现代无线通信原理第五章
大学课程通信原理第5章-模拟调制系统课件
调制信号:原始基带信号
模拟调制:调制信号取值连续 数字调制:调制信号取值离散
正弦波模拟调制
载波:携带调制信号的信号
正弦波调制:正弦型信号作为载波 脉冲调制:脉冲串作为载波
正弦波数字调制 脉冲模拟调制 脉冲数字调制
2
1 调制的定义和分类(2)
正弦波模拟调制
调制信号:模拟信号:m(t)
0 0
A 2
M
c
M
c
已调信号的频谱是调制信号频谱的线性搬移。
线性调制
4
2.1 幅度调制的原理(2)
幅度调制器的一般模型
mt
ht
sm t
ht H
cos ct
sm t m t cos ct h t
Sm
1 2
M
c
M
c
H
m t ,ht 不同
双边带调幅(DSB) 标准调幅(AM)
载波分量
DSB分量
m ' t
sAM t
m0
S AM
m0
c
c
1 2
M
'
c
M
'
c
where m ' t M ' .
12
2.1 幅度调制的原理(8)
调幅系数
m ' t
AM
max 1 m0
已调信号的包络与调 制信号成比例变化.
m't
sAM t
m0
m0 m '(t )
sAM t m0 m '(t)
单边带调幅(SSB)
残留边带调幅(VSB) 5
常规调幅AM:H(ω)为全通网络,m(t) 有直流成 分。
通信原理(第5章)
2、若m(t)的频带限于 w wc 则:
H m(t ) cos( wct ) m(t ) sin( wct ) H m(t ) sin( wct ) m(t ) cos( wct )
ˆ (t ) jM ( w) sgn( w) F m
ˆ ( w) 3、M
载波信号
频域表达式
SAM(ω) = πA0[δ(ω -ωc) +δ(ω +ωc )
6
5.1 幅度调制(线性调制)的原理
时域波形图
m(t) t A0 + m( t ) cosωct t t
当满足条件: |m(t)|max ≤ A0 时,其包络与调制信号的 波形相同,因此用包络检 波法可以容易地恢复原始 调制信号。
20
5.1 幅度调制(线性调制)的原理
一般情况下SSB信号的时域表达式 调制信号为任意信号时SSB信号的时域表达式为
1 1 ˆ (t )sin ct SSSB (t ) m(t ) cos ct m 2 2
式中,
m( ) ˆ (t ) m d t ˆ ( ) 1 m m(t )=- d t 1
1 = 2
1 2 Am
cos(ωc+ ωm)t + Am cos(ωc -ωm)t
1 -2 1 +2
上边带信号的时域表达式
Amcosωm t cosωc t Amcosωm t cosωc t
Amsinωm t sinωc t Amsinωm t sinωc t
下边带信号的时域表达式
SUSB(t) =
BDSB = 2 fH
② 功率:
PDSB
1 2 Ps m (t ) 2
通信原理第5章
(2)
三、实际抽样 ------自然抽样
自然抽样的特点
平顶抽样:
5.2 脉冲编码调制(PCM)
脉冲编码调制(PCM)简称脉码调制,它是一种用一组二进 制数字代码来代替连续信号的抽样值,从而实现通信的方式。 由于这种通信方式抗干扰能力强,它在光纤通信、数字微波通 信、卫星通信中均获得了极为广泛的应用。 PCM是一种最典型的语音信号数字化的波形编码方式。首 先,在发送端进行波形编码(主要包括抽样、量化和编码三个过 程),把模拟信号变换为二进制码组。编码后的PCM码组的数 字传输方式可以是直接的基带传输,也可以是对微波、光波等 载波调制后的调制传输。在接收端,二进制码组经译码后还原 为量化后的样值脉冲序列,然后经低通滤波器滤除高频分量, 便可得到重建信号 x(t ) 。
1 Ts= 是最大允许抽样间隔,它被称为奈奎斯特间隔,相对 2 fH 应的最低抽样速率fs=2fH称为奈奎斯特速率。
混叠现象
信号的重建
该式是重建信号的时域表达式, 称为内插公式。 它说 明以奈奎斯特速率抽样的带限信号x(t)可以由其样值利用内
插公式重建。这等效为将抽样后信号通过一个冲激响应为
际标准中取μ=255。另外,需要指出的是μ律压缩特性曲线 是以原点奇对称的, 图中只画出了正向部分。
2、A律压扩特性
Ax 1 ln A ,0 x 1 / A z 1 ln( Ax) ,1 / A x 1 1 ln A
• • •
x——压缩器归一化输入电压 z——压缩器归一化输出电压 μ ——压缩器参数
量化的物理过程
q7
x q x q x (t)
q
信号的实际值
6
量化误差
6
信号的量化值
现代通信原理指导书第五章幅度调制系统习题详解
5-1以占空比为1:1、峰 — 峰值为2m A 的方波为调制信号,对幅度为A 的正弦载波进行标准幅度调制,试① 写出已调波()AM S t 的表示式,并画出已调信号的波形图;② 求出已调波的频谱()AM S ω, 并画图说明。
