各类排序算法

合集下载

十大经典排序算法总结

十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。

排序的几种方式

排序的几种方式

排序的几种方式在日常生活中,我们经常需要对事物进行排序,以便更好地组织和理解信息。

排序是一种将元素按照一定的规则进行排列的方法,可以应用于各种领域,如数字排序、字母排序、时间排序等。

本文将介绍几种常用的排序方式,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。

一、冒泡排序冒泡排序是一种简单直观的排序方法,通过比较相邻元素的大小,将较大的元素逐渐“冒泡”到右侧,较小的元素逐渐“沉底”到左侧。

这个过程会不断重复,直到所有元素都按照升序排列。

冒泡排序的基本思想是从第一个元素开始,依次比较相邻的两个元素,如果前面的元素大于后面的元素,则交换它们的位置。

经过一轮比较后,最大的元素会“冒泡”到最右侧,然后再对剩下的元素进行相同的比较,直到所有元素都有序排列。

二、选择排序选择排序是一种简单直观的排序方法,它的基本思想是每次从待排序的元素中选择最小(或最大)的元素,放到已排序序列的末尾,直到所有元素都有序排列。

选择排序的过程可以分为两个部分:首先,在未排序的序列中找到最小(或最大)的元素,然后将其放到已排序序列的末尾;其次,将剩下的未排序序列中的最小(或最大)元素找到,并放到已排序序列的末尾。

这个过程会不断重复,直到所有元素都有序排列。

三、插入排序插入排序是一种简单直观的排序方法,它的基本思想是将待排序的元素逐个插入到已排序序列的适当位置,最终得到一个有序序列。

插入排序的过程可以分为两个部分:首先,将第一个元素看作已排序序列,将剩下的元素依次插入到已排序序列的适当位置;其次,重复上述过程,直到所有元素都有序排列。

插入排序的过程类似于整理扑克牌,将新抓到的牌插入到已有的牌中。

四、快速排序快速排序是一种常用的排序方法,它的基本思想是通过一趟排序将待排序序列分割成独立的两部分,其中一部分的所有元素都小于另一部分的所有元素。

然后对这两部分继续进行排序,直到整个序列有序。

快速排序的过程可以分为三个步骤:首先,从序列中选择一个基准元素;其次,将比基准元素小的元素放在左侧,比基准元素大的元素放在右侧;最后,递归地对左右两个部分进行排序。

排序算法十大经典方法

排序算法十大经典方法

排序算法十大经典方法
排序算法是计算机科学中的经典问题之一,它们用于将一组元素按照一定规则排序。

以下是十大经典排序算法:
1. 冒泡排序:比较相邻元素并交换,每一轮将最大的元素移动到最后。

2. 选择排序:每一轮选出未排序部分中最小的元素,并将其放在已排序部分的末尾。

3. 插入排序:将未排序部分的第一个元素插入到已排序部分的合适位置。

4. 希尔排序:改进的插入排序,将数据分组排序,最终合并排序。

5. 归并排序:将序列拆分成子序列,分别排序后合并,递归完成。

6. 快速排序:选定一个基准值,将小于基准值的元素放在左边,大于基准值的元素放在右边,递归排序。

7. 堆排序:将序列构建成一个堆,然后一次将堆顶元素取出并调整堆。

8. 计数排序:统计每个元素出现的次数,再按照元素大小输出。

9. 桶排序:将数据分到一个或多个桶中,对每个桶进行排序,最后输出。

10. 基数排序:按照元素的位数从低到高进行排序,每次排序只考虑一位。

以上是十大经典排序算法,每个算法都有其优缺点和适用场景,选择合适的算法可以提高排序效率。

10大排序方法

10大排序方法

10大排序方法10大排序方法在计算机科学和数据处理中,排序是一项基础且重要的任务。

通过排序,我们可以将一组数据按照特定规则进行排列,使得数据更易于查找和分析。

下面介绍了10种常用的排序方法,它们在不同场景下具有不同的优势和适用性。

1. 冒泡排序(Bubble Sort)冒泡排序是一种简单而直观的排序算法,它通过重复地比较相邻元素并交换位置来实现排序。

该算法的核心思想是将较大的元素逐渐“冒泡”到数列的末尾。

2. 选择排序(Selection Sort)选择排序的思想是从待排序的数据中选择出最小(或最大)的元素,放在已排序序列的末尾。

该过程不断重复,直到所有元素排序完成。

3. 插入排序(Insertion Sort)插入排序是一种简单且高效的排序算法,它的基本思想是将待排序数据分为已排序和未排序两部分,每次从未排序数据中取出一个元素,将其插入到已排序数据的合适位置。

