020年山东省泰安市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)12-的倒数是( )A .2-B .12-C .2D .12【解答】解:12-的倒数是2-.故选:A .2.(4分)下列运算正确的是( ) A .32xy xy -=B .3412x x x =C .1025x x x --÷=D .326()x x -=【解答】解:.32A xy xy xy -=,故本选项不合题意;B .347x x x =,故本选项不合题意;C .10212x x x --÷=,故本选项不合题意;D .326()x x -=,故本选项符合题意.故选:D .3.(4分)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为( ) A .12410⨯元B .10410⨯元C .11410⨯元D .94010⨯元【解答】解:4000亿11400000000000410==⨯, 故选:C .4.(4分)将含30︒角的一个直角三角板和一把直尺如图放置,若150∠=︒,则2∠等于()A .80︒B .100︒C .110︒D .120︒【解答】解:如图所示,//AB CD150ABE ∴∠=∠=︒,又2∠是ABE ∆的外角,25060110ABE E ∴∠=∠+∠=︒+︒=︒,故选:C .5.(4分)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表: 册数/册 1 2 3 4 5 人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( ) A .3,3B .3,7C .2,7D .7,3【解答】解:这20名同学读书册数的众数为3册,中位数为3332+=(册), 故选:A .6.(4分)如图,PA 是O 的切线,点A 为切点,OP 交O 于点B ,10P ∠=︒,点C 在O 上,//OC AB .则BAC ∠等于( )A.20︒B.25︒C.30︒D.50︒【解答】解:连接OA,PA是O的切线,OA AP∴⊥,90PAO∴∠=︒,9080AOP P∴∠=︒-∠=︒,OA OB=,50OAB OBA∴∠=∠=︒,//OC AB,50BOC OBA∴∠=∠=︒,由圆周角定理得,1252BAC BOC∠=∠=︒,故选:B.7.(4分)将一元二次方程2850x x --=化成2()(x a b a +=,b 为常数)的形式,则a ,b 的值分别是( ) A .4-,21 B .4-,11C .4,21D .8-,69【解答】解:2850x x --=,285x x ∴-=,则2816516x x -+=+,即2(4)21x -=,4a ∴=-,21b =,故选:A .8.(4分)如图,ABC ∆是O 的内接三角形,AB BC =,30BAC ∠=︒,AD 是直径,8AD =,则AC 的长为( )A .4B .43C 833D .23【解答】解:连接CD ,AB BC =,30BAC ∠=︒, 30ACB BAC ∴∠=∠=︒, 1803030120B ∴∠=︒-︒-︒=︒, 18060D B ∴∠=︒-∠=︒, 30CAD ∴∠=︒, AD 是直径,90ACD ∴∠=︒, 8AD =, 142CD AD ∴==, 22228443AC AD CD ∴=--=故选:B .9.(4分)在同一平面直角坐标系内,二次函数2(0)y ax bx b a =++≠与一次函数y ax b =+的图象可能是( )A .B .C .D .【解答】解:A 、二次函数图象开口向上,对称轴在y 轴右侧,0a ∴>,0b <,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y 轴负半轴的同一点,故A 错误;B 、二次函数图象开口向下,对称轴在y 轴左侧,0a ∴<,0b <,∴一次函数图象应该过第二、三、四象限,且与二次函数交于y 轴负半轴的同一点,故B 错误;C 、二次函数图象开口向上,对称轴在y 轴右侧,0a ∴>,0b <,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y 轴负半轴的同一点,故C 正确;D 、二次函数图象开口向上,对称轴在y 轴右侧,0a ∴>,0b <,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y 轴负半轴的同一点,故D 错误; 故选:C .10.(4分)如图,四边形ABCD 是一张平行四边形纸片,其高2AG cm =,底边6BC cm =,45B ∠=︒,沿虚线EF 将纸片剪成两个全等的梯形,若30BEF ∠=︒,则AF 的长为( )A .lcmB .6cm C .(233)cm - D .(23)cm -【解答】解:过F 作FH BC ⊥于H ,高2AG cm =,45B ∠=︒,2BG AG cm ∴==, FH BC ⊥,30BEF ∠=︒,323EH AG ∴==,沿虚线EF 将纸片剪成两个全等的梯形,AF CE ∴=,AG BC ⊥,FH BC ⊥, //AG FH ∴, AG FH =,∴四边形AGHF 是矩形,AF GH ∴=,22236BC BG GH HE CE AF ∴=+++=++=,23()AF cm ∴=-,故选:D .11.(4分)如图,矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF AC ⊥交CD 于点F ,交AC 于点M ,过点D 作//DE BF 交AB 于点E ,交AC 于点N ,连接FN ,EM .则下列结论: ①DN BM =; ②//EM FN ; ③AE FC =;④当AO AD =时,四边形DEBF 是菱形. 其中,正确结论的个数是( )A .1个B .2个C .3个D .4个【解答】解:四边形ABCD 是矩形,AB CD ∴=,//AB CD ,90DAE BCF ∠=∠=︒,OD OB OA OC ===,AD BC =,//AD BC , DAN BCM ∴∠=∠, BF AC ⊥,//DE BF , DE AC ∴⊥,90DNA BMC ∴∠=∠=︒,在DNA ∆和BMC ∆中,DAN BCM DNA BMC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DNA BMC AAS ∴∆≅∆,DN BM ∴=,ADE CBF ∠=∠,故①正确;在ADE ∆和CBF ∆中,ADE CBF AD BC DAE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ADE CBF ASA ∴∆≅∆,AE FC ∴=,DE BF =,故③正确; DE DN BF BM ∴-=-,即NE MF =, //DE BF ,∴四边形NEMF 是平行四边形,//EM FN ∴,故②正确; AB CD =,AE CF =, BE DF ∴=,//BE DF ,∴四边形DEBF 是平行四边形,AO AD =, AO AD OD ∴==, AOD ∴∆是等边三角形, 60ADO DAN ∴∠=∠=︒, 9030ABD ADO ∴∠=︒-∠=︒, DE AC ⊥,30ADN ODN ∴∠==︒, ODN ABD ∴∠=∠, DE BE ∴=,∴四边形DEBF 是菱形;故④正确;正确结论的个数是4个,故选:D .12.(4分)如图,点A ,B 的坐标分别为(2,0)A ,(0,2)B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .21+B .122+C .221+D .1222-【解答】解:如图,点C 为坐标平面内一点,1BC =,C ∴在B 的圆上,且半径为1,取2OD OA ==,连接CD ,AM CM =,OD OA =, OM ∴是ACD ∆的中位线, 12OM CD ∴=,当OM 最大时,即CD 最大,而D ,B ,C 三点共线时,当C 在DB 的延长线上时,OM 最大,2OB OD ==,90BOD ∠=︒, 22BD ∴=221CD ∴=+,11222OM CD ∴==+,即OM 的最大值为122+;故选:B .二、填空题(本大题共6小题,满分24分.只要求写出最后结果,每小题填对得4分) 13.(4分)方程组16,5372x y x y +=⎧⎨+=⎩的解是 124x y =⎧⎨=⎩ .【解答】解:165372x y x y +=⎧⎨+=⎩①②②3-⨯①,得224x =,12x ∴=.把12x =代入①,得1216y +=, 4y ∴=.∴原方程组的解为124x y =⎧⎨=⎩.故答案为:124x y =⎧⎨=⎩.14.(4分)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为(0,3)A ,(1,1)B -,(3,1)C .△A B C '''是ABC ∆关于x 轴的对称图形,将△A B C '''绕点B '逆时针旋转180︒,点A '的对应点为M ,则点M 的坐标为 (2,1)- .【解答】解:将△A B C '''绕点B '逆时针旋转180︒,如图所示:所以点M 的坐标为(2,1)-, 故答案为:(2,1)-.15.(4分)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.//BC AD ,BE AD ⊥,斜坡AB 长26m ,斜坡AB 的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50︒时,可确保山体不滑坡.如果改造时保持坡脚A 不动,则坡顶B 沿BC 至少向右移 10 m 时,才能确保山体不滑坡.(取tan50 1.2)︒=【解答】解:在BC 上取点F ,使50FAE ∠=︒,过点F 作FH AD ⊥于H ,//BF EH ,BE AD ⊥,FH AD ⊥, ∴四边形BEHF 为矩形,BF EH ∴=,BE FH =,斜坡AB 的坡比为12:5,∴125BE AE =, 设12BE x =,则5AE x =,由勾股定理得,222AE BE AB +=,即222(5)(12)26x x +=,解得,2x =,10AE ∴=,24BE =, 24FH BE ∴==,在Rt FAH ∆中,tan EHFAH AH∠=, 20tan50EHAH ∴==︒,10BF EH AH AE ∴==-=,∴坡顶B 沿BC 至少向右移10m 时,才能确保山体不滑坡,故答案为:10.16.(4分)如图,点O 是半圆圆心,BE 是半圆的直径,点A ,D 在半圆上,且//AD BO ,60ABO ∠=︒,8AB =,过点D 作DC BE ⊥于点C ,则阴影部分的面积是64833π- .【解答】解:连接OA ,60ABO ∠=︒,OA OB =, AOB ∴∆是等边三角形, 8AB =, O ∴的半径为8, //AD OB ,60DAO AOB ∴∠=∠=︒, OA OD =, 60AOD ∴∠=︒, 60AOB AOD ∠=∠=︒, 60DOE ∴∠=︒, DC BE ⊥于点C ,343CD ∴==142OC OD ==, 8412BC ∴=+=,AOB BCDOAD ODES S S S S∆∆=++-阴影扇形扇形2160818432124323602π⨯=⨯⨯+⨯-⨯⨯64833π=-故答案为64833π-.17.(4分)已知二次函数2(y ax bx c a=++,b,c是常数,0)a≠的y与x的部分对应值如下表:x5-4-2-02y606-4-6下列结论:①0a>;②当2x=-时,函数最小值为6-;③若点1(8,)y-,点2(8,)y在二次函数图象上,则12y y<;④方程25ax bx c++=-有两个不相等的实数根.其中,正确结论的序号是①③④.(把所有正确结论的序号都填上)【解答】解:将(4-,0)(0,4)(2-,6)代入2y ax bx c=++得,16404426a b cca b c-+=⎧⎪=-⎨⎪++=⎩,解得,134abc=⎧⎪=⎨⎪=-⎩,∴抛物线的关系式为234y x x=+-,10a=>,因此①正确;对称轴为32x=-,即当32x=-时,函数的值最小,因此②不正确;把(8-,1)(8y,2)y代入关系式得,16424436y=--=,26424484y=+-=,因此③正确;方程25ax bx c ++=-,也就是2345x x +-=-,即方2310x x ++=,由249450b ac -=-=>可得2310x x ++=有两个不相等的实数根,因此④正确; 正确的结论有:①③④, 故答案为:①③④.18.(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,⋯,我们把第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,⋯,第n 个数记为n a ,则4200a a += 20110 .【解答】解:观察“杨辉三角”可知第n 个数记为1(12)(1)2n a n n n =++⋯+=+,则4200114(41)200(2001)2011022a a +=⨯⨯++⨯⨯+=.故答案为:20110.三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19.(10分)(1)化简:214(1)33a a a a --+÷--; (2)解不等式:11134x x +--<. 【解答】解:(1)原式(1)(3)1(2)(2)[]333a a a a a a a --+-=+÷--- 24313()33(2)(2)a a a a a a a -+-=+--+-2(2)33(2)(2)a a a a a --=-+- 22a a -=+;(2)去分母,得:4(1)123(1)x x+-<-,去括号,得:441233x x+-<-,移项,得:433412x x-<--+,合并同类项,得:5x<.20.(9分)如图,已知一次函数y kx b=+的图象与反比例函数myx=的图象交于点(3,)A a,点(142,2)B a-.(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求ACD∆的面积.【解答】解:(1)点(3,)A a,点(142,2)B a-在反比例函数上,3(142)2a a∴⨯=-⨯,解得:4a=,则3412m=⨯=,故反比例函数的表达式为:12yx=;(2)4a =,故点A、B的坐标分别为(3,4)、(6,2),设直线AB的表达式为:y kx b=+,则43266k bk=+⎧⎨=+⎩,解得236kb⎧=-⎪⎨⎪=⎩,故一次函数的表达式为:263y x=-+;当0x=时,6y=,故点(0,6)C,故6OC=,而点D为点C关于原点O的对称点,则212CD OC==,ACD∆的面积111231822ACD x=⨯=⨯⨯=.21.(11分)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是80名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.【解答】解:(1)本次参加比赛的学生人数为1822.5%80÷=(名);故答案为:80;(2)D组人数为:80161820818----=(名),把条形统计图补充完整如图:(3)扇形统计图中表示机器人的扇形圆心角α的度数为163607280︒⨯=︒;(4)画树状图如图:共有9个等可能的结果,所选两名同学中恰好是1名男生1名女生的结果有5个,∴所选两名同学中恰好是1名男生1名女生的概率为59.22.(11分)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界 共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍. (1)A ,B 两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?【解答】解:(1)设A 种茶叶每盒进价为x 元,则B 种茶叶每盒进价为1.4x 元, 依题意,得:84004000101.4x x-=, 解得:200x =,经检验,200x =是原方程的解,且符合题意,1.4280x ∴=.答:A 种茶叶每盒进价为200元,B 种茶叶每盒进价为280元. (2)设第二次购进A 种茶叶m 盒,则购进B 种茶叶(100)m -盒, 依题意,得:100100(300200)(3000.7200)(400280)(4000.7280)58002222m m m m ---⨯+⨯-⨯+-⨯+⨯-⨯=,解得:40m =,10060m ∴-=.答:第二次购进A 种茶叶40盒,B 种茶叶60盒.23.(12分)若ABC ∆和AED ∆均为等腰三角形,且90BAC EAD ∠=∠=︒. (1)如图(1),点B 是DE 的中点,判定四边形BEAC 的形状,并说明理由; (2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF CD =. 求证:①EB DC =, ②EBG BFC ∠=∠.【解答】解:(1)四边形BEAC 是平行四边形, 理由如下:AED ∆为等腰三角形,90EAD ∠=︒,B 是DE 的中点,45E BAE ∴∠=∠=︒,90ABE ∠=︒, ABC ∆是等腰三角形,90BAC ∠=︒, 45ABC BAE ∴∠=∠=︒,90ABE BAC ∠=∠=︒, //BC AE ∴,//AC BE , ∴四边形BEAC 是平行四边形;(2)①ABC ∆和AED ∆均为等腰三角形,90BAC EAD ∠=∠=︒,AE AD ∴=,AB AC =,BAE CAD ∠=∠,()AEB ADC SAS ∴∆≅∆,BE CD ∴=;②延长FG 至点H ,使GH FG =,G 是EC 的中点,EG DG ∴=,又EGH FGC ∠=∠, ()EGH CGF SAS ∴∆≅∆,BFC H ∴∠=∠,CF EH =, CF CD =,CD BE =, EH BE ∴=,H EBG ∴∠=∠, EBG BFC ∴∠=∠.24.(12分)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,ACB ∠与ECD ∠恰好为对顶角,90ABC CDE ∠=∠=︒,连接BD ,AB BD =,点F 是线段CE 上一点. 探究发现:(1)当点F 为线段CE 的中点时,连接DF (如图(2)),小明经过探究,得到结论:BD DF ⊥.你认为此结论是否成立? 是 .(填“是”或“否” ) 拓展延伸:(2)将(1)中的条件与结论互换,即:BD DF ⊥,则点F 为线段CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由. 问题解决:(3)若6AB =,9CE =,求AD 的长.【解答】解:(1)如图(2)中,=,∠=︒,EF CFEDC90∴=,DF CF∴∠=∠,FCD FDC∠=︒,90ABC∴∠+∠=︒,A ACB90=,BA BD∴∠=∠,A ADB∠=∠=∠,ACB FCD FDCADB FDC∴∠+∠=︒,90∴∠=︒,90FDB∴⊥.BD DF故答案为是.(2)结论成立:理由:BD DF⊥,ED AD⊥,∠+∠=︒,EDF CDF90∴∠+∠=︒,90BDC CDF∴∠=∠,BDC EDF=,AB BD∴∠=∠,A BDC∴∠=∠,A EDFE ECD∠+∠=︒,ACB ECD∠=∠,∠+∠=︒,90A ACB90∴∠=∠,A E∴∠=∠,E EDFEF FD ∴=,90E ECD ∠+∠=︒,90EDF FDC ∠+∠=︒, FCD FDC ∴∠=∠, FD FC ∴=, EF FC ∴=, ∴点F 是EC 的中点.(3)如图3中,取EC 的中点G ,连接GD .则GD BD ⊥.1922DG EC ∴==,6BD AB ==,在Rt BDG ∆中,2222915()622BG DG BD =++,159322CB ∴=-=, 在Rt ABC ∆中,22226335AC AB BC ++ACB ECD ∠=∠,ABC EDC ∠=∠, ABC EDC ∴∆∆∽, ∴AC BCEC CD=, ∴353CD=, 95CD ∴=, 9524535AD AC CD ∴=+=25.(13分)若一次函数33y x=--的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数2y ax bx c=++的图象过A,B,C三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C作//CD x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC 恰好平分DBE∠.求直线BE的表达式;(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,BFP BAFS mS∆∆=.①当12m=时,求点P的坐标;②求m的最大值.【解答】解:(1)一次函数33y x=--的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(1,0)-、(0,3)-,将点A、B、C的坐标代入抛物线表达式得0933a b ca b cc=-+⎧⎪=++⎨⎪=-⎩,解得123abc=⎧⎪=-⎨⎪=-⎩,故抛物线的表达式为:223y x x=--;(2)设直线BE交y轴于点M,从抛物线表达式知,抛物线的对称轴为2x=,//CD x轴交抛物线于点D,故点(2,3)D-,由点B、C的坐标知,直线BC与AB的夹角为45︒,即45MCB DCD∠=∠=︒,BC恰好平分DBE∠,故MBC DBC∠=∠,而BC BC=,故()BCD BCM AAS∆≅∆,2CM CD∴==,故321OM=-=,故点(0,1)M-,设直线BE的表达式为:y kx b=+,则130bk b=-⎧⎨+=⎩,解得131kb⎧=⎪⎨⎪=-⎩,故直线BE的表达式为:113y x=-;(3)过点P作//PN x轴交BC于点N,则PFN AFB∆∆∽,则AF ABPF PN=,而BFP BAFS mS∆∆=,则14AFPF m PN==,解得:14m PN=,①当12m=时,则2PN=,设点2(,23)P t t t--,由点B、C的坐标知,直线BC的表达式为:3y x=-,当2x t=-时,5y t=-,故点(2,5)N t t--,故2523t t t-=--,解得:1t=或2,故点(2,3)P-或(1,4)-;②2211139[(2)]()444216m PN t t t t==--=--+,104-<,故m 的最大值为916.。
2020年山东省泰安市中考数学试卷解析版
2020年山东省泰安市中考数学试卷题号一二三总分得分一、选择题(本大题共12小题,共48.0分)1.的倒数是()A. -2B. -C. 2D.2.下列运算正确的是()A. 3xy-xy=2B. x3•x4=x12C. x-10÷x2=x-5D. (-x3)2=x63.2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A. 4×1012元B. 4×1010元C. 4×1011元D. 40×109元4.将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()A. 80°B. 100°C. 110°D. 120°5.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册12345人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A. 3,3B. 3,7C. 2,7D. 7,36.如图,PA是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC∥AB.则∠BAC等于()A. 20°B. 25°C. 30°D. 50°7.将一元二次方程x2-8x-5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A. -4,21B. -4,11C. 4,21D. -8,698.如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为()A. 4B. 4C.D. 29.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()A. B.C. D.10.如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC=6cm,∠B=45°,沿虚线EF将纸片剪成两个全等的梯形,若∠BEF=30°,则AF的长为()A. lcmB. cmC. (2-3)cmD. (2-)cm11.如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE∥BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM∥FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是()A. 1个B. 2个C. 3个D. 4个12.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A. +1B. +C. 2+1D. 2-二、填空题(本大题共6小题,共24.0分)13.方程组的解是______.14.如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(-1,1),C(3,1).△A'B'C′是△ABC 关于x轴的对称图形,将△A'B'C'绕点B'逆时针旋转180°,点A'的对应点为M,则点M的坐标为______.15.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移______m时,才能确保山体不滑坡.(取tan50°=1.2)16.如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是______.17.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:x-5-4-202y60-6-46下列结论:①a>0;②当x=-2时,函数最小值为-6;③若点(-8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=-5有两个不相等的实数根.其中,正确结论的序号是______.(把所有正确结论的序号都填上)18.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=______.三、解答题(本大题共7小题,共78.0分)19.(1)化简:(a-1+)÷;(2)解不等式:-1<.20.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A(3,a),点B(14-2a,2).(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求△ACD的面积.21.为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是______名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.22.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?23.若△ABC和△AED均为等腰三角形,且∠BAC=∠EAD=90°.(1)如图(1),点B是DE的中点,判定四边形BEAC的形状,并说明理由;(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.求证:①EB=DC,②∠EBG=∠BFC.24.小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD⊥DF.你认为此结论是否成立?______.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.25.若一次函数y=-3x-3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.①当m=时,求点P的坐标;②求m的最大值.答案和解析1.【答案】A【解析】解:的倒数是-2.故选:A.根据倒数的定义,直接解答即可.主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【答案】D【解析】解:A.3xy-xy=2xy,故本选项不合题意;B.x3•x4=x7,故本选项不合题意;C.x-10÷x2=x-12,故本选项不合题意;D.(-x3)2=x6,故本选项符合题意.故选:D.分别根据合并同类项法则,同底数幂的乘法法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.本题主要考查了合并同类项,同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.【答案】C【解析】解:4000亿=400000000000=4×1011,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:如图所示,∵AB∥CD∴∠ABE=∠1=50°,又∵∠2是△ABE的外角,∴∠2=∠ABE+∠E=50°+60°=110°,故选:C.根据平行线的性质和三角形的外角的性质即可得到结论.此题考查了平行线的性质和外角的性质,熟练掌握平行线的性质是解本题的关键.5.【答案】A【解析】解:这20名同学读书册数的众数为3册,中位数为=3(册),故选:A.找到出现次数最多的数据,即为众数;求出第10、11个数据的平均数即可得这组数据的中位数,从而得出答案.本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.【答案】B【解析】解:连接OA,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∴∠AOP=90°-∠P=80°,∵OA=OB,∴∠OAB=∠OBA=50°,∵OC∥AB,∴∠BOC=∠OBA=50°,由圆周角定理得,∠BAC=∠BOC=25°,故选:B.连接OA,根据切线的性质得到∠PAO=90°,求出∠AOP,根据等腰三角形的性质、平行线的性质求出∠BOC,根据圆周角定理解答即可.本题考查的是切线的性质、圆周角定理、平行线的性质、等腰三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.7.【答案】A【解析】解:∵x2-8x-5=0,∴x2-8x=5,则x2-8x+16=5+16,即(x-4)2=21,∴a=-4,b=21,故选:A.将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.8.【答案】B【解析】解:连接CD,∵AB=BC,∠BAC=30°,∴∠ACB=∠BAC=30°,∴∠B=180°-30°-30°=120°,∴∠D=180°-∠B=60°,∴∠CAD=30°,∵AD是直径,∴∠ACD=90°,∵AD=8,∴CD=AD=4,∴AC===4,故选:B.连接CD,根据等腰三角形的性质得到∠ACB=∠BAC=30°,根据圆内接四边形的性质得到∠D=180°-∠B=60°,求得∠CAD=30°,根据直角三角形的性质即可得到结论.本题考查了三角形的外接圆与外心,圆周角定理,含30°角的直角三角形的性质,勾股定理,正确的识别图形是解题的关键.9.【答案】C【解析】解:A、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故A错误;B、∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,且与二次函数交于y轴负半轴的同一点,故B错误;C、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故C正确;∵D、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故D错误;故选:C.根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.本题考查了二次函数的图象以及一次函数图象与系数的关系,根据a、b的正负确定一次函数图象经过的象限是解题的关键.10.【答案】D【解析】解:过F作FH⊥BC于H,∵高AG=2cm,∠B=45°,∴BG=AG=2cm,∵FH⊥BC,∠BEF=30°,∴EH=,∵沿虚线EF将纸片剪成两个全等的梯形,∵AG⊥BC,FH⊥BC,∴AG∥FH,∵AG=FH,∴四边形AGHF是矩形,∴AF=GH,∴BC=BG+GH+HE+CE=2+2AF+2=6,∴AF=2-(cm),故选:D.根据直角三角形的三角函数得出BG,HE,进而利用梯形的性质解答即可.此题考查梯形,关键是根据直角三角形的三角函数得出BG,HE解答.11.【答案】D【解析】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∠DAE=∠BCF=90°,OD=OB=OA=OC,AD=BC,AD∥BC,∴∠DAN=∠BCM,∵BF⊥AC,DE∥BF,∴DE⊥AC,∴∠DNA=∠BMC=90°,在△DNA和△BMC中,,∴△DNA≌△BMC(AAS),∴DN=BM,∠ADE=∠CBF,故①正确;在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=FC,DE=BF,故③正确;∴DE-DN=BF-BM,即NE=MF,∵DE∥BF,∴四边形NEMF是平行四边形,∴EM∥FN,故②正确;∵AB=CD,AE=CF,∴BE=DF,∵BE∥DF,∴四边形DEBF是平行四边形,∵AO=AD,∴AO=AD=OD,∴△AOD是等边三角形,∴∠ADO=∠DAN=60°,∴∠ABD=90°-∠ADO=30°,∵DE⊥AC,∴∠ADN=ODN=30°,∴∠ODN=∠ABD,∴DE=BE,∴四边形DEBF是菱形;故④正确;正确结论的个数是4个,证△DNA≌△BMC(AAS),得出DN=BM,∠ADE=∠CBF,故①正确;证△ADE≌△CBF (ASA),得出AE=FC,DE=BF,故③正确;证四边形NEMF是平行四边形,得出EM∥FN,故②正确;证四边形DEBF是平行四边形,证出∠ODN=∠ABD,则DE=BE,得出四边形DEBF是菱形;故④正确;即可得出结论.本题考查了矩形的性质、菱形的判定、平行四边形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、等腰三角形的判定等知识;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.12.【答案】B【解析】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM 最大,∵OB=OD=2,∠BOD=90°,∴BD=2,∴CD=2+1,∴OM=CD=,即OM的最大值为+;故选:B.根据同圆的半径相等可知:点C在半径为1的⊙B上,通过画图可知,C在BD与圆B 的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值是点C 的位置是关键,也是难点.13.