解:① 令方波信号为2()(1)2m m T A nT t nT f t T A nT t n T⎧+ <<+⎪⎪=⎨⎪- +<<+⎪⎩ 0,1,2,...n = ± ± ,则000()cos 2()[()]cos ()cos (1)2m AM m T A A t nT t nT s t A f t t T A A t nT t n Tωωω⎧+ ≤<+⎪⎪=+=⎨⎪- +≤<+⎪⎩其中0,1,2,...n = ± ± 。
② 取方波信号一个周期的截断信号02()02m T m T A t f t T A t ⎧+ <<⎪⎪=⎨⎪- -<<⎪⎩,求得其傅里叶变换为()()sin()44T m TTF jA TSa ωωω=-则根据式()可以得到方波信号的傅里叶变换为1(1)2()2()n m n n F j A n T πωδω+∞=-∞--=--∑所以已调信号的傅里叶变换为00001()()[()()][()()]2(1)122[()()][()()]AM n m o o o o n F F A n n jA A n T T ωωπδωωδωωπδωωδωωπππδωωδωωπδωωδωω=*-+++-++-- =--++-+-++∑时域及频域图如下所示:A π2/m j A π-0w 0w Tπ+02w T π+w()AM S w ()AM s t t()f t tT2T mA5-2已知线性调制信号表示如下: ①10()cos cos S t t t ω=Ω ②20()(10.5sin )cos S t t t ω=+Ω设Ω=60ω,试分别画出S 1(t)和S 2(t)的波形图和频谱图。
通信原理第五章(正弦载波数字调制系统)习题及其答案
第五章(正弦载波数字调制系统)习题及其答案【题5-1】设发送数字信息为 011011100010,试分别画出 2ASK 、2FSK 、2PSK 及2DPSK 信号的波形示意图。
【答案5-1】2ASK 、2FSK 、2PSK 及2DPSK 信号的波形如下图所示。
【题5-2】已知某2ASK 系统的码元传输速率为103Band ,所用的载波信号为()6cos 410A π⨯。
1)设所传送的数字信息为011001,试画出相应的2ASK 信号波形示意图;2)求2ASK 信号的带宽。
【答案5-2】1)由题中的已知条件可知310B R Baud =因此一个码元周期为3110s B T s R -==载波频率为664102102s f Hz ππ⨯==⨯载波周期为61102T s -=⨯所以一个码元周期内有2000个载波周期。
如下图所示我们画出2ASK 信号的波形图,为简便,我们用两个载波周期代替2000个载波周期。
2)根据2ASK 的频谱特点,可知其带宽为222000B B R Hz T ===【题5-3】设某2FSK 调制系统的码元传输速率为1000Baud ,已调信号的载频为1000Hz 或 2000 HZ 。
1)若发送数字信息为011010,试画出相应的ZFSK 信号波形;2)试讨论这时的2FSK 信号应选择怎样的解调器解调?3)若发送数字信息是等可能的,试画出它的功率谱密度草图。
【答案5-3】1)由题意可画出ZFSK 信号波形如下图所示。
2)由于ZFSK 信号载波频差较小,频谱有较大重叠,采用非相干解调时上下两个支路有较大串扰,使解调性能降低。
由于两个载频人与人构成正交信号,采用相干解调可减小相互串扰,所以应采用相干解调。
3)该2FSK 信号功率谱密度草图如下图所示。
【题5-4】假设在某2DPSK 系统中,载波频率为 2400 Hz ,码元速率为 1200 Band ,已知相对码序列为11000101ll 。
现代通信原理 第5章 课后习题及答案
5-8对基带信号()m t 进行DSB 调制,11()cos 2cos2m t t t ωω=+,112f ωπ=,1500f Hz = ,载波幅度为1。
试:①写出该DSB 信号的表达式,画出其波形; ②计算并画出该DSB 信号的频谱; ③确定已调信号的平均功率。
解:①DSB 信号的表达式为110()()()(cos 2cos2)cos DSB S t m t c t t t t ωωω=⋅=+⋅()m t 及DSB 信号波形如图5.29实线所示。
图5.29②该DSB 信号的频谱为111100*********()()()21[()()2(2)2(2)]2*[()()][()()2(2)2(2)2(DSB S M C ωωωππδωωπδωωπδωωπδωωππδωωπδωωπδωωωδωωωδωωωδωωωδωω=∗ =−+++−++ −++ =−−+−++−−+−+ ++01010101)()2(2)2(2)]ωδωωωδωωωδωωω−+++++−+++频谱图如图5.30所示图5.30③已调信号的平均功率为221122111111111()21(cos 2cos 2)2cos 4cos cos 24cos 2(1cos 2)2(cos3cos )2(1cos 4)12.5 1.252DSB fBP P m t t t t t t tt t t t Wωωωωωωωωωω===+ ++ +++++ ==××1=211= 22 5-9 设SSB 发射机被一正弦信号()m t 调制,1()5cos m t t ω=,112f ωπ=,1500f Hz = ,载波幅度为1。