希尔排序是插入排序的改进版本,它通过使用不同的间隔序列对数据进行多次分组排序,最终实现整体有序。

希尔排序在处理中等大小的数据集时具有较好的性能。

5. 归并排序(Merge Sort)归并排序是一种分治法的典型应用,它将待排序数据不断地分割成小块,然后逐步合并这些小块,以得到完整的有序序列。

归并排序在处理大规模数据时具有较好的稳定性和效率。

6. 快速排序(Quick Sort)快速排序是一种高效的排序算法,它采用分治的思想,通过选取一个基准元素将数据分为左右两部分,并分别对左右两部分进行排序。

快速排序通常是性能最好的排序算法之一。

7. 堆排序(Heap Sort)堆排序是利用堆这种数据结构的一种排序算法。

它通过建立最大(或最小)堆,并不断从堆顶取出最大(或最小)元素,实现排序的过程。

堆排序在处理大规模数据时具有较好的性能。

8. 计数排序(Counting Sort)计数排序是一种非比较性的排序算法,适用于数据范围较小且取值离散的情况。

计数排序通过统计每个元素出现的次数,从而确定每个元素在有序序列中的位置。

排序算法数学公式

排序算法数学公式

排序算法数学公式排序算法是计算机科学中非常重要的一项技术,用于对一组数据进行排序。

不同的排序算法有不同的实现方式和效率,并且在不同的应用场景下会有不同的选择。

本文将介绍几种常见的排序算法,并通过数学公式的方式进行解释,帮助读者理解和选择适合自己需求的排序算法。

1. 冒泡排序算法冒泡排序算法通过比较相邻的元素大小,依次将较大(或较小)的元素交换到右侧。

该过程类似于气泡从水底冒出来的过程,因此得名冒泡排序。

冒泡排序是一种简单但效率较低的排序算法,其时间复杂度为O(n^2)。

冒泡排序的数学公式为:```for i in range(n):for j in range(0, n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]```2. 插入排序算法插入排序算法的基本思想是将一个元素插入到已排序好的序列中的适当位置,使得插入后的序列仍然有序。

插入排序的时间复杂度也是O(n^2),但相比冒泡排序,其效率要高一些。

插入排序的数学公式为:```for i in range(1, n):key = arr[i]j = i-1while j >= 0 and arr[j] > key:arr[j+1] = arr[j]j -= 1arr[j+1] = key```3. 选择排序算法选择排序算法每次从未排序的部分选择最小(或最大)的元素,然后将其放到已排序序列的末尾。

选择排序的时间复杂度也是O(n^2),但相比冒泡排序和插入排序,其交换次数较少,因此效率更高一些。

选择排序的数学公式为:```for i in range(n):min_idx = ifor j in range(i+1, n):if arr[j] < arr[min_idx]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]```4. 快速排序算法快速排序算法是一种分治的排序算法,通过选择一个元素作为基准值,将序列划分为左右两个子序列,并递归地对子序列进行排序。

【十大经典排序算法(动图演示)】 必学十大经典排序算法

【十大经典排序算法(动图演示)】 必学十大经典排序算法

【十大经典排序算法(动图演示)】必学十大经典排序算法0.1 算法分类十种常见排序算法可以分为两大类:比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。

非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。

0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。

不稳定:如果a原本在b的前面,而a=b,排序之后a 可能会出现在b 的后面。

时间复杂度:对排序数据的总的操作次数。

反映当n变化时,操作次数呈现什么规律。

空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。

1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。

它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。

走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

1.1 算法描述比较相邻的元素。

如果第一个比第二个大,就交换它们两个;对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;针对所有的元素重复以上的步骤,除了最后一个;重复步骤1~3,直到排序完成。

1.2 动图演示1.3 代码实现1.unction bubbleSort(arr) {2. varlen = arr.length;3. for(vari = 0; i arr[j+1]) {// 相邻元素两两对比6. vartemp = arr[j+1];// 元素交换7. arr[j+1] = arr[j];8. arr[j] = temp;9. }10. }11. }12. returnarr;13.}2、选择排序(Selection Sort)选择排序(Selection-sort)是一种简单直观的排序算法。

8种排序算法

8种排序算法

J=2(38) [38 49] 65 97 76 13 27 49
J=3(65) [38 49 65] 97 76 13 27 49
J=4(97) [38 49 65 97] 76 13 27 49
J=5(76) [38 49 65 76 97] 13 27 49
2. 堆的定义: N个元素的序列K1,K2,K3,...,Kn.称为堆,当且仅当该序列满足特性:
Ki≤K2i Ki ≤K2i+1(1≤ I≤ [N/2])
堆实质上是满足如下性质的完全二叉树:树中任一非叶子结点的关键字均大于等于其孩子结点的关键字。例如序列10,15,56,25,30,70就是一个堆,它对应的完全二叉树如上图所示。这种堆中根结点(称为堆顶)的关键字最小,我们把它称为小根堆。反之,若完全二叉树中任一非叶子结点的关键字均大于等于其孩子的关键字,则称之为大根堆。
(6)基数排序
基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以其是稳定的排序算法。
2. 排序过程:
【示例】:
初始关键字 [49 38 65 97 76 13 27 49]
第一趟排序后 13 [38 65 97 76 49 27 49]
第二趟排序后 13 27 [65 97 76 49 38 49]
第三趟排序后 13 27 38 [97 76 49 65 49]
其次,说一下稳定性的好处。排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。另外,如果排序算法稳定,对基于比较的排序算法而言,元素交换的次数可能会少一些(个人感觉,没有证实)。

