四川省成都市双流区、青羊区2017-2018学年度八年级下期期末数学试题(合集)

合集下载

2017—2018学年八年级数学下期末试题

2017—2018学年八年级数学下期末试题

2017 —2018 学年八年级数学下期末试题2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题(满分120 分,时间:120 分钟)一、选择题: 本大题共8 个小题,每题 3 分,共24 分,在每题给出的四个选项A、B、c、D 中,只有一项为哪一项正确的,请把正确的选项填在答题卡的相应地点1. 在数轴上与原点的距离小于8 的点对应的x 知足A.x <8B.x >8c.x <-8 或x>8D.-8 <x<82. 将多项式﹣6a3b2﹣3a2b2+12a2b3 分解因式时,应提取的公因式是A .-3a2b2B.-3abc .-3a2bD.-3a3b33. 以下分式是最简分式的是A .B.c.D.4. 如图,在Rt △ABc中,∠c=90°,∠ABc=30°,AB=8,将△ABc沿cB 方向向右平移获得△DEF.若四边形ABED的面积为8,则平移距离为A .2B.4c.8D.165. 如下图,在△ABc 中,AB=Ac,AD 是中线,DE⊥A B,D F⊥Ac,垂足分别为E、F,则以下四个结论中:①AB 上任一点与Ac 上任一点到D的距离相等;②AD上任一点到AB、Ac 的距离相等;③∠BDE=∠cDF;④∠1=∠2. 正确的有A.1 个B.2 个c.3 个D.4 个6. 每千克元的糖果x 千克与每千克n 元的糖果y 千克混淆成杂拌糖,这样混淆后的杂拌糖果每千克的价钱为A. 元B. 元c. 元D.元7. 如图,□ABcD的对角线Ac,BD交于点o,已知AD=8,BD=12,Ac=6,则△oBc 的周长为A .13B.26c.20D.178. 如图,DE是△ABc的中位线,过点 c 作cF∥BD交DE的延伸线于点F,则以下结论正确的选项是A .EF=cFB.EF=DEc.cF<BDD.EF>DE二、填空题(本大题共 6 个小题,每题 3 分,共18 分,只需求把最后的结果填写在答题卡的相应地区内)9. 利用因式分解计算:2012-1992= ;10. 若x+y=1,xy=-7 ,则x2y+xy2= ;11. 已知x=2 时,分式的值为零,则k=;12. 公路全长为sk,骑自行车t 小时可抵达,为了提早半小时抵达,骑自行车每小时应多走;13. 一个多边形的内角和是外角和的 2 倍,则这个多边形的边数为;14. 如图,△AcE 是以□ABcD的对角线Ac 为边的等边三角形,点 c 与点E对于x 轴对称.若E点的坐标是(7,﹣3),则D点的坐标是.三、解答题(本大题共78 分, 解答要写出必需的文字说明、演算步骤)15. (6 分)分解因式(1)20a3-30a2 (2)25(x+y)2-9 (x-y )216. (6 分)计算:(1)(2)17. (6 分)A、B 两地相距200 千米,甲车从 A 地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A 地80 千米.已知乙车每小时比甲车多行驶30 千米,求甲、乙两车的速度.18. (7 分)已知:如图,在△ABc中,AB=Ac,点D 是Bc 的中点,作∠EAB=∠BAD,AE边交cB 的延伸线于点E,延伸AD到点F,使AF=AE,连结cF.求证:BE=cF.19.(8 分)“二广”高速在益阳境内的建设正在紧张地进行,现有大批的沙石需要运输.“益安”车队有载重量为8 吨、10 吨的卡车共12 辆,所有车辆运输一次能运输110 吨沙石.(1)求“益安”车队载重量为8 吨、10 吨的卡车各有多少辆?(2)跟着工程的进展,“益安”车队需要一次运输沙石165 吨以上,为了达成任务,准备新增购这两种卡车共 6 辆,车队有多少种购置方案,请你一一写出.20. (8 分)如图,在Rt△ABc 中,∠AcB=90°,点D, E 分别在AB,Ac 上,cE=Bc,连结cD,将线段cD 绕点c 按顺时针方向旋转90°后得cF,连结EF.(1) 增补达成图形;(2) 若E F∥cD,求证:∠BDc=90° .21.(8 分)下边是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y ,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)= (y+4)2(第三步)= (x2-4x+4 )2(第四步)(1)该同学第二步到第三步运用了因式分解的.A .提取公因式B.平方差公式c .两数和的完整平方公式D.两数差的完整平方公式(2)该同学因式分解的结果能否完全?.