试:①计算()m t 的希尔伯特变换ˆ()mt ; ②确定下边带SSB 信号的表达式; ③确定SSB 信号的均方根(rms )值; ④确定SSB 信号的峰值; ⑤确定SSB 信号的平均功率。
解:①1()5cos m t t ω=,其傅里叶变换为11()5[()()]M ωπδωωδωω=−++其希尔伯特变换的频谱为ˆ()sg n ()()Mj M j ωωωπδωωδωω11=−⋅ =5[(+)−(−)]因此,m(t)的希尔伯特变换为1ˆ()[()]5sin m t m t t ω==H②下边带SSB 信号的表达式为00101001ˆ()()co s ()sin 5cos cos 5sin sin 5cos[()]SSB S t m t t m t t t t t t t ωωωωωωωω=+ =⋅+⋅ =− ③以下边带SSB 信号为例,有SSB rms = ==④由下边带SSB 信号表达式可知,信号峰值为 max ()|5SSB S t =⑤SSB 信号平均功率为 225()12.52SSBSSB P S t W === 5-17已知幅度调制信号()AM S t 的总功率为200kW ,调制信号()f t 的最高频率 5 m f kHz =,载波频率810 o f kHz =,边带功率为40kW ,信道中噪声的双边功率谱密度,系统采用包络检波解调。
现代通信原理与技术课后答案完整版 张辉第五章
5-2 解 (1)随机二进制序列的双边功率谱密度为由得式中,是的频谱函数,在功率谱密度中,第一部分是连续谱成分,第二部分是离散谱成分。
随机二进制序列的功率为(2)当基带脉冲波形为的付式变换为因为所以该二进制序列不存在离散分量。
(3)当基带脉冲波形为的付式变换为因为所以该二进制序列存在离散分量。
5-3 解( 1)由图 5-7 得的频谱函数为由题意且所以代入二进制数字基带信号的双边功率谱密度函数式,可得(2) 二进制数字基带信号的离散谱分量为当代入上式得因为该二进制数字基带信号中存在离散谱分量,所以能从该数字基带信号中提取码元同步所取得频率的分量。
该频率分量的功率为5-6解 AMI 码为+10-1+1000000000-10+1HDB3 码+10-1+1000+V –B00 –V0+10-15-7解 PST码为 -++0+--+0-+0-++-双相码为01 0110 01 10 10 01 01 01 10 10 01 01 01 10 105-8解原信息代码为 1010000100001100001015-9解( 1)令由图 5-8 可得,因为的频谱函数为所以,系统的传输函数为(2)系统的传输函数由发送滤波器,信道和接收滤波器三部分组成,即因为则所以,发送滤波器和接收滤波器为5-10 解( 1)总特性 H( f)可以看成是图 5-11 两个三角形特性之差,即H ( f ) =H1 ( f) -H2( f )其中 H 1 ( f )h1 (t )1(1)W1 gSa2(1)Wt112H 2 ( f )h2(t )(1)W1gSa2(1)W1t2h(t )h1 (t )h2 (t)所以冲激响应(1)2W1 gSa2(1)2(1)Wt`W1gSa2(1 )Wt`22(2)因为该系统克等小成理想低通特性H eq ( f )1,f W1 0,f W1它所对应的无码间串扰的最高传码率为2W1,所当传输速率为2W1 时,在抽样店无码间串扰。
通信原理-第5章 振幅调制、解调及混频 63页 2.5M PPT版
载 波 分(量 c ):不 含 传 输 信 息
上边频分量 c :含传输信息 下边频分量 c :含传输信息
调制信号
Ω
载波
调幅波
U
ωc
c
下边频
1 2 m aU c
1 2
m
aU
c
上边频
ωc - Ω ωc +Ω
(2) 限带信号的调幅波
5.3 .2 高电平调幅电路 1. 集电极调幅电路 2. 基极调幅电路
返回
5.3 振幅调制电路
A信 M:u 号 AM U c(1m co ts)co cts 纯调幅 DS 信 B :u 号 DSB k U U cco tsco cts 调,调 幅相 SS 信 B:u 号 SS BU (c otcso ctssi n tsi n ct) 调,调 幅频
n
Uncosc(n)t
5.2.2双边带( double sideband DSB)调幅信号 2. 波形与频谱
休息1 休息2 返回
调制信号
下边频
载波
c 上边频
(1) DSB信号的包络正比于调制信号 Uco s t
仿真
(2) DSB信号载波的相位反映了调制信号的极性,即在调制信号负半周 时,已调波高频与原载波反相。因此严格地说,DSB信号已非单纯的振 幅调制信号,而是既调幅又调相的信号。
返回