十种排序方法

十种排序方法

十种排序方法排序是计算机科学中常见的操作,它将一组数据按照一定的规则进行重新排列,以便更方便地进行查找、比较和分析。

在本文中,我将介绍十种常见的排序方法,并对它们的原理和特点进行详细讲解。

一、冒泡排序冒泡排序是一种简单直观的排序算法,它重复地遍历待排序的元素,比较相邻的两个元素,并按照规定的顺序交换它们,直到整个序列有序为止。

冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。

二、选择排序选择排序是一种简单直观的排序算法,它每次从待排序的元素中选择最小(或最大)的元素,放到已排序序列的末尾,直到整个序列有序为止。

选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。

三、插入排序插入排序是一种简单直观的排序算法,它将待排序的元素插入到已排序序列的合适位置,使得插入之后的序列仍然有序。

插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。

四、希尔排序希尔排序是插入排序的一种改进算法,它通过将待排序的元素分组,分组进行插入排序,然后逐步缩小分组的间隔,直到间隔为1,最后进行一次完整的插入排序。

希尔排序的时间复杂度为O(nlogn),空间复杂度为O(1)。

五、归并排序归并排序是一种分治排序算法,它将待排序的序列分成两个子序列,分别进行排序,然后将已排序的子序列合并成一个有序序列。

归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。

六、快速排序快速排序是一种分治排序算法,它通过选择一个基准元素,将待排序的序列分成两个子序列,一边存放比基准元素小的元素,一边存放比基准元素大的元素,然后对两个子序列进行递归排序。

快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。

七、堆排序堆排序是一种选择排序算法,它通过构建一个最大堆(或最小堆),将堆顶元素与堆的最后一个元素交换,并对剩余的元素进行调整,直到整个序列有序为止。

堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。

经典十大排序算法

经典十大排序算法

经典⼗⼤排序算法前⾔排序种类繁多,⼤致可以分为两⼤类:⽐较类排序:属于⾮线性时间排序,时间复杂度不能突破下界O(nlogn);⾮⽐较类排序:能达到线性时间O(n),不是通过⽐较来排序,有基数排序、计数排序、桶排序。

了解⼀个概念:排序的稳定性稳定是指相同⼤⼩的元素多次排序能保证其先后顺序保持不变。

假设有⼀些学⽣的信息,我们先根据他们的姓名进⾏排序,然后我们还想根据班级再进⾏排序,如果这时使⽤的时不稳定的排序算法,那么第⼀次的排序结果可能会被打乱,这样的场景需要使⽤稳定的算法。

堆排序、快速排序、希尔排序、选择排序是不稳定的排序算法,⽽冒泡排序、插⼊排序、归并排序、基数排序是稳定的排序算法。

1、冒泡排序⼤多数⼈学编程接触的第⼀种排序,名称很形象。

每次遍历排出⼀个最⼤的元素,将⼀个最⼤的⽓泡冒出⽔⾯。

时间复杂度:平均:O(n2);最好:O(n);最坏:O(n2)空间复杂度:O(1)public static void bubbleSort(int[] arr) {/*** 总共⾛len-1趟即可,每趟排出⼀个最⼤值放在最后*/for (int i = 0; i < arr.length - 1; i++) {for (int j = 0; j < arr.length - i - 1; j++) {if (arr[j] > arr[j + 1]) {int tp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = tp;}}}}2、选择排序最直观易理解的排序算法,每次排出⼀个最⼩的元素。

也是最稳定的算法,时间复杂度稳定为O(n^2)。

需要⼀个变量记录每次遍历最⼩元素的位置。

时间复杂度:O(n2)空间复杂度:O(1)public static void selectSort(int[] arr){int n = arr.length;for (int i = 0; i < n; i++) {int maxIdx = 0;for(int j = 1; j < n - i; j++){if(arr[maxIdx] < arr[j]){maxIdx = j;}}int tp = arr[maxIdx];arr[maxIdx] = arr[n - 1 - i];arr[n - 1 - i] = tp;}}3、插⼊排序⼀种直观的排序算法,从第⼆个元素开始,每次往前⾯遍历找到⾃⼰该在的位置。