(填“完全”或“不完全”)若不完全,请直接写出因式分解的最后结果.( 3 )请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1 进行因式分解.22. (8 分)如图,四边形ABcD中,对角线Ac,BD订交于点o,点E,F 分别在oA,oc 上(1)给出以下条件;①oB=oD,②∠1=∠2,③oE=oF,请你从中选用两个条件证明△BEo≌△DFo;(2)在(1)条件中你所选条件的前提下,增添AE=cF,求证:四边形ABcD是平行四边形.23. (10 分)如图,在□ABcD中,E是Bc 的中点,连结AE并延伸交Dc 的延伸线于点F.(1)求证:AB=cF;(2)连结DE,若AD=2AB,求证:D E⊥A F.24. (11 分)如图,在直角梯形ABcD中,AD∥Bc,∠B=90°,且AD=12c,AB=8c,Dc=10c,若动点P从A点出发,以每秒2c 的速度沿线段AD向点D运动;动点Q从c 点出发以每秒3c 的速度沿cB 向B 点运动,当P点抵达D点时,动点P、Q 同时停止运动,设点P、Q 同时出发,并运动了t 秒,回答以下问题:(1)Bc=c;(2)当t 为多少时,四边形PQcD成为平行四边形?(3)当t 为多少时,四边形PQcD为等腰梯形?(4)能否存在t ,使得△DQc是等腰三角形?若存在,请求出t 的值;若不存在,说明原因.2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题参照答案一、选择题( 每题 3 分,共24 分)1 、D 2、A 3、c4、A 5、c6、B7、D8、B二、填空题( 每题 3 分,共18 分)9.1.-711.-612.-13.6( 六)14. (5,0)三、解答题( 共78 分 )15. ( 1 )解:20a3 ﹣30a2=10a2 (2a ﹣3)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)解:25(x+y)2﹣9(x﹣y)2=[5 (x+y)+3(x﹣y)][5 (x+y)﹣3(x﹣y) ]= (8x+2y)(2x+8y);=4(4x+y)(x+4y) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分16. (1)解:== ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)====⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分17. 设甲车的速度是x 千米/ 时,乙车的速度为(x+30)千米/ 时,⋯⋯⋯⋯⋯ 1 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分解得,x=60,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分经检验,x=60 是原方程的解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分则x+30=90,即甲车的速度是60 千米/ 时,乙车的速度是90 千米/ 时.⋯⋯⋯⋯⋯⋯⋯⋯ 6 分18. 证明:∵AB=Ac,点D是Bc 的中点,∴∠cAD= ∠BAD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分又∵∠EAB=∠BAD,∴∠cAD= ∠EAB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分在△AcF 和△ABE中,∴△AcF≌△ABE(SAS).∴BE=cF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分19. 解:(1)设“益安”车队载重量为8 吨、10 吨的卡车分别有x 辆、y 辆,依据题意得:,解之得:.答:“益安”车队载重量为8 吨的卡车有 5 辆,10 吨的卡车有7 辆;⋯⋯⋯⋯⋯⋯⋯ 4 分(2)设载重量为8 吨的卡车增添了z 辆,依题意得:8(5+z)+10(7+6﹣z)>165,解之得:z <,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵z≥0 且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有 3 种购车方案:①载重量为8 吨的卡车购置 1 辆,10 吨的卡车购置 5 辆;②载重量为8 吨的卡车购置 2 辆,10 吨的卡车购置 4 辆;③载重量为8 吨的卡车不购置,10 吨的卡车购置 6 辆.