(则1那)有么设u 调A :幅M 载U 信波c号信1( 号 n 已 :1m 调un cc 波U )o c可n cts 表o (达n sc)t为c:调 o u 制cA t信sM 其号中:U u :m m ( tn )U c cko aoU cs sttn
通信原理第五章习题解答
习题5-1 设待发送的数字序列为10110010,试分别画出2ASK 、2FSK 、2PSK 和2DPSK 的信号波形。
已知在2ASK 、2PSK 和2DPSK 中载频为码元速率的2倍;在2FSK 中,0码元的载频为码元速率的2倍,1码元的载频为码元速率的3倍。
解:波形略5-2 已知某2ASK 系统的码元传输速率为1200B ,采用的载波信号为A cos(48π⨯102t ),所传送的数字信号序列为101100011:(1)试构成一种2ASK 信号调制器原理框图,并画出2ASK 信号的时间波形; (2)试画出2ASK 信号频谱结构示意图,并计算其带宽。
解:(1)2ASK 信号调制器原理框图如图5.2.1-2,2ASK 信号的时间波形略。
(2)2ASK 信号频谱结构示意图如图5.2.1-5,则其带宽为B 2ASK =2f s =2400Hz 。
5-3 若对题5-2中的2ASK 信号采用包络检波方式进行解调,试构成解调器原理图,并画出各点时间波形。
解:2ASK 信号采用包络检波的解调器原理图:cos ωc t(t )(a )图5.2.1-2 2ASK 信号调制原理框图(b )(t )开关电路图5.2.1-5 2ASK 信号的功率谱e各点时间波形:(下图对应各点要换成101100011)5-4 设待发送的二进制信息为1100100010,采用2FSK 方式传输。
发1码时的波形为A cos(2000π t +θ1),发0码时的波形为A cos(8000π t +θ0),码元速率为1000B :(1)试构成一种2FSK 信号调制器原理框图,并画出2FSK 信号的时间波形; (2)试画出2FSK 信号频谱结构示意图,并计算其带宽。
解:(1)2FSK 信号调制器原理框图如下图,时间波形略。
(2)2FSK 信号频谱结构示意图如下图,其带宽221240001000210005000FSK s B f f f Hz =-+=-+⨯=。
现代通信原理5-12章总结
0 M 1
计算带通抽样频率:
1.计算信号带宽(fH-fL) 2.计算fH/(fH-fL),求出小于它的最大整数N。
3.计算M= fH/(fH-fL)-N。
4.计算fS=2 (fH-fL)(1+M/N)。
例题:12路载波电话信号的频带范围是60~108kHz,
求其最低抽样频率fsmin=?
• TDM与FDM(频分复用)原理的差别:
• TDM在时域上是各路信号分割开来的; 但在频域上是 各路信号混叠在一起的。 • FDM在频域上是各路信号分割开来的;但在时域上是
混叠在一起的。
• TDM的方法有两个突出的优点 • 多路信号的汇合与分路都是数字电路,比FDM的模拟 滤波器分路简单、可靠。 • 信道的非线性会在FDM系统中产生交调失真与高次谐 波,引起路际串话,因此,对信道的非线性失真要 求很高;而TDM系统的非线性失真要求可降低。 • TDM:完全由数字线路实现,近几年得到广泛应用。 • 时分复用又分为同步时分复用和异步时分复用。
制量化值。
• 所涉及的问题主要有两个:
• 一是如何确定二进制码组的位数。
• 二是应该采用怎样的码型。所谓码型就是电脉冲
的存在形式。
8位PCM编码,对于语音传输,其速率为64K,需要 32K的带宽,多用于有线传输。
差分脉码调制:
对信号采样值和预测值的差值进行量化编 码并传输. 接收端将接收到的差值和恢复的预测值相 加得到此次采样值. 由于只传输动态范围较小的差值,所以编码 的码组不需太长,在DPCM中,一般采用4位.
RZ RZ (单极性) (单极性)
A A τ τ
(双极性) (双极性)
0 0
4、双极性归零码
1 1 1 0 1 0 0 1 0 0 0 1 1 0 二进制信码 1 1 1 0 1 0 0 1 0 0 0 1 1 0 -用正极性的归零码和负极性的归零码分别表示1和0 二进制信码
通信原理第5章(樊昌信第七版)
s p t sVSB t 2 cos ct
sVSB t
sp t
LPF
sd t
S p S VSB c S VSB c
S VSB
c(t ) 2 cos c t
1 M c M c H 2
SSB信号的特点
优点之一是频带利用率高。传输带宽为AM/DSB的一半:
BSSB BAM / 2 f H
因此,在频谱拥挤的通信场合获得了广泛应用,尤其在 短波通信和多路载波电话中占有重要的地位。
优点之二是低功耗特性,因为不需传送载波和另一个边 带而节省了功率。这一点对于移动通信系统尤为重要。
m
m(t ) max A0
m<1 正常调幅 m>1 过调幅
m=1 临界状态,满调幅(100)
A m(t )
A
0
A m(t )
A m(t )
A
A
t
0
t
0
t
sAM (t )
sAM (t )
sAM (t )
0
t
t
t
m 1
m 1
m 1
高调幅度的重要性!