五种常用的排序算法详解

五种常用的排序算法详解

五种常用的排序算法详解排序算法是计算机科学中的一个重要分支,其主要目的是将一组无序的数据按照一定规律排列,以方便后续的处理和搜索。

常用的排序算法有很多种,本文将介绍五种最常用的排序算法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。

一、冒泡排序冒泡排序是最简单的排序算法之一,其基本思想是反复比较相邻的两个元素,如果顺序不对就交换位置,直至整个序列有序。

由于该算法的操作过程如同水中的气泡不断上浮,因此称之为“冒泡排序”。

冒泡排序的时间复杂度为O(n^2),属于较慢的排序算法,但由于其实现简单,所以在少量数据排序的场景中仍然有应用。

以下是冒泡排序的Python实现代码:```pythondef bubble_sort(arr):n = len(arr)for i in range(n-1):for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```二、选择排序选择排序也是一种基本的排序算法,其思想是每次从未排序的序列中选择最小数,然后放到已排序的序列末尾。

该算法的时间复杂度同样为O(n^2),但与冒泡排序相比,它不需要像冒泡排序一样每次交换相邻的元素,因此在数据交换次数上略有优势。

以下是选择排序的Python代码:```pythondef selection_sort(arr):n = len(arr)for i in range(n-1):min_idx = ifor j in range(i+1, n):if arr[j] < arr[min_idx]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]```三、插入排序插入排序是一种简单直观的排序算法,其基本思想是通过构建有序序列,对于未排序的数据,在已排序序列中从后向前扫描,找到相应位置并插入该元素。

最简单的排序

最简单的排序

最简单的排序在日常生活中,我们经常需要将一些事物按照一定的规则进行排序。

排序是一种常见的操作,它可以让事物更加有序,便于管理和查找。

下面将介绍一些最简单的排序方法。

1. 冒泡排序冒泡排序是最简单的排序算法之一。

它的基本思想是通过相邻元素之间的比较和交换,将较大的元素逐渐“冒泡”到数组的末尾。

具体步骤如下:- 从数组的第一个元素开始,依次比较相邻的元素,如果前一个元素大于后一个元素,则交换它们的位置。

- 继续比较下一个相邻的元素,直到最后一个元素。

- 重复上述步骤,直到整个数组排序完成。

2. 选择排序选择排序也是一种简单的排序算法。

它的基本思想是每次从未排序的部分选择最小(或最大)的元素,放到已排序部分的末尾。

具体步骤如下:- 在未排序部分中找到最小(或最大)的元素,将其与未排序部分的第一个元素交换位置。

- 将已排序部分的末尾指针向后移动一位。

- 重复上述步骤,直到整个数组排序完成。

3. 插入排序插入排序是一种简单而有效的排序算法。

它的基本思想是将未排序部分的元素逐个插入到已排序部分的合适位置。

具体步骤如下:- 从第一个元素开始,将其视为已排序部分。

- 从未排序部分选择一个元素,按照大小顺序插入到已排序部分的合适位置。

- 重复上述步骤,直到整个数组排序完成。

通过以上三种最简单的排序方法,我们可以对一组数据进行排序。

这些排序方法虽然简单,但在实际应用中仍然具有一定的效率。

然而,对于较大规模的数据排序,这些简单的排序方法可能会显得效率低下。

在实际应用中,我们常常使用更复杂的排序算法,如快速排序、归并排序等。

排序在日常生活中无处不在,它不仅可以应用于数字的排序,还可以应用于字符串、对象等的排序。

通过排序,我们可以使数据更加有序,便于查找和处理。

在编程中,排序是一个重要的基本操作,掌握了常用的排序方法,可以更好地解决实际问题。

冒泡排序、选择排序和插入排序是最简单的排序方法。

它们的基本思想简单易懂,通过比较和交换或插入操作,可以将一组数据按照一定的规则进行排序。

计算机常见的32种算法

计算机常见的32种算法

计算机常见的32种算法
1.冒泡排序算法
2.选择排序算法
3.插入排序算法
4.希尔排序算法
5.归并排序算法
6.快速排序算法
7.堆排序算法
8.计数排序算法
9.桶排序算法
10.基数排序算法
11.贪心算法
12.动态规划算法
13.分治算法
14.回溯算法
15.图的深度优先算法(DFS)
16.图的广度优先算法(BFS)
17. Kruskal算法(最小生成树)
18. Prim算法(最小生成树)
19. Floyd-Warshall算法(最短路径)
20. Dijkstra算法(最短路径)
21.拓扑排序算法
22. 找出最大子数组的算法(Kadane算法)
23.最长公共子序列算法
24.最长递增子序列算法
25.最长回文子串算法
26.哈夫曼编码算法
27. Rabin-Karp算法(字符串匹配)
28. Boyer-Moore算法(字符串匹配)
29.KMP算法(字符串匹配)
30.后缀数组算法
31.基于哈希表的查找算法
32.基于二分查找的查找算法
需要注意的是,以上列举的只是计算机中常见的算法之一,实际上还存在着很多其他的算法。