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分20.(1) 解:补全图形,如图所示.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2) 证明:由旋转的性质得∠DcF=90°,Dc=Fc,∴∠DcE +∠EcF=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∵∠AcB=90°,∴∠DcE+∠BcD=90°,∴∠EcF=∠BcD∵E F∥Dc,∴∠EFc+∠DcF=180°,∴∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分在△BDc和△EFc 中,Dc =Fc,∠BcD=∠EcF,Bc=Ec,∴△BDc≌△EFc(SAS),∴∠BDc= ∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分21. 解:(1)该同学第二步到第三步运用了因式分解的两数和的完整平方公式;故选:c;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)该同学因式分解的结果不完全,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x ﹣ 2 )4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)(x2﹣2x)(x2﹣2x+2)+1= (x2﹣2x)2+2(x2﹣2x)+1= (x2﹣2x+1)2= (x ﹣ 1 )4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分22. 证明:(1)选用①②,∵在△BEo和△DFo中,∴△BEo ≌△DFo (ASA);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)由(1)得:△BEo≌△DFo,∴Eo=Fo,Bo=Do,∵AE=cF,∴Ao=co,∴四边形ABcD 是平行四边形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分23. 证明:(1)∵四边形ABcD是平行四边形,∴AB∥DF,∴∠ABE=∠FcE,∵E为Bc 中点,∴BE=cE,在△ABE与△FcE 中,,∴△ABE≌△FcE(ASA),∴AB=Fc;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(2)∵AD=2AB,AB=Fc=cD,∴AD=DF,∵△ABE≌△FcE,∴AE=EF,∴DE ⊥A F.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分24. 解:依据题意得:PA=2t,cQ=3t ,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12c,在直角△cDE中,∵∠cED=90°,Dc=10c,DE=8c,∴Ec==6c,∴Bc=BE+Ec=18c.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(直接写出最后结果18c 即可)(2)∵AD∥Bc,即PD∥cQ,∴当PD=cQ时,四边形PQcD为平行四边形,即12-2t=3t ,解得t= 秒,故当t= 秒时四边形PQcD 为平行四边形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12,c当PQ=cD时,四边形PQcD为等腰梯形.过点P 作PF⊥Bc 于点F,过点D作DE⊥Bc 于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△cDE中,,∴Rt△PQF≌Rt△cDE(HL),∴QF=cE,∴Qc-PD=Qc-EF=QF+Ec=2c,E即3t- (12-2t )=12,解得:t= ,即当t= 时,四边形PQcD 为等腰梯形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分(4)△DQc是等腰三角形时,分三种状况议论:①当Qc=Dc时,即3t=10 ,∴t= ;②当DQ=Dc时,∴t=4 ;③当QD=Qc时,3t ×∴t= .故存在t ,使得△DQc是等腰三角形,此时t 的值为秒或 4 秒或秒.⋯⋯⋯11 分③在Rt△D Q中,DQ2=D2+Q236t=100t=。

2017-2018学年成都市青羊区某名校八年级(下)期末数学试卷(含解析)