AM
Ps m 2 (t ) PAM A02 m 2 (t )
幅度调制 频率调制 相位调制
m(t )
调制器
sm (t )
按载波信号 c(t)的类型分
连续波调制 脉冲调制
c(t )
7
本章研究的模拟调制方式:
——是以正弦信号 c(t ) A cos(c t ) 作为载波的
第5章 现代通信原理与技术 西安电子科技大学(张辉 曹丽娜 编著第二版)
依靠同步提取电路从接收信号中提取,位定时的准确与否将直
接影响判决效果,这一点将在第11章中详细讨论。 图 5 - 2 给出了图 5 - 1 所示基带系统的各点波形示意图 。
第5章 数字基带传输系统
图5-2 基带系统个点波形示意图
第5章 数字基带传输系统
其中, (a) 是输入的基带信号,这是最常见的单极性非归 零信号;(b)是进行码型变换后的波形; (c)对(a)而言进行了码 型及波形的变换,是一种适合在信道中传输的波形; (d)是信 道输出信号,显然由于信道频率特性不理想,波形发生失真 并叠加了噪声;(e)为接收滤波器输出波形, 与(d)相比,失真和 噪声减弱;(f)是位定时同步脉冲; (g)为恢复的信息,其中第4 个码元发生误码,误码的原因之一是信道加性噪声,之二是 传输总特性(包括收、发滤波器和信道的特性)不理想引起 的波形延迟、展宽、拖尾等畸变,使码元之间相互串扰。此 时,实际抽样判决值不仅有本码元的值,还有其他码元在该 码元抽样时刻的串扰值及噪声。显然,接收端能否正确恢复 信息,在于能否有效地抑制噪声和减小码间串扰, 这两点也 正是本章讨论的重点。
由于v(t)是以Ts为周期的周期信号,故
v(t )
可以展成傅氏级数 式中
n
Pg (t nT ) (1 P) g
1 s
2
(t nTs )
(5.2 - 11)
v(t )
m
C
TS / 2
m
e
j 2mf s t
1 Cm Ts
TS / 2
第5章 数字基带传输系统
第5章 数字基带传输系统
5.1 数字基带传输概述
5.2 数字基带信号及其频谱特性
通信原理答案第五章
第五章5-1 已知线性调制信号表示式如下:(1)ttcωcoscosΩ,(2)tc5.01(+。
式中,Ω=6cω。
试分别画出它们的波形图和频谱图。
5-2 根据图P5-1所示的调制信号波形,试画出DSB及AM信号的波形图,并比较它们分别通过包络检波器后的波形差别。
解:5-3已知调制信号m(t)=cos(2000πt)+ cos(4000πt),载波为cos104πt,进行单边带调制,试确定该单边带信号的表示式,并画出频谱图。
5-4 将调幅波通过残留边带滤波器产生残留边带信号。
若此滤波器的传输函数H(ω)如图P5-2所示(斜线段为直线)。
当调制信号为f/kHz)解:设调幅波[()]cosAM cs m m t tω=+,其中()m m t,且()AM DSBs Sω⇔,根据残留边带滤波器在cω处的互补对称性,从()Hω的图中得知载频cf为10kHz,由此得到载波cos20000tπ。
因此设残留边带信号为()VSBs t,且()()VSB VSBs t Sω⇔,则()()()VSB DSBs t S Hωω⇔。
由图5-3可得10.05f kHz=±时,()10.059.50.55Hω=-=;10f kHz=±时,()0.5Hω=;9.95f kHz=±时,()9.959.50.45Hω=-=;7f kHz=±时,()0Hω=。
故5-5 某调制方框图如图P5-3(b)所示。
已知()m t的频谱如图P5-3(a)所示,载频12ωω,1Hωω>,且理想低通滤波器的截止频率为1ω,试求输出信号()s t,并说明()s t为何种已调信号。
解:上支路输入信号()m t 与1cos t ω相乘产生DSB 信号(频谱的中心频率为1ω),经过理想低通滤波器(截止频率1ω)后,产生下下边带信号输出:下支路输入信号()m t 与1sin t ω相乘产生DSB 信号(频谱的中心频率为1ω),经过理想低通滤波器(截止频率1ω)后,产生另一个下边带信号输出:1()s t 与2()s t 分别与2cos t ω和2sin t ω相乘,再相加后的输出信号11211211()[()cos ()sin ]cos [()sin ()cos ]sin 22s t m t t m t t t m t t m t t t ωωωωωω=++- 即:()s t 为载频为21ωω-的上边带信号。
现代无线通信原理第五章资料
5.1 衰落信道的抗干扰技术概述 5.2 分集技术 5.3 RAKE 接收技术 5.4 交织技术 5.5 均衡技术 5.6 联合编码技术