每种算法都有其特定的应用场景和解决问题的方法。

对于每种算法的原理和具体实现细节,可以进一步深入学习和研究。

基本排序算法(11种)

基本排序算法(11种)

排序算法有很多,所以在特定情景中使用哪一种算法很重要。

为了选择合适的算法,可以按照建议的顺序考虑以下标准:(1)执行时间(2)存储空间(3)编程工作对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。

主要排序法有:一、冒泡(Bubble)排序——相邻交换二、选择排序——每次最小/大排在相应的位置三、插入排序——将下一个插入已排好的序列中四、壳(Shell)排序——缩小增量五、归并排序六、快速排序七、堆排序八、拓扑排序九、锦标赛排序十、基数排序十一、英雄排序一、冒泡(Bubble)排序----------------------------------Code 从小到大排序n个数------------------------------------void BubbleSortArray(){for(int i=1;i<n;i++){for(int j=0;i<n-i;j++){if(a[j]>a[j+1])//比较交换相邻元素{int temp;temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;}}}}-------------------------------------------------Code------------------------------------------------效率 O(n²),适用于排序小列表。

二、选择排序----------------------------------Code 从小到大排序n个数--------------------------------void SelectSortArray(){int min_index;for(int i=0;i<n-1;i++){min_index=i;for(int j=i+1;j<n;j++)//每次扫描选择最小项if(arr[j]<arr[min_index]) min_index=j;if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置{int temp;temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;}}}-------------------------------------------------Code-----------------------------------------效率O(n²),适用于排序小的列表。

常见的排序算法有哪些

常见的排序算法有哪些

常见的排序算法有哪些
排序算法是《数据结构与算法》中最基本的算法之一。

排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。

用一张图概括:
关于时间复杂度
平方阶(O(n2)) 排序各类简单排序:直接插入、直接选择和冒泡排序。

线性对数阶(O(nlog2n)) 排序快速排序、堆排序和归并排序;
O(n1+§)) 排序,§是介于0 和1 之间的常数。

希尔排序
线性阶(O(n)) 排序基数排序,此外还有桶、箱排序。

关于稳定性
稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。

不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

名词解释:
•n:数据规模
•k:"桶"的个数
•In-place:占用常数内存,不占用额外内存
•Out-place:占用额外内存
•稳定性:排序后2 个相等键值的顺序和排序之前它们的顺序相同包含以下内容:
•1、冒泡排序
•2、选择排序
•3、插入排序
•4、希尔排序
•5、归并排序
•6、快速排序
•7、堆排序
•8、计数排序
•9、桶排序
•10、基数排序。

15种排序算法

15种排序算法

15种排序算法
1. 冒泡排序 - 依次比较相邻元素的大小,将较大的数向后移动,直到没有交换
2. 选择排序 - 选择最小的元素,放到数组的起始位置,再从剩余元
素中选择最小的,以此类推
3. 插入排序 - 将一个元素插入已经排好序的序列中,从后向前比较
并移动元素
4. 希尔排序 - 将数组拆分成若干个子序列进行插入排序,缩小增量,直到增量为1
5. 归并排序 - 将数组分成两部分,分别排序,然后合并两个有序数

6. 快速排序 - 选取一个基准元素,将小于基准元素的放在左边,大
于基准元素的放在右边,然后分别对左右两边再递归快速排序
7. 堆排序 - 将数组建立一个最大/小堆,然后依次取出堆顶元素,再
将剩余元素重建堆
8. 计数排序 - 计算每个元素的出现次数,然后计算出每个元素应该
在排序后的序列中的位置
9. 桶排序 - 将元素分配到各个桶中,然后对每个桶进行排序,再依
次将各个桶中的元素输出到序列中
10. 基数排序 - 从低位到高位依次将元素排序,相同位上的元素按照
相同方式进行排序
11. 合并排序 - 将多个有序数组合并成一个有序数组,采用分治的思

12. 鸡尾酒排序 - 进行双向冒泡排序,先将最大的元素放到最后,再
将最小的元素放到前面,如此交替进行
13. 地精排序 - 选取一个随机数作为划分元素,将小于该随机数的元
素放在左边,大于该随机数的元素放在右边,然后对左右两边递归排

14. 跳跃表排序 - 利用跳跃表结构,快速查找元素并插入有序序列中
15. 非递归归并排序 - 利用非递归的方式实现归并排序,将序列分解成多个子序列,依次合并子序列。