【答案】【解析】解:②-3×①,得2x=24,∴x=12.把x=12代入①,得12+y=16,∴y=4.∴原方程组的解为.故答案为:.用代入法或加减法求解二元一次方程组即可.本题考查的是二元一次方程的解法.掌握二元一次方程组的代入法、加减法是解决本题的关键.14.【答案】(-2,1)【解析】解:将△A'B'C'绕点B'逆时针旋转180°,如图所示:所以点M的坐标为(-2,1),故答案为:(-2,1).延长A'B'后得出点M,进而利用图中坐标解答即可.此题考查中心对称,关键是根据中心对称的性质画出图形解答.15.【答案】10【解析】解:在BC上取点F,使∠FAE=50°,过点F作FH⊥AD于H,∵BF∥EH,BE⊥AD,FH⊥AD,∴四边形BEHF为矩形,∴BF=EH,BE=FH,∵斜坡AB的坡比为12:5,∴=,设BE=12x,则AE=5x,由勾股定理得,AE2+BE2=AB2,即(5x)2+(12x)2=262,解得,x=2,∴AE=10,BE=24,∴FH=BE=24,在Rt△FAH中,tan∠FAH=,∴AH==20,∴BF=EH=AH-AE=10,∴坡顶B沿BC至少向右移10m时,才能确保山体不滑坡,故答案为:10.在BC上取点F,使∠FAE=50°,作FH⊥AD,根据坡度的概念求出BE、AE,根据正切的定义求出AH,结合图形计算,得到答案.本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.16.【答案】π-8【解析】解:连接OA,∵∠ABO=60°,OA=OB,∴△AOB是等边三角形,∵AB=8,∴⊙O的半径为8,∵AD∥OB,∴∠DAO=∠AOB=60°,∵OA=OD,∴∠AOD=60°,∵∠AOB=∠AOD=60°,∴∠DOE=60°,∵DC⊥BE于点C,∴CD=OD=4,OC==4,∴BC=8+4=12,S阴影=S△AOB+S扇形OAD+S扇形ODE-S△BCD=×+2×-=-8故答案为-8.连接OA,易求得圆O的半径为8,扇形的圆心角的度数,然后根据S阴影=S△AOB+S扇形OAD+S -S△BCD即可得到结论.扇形ODE本题考查了扇形的面积,等边三角形的判定和性质,解直角三角形,熟练掌握扇形的面积公式是解题的关键.17.【答案】①③④【解析】解:将(-4,0)(0,-4)(2,6)代入y=ax2+bx+c得,,解得,,∴抛物线的关系式为y=x2+3x-4,a=1>0,因此①正确;对称轴为x=-,即当x=-时,函数的值最小,因此②不正确;把(-8,y1)(8,y2)代入关系式得,y1=64-24-4=36,y2=64+24-4=84,因此③正确;方程ax2+bx+c=-5,也就是x2+3x-4=-5,即方x2+3x+1=0,由b2-4ac=9-4=5>0可得x2+3x+1=0有两个不相等的实数根,因此④正确;正确的结论有:①③④,故答案为:①③④.任意取表格中的三组对应值,求出二次函数的关系式,再根据二次函数的图象与系数之间的关系进行判断即可.本题考查二次函数的图象和性质,理解和掌握二次函数的图象与系数的关系是正确判断的关键.18.【答案】20110【解析】解:观察“杨辉三角”可知第n个数记为a n=(1+2+…+n)=n(n+1),则a4+a200=×4×(4+1)+×200×(200+1)=20110.故答案为:20110.观察“杨辉三角”可知第n个数记为a n=(1+2+…+n)=n(n+1),依此求出a4,a200,再相加即可求解.此题考查了规律型:数字的变化类,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.19.【答案】解:(1)原式=[+]÷=(+)•=•=;(2)去分母,得:4(x+1)-12<3(x-1),去括号,得:4x+4-12<3x-3,移项,得:4x-3x<-3-4+12,合并同类项,得:x<5.【解析】(1)先计算括号内异分母分式的加法,再将除法转化为乘法,继而约分即可得;(2)根据解一元一次不等式的基本步骤依次计算可得.本题主要考查分式的混合运算与解一元一次不等式,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解一元一次不等式的基本步骤.20.【答案】解:(1)∵点A(3,a),点B(14-2a,2)在反比例函数上,∴3×a=(14-2a)×2,解得:a=4,则m=3×4=12,故反比例函数的表达式为:y=;(2)∵a=4,故点A、B的坐标分别为(3,4)、(6,2),设直线AB的表达式为:y=kx+b,则,解得,故一次函数的表达式为:y=-x+6;当x=0时,y=6,故点C(0,6),故OC=6,而点D为点C关于原点O的对称点,则CD=2OC=12,△ACD的面积=×CD•x A=×12×3=18.【解析】(1)点A(3,a),点B(14-2a,2)在反比例函数上,则3×a=(14-2a)×2,即可求解;(2)a=4,故点A、B的坐标分别为(3,4)、(6,2),求出一次函数的表达式为:y=-x+6,则点C(0,6),故OC=6,进而求解.本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.21.【答案】80【解析】解:(1)本次参加比赛的学生人数为18÷22.5%=80(名);故答案为:80;(2)D组人数为:80-16-18-20-8=18(名),把条形统计图补充完整如图:(3)扇形统计图中表示机器人的扇形圆心角α的度数为360°×=72°;(4)画树状图如图:共有9个等可能的结果,所选两名同学中恰好是1名男生1名女生的结果有5个,∴所选两名同学中恰好是1名男生1名女生的概率为.(1)由B组的人数及其所占百分比可得本次参加比赛的学生人数;(2)求出D组人数,从而补全条形统计图;(3)由360°乘以A组所占的百分比即可;(4)画出树状图,由概率公式求解即可.本题考查了列表法或画树状图法、条形统计图和扇形统计图的有关知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.【答案】解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:-=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100-m)盒,依题意,得:(300-200)×+(300×0.7-200)×+(400-280)×+(400×0.7-280)×=5800,解得:m=40,∴100-m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.【解析】(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,根据用8400元购买的B种茶叶比用4000元购买的A种茶叶多10盒,即可得出关于x的分式方程,解之即可得出结论;(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100-m)盒,根据总利润=每盒的利润×销售数量,即可得出关于m的一元一次方程,解之即可得出结论.本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.23.【答案】解:(1)四边形BEAC是平行四边形,理由如下:∵△AED为等腰三角形,∠EAD=90°,B是DE的中点,∴∠E=∠BAE=45°,∠ABE=90°,∵△ABC是等腰三角形,∠BAC=90°,∴∠ABC=∠BAE=45°,∠ABE=∠BAC=90°,∴BC∥AE,AC∥BE,∴四边形BEAC是平行四边形;(2)①∵△ABC和△AED均为等腰三角形,∠BAC=∠EAD=90°,∴AE=AD,AB=AC,∠BAE=∠CAD,∴△AEB≌△ADC(SAS),∴BE=CD;②延长FG至点H,使GH=FG,∵G是EC的中点,∴EG=DG,又∵∠EGH=∠FGC,∴△EGH≌△CGF(SAS),∴∠BFC=∠H,CF=EH,∵CF=CD,CD=BE,∴EH=BE,∴∠H=∠EBG,∴∠EBG=∠BFC.【解析】(1)由等腰三角形的性质可得∠E=∠BAE=45°,∠ABE=90°,∠ABC=∠BAE=45°,∠ABE=∠BAC=90°,可证BC∥AE,AC∥BE,可得四边形BEAC是平行四边形;(2)①由“SAS”可证△AEB≌△ADC,可得BE=CD;②延长FG至点H,使GH=FG,由“SAS”可证△EGH≌△CGF,可得∠BFC=∠H,CF=EH,可得EH=BE,由等腰三角形的性质可得结论.本题考查了全等三角形的判定和性质,平行四边形的判定,添加恰当的辅助线构造全等三角形是本题的关键.24.【答案】是【解析】解:(1)如图(2)中,∵∠EDC=90°,EF=CF,∴DF=CF,∴∠FCD=∠FDC,∵∠ABC=90°,∴∠A+∠ACB=90°,∵BA=BD,∴∠A=∠ADB,∵∠ACB=∠FCD=∠FDC,∴∠ADB+∠FDC=90°,∴∠FDB=90°,∴BD⊥DF.故答案为是.(2)结论成立:理由:∵BD⊥DF,ED⊥AD,∴∠BDC+∠CDF=90°,∠EDF+∠CDF=90°,∴∠BDC=∠EDF,∵AB=BD,∴∠A=∠BDC,∴∠A=∠EDF,∵∠A+∠ACB=90°,∠E+∠ECD=90°,∠ACB=∠ECD,∴∠A=∠E,∴∠E=∠EDF,∴EF=FD,∵∠E+∠ECD=90°,∠EDF+∠FDC=90°,∴∠FCD=∠FDC,∴FD=FC,∴EF=FC,∴点F是EC的中点.(3)如图3中,取EC的中点G,连接GD.则GD⊥BD.∴DG=EC=,∵BD=AB=6,在Rt△BDG中,BG===,∴CB==3,在Rt△ABC中,AC===3,∵∠ACB=∠ECD,∠ABC=∠EDC,∴△ABC∽△EDC,∴=,∴=,∴CD=,∴AD=AC+CD=3=.(1)证明∠FDC+∠BDC=90°可得结论.(2)结论成立:利用等角的余角相等证明∠E=∠EDF,推出EF=FD,再证明FD=FC即可解决问题.(3)如图3中,取EC的中点G,连接GD.则GD⊥BD.利用(1)中即可以及相似三角形的性质解决问题即可.本题属于三角形综合题,考查了直角三角形斜边中线的性质,相似三角形的判定和性质,等腰三角形的性质和判定等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.25.【答案】解:(1)一次函数y=-3x-3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(-1,0)、(0,-3),将点A、B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=x2-2x-3;(2)设直线BE交y轴于点M,从抛物线表达式知,抛物线的对称轴为x=2,∵CD∥x轴交抛物线于点D,故点D(2,-3),由点B、C的坐标知,直线BC与AB的夹角为45°,即∠MCB=∠DCD=45°,∵BC恰好平分∠DBE,故∠MBC=∠DBC,而BC=BC,故△BCD≌△BCM(AAS),∴CM=CD=2,故OM=3-2=1,故点M(0,-1),设直线BE的表达式为:y=kx+b,则,解得,故直线BE的表达式为:y=x-1;(3)过点P作PN∥x轴交BC于点N,则△PFN∽△AFB,则,而S△BFP=mS△BAF,则=,解得:m=PN,①当m=时,则PN=2,设点P(t,t2-2t-3),由点B、C的坐标知,直线BC的表达式为:y=x-3,当x=t-2时,y=t-5,故点N(t-2,t-5),故t-5=t2-2t-3,解得:t=1或2,故点P(2,-3)或(1,-4);②m =PN =[t-(t2-2t)]=-(t -)2+,∵<0,故m 的最大值为.【解析】(1)函数y=-3x-3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(-1,0)、(0,-3),将点A、B、C的坐标代入抛物线表达式,即可求解;(2)证明△BCD≌△BCM(AAS),则CM=CD=2,故OM=3-2=1,故点M(0,-1),即可求解;(3)过点P作PN∥x轴交BC于点N,则△PFN∽△AFB ,则,而S△BFP=mS△BAF,则=,解得:m =PN,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、三角形全等和相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.第21页,共21页。
山东省泰安市2020年中考数学试题及详解(WORD版)
第一部分山东省泰安市2020年中考数学试题(1-9) 第二部分山东省泰安市2020年中考数学试题详解(10-27)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.12-的倒数是( ) A.B.C. 12-D.122.下列运算正确的是( ) A. 32xy xy -=B. 3412x x x ⋅=C. 1025xx x --÷=D. ()236xx -=3.2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为() A. 12410⨯元B. 10410⨯元C. 11410⨯元D. 9410⨯元4.将含30°角的一个直角三角板和一把直尺如图放置,若150∠=︒,则2∠等于( )A. 80°B. 100°C. 110°D. 120°5.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表: 册数/册 1 2 3 4 5 人数/人 25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( ) A. 3,3B. 3,7C. 2,7D. 7,36.如图,PA 是O 的切线,点A 为切点,OP 交O 于点B ,10P ∠=︒,点C 在O 上,//OC AB .则BAC ∠等于( )A. 20°B. 25°C. 30°D. 50°7.将一元二次方程2850x x --=化成2()x a b +=(a ,b 为常数)的形式,则a ,b 的值分别是( ) A. 4-,21 B. 4-,11C. 4,21D. 8-,698.如图,ABC 是O 的内接三角形,,30AB BC BAC =∠=︒,AD 是直径,8AD =,则AC 的长为( )A. 4B. 43C.833D. 239.在同一平面直角坐标系内,二次函数2(0)y ax bx b a =++≠与一次函数y ax b =+的图象可能是( )A. B.C. D.10.如图,四边形ABCD 是一张平行四边形纸片,其高2cm AG =,底边6cm BC ,45B ∠=︒,沿虚线EF 将纸片剪成两个全等的梯形,若30BEF ∠=︒,则AF 的长为( )A. 1cmB.6cm 3C. (233)cm -D. (23)cm -11.如图,矩形ABCD 中,,AC BD 相交于点O ,过点B 作BF AC ⊥交CD 于点F ,交AC 于点M ,过点D 作//DE BF 交AB 于点E ,交AC 于点N ,连接,FN EM .则下列结论: ①DN BM =;②//EM FN ;③AE FC =;④当AO AD =时,四边形DEBF 是菱形. 其中,正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个12.如图,点A ,B 的坐标分别为(2,0),(0,2)A B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A.21B.122C. 221D. 1222二、填空题(本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分)13.方程组16,5372x y x y +=⎧⎨+=⎩的解是___________.14.如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为(0,3)A ,(1,1)B -,(3,1)C .A B C '''是ABC 关于x 轴的对称图形,将A B C '''绕点B '逆时针旋转180°,点A '的对应点为M ,则点M 的坐标为________.15.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.//,BC AD BE AD ⊥,斜坡AB 长26m ,斜坡AB 的坡比为12∶5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A 不动,则坡顶B 沿BC 至少向右移________m 时,才能确保山体不滑坡.(取tan50 1.2︒=)16.如图,点O 是半圆圆心,BE 是半圆的直径,点A ,D 在半圆上,且//,60,8AD BO ABO AB ∠=︒=,过点D 作DC BE ⊥于点C ,则阴影部分的面积是________.17.已知二次函数2y ax bx c =++(,,a b c 是常数,0a ≠)的y 与x 的部分对应值如下表:x5-4-2- 0 2 y66- 4-6下列结论: ①0a >;②当2x =-时,函数最小值为6-;③若点()18,y -,点()28,y 在二次函数图象上,则12y y <; ④方程25ax bx c ++=-有两个不相等的实数根.其中,正确结论的序号是__________________.(把所有正确结论的序号都填上)18.右表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,……,我们把第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,……,第n 个数记为n a ,则4200a a +=_________.三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19.(1)化简:214133a a a a -⎛⎫-+÷⎪--⎝⎭;(2)解不等式:11134x x +--<.20.如图,已知一次函数y kx b=+的图象与反比例函数myx=的图象交于点()3,A a,点(142,2)B a-.(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求ACD△的面积.21.为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是_________名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.22.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍. (1)A ,B 两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?23.若ABC 和AED 均为等腰三角形,且90BAC EAD ∠=∠=︒.(1)如图(1),点B 是DE 的中点,判定四边形BEAC 的形状,并说明理由;(2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF CD =.求证:①EB DC =,②EBG BFC ∠=∠.24.小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,ACB ∠与ECD ∠恰好为对顶角,90ABC CDE ∠=∠=︒,连接BD ,AB BD =,点F 是线段CE 上一点.探究发现:(1)当点F 为线段CE 的中点时,连接DF (如图(2),小明经过探究,得到结论:BD DF ⊥.你认为此结论是否成立?_________.(填“是”或“否”) 拓展延伸:(2)将(1)中的条件与结论互换,即:若BD DF ⊥,则点F 为线段CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由. 问题解决:(3)若6,9AB CE ==,求AD 的长.25.若一次函数33y x =--的图象与x 轴,y 轴分别交于A ,C 两点,点B 的坐标为()3,0,二次函数2y ax bx c =++的图象过A ,B ,C 三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C 作//CD x 轴交抛物线于点D ,点E 在抛物线上(y 轴左侧),若BC 恰好平分DBE ∠.求直线BE 的表达式; (3)如图(2),若点P 抛物线上(点P 在y 轴右侧),连接AP 交BC 于点F ,连接BP ,BFPBAFSmS=.①当12m =时,求点P 的坐标; ②求m 的最大值.山东省泰安市2020年中考数学试题详解一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1、根据乘积等于1的两数互为倒数,可直接得到-12的倒数为.故选A2、A .32xy xy xy -=,故A 错误; B .343+47=⋅=x x x x ,故B 错误; C .12102120----=÷=x x x x ,故C 错误; D .()236xx -=,故D 正确;故答案选D .3、4000亿=400000000000=11410⨯. 故选C .4、解:如图,由题意得DE ∥GF , ∴∠1=∠3=50°, ∴∠4=180°-∠3=130°,∴在四边形ACMN 中,∠2=360°-∠A-∠C-∠4=110°.故选:C5、由表中数据可得,人数基数最大的7人所应的册数是3,所以众数是3. 将数据从小到大排序后,第10和第11个数据均为3,所以中位数为:3+3=32, 故选:A .6、解:如图,连接OA ,∵PA 是O 的切线,∴∠PAO=90°,∵10P ∠=︒,∴∠POA=90°-∠P=80°,∵OA=OB ,∴∠OAB=∠OBA=50°,∵//OC AB ,∴∠BOC=∠ABO=50°,∴∠AOC=∠AOB+∠BOC=130°,∵OA=OC ,∴∠OAC=∠C=25°,∵//OC AB ,∴∠BAC=∠C=25°.故选:B7、解:2850x x --=移项得285x x -=,配方得2284516x x -+=+,即()2421x -=,∴a =-4,b =21.故选:A8、如图,连接OB ,∵ABC 是O 的内接三角形,∴OB 垂直平分AC , ∴1=2AM CM AC =,OM AM ⊥, 又∵,30AB BC BAC =∠=︒,∴30BCA ∠=︒,∴60BOA ∠=︒,又∵AD=8,∴AO=4,∴3sin 604AM AM AO ︒===, 解得:23AM =,∴243AC AM ==.故答案选B .9、解:A 、由一次函数图象可知,a >0,b >0,由二次函数图象可知,a >0,b <0,不符合题意; B 、由一次函数图象可知,a >0,b <0,由二次函数图象可知,a <0,b <0,不符合题意;C 、由一次函数图象可知,a >0,b <0,由二次函数图象可知,a >0,b <0,符合题意;D 、由一次函数图象可知,a <0,b=0,由二次函数图象可知,a >0,b <0,不符合题意;故选:C .10、如图所示,过点F 作FM BC ⊥交BC 于点M ,∵AG BC ⊥,45B ∠=︒,AG=2,∴BG=FM=2,AF=GM ,令AF=x ,∵两个梯形全等,∴AF=GM=EC=x ,又∵30BEF ∠=︒,∴2=tan 30FMME =︒,∴ME =又∵BC=6,∴26BC BG GM ME EC x x =+++=+++=,∴2x =故答案选D .11、∵BF ⊥AC∴∠BMC=90°又∵//DE BF∴∠EDO=∠MBO ,DE ⊥AC∴∠DNA=∠BMC=90°∵四边形ABCD 为矩形∴AD=BC ,AD ∥BC ,DC ∥AB∴∠ADB=∠CBD∴∠ADB-∠EDO=∠CBD-∠MBO 即∠AND=∠CBM△AND 与△CMB∵90DNA BMC AND CBM AD BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AND ≌△CMB(AAS)∴AN=CM ,DN=BM ,故①正确.∵AB ∥CD∴∠NAE=∠MCF又∵∠DNA=∠BMC=90°∴∠ANE=∠CMF=90°在△ANE 与△CMF 中∵90ANE CMF AN CM NAE MCF ∠=∠=⎧⎪=⎨⎪∠=∠⎩∴△ANE ≌△CMF (ASA )∴NE=FM ,AE=CF ,故③正确.在△NFM 与△MEN 中∵90FM NE FMN ENM MN MN =⎧⎪∠=∠=︒⎨⎪=⎩∴△NFM ≌△MEN (SAS )∴∠FNM=∠EMN∴NF ∥EM ,故②正确.∵AE=CF∴DC-FC=AB-AE ,即DF=EB又根据矩形性质可知DF ∥EB∴四边形DEBF 为平行四边根据矩形性质可知OD=AO ,当AO=AD 时,即三角形DAO 为等边三角形∴∠ADO=60°又∵DN ⊥AC根据三线合一可知∠NDO=30°又根据三角形内角和可知∠ABD=180°-∠DAB-∠ADB=30° 故DE=EB∴四边形DEBF 为菱形,故④正确.故①②③④正确故选D .12、解:如图所示,取AB 的中点N ,连接ON ,MN ,三角形的三边关系可知OM <ON+MN ,则当ON 与MN 共线时,OM= ON+MN 最大,∵(2,0),(0,2)A B ,则△ABO 为等腰直角三角形,∴AB=2222OA OB +=,N 为AB 的中点,∴ON=122AB =, 又∵M 为AC 的中点,∴MN 为△ABC 的中位线,BC=1,则MN=1212BC =, ∴OM=ON+MN=122+, ∴OM 的最大值为122+ 故答案选:B .二、填空题(本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分) 13、解:165372x y x y +=⎧⎨+=⎩①②①×3得3348x y += ③,②-③得224x =,解得x =12,把x =12代入①得12+y=16,y =4,∴原方程组的解为124x y =⎧⎨=⎩.故答案为:124x y =⎧⎨=⎩14、解:如图,将A B C '''绕点B '逆时针旋转180°,所以点A '的对应点为M 的坐标为(2,1)-.故答案为:(2,1)-15、解:如图,设点B 沿BC 向右移动至点H ,使得∠HAD=50°,过点H 作HF ⊥AD 于点F ,∵AB=26,斜坡AB 的坡比为12∶5,则设BE=12a ,AE=5a ,∴()()22212526a a +=,解得:a=2,∴BE=24,AE=10,∴HF=BE=24,∵∠HAF=50°, 则24tan 50 1.2HF AF AF︒===,解得:AF=20, ∴BH=EF=20-10=10,故坡顶B 沿BC 至少向右移10m 时,才能确保山体不滑坡,故答案为:10.16、解:连接OA ,∵60ABO ∠=︒,OA=OB ,∴△OAB 是等边三角形,∴OA=AB=8,∠AOB=60°∵AD ∥BO ,∴∠DAO=∠AOB=60°,∵OA=OD ,∴△OAD 是等边三角形,∴∠AOD=60°,∴∠DOE=60°,∴在Rt △OCD 中,sin 6043,cos 604CD OD OC OD =︒==︒=,∵AD ∥BO ,∴ABD AOD S S =△△ ,∴21208164=4438336023OCD AOE S S S ππ-=-⨯⨯=-△阴影扇形 .故答案为:64833π- 17、解:由抛物线过点(﹣5,6)、(2,6)、(0,﹣4),可得:25564264a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得:134a b c =⎧⎪=⎨⎪=-⎩,∴二次函数的解析式是234y x x =+-,∴a =1>0,故①正确; 当32x =-时,y 有最小值254-,故②错误; 若点()18,y -,点()28,y 在二次函数图象上,则136y =,284y =,∴12y y <,故③正确;当y =﹣5时,方程2345x x +-=-即2310x x ++=,∵23450∆=-=>,∴方程25ax bx c ++=-有两个不相等的实数根,故④正确;综上,正确的结论是:①③④.故答案为:①③④.18、由已知数据1,3,6,10,15,……,可得()12n n n a +=, ∴445102a ⨯==,200200201201002a ⨯==, ∴420020100+10=20110+=a a .故答案为20110.三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19、(1)解:214133a a a a -⎛⎫-+÷ ⎪--⎝⎭ (1)(3)1(2)(2)333a a a a a a a --+-⎡⎤=+÷⎢⎥---⎣⎦ 243133(2)(2)a a a a a a -++-=⨯-+- 2(2)(2)(2)a a a -=+- 22a a -=+ (2)解:不等式两边都乘以12,得4(1)123(1)x x +-<-即441233x x +-<-4383x x -<-解得5x <∴原不等式的解集是5x <.20、解:(1)∵点()3,A a ,点(142,2)B a -在反比例函数m y x=的图象上, ∴3(142)2a a ⨯=-⨯.解得4a =.∴3412m =⨯=.∴反比例函数的表达式是12y x =. (2)∵4a =,∴点A ,点B 的坐标分别是(3,4),(6,2).∵点A ,点B 在一次函数y kx b =+的图象上,∴43,26.k b k b =+⎧⎨=+⎩ 解得2,36.k b ⎧=-⎪⎨⎪=⎩∴一次函数的表达式是263y x =-+.当0x =时,6y =.∴点C 的坐标是()0,6.∴6OC =.∵点D 是点C 关于原点O 的对称点,∴2CD OC =.作AE y ⊥轴于点E ,∴3AE =.12ACD S CD AE =⋅CO AE=⋅63=⨯18=21、(1)由题可知:1822.5%=80÷(人),∴参加学生的人数是80人;(2)由(1)可得:D的人数为80-16-18-20-8=18,画图如下:(3)由(1)可得,A的占比是16 80,∴163607280α︒︒=⨯=.(4)列表如下:C男C女1 C女2E男1 (C男,E男1)(C女1,E男1)(C女2,E男1)E男2 (C男,E男2)(C女1,E男2)(C女2,E男2)E女(C男,E女)(C女1,E女)(C女2,E女)得到所有等可能的情况有9种,其中满足条件的有5种:(C女1,E男1),(C女2,E男1),(C女1,E男2),C女2,E男2),(C男,E女)所以所选两名同学中恰好是1名男生1名女生的概率是59. 22、解:(1)设A 种茶叶每盒进价为x 元,则B 种茶叶每盒进价为1.4x 元. 根据题意,得4000840010 1.4x x+=. 解得200x =.经检验:200x =是原方程的根.∴1.4 1.4200280x =⨯=(元).∴A ,B 两种茶叶每盒进价分别为200元,280元.(2)设第二次A 种茶叶购进m 盒,则B 种茶叶购进()100m -盒. 打折前A 种茶叶的利润为100502m m ⨯=. B 种茶叶的利润为1001206000602m m -⨯=-. 打折后A 种茶叶的利润为1052m m ⨯=. B 种茶叶的利润为0. 由题意得:5060006055800m m m +-+=.解方程,得:40m =.∴1001004060m -=-=(盒).∴第二次购进A 种茶叶40盒,B 种茶叶60盒.23、(1)证明:四边形BEAC 是平行四边形.理由如下:∵EAD 为等腰三角形且90EAD ∠=︒,∴45E ∠=︒,∵B 是DE 的中点,∴AB DE ⊥,∴45BAE ∠=︒,∵ABC 是等腰三角形,90BAC ∠=︒,∴45CBA ∠=︒,∴BAE CBA =∠∠,∴//BC EA ,又∵AB DE ⊥,∴90EBA BAC ∠=∠=︒.∴//BE AC .∴四边形BEAC 是平行四边形.(2)证明:①∵AED 和ABC 为等腰三角形,∴AE AD AB AC ==,,∵90EAD BAC ∠=∠=︒,∴EAD DAB BAC DAB ∠+∠=∠+∠,即EAB DAC ∠=∠,∴AEB ADC △≌△,∴EB DC =;②延长FG 至点H ,使GH FG =.∵G 是EC 中点,∴=EG CG ,又EGH FGC ∠=∠,∴EHG CFG ≌,∴BFC H CF EH ∠=∠=,,∵CF CD =,∴BE CF =,∴BE EH =,∴EBG H ∠=∠,∴EBG BFC ∠=∠.24、(1)∵∠ABC=∠CDE=90°,∴∠A+∠ACB=∠E+∠ECD ,∵∠ACB=∠ECD ,∴∠A=∠E ,∵AB=BD ,∴∠A=∠ADB ,在Rt ECD △中,∵F 是斜边CE 的中点,∴FD=FE=FC ,∴∠E=∠FDE ,∵∠A=∠E ,∴∠ADB=∠FDE ,∵∠FDE+∠FDC=90°,∴∠ADB+∠FDC=90°,即∠FDB=90°,∴BD ⊥DF ,结论成立,故答案为:是;(2)结论成立,理由如下:∵BD DF ⊥,ED AD ⊥∴BDC CDF ∠+∠=90°,EDF CDF ∠+∠=90°,∴BDC EDF ∠=∠,∵AB BD =,∴A BDC ∠=∠.∴A EDF ∠=∠.又∵A E ∠=∠,∴E EDF ∠=∠.∴=EF FD .又E ECD ∠+∠=90°,EDF FDC ∠+∠=90°,E EDF ∠=∠,∴ECD CDF ∠=∠,∴CF DF =.∴CF EF =.∴F 为CE 的中点;(3)如图,设G 为EC 的中点,连接GD ,由(1)可知DG BD ⊥,∴1922GD EC EG GC ====,又∵6BD AB ==,在Rt GDB △中,22915622GB ⎛⎫=+= ⎪⎝⎭, ∴159322CB =-=,在Rt ABC 中,226335AC =+=在ABC 与EDC △中,∵∠ABC=∠EDC ,∠ACB=∠ECD ,∴ABC EDC , ∴3539CD =, ∴955CD =, ∴952453555AD AC CD =+==25、(1)解:令330x --=,得1x =-.令0x =时,3y =-.∴(1,0),(0,3)A C --.∵抛物线过点(0,3)C -,∴3c =-.则23y ax bx =+-,将(1,0),(3,0)A B -代入得03,093 3.a b a b =--⎧⎨=+-⎩ 解得1,2.a b =⎧⎨=-⎩∴二次函数表达式为223y x x =--.(2)解:设BE 交OC 于点M .∵(3,0),(0,3)B C -,∴OB OC =,45OBC OCB ︒∠=∠=.∵//CD AB ,∴45BCD ︒∠=.∴OCB BCD ∠=∠.∵BC 平分DBE ∠,∴EBC DBC ∠=∠.又∵BC BC =,∴MBC DBC ≌.∴CM CD =.由条件得:(2,3)D -.∴2CD CM ==.∴321OM =--.∴(0,1)M -.∵(3,0)B ,∴直线BE 解析式为113y x =-.(3)①12BFP BAF S S =,∴12PF AF =. 过点P 作//PN AB 交BC 于点N ,则ABF PNF ∽. ∴2AB NP =.∵4AB =,∴2NP =.∵直线BC 的表达式为3y x =-,设()2,23P t t t --,∴2233N t t x --=-.∴22N x t t =-.∴()22PN t t t =--,则()222t t t --=,解得122,1t t ==. ∴点(2,3)P -或(1,4)-P .②由①得:4PN m =.∴()()2222223313913 44442442916 t t t t tt tm t t ----⎡⎤-+⎛⎫⎛⎫====⨯--+=--+⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.∴m有最大值,916m=最大值.。