5.1 衰落信道的抗干扰技术概述
5.1.1 衰落信道的主要干扰
一、多径干扰 二、多用户干扰
5.1.2 衰落信道的主要抗干扰技术
发端进行—进行预防 收端进行—进行补救 分为三类: 一、冗余法—包括分集技术、纠错技术和 重发技术 二、均衡法—包括信道均衡和信源适应 三、干扰抵消法—是基于数学中求解联立 方程的迭代算法。 另:信号的传输方式如调制方式对抗干扰 有很大贡献。
5.5.7 均衡器算法分类(续2)
二、 最小均方算法 调整抽头系数,使信道和均衡器综合输出的
期望值和实际值之间的均方误差最小。 特点:是一种最简单的均衡算法。算法的稳定 性好。 缺点:收敛速度不高,均衡能力有限。 在无线中适用于较慢的、不太深的衰落。
5.5.7 均衡器算法分类(续3)
5.5 均衡技术
5.5.1 均衡技术概述
自适应均衡器:减少码间干扰。 工作模式:训练模式和跟踪模式。 均衡器分类
–频域均衡器,时域均衡器; –线性均衡器,非线性均衡器。
均衡器实现方法
–中频均衡器; –基带均衡器。
5.5.2 均衡技术的原理
均衡器频域表达: 信道时域响应f(t),均衡器时域响应heq(t),希望均衡后的
假设接收信号中可以分离出M个不同延时的多径分 量,每个分量用不同的相关器进行相关运算。
相关器1和支路1同步,相关器2和支路2同步,等 等,这样不同相关器就可以检测出各个支路的 CDMA信号能量。
对各个相关器的输出进行加权,然后相加,就得到 发送信号的最大可能的能量输出,对此输出进行判 决再生,就可以恢复出数字信息。
通信原理(第五章)模拟调制系统
n i =1
mi cos wit
有 m ˆ (t ) = å
n i =1
mi sin wit
二、幅度调制的原理(6)(VSB)
残留边带(VSB) :信号带宽B介于单边带(SSB)信号和双边带 (DSB)信号之间。 如何确定残留边带滤波器的特性H(ω )? 先考虑如何解调,即如何从接收信号中来恢复原基带信号? 设采用同步解调法进行解调,其组成方框图如图5-8 输入信号为 Sm(w) = 1 [ M (w - wc) + M (w +wc)] H (w)
2 (5.1 - 24)
载波为:
s(t ) = cos wct ? S (w) p [d (w +wc) +d (w - wc)]
1 1 [ Sm(w) * S (w)] = [ M (w + 2wc) + M (w)] H (w + wc) 2p 4 1 + [ M (w) + M (w - 2wc )] H (w - wc ) (5.1 - 26) 4
max max
- [ m(t )] min +[ m(t )] min
二、幅度调制的原理(5)(SSB)
SSB信号:
在DSB调制信号的基础上,仅保留一个边带。 将图5-4中的带通滤波器设计成如图5-5b所示的传输特 性。将产生上边带信号,相应的频谱如图5-5c所示。 信号带宽B=fx,其中fx是信号的最高频率)。 如何描述?产生下边带SSB信号的理想低通滤波器可表 示为: ì 1 t >0 ï 1
sm(t ) = A0 cos wct + m(t )cos wct
Sm(w) = p A0[d (w - wc) +d (w +wc)] +
现代通信原理考点
现代通信原理知识点第一章绪论1、通信、通信系统的定义;通信:从一地向另一地传递消息。
通信系统:将信息从信源传到一个或多个目的地。
2、通信系统的模型及各框图作用;臊声源通信系统的一般模型信息源:消息的发源地,把各种消息转换成原始电信号。
发送设备:将信源信号变换成适合在信道中传输的信号。
信道:指传输信号的物理媒质。
噪声源:干扰信号的传输。
接收设备:放大和反变换,从受到干扰和减损的接收信号中正确恢复出原始电信号受信者:将复原的原始电信号还原成相应的消息。
3、数字通信系统模型及各框图作用;数字通信的主要特点;数字通信系统模型信源编码:1)提高信息传输的有效性;2)完成模/数转换; 信源译码:是信源编码的逆过程;信道编码:把抗干扰编码加入传输信息中,提高可靠性;信道译码:将信息进行解码,并且有发现解码错误或纠正错误的功能; 加密:将传输的信息加上密码,保证信息的安全性; 解密:将已加密的信息进行解密恢复;数字调制:形成适合在信道中传输的频带信号; 数字解调:将频带信号还原为数字信号;主要特点:1)抗干扰能力强2)差错可控解密加密噪声源信息.信源译码信道编码额字调制信源a码信道译码数字解调受信者3)易于与各种数字终端接口4)易于集成化5)易于加密处理,且保密强度高4、通信系统分类(按传输媒质、信号复用方式);按传输媒质分:有线通信系统、无线通信系统;按信号复用方式分:频分复用、时分复用、码分复用;5、信息量的含义;信息量、平均信息量(嫡)、一条消息的信息量计算;信息量:对消息中这种不确定性的度量。