计算机10大经典算法

计算机10大经典算法

计算机10大经典算法1. 排序算法排序算法是计算机领域中最基础和常用的算法之一。

其目的是将一组数据按照特定的顺序进行排列。

最常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。

冒泡排序(Bubble Sort)是一种简单但效率较低的排序算法。

其基本思想是通过相邻元素的比较和交换,逐步将待排序的元素移动到正确的位置。

插入排序(Insertion Sort)的核心思想是将待排序的元素插入到已排序序列中的适当位置,从而得到一个新的有序序列。

选择排序(Selection Sort)是一种简单直观的排序算法。

其原理是每次从待排序序列中选择最小(或最大)的元素,放到已排序序列的末尾。

快速排序(Quick Sort)是一种高效的排序算法。

它采用分治法的思想,将待排序序列分割成两个子序列,并递归地进行排序。

归并排序(Merge Sort)是一种稳定的排序算法。

它的核心思想是将待排序序列划分成若干个子序列,分别进行排序,最后再合并这些有序子序列。

2. 搜索算法搜索算法用于在给定的数据集合中查找特定的元素或满足特定条件的元素。

其中最著名的搜索算法为二分查找算法。

二分查找(Binary Search)是一种高效的搜索算法,适用于有序的数据集合。

它通过将待查找区间逐步缩小,直到找到目标元素。

3. 图形算法图形算法主要用于处理具有图形结构的问题,如网络分析、路径搜索等。

其中最常用的图形算法包括广度优先搜索算法和迪杰斯特拉算法。

广度优先搜索(Breadth-First Search,BFS)是一种基于图的搜索算法。

它以广度为优先级,逐层遍历图中的节点,用于查找最短路径、连通性分析等问题。

迪杰斯特拉算法(Dijkstra's Algorithm)用于解决带权有向图中单源最短路径问题。

它采用贪心策略,逐步确定从起点到其他节点的最短路径。

4. 动态规划算法动态规划算法常用于解决具有重叠子问题和最优子结构性质的问题。

排序的几种算法

排序的几种算法

排序的几种算法
一、冒泡排序
冒泡排序就是重复“从序列右边开始比较相邻两个数字的大小,再根据结果交换两个数字的位置”这一操作的算法。

在这个过程中,数字会像泡泡一样,慢慢从右往左“浮”到序列的顶端,所以这个算法才被称为“冒泡排序”。

二、选择排序
选择排序就是重复“从待排序的数据中寻找最小值,将其与序列最左边的数字进行交换”这一操作的算法。

在序列中寻找最小值时使用的是线性查找。

三、插入排序
插入排序是一种从序列左端开始依次对数据进行排序的算法。

在排序过程中,左侧的数据陆续归位,而右侧留下的就是还未被排序的数据。

插入排序的思路就是从右侧的未排序区域内取出一个数据,然后将它插入到已排序区域内合适的位置上。

四、堆排序
堆排序的特点是利用了数据结构中的堆。

五、归并排序
归并排序算法会把序列分成长度相同的两个子序列,当无法继续往下分时(也就是每个子序列中只有一个数据时),就对子序列进行归并。

归并指的是把两个排好序的子序列合并成一个有序序列。

该操作会一直重复执行,直到所有子序列都归并为一个整体为止。

总的运行时间为O,这与前面讲到的堆排序相同。

排序算法有多少种

排序算法有多少种

排序算法有多少种排序(Sorting) 是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个关键字有序的序列。

排序就是把集合中的元素按照一定的次序排序在一起。

一般来说有升序排列和降序排列2种排序,在算法中有8中基本排序:(1)冒泡排序;(2)选择排序;(3)插入排序;(4)希尔排序;(5)归并排序;(6)快速排序;(7)基数排序;(8)堆排序;(9)计数排序;(10)桶排序。

插入排序插入排序算法是基于某序列已经有序排列的情况下,通过一次插入一个元素的方式按照原有排序方式增加元素。

这种比较是从该有序序列的最末端开始执行,即要插入序列中的元素最先和有序序列中最大的元素比较,若其大于该最大元素,则可直接插入最大元素的后面即可,否则再向前一位比较查找直至找到应该插入的位置为止。

插入排序的基本思想是,每次将1个待排序的记录按其关键字大小插入到前面已经排好序的子序列中,寻找最适当的位置,直至全部记录插入完毕。

执行过程中,若遇到和插入元素相等的位置,则将要插人的元素放在该相等元素的后面,因此插入该元素后并未改变原序列的前后顺序。

我们认为插入排序也是一种稳定的排序方法。

插入排序分直接插入排序、折半插入排序和希尔排序3类。

冒泡排序冒泡排序算法是把较小的元素往前调或者把较大的元素往后调。

这种方法主要是通过对相邻两个元素进行大小的比较,根据比较结果和算法规则对该二元素的位置进行交换,这样逐个依次进行比较和交换,就能达到排序目的。

冒泡排序的基本思想是,首先将第1个和第2个记录的关键字比较大小,如果是逆序的,就将这两个记录进行交换,再对第2个和第3个记录的关键字进行比较,依次类推,重复进行上述计算,直至完成第(n一1)个和第n个记录的关键字之间的比较,此后,再按照上述过程进行第2次、第3次排序,直至整个序列有序为止。