2020年山东省泰安市中考数学试题(含答案)
2020年山东省泰安市中考数学试题(含答案)泰安市2020年初中学业水平考试数学试题第Ⅰ卷(选择题共48分)一、选择题1.的倒数是()。
A。
-2B。
-C。
2D。
1.-2.下列运算正确的是()。
A。
3xy-xy=2B。
x x=xC。
x-10D。
13.2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务。
今年我国卫星导航与位置服务产业产值预计将超过4000亿元。
把数据4000亿元用科学记数法表示为()。
A。
410^12B。
410^10C。
410^11D。
4010^94.将含30°角的一个直角三角板和一把直尺如图放置,若1=50,则∠2等于()。
A。
80°B。
100°C。
110°D。
120°5.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册人数/人12253744521根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()。
A。
3,3B。
3,7C。
2,7D。
7,36.如图,PA是O的切线,点A为切点,OP交O于点B,P=10,点C在O上,OC//AB。
则BAC等于()。
A。
20°B。
25°C。
30°D。
50°7.将一元二次方程x^2-8x-5=0化成(x+a)b(a,b为常数)的形式,则a,b的值分别是()。
A。
-4,21B。
-4,11C。
4,21D。
-8,698.如图,ABC是O的内接三角形,AB=BC,BAC=30,AD是直径,AD=8,则AC的长为()。
A。
4B。
43C。
3D。
239.在同一平面直角坐标系内,二次函数y=ax^2+bx+b (a0)与一次函数y=ax+b的图象可能()。
A。
B。
C。
D。
10.如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC=6cm,沿虚线EF将纸片剪成两个全等的梯形,若BEF=30,则AF的长为()。
2020年泰安市中考数学试题、试卷(解析版)
2020年泰安市中考数学试题、试卷(解析版)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)−12的倒数是()A.﹣2B.−12C.2D.122.(4分)下列运算正确的是()A.3xy﹣xy=2B.x3•x4=x12C.x﹣10÷x2=x﹣5D.(﹣x3)2=x63.(4分)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A.4×1012元B.4×1010元C.4×1011元D.40×109元4.(4分)将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()A.80°B.100°C.110°D.120°5.(4分)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册12345人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3B.3,7C.2,7D.7,36.(4分)如图,P A是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC∥AB.则∠BAC等于()A .20°B .25°C .30°D .50°7.(4分)将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则a ,b的值分别是( )A .﹣4,21B .﹣4,11C .4,21D .﹣8,698.(4分)如图,△ABC 是⊙O 的内接三角形,AB =BC ,∠BAC =30°,AD 是直径,AD=8,则AC 的长为( )A .4B .4√3C .83√3D .2√39.(4分)在同一平面直角坐标系内,二次函数y =ax 2+bx +b (a ≠0)与一次函数y =ax +b的图象可能是( )A .B .C .D .10.(4分)如图,四边形ABCD 是一张平行四边形纸片,其高AG =2cm ,底边BC =6cm ,∠B =45°,沿虚线EF 将纸片剪成两个全等的梯形,若∠BEF =30°,则AF 的长为( )A .lcmB .√63cmC .(2√3−3)cmD .(2−√3)cm11.(4分)如图,矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF ⊥AC 交CD 于点F ,交AC 于点M ,过点D 作DE ∥BF 交AB 于点E ,交AC 于点N ,连接FN ,EM .则下列结论:①DN =BM ;②EM ∥FN ;③AE =FC ;④当AO =AD 时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个12.(4分)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC =1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .√2+1B .√2+12C .2√2+1D .2√2−12 二、填空题(本大题共6小题,满分24分.只要求写出最后结果,每小题填对得4分)13.(4分)方程组{x +y =16,5x +3y =72的解是 . 14.(4分)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为A (0,3),B (﹣1,1),C (3,1).△A 'B 'C ′是△ABC 关于x 轴的对称图形,将△A 'B 'C '绕点B '逆时针旋转180°,点A '的对应点为M ,则点M 的坐标为 .15.(4分)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC ∥AD ,BE ⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移m时,才能确保山体不滑坡.(取tan50°=1.2)16.(4分)如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是.17.(4分)已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:x﹣5﹣4﹣202y60﹣6﹣46下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是.(把所有正确结论的序号都填上)18.(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=.三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19.(10分)(1)化简:(a ﹣1+1a−3)÷a 2−4a−3; (2)解不等式:x+13−1<x−14. 20.(9分)如图,已知一次函数y =kx +b 的图象与反比例函数y =m x 的图象交于点A (3,a ),点B (14﹣2a ,2).(1)求反比例函数的表达式;(2)若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,求△ACD 的面积.21.(11分)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A :机器人;B :航模;C :科幻绘画;D :信息学;E :科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.22.(11分)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?23.(12分)若△ABC和△AED均为等腰三角形,且∠BAC=∠EAD=90°.(1)如图(1),点B是DE的中点,判定四边形BEAC的形状,并说明理由;(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.求证:①EB=DC,②∠EBG=∠BFC.24.(12分)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD ⊥DF.你认为此结论是否成立?.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.25.(13分)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.①当m=12时,求点P的坐标;②求m的最大值.2020年山东省泰安市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)−12的倒数是()A.﹣2B.−12C.2D.12【解答】解:−12的倒数是﹣2.故选:A.2.(4分)下列运算正确的是()A.3xy﹣xy=2B.x3•x4=x12C.x﹣10÷x2=x﹣5D.(﹣x3)2=x6【解答】解:A.3xy﹣xy=2xy,故本选项不合题意;B.x3•x4=x7,故本选项不合题意;C.x﹣10÷x2=x﹣12,故本选项不合题意;D.(﹣x3)2=x6,故本选项符合题意.故选:D.3.(4分)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A.4×1012元B.4×1010元C.4×1011元D.40×109元【解答】解:4000亿=400000000000=4×1011,故选:C.4.(4分)将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()A .80°B .100°C .110°D .120°【解答】解:如图所示,∵AB ∥CD∴∠ABE =∠1=50°,又∵∠2是△ABE 的外角,∴∠2=∠ABE +∠E =50°+60°=110°,故选:C .5.(4分)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册1 2 3 4 5 人数/人 2 5 7 4 2根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( )A .3,3B .3,7C .2,7D .7,3 【解答】解:这20名同学读书册数的众数为3册,中位数为3+32=3(册), 故选:A .6.(4分)如图,P A 是⊙O 的切线,点A 为切点,OP 交⊙O 于点B ,∠P =10°,点C 在⊙O 上,OC ∥AB .则∠BAC 等于( )A.20°B.25°C.30°D.50°【解答】解:连接OA,∵P A是⊙O的切线,∴OA⊥AP,∴∠P AO=90°,∴∠AOP=90°﹣∠P=80°,∵OA=OB,∴∠OAB=∠OBA=50°,∵OC∥AB,∴∠BOC=∠OBA=50°,由圆周角定理得,∠BAC=12∠BOC=25°,故选:B.7.(4分)将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则a ,b的值分别是( )A .﹣4,21B .﹣4,11C .4,21D .﹣8,69【解答】解:∵x 2﹣8x ﹣5=0,∴x 2﹣8x =5,则x 2﹣8x +16=5+16,即(x ﹣4)2=21,∴a =﹣4,b =21,故选:A .8.(4分)如图,△ABC 是⊙O 的内接三角形,AB =BC ,∠BAC =30°,AD 是直径,AD=8,则AC 的长为( )A .4B .4√3C .83√3D .2√3【解答】解:连接CD ,∵AB =BC ,∠BAC =30°,∴∠ACB =∠BAC =30°,∴∠B =180°﹣30°﹣30°=120°,∴∠D =180°﹣∠B =60°,∴∠CAD =30°,∵AD 是直径,∴∠ACD =90°,∵AD =8,∴CD =12AD =4,∴AC =√AD 2−CD 2=√82−42=4√3,故选:B .9.(4分)在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b 的图象可能是()A.B.C.D.【解答】解:A、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y 轴负半轴的同一点, 故A 错误;B 、∵二次函数图象开口向下,对称轴在y 轴左侧,∴a <0,b <0,∴一次函数图象应该过第二、三、四象限,且与二次函数交于y 轴负半轴的同一点, 故B 错误;C 、二次函数图象开口向上,对称轴在y 轴右侧,∴a >0,b <0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y 轴负半轴的同一点, 故C 正确;∵D 、二次函数图象开口向上,对称轴在y 轴右侧,∴a >0,b <0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y 轴负半轴的同一点, 故D 错误;故选:C .10.(4分)如图,四边形ABCD 是一张平行四边形纸片,其高AG =2cm ,底边BC =6cm ,∠B =45°,沿虚线EF 将纸片剪成两个全等的梯形,若∠BEF =30°,则AF 的长为( )A .lcmB .√63cmC .(2√3−3)cmD .(2−√3)cm【解答】解:过F 作FH ⊥BC 于H ,∵高AG =2cm ,∠B =45°,∴BG =AG =2cm ,∵FH ⊥BC ,∠BEF =30°,∴EH =√3AG =2√3,∵沿虚线EF将纸片剪成两个全等的梯形,∴AF=CE,∵AG⊥BC,FH⊥BC,∴AG∥FH,∵AG=FH,∴四边形AGHF是矩形,∴AF=GH,∴BC=BG+GH+HE+CE=2+2AF+2√3=6,∴AF=2−√3(cm),故选:D.11.(4分)如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE∥BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM∥FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∠DAE=∠BCF=90°,OD=OB=OA=OC,AD=BC,AD∥BC,∴∠DAN=∠BCM,∵BF⊥AC,DE∥BF,∴DE⊥AC,∴∠DNA=∠BMC=90°,在△DNA 和△BMC 中,{∠DAN =∠BCM∠DNA =∠BMC AD =BC,∴△DNA ≌△BMC (AAS ),∴DN =BM ,∠ADE =∠CBF ,故①正确;在△ADE 和△CBF 中,{∠ADE =∠CBFAD =BC ∠DAE =∠BCF,∴△ADE ≌△CBF (ASA ),∴AE =FC ,DE =BF ,故③正确;∴DE ﹣DN =BF ﹣BM ,即NE =MF ,∵DE ∥BF ,∴四边形NEMF 是平行四边形,∴EM ∥FN ,故②正确;∵AB =CD ,AE =CF ,∴BE =DF ,∵BE ∥DF ,∴四边形DEBF 是平行四边形,∵AO =AD ,∴AO =AD =OD ,∴△AOD 是等边三角形,∴∠ADO =∠DAN =60°,∴∠ABD =90°﹣∠ADO =30°,∵DE ⊥AC ,∴∠ADN =ODN =30°,∴∠ODN =∠ABD ,∴DE =BE ,∴四边形DEBF 是菱形;故④正确;正确结论的个数是4个,故选:D .12.(4分)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC =1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A.√2+1B.√2+12C.2√2+1D.2√2−12【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=12CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM 最大,∵OB=OD=2,∠BOD=90°,∴BD=2√2,∴CD=2√2+1,∴OM=12CD=√2+12,即OM的最大值为√2+12;故选:B.二、填空题(本大题共6小题,满分24分.只要求写出最后结果,每小题填对得4分)13.(4分)方程组{x +y =16,5x +3y =72的解是 {x =12y =4 . 【解答】解:{x +y =16①5x +3y =72②②﹣3×①,得2x =24,∴x =12.把x =12代入①,得12+y =16,∴y =4.∴原方程组的解为{x =12y =4. 故答案为:{x =12y =4. 14.(4分)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为A (0,3),B (﹣1,1),C (3,1).△A 'B 'C ′是△ABC 关于x 轴的对称图形,将△A 'B 'C '绕点B '逆时针旋转180°,点A '的对应点为M ,则点M 的坐标为 (﹣2,1) .【解答】解:将△A 'B 'C '绕点B '逆时针旋转180°,如图所示:所以点M 的坐标为(﹣2,1),故答案为:(﹣2,1).15.(4分)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC ∥AD ,BE ⊥AD ,斜坡AB 长26m ,斜坡AB 的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A 不动,则坡顶B 沿BC 至少向右移 10 m 时,才能确保山体不滑坡.(取tan50°=1.2)【解答】解:在BC 上取点F ,使∠F AE =50°,过点F 作FH ⊥AD 于H ,∵BF ∥EH ,BE ⊥AD ,FH ⊥AD ,∴四边形BEHF 为矩形,∴BF =EH ,BE =FH ,∵斜坡AB 的坡比为12:5,∴BE AE =125,设BE =12x ,则AE =5x ,由勾股定理得,AE 2+BE 2=AB 2,即(5x )2+(12x )2=262,解得,x =2,∴AE =10,BE =24,∴FH =BE =24,在Rt △F AH 中,tan ∠F AH =EH AH ,∴AH =EH tan50°=20,∴BF =EH =AH ﹣AE =10,∴坡顶B 沿BC 至少向右移10m 时,才能确保山体不滑坡,故答案为:10.16.(4分)如图,点O 是半圆圆心,BE 是半圆的直径,点A ,D 在半圆上,且AD ∥BO ,∠ABO =60°,AB =8,过点D 作DC ⊥BE 于点C ,则阴影部分的面积是 643π﹣8√3 .【解答】解:连接OA ,∵∠ABO =60°,OA =OB ,∴△AOB 是等边三角形,∵AB =8,∴⊙O 的半径为8,∵AD ∥OB ,∴∠DAO =∠AOB =60°,∵OA =OD ,∴∠AOD =60°,∵∠AOB =∠AOD =60°,∴∠DOE =60°,∵DC ⊥BE 于点C ,∴CD =√32OD =4√3,OC =12OD =4,∴BC =8+4=12,S 阴影=S △AOB +S 扇形OAD +S 扇形ODE ﹣S △BCD=12×8×4√3+2×60π×82360−12×12×4√3=64π3−8√3故答案为64π3−8√3.17.(4分)已知二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的y 与x 的部分对应值如下表:x﹣5 ﹣4 ﹣2 0 2 y 6 0 ﹣6 ﹣46 下列结论:①a >0;②当x =﹣2时,函数最小值为﹣6;③若点(﹣8,y 1),点(8,y 2)在二次函数图象上,则y 1<y 2;④方程ax 2+bx +c =﹣5有两个不相等的实数根.其中,正确结论的序号是 ①③④ .(把所有正确结论的序号都填上)【解答】解:将(﹣4,0)(0,﹣4)(2,6)代入y =ax 2+bx +c 得,{16a −4b +c =0c =−44a +2b +c =6,解得,{a =1b =3c =−4,∴抛物线的关系式为y =x 2+3x ﹣4,a =1>0,因此①正确;对称轴为x =−32,即当x =−32时,函数的值最小,因此②不正确;把(﹣8,y 1)(8,y 2)代入关系式得,y 1=64﹣24﹣4=36,y 2=64+24﹣4=84,因此③正确;方程ax 2+bx +c =﹣5,也就是x 2+3x ﹣4=﹣5,即方x 2+3x +1=0,由b 2﹣4ac =9﹣4=5>0可得x 2+3x +1=0有两个不相等的实数根,因此④正确;正确的结论有:①③④,故答案为:①③④.18.(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200= 20110 .【解答】解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19.(10分)(1)化简:(a ﹣1+1a−3)÷a 2−4a−3;(2)解不等式:x+13−1<x−14. 【解答】解:(1)原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3 =(a 2−4a+3a−3+1a−3)•a−3(a+2)(a−2)=(a−2)2a−3•a−3(a+2)(a−2)=a−2a+2; (2)去分母,得:4(x +1)﹣12<3(x ﹣1),去括号,得:4x +4﹣12<3x ﹣3,移项,得:4x ﹣3x <﹣3﹣4+12,合并同类项,得:x <5.20.(9分)如图,已知一次函数y =kx +b 的图象与反比例函数y =m x的图象交于点A (3,a ),点B (14﹣2a ,2).(1)求反比例函数的表达式;(2)若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,求△ACD 的面积.【解答】解:(1)∵点A (3,a ),点B (14﹣2a ,2)在反比例函数上,∴3×a =(14﹣2a )×2,解得:a =4,则m =3×4=12,故反比例函数的表达式为:y =12x ;(2)∵a =4,故点A 、B 的坐标分别为(3,4)、(6,2),设直线AB 的表达式为:y =kx +b ,则{4=3k +b 2=6k +6,解得{k =−23b =6, 故一次函数的表达式为:y =−23x +6;当x =0时,y =6,故点C (0,6),故OC =6,而点D 为点C 关于原点O 的对称点,则CD =2OC =12,△ACD 的面积=12×CD •x A =12×12×3=18.21.(11分)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A :机器人;B :航模;C :科幻绘画;D :信息学;E :科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是 80 名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.【解答】解:(1)本次参加比赛的学生人数为18÷22.5%=80(名);故答案为:80;(2)D组人数为:80﹣16﹣18﹣20﹣8=18(名),把条形统计图补充完整如图:(3)扇形统计图中表示机器人的扇形圆心角α的度数为360°×1680=72°;(4)画树状图如图:共有9个等可能的结果,所选两名同学中恰好是1名男生1名女生的结果有5个,∴所选两名同学中恰好是1名男生1名女生的概率为5 9.22.(11分)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?【解答】解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:84001.4x −4000x =10,解得:x =200,经检验,x =200是原方程的解,且符合题意,∴1.4x =280.答:A 种茶叶每盒进价为200元,B 种茶叶每盒进价为280元.(2)设第二次购进A 种茶叶m 盒,则购进B 种茶叶(100﹣m )盒,依题意,得:(300﹣200)×m 2+(300×0.7﹣200)×m 2+(400﹣280)×100−m 2+(400×0.7﹣280)×100−m 2=5800, 解得:m =40,∴100﹣m =60.答:第二次购进A 种茶叶40盒,B 种茶叶60盒.23.(12分)若△ABC 和△AED 均为等腰三角形,且∠BAC =∠EAD =90°.(1)如图(1),点B 是DE 的中点,判定四边形BEAC 的形状,并说明理由;(2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF =CD .求证:①EB =DC ,②∠EBG =∠BFC .【解答】解:(1)四边形BEAC 是平行四边形,理由如下:∵△AED 为等腰三角形,∠EAD =90°,B 是DE 的中点,∴∠E =∠BAE =45°,∠ABE =90°,∵△ABC 是等腰三角形,∠BAC =90°,∴∠ABC =∠BAE =45°,∠ABE =∠BAC =90°,∴BC ∥AE ,AC ∥BE ,∴四边形BEAC是平行四边形;(2)①∵△ABC和△AED均为等腰三角形,∠BAC=∠EAD=90°,∴AE=AD,AB=AC,∠BAE=∠CAD,∴△AEB≌△ADC(SAS),∴BE=CD;②延长FG至点H,使GH=FG,∵G是EC的中点,∴EG=DG,又∵∠EGH=∠FGC,∴△EGH≌△CGF(SAS),∴∠BFC=∠H,CF=EH,∵CF=CD,CD=BE,∴EH=BE,∴∠H=∠EBG,∴∠EBG=∠BFC.24.(12分)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD ⊥DF.你认为此结论是否成立?是.(填“是”或“否”)(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.【解答】解:(1)如图(2)中,∵∠EDC=90°,EF=CF,∴DF=CF,∴∠FCD=∠FDC,∵∠ABC=90°,∴∠A+∠ACB=90°,∵BA=BD,∴∠A=∠ADB,∵∠ACB=∠FCD=∠FDC,∴∠ADB+∠FDC=90°,∴∠FDB=90°,故答案为是.(2)结论成立:理由:∵BD⊥DF,ED⊥AD,∴∠BDC+∠CDF=90°,∠EDF+∠CDF=90°,∴∠BDC=∠EDF,∵AB=BD,∴∠A=∠BDC,∴∠A=∠EDF,∵∠A+∠ACB=90°,∠E+∠ECD=90°,∠ACB=∠ECD,∴∠A=∠E,∴∠E=∠EDF,∴EF=FD,∵∠E+∠ECD=90°,∠EDF+∠FDC=90°,∴∠FCD=∠FDC,∴FD=FC,∴EF=FC,∴点F是EC的中点.(3)如图3中,取EC的中点G,连接GD.则GD⊥BD.∴DG=12EC=92,∵BD=AB=6,在Rt △BDG 中,BG =2+BD 2=√(92)2+62=152, ∴CB =152−92=3, 在Rt △ABC 中,AC =√AB 2+BC 2=√62+32=3√5,∵∠ACB =∠ECD ,∠ABC =∠EDC ,∴△ABC ∽△EDC ,∴AC EC =BC CD , ∴3√59=3CD, ∴CD =9√55,∴AD =AC +CD =3√5+9√55=24√55. 25.(13分)若一次函数y =﹣3x ﹣3的图象与x 轴,y 轴分别交于A ,C 两点,点B 的坐标为(3,0),二次函数y =ax 2+bx +c 的图象过A ,B ,C 三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C 作CD ∥x 轴交抛物线于点D ,点E 在抛物线上(y 轴左侧),若BC 恰好平分∠DBE .求直线BE 的表达式;(3)如图(2),若点P 在抛物线上(点P 在y 轴右侧),连接AP 交BC 于点F ,连接BP ,S △BFP =mS △BAF .①当m =12时,求点P 的坐标;②求m 的最大值.【解答】解:(1)一次函数y =﹣3x ﹣3的图象与x 轴,y 轴分别交于A ,C 两点,则点A 、C 的坐标分别为(﹣1,0)、(0,﹣3),将点A 、B 、C 的坐标代入抛物线表达式得{0=a −b +c0=9a +3b +c c =−3,解得{a =1b =−2c =−3,故抛物线的表达式为:y =x 2﹣2x ﹣3;(2)设直线BE 交y 轴于点M ,从抛物线表达式知,抛物线的对称轴为x =2,∵CD ∥x 轴交抛物线于点D ,故点D (2,﹣3),由点B 、C 的坐标知,直线BC 与AB 的夹角为45°,即∠MCB =∠DCD =45°, ∵BC 恰好平分∠DBE ,故∠MBC =∠DBC ,而BC =BC ,故△BCD ≌△BCM (AAS ),∴CM =CD =2,故OM =3﹣2=1,故点M (0,﹣1),设直线BE 的表达式为:y =kx +b ,则{b =−13k +b =0,解得{k =13b =−1, 故直线BE 的表达式为:y =13x ﹣1;(3)过点P 作PN ∥x 轴交BC 于点N ,则△PFN ∽△AFB ,则AF PF=AB PN , 而S △BFP =mS △BAF ,则AF PF =1m =4PN ,解得:m =14PN , ①当m =12时,则PN =2,设点P (t ,t 2﹣2t ﹣3),由点B 、C 的坐标知,直线BC 的表达式为:y =x ﹣3,当x =t ﹣2时,y =t ﹣5,故点N (t ﹣2,t ﹣5),故t ﹣5=t 2﹣2t ﹣3,解得:t =1或2,故点P (2,﹣3)或(1,﹣4);②m =14PN =14[t ﹣(t 2﹣2t )]=−14(t −32)2+916, ∵−14<0,故m 的最大值为916.。
2020年山东省泰安市中考数学试卷及答案解析
2020年山东省泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)−12的倒数是()A.﹣2B.−12C.2D.122.(4分)下列运算正确的是()A.3xy﹣xy=2B.x3•x4=x12C.x﹣10÷x2=x﹣5D.(﹣x3)2=x63.(4分)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A.4×1012元B.4×1010元C.4×1011元D.40×109元4.(4分)将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()A.80°B.100°C.110°D.120°5.(4分)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册12345人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3B.3,7C.2,7D.7,36.(4分)如图,P A是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC∥AB.则∠BAC等于()A .20°B .25°C .30°D .50°7.(4分)将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则a ,b的值分别是( )A .﹣4,21B .﹣4,11C .4,21D .﹣8,698.(4分)如图,△ABC 是⊙O 的内接三角形,AB =BC ,∠BAC =30°,AD 是直径,AD=8,则AC 的长为( )A .4B .4√3C .83√3D .2√39.(4分)在同一平面直角坐标系内,二次函数y =ax 2+bx +b (a ≠0)与一次函数y =ax +b的图象可能是( )A .B .C .D .10.(4分)如图,四边形ABCD 是一张平行四边形纸片,其高AG =2cm ,底边BC =6cm ,∠B =45°,沿虚线EF 将纸片剪成两个全等的梯形,若∠BEF =30°,则AF 的长为( )A .lcmB .√63cmC .(2√3−3)cmD .(2−√3)cm11.(4分)如图,矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF ⊥AC 交CD 于点F ,交AC 于点M ,过点D 作DE ∥BF 交AB 于点E ,交AC 于点N ,连接FN ,EM .则下列结论:①DN =BM ;②EM ∥FN ;③AE =FC ;④当AO =AD 时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个12.(4分)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC =1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .√2+1B .√2+12C .2√2+1D .2√2−12 二、填空题(本大题共6小题,满分24分.只要求写出最后结果,每小题填对得4分)13.(4分)方程组{x +y =16,5x +3y =72的解是 . 14.(4分)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为A (0,3),B (﹣1,1),C (3,1).△A 'B 'C ′是△ABC 关于x 轴的对称图形,将△A 'B 'C '绕点B '逆时针旋转180°,点A '的对应点为M ,则点M 的坐标为 .15.(4分)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC ∥AD ,BE ⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移m时,才能确保山体不滑坡.(取tan50°=1.2)16.(4分)如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是.17.(4分)已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:x﹣5﹣4﹣202y60﹣6﹣46下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是.(把所有正确结论的序号都填上)18.(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=.三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19.(10分)(1)化简:(a ﹣1+1a−3)÷a 2−4a−3; (2)解不等式:x+13−1<x−14. 20.(9分)如图,已知一次函数y =kx +b 的图象与反比例函数y =m x 的图象交于点A (3,a ),点B (14﹣2a ,2).(1)求反比例函数的表达式;(2)若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,求△ACD 的面积.21.