1、…、Ilog a log a P(x)(a2,单位:bit)P(x)平均信息量:每个符号所含信息量的统计平均值。
H(x)P(x i)[lbP(x i)]P(X2)[lbP(X2)]...P(X n)[lbP(X n)](bit/符号)例:一离散信源由0,1,2,3四个符号组成,它们出现的概率分别为38,1/4,1/4,1/8,且每个符号的出现都是独立的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.5.7 均衡器算法分类(续2)
二、 最小均方算法 调整抽头系数,使信道和均衡器综合输出的 期望值和实际值之间的均方误差最小。 特点:是一种最简单的均衡算法。算法的稳定 性好。 缺点:收敛速度不高,均衡能力有限。 在无线中适用于较慢的、不太深的衰落。
5.5.7 均衡器算法分类(续3)
三、 递归最小二乘算法 调整抽头系数,使信道和均衡器综合输出的 累计平方误差最小。 特点:收敛速度快,跟踪性能好。 缺点:算法较复杂,还要较好的考虑稳定性问 题。 在无线中适用于快衰落信道。
5.6 联合编码技术
5.6.1 联合编码概述
什么叫联合编码?经典的无线通信系统是将信 源编码和信道编码分别进行的。信源编码主要 考虑信源的统计特性,信道编码主要考虑信道 的统计特性。 优点:设计简单、通用性好,可以分别形成标 准。
缺点:没有充分利用各自的优势,因而不是最 佳的。
5.6.1 联合编码概述(续1)
5.2.3 合并方式
从分集信号中以什么方式作为输出? 选择式合并:选择最好的支路作为输出,其它支 路丢弃。 最大增益合并:调整各个支路主径的相位,使之 同相,然后进行等增益相加。
最小色散合并:调整各个支路次径的相位及幅度, 使之反相抵销。
最大比合并:调整各个支路的相位,使之同相, 然后按照各个支路的信噪比数值进行加权相加。
信源编码器 信道编码器
w
y
kRs
k ( Rs Rc )
调制 +
n (t)
解调
ˆ x
反量化
信源译码器
ˆ v
信道译码器
ˆ w
ˆ y
2
ˆ ˆ d ( x, x) x x
5.6.3 信源信道译码的联合优化
利用信源编码后的残留冗余度进行联合优化 利用信道译码的软输出进行联合优化
5.6.4 联合编码总结
第五章 衰落信道的抗干扰技术
5.1 衰落信道的抗干扰技术概述
5.2 分集技术
5.3 RAKE 接收技术
5.4 交织技术
5.5 均衡技术
5.6 联合编码技术
5.1 衰落信道的抗干扰技术概述
5.1.1 衰落信道的主要干扰 一、多径干扰
二、多用户干扰
5.1.2 衰落信道的主要抗干扰技术
发端进行—进行预防 收端进行—进行补救 分为三类: 一、冗余法—包括分集技术、纠错技术和 重发技术 二、均衡法—包括信道均衡和信源适应 三、干扰抵消法—是基于数学中求解联立 方程的迭代算法。 另:信号的传输方式如调制方式对抗干扰 有很大贡献。
5.3.2 RAKE 接收技术的原理
传输环境时变: 频率、相位、时间的变化
时延扩展
t0
t1
t 1
t 1
t0
t2
t 2
t 2
频率扩展
t0
t3
t 3
t 3
5.3.3 RAKE 接收机原理
相关1
a1
a2
相关2
+
积分 判决
CDMA 多径信号
相关M
判决输出
aM
接收机框图
5.3.4 RAKE 接收机工作过程
假设接收信号中可以分离出M个不同延时的多径分
量,每个分量用不同的相关器进行相关运算。
相关器1和支路1同步,相关器2和支路2同步,等等,
这样不同相关器就可以检测出各个支路的CDMA信号 能量。 发送信号的最大可能的能量输出,对此输出进行判 决再生,就可以恢复出数字信息。 最大信噪比准则,等。
5.2.4 分集举例
空间分集及其合并
S1(t)
相加 S1(t) S2(t) S2(t) 分集后的接收信号
相位
幅度
检测RAKE 接收技术
5.3.1 RAKE 接收的概念
•对时间上扩散的信号进行分集,尽可能多的获 取信号能量。 •对多径信号进行分离,根据信道估计的结果来 进行多径信号合并。 •对于CDMA系统,当多径延时大于一个码片时, 多径信号可以看成是不相关的。
同时也能改善非频率选择性衰落。
5.2.2 分集方式 采用什么途径接收分集信号?