排序过程中要特别注意的是,当相邻两个元素大小一致时,这一步操作就不需要交换位置,因此也说明冒泡排序是一种严格的稳定排序算法,它不改变序列中相同元素之间的相对位置关系。

数据的排序方法有哪些

数据的排序方法有哪些

数据的排序方法有哪些数据的排序方法主要有以下几种:1. 冒泡排序:冒泡排序是最简单的排序算法之一。

它重复地比较相邻的两个元素,如果它们的顺序错误就交换位置,直到整个序列有序。

2. 选择排序:选择排序是一种简单但低效的排序算法。

它每次从未排序的部分选择一个最小(或最大)的元素放到已排序部分的末尾。

3. 插入排序:插入排序类似于整理扑克牌的过程,将无序部分的元素逐个插入有序部分的合适位置,最终使整个序列有序。

4. 希尔排序:希尔排序是插入排序的优化版本,通过将序列拆分成多个子序列进行插入排序,最终得到完全有序的序列。

5. 归并排序:归并排序使用分治法,将序列拆分成两个子序列,分别对子序列进行排序,然后合并成一个有序序列。

它的核心思想是将两个有序的子序列合并成一个有序的序列。

6. 快速排序:快速排序使用分治法,选择一个基准元素将序列分成两个子序列,其中一个子序列的元素都小于基准元素,另一个子序列的元素都大于基准元素,然后分别对两个子序列进行排序。

7. 堆排序:堆排序是一种利用二叉堆数据结构进行排序的算法。

它首先将序列构建成一个大顶堆(或小顶堆),然后按照堆的性质逐个取出堆顶元素,得到有序序列。

8. 计数排序:计数排序是一种用于整数的线性时间排序算法。

它通过统计序列中每个元素出现的次数,然后根据统计结果重构有序序列。

9. 桶排序:桶排序是一种将元素分布在多个桶中的排序算法。

它先将序列分布到多个桶中,然后对每个桶中的元素进行排序,最后按照桶的顺序将元素依次取出,得到有序序列。

10. 基数排序:基数排序是一种按照数字位数从低位到高位进行排序的算法。

它先按照最低有效位进行排序,然后依次向高位进行排序,最终得到有序序列。

以上是常见的数据排序方法,每种方法都有其适用的场景和优劣势。

在实际应用中,需要根据具体情况选择合适的排序方法来提高排序效率。

排序算法

排序算法
吴再陵 18
希尔排序--实例
序号 1 2 3 4 5 6 7 8 9 10
数据
S1= 5 S2= 2 S3= 1
12
① 12 ① -5 ①
89 57 32 96 37 54
② 54 ② ③ -5 ① ④ ⑤ ① ②
-5