(11分)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A :机器人;B :航模;C :科幻绘画;D :信息学;E :科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.22.(11分)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?23.(12分)若△ABC和△AED均为等腰三角形,且∠BAC=∠EAD=90°.(1)如图(1),点B是DE的中点,判定四边形BEAC的形状,并说明理由;(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.求证:①EB=DC,②∠EBG=∠BFC.24.(12分)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD ⊥DF.你认为此结论是否成立?.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.25.(13分)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.①当m=12时,求点P的坐标;②求m的最大值.2020年山东省泰安市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)−12的倒数是()A.﹣2B.−12C.2D.12【解答】解:−12的倒数是﹣2.故选:A.2.(4分)下列运算正确的是()A.3xy﹣xy=2B.x3•x4=x12C.x﹣10÷x2=x﹣5D.(﹣x3)2=x6【解答】解:A.3xy﹣xy=2xy,故本选项不合题意;B.x3•x4=x7,故本选项不合题意;C.x﹣10÷x2=x﹣12,故本选项不合题意;D.(﹣x3)2=x6,故本选项符合题意.故选:D.3.(4分)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A.4×1012元B.4×1010元C.4×1011元D.40×109元【解答】解:4000亿=400000000000=4×1011,故选:C.4.(4分)将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()A .80°B .100°C .110°D .120°【解答】解:如图所示,∵AB ∥CD∴∠ABE =∠1=50°,又∵∠2是△ABE 的外角,∴∠2=∠ABE +∠E =50°+60°=110°,故选:C .5.(4分)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册1 2 3 4 5 人数/人 2 5 7 4 2根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( )A .3,3B .3,7C .2,7D .7,3 【解答】解:这20名同学读书册数的众数为3册,中位数为3+32=3(册), 故选:A .6.(4分)如图,P A 是⊙O 的切线,点A 为切点,OP 交⊙O 于点B ,∠P =10°,点C 在⊙O 上,OC ∥AB .则∠BAC 等于( )A.20°B.25°C.30°D.50°【解答】解:连接OA,∵P A是⊙O的切线,∴OA⊥AP,∴∠P AO=90°,∴∠AOP=90°﹣∠P=80°,∵OA=OB,∴∠OAB=∠OBA=50°,∵OC∥AB,∴∠BOC=∠OBA=50°,由圆周角定理得,∠BAC=12∠BOC=25°,故选:B.7.(4分)将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则a ,b的值分别是( )A .﹣4,21B .﹣4,11C .4,21D .﹣8,69【解答】解:∵x 2﹣8x ﹣5=0,∴x 2﹣8x =5,则x 2﹣8x +16=5+16,即(x ﹣4)2=21,∴a =﹣4,b =21,故选:A .8.(4分)如图,△ABC 是⊙O 的内接三角形,AB =BC ,∠BAC =30°,AD 是直径,AD=8,则AC 的长为( )A .4B .4√3C .83√3D .2√3【解答】解:连接CD ,∵AB =BC ,∠BAC =30°,∴∠ACB =∠BAC =30°,∴∠B =180°﹣30°﹣30°=120°,∴∠D =180°﹣∠B =60°,∴∠CAD =30°,∵AD 是直径,∴∠ACD =90°,∵AD =8,∴CD =12AD =4,∴AC =√AD 2−CD 2=√82−42=4√3,故选:B .9.(4分)在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b 的图象可能是()A.B.C.D.【解答】解:A、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y 轴负半轴的同一点, 故A 错误;B 、∵二次函数图象开口向下,对称轴在y 轴左侧,∴a <0,b <0,∴一次函数图象应该过第二、三、四象限,且与二次函数交于y 轴负半轴的同一点, 故B 错误;C 、二次函数图象开口向上,对称轴在y 轴右侧,∴a >0,b <0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y 轴负半轴的同一点, 故C 正确;∵D 、二次函数图象开口向上,对称轴在y 轴右侧,∴a >0,b <0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y 轴负半轴的同一点, 故D 错误;故选:C .10.(4分)如图,四边形ABCD 是一张平行四边形纸片,其高AG =2cm ,底边BC =6cm ,∠B =45°,沿虚线EF 将纸片剪成两个全等的梯形,若∠BEF =30°,则AF 的长为( )A .lcmB .√63cmC .(2√3−3)cmD .(2−√3)cm【解答】解:过F 作FH ⊥BC 于H ,∵高AG =2cm ,∠B =45°,∴BG =AG =2cm ,∵FH ⊥BC ,∠BEF =30°,∴EH =√3AG =2√3,∵沿虚线EF将纸片剪成两个全等的梯形,∴AF=CE,∵AG⊥BC,FH⊥BC,∴AG∥FH,∵AG=FH,∴四边形AGHF是矩形,∴AF=GH,∴BC=BG+GH+HE+CE=2+2AF+2√3=6,∴AF=2−√3(cm),故选:D.11.(4分)如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE∥BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM∥FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∠DAE=∠BCF=90°,OD=OB=OA=OC,AD=BC,AD∥BC,∴∠DAN=∠BCM,∵BF⊥AC,DE∥BF,∴DE⊥AC,∴∠DNA=∠BMC=90°,在△DNA 和△BMC 中,{∠DAN =∠BCM∠DNA =∠BMC AD =BC,∴△DNA ≌△BMC (AAS ),∴DN =BM ,∠ADE =∠CBF ,故①正确;在△ADE 和△CBF 中,{∠ADE =∠CBFAD =BC ∠DAE =∠BCF,∴△ADE ≌△CBF (ASA ),∴AE =FC ,DE =BF ,故③正确;∴DE ﹣DN =BF ﹣BM ,即NE =MF ,∵DE ∥BF ,∴四边形NEMF 是平行四边形,∴EM ∥FN ,故②正确;∵AB =CD ,AE =CF ,∴BE =DF ,∵BE ∥DF ,∴四边形DEBF 是平行四边形,∵AO =AD ,∴AO =AD =OD ,∴△AOD 是等边三角形,∴∠ADO =∠DAN =60°,∴∠ABD =90°﹣∠ADO =30°,∵DE ⊥AC ,∴∠ADN =ODN =30°,∴∠ODN =∠ABD ,∴DE =BE ,∴四边形DEBF 是菱形;故④正确;正确结论的个数是4个,故选:D .12.(4分)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC =1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A.√2+1B.√2+12C.2√2+1D.2√2−12【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=12CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM 最大,∵OB=OD=2,∠BOD=90°,∴BD=2√2,∴CD=2√2+1,∴OM=12CD=√2+12,即OM的最大值为√2+12;故选:B.二、填空题(本大题共6小题,满分24分.只要求写出最后结果,每小题填对得4分)13.(4分)方程组{x +y =16,5x +3y =72的解是 {x =12y =4 . 【解答】解:{x +y =16①5x +3y =72②②﹣3×①,得2x =24,∴x =12.把x =12代入①,得12+y =16,∴y =4.∴原方程组的解为{x =12y =4. 故答案为:{x =12y =4. 14.(4分)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为A (0,3),B (﹣1,1),C (3,1).△A 'B 'C ′是△ABC 关于x 轴的对称图形,将△A 'B 'C '绕点B '逆时针旋转180°,点A '的对应点为M ,则点M 的坐标为 (﹣2,1) .【解答】解:将△A 'B 'C '绕点B '逆时针旋转180°,如图所示:所以点M 的坐标为(﹣2,1),故答案为:(﹣2,1).15.(4分)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC ∥AD ,BE ⊥AD ,斜坡AB 长26m ,斜坡AB 的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A 不动,则坡顶B 沿BC 至少向右移 10 m 时,才能确保山体不滑坡.(取tan50°=1.2)【解答】解:在BC 上取点F ,使∠F AE =50°,过点F 作FH ⊥AD 于H ,∵BF ∥EH ,BE ⊥AD ,FH ⊥AD ,∴四边形BEHF 为矩形,∴BF =EH ,BE =FH ,∵斜坡AB 的坡比为12:5,∴BE AE =125,设BE =12x ,则AE =5x ,由勾股定理得,AE 2+BE 2=AB 2,即(5x )2+(12x )2=262,解得,x =2,∴AE =10,BE =24,∴FH =BE =24,在Rt △F AH 中,tan ∠F AH =EH AH ,∴AH =EH tan50°=20,∴BF =EH =AH ﹣AE =10,∴坡顶B 沿BC 至少向右移10m 时,才能确保山体不滑坡,故答案为:10.16.(4分)如图,点O 是半圆圆心,BE 是半圆的直径,点A ,D 在半圆上,且AD ∥BO ,∠ABO =60°,AB =8,过点D 作DC ⊥BE 于点C ,则阴影部分的面积是 643π﹣8√3 .【解答】解:连接OA ,∵∠ABO =60°,OA =OB ,∴△AOB 是等边三角形,∵AB =8,∴⊙O 的半径为8,∵AD ∥OB ,∴∠DAO =∠AOB =60°,∵OA =OD ,∴∠AOD =60°,∵∠AOB =∠AOD =60°,∴∠DOE =60°,∵DC ⊥BE 于点C ,∴CD =√32OD =4√3,OC =12OD =4,∴BC =8+4=12,S 阴影=S △AOB +S 扇形OAD +S 扇形ODE ﹣S △BCD=12×8×4√3+2×60π×82360−12×12×4√3=64π3−8√3故答案为64π3−8√3.17.(4分)已知二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的y 与x 的部分对应值如下表:x﹣5 ﹣4 ﹣2 0 2 y 6 0 ﹣6 ﹣46 下列结论:①a >0;②当x =﹣2时,函数最小值为﹣6;③若点(﹣8,y 1),点(8,y 2)在二次函数图象上,则y 1<y 2;④方程ax 2+bx +c =﹣5有两个不相等的实数根.其中,正确结论的序号是 ①③④ .(把所有正确结论的序号都填上)【解答】解:将(﹣4,0)(0,﹣4)(2,6)代入y =ax 2+bx +c 得,{16a −4b +c =0c =−44a +2b +c =6,解得,{a =1b =3c =−4,∴抛物线的关系式为y =x 2+3x ﹣4,a =1>0,因此①正确;对称轴为x =−32,即当x =−32时,函数的值最小,因此②不正确;把(﹣8,y 1)(8,y 2)代入关系式得,y 1=64﹣24﹣4=36,y 2=64+24﹣4=84,因此③正确;方程ax 2+bx +c =﹣5,也就是x 2+3x ﹣4=﹣5,即方x 2+3x +1=0,由b 2﹣4ac =9﹣4=5>0可得x 2+3x +1=0有两个不相等的实数根,因此④正确;正确的结论有:①③④,故答案为:①③④.18.(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200= 20110 .【解答】解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19.(10分)(1)化简:(a ﹣1+1a−3)÷a 2−4a−3;(2)解不等式:x+13−1<x−14. 【解答】解:(1)原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3 =(a 2−4a+3a−3+1a−3)•a−3(a+2)(a−2)=(a−2)2a−3•a−3(a+2)(a−2)=a−2a+2; (2)去分母,得:4(x +1)﹣12<3(x ﹣1),去括号,得:4x +4﹣12<3x ﹣3,移项,得:4x ﹣3x <﹣3﹣4+12,合并同类项,得:x <5.20.(9分)如图,已知一次函数y =kx +b 的图象与反比例函数y =m x的图象交于点A (3,a ),点B (14﹣2a ,2).(1)求反比例函数的表达式;(2)若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,求△ACD 的面积.【解答】解:(1)∵点A (3,a ),点B (14﹣2a ,2)在反比例函数上,∴3×a =(14﹣2a )×2,解得:a =4,则m =3×4=12,故反比例函数的表达式为:y =12x ;(2)∵a =4,故点A 、B 的坐标分别为(3,4)、(6,2),设直线AB 的表达式为:y =kx +b ,则{4=3k +b 2=6k +6,解得{k =−23b =6, 故一次函数的表达式为:y =−23x +6;当x =0时,y =6,故点C (0,6),故OC =6,而点D 为点C 关于原点O 的对称点,则CD =2OC =12,△ACD 的面积=12×CD •x A =12×12×3=18.21.(11分)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A :机器人;B :航模;C :科幻绘画;D :信息学;E :科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是 80 名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.【解答】解:(1)本次参加比赛的学生人数为18÷22.5%=80(名);故答案为:80;(2)D组人数为:80﹣16﹣18﹣20﹣8=18(名),把条形统计图补充完整如图:(3)扇形统计图中表示机器人的扇形圆心角α的度数为360°×1680=72°;(4)画树状图如图:共有9个等可能的结果,所选两名同学中恰好是1名男生1名女生的结果有5个,∴所选两名同学中恰好是1名男生1名女生的概率为5 9.22.(11分)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?【解答】解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:84001.4x −4000x =10,解得:x =200,经检验,x =200是原方程的解,且符合题意,∴1.4x =280.答:A 种茶叶每盒进价为200元,B 种茶叶每盒进价为280元.(2)设第二次购进A 种茶叶m 盒,则购进B 种茶叶(100﹣m )盒,依题意,得:(300﹣200)×m 2+(300×0.7﹣200)×m 2+(400﹣280)×100−m 2+(400×0.7﹣280)×100−m 2=5800, 解得:m =40,∴100﹣m =60.答:第二次购进A 种茶叶40盒,B 种茶叶60盒.23.(12分)若△ABC 和△AED 均为等腰三角形,且∠BAC =∠EAD =90°.(1)如图(1),点B 是DE 的中点,判定四边形BEAC 的形状,并说明理由;(2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF =CD .求证:①EB =DC ,②∠EBG =∠BFC .【解答】解:(1)四边形BEAC 是平行四边形,理由如下:∵△AED 为等腰三角形,∠EAD =90°,B 是DE 的中点,∴∠E =∠BAE =45°,∠ABE =90°,∵△ABC 是等腰三角形,∠BAC =90°,∴∠ABC =∠BAE =45°,∠ABE =∠BAC =90°,∴BC ∥AE ,AC ∥BE ,∴四边形BEAC是平行四边形;(2)①∵△ABC和△AED均为等腰三角形,∠BAC=∠EAD=90°,∴AE=AD,AB=AC,∠BAE=∠CAD,∴△AEB≌△ADC(SAS),∴BE=CD;②延长FG至点H,使GH=FG,∵G是EC的中点,∴EG=DG,又∵∠EGH=∠FGC,∴△EGH≌△CGF(SAS),∴∠BFC=∠H,CF=EH,∵CF=CD,CD=BE,∴EH=BE,∴∠H=∠EBG,∴∠EBG=∠BFC.24.(12分)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD ⊥DF.你认为此结论是否成立?是.(填“是”或“否”)(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.【解答】解:(1)如图(2)中,∵∠EDC=90°,EF=CF,∴DF=CF,∴∠FCD=∠FDC,∵∠ABC=90°,∴∠A+∠ACB=90°,∵BA=BD,∴∠A=∠ADB,∵∠ACB=∠FCD=∠FDC,∴∠ADB+∠FDC=90°,∴∠FDB=90°,故答案为是.(2)结论成立:理由:∵BD⊥DF,ED⊥AD,∴∠BDC+∠CDF=90°,∠EDF+∠CDF=90°,∴∠BDC=∠EDF,∵AB=BD,∴∠A=∠BDC,∴∠A=∠EDF,∵∠A+∠ACB=90°,∠E+∠ECD=90°,∠ACB=∠ECD,∴∠A=∠E,∴∠E=∠EDF,∴EF=FD,∵∠E+∠ECD=90°,∠EDF+∠FDC=90°,∴∠FCD=∠FDC,∴FD=FC,∴EF=FC,∴点F是EC的中点.(3)如图3中,取EC的中点G,连接GD.则GD⊥BD.∴DG=12EC=92,∵BD=AB=6,在Rt △BDG 中,BG =√DG 2+BD 2=√(92)2+62=152, ∴CB =152−92=3, 在Rt △ABC 中,AC =√AB 2+BC 2=√62+32=3√5,∵∠ACB =∠ECD ,∠ABC =∠EDC ,∴△ABC ∽△EDC ,∴AC EC =BC CD , ∴3√59=3CD, ∴CD =9√55,∴AD =AC +CD =3√5+9√55=24√55. 25.(13分)若一次函数y =﹣3x ﹣3的图象与x 轴,y 轴分别交于A ,C 两点,点B 的坐标为(3,0),二次函数y =ax 2+bx +c 的图象过A ,B ,C 三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C 作CD ∥x 轴交抛物线于点D ,点E 在抛物线上(y 轴左侧),若BC 恰好平分∠DBE .求直线BE 的表达式;(3)如图(2),若点P 在抛物线上(点P 在y 轴右侧),连接AP 交BC 于点F ,连接BP ,S △BFP =mS △BAF .①当m =12时,求点P 的坐标;②求m 的最大值.【解答】解:(1)一次函数y =﹣3x ﹣3的图象与x 轴,y 轴分别交于A ,C 两点,则点A 、C 的坐标分别为(﹣1,0)、(0,﹣3),将点A 、B 、C 的坐标代入抛物线表达式得{0=a −b +c0=9a +3b +c c =−3,解得{a =1b =−2c =−3,故抛物线的表达式为:y =x 2﹣2x ﹣3;(2)设直线BE 交y 轴于点M ,从抛物线表达式知,抛物线的对称轴为x =2,∵CD ∥x 轴交抛物线于点D ,故点D (2,﹣3),由点B 、C 的坐标知,直线BC 与AB 的夹角为45°,即∠MCB =∠DCD =45°, ∵BC 恰好平分∠DBE ,故∠MBC =∠DBC ,而BC =BC ,故△BCD ≌△BCM (AAS ),∴CM =CD =2,故OM =3﹣2=1,故点M (0,﹣1),设直线BE 的表达式为:y =kx +b ,则{b =−13k +b =0,解得{k =13b =−1, 故直线BE 的表达式为:y =13x ﹣1;(3)过点P 作PN ∥x 轴交BC 于点N ,则△PFN ∽△AFB ,则AF PF=AB PN , 而S △BFP =mS △BAF ,则AF PF =1m =4PN ,解得:m =14PN , ①当m =12时,则PN =2,设点P (t ,t 2﹣2t ﹣3),由点B 、C 的坐标知,直线BC 的表达式为:y =x ﹣3,当x =t ﹣2时,y =t ﹣5,故点N (t ﹣2,t ﹣5),故t ﹣5=t 2﹣2t ﹣3,解得:t =1或2,故点P (2,﹣3)或(1,﹣4);②m =14PN =14[t ﹣(t 2﹣2t )]=−14(t −32)2+916, ∵−14<0,故m 的最大值为916.。
2020年山东省泰安市中考数学试卷及答案
2020年山东省泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)−12的倒数是()A.﹣2B.−12C.2D.122.(4分)下列运算正确的是()A.3xy﹣xy=2B.x3•x4=x12C.x﹣10÷x2=x﹣5D.(﹣x3)2=x63.(4分)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A.4×1012元B.4×1010元C.4×1011元D.40×109元4.(4分)将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()A.80°B.100°C.110°D.120°5.(4分)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册12345人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3B.3,7C.2,7D.7,36.(4分)如图,P A是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC∥AB.则∠BAC等于()A .20°B .25°C .30°D .50°7.(4分)将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则a ,b 的值分别是( ) A .﹣4,21B .﹣4,11C .4,21D .﹣8,698.(4分)如图,△ABC 是⊙O 的内接三角形,AB =BC ,∠BAC =30°,AD 是直径,AD =8,则AC 的长为( )A .4B .4√3C .83√3D .2√39.(4分)在同一平面直角坐标系内,二次函数y =ax 2+bx +b (a ≠0)与一次函数y =ax +b 的图象可能是( )A .B .C .D .10.(4分)如图,四边形ABCD 是一张平行四边形纸片,其高AG =2cm ,底边BC =6cm ,∠B =45°,沿虚线EF 将纸片剪成两个全等的梯形,若∠BEF =30°,则AF 的长为( )A .lcmB .√63cm C .(2√3−3)cm D .(2−√3)cm11.(4分)如图,矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF ⊥AC 交CD 于点F ,交AC 于点M ,过点D 作DE ∥BF 交AB 于点E ,交AC 于点N ,连接FN ,EM .则下列结论: ①DN =BM ; ②EM ∥FN ; ③AE =FC ;④当AO =AD 时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个12.(4分)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC =1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .√2+1B .√2+12C .2√2+1D .2√2−12二、填空题(本大题共6小题,满分24分.只要求写出最后结果,每小题填对得4分) 13.(4分)方程组{x +y =16,5x +3y =72的解是 .14.(4分)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为A (0,3),B (﹣1,1),C (3,1).△A 'B 'C ′是△ABC 关于x 轴的对称图形,将△A 'B 'C '绕点B '逆时针旋转180°,点A '的对应点为M ,则点M 的坐标为 .15.(4分)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC ∥AD ,BE ⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移m时,才能确保山体不滑坡.(取tan50°=1.2)16.(4分)如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是.17.(4分)已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:x﹣5﹣4﹣202y60﹣6﹣46下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是.(把所有正确结论的序号都填上)18.(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=.三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19.(10分)(1)化简:(a ﹣1+1a−3)÷a 2−4a−3;(2)解不等式:x+13−1<x−14. 20.(9分)如图,已知一次函数y =kx +b 的图象与反比例函数y =mx的图象交于点A (3,a ),点B (14﹣2a ,2).(1)求反比例函数的表达式;(2)若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,求△ACD 的面积.21.(11分)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A :机器人;B :航模;C :科幻绘画;D :信息学;E :科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.22.(11分)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?23.(12分)若△ABC和△AED均为等腰三角形,且∠BAC=∠EAD=90°.(1)如图(1),点B是DE的中点,判定四边形BEAC的形状,并说明理由;(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.求证:①EB=DC,②∠EBG=∠BFC.24.(12分)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD ⊥DF.你认为此结论是否成立?.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.25.(13分)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.①当m=12时,求点P的坐标;②求m的最大值.2020年山东省泰安市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)−12的倒数是()A.﹣2B.−12C.2D.12【解答】解:−12的倒数是﹣2.故选:A.2.(4分)下列运算正确的是()A.3xy﹣xy=2B.x3•x4=x12C.x﹣10÷x2=x﹣5D.(﹣x3)2=x6【解答】解:A.3xy﹣xy=2xy,故本选项不合题意;B.x3•x4=x7,故本选项不合题意;C.x﹣10÷x2=x﹣12,故本选项不合题意;D.(﹣x3)2=x6,故本选项符合题意.故选:D.3.(4分)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A.4×1012元B.4×1010元C.4×1011元D.40×109元【解答】解:4000亿=400000000000=4×1011,故选:C.4.(4分)将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()A .80°B .100°C .110°D .120°【解答】解:如图所示,∵AB ∥CD∴∠ABE =∠1=50°, 又∵∠2是△ABE 的外角,∴∠2=∠ABE +∠E =50°+60°=110°, 故选:C .5.(4分)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册 1 2 3 4 5 人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( ) A .3,3B .3,7C .2,7D .7,3 【解答】解:这20名同学读书册数的众数为3册,中位数为3+32=3(册),故选:A .6.(4分)如图,P A 是⊙O 的切线,点A 为切点,OP 交⊙O 于点B ,∠P =10°,点C 在⊙O 上,OC ∥AB .则∠BAC 等于( )A.20°B.25°C.30°D.50°【解答】解:连接OA,∵P A是⊙O的切线,∴OA⊥AP,∴∠P AO=90°,∴∠AOP=90°﹣∠P=80°,∵OA=OB,∴∠OAB=∠OBA=50°,∵OC∥AB,∴∠BOC=∠OBA=50°,由圆周角定理得,∠BAC=12∠BOC=25°,故选:B.7.(4分)将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则a ,b 的值分别是( ) A .﹣4,21B .﹣4,11C .4,21D .﹣8,69【解答】解:∵x 2﹣8x ﹣5=0, ∴x 2﹣8x =5,则x 2﹣8x +16=5+16,即(x ﹣4)2=21, ∴a =﹣4,b =21, 故选:A .8.(4分)如图,△ABC 是⊙O 的内接三角形,AB =BC ,∠BAC =30°,AD 是直径,AD =8,则AC 的长为( )A .4B .4√3C .83√3D .2√3【解答】解:连接CD , ∵AB =BC ,∠BAC =30°, ∴∠ACB =∠BAC =30°,∴∠B =180°﹣30°﹣30°=120°, ∴∠D =180°﹣∠B =60°, ∴∠CAD =30°, ∵AD 是直径, ∴∠ACD =90°, ∵AD =8, ∴CD =12AD =4,∴AC =√AD 2−CD 2=√82−42=4√3, 故选:B .9.(4分)在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b 的图象可能是()A.B.C.D.【解答】解:A、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y 轴负半轴的同一点, 故A 错误;B 、∵二次函数图象开口向下,对称轴在y 轴左侧, ∴a <0,b <0,∴一次函数图象应该过第二、三、四象限,且与二次函数交于y 轴负半轴的同一点, 故B 错误;C 、二次函数图象开口向上,对称轴在y 轴右侧, ∴a >0,b <0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y 轴负半轴的同一点, 故C 正确;∵D 、二次函数图象开口向上,对称轴在y 轴右侧, ∴a >0,b <0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y 轴负半轴的同一点, 故D 错误; 故选:C .10.(4分)如图,四边形ABCD 是一张平行四边形纸片,其高AG =2cm ,底边BC =6cm ,∠B =45°,沿虚线EF 将纸片剪成两个全等的梯形,若∠BEF =30°,则AF 的长为( )A .lcmB .√63cm C .(2√3−3)cm D .(2−√3)cm【解答】解:过F 作FH ⊥BC 于H ,∵高AG =2cm ,∠B =45°, ∴BG =AG =2cm ,∵FH ⊥BC ,∠BEF =30°, ∴EH =√3AG =2√3,∵沿虚线EF将纸片剪成两个全等的梯形,∴AF=CE,∵AG⊥BC,FH⊥BC,∴AG∥FH,∵AG=FH,∴四边形AGHF是矩形,∴AF=GH,∴BC=BG+GH+HE+CE=2+2AF+2√3=6,∴AF=2−√3(cm),故选:D.11.(4分)如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE∥BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM∥FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∠DAE=∠BCF=90°,OD=OB=OA=OC,AD=BC,AD∥BC,∴∠DAN=∠BCM,∵BF⊥AC,DE∥BF,∴DE⊥AC,∴∠DNA=∠BMC=90°,在△DNA 和△BMC 中,{∠DAN =∠BCM∠DNA =∠BMC AD =BC ,∴△DNA ≌△BMC (AAS ),∴DN =BM ,∠ADE =∠CBF ,故①正确;在△ADE 和△CBF 中,{∠ADE =∠CBFAD =BC ∠DAE =∠BCF ,∴△ADE ≌△CBF (ASA ), ∴AE =FC ,DE =BF ,故③正确; ∴DE ﹣DN =BF ﹣BM ,即NE =MF , ∵DE ∥BF ,∴四边形NEMF 是平行四边形, ∴EM ∥FN ,故②正确; ∵AB =CD ,AE =CF , ∴BE =DF , ∵BE ∥DF ,∴四边形DEBF 是平行四边形, ∵AO =AD , ∴AO =AD =OD , ∴△AOD 是等边三角形, ∴∠ADO =∠DAN =60°, ∴∠ABD =90°﹣∠ADO =30°, ∵DE ⊥AC ,∴∠ADN =ODN =30°, ∴∠ODN =∠ABD , ∴DE =BE ,∴四边形DEBF 是菱形;故④正确; 正确结论的个数是4个, 故选:D .12.