空间分集:不同天线的接收信号相互独立;
极化分集:水平极化和垂直极化的信号相互独立;
频率分集:不同频率的接收信号相互独立,GSM采
用跳频CDMA采用扩频技术;
时间分集:不同时间的接收信号相互独立,有符号
交织、检错、纠错编码、Rake接收机技术。
均衡器是传输信道的逆滤波器; 由于传输信道的时变性,均衡器必需是参数可变的自适应
均衡器;
均衡器的效果是补偿信道的频率选择性,使衰落趋于平坦、
相位趋于线性。均衡器不能抵销平衰落。
5.5.4 频域均衡器
频域均衡器一般在中频上实现。 举例:中频幅度倾斜均衡器
中频输入
幅度倾斜 校正网络
中频输出
f1 检波 差分放大器
均衡器实现方法
–中频均衡器;
–基带均衡器。
5.5.2 均衡技术的原理
均衡器频域表达:
信道时域响应f(t),均衡器时域响应heq(t),希望均衡后的 信道响应为: g(t)=f*(t)heq(t)= (t) 就有: Heq(f)F*(-f)=1 Heq(f)为均衡器频域响应,F(f)为信道频域响应。
交织与纠错编码同时使用,进一步提高传输质
量。
交织器二种类型:分组交织、卷积交织。 交织器会引入时延(对语音不能超过40ms)。
5.5 均衡技术
5.5.1 均衡技术概述
自适应均衡器:减少码间干扰。 工作模式:训练模式和跟踪模式。 均衡器分类
–频域均衡器,时域均衡器; –线性均衡器,非线性均衡器。
对各个相关器的输出进行加权,然后相加,就得到
加权系数可以根据不同的准则,如:最大功率准则、
5.4 交织技术
原理:在无线通信中由于发生深衰落或遇到突
发干扰,误码的分布就不是平稳、纯随机的, 而是存在随机误码和突发误码。采用交织可以 减少突发误码的影响。
交织不增加额外开销。 交织可以保护信源编码中的特殊比特。
无线系统的信源编码由于压缩比很高,对 差错十分敏感;而信道编码面临十分恶劣的 传播环境,但提供的带宽冗余度很小。 在这种背景下,需要将信源编码和信道编 码综合考虑。这就是联合编码的基本思路。 在无线多媒体通信中,联合编码是抗衰落 的一种十分有效的措施。
5.6.2 信源信道联合编码的系统模型
x
量化
v
判决反馈均衡器(DFE); 最大似然符号检测(ML); 最大似然序列检测(MLSE)。
5.5.6 均衡器算法性能
算法性能参数: –失调:滤波器均方差与最优的最小均方差的差距;
–收敛速度:算法进入稳定的迭代次数,即收敛时间; –计算复杂度:完成迭代的运算次数;
–数值特性:算法用数字逻辑实现时,由于计算引起的 误差,影响算法稳定性。
f2 检波
5.5.5 时域均衡器
一、线性均衡器
横向滤波器:
–适用于衰落深度不是很大的情况。均衡器对深衰落 的频谱及邻近频谱产生很大增益,从而增加噪声。 –结构简单。 格型均衡器:
–数值稳定性好;
–收敛速度快。
5.5.5 时域均衡器(续1)
二、非线性均衡器 适用于深度衰落很大的情况。但算法相对复杂,且稳 定性差和收敛时间长。
5.5.7 均衡器算法分类
迫零算法; 最小均方算法;
递归最小二乘算法;
其它算法。
5.5.7 均衡器算法分类(续1)
一、迫零算法 调整抽头系数,使信道和均衡器综合输 出响应完全消除码间串扰,即除中心点外, 其它抽样点的数值全部为0。 特点:简单,均衡效果较好。 缺点:没有考虑噪声的影响,在深衰落的频 率点处,会出现很大的噪声增益。 因此,不太适用于在无线信道。
5.2 分集技术
5.2.1 分集技术原理
原理:利用无线传播环境中来自不同途径的多径
信号的统计独立性进行合并,从而实现分集。
首先要找出来自不同途径的多径信号,这些途径
可以是不同的空间、不同的极化、不同的频率、 不同的时间。
其次要以某种方法进行合并。 应该指出:分集技术不仅能改善频率选择性衰落,
无线视频传输中存在的主要问题 错误在空间上的传播 错误在时间上的传播
同步信息和头信息的丢失
可能的解决方法 减小错误空间传播 减小错误的时间传播 增强不等长译码的鲁棒性
不均等差错保护的方法
差错隐藏方法