2017-2018学年成都市青羊区某名校八年级(下)期末数学试卷(含解析)

2017-2018学年成都市青羊区某校八年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分)1.不等式>5的解集是()A.x<B.x>C.x<15 D.x>152.下列各式分解因式正确的是()A.ax2﹣a=a(x2﹣1)B.x2+x﹣2=x(x+1)﹣2C.a2b+ab2=ab(a+b)D.x2+1=x(x+)3.若分式的值为零,则x的值为()A.1 B.﹣1 C.1或﹣1 D.04.下列说法正确的是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是正方形C.对角线相等且互相垂直平分的四边形是正方形D.对角线相等的矩形是正方形5.若a<b,则下列不等式中错误的是()A.a+5<b+5 B.﹣4a>﹣4bC.a< b D.a(x2+2)>b(x2+2)6.如图,在△ABC中,BC=5,AC=8,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长等于()A.18 B.15 C.13 D.127.一个多边形的内角和是900°,则这个多边形的边数是()A.6 B.7 C.8 D.98.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B.60°C.70°D.80°9.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F 为DC的中点,DG⊥AE,垂足为G.若AE=4,则DG的长为()A.B.C.1 D.10.为迎接2014年巴西世界杯开幕,某校举办了以欢乐世界杯为主题趣味颠足球比赛:各班代表队所有成员按指定规则同时颠球,成功颠球300个所用时最短的代表队即获胜.预赛中某班的参赛团队每分钟共颠球X个进入决赛,决赛中该团队每分钟颠球的成功率提高为预赛的1.2倍,结果提前了2分钟完成比赛,根据题意,下面所列方程中,正确的是()A.=2 B.﹣=2C.=D.=二、填空题:(本大题共4个小颗,每小题4分,共16分)11.代数式a2b﹣2ab+b分解因式为.12.如图,函数y=ax﹣1的图象过点(1,2),则不等式ax﹣1>2的解集是.13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,现从以下四个式子①AB=BC,②AC=BD,③AC ⊥BD,④∠ABC=90°中,任取一个作为条件,即可推出平行四边形ABCD是菱形的概率为.14.如图,矩形纸片ABCD中,AB=3,BC=5,将纸片折叠,使点C落在AD上的点E处,折痕为BF,则FC 的长为.三、解答题(共54分)15.(12分)(1)解不等式组,并求其整数解:(2)先化简,再求值÷(m﹣1+),其中m=.16.(6分)解方程:﹣=1.17.(8分)如图,平面直角坐标系中,△ABC的顶点在方格纸的格点处,每个小正方形的边长为单位1.(1)请作出△ABC向左平移三个单位后得到的图形△A1B1C1;(2)请作出△ABC绕点O顺时针旋转90度后得到的图形△A2B2C2;(3)在坐标轴上找到一点D,使△ABD是以AB为腰的等腰三角形,并写出点D的坐标.18.(8分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.19.(8分)2014年5月28日,成都新二环迎来改造通车一周年的日子.在二环路的绿化工程中,甲、乙两个绿化施队承担了某路段的绿化工程任务,甲队单独做要40天完成,若乙队先做30天后,甲、乙两队合作再做20天恰好完成任务,请问:乙队单独做需要多少天能完成任务?20.(12分)(1)如图1所示,在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰Rt△ABD、等腰Rt△ACE,作DF⊥AB于点F,BG⊥AC于点G,M是BC的中点,连接MD和ME.求证:ME=MD;(2)如图2所示,若在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰Rt△ABD、等腰Rt △ACE,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量关系?请给出证明过程B卷(50分)一、填空题(本大题共4个小题,每小题4分,共20分)21.若关于x的方程+=1有增根,则m的值是.22.已知方程组的解为非负数,化简=.23.已知x2﹣5x+1=0,则的值是.24.