(4分)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC =1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A.√2+1B.√2+12C.2√2+1D.2√2−12【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=12CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM 最大,∵OB=OD=2,∠BOD=90°,∴BD=2√2,∴CD=2√2+1,∴OM=12CD=√2+12,即OM的最大值为√2+12;故选:B.二、填空题(本大题共6小题,满分24分.只要求写出最后结果,每小题填对得4分) 13.(4分)方程组{x +y =16,5x +3y =72的解是 {x =12y =4 .【解答】解:{x +y =16①5x +3y =72②②﹣3×①,得2x =24, ∴x =12.把x =12代入①,得12+y =16, ∴y =4.∴原方程组的解为{x =12y =4. 故答案为:{x =12y =4.14.(4分)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为A (0,3),B (﹣1,1),C (3,1).△A 'B 'C ′是△ABC 关于x 轴的对称图形,将△A 'B 'C '绕点B '逆时针旋转180°,点A '的对应点为M ,则点M 的坐标为 (﹣2,1) .【解答】解:将△A 'B 'C '绕点B '逆时针旋转180°,如图所示:所以点M 的坐标为(﹣2,1), 故答案为:(﹣2,1).15.(4分)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC ∥AD ,BE ⊥AD ,斜坡AB 长26m ,斜坡AB 的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A 不动,则坡顶B 沿BC 至少向右移 10 m 时,才能确保山体不滑坡.(取tan50°=1.2)【解答】解:在BC 上取点F ,使∠F AE =50°,过点F 作FH ⊥AD 于H , ∵BF ∥EH ,BE ⊥AD ,FH ⊥AD , ∴四边形BEHF 为矩形, ∴BF =EH ,BE =FH , ∵斜坡AB 的坡比为12:5, ∴BE AE=125,设BE =12x ,则AE =5x ,由勾股定理得,AE 2+BE 2=AB 2,即(5x )2+(12x )2=262, 解得,x =2, ∴AE =10,BE =24, ∴FH =BE =24,在Rt △F AH 中,tan ∠F AH =EHAH , ∴AH =EHtan50°=20, ∴BF =EH =AH ﹣AE =10,∴坡顶B 沿BC 至少向右移10m 时,才能确保山体不滑坡, 故答案为:10.16.(4分)如图,点O 是半圆圆心,BE 是半圆的直径,点A ,D 在半圆上,且AD ∥BO ,∠ABO =60°,AB =8,过点D 作DC ⊥BE 于点C ,则阴影部分的面积是643π﹣8√3 .【解答】解:连接OA , ∵∠ABO =60°,OA =OB , ∴△AOB 是等边三角形, ∵AB =8, ∴⊙O 的半径为8, ∵AD ∥OB ,∴∠DAO =∠AOB =60°, ∵OA =OD , ∴∠AOD =60°, ∵∠AOB =∠AOD =60°, ∴∠DOE =60°, ∵DC ⊥BE 于点C , ∴CD =√32OD =4√3,OC =12OD =4,∴BC =8+4=12,S 阴影=S △AOB +S 扇形OAD +S 扇形ODE ﹣S △BCD=12×8×4√3+2×60π×82360−12×12×4√3=64π3−8√3 故答案为64π3−8√3.17.(4分)已知二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的y 与x 的部分对应值如下表: x ﹣5 ﹣4 ﹣2 02 y6﹣6 ﹣46下列结论: ①a >0;②当x =﹣2时,函数最小值为﹣6;③若点(﹣8,y 1),点(8,y 2)在二次函数图象上,则y 1<y 2; ④方程ax 2+bx +c =﹣5有两个不相等的实数根.其中,正确结论的序号是 ①③④ .(把所有正确结论的序号都填上) 【解答】解:将(﹣4,0)(0,﹣4)(2,6)代入y =ax 2+bx +c 得, {16a −4b +c =0c =−44a +2b +c =6,解得,{a =1b =3c =−4, ∴抛物线的关系式为y =x 2+3x ﹣4, a =1>0,因此①正确;对称轴为x =−32,即当x =−32时,函数的值最小,因此②不正确;把(﹣8,y 1)(8,y 2)代入关系式得,y 1=64﹣24﹣4=36,y 2=64+24﹣4=84,因此③正确;方程ax 2+bx +c =﹣5,也就是x 2+3x ﹣4=﹣5,即方x 2+3x +1=0,由b 2﹣4ac =9﹣4=5>0可得x 2+3x +1=0有两个不相等的实数根,因此④正确; 正确的结论有:①③④, 故答案为:①③④.18.(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200= 20110 .【解答】解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19.(10分)(1)化简:(a ﹣1+1a−3)÷a 2−4a−3;(2)解不等式:x+13−1<x−14. 【解答】解:(1)原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3=(a 2−4a+3a−3+1a−3)•a−3(a+2)(a−2)=(a−2)2a−3•a−3(a+2)(a−2)=a−2a+2;(2)去分母,得:4(x +1)﹣12<3(x ﹣1), 去括号,得:4x +4﹣12<3x ﹣3, 移项,得:4x ﹣3x <﹣3﹣4+12, 合并同类项,得:x <5.20.(9分)如图,已知一次函数y =kx +b 的图象与反比例函数y =mx的图象交于点A (3,a ),点B (14﹣2a ,2).(1)求反比例函数的表达式;(2)若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,求△ACD 的面积.【解答】解:(1)∵点A (3,a ),点B (14﹣2a ,2)在反比例函数上, ∴3×a =(14﹣2a )×2,解得:a =4,则m =3×4=12, 故反比例函数的表达式为:y =12x ;(2)∵a =4,故点A 、B 的坐标分别为(3,4)、(6,2),设直线AB 的表达式为:y =kx +b ,则{4=3k +b 2=6k +6,解得{k =−23b =6, 故一次函数的表达式为:y =−23x +6;当x =0时,y =6,故点C (0,6),故OC =6,而点D 为点C 关于原点O 的对称点,则CD =2OC =12, △ACD 的面积=12×CD •x A =12×12×3=18.21.(11分)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A :机器人;B :航模;C :科幻绘画;D :信息学;E :科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题: (1)本次参加比赛的学生人数是 80 名; (2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.【解答】解:(1)本次参加比赛的学生人数为18÷22.5%=80(名);故答案为:80;(2)D组人数为:80﹣16﹣18﹣20﹣8=18(名),把条形统计图补充完整如图:(3)扇形统计图中表示机器人的扇形圆心角α的度数为360°×1680=72°;(4)画树状图如图:共有9个等可能的结果,所选两名同学中恰好是1名男生1名女生的结果有5个,∴所选两名同学中恰好是1名男生1名女生的概率为5 9.22.(11分)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?【解答】解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:84001.4x−4000x=10,解得:x =200,经检验,x =200是原方程的解,且符合题意, ∴1.4x =280.答:A 种茶叶每盒进价为200元,B 种茶叶每盒进价为280元. (2)设第二次购进A 种茶叶m 盒,则购进B 种茶叶(100﹣m )盒, 依题意,得:(300﹣200)×m2+(300×0.7﹣200)×m2+(400﹣280)×100−m2+(400×0.7﹣280)×100−m2=5800, 解得:m =40, ∴100﹣m =60.答:第二次购进A 种茶叶40盒,B 种茶叶60盒.23.(12分)若△ABC 和△AED 均为等腰三角形,且∠BAC =∠EAD =90°. (1)如图(1),点B 是DE 的中点,判定四边形BEAC 的形状,并说明理由; (2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF =CD . 求证:①EB =DC , ②∠EBG =∠BFC .【解答】解:(1)四边形BEAC 是平行四边形, 理由如下:∵△AED 为等腰三角形,∠EAD =90°,B 是DE 的中点, ∴∠E =∠BAE =45°,∠ABE =90°, ∵△ABC 是等腰三角形,∠BAC =90°,∴∠ABC =∠BAE =45°,∠ABE =∠BAC =90°, ∴BC ∥AE ,AC ∥BE ,∴四边形BEAC是平行四边形;(2)①∵△ABC和△AED均为等腰三角形,∠BAC=∠EAD=90°,∴AE=AD,AB=AC,∠BAE=∠CAD,∴△AEB≌△ADC(SAS),∴BE=CD;②延长FG至点H,使GH=FG,∵G是EC的中点,∴EG=DG,又∵∠EGH=∠FGC,∴△EGH≌△CGF(SAS),∴∠BFC=∠H,CF=EH,∵CF=CD,CD=BE,∴EH=BE,∴∠H=∠EBG,∴∠EBG=∠BFC.24.(12分)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD ⊥DF.你认为此结论是否成立?是.(填“是”或“否”)(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.【解答】解:(1)如图(2)中,∵∠EDC=90°,EF=CF,∴DF=CF,∴∠FCD=∠FDC,∵∠ABC=90°,∴∠A+∠ACB=90°,∵BA=BD,∴∠A=∠ADB,∵∠ACB=∠FCD=∠FDC,∴∠ADB+∠FDC=90°,∴∠FDB=90°,故答案为是.(2)结论成立:理由:∵BD⊥DF,ED⊥AD,∴∠BDC+∠CDF=90°,∠EDF+∠CDF=90°,∴∠BDC=∠EDF,∵AB=BD,∴∠A=∠BDC,∴∠A=∠EDF,∵∠A+∠ACB=90°,∠E+∠ECD=90°,∠ACB=∠ECD,∴∠A=∠E,∴∠E=∠EDF,∴EF=FD,∵∠E+∠ECD=90°,∠EDF+∠FDC=90°,∴∠FCD=∠FDC,∴FD=FC,∴EF=FC,∴点F是EC的中点.(3)如图3中,取EC的中点G,连接GD.则GD⊥BD.∴DG=12EC=92,∵BD=AB=6,在Rt △BDG 中,BG =2+BD 2=√(92)2+62=152, ∴CB =152−92=3,在Rt △ABC 中,AC =√AB 2+BC 2=√62+32=3√5, ∵∠ACB =∠ECD ,∠ABC =∠EDC , ∴△ABC ∽△EDC , ∴AC EC=BC CD,∴3√59=3CD, ∴CD =9√55,∴AD =AC +CD =3√5+9√55=24√55. 25.(13分)若一次函数y =﹣3x ﹣3的图象与x 轴,y 轴分别交于A ,C 两点,点B 的坐标为(3,0),二次函数y =ax 2+bx +c 的图象过A ,B ,C 三点,如图(1). (1)求二次函数的表达式;(2)如图(1),过点C 作CD ∥x 轴交抛物线于点D ,点E 在抛物线上(y 轴左侧),若BC 恰好平分∠DBE .求直线BE 的表达式;(3)如图(2),若点P 在抛物线上(点P 在y 轴右侧),连接AP 交BC 于点F ,连接BP ,S △BFP =mS △BAF . ①当m =12时,求点P 的坐标; ②求m 的最大值.【解答】解:(1)一次函数y =﹣3x ﹣3的图象与x 轴,y 轴分别交于A ,C 两点,则点A 、C 的坐标分别为(﹣1,0)、(0,﹣3),将点A 、B 、C 的坐标代入抛物线表达式得{0=a −b +c0=9a +3b +c c =−3,解得{a =1b =−2c =−3,故抛物线的表达式为:y =x 2﹣2x ﹣3;(2)设直线BE 交y 轴于点M ,从抛物线表达式知,抛物线的对称轴为x =2,∵CD ∥x 轴交抛物线于点D ,故点D (2,﹣3),由点B 、C 的坐标知,直线BC 与AB 的夹角为45°,即∠MCB =∠DCD =45°, ∵BC 恰好平分∠DBE ,故∠MBC =∠DBC ,而BC =BC ,故△BCD ≌△BCM (AAS ),∴CM =CD =2,故OM =3﹣2=1,故点M (0,﹣1),设直线BE 的表达式为:y =kx +b ,则{b =−13k +b =0,解得{k =13b =−1, 故直线BE 的表达式为:y =13x ﹣1;(3)过点P 作PN ∥x 轴交BC 于点N ,则△PFN ∽△AFB ,则AF PF=AB PN , 而S △BFP =mS △BAF ,则AF PF =1m =4PN ,解得:m =14PN , ①当m =12时,则PN =2,设点P (t ,t 2﹣2t ﹣3),由点B 、C 的坐标知,直线BC 的表达式为:y =x ﹣3,当x =t ﹣2时,y =t ﹣5,故点N (t ﹣2,t ﹣5),故t ﹣5=t 2﹣2t ﹣3,解得:t =1或2,故点P (2,﹣3)或(1,﹣4);②m =14PN =14[t ﹣(t 2﹣2t )]=−14(t −32)2+916, ∵−14<0,故m 的最大值为916.。
2020年山东省泰安市中考数学试卷(有详细解析)
2020年山东省泰安市中考数学试卷姓名:___________班级:___________得分:___________一、选择题(本大题共12小题,共48.0分)1.−12的倒数是()A. −2B. −12C. 2 D. 122.下列运算正确的是()A. 3xy−xy=2B. x3⋅x4=x12C. x−10÷x2=x−5D. (−x3)2=x63.2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A. 4×1012元B. 4×1010元C. 4×1011元D. 40×109元4.将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()A. 80°B. 100°C. 110°D. 120°5.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册12345人数/人25742根据统计表中的数据,这名同学读书册数的众数,中位数分别是()A. 3,3B. 3,7C. 2,7D. 7,36.如图,PA是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC//AB.则∠BAC等于()A. 20°B. 25°C. 30°D. 50°7.将一元二次方程x2−8x−5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A. −4,21B. −4,11C. 4,21D. −8,698.如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为()A. 4B. 4√3C. 8√33D. 2√39.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()A. B.C. D.10.如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC=6cm,∠B=45°,沿虚线EF将纸片剪成两个全等的梯形,若∠BEF=30°,则AF的长为()A. lcmB. √6cm C. (2√3−3)cm D. (2−√3)cm311.如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE//BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM//FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是()A. 1个B. 2个C. 3个D. 4个12.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A. √2+1B. √2+12C. 2√2+1D. 2√2−12二、填空题(本大题共6小题,共24.0分)13. 方程组{x +y =16,5x +3y =72的解是______. 14. 如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为A(0,3),B(−1,1),C(3,1).△A′B′C′是△ABC 关于x 轴的对称图形,将△A′B′C′绕点B′逆时针旋转180°,点A′的对应点为M ,则点M 的坐标为______.15. 如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC//AD ,BE ⊥AD ,斜坡AB 长26m ,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A 不动,则坡顶B 沿BC 至少向右移______m 时,才能确保山体不滑坡.(取tan50°=1.2)16. 如图,点O 是半圆圆心,BE 是半圆的直径,点A ,D在半圆上,且AD//BO ,∠ABO =60°,AB =8,过点D 作DC ⊥BE 于点C ,则阴影部分的面积是______.17. 已知二次函数y =ax 2+bx +c(a,b ,c 是常数,a ≠0)的y 与x 的部分对应值如下表:x−5 −4 −2 0 2 y 6 0 −6 −4 6下列结论:①a >0;②当x =−2时,函数最小值为−6;③若点(−8,y 1),点(8,y 2)在二次函数图象上,则y 1<y 2;④方程ax 2+bx +c =−5有两个不相等的实数根.其中,正确结论的序号是______.(把所有正确结论的序号都填上)18. 如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200=______.三、解答题(本大题共7小题,共78.0分)19. (1)化简:(a −1+1a−3)÷a 2−4a−3; (2)解不等式:x+13−1<x−14.20. 如图,已知一次函数y =kx +b 的图象与反比例函数y =mx 的图象交于点A(3,a),点B(14−2a,2).(1)求反比例函数的表达式;(2)若一次函数图象与y 轴交于点C ,点D 为点C关于原点O 的对称点,求△ACD 的面积.21. 为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A :机器人;B :航模;C :科幻绘画;D :信息学;E :科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是______名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.22.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?23.若△ABC和△AED均为等腰三角形,且∠BAC=∠EAD=90°.(1)如图(1),点B是DE的中点,判定四边形BEAC的形状,并说明理由;(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.求证:①EB=DC,②∠EBG=∠BFC.24.小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD⊥DF.你认为此结论是否成立?______.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.25.若一次函数y=−3x−3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C作CD//x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.①当m=1时,求点P的坐标;2②求m的最大值.答案和解析1.A的倒数是−2.解:−122.D解:A.3xy−xy=2xy,故本选项不合题意;B.x3⋅x4=x7,故本选项不合题意;C.x−10÷x2=x−12,故本选项不合题意;D.(−x3)2=x6,故本选项符合题意.3.C解:4000亿=400000000000=4×1011,4.C解:如图所示,∵AB//CD∴∠ABE=∠1=50°,又∵∠2是△ABE的外角,∴∠2=∠ABE+∠E=50°+60°=110°,5.A=3(册),解:这20名同学读书册数的众数为3册,中位数为3+326.B解:连接OA,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∴∠AOP=90°−∠P=80°,∵OA=OB,∴∠OAB=∠OBA=50°,∵OC//AB,∴∠BOC=∠OBA=50°,∠BOC=25°,由圆周角定理得,∠BAC=127.A解:∵x2−8x−5=0,∴x2−8x=5,则x2−8x+16=5+16,即(x−4)2=21,∴a=−4,b=21,8.B解:连接CD,∵AB=BC,∠BAC=30°,∴∠ACB=∠BAC=30°,∴∠B=180°−30°−30°=120°,∴∠D=180°−∠B=60°,∴∠CAD=30°,∵AD是直径,∴∠ACD=90°,∵AD=8,AD=4,∴CD=12∴AC=√AD2−CD2=√82−42=4√3,9.C解:A、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故A错误;B、∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,且与二次函数交于y轴负半轴的同一点,故B错误;C、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故C正确;∵D、二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故D错误;10.D解:过F作FH⊥BC于H,∵高AG=2cm,∠B=45°,∴BG=AG=2cm,∵FH⊥BC,∠BEF=30°,∴EH=√3AG=2√3,∵沿虚线EF将纸片剪成两个全等的梯形,∴AF=CE,∵AG⊥BC,FH⊥BC,∴AG//FH,∵AG=FH,∴四边形AGHF是矩形,∴AF=GH,∴BC=BG+GH+HE+CE=2+2AF+2√3=6,∴AF=2−√3(cm),11.D解:∵四边形ABCD是矩形,∴AB=CD,AB//CD,∠DAE=∠BCF=90°,OD=OB=OA=OC,AD=BC,AD//BC,∴∠DAN=∠BCM,∵BF⊥AC,DE//BF,∴DE⊥AC,∴∠DNA=∠BMC=90°,在△DNA和△BMC中,{∠DAN=∠BCM ∠DNA=∠BMC AD=BC,∴△DNA≌△BMC(AAS),∴DN=BM,∠ADE=∠CBF,故①正确;在△ADE和△CBF中,{∠ADE=∠CBF AD=BC∠DAE=∠BCF,∴△ADE≌△CBF(ASA),∴AE=FC,DE=BF,故③正确;∴DE−DN=BF−BM,即NE=MF,∵DE//BF,∴四边形NEMF是平行四边形,∴EM//FN,故②正确;∵AB=CD,AE=CF,∴BE=DF,∵BE//DF,∴四边形DEBF是平行四边形,∵AO=AD,∴AO=AD=OD,∴△AOD是等边三角形,∴∠ADO =∠DAN =60°,∴∠ABD =90°−∠ADO =30°, ∵DE ⊥AC ,∴∠ADN =ODN =30°, ∴∠ODN =∠ABD , ∴DE =BE ,∴四边形DEBF 是菱形;故④正确; 正确结论的个数是4个, 12. B解:如图,∵点C 为坐标平面内一点,BC =1, ∴C 在⊙B 的圆上,且半径为1, 取OD =OA =2,连接CD ,∵AM =CM ,OD =OA , ∴OM 是△ACD 的中位线, ∴OM =12CD ,当OM 最大时,即CD 最大,而D ,B ,C 三点共线时,当C 在DB 的延长线上时,OM 最大,∵OB =OD =2,∠BOD =90°, ∴BD =2√2, ∴CD =2√2+1,∴OM =12CD =√2+12,即OM 的最大值为√2+12;13. {x =12y =4解:{ x +y =16 ①5x +3y =72 ②②−3×①,得2x =24, ∴x =12.把x =12代入①,得12+y =16,∴原方程组的解为{x =12y =4.14. (−2,1)解:将△A′B′C′绕点B′逆时针旋转180°,如图所示:所以点M 的坐标为(−2,1),15. 10 解:在BC 上取点F ,使∠FAE =50°,过点F 作FH ⊥AD 于H ,∵BF//EH ,BE ⊥AD ,FH ⊥AD , ∴四边形BEHF 为矩形, ∴BF =EH ,BE =FH , ∵斜坡AB 的坡比为12:5, ∴BE AE=125,设BE =12x ,则AE =5x ,由勾股定理得,AE 2+BE 2=AB 2,即(5x)2+(12x)2=262, 解得,x =2,∴AE =10,BE =24, ∴FH =BE =24,在Rt △FAH 中,tan∠FAH =EHAH , ∴AH =EH tan50∘=20,∴BF =EH =AH −AE =10,∴坡顶B 沿BC 至少向右移10m 时,才能确保山体不滑坡,16. 643π−8√3解:连接OA ,∵∠ABO =60°,OA =OB , ∴△AOB 是等边三角形,∴⊙O 的半径为8, ∵AD//OB ,∴∠DAO =∠AOB =60°, ∵OA =OD , ∴∠AOD =60°,∵∠AOB =∠AOD =60°, ∴∠DOE =60°, ∵DC ⊥BE 于点C , ∴CD =√32OD =4√3,OC =12OD =4,∴BC =8+4=12,S 阴影=S △AOB +S 扇形OAD +S 扇形ODE −S △BCD =12×8×4√3+2×60π×82360−12×12×4√3=64π3−8√317. ①③④解:将(−4,0)(0,−4)(2,6)代入y =ax 2+bx +c 得, {16a −4b +c =0c =−44a +2b +c =6,解得,{a =1b =3c =−4, ∴抛物线的关系式为y =x 2+3x −4, a =1>0,因此①正确;对称轴为x =−32,即当x =−32时,函数的值最小,因此②不正确;把(−8,y 1)(8,y 2)代入关系式得,y 1=64−24−4=36,y 2=64+24−4=84,因此③正确;方程ax 2+bx +c =−5,也就是x 2+3x −4=−5,即方x 2+3x +1=0,由b 2−4ac =9−4=5>0可得x 2+3x +1=0有两个不相等的实数根,因此④正确; 正确的结论有:①③④,18. 20110解:观察“杨辉三角”可知第n 个数记为a n =(1+2+⋯+n)=12n(n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110.19. 解:(1)原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3=(a 2−4a+3a−3+1a−3)⋅a−3(a+2)(a−2)=(a−2)2a−3⋅a−3(a+2)(a−2)=a−2a+2;(2)去分母,得:4(x +1)−12<3(x −1), 去括号,得:4x +4−12<3x −3, 移项,得:4x −3x <−3−4+12, 合并同类项,得:x <5.20. 解:(1)∵点A(3,a),点B(14−2a,2)在反比例函数上, ∴3×a =(14−2a)×2,解得:a =4,则m =3×4=12, 故反比例函数的表达式为:y =12x;(2)∵a =4,故点A 、B 的坐标分别为(3,4)、(6,2),设直线AB 的表达式为:y =kx +b ,则{4=3k +b 2=6k +6,解得{k =−23b =6, 故一次函数的表达式为:y =−23x +6;当x =0时,y =6,故点C(0,6),故OC =6,而点D 为点C 关于原点O 的对称点,则CD =2OC =12, △ACD 的面积=12×CD ⋅x A =12×12×3=18.21. 80解:(1)本次参加比赛的学生人数为18÷22.5%=80(名); 故答案为:80;(2)D 组人数为:80−16−18−20−8=18(名),把条形统计图补充完整如图:(3)扇形统计图中表示机器人的扇形圆心角α的度数为360°×1680=72°; (4)画树状图如图:共有9个等可能的结果,所选两名同学中恰好是1名男生1名女生的结果有5个, ∴所选两名同学中恰好是1名男生1名女生的概率为59.依题意,得:84001.4x −4000x=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100−m)盒,依题意,得:(300−200)×m2+(300×0.7−200)×m2+(400−280)×100−m2+(400×0.7−280)×100−m2=5800,解得:m=40,∴100−m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.23.解:(1)四边形BEAC是平行四边形,理由如下:∵△AED为等腰三角形,∠EAD=90°,B是DE的中点,∴∠E=∠BAE=45°,∠ABE=90°,∵△ABC是等腰三角形,∠BAC=90°,∴∠ABC=∠BAE=45°,∠ABE=∠BAC=90°,∴BC//AE,AC//BE,∴四边形BEAC是平行四边形;(2)①∵△ABC和△AED均为等腰三角形,∠BAC=∠EAD=90°,∴AE=AD,AB=AC,∠BAE=∠CAD,∴△AEB≌△ADC(SAS),∴BE=CD;②延长FG至点H,使GH=FG,∵G是EC的中点,∴EG=DG,又∵∠EGH=∠FGC,∴△EGH≌△CGF(SAS),∴∠BFC=∠H,CF=EH,∵CF=CD,CD=BE,∴∠H=∠EBG,∴∠EBG=∠BFC.24.是解:(1)如图(2)中,∵∠EDC=90°,EF=CF,∴DF=CF,∴∠FCD=∠FDC,∵∠ABC=90°,∴∠A+∠ACB=90°,∵BA=BD,∴∠A=∠ADB,∵∠ACB=∠FCD=∠FDC,∴∠ADB+∠FDC=90°,∴∠FDB=90°,∴BD⊥DF.故答案为是.(2)结论成立:理由:∵BD⊥DF,ED⊥AD,∴∠BDC+∠CDF=90°,∠EDF+∠CDF=90°,∴∠BDC=∠EDF,∵AB=BD,∴∠A=∠BDC,∴∠A=∠EDF,∵∠A+∠ACB=90°,∠E+∠ECD=90°,∠ACB=∠ECD,∴∠A=∠E,∴∠E=∠EDF,∴EF=FD,∵∠E+∠ECD=90°,∠EDF+∠FDC=90°,∴∠FCD=∠FDC,∴FD=FC,∴EF=FC,∴点F是EC的中点.(3)如图3中,取EC的中点G,连接GD.则GD⊥BD.∴DG =12EC =92, ∵BD =AB =6,在Rt △BDG 中,BG =√DG 2+BD 2=√(92)2+62=152,∴CB =152−92=3,在Rt △ABC 中,AC =√AB 2+BC 2=√62+32=3√5, ∵∠ACB =∠ECD ,∠ABC =∠EDC , ∴△ABC∽△EDC , ∴ACEC =BCCD , ∴3√59=3CD, ∴CD =9√55,∴AD =AC +CD =3√5+9√55=24√55.25. 解:(1)一次函数y =−3x −3的图象与x 轴,y 轴分别交于A ,C 两点,则点A 、C 的坐标分别为(−1,0)、(0,−3),将点A 、B 、C 的坐标代入抛物线表达式得{0=a −b +c0=9a +3b +c c =−3,解得{a =1b =−2c =−3,故抛物线的表达式为:y =x 2−2x −3;(2)设直线BE 交y 轴于点M ,从抛物线表达式知,抛物线的对称轴为x =2,由点B 、C 的坐标知,直线BC 与AB 的夹角为45°,即∠MCB =∠DCD =45°, ∵BC 恰好平分∠DBE ,故∠MBC =∠DBC , 而BC =BC ,故△BCD≌△BCM(AAS),∴CM =CD =2,故OM =3−2=1,故点M(0,−1),设直线BE 的表达式为:y =kx +b ,则{b =−13k +b =0,解得{k =13b =−1, 故直线BE 的表达式为:y =13x −1;(3)过点P 作PN//x 轴交BC 于点N ,则△PFN∽△AFB ,则AF PF =ABPN ,而S △BFP =mS △BAF ,则AFPF =1m =4PN ,解得:m =14PN , ①当m =12时,则PN =2,设点P(t,t 2−2t −3),由点B 、C 的坐标知,直线BC 的表达式为:y =x −3,当x =t −2时,y =t −5,故点N(t −2,t −5), 故t −5=t 2−2t −3,解得:t =1或2,故点P(2,−3)或(1,−4); ②m =14PN =14[t −(t 2−2t)]=−14(t −32)2+916, ∵−14<0,故m 的最大值为916.。
山东省泰安市2020届中考数学试卷.docx
2021年06月04日xx 学校初中数学试卷学校:姓名:班级:考号:一、单选题 i.-|的倒数是() A. -22.下列运算正确的是(3.2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发 射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计 将超过4 000亿元.把数据4 000亿元用科学记数法表示为()4. 将含30°角的一个直角三角板和一把直尺如图放置,若4 = 50。
,则Z2等于()5. 某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册 1 2 3 4 5 人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()6. 如图,R4是eO 的切线,点A 为切点,O 尸交eO 于点B,ZP = 10。