79 57
④ ⑤
32 57 37 89 57 79 96 ② ① ② ① ② ① ②
① 首先,把10个元素分为5组(即增量为5),每组两个元素,对 每组进行插入排序;
d1 =5 :
结果如右图
吴再陵 17
② 在上一步基础上,重新将 10个元素分成 2组(增量为 2),每组5个元素,其中将奇数分为一组,偶数分为一组, 对每组再进行插入排序; d2=2 : 25 12 32 25 43 36 48 58 76 65
下标 1 2 3 [45 36 18 ↑i ① 36 36 18 ↑i ② 36 36 18
4 5 6 7 8 9 10 53 72 30 48 93 15 36 ] ↑j 53 72 30 48 93 15 45 ↑j 53 72 30 48 93 15 45 ↑i ↑j ③ 36 36 18 45 72 30 48 93 15 53 ↑i ↑j ④ 36 36 18 15 72 30 48 93 45 53 ↑i ↑j ⑤ 36 36 18 15 45 30 48 93 72 53 ↑i ↑j 吴再陵
end.
吴再陵
22
6、堆排序: (1) 堆的定义: 堆是由n 个关键字组成的序列{K1, K2,„„,Kn}, 当且仅当满足下列关系时,称之为堆: Ki≤K2i、Ki≤K2i+1(称为最小堆) 或 Ki≥K2i、Ki≥K2i+1(称为最大堆) 其中I=1,2,„„,n/2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j--; //
if(i<j) //右半区中找到一个比基准点小的记录
{
data[i]=data[j]; //将基准点与该记录交换,将小的记录放到左半区中
i++;
}
while(data[i].key<=t&&i<j) //在基准点的左半区中搜索比它大的记录
flag=0;
}
i++; //比较的轮次增1
}while(!flag);
}
//********************************************
//筛选法,将:以结点i为根的二叉树,调整成一个大根堆
//调整范围: 结点i---结点j
//********************************************
if(data[p].key<data[p+1].key)
t=p+1; //p指向键值较大的孩子
if(data[i].key<data[t].key) //如果根i的键值比孩子小
{
temp=data[i];
data[i]=data[t];
data[t]=temp;
void sift(NODE data[],int i,int j)
{
NODE temp;
int p=2*i; //p指向i的左孩子
int t;
while(p<=j) //如果i的左孩子存在,则调整,否则,i是叶子,不调整
{
t=p; //t指向i的左孩子
if(p<j) //如果i有右孩子
{
if(DATA[k].key>DATA[j].key) //记下最小值的位置
k=j;
}
//把DATA[i]和最小值DATA[k]交换
if(k!=i)
{t=DATA[i];DATA[i]=DATA[k];DATA[k]=t;}
}
}
//********************************************
//使以该节点k为根的树变成大根堆
//调整区间:(k--n)
}
//********************************************
//堆排序算法
//数据集合1--n之间的数进行堆排序
{
t=DATA[i];
DATA[i]=DATA[j];
DATA[j]=t;
}
}//本循环结束,DATA[i]中是本轮找到的最小值
}
}
//********************************************
//直接选择排序
printf("\n");
}
}
//********************************************
//快速排序的区域划分算法
//在区间了low和high之间进行一次划分
//********************************************
NODE DATA[100];
//********************************************
//创建磁盘文件f:\resource.dat
//保存100个1000以内的随机数(无重复)
//********************************************
i=t; //互换后势必影响以t为根的堆的性质,所以对以t为根的堆再进行调整
p=2*i;
}//将根与较大的孩子互换
else break; //如果根i的键值比两个孩子都大,则是大根堆,无需调整
}
}
//********************************************
int partition(NODE data[],int low,int high)
{
int i=low;
int j=high;
int t=data[i].key; //t为划分的基准值
//寻找基准点的位置
do {
while(t<=data[j].key&&i<j)//基准点与右半区的元素逐个比较大小
{
t=DATA[j],DATA[j]=DATA[j+1],DATA[j+1]=t;
}
}
//********************************************
//改进的冒泡排序
//********************************************
i++;
if(i<j) //左半区中找到一个比基准点大的记录
{
data[j]=data[i]; //将基准点与该记录交换,将大的记录放到右半区中
j--;
}
}while(i<j); //如此重复,直到左右半区相接
data[i].key=t;
void creatfile()
{
FILE *fp;
int i,j,key,flag;
int data[100]={0};
unsigned seed;
if((fp=fopen("f:\\resource.dat","wb+"))==NULL)
{
printf("打开文件失败!\n");
void selesort(NODE DATA[])
{
int i,j;
NODE t;
for(i=0;i<99;i++) //n个数,排序n-1轮
{
for(j=i+1;j<=99;j++) //选择本轮的最小值
{
if(DATA[i].key>DATA[j].key) //发现更小的数,则交换
#include <time.h>
typedef struct
{
int key; //主关键字
}NODE;
//********************************************
//随机数组,作为全局数据
//********************************************
{
printf("打开文件失败!\n");
exit(0);
}
for(i=0;i<=99;i++)
DATA[i].key=getw(fp);
fclose(fp);
}
//********************************************
//输出随机数组
{
int position;
if(low<high) //当区间下界小于区间上届d
{
position=partition(data,low,high); //将该区间分成两半,position为分界点
quicksort(data,low,position-1); //对左半区进行快速排序
//堆排序,建立大根堆
//********************************************
void creatheap(NODE data[],int n)
{
int k;
for(k=n/2;k>=1;k--)
sift(data,k,n); //对非叶子结点k,利用调整算法
//******************************************************
//各类排算法
//******************************************************
#include <stdio.h>
#include <stdlib.h>
for(i=n;i>1;i--) //堆排序,data[1]中始终为无序区的最大值
{
data[0]=data[i]; //将根(最大值)换到无序区的末尾
//********************************************
void dselesort(NODE DATA[])
{
int i,j,k;
NODE t;
for(i=0;i<99;i++)
{
k=i;
for(j=i+1;j<=99;j++)//寻找本轮中的最小值
void dpasort(NODE DATA[])
{
int i=0,j;
NODE t;
int flag;
do
{
flag=1;
for(j=0;j<99-i;j++)
if(DATA[j].key>DATA[j+1].key)
{
t=DATA[j],DATA[j]=DATA[j+1],DATA[j+1]=t;
return i;
}
相关文档
最新文档