,点C 在eO 上,OC7/AB.则 ZBAC 等于()C.2A. 3xy — xy = 2B. x 3 %4 = x 12C.L“2 =]-5D.(-x 3)2 =x 6A. 4xl012 元B. 4xlO 10 元C. 4xlO u 元D. 40xl09 元C.1100D.1200A.3, 3B.3, 7C.2, 7D.7, 37. 将一元二次方程X 2-8X -5 = 0化成(a,b 为常数)的形式,贝也,的值分别是()A F DA. 1 cmB.——cmC. (25/3-3) cmD. (2-由)cm311. 如图,矩形ABCD 中,AC,BD 相交于点0,过点B 作BF±A C 交CD 于点F,交AC 于点M, 过点£>作庞〃3日交AB 于点E,交AC 于点N,连接FN,EM .则下列结论:① DN = BM ;②EMHFN ■,③AE = FC ;④当AO = AD 时,四边形班时是菱形.其中,正确结论的个数是()A.20 °B.25°C.30°D.50° A.-4,21B. T,llC.4,21D. —8,698.如图,VABC 是eO 的内接三角形, AB = BC, ZBAC = 30° fAO 是直径,AD = 8,则AC 的长为()A.4 6.4^3D.2^C."线EF 将纸片剪成两个全等的梯形,若ZBEF = 30° ,则*的长为()DC.3个D.4个12.如图,点A,8的坐标分别为A(2,0),3(0,2),点C为坐标平面内一点,BC = 1,点M为线段AC的中点,连接则的最大值为()A. ~J2 +1B.^/5 + 刁C. 2A/2 +1D. 2^/2——二、证明题13.若VA5C和VA£L>均为等腰三角形,且ZS4C = ZE4D = 90°.图1 图2(1)如图1,点B是庞的中点,判定四边形3E4C的形状,并说明理由;(2)如图2,若点G是EC的中点,连接G8并延长至点F,使CF = CD.求证:@EB = DC;②ZEBG = ZBFC.三、探究题14.小明将两个直角三角形纸片如图1那样拼放在同一平面上,抽象出如图2的平面图形,ZACB与ZECD恰好为对顶角,ZABC = /CDE = 90。
2020年山东省泰安市中考数学试卷(附答案详解)
2020年山东省泰安市中考数学试卷一、选择题(本大题共12小题,共48.0分)1.(2011·江西省宜春市·模拟题)−12的倒数是()A. −2B. −12C. 2 D. 122.(2020·江苏省·期中考试)下列运算正确的是()A. 3xy−xy=2B. x3⋅x4=x12C. x−10÷x2=x−5D. (−x3)2=x63.(2021·山东省·单元测试)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A. 4×1012元B. 4×1010元C. 4×1011元D. 40×109元4.(2021·山东省济宁市·月考试卷)将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()A. 80°B. 100°C. 110°D. 120°5.(2021·全国·单元测试)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册12345人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A. 3,3B. 3,7C. 2,7D. 7,36.(2020·山东省泰安市·历年真题)如图,PA是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC//AB.则∠BAC等于()A. 20°B. 25°C. 30°D. 50°7.(2021·安徽省合肥市·期中考试)将一元二次方程x2−8x−5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A. −4,21B. −4,11C. 4,21D. −8,698.(2021·山东省聊城市·模拟题)如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为()A. 4B. 4√3C. 8√3 D. 2√339.(2021·山东省泰安市·模拟题)在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()A. B.C. D.10.(2020·山东省泰安市·历年真题)如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC=6cm,∠B=45°,沿虚线EF将纸片剪成两个全等的梯形,若∠BEF=30°,则AF的长为()A. 1cmB. √6cm C. (2√3−3)cm D. (2−√3)cm311.(2021·浙江省·单元测试)如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE//BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM//FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是()A. 1个B. 2个C. 3个D. 4个12.(2021·山东省·其他类型)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A. √2+1B. √2+12C. 2√2+1D. 2√2−12二、填空题(本大题共6小题,共24.0分)13. (2020·山东省泰安市·历年真题)方程组{x +y =165x +3y =72的解是______. 14. (2021·山东省·其他类型)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为A(0,3),B(−1,1),C(3,1).△A′B′C′是△ABC 关于x 轴的对称图形,将△A′B′C′绕点B′逆时针旋转180°,点A′的对应点为M ,则点M 的坐标为______.15. (2021·山东省枣庄市·模拟题)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC//AD ,BE ⊥AD ,斜坡AB 长26m ,斜坡AB 的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A 不动,则坡顶B 沿BC 至少向右移______m 时,才能确保山体不滑坡.(取tan50°=1.2) 16. (2021·贵州省贵阳市·单元测试)如图,点O 是半圆圆心,BE 是半圆的直径,点A ,D 在半圆上,且AD//BO ,∠ABO =60°,AB =8,过点D 作DC ⊥BE 于点C ,则阴影部分的面积是______.17. (2021·安徽省芜湖市·单元测试)已知二次函数y =ax 2+bx +c(a,b ,c 是常数,a ≠0)的y 与x 的部分对应值如下表:x −5 −4 −2 0 2 y 6 0 −6 −4 6下列结论:①a >0;②当x =−2时,函数最小值为−6;③若点(−8,y 1),点(8,y 2)在二次函数图象上,则y 1<y 2;④方程ax 2+bx +c =−5有两个不相等的实数根.其中,正确结论的序号是______.(把所有正确结论的序号都填上)18. (2021·重庆市市辖区·期中考试)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200=______.三、解答题(本大题共7小题,共78.0分)19. (2020·山东省泰安市·历年真题)(1)化简:(a −1+1a−3)÷a 2−4a−3; (2)解不等式:x+13−1<x−14.20. (2021·山东省威海市·模拟题)如图,已知一次函数y =kx +b 的图象与反比例函数y =m x 的图象交于点A(3,a),点B(14−2a,2).(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求△ACD的面积.21.(2021·广东省广州市·模拟题)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是______名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.22.(2021·山东省威海市·模拟题)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?23.(2020·山东省·历年真题)若△ABC和△AED均为等腰三角形,且∠BAC=∠EAD=90°.(1)如图(1),点B是DE的中点,判定四边形BEAC的形状,并说明理由;(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.求证:①EB=DC,②∠EBG=∠BFC.24.(2020·江苏省淮安市·单元测试)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD⊥DF.你认为此结论是否成立?______.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.25.(2020·四川省绵阳市·单元测试)若一次函数y=−3x−3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C 三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C作CD//x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.①当m=1时,求点P的坐标;2②求m的最大值.答案和解析1.【答案】A【知识点】倒数【解析】解:−1的倒数是−2.2故选:A.根据倒数的定义,直接解答即可.主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【答案】D【知识点】同底数幂的除法、负整数指数幂、同底数幂的乘法、幂的乘方与积的乘方、合并同类项【解析】解:A.3xy−xy=2xy,故本选项不合题意;B.x3⋅x4=x7,故本选项不合题意;C.x−10÷x2=x−12,故本选项不合题意;D.(−x3)2=x6,故本选项符合题意.故选:D.分别根据合并同类项法则,同底数幂的乘法法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.本题主要考查了合并同类项,同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.【答案】C【知识点】科学记数法-绝对值较大的数【解析】解:4000亿=400000000000=4×1011,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于等于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【知识点】三角形的外角性质、平行线的性质【解析】解:如图所示,∵AB//CD∴∠ABE=∠1=50°,又∵∠2是△ABE的外角,∴∠2=∠ABE+∠E=50°+60°=110°,故选:C.根据平行线的性质和三角形的外角的性质即可得到结论.此题考查了平行线的性质和外角的性质,熟练掌握平行线的性质是解本题的关键.5.【答案】A【知识点】中位数、众数【解析】【分析】本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.找到出现次数最多的数据,即为众数;求出第10、11个数据的平均数即可得这组数据的中位数,从而得出答案.【解答】=3(册),解:这20名同学读书册数的众数为3册,中位数为3+32故选A.6.【答案】B【知识点】圆周角定理、切线的性质【解析】【分析】本题考查的是切线的性质、圆周角定理、平行线的性质、等腰三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.连接OA,根据切线的性质得到∠PAO=90°,求出∠AOP,根据等腰三角形的性质、平行线的性质求出∠BOC,根据圆周角定理解答即可.【解答】解:连接OA,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∴∠AOP=90°−∠P=80°,∵OA=OB,∴∠OAB=∠OBA=50°,∵OC//AB,∴∠BOC=∠OBA=50°,∠BOC=25°,由圆周角定理得,∠BAC=12故选B.7.【答案】A【知识点】解一元二次方程-配方法【解析】【分析】本题主要考查用配方法解一元二次方程,熟练掌握用配方法解一元二次方程的一般步骤是解题的关键.将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【解答】解:∵x2−8x−5=0,∴x2−8x=5,则x2−8x+16=5+16,即(x−4)2=21,∴a=−4,b=21,故选A.8.【答案】B【知识点】勾股定理、圆内接四边形的性质、含30°角的直角三角形、圆周角定理【解析】【分析】本题考查了圆内接四边形的性质,圆周角定理,含30°角的直角三角形的性质,勾股定理,正确的识别图形是解题的关键.连接CD,根据等腰三角形的性质得到∠ACB=∠BAC=30°,根据圆内接四边形的性质得到∠D=180°−∠B=60°,求得∠CAD=30°,根据直角三角形的性质即可得到结论.【解答】解:连接CD,∵AB=BC,∠BAC=30°,∴∠ACB=∠BAC=30°,∴∠B=180°−30°−30°=120°,∴∠D=180°−∠B=60°∵AD是直径,∴∠ACD=90°,∴∠CAD=30°,∵AD=8,AD=4,∴CD=12∴AC=√AD2−CD2=√82−42=4√3,故选:B.9.【答案】C【知识点】二次函数的图象、一次函数的图象【解析】【分析】本题考查了二次函数的图象以及一次函数图象与系数的关系,根据a、b的正负确定一次函数图象经过的象限是解题的关键.根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【解答】解:A.二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故A错误;B.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,且与二次函数交于y轴负半轴的同一点,故B错误;C.二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故C正确;∵D.二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故D错误;故选C.10.【答案】D【知识点】平行四边形的性质、矩形的判定与性质【解析】解:过F作FH⊥BC于H,∵高AG=2cm,∠B=45°,∴BG=AG=2cm,∵FH⊥BC,∠BEF=30°,∴EH=√3AG=2√3,∵沿虚线EF将纸片剪成两个全等的梯形,∴AF=CE,∵AG⊥BC,FH⊥BC,∴AG//FH,∵AF//GH∴四边形AGHF是平行四边形,又∵AG⊥BC∴四边形AGHF是矩形,∴AF=GH,∴BC=BG+GH+HE+CE=2+2AF+2√3=6,∴AF=2−√3(cm),故选:D.根据直角三角形的边角关系求出BG,HE,再利用矩形的性质与判定得出AF=GH=CE 即可解答.此题考查平行四边形的性质,矩形的性质与判定及直角三角形的性质的知识.11.【答案】D【知识点】菱形的性质、矩形的性质、菱形的判定【解析】解:∵四边形ABCD是矩形,∴AB=CD,AB//CD,∠DAE=∠BCF=90°,OD=OB=OA=OC,AD=BC,AD//BC,∴∠DAN=∠BCM,∵BF⊥AC,DE//BF,∴DE⊥AC,∴∠DNA=∠BMC=90°,在△DNA和△BMC中,{∠DAN=∠BCM ∠DNA=∠BMC AD=BC,∴△DNA≌△BMC(AAS),∴DN=BM,∠ADE=∠CBF,故①正确;在△ADE和△CBF中,{∠ADE=∠CBF AD=BC∠DAE=∠BCF,∴△ADE≌△CBF(ASA),∴AE=FC,DE=BF,故③正确;∴DE−DN=BF−BM,即NE=MF,∵DE//BF,∴四边形NEMF是平行四边形,∴EM//FN,故②正确;∵AB=CD,AE=CF,∴BE=DF,∵BE//DF,∴四边形DEBF是平行四边形,∵AO=AD,∴AO=AD=OD,∴△AOD是等边三角形,∴∠ADO=∠DAN=60°,∴∠ABD=90°−∠ADO=30°,∵DE⊥AC,∴∠ADN=ODN=30°,∴∠ODN=∠ABD,∴DE=BE,∴四边形DEBF是菱形;故④正确;正确结论的个数是4个,故选:D.证△DNA≌△BMC(AAS),得出DN=BM,∠ADE=∠CBF,故①正确;证△ADE≌△CBF(ASA),得出AE=FC,DE=BF,故③正确;证四边形NEMF是平行四边形,得出EM//FN,故②正确;证四边形DEBF是平行四边形,证出∠ODN=∠ABD,则DE=BE,得出四边形DEBF是菱形;故④正确;即可得出结论.本题考查了矩形的性质、菱形的判定、平行四边形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、等腰三角形的判定等知识;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.12.【答案】B【知识点】坐标与图形性质、三角形的中位线定理、点与圆的位置关系【解析】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=12CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM 最大,∵OB=OD=2,∠BOD=90°,∴BD=2√2,∴CD=2√2+1,∴OM=12CD=√2+12,即OM的最大值为√2+12;故选:B .根据同圆的半径相等可知:点C 在半径为1的⊙B 上,通过画图可知,C 在BD 与圆B 的交点时,OM 最小,在DB 的延长线上时,OM 最大,根据三角形的中位线定理可得结论.本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM 为最大值是点C 的位置是关键,也是难点.13.【答案】{x =12y =4【知识点】灵活选择解法解二元一次方程(组)【解析】解:{ x +y =16 ①5x +3y =72 ② ②−3×①,得2x =24,∴x =12.把x =12代入①,得12+y =16,∴y =4.∴原方程组的解为{x =12y =4. 故答案为:{x =12y =4. 用代入法或加减法求解二元一次方程组即可.本题考查的是二元一次方程组的解法.掌握二元一次方程组的代入法、加减法是解决本题的关键.14.【答案】(−2,1)【知识点】旋转中的坐标变化*、中心对称的概念、轴对称中的坐标变化【解析】解:将△A′B′C′绕点B′逆时针旋转180°,如图所示:所以点M的坐标为(−2,1),故答案为:(−2,1).延长A′B′后得出点M,进而利用图中坐标解答即可.此题考查中心对称,关键是根据中心对称的性质画出图形解答.15.【答案】10【知识点】解直角三角形的应用【解析】解:在BC上取点F,使∠FAE=50°,过点F作FH⊥AD于H,∵BF//EH,BE⊥AD,FH⊥AD,∴四边形BEHF为矩形,∴BF=EH,BE=FH,∵斜坡AB的坡比为12:5,∴BEAE =125,设BE=12x,则AE=5x,由勾股定理得,AE2+BE2=AB2,即(5x)2+(12x)2=262,解得,x=2,∴AE=10,BE=24,∴FH=BE=24,在Rt△FAH中,tan∠FAH=FHAH,∴AH=EHtan50∘=20,∴BF=EH=AH−AE=10,∴坡顶B沿BC至少向右移10m时,才能确保山体不滑坡,故答案为:10.在BC上取点F,使∠FAE=50°,作FH⊥AD,根据坡度的概念求出BE、AE,根据正切的定义求出AH,结合图形计算,得到答案.本题考查的是解直角三角形的应用−坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.16.【答案】643π−8√3【知识点】扇形面积的计算、含30°角的直角三角形、三角形的面积、等边三角形的判定与性质【解析】【分析】本题考查了扇形的面积,等边三角形的判定和性质,解直角三角形,熟练掌握扇形的面积公式是解题的关键.连接OA,易求得圆O的半径为8,扇形的圆心角的度数,然后根据S阴影=S△AOB+S扇形OAD +S扇形ODE−S△BCD即可得到结论.【解答】解:连接OA,∵∠ABO=60°,OA=OB,∴△AOB是等边三角形,∵AB=8,∴⊙O的半径为8,∵AD//OB,∴∠DAO=∠AOB=60°,∵OA=OD,∴∠AOD=60°,∵∠AOB=∠AOD=60°,∴∠DOE=60°,∵DC⊥BE于点C,∴CD=√32OD=4√3,OC=12OD=4,∴BC=8+4=12,S阴影=S△AOB+S扇形OAD+S扇形ODE−S△BCD=12×8×4√3+2×60π×82360−12×12×4√3=64π3−8√3故答案为64π3−8√3.17.【答案】①③④【知识点】二次函数与一元二次方程、二次函数的最值、二次函数的性质、二次函数图象上点的坐标特征、根的判别式 【解析】 【分析】本题考查待定系数法求二次函数的解析式,二次函数的性质,理解和掌握二次函数的性质是正确判断的关键.任意取表格中的三组对应值,求出二次函数的关系式,再根据二次函数的性质进行判断即可. 【解答】解:将(−4,0)(0,−4)(2,6)代入y =ax 2+bx +c 得, {16a −4b +c =0c =−44a +2b +c =6,解得,{a =1b =3c =−4, ∴抛物线的关系式为y =x 2+3x −4, a =1>0,因此①正确;对称轴为x =−32,即当x =−32时,函数的值最小,因此②不正确;把(−8,y 1)(8,y 2)代入关系式得,y 1=64−24−4=36,y 2=64+24−4=84,所以y 1<y 2,因此③正确;方程ax 2+bx +c =−5,也就是x 2+3x −4=−5,即方程x 2+3x +1=0,由b 2−4ac =9−4=5>0可得x 2+3x +1=0有两个不相等的实数根,因此④正确; 正确的结论有:①③④, 故答案为:①③④.18.【答案】20110【知识点】数学传统文化-代数类、数式规律问题【解析】解:观察“杨辉三角”可知第n 个数记为a n =(1+2+⋯+n)=12n(n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.观察“杨辉三角”可知第n 个数记为a n =(1+2+⋯+n)=12n(n +1),依此求出a 4,a 200,再相加即可求解.此题考查了规律型:数字的变化类,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.19.【答案】解:(1)原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3=(a 2−4a +3a −3+1a −3)⋅a −3(a +2)(a −2) =(a −2)2a −3⋅a −3(a +2)(a −2)=a−2a+2;(2)去分母,得:4(x +1)−12<3(x −1), 去括号,得:4x +4−12<3x −3, 移项,得:4x −3x <−3−4+12, 合并同类项,得:x <5.【知识点】一元一次不等式的解法、分式的混合运算【解析】(1)先计算括号内异分母分式的加法,再将除法转化为乘法,继而约分即可得; (2)根据解一元一次不等式的基本步骤依次计算可得.本题主要考查分式的混合运算与解一元一次不等式,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解一元一次不等式的基本步骤.20.【答案】解:(1)∵点A(3,a),点B(14−2a,2)在反比例函数上,∴3×a =(14−2a)×2, 解得:a =4, 则m =3×4=12,故反比例函数的表达式为:y =12x;(2)∵a =4,故点A 、B 的坐标分别为(3,4)、(6,2),设直线AB 的表达式为:y =kx +b ,则{4=3k +b 2=6k +b ,解得{k =−23b =6,故一次函数的表达式为:y =−23x +6; 当x =0时,y =6,故点C(0,6),故OC =6,而点D 为点C 关于原点O 的对称点,则CD =2OC =12,△ACD的面积=12×CD⋅xA=12×12×3=18.【知识点】反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征、待定系数法求一次函数解析式、待定系数法求反比例函数解析式、一次函数与反比例函数综合【解析】本题考查了反比例函数与一次函数的交点,一次函数图象上点的坐标的特征,运用待定系数法确定函数关系式,三角形的面积公式,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.(1)点A(3,a),点B(14−2a,2)在反比例函数上,则3×a=(14−2a)×2,即可求解;(2)a=4,故点A、B的坐标分别为(3,4)、(6,2),求出一次函数的表达式为:y=−23x+6,则点C(0,6),故OC=6,进而利用三角形面积公式求解.21.【答案】80【知识点】扇形统计图、条形统计图、用列举法求概率(列表法与树状图法)【解析】解:(1)本次参加比赛的学生人数为18÷22.5%=80(名);故答案为:80;(2)D组人数为:80−16−18−20−8=18(名),把条形统计图补充完整如图:(3)扇形统计图中表示机器人的扇形圆心角α的度数为360°×1680=72°;(4)画树状图如图:共有9个等可能的结果,所选两名同学中恰好是1名男生1名女生的结果有5个,∴所选两名同学中恰好是1名男生1名女生的概率为59.(1)由B组的人数及其所占百分比可得本次参加比赛的学生人数;(2)求出D组人数,从而补全条形统计图;(3)由360°乘以A组所占的百分比即可;(4)画出树状图,由概率公式求解即可.本题考查了列表法或画树状图法、条形统计图和扇形统计图的有关知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.【答案】解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:84001.4x −4000x=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100−m)盒,依题意,得:(300−200)×m2+(300×0.7−200)×m2+(400−280)×100−m2+(400×0.7−280)×100−m2=5800,解得:m=40,∴100−m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.【知识点】分式方程的应用、一元一次方程的应用【解析】(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,根据用8400元购买的B种茶叶比用4000元购买的A种茶叶多10盒,即可得出关于x的分式方程,解之即可得出结论;(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100−m)盒,根据总利润=每盒的利润×销售数量,即可得出关于m的一元一次方程,解之即可得出结论.本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.23.【答案】解:(1)四边形BEAC是平行四边形,理由如下:∵△AED为等腰三角形,∠EAD=90°,B是DE的中点,∴∠E=∠BAE=45°,∠ABE=90°,∵△ABC是等腰三角形,∠BAC=90°,∴∠ABC=∠BAE=45°,∠ABE=∠BAC=90°,∴BC//AE,AC//BE,∴四边形BEAC是平行四边形;(2)①∵△ABC和△AED均为等腰三角形,∠BAC=∠EAD=90°,∴AE=AD,AB=AC,∠BAE=∠CAD,∴△AEB≌△ADC(SAS),∴BE=CD;②延长FG至点H,使GH=FG,∵G是EC的中点,∴EG=DG,又∵∠EGH=∠FGC,∴△EGH≌△CGF(SAS),∴∠BFC=∠H,CF=EH,∵CF=CD,CD=BE,∴EH=BE,∴∠H=∠EBG,∴∠EBG=∠BFC.【知识点】三角形的中位线定理、全等三角形的判定与性质【解析】(1)由等腰三角形的性质可得∠E=∠BAE=45°,∠ABE=90°,∠ABC=∠BAE=45°,∠ABE=∠BAC=90°,可证BC//AE,AC//BE,可得四边形BEAC是平行四边形;(2)①由“SAS”可证△AEB≌△ADC,可得BE=CD;②延长FG至点H,使GH=FG,由“SAS”可证△EGH≌△CGF,可得∠BFC=∠H,CF=EH,可得EH=BE,由等腰三角形的性质可得结论.本题考查了全等三角形的判定和性质,平行四边形的判定,添加恰当的辅助线构造全等三角形是本题的关键.24.【答案】是【知识点】三角形综合、勾股定理【解析】解:(1)如图(2)中,∵∠EDC=90°,EF=CF,∴DF=CF,∴∠FCD=∠FDC,∵∠ABC=90°,∴∠A+∠ACB=90°,∵BA=BD,∴∠A=∠ADB,∵∠ACB=∠FCD=∠FDC,∴∠ADB+∠FDC=90°,∴∠FDB=90°,∴BD⊥DF.故答案为是.(2)结论成立:理由:∵BD⊥DF,ED⊥AD,∴∠BDC+∠CDF=90°,∠EDF+∠CDF=90°,∴∠BDC=∠EDF,∵AB=BD,∴∠A =∠BDC , ∴∠A =∠EDF ,∵∠A +∠ACB =90°,∠E +∠ECD =90°,∠ACB =∠ECD , ∴∠A =∠E , ∴∠E =∠EDF , ∴EF =FD ,∵∠E +∠ECD =90°,∠EDF +∠FDC =90°, ∴∠FCD =∠FDC , ∴FD =FC , ∴EF =FC , ∴点F 是EC 的中点.(3)如图3中,取EC 的中点G ,连接GD.则GD ⊥BD .∴DG =12EC =92,∵BD =AB =6,在Rt △BDG 中,BG =√DG 2+BD 2=√(92)2+62=152,∴CB =152−92=3,在Rt △ABC 中,AC =√AB 2+BC 2=√62+32=3√5, ∵∠ACB =∠ECD ,∠ABC =∠EDC , ∴△ABC∽△EDC , ∴ACEC =BCCD , ∴3√59=3CD ,∴CD =9√55,∴AD =AC +CD =3√5+9√55=24√55.(1)证明∠FDC +∠BDC =90°可得结论.(2)结论成立:利用等角的余角相等证明∠E =∠EDF ,推出EF =FD ,再证明FD =FC 即可解决问题.(3)如图3中,取EC 的中点G ,连接GD.则GD ⊥BD.利用(1)中即可以及相似三角形的性质解决问题即可.本题属于三角形综合题,考查了直角三角形斜边中线的性质,相似三角形的判定和性质,等腰三角形的性质和判定等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.25.【答案】解:(1)一次函数y =−3x −3的图象与x 轴,y 轴分别交于A ,C 两点,则点A 、C 的坐标分别为(−1,0)、(0,−3),将点A 、B 、C 的坐标代入抛物线表达式得{0=a −b +c0=9a +3b +c c =−3,解得{a =1b =−2c =−3,故抛物线的表达式为:y =x 2−2x −3;(2)设直线BE 交y 轴于点M ,从抛物线表达式知,抛物线的对称轴为x =1, ∵CD//x 轴交抛物线于点D ,故点D(2,−3),由点B 、C 的坐标知,直线BC 与AB 的夹角为45°,即∠MCB =∠DCB =45°, ∵BC 恰好平分∠DBE ,故∠MBC =∠DBC , 而BC =BC ,故△BCD≌△BCM(AAS),∴CM =CD =2,故OM =3−2=1,故点M(0,−1),设直线BE 的表达式为:y =kx +b ,则{b =−13k +b =0,解得{k =13b =−1,故直线BE 的表达式为:y =13x −1;(3)过点P作PN//x轴交BC于点N,则△PFN∽△AFB,则AFPF =ABPN,而S△BFP=mS△BAF,则AFPF =1m=4PN,解得:m=14PN,①当m=12时,则PN=2,设点P(t,t2−2t−3),由点B、C的坐标知,直线BC的表达式为:y=x−3,当x=t−2时,y=t−5,故点N(t−2,t−5),故t−5=t2−2t−3,解得:t=1或2,故点P(2,−3)或(1,−4);②当点P(t,t2−2t−3)时,点N在直线BC上,∴点N(t2−2t,t2−2t−3),m=14PN=1 4[t−(t2−2t)]=−14(t−32)2+916,∵−14<0,故m的最大值为916.【知识点】二次函数综合【解析】(1)函数y=−3x−3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(−1,0)、(0,−3),将点A、B、C的坐标代入抛物线表达式,即可求解;(2)证明△BCD≌△BCM(AAS),则CM=CD=2,故OM=3−2=1,故点M(0,−1),即可求解;(3)过点P作PN//x轴交BC于点N,则△PFN∽△AFB,则AFPF =ABPN,而S△BFP=mS△BAF,则AFPF =1m=4PN,解得:m=14PN,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、三角形全等和相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.第31页,共31页。
2020年山东省泰安市中考数学试卷(附答案详解)
2020年山东省泰安市中考数学试卷一、选择题(本大题共12小题,共48.0分)1.(2011·江西省宜春市·模拟题)−12的倒数是()A. −2B. −12C. 2 D. 122.(2020·江苏省·期中考试)下列运算正确的是()A. 3xy−xy=2B. x3⋅x4=x12C. x−10÷x2=x−5D. (−x3)2=x63.(2021·山东省·单元测试)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A. 4×1012元B. 4×1010元C. 4×1011元D. 40×109元4.(2021·山东省济宁市·月考试卷)将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()A. 80°B. 100°C. 110°D. 120°5.(2021·全国·单元测试)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册12345人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A. 3,3B. 3,7C. 2,7D. 7,36.(2020·山东省泰安市·历年真题)如图,PA是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC//AB.则∠BAC等于()A. 20°B. 25°C. 30°D. 50°7.(2021·安徽省合肥市·期中考试)将一元二次方程x2−8x−5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A. −4,21B. −4,11C. 4,21D. −8,698.(2021·山东省聊城市·模拟题)如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为()A. 4B. 4√3C. 8√3 D. 2√339.(2021·山东省泰安市·模拟题)在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()A. B.C. D.10.(2020·山东省泰安市·历年真题)如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC=6cm,∠B=45°,沿虚线EF将纸片剪成两个全等的梯形,若∠BEF=30°,则AF的长为()A. 1cmB. √6cm C. (2√3−3)cm D. (2−√3)cm311.(2021·浙江省·单元测试)如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE//BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM//FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是()A. 1个B. 2个C. 3个D. 4个12.(2021·山东省·其他类型)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A. √2+1B. √2+12C. 2√2+1D. 2√2−12二、填空题(本大题共6小题,共24.0分)13. (2020·山东省泰安市·历年真题)方程组{x +y =165x +3y =72的解是______. 14. (2021·山东省·其他类型)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为A(0,3),B(−1,1),C(3,1).△A′B′C′是△ABC 关于x 轴的对称图形,将△A′B′C′绕点B′逆时针旋转180°,点A′的对应点为M ,则点M 的坐标为______.15. (2021·山东省枣庄市·模拟题)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC//AD ,BE ⊥AD ,斜坡AB 长26m ,斜坡AB 的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A 不动,则坡顶B 沿BC 至少向右移______m 时,才能确保山体不滑坡.(取tan50°=1.2) 16. (2021·贵州省贵阳市·单元测试)如图,点O 是半圆圆心,BE 是半圆的直径,点A ,D 在半圆上,且AD//BO ,∠ABO =60°,AB =8,过点D 作DC ⊥BE 于点C ,则阴影部分的面积是______.17. (2021·安徽省芜湖市·单元测试)已知二次函数y =ax 2+bx +c(a,b ,c 是常数,a ≠0)的y 与x 的部分对应值如下表:x −5 −4 −2 0 2 y 6 0 −6 −4 6下列结论:①a >0;②当x =−2时,函数最小值为−6;③若点(−8,y 1),点(8,y 2)在二次函数图象上,则y 1<y 2;④方程ax 2+bx +c =−5有两个不相等的实数根.其中,正确结论的序号是______.(把所有正确结论的序号都填上)18. (2021·重庆市市辖区·期中考试)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200=______.三、解答题(本大题共7小题,共78.0分)19. (2020·山东省泰安市·历年真题)(1)化简:(a −1+1a−3)÷a 2−4a−3; (2)解不等式:x+13−1<x−14.20. (2021·山东省威海市·模拟题)如图,已知一次函数y =kx +b 的图象与反比例函数y =m x 的图象交于点A(3,a),点B(14−2a,2).(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求△ACD的面积.21.(2021·广东省广州市·模拟题)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是______名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.22.(2021·山东省威海市·模拟题)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?23.(2020·山东省·历年真题)若△ABC和△AED均为等腰三角形,且∠BAC=∠EAD=90°.(1)如图(1),点B是DE的中点,判定四边形BEAC的形状,并说明理由;(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.求证:①EB=DC,②∠EBG=∠BFC.24.(2020·江苏省淮安市·单元测试)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD⊥DF.你认为此结论是否成立?______.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.25.(2020·四川省绵阳市·单元测试)若一次函数y=−3x−3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C 三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C作CD//x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.①当m=1时,求点P的坐标;2②求m的最大值.答案和解析1.【答案】A【知识点】倒数【解析】解:−1的倒数是−2.2故选:A.根据倒数的定义,直接解答即可.主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【答案】D【知识点】同底数幂的除法、负整数指数幂、同底数幂的乘法、幂的乘方与积的乘方、合并同类项【解析】解:A.3xy−xy=2xy,故本选项不合题意;B.x3⋅x4=x7,故本选项不合题意;C.x−10÷x2=x−12,故本选项不合题意;D.(−x3)2=x6,故本选项符合题意.故选:D.分别根据合并同类项法则,同底数幂的乘法法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.本题主要考查了合并同类项,同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.【答案】C【知识点】科学记数法-绝对值较大的数【解析】解:4000亿=400000000000=4×1011,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于等于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【知识点】三角形的外角性质、平行线的性质【解析】解:如图所示,∵AB//CD∴∠ABE=∠1=50°,又∵∠2是△ABE的外角,∴∠2=∠ABE+∠E=50°+60°=110°,故选:C.根据平行线的性质和三角形的外角的性质即可得到结论.此题考查了平行线的性质和外角的性质,熟练掌握平行线的性质是解本题的关键.5.【答案】A【知识点】中位数、众数【解析】【分析】本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.找到出现次数最多的数据,即为众数;求出第10、11个数据的平均数即可得这组数据的中位数,从而得出答案.【解答】=3(册),解:这20名同学读书册数的众数为3册,中位数为3+32故选A.6.【答案】B【知识点】圆周角定理、切线的性质【解析】【分析】本题考查的是切线的性质、圆周角定理、平行线的性质、等腰三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.连接OA,根据切线的性质得到∠PAO=90°,求出∠AOP,根据等腰三角形的性质、平行线的性质求出∠BOC,根据圆周角定理解答即可.【解答】解:连接OA,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∴∠AOP=90°−∠P=80°,∵OA=OB,∴∠OAB=∠OBA=50°,∵OC//AB,∴∠BOC=∠OBA=50°,∠BOC=25°,由圆周角定理得,∠BAC=12故选B.7.【答案】A【知识点】解一元二次方程-配方法【解析】【分析】本题主要考查用配方法解一元二次方程,熟练掌握用配方法解一元二次方程的一般步骤是解题的关键.将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【解答】解:∵x2−8x−5=0,∴x2−8x=5,则x2−8x+16=5+16,即(x−4)2=21,∴a=−4,b=21,故选A.8.【答案】B【知识点】勾股定理、圆内接四边形的性质、含30°角的直角三角形、圆周角定理【解析】【分析】本题考查了圆内接四边形的性质,圆周角定理,含30°角的直角三角形的性质,勾股定理,正确的识别图形是解题的关键.连接CD,根据等腰三角形的性质得到∠ACB=∠BAC=30°,根据圆内接四边形的性质得到∠D=180°−∠B=60°,求得∠CAD=30°,根据直角三角形的性质即可得到结论.【解答】解:连接CD,∵AB=BC,∠BAC=30°,∴∠ACB=∠BAC=30°,∴∠B=180°−30°−30°=120°,∴∠D=180°−∠B=60°∵AD是直径,∴∠ACD=90°,∴∠CAD=30°,∵AD=8,AD=4,∴CD=12∴AC=√AD2−CD2=√82−42=4√3,故选:B.9.【答案】C【知识点】二次函数的图象、一次函数的图象【解析】【分析】本题考查了二次函数的图象以及一次函数图象与系数的关系,根据a、b的正负确定一次函数图象经过的象限是解题的关键.根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【解答】解:A.二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故A错误;B.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,且与二次函数交于y轴负半轴的同一点,故B错误;C.二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故C正确;∵D.二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故D错误;故选C.10.【答案】D【知识点】平行四边形的性质、矩形的判定与性质【解析】解:过F作FH⊥BC于H,∵高AG=2cm,∠B=45°,∴BG=AG=2cm,∵FH⊥BC,∠BEF=30°,∴EH=√3AG=2√3,∵沿虚线EF将纸片剪成两个全等的梯形,∴AF=CE,∵AG⊥BC,FH⊥BC,∴AG//FH,∵AF//GH∴四边形AGHF是平行四边形,又∵AG⊥BC∴四边形AGHF是矩形,∴AF=GH,∴BC=BG+GH+HE+CE=2+2AF+2√3=6,∴AF=2−√3(cm),故选:D.根据直角三角形的边角关系求出BG,HE,再利用矩形的性质与判定得出AF=GH=CE 即可解答.此题考查平行四边形的性质,矩形的性质与判定及直角三角形的性质的知识.11.【答案】D【知识点】菱形的性质、矩形的性质、菱形的判定【解析】解:∵四边形ABCD是矩形,∴AB=CD,AB//CD,∠DAE=∠BCF=90°,OD=OB=OA=OC,AD=BC,AD//BC,∴∠DAN=∠BCM,∵BF⊥AC,DE//BF,∴DE⊥AC,∴∠DNA=∠BMC=90°,在△DNA和△BMC中,{∠DAN=∠BCM ∠DNA=∠BMC AD=BC,∴△DNA≌△BMC(AAS),∴DN=BM,∠ADE=∠CBF,故①正确;在△ADE和△CBF中,{∠ADE=∠CBF AD=BC∠DAE=∠BCF,∴△ADE≌△CBF(ASA),∴AE=FC,DE=BF,故③正确;∴DE−DN=BF−BM,即NE=MF,∵DE//BF,∴四边形NEMF是平行四边形,∴EM//FN,故②正确;∵AB=CD,AE=CF,∴BE=DF,∵BE//DF,∴四边形DEBF是平行四边形,∵AO=AD,∴AO=AD=OD,∴△AOD是等边三角形,∴∠ADO=∠DAN=60°,∴∠ABD=90°−∠ADO=30°,∵DE⊥AC,∴∠ADN=ODN=30°,∴∠ODN=∠ABD,∴DE=BE,∴四边形DEBF是菱形;故④正确;正确结论的个数是4个,故选:D.证△DNA≌△BMC(AAS),得出DN=BM,∠ADE=∠CBF,故①正确;证△ADE≌△CBF(ASA),得出AE=FC,DE=BF,故③正确;证四边形NEMF是平行四边形,得出EM//FN,故②正确;证四边形DEBF是平行四边形,证出∠ODN=∠ABD,则DE=BE,得出四边形DEBF是菱形;故④正确;即可得出结论.本题考查了矩形的性质、菱形的判定、平行四边形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、等腰三角形的判定等知识;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.12.【答案】B【知识点】坐标与图形性质、三角形的中位线定理、点与圆的位置关系【解析】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=12CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM 最大,∵OB=OD=2,∠BOD=90°,∴BD=2√2,∴CD=2√2+1,∴OM=12CD=√2+12,即OM的最大值为√2+12;故选:B .根据同圆的半径相等可知:点C 在半径为1的⊙B 上,通过画图可知,C 在BD 与圆B 的交点时,OM 最小,在DB 的延长线上时,OM 最大,根据三角形的中位线定理可得结论.本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM 为最大值是点C 的位置是关键,也是难点.13.【答案】{x =12y =4【知识点】灵活选择解法解二元一次方程(组)【解析】解:{ x +y =16 ①5x +3y =72 ② ②−3×①,得2x =24,∴x =12.把x =12代入①,得12+y =16,∴y =4.∴原方程组的解为{x =12y =4. 故答案为:{x =12y =4. 用代入法或加减法求解二元一次方程组即可.本题考查的是二元一次方程组的解法.掌握二元一次方程组的代入法、加减法是解决本题的关键.14.【答案】(−2,1)【知识点】旋转中的坐标变化*、中心对称的概念、轴对称中的坐标变化【解析】解:将△A′B′C′绕点B′逆时针旋转180°,如图所示:所以点M的坐标为(−2,1),故答案为:(−2,1).延长A′B′后得出点M,进而利用图中坐标解答即可.此题考查中心对称,关键是根据中心对称的性质画出图形解答.15.【答案】10【知识点】解直角三角形的应用【解析】解:在BC上取点F,使∠FAE=50°,过点F作FH⊥AD于H,∵BF//EH,BE⊥AD,FH⊥AD,∴四边形BEHF为矩形,∴BF=EH,BE=FH,∵斜坡AB的坡比为12:5,∴BEAE =125,设BE=12x,则AE=5x,由勾股定理得,AE2+BE2=AB2,即(5x)2+(12x)2=262,解得,x=2,∴AE=10,BE=24,∴FH=BE=24,在Rt△FAH中,tan∠FAH=FHAH,∴AH=EHtan50∘=20,∴BF=EH=AH−AE=10,∴坡顶B沿BC至少向右移10m时,才能确保山体不滑坡,故答案为:10.在BC上取点F,使∠FAE=50°,作FH⊥AD,根据坡度的概念求出BE、AE,根据正切的定义求出AH,结合图形计算,得到答案.本题考查的是解直角三角形的应用−坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.16.【答案】643π−8√3【知识点】扇形面积的计算、含30°角的直角三角形、三角形的面积、等边三角形的判定与性质【解析】【分析】本题考查了扇形的面积,等边三角形的判定和性质,解直角三角形,熟练掌握扇形的面积公式是解题的关键.连接OA,易求得圆O的半径为8,扇形的圆心角的度数,然后根据S阴影=S△AOB+S扇形OAD +S扇形ODE−S△BCD即可得到结论.【解答】解:连接OA,∵∠ABO=60°,OA=OB,∴△AOB是等边三角形,∵AB=8,∴⊙O的半径为8,∵AD//OB,∴∠DAO=∠AOB=60°,∵OA=OD,∴∠AOD=60°,∵∠AOB=∠AOD=60°,∴∠DOE=60°,∵DC⊥BE于点C,∴CD=√32OD=4√3,OC=12OD=4,∴BC=8+4=12,S阴影=S△AOB+S扇形OAD+S扇形ODE−S△BCD=12×8×4√3+2×60π×82360−12×12×4√3=64π3−8√3故答案为64π3−8√3.17.【答案】①③④【知识点】二次函数与一元二次方程、二次函数的最值、二次函数的性质、二次函数图象上点的坐标特征、根的判别式 【解析】 【分析】本题考查待定系数法求二次函数的解析式,二次函数的性质,理解和掌握二次函数的性质是正确判断的关键.任意取表格中的三组对应值,求出二次函数的关系式,再根据二次函数的性质进行判断即可. 【解答】解:将(−4,0)(0,−4)(2,6)代入y =ax 2+bx +c 得, {16a −4b +c =0c =−44a +2b +c =6,解得,{a =1b =3c =−4, ∴抛物线的关系式为y =x 2+3x −4, a =1>0,因此①正确;对称轴为x =−32,即当x =−32时,函数的值最小,因此②不正确;把(−8,y 1)(8,y 2)代入关系式得,y 1=64−24−4=36,y 2=64+24−4=84,所以y 1<y 2,因此③正确;方程ax 2+bx +c =−5,也就是x 2+3x −4=−5,即方程x 2+3x +1=0,由b 2−4ac =9−4=5>0可得x 2+3x +1=0有两个不相等的实数根,因此④正确; 正确的结论有:①③④, 故答案为:①③④.18.【答案】20110【知识点】数学传统文化-代数类、数式规律问题【解析】解:观察“杨辉三角”可知第n 个数记为a n =(1+2+⋯+n)=12n(n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.观察“杨辉三角”可知第n 个数记为a n =(1+2+⋯+n)=12n(n +1),依此求出a 4,a 200,再相加即可求解.此题考查了规律型:数字的变化类,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.19.【答案】解:(1)原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3=(a 2−4a +3a −3+1a −3)⋅a −3(a +2)(a −2) =(a −2)2a −3⋅a −3(a +2)(a −2)=a−2a+2;(2)去分母,得:4(x +1)−12<3(x −1), 去括号,得:4x +4−12<3x −3, 移项,得:4x −3x <−3−4+12, 合并同类项,得:x <5.【知识点】一元一次不等式的解法、分式的混合运算【解析】(1)先计算括号内异分母分式的加法,再将除法转化为乘法,继而约分即可得; (2)根据解一元一次不等式的基本步骤依次计算可得.本题主要考查分式的混合运算与解一元一次不等式,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解一元一次不等式的基本步骤.20.【答案】解:(1)∵点A(3,a),点B(14−2a,2)在反比例函数上,∴3×a =(14−2a)×2, 解得:a =4, 则m =3×4=12,故反比例函数的表达式为:y =12x;(2)∵a =4,故点A 、B 的坐标分别为(3,4)、(6,2),设直线AB 的表达式为:y =kx +b ,则{4=3k +b 2=6k +b ,解得{k =−23b =6,故一次函数的表达式为:y =−23x +6; 当x =0时,y =6,故点C(0,6),故OC =6,而点D 为点C 关于原点O 的对称点,则CD =2OC =12,△ACD的面积=12×CD⋅xA=12×12×3=18.【知识点】反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征、待定系数法求一次函数解析式、待定系数法求反比例函数解析式、一次函数与反比例函数综合【解析】本题考查了反比例函数与一次函数的交点,一次函数图象上点的坐标的特征,运用待定系数法确定函数关系式,三角形的面积公式,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.(1)点A(3,a),点B(14−2a,2)在反比例函数上,则3×a=(14−2a)×2,即可求解;(2)a=4,故点A、B的坐标分别为(3,4)、(6,2),求出一次函数的表达式为:y=−23x+6,则点C(0,6),故OC=6,进而利用三角形面积公式求解.21.【答案】80【知识点】扇形统计图、条形统计图、用列举法求概率(列表法与树状图法)【解析】解:(1)本次参加比赛的学生人数为18÷22.5%=80(名);故答案为:80;(2)D组人数为:80−16−18−20−8=18(名),把条形统计图补充完整如图:(3)扇形统计图中表示机器人的扇形圆心角α的度数为360°×1680=72°;(4)画树状图如图:共有9个等可能的结果,所选两名同学中恰好是1名男生1名女生的结果有5个,∴所选两名同学中恰好是1名男生1名女生的概率为59.(1)由B组的人数及其所占百分比可得本次参加比赛的学生人数;(2)求出D组人数,从而补全条形统计图;(3)由360°乘以A组所占的百分比即可;(4)画出树状图,由概率公式求解即可.本题考查了列表法或画树状图法、条形统计图和扇形统计图的有关知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.【答案】解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:84001.4x −4000x=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100−m)盒,依题意,得:(300−200)×m2+(300×0.7−200)×m2+(400−280)×100−m2+(400×0.7−280)×100−m2=5800,解得:m=40,∴100−m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.【知识点】分式方程的应用、一元一次方程的应用【解析】(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,根据用8400元购买的B种茶叶比用4000元购买的A种茶叶多10盒,即可得出关于x的分式方程,解之即可得出结论;(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100−m)盒,根据总利润=每盒的利润×销售数量,即可得出关于m的一元一次方程,解之即可得出结论.本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.23.【答案】解:(1)四边形BEAC是平行四边形,理由如下:∵△AED为等腰三角形,∠EAD=90°,B是DE的中点,∴∠E=∠BAE=45°,∠ABE=90°,∵△ABC是等腰三角形,∠BAC=90°,∴∠ABC=∠BAE=45°,∠ABE=∠BAC=90°,∴BC//AE,AC//BE,∴四边形BEAC是平行四边形;(2)①∵△ABC和△AED均为等腰三角形,∠BAC=∠EAD=90°,∴AE=AD,AB=AC,∠BAE=∠CAD,∴△AEB≌△ADC(SAS),∴BE=CD;②延长FG至点H,使GH=FG,∵G是EC的中点,∴EG=DG,又∵∠EGH=∠FGC,∴△EGH≌△CGF(SAS),∴∠BFC=∠H,CF=EH,∵CF=CD,CD=BE,∴EH=BE,∴∠H=∠EBG,∴∠EBG=∠BFC.【知识点】三角形的中位线定理、全等三角形的判定与性质【解析】(1)由等腰三角形的性质可得∠E=∠BAE=45°,∠ABE=90°,∠ABC=∠BAE=45°,∠ABE=∠BAC=90°,可证BC//AE,AC//BE,可得四边形BEAC是平行四边形;(2)①由“SAS”可证△AEB≌△ADC,可得BE=CD;②延长FG至点H,使GH=FG,由“SAS”可证△EGH≌△CGF,可得∠BFC=∠H,CF=EH,可得EH=BE,由等腰三角形的性质可得结论.本题考查了全等三角形的判定和性质,平行四边形的判定,添加恰当的辅助线构造全等三角形是本题的关键.24.【答案】是【知识点】三角形综合、勾股定理【解析】解:(1)如图(2)中,∵∠EDC=90°,EF=CF,∴DF=CF,∴∠FCD=∠FDC,∵∠ABC=90°,∴∠A+∠ACB=90°,∵BA=BD,∴∠A=∠ADB,∵∠ACB=∠FCD=∠FDC,∴∠ADB+∠FDC=90°,∴∠FDB=90°,∴BD⊥DF.故答案为是.(2)结论成立:理由:∵BD⊥DF,ED⊥AD,∴∠BDC+∠CDF=90°,∠EDF+∠CDF=90°,∴∠BDC=∠EDF,∵AB=BD,∴∠A =∠BDC , ∴∠A =∠EDF ,∵∠A +∠ACB =90°,∠E +∠ECD =90°,∠ACB =∠ECD , ∴∠A =∠E , ∴∠E =∠EDF , ∴EF =FD ,∵∠E +∠ECD =90°,∠EDF +∠FDC =90°, ∴∠FCD =∠FDC , ∴FD =FC , ∴EF =FC , ∴点F 是EC 的中点.(3)如图3中,取EC 的中点G ,连接GD.则GD ⊥BD .∴DG =12EC =92,∵BD =AB =6,在Rt △BDG 中,BG =√DG 2+BD 2=√(92)2+62=152,∴CB =152−92=3,在Rt △ABC 中,AC =√AB 2+BC 2=√62+32=3√5, ∵∠ACB =∠ECD ,∠ABC =∠EDC , ∴△ABC∽△EDC , ∴ACEC =BCCD , ∴3√59=3CD ,∴CD =9√55,∴AD =AC +CD =3√5+9√55=24√55.(1)证明∠FDC +∠BDC =90°可得结论.(2)结论成立:利用等角的余角相等证明∠E =∠EDF ,推出EF =FD ,再证明FD =FC 即可解决问题.(3)如图3中,取EC 的中点G ,连接GD.则GD ⊥BD.利用(1)中即可以及相似三角形的性质解决问题即可.本题属于三角形综合题,考查了直角三角形斜边中线的性质,相似三角形的判定和性质,等腰三角形的性质和判定等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.25.【答案】解:(1)一次函数y =−3x −3的图象与x 轴,y 轴分别交于A ,C 两点,则点A 、C 的坐标分别为(−1,0)、(0,−3),将点A 、B 、C 的坐标代入抛物线表达式得{0=a −b +c0=9a +3b +c c =−3,解得{a =1b =−2c =−3,故抛物线的表达式为:y =x 2−2x −3;(2)设直线BE 交y 轴于点M ,从抛物线表达式知,抛物线的对称轴为x =1, ∵CD//x 轴交抛物线于点D ,故点D(2,−3),由点B 、C 的坐标知,直线BC 与AB 的夹角为45°,即∠MCB =∠DCB =45°, ∵BC 恰好平分∠DBE ,故∠MBC =∠DBC , 而BC =BC ,故△BCD≌△BCM(AAS),∴CM =CD =2,故OM =3−2=1,故点M(0,−1),设直线BE 的表达式为:y =kx +b ,则{b =−13k +b =0,解得{k =13b =−1,故直线BE 的表达式为:y =13x −1;(3)过点P作PN//x轴交BC于点N,则△PFN∽△AFB,则AFPF =ABPN,而S△BFP=mS△BAF,则AFPF =1m=4PN,解得:m=14PN,①当m=12时,则PN=2,设点P(t,t2−2t−3),由点B、C的坐标知,直线BC的表达式为:y=x−3,当x=t−2时,y=t−5,故点N(t−2,t−5),故t−5=t2−2t−3,解得:t=1或2,故点P(2,−3)或(1,−4);②当点P(t,t2−2t−3)时,点N在直线BC上,∴点N(t2−2t,t2−2t−3),m=14PN=1 4[t−(t2−2t)]=−14(t−32)2+916,∵−14<0,故m的最大值为916.【知识点】二次函数综合【解析】(1)函数y=−3x−3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(−1,0)、(0,−3),将点A、B、C的坐标代入抛物线表达式,即可求解;(2)证明△BCD≌△BCM(AAS),则CM=CD=2,故OM=3−2=1,故点M(0,−1),即可求解;(3)过点P作PN//x轴交BC于点N,则△PFN∽△AFB,则AFPF =ABPN,而S△BFP=mS△BAF,则AFPF =1m=4PN,解得:m=14PN,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、三角形全等和相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.第31页,共31页。
2020山东省泰安市中考数学试题(解析版)
山东省泰安市2020年中考数学真题一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分) 1.12-的倒数是( ) A. B. C. 12- D. 12【答案】A【解析】【分析】根据倒数的概念求解即可.【详解】根据乘积等于1的两数互为倒数,可直接得到-12的倒数为. 故选A2.下列运算正确的是( )A. 32xy xy -=B. 3412x x x ⋅=C. 1025x x x --÷=D. ()236x x -= 【答案】D【解析】分析】根据整式的加减乘除法则分开讨论即可得到结果.【详解】A .32xy xy xy -=,故A 错误;B .343+47=⋅=x x x x ,故B 错误;C .12102120----=÷=x x x x ,故C 错误;D .()236x x -=,故D 正确;故答案选D .【点睛】本题主要考查了整式加减乘除的混合运算,准确进行幂的运算公式是解题的关键.3.2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()A. 12410⨯元B. 10410⨯元C. 11410⨯元D. 9410⨯元【答案】C【解析】【分析】 科学记数法就是将一个数字表示成a×10 n 的形式,其中1≤|a|<10,n 表示整数. n 的值为这个数的整数位数减1,由此即可解答.【详解】4000亿=400000000000=11410⨯.故选C .【点睛】本题考查了科学记数法,科学记数法就是将一个数字表示成a×10 n 的形式,正确确定a 、n 的值是解决问题的关键.4.将含30°角的一个直角三角板和一把直尺如图放置,若150∠=︒,则2∠等于( )A. 80°B. 100°C. 110°D. 120°【答案】C【解析】【分析】 如图,先根据平行线性质求出∠3,再求出∠4,根据四边形内角和为360°即可求解.【详解】解:如图,由题意得DE ∥GF ,∴∠1=∠3=50°,∴∠4=180°-∠3=130°,∴在四边形ACMN 中,∠2=360°-∠A-∠C-∠4=110°.故选:C【点睛】本题考查了平行线的性质,四边形的内角和定理,熟知相关定理是解题关键.5.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表: 册数/册1 2 3 4 5 人数/人2 5 7 4 2根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( )A. 3,3B. 3,7C. 2,7D. 7,3 【答案】A【解析】【分析】由人数最多所对应的册数可得出众数,由总人数是20人可得,中位数是将数据从小到大排序后的第10和11个所对应册数的平均数即可求得结果;【详解】由表中数据可得,人数基数最大的7人所应的册数是3,所以众数是3.将数据从小到大排序后,第10和第11个数据均为3,所以中位数为:3+3=32, 故选:A .【点睛】本题主要考查了中位数和众数的求解,准确分析表中数据得出结果是解题的关键.6.如图,PA 是O 的切线,点A 为切点,OP 交O 于点B ,10P ∠=︒,点C 在O 上,//OC AB .则BAC ∠等于( )A. 20°B. 25°C. 30°D. 50°【答案】B【解析】【分析】 连接OA ,求出∠POA= 80°,根据等腰三角形性质求出∠OAB=∠OBA=50°,进而求出∠AOC=130°,得到∠C=25°,根据平行线性质即可求解.【详解】解:如图,连接OA ,∵PA 是O 的切线,∴∠PAO=90°,∵10P ∠=︒,∴∠POA=90°-∠P=80°,∵OA=OB ,∴∠OAB=∠OBA=50°,∵//OC AB ,∴∠BOC=∠ABO=50°,∴∠AOC=∠AOB+∠BOC=130°,∵OA=OC ,∴∠OAC=∠C=25°,∵//OC AB ,∴∠BAC=∠C=25°.故选:B【点睛】本题考查了切线的性质,圆的半径都相等,平行线的性质等知识,熟知各知识点是解题关键.一般情况下,在解决与圆有关的问题时,根据圆的的半径都相等,可以得到等腰三角形,进而可以进行线段或角的转化.7.将一元二次方程2850x x --=化成2()x a b +=(a ,b 为常数)的形式,则a ,b 的值分别是( )A. 4-,21B. 4-,11C. 4,21D. 8-,69【答案】A【解析】【分析】根据配方法步骤解题即可.【详解】解:2850x x --=移项得285x x -=,配方得2284516x x -+=+,即()2421x -=,∴a =-4,b =21.故选:A【点睛】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方.8.如图,ABC 是O 的内接三角形,,30AB BC BAC =∠=︒,AD 是直径,8AD =,则AC 的长为( )A. 4B. 43C. 833D. 23【答案】B【解析】【分析】 连接BO ,根据圆周角定理可得60BOA ∠=︒,再由圆内接三角形的性质可得OB 垂直平分AC ,再根据正弦的定义求解即可.【详解】如图,连接OB ,∵ABC 是O 的内接三角形,∴OB 垂直平分AC ,∴1=2AM CM AC =,OM AM ⊥, 又∵,30AB BC BAC =∠=︒,∴30BCA ∠=︒,∴60BOA ∠=︒,又∵AD=8,∴AO=4,∴3sin 6042AM AM AO ︒=== 解得:23AM =∴243AC AM ==故答案选B .【点睛】本题主要考查了圆的垂径定理的应用,根据圆周角定理求角度是解题的关键.9.在同一平面直角坐标系内,二次函数2(0)y ax bx b a =++≠与一次函数y ax b =+的图象可能是( ) A. B. C. D.【答案】C【解析】【分析】根据一次函数和二次函数的图象和性质,分别判断a ,b 的符号,利用排除法即可解答.【详解】解:A 、由一次函数图象可知,a >0,b >0,由二次函数图象可知,a >0,b <0,不符合题意; B 、由一次函数图象可知,a >0,b <0,由二次函数图象可知,a <0,b <0,不符合题意;C 、由一次函数图象可知,a >0,b <0,由二次函数图象可知,a >0,b <0,符合题意;D 、由一次函数图象可知,a <0,b=0,由二次函数图象可知,a >0,b <0,不符合题意;故选:C .【点睛】本题考查二次函数的图象和一次函数的图象,解题的关键是明确一次函数和二次函数的性质. 10.如图,四边形ABCD 是一张平行四边形纸片,其高2cm AG =,底边6cm BC,45B ∠=︒,沿虚线EF将纸片剪成两个全等的梯形,若30BEF ∠=︒,则AF 的长为( )A. 1cmB. 63C. (233)cmD. (23)cm【答案】D【解析】【分析】过点F 作FM BC ⊥,AG=2,45B ∠=︒,可得BG=FM=2,令AF=x ,根据30BEF ∠=︒,根据正切值可得EM 的长,加起来等于BC 即可得到结果.【详解】如图所示,过点F 作FM BC ⊥交BC 于点M ,∵AG BC ⊥,45B ∠=︒,AG=2,∴BG=FM=2,AF=GM ,令AF=x ,∵两个梯形全等,∴AF=GM=EC=x ,又∵30BEF ∠=︒, ∴2=tan 303FMME =︒, ∴23ME =又∵BC=6, ∴2236BC BG GM ME EC x x =+++=+++=, ∴23x =故答案选D .【点睛】本题主要考查了利用特殊角的三角函数值及三角函数的意义进行求解,准确根据全等图形的性质判断边角是解题的关键.11.如图,矩形ABCD 中,,AC BD 相交于点O ,过点B 作BF AC ⊥交CD 于点F ,交AC 于点M ,过点D 作//DE BF 交AB 于点E ,交AC 于点N ,连接,FN EM .则下列结论:①DN BM =;②//EM FN ;③AE FC =;④当AO AD =时,四边形DEBF 是菱形.其中,正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】通过判断△AND≌△CMB即可证明①,再判断出△ANE≌△CMF证明出③,再证明出△NFM≌△MEN,得到∠FNM=∠EMN,进而判断出②,通过DF与EB先证明出四边形为平行四边形,再通过三线合一以及内角和定理得到∠NDO=∠ABD=30°,进而得到DE=BE,即可知四边形为菱形.【详解】∵BF⊥AC∴∠BMC=90°又∵//DE BF∴∠EDO=∠MBO,DE⊥AC∴∠DNA=∠BMC=90°∵四边形ABCD为矩形∴AD=BC,AD∥BC,DC∥AB∴∠ADB=∠CBD∴∠ADB-∠EDO=∠CBD-∠MBO即∠AND=∠CBM△AND与△CMB∵90 DNA BMCAND CBMAD BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AND≌△CMB(AAS)∴AN=CM,DN=BM,故①正确.∵AB∥CD∴∠NAE=∠MCF又∵∠DNA=∠BMC=90°∴∠ANE=∠CMF=90°在△ANE与△CMF中∵90ANE CMF AN CM NAE MCF ∠=∠=⎧⎪=⎨⎪∠=∠⎩∴△ANE ≌△CMF (ASA )∴NE=FM ,AE=CF ,故③正确.在△NFM 与△MEN 中∵90FM NE FMN ENM MN MN =⎧⎪∠=∠=︒⎨⎪=⎩∴△NFM ≌△MEN (SAS )∴∠FNM=∠EMN∴NF ∥EM ,故②正确.∵AE=CF∴DC-FC=AB-AE ,即DF=EB又根据矩形性质可知DF ∥EB∴四边形DEBF 为平行四边根据矩形性质可知OD=AO ,当AO=AD 时,即三角形DAO 为等边三角形∴∠ADO=60°又∵DN ⊥AC根据三线合一可知∠NDO=30°又根据三角形内角和可知∠ABD=180°-∠DAB-∠ADB=30° 故DE=EB∴四边形DEBF 为菱形,故④正确.故①②③④正确故选D .【点睛】本题矩形性质、全等三角形性质与证明、菱形的判定,能够找对相对应的全等三角形是解题关键.12.如图,点A ,B 的坐标分别为(2,0),(0,2)A B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A. 21B.122C. 221D.1222【答案】B【解析】【分析】如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OM<ON+MN,则当ON与MN 共线时,OM= ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答.【详解】解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM= ON+MN最大,∵(2,0),(0,2)A B,则△ABO为等腰直角三角形,∴2222OA OB+=N为AB的中点,∴ON=12 2AB=又∵M为AC的中点,∴MN为△ABC的中位线,BC=1,则MN=1212 BC=,∴122,∴OM1 22故答案选:B.【点睛】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON 与MN 共线时,OM= ON+MN 最大.二、填空题(本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分) 13.方程组16,5372x y x y +=⎧⎨+=⎩的解是___________. 【答案】124x y =⎧⎨=⎩【解析】【分析】利用加减法解方程即可.【详解】解:165372x y x y +=⎧⎨+=⎩①② ①×3得3348x y += ③,②-③得224x =,解得x =12,把x =12代入①得12+y=16,y =4,∴原方程组的解为124x y =⎧⎨=⎩. 故答案为:124x y =⎧⎨=⎩【点睛】本题主要考查二元一次方程组的解法中的加减消元法,解答的关键在于根据题目特点合理消元. 14.如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A ,B ,C 的坐标分别为(0,3)A ,(1,1)B -,(3,1)C .A B C '''是ABC 关于x 轴的对称图形,将A B C '''绕点B '逆时针旋转180°,点A '的对应点为M ,则点M 的坐标为________.【答案】(2,1)-【解析】【分析】根据题意,画出旋转后图形,即可求解【详解】解:如图,将A B C '''绕点B '逆时针旋转180°,所以点A '的对应点为M 的坐标为(2,1)-.故答案为:(2,1)-【点睛】本题考查平面直角坐标系内图形的对称,旋转,解题关键是理解对称旋转的含义,并结合网格解题.15.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.//,BC AD BE AD ⊥,斜坡AB 长26m ,斜坡AB 的坡比为12∶5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A 不动,则坡顶B 沿BC 至少向右移________m 时,才能确保山体不滑坡.(取tan50 1.2︒=)【答案】10【解析】【分析】如图,设点B 沿BC 向右移动至点H ,使得∠HAD=50°,过点H 作HF ⊥AD 于点F ,根据AB 及AB 的坡比,计算出BE 和AE 的长度,再根据∠HAF=50°,得出AF 的值即可解答.【详解】解:如图,设点B 沿BC 向右移动至点H ,使得∠HAD=50°,过点H 作HF ⊥AD 于点F , ∵AB=26,斜坡AB 的坡比为12∶5,则设BE=12a ,AE=5a ,∴()()22212526a a +=,解得:a=2,∴BE=24,AE=10,∴HF=BE=24,∵∠HAF=50°, 则24tan 50 1.2HF AF AF︒===,解得:AF=20, ∴BH=EF=20-10=10,故坡顶B 沿BC 至少向右移10m 时,才能确保山体不滑坡,故答案为:10.【点睛】本题考查的是解直角三角形的应用坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.16.如图,点O 是半圆圆心,BE 是半圆的直径,点A ,D 在半圆上,且//,60,8AD BO ABO AB ∠=︒=,过点D 作DC BE ⊥于点C ,则阴影部分的面积是________.【答案】64833π-【解析】【分析】求出半圆半径、OC 、CD 长,根据AD ∥BO ,得到ABD AOD S S =△△ ,根据=OCD AOE S S S -△阴影扇形即可求解 .【详解】解:连接OA ,∵60ABO ∠=︒,OA=OB ,∴△OAB 是等边三角形,∴OA=AB=8,∠AOB=60°∵AD ∥BO ,∴∠DAO=∠AOB=60°,∵OA=OD ,∴△OAD 是等边三角形,∴∠AOD=60°,∴∠DOE=60°,∴在Rt △OCD 中,sin6043,cos604CD OD OC OD =︒==︒=,∵AD ∥BO ,∴ABD AOD S S =△△ ,∴21208164=4438336023OCD AOE S S S ππ-=-⨯⨯-△阴影扇形.故答案为:64833π- 【点睛】本题考查了不规则图形面积的求法,解题的关键是根据根据AD ∥BO ,得到ABD AOD S S =△△ ,从而将阴影面积转化为扇形面积与三角形面积的差.17.已知二次函数2y ax bx c =++(,,a b c 是常数,0a ≠)的y 与x 的部分对应值如下表: x5- 4- 2- 0 2 y6 0 6- 4-6下列结论:①0a >; ②当2x =-时,函数最小值为6-;③若点()18,y -,点()28,y 在二次函数图象上,则12y y <;④方程25ax bx c ++=-有两个不相等的实数根.其中,正确结论的序号是__________________.(把所有正确结论的序号都填上)【答案】①③④【解析】【分析】先根据表格中的数据利用待定系数法求出抛物线的解析式,进而可直接判断①;由抛物线的性质可判断②;把点()18,y -和点()28,y 代入解析式求出y 1、y 2即可③;当y =﹣5时,利用一元二次方程的根的判别式即可判断④,进而可得答案.【详解】解:由抛物线过点(﹣5,6)、(2,6)、(0,﹣4),可得:25564264a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得:134a b c =⎧⎪=⎨⎪=-⎩,∴二次函数的解析式是234y x x =+-,∴a =1>0,故①正确; 当32x =-时,y 有最小值254-,故②错误; 若点()18,y -,点()28,y 在二次函数图象上,则136y =,284y =,∴12y y <,故③正确;当y =﹣5时,方程2345x x +-=-即2310x x ++=,∵23450∆=-=>,∴方程25ax bx c ++=-有两个不相等的实数根,故④正确;综上,正确的结论是:①③④.故答案为:①③④.【点睛】本题以表格的形式考查了待定系数法求二次函数的解析式、二次函数的性质以及一元二次方程的根的判别式等知识,属于常考题型,熟练掌握二次函数与一元二次方程的基本知识是解题的关键. 18.右表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,……,我们把第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,……,第n 个数记为n a ,则4200a a +=_________.【答案】20110【解析】【分析】根据所给数据可得到关系式()12n n n a +=,代入即可求值. 【详解】由已知数据1,3,6,10,15,……,可得()12n n n a +=,∴445102a ⨯==,200200201201002a ⨯==, ∴420020100+10=20110+=a a .故答案为20110.【点睛】本题主要考查了数字规律题的知识点,找出关系式是解题的关键.三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19.(1)化简:214133a a a a -⎛⎫-+÷ ⎪--⎝⎭; (2)解不等式:11134x x +--<. 【答案】(1)22a a -+;(2)5x < 【解析】【分析】 (1)先把小括号内的分式通分后,再把除法转化为乘法,约分后即可把分式化为最简;(2)先去掉不等式中的分母,然后去括号,移项,合并同类项,最后化系数为1即可求出不等式的解.【详解】(1)解:214133a a a a -⎛⎫-+÷ ⎪--⎝⎭ (1)(3)1(2)(2)333a a a a a a a --+-⎡⎤=+÷⎢⎥---⎣⎦ 243133(2)(2)a a a a a a -++-=⨯-+- 2(2)(2)(2)a a a -=+- 22a a -=+ (2)解:不等式两边都乘以12,得4(1)123(1)x x +-<-即441233x x +-<-4383x x -<-解得5x <∴原不等式的解集是5x <.【点睛】第(1)题考查了分式的化简,熟练运用分式的运算法则是解决问题的关键;第(2)题考查了一元一次不等式的解法,熟知解一元一次不等式的一般步骤是解决问题的关键.20.如图,已知一次函数y kx b =+的图象与反比例函数m y x =的图象交于点()3,A a ,点(142,2)B a -. (1)求反比例函数的表达式;(2)若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,求ACD △的面积.【答案】(1)12y x =;(2)18 【解析】【分析】(1)根据点A 、B 都在反比例函数图象上,得到关于a 的方程,求出a ,即可求出反比例函数解析式;(2)根据点A 、B 都在一次函数y kx b =+的图象上,运用待定系数法求出直线解析式,进而求出点C 坐标,求出CD 长,即可求出ACD △的面积.【详解】解:(1)∵点()3,A a ,点(142,2)B a -在反比例函数m y x =的图象上, ∴3(142)2a a ⨯=-⨯.解得4a =.∴3412m =⨯=.∴反比例函数的表达式是12y x =. (2)∵4a =,∴点A ,点B 的坐标分别是(3,4),(6,2).∵点A ,点B 在一次函数y kx b =+的图象上,∴43,26.k b k b =+⎧⎨=+⎩解得2 , 36.kb⎧=-⎪⎨⎪=⎩∴一次函数的表达式是263y x=-+.当0x=时,6y=.∴点C的坐标是()0,6.∴6OC=.∵点D是点C关于原点O的对称点,∴2CD OC=.作AE y⊥轴于点E,∴3AE=.12ACDS CD AE=⋅CO AE=⋅63=⨯18=【点睛】本题为一次函数与反比例函数综合题,难度不大,解题关键是根据点A、B都在反比例函数图象上,得到关键a的方程,求出a,得到点A、B坐标.21.为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是_________名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.【答案】(1)80;(2)见解析;(3)72º;(4)图表见解析,5 9【解析】【分析】(1)根据题目中已知B的占比和人数已知,可求出总人数;(2)用总人数减去其他人数可求出D的人数,然后补全条图即可;(3)先算出A的占比,再用占比乘以360°即可;(4)根据列表法进行求解即可;【详解】(1)由题可知:1822.5%=80÷(人),∴参加学生的人数是80人;(2)由(1)可得:D的人数为80-16-18-20-8=18,画图如下:(3)由(1)可得,A的占比是16 80,∴163607280α︒︒=⨯=.(4)列表如下:C男C女1 C女2得到所有等可能的情况有9种,其中满足条件的有5种:(C 女1,E 男1),(C 女2,E 男1),(C 女1,E 男2),C 女2,E 男2),(C 男,E 女)所以所选两名同学中恰好是1名男生1名女生的概率是59. 【点睛】本题主要考查了条形统计图与扇形统计图的结合,在解题过程中准确理解题意,列表格求概率是关键.22.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍. (1)A ,B 两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒? 【答案】(1)A ,B 两种茶叶每盒进价分别为200元,280元;(2)第二次购进A 种茶叶40盒,B 种茶叶60盒 【解析】 【分析】(1)设A 种茶叶每盒进价为x 元,则B 种茶叶每盒进价为1.4x 元,根据“4000元购进了A 种茶叶若干盒,用8400元购进B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒”列出分式方程解答,并检验即可; (2)设第二次A 种茶叶购进m 盒,则B 种茶叶购进()100m -盒,根据题意,表达出打折前后,A ,B 两种茶叶的利润,列出方程即可解答.【详解】解:(1)设A 种茶叶每盒进价为x 元,则B 种茶叶每盒进价为1.4x 元. 根据题意,得4000840010 1.4x x+=. 解得200x =.经检验:200x =是原方程的根. ∴1.4 1.4200280x =⨯=(元).∴A ,B 两种茶叶每盒进价分别为200元,280元.(2)设第二次A 种茶叶购进m 盒,则B 种茶叶购进()100m -盒.打折前A 种茶叶的利润为100502mm ⨯=. B 种茶叶的利润为1001206000602mm -⨯=-. 打折后A 种茶叶的利润为1052mm ⨯=. B 种茶叶的利润为0.由题意得:5060006055800m m m +-+=. 解方程,得:40m =.∴1001004060m -=-=(盒).∴第二次购进A 种茶叶40盒,B 种茶叶60盒.【点睛】本题考查了分式方程及一元一次方程的实际应用问题,解题的关键是设出未知数,找出等量关系,列出方程,并注意分式方程一定要检验.23.若ABC 和AED 均为等腰三角形,且90BAC EAD ∠=∠=︒.(1)如图(1),点B 是DE 的中点,判定四边形BEAC 的形状,并说明理由;(2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF CD =.求证:①EB DC =,②EBG BFC ∠=∠.【答案】(1)四边形BEAC 是平行四边形,证明见解析;(2)①见解析;②见解析 【解析】 【分析】(1)利用等腰直角三角形的性质证得45BAE ∠=︒,45CBA ∠=︒,推出//BC EA ,再根据平行于同一直线的两直线平行即可推出结论;(2)①利用“SAS ”证得AEB ADC △≌△,即可证明结论;②延长FG 至点H ,使GH FG =,证得EHG CFG ≌,推出BFC H CF EH ∠=∠=,,利用①的结论即可证明EBG BFC ∠=∠.【详解】(1)证明:四边形BEAC 是平行四边形. 理由如下:∵EAD 为等腰三角形且90EAD ∠=︒, ∴45E ∠=︒, ∵B 是DE 的中点, ∴AB DE ⊥, ∴45BAE ∠=︒,∵ABC 是等腰三角形,90BAC ∠=︒, ∴45CBA ∠=︒, ∴BAE CBA =∠∠, ∴//BC EA , 又∵AB DE ⊥,∴90EBA BAC ∠=∠=︒. ∴//BE AC .∴四边形BEAC 是平行四边形.(2)证明:①∵AED 和ABC 为等腰三角形, ∴AE AD AB AC ==,, ∵90EAD BAC ∠=∠=︒,∴EAD DAB BAC DAB ∠+∠=∠+∠, 即EAB DAC ∠=∠, ∴AEB ADC △≌△, ∴EB DC =;②延长FG 至点H ,使GH FG =.∵G 是EC 中点, ∴=EG CG , 又EGH FGC ∠=∠, ∴EHG CFG ≌,∴BFC H CF EH ∠=∠=,, ∵CF CD =, ∴BE CF =, ∴BE EH =, ∴EBG H ∠=∠, ∴EBG BFC ∠=∠.【点睛】本题考查了平行四边形判定,等腰直角三角形的判定和性质,全等三角形的判定和性质,正确作出辅助线构建全等三角形是解答(2)②的关键.24.小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,ACB ∠与ECD ∠恰好为对顶角,90ABC CDE ∠=∠=︒,连接BD ,AB BD =,点F 是线段CE 上一点.探究发现:(1)当点F 为线段CE 的中点时,连接DF (如图(2),小明经过探究,得到结论:BD DF ⊥.你认为此结论是否成立?_________.(填“是”或“否”) 拓展延伸:(2)将(1)中的条件与结论互换,即:若BD DF ⊥,则点F 为线段CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由. 问题解决:(3)若6,9AB CE ==,求AD 的长.【答案】(1)是;(2)结论成立,理由见解析;(3)5【解析】 【分析】(1)利用等角的余角相等求出∠A=∠E ,再通过AB=BD 求出∠A=∠ADB ,紧接着根据直角三角形斜边的中线等于斜边的一半求出FD=FE=FC ,由此得出∠E=∠FDE ,据此进一步得出∠ADB=∠FDE ,最终通过证明∠ADB+∠EDC=90°证明结论成立即可;(2)根据垂直的性质可以得出BDC CDF ∠+∠=90°,EDF CDF ∠+∠=90°,从而可得BDC EDF ∠=∠,接着证明出A EDF ∠=∠,利用A E ∠=∠可知E EDF ∠=∠,从而推出=EF FD ,最后通过证明ECD CDF ∠=∠得出CF DF =,据此加以分析即可证明结论; (3)如图,设G 为EC 的中点,连接GD ,由(1)得DG BD ⊥,故而92GD GC ==,在Rt GDB △中,利用勾股定理求出152GB =,由此得出159322CB =-=,紧接着,继续通过勾股定理求出AC ==ABCEDC 3CD=,从而求出CD =. 【详解】(1)∵∠ABC=∠CDE=90°, ∴∠A+∠ACB=∠E+∠ECD , ∵∠ACB=∠ECD , ∴∠A=∠E , ∵AB=BD ,∴∠A=∠ADB , 在Rt ECD △中, ∵F 是斜边CE 的中点, ∴FD=FE=FC , ∴∠E=∠FDE , ∵∠A=∠E , ∴∠ADB=∠FDE , ∵∠FDE+∠FDC=90°, ∴∠ADB+∠FDC=90°, 即∠FDB=90°, ∴BD ⊥DF ,结论成立, 故答案为:是;(2)结论成立,理由如下: ∵BD DF ⊥,ED AD ⊥∴BDC CDF ∠+∠=90°,EDF CDF ∠+∠=90°, ∴BDC EDF ∠=∠, ∵AB BD =, ∴A BDC ∠=∠. ∴A EDF ∠=∠. 又∵A E ∠=∠, ∴E EDF ∠=∠. ∴=EF FD .又E ECD ∠+∠=90°,EDF FDC ∠+∠=90°,E EDF ∠=∠, ∴ECD CDF ∠=∠, ∴CF DF =. ∴CF EF =. ∴F 为CE 的中点;(3)如图,设G 为EC 的中点,连接GD ,由(1)可知DG BD ⊥,∴1922GD EC EG GC ====, 又∵6BD AB ==,在Rt GDB △中,22915622GB ⎛⎫=+= ⎪⎝⎭,∴159322CB =-=, 在Rt ABC 中,226335AC =+= 在ABC 与EDC △中,∵∠ABC=∠EDC ,∠ACB=∠ECD , ∴ABC EDC ,353CD=, ∴955CD =,∴952453555AD AC CD =+==.【点睛】本题主要考查了直角三角形的性质和相似三角形的性质及判定的综合运用,熟练掌握相关方法是解题关键.25.若一次函数33y x =--的图象与x 轴,y 轴分别交于A ,C 两点,点B 的坐标为()3,0,二次函数2y ax bx c =++的图象过A ,B ,C 三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C 作//CD x 轴交抛物线于点D ,点E 在抛物线上(y 轴左侧),若BC 恰好平分DBE ∠.求直线BE 的表达式;(3)如图(2),若点P 在抛物线上(点P 在y 轴右侧),连接AP 交BC 于点F ,连接BP ,BFPBAFS mS=.①当12m =时,求点P 的坐标; ②求m 的最大值.【答案】(1)223y x x =--;(2)113y x =-;(3)①点(2,3)P -或(1,4)-P ;②916m =最大值 【解析】 【分析】(1)先求的点A 、C 的坐标,再用待定系数法求二次函数的解析式即可;(2)设BE 交OC 于点M .由(3,0),(0,3)B C -可得OB OC =,45OBC OCB ︒∠=∠=.再由//CD AB ,根据平行线的性质可得45BCD ︒∠=,所以OCB BCD ∠=∠.已知BC 平分DBE ∠,根据角平分线的定义可得EBC DBC ∠=∠.利用AAS 证得MBC DBC ≌.由全等三角形的性质可得CM CD =. 由此即可求得点M 的坐标为(0,-1).再由(3,0)B ,即可求得直线BE 解析式为113y x =-; (3)①由12BFPBAFSS =可得12PF AF =.过点P 作//PN AB 交BC 于点N ,则ABF PNF ∽.根据相似三角形的性质可得2AB NP =.由此即可求得2NP =.设()2,23P t t t --,可得2233N t t x --=-.所以22N x t t =-.由此即可得()22PN t t t =--=2,解得122,1t t ==.即可求得点(2,3)P -或(1,4)-P ;②由①得4PN m =.即()22213442169t t t m t --⎛⎫==--+ ⎪⎝⎭.再根据二次函数的性质即可得916m =最大值.【详解】(1)解:令330x --=,得1x =-.令0x =时,3y =-. ∴(1,0),(0,3)A C --. ∵抛物线过点(0,3)C -, ∴3c =-.则23y ax bx =+-,将(1,0),(3,0)A B -代入得03,093 3.a b a b =--⎧⎨=+-⎩解得1,2.a b =⎧⎨=-⎩∴二次函数表达式为223y x x =--.(2)解:设BE 交OC 于点M . ∵(3,0),(0,3)B C -,∴OB OC =,45OBC OCB ︒∠=∠=. ∵//CD AB , ∴45BCD ︒∠=. ∴OCB BCD ∠=∠. ∵BC 平分DBE ∠, ∴EBC DBC ∠=∠. 又∵BC BC =, ∴MBC DBC ≌.∴CM CD =.由条件得:(2,3)D -.∴2CD CM ==.∴321OM =--.∴(0,1)M -.∵(3,0)B ,∴直线BE 解析式为113y x =-.(3)①12BFP BAF S S =,∴12PF AF =. 过点P 作//PN AB 交BC 于点N ,则ABF PNF ∽.∴2AB NP =.∵4AB =,∴2NP =.∵直线BC 的表达式为3y x =-,设()2,23P t t t --, ∴2233N t t x --=-.∴22N x t t =-.∴()22PN t t t =--,则()222t t t --=,解得122,1t t ==.∴点(2,3)P -或(1,4)-P .②由①得:4PN m =. ∴()()222222331391344442442916t t t t t t t m t t ----⎡⎤-+⎛⎫⎛⎫====⨯--+=--+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦. ∴m 有最大值,916m =最大值. 【点睛】本题是二次函数综合题,主要考查了一次函数与坐标轴的交点坐标、待定系数法求二次函数及一次函数的解析式,相似三角形的判定与性质,解决第(2)问时,求得点M 的坐标是关键;解决(3)①问时,作出辅助线求得2NP =是解题的关键;解决(3)②问时,构建函数模型是解决问题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年山东省泰安市中考数学试卷
一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)的倒数是()
A.﹣2B.﹣C.2D.
2.(4分)下列运算正确的是()
A.3xy﹣xy=2B.x3•x4=x12
C.x﹣10÷x2=x﹣5D.(﹣x3)2=x6
3.(4分)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为()
A.4×1012元B.4×1010元C.4×1011元D.40×109元4.(4分)将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()
A.80°B.100°C.110°D.120°
5.(4分)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:
册数/册12345
人数/人25742
根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()
A.3,3B.3,7C.2,7D.7,3
6.(4分)如图,P A是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC∥AB.则∠BAC等于()
A.20°B.25°C.30°D.50°
7.(4分)将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b 的值分别是()
A.﹣4,21B.﹣4,11C.4,21D.﹣8,69
8.(4分)如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD =8,则AC的长为()
A.4B.4C.D.2
9.(4分)在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b 的图象可能是()
A.
B.
C.
D.
10.(4分)如图,四边形ABCD是一张平行四边形纸片,其高AG=2cm,底边BC=6cm,∠B=45°,沿虚线EF将纸片剪成两个全等的梯形,若∠BEF=30°,则AF的长为()
A.lcm B.cm C.(2﹣3)cm D.(2﹣)cm 11.(4分)如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE∥BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:
①DN=BM;
②EM∥FN;
③AE=FC;
④当AO=AD时,四边形DEBF是菱形.
其中,正确结论的个数是()
A.1个B.2个C.3个D.4个
12.(4分)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()
A.+1B.+C.2+1D.2﹣
二、填空题(本大题共6小题,满分24分.只要求写出最后结果,每小题填对得4分)13.(4分)方程组的解是.
14.(4分)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(﹣1,1),C(3,1).△A'B'C′是△ABC 关于x轴的对称图形,将△A'B'C'绕点B'逆时针旋转180°,点A'的对应点为M,则点M 的坐标为.
15.(4分)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移m时,才能确保山体不滑坡.(取tan50°=1.2)
16.(4分)如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是.
17.(4分)已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:
x﹣5﹣4﹣202
y60﹣6﹣46
下列结论:
①a>0;
②当x=﹣2时,函数最小值为﹣6;
③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;
④方程ax2+bx+c=﹣5有两个不相等的实数根.
其中,正确结论的序号是.(把所有正确结论的序号都填上)
18.(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=.
三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)
19.(10分)(1)化简:(a﹣1+)÷;
(2)解不等式:﹣1<.
20.(9分)如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A(3,a),点B(14﹣2a,2).
(1)求反比例函数的表达式;
(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求△ACD的面积.
21.(11分)为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;
B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.
根据统计图中的信息解答下列问题:
(1)本次参加比赛的学生人数是名;
(2)把条形统计图补充完整;
(3)求扇形统计图中表示机器人的扇形圆心角α的度数;
(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.
22.(11分)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.
(1)A,B两种茶叶每盒进价分别为多少元?
(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?
23.(12分)若△ABC和△AED均为等腰三角形,且∠BAC=∠EAD=90°.(1)如图(1),点B是DE的中点,判定四边形BEAC的形状,并说明理由;
(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.
求证:①EB=DC,
②∠EBG=∠BFC.
24.(12分)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.
探究发现:
(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD ⊥DF.你认为此结论是否成立?.(填“是”或“否”)
拓展延伸:
(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.
问题解决:
(3)若AB=6,CE=9,求AD的长.
25.(13分)若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;
(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.
①当m=时,求点P的坐标;
②求m的最大值.。