如图,在▱ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/s秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也同时停止运动,当点P运动秒时,以P、Q、E、F为顶点的四边形是平行四边形.25.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置,点A1,A2,A3和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B2014的坐标是.二、解答题(共30分)26.(9分)已知:=1﹣;=;=;=﹣;…(1)填空:+++…+=;(2)根据你发现的规律解方程:+++…+=.27.(9分)某养殖基地计划由23人共承包58亩(亩为面积单位)的水面用于养殖甲鱼、大闸蟹、河虾,规定每人只养殖其中的一种,且养殖大闸蟹的人数不少于4人,其余的不少于1人.经预算这些不同的水产品每人可养殖的亩数和预计每亩的产值如下表.若设养殖甲鱼x人、养殖大闸蟹y人、养殖河虾z人品种甲鱼大闸蟹河虾每人可养殖的亩数 2 3 4产值(万元) 1.5 1 0.8(1)请用含x的代数式分别表示y与z;(2)现要求安排所有的人参加养殖,且刚好利用所有的水面,请问该基地共有几种方案可供安排?(3)如何安排才能使总产值最大?最大总产值是多少?28.(12分)已知正方形ABCD,探究以下问题:(1)如图1,点F在BC上,作FE⊥BD于点E,取DF的中点G,连接EG、CG,将△EGC沿直线EC翻折到△EG′C,求证:四边形EGCG′是菱形;(2)如图2,点F是BC外一点,作FE⊥BC于点E,且BE=EF,连接DF,取DF的中点G,将△EGC沿直线EC翻折到△EG′C,作FM⊥CD于点M,请问(1)中的结论”四边形EGCG′是菱形”是否依然成立,并说明理由;(3)在(2)的条件下,若图2中AB=4,设BE长为x,四边形EGCG′的面积为S,请求出S关于x的函数关系式,并说明理由.参考答案与试题解析1.【解答】解:两边都乘以3,得:x>15,故选:D.2.【解答】解:A、原式=a(x+1)(x﹣1),错误;B、原式=(x﹣1)(x+2),错误;C、原式=ab(a+b),正确;D、原式不能分解,错误,故选:C.3.【解答】解:∵的值为0,故x2﹣1=0且x﹣1≠0,解得x=﹣1,故选:B.4.【解答】解:A、有一组邻边相等的平行四边形是菱形,故错误;B、四边相等的矩形形是正方形,故错误;C、对角线相等且互相垂直平分的矩形是正方形,故错误;D、对角线相等的矩形是正方形,正确.故选:D.5.【解答】解:A、∵a<b,∴a+<b+5,故说法正确;B、∵a<b,∴﹣4a>﹣4b,故说法正确;C、∵a<b,∴a<b,故说法正确;D、∵a<b,x2+2>0,∴a(x2+2)<a(x2+2),故说法错误.故选:D.6.【解答】解:∵在△ABC中,AC=8,BC=5,DE是线段AB的垂直平分线,∴AE=BE,∴△BCE的周长=(BE+CE)+BC=AC+BC=8+5=13.故选:C.7.【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:B.8.【解答】解:由题意得,∠AED=180°﹣∠A﹣∠ADE=70°,∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∴∠C=∠AED=70°.故选:C.9.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,∵DG⊥AE,∴AG=GF=AF,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,∴AF=AE=2,∴AG=,∴DG===1.故选:C.10.【解答】解:设预赛中某班的参赛团队每分钟共颠球X个进入决赛,可得:,故选:B.11.【解答】解:a2b﹣2ab+b=b(a2﹣2a+1)=b(a﹣1)2.故答案为:b(a﹣1)2.12.【解答】解:方法一∵把(1,2)代入y=ax﹣1得:2=a﹣1,解得:a=3,∴y=3x﹣1>2,解得:x>1,方法二:根据图象可知:y=ax﹣1>2的x的范围是x>1,即不等式ax﹣1>2的解集是x>1,故答案为:x>1.13.【解答】解:四边形ABCD是平行四边形,(1)若AB=BC,则AB=BC=CD=AD,符合“有一组邻边相等的平行四边形是菱形”的判定定理,故此小题正确;(2)若AC=BD,则此平行四边形是矩形,故此小题错误;(3)若AC⊥BD,符合“对角线互相垂直的平行四边形是菱形”的判定定理,此小题正确;(4)若AB⊥BC,则此平行四边形是矩形,故此小题错误.故正确的有(1)、(3)两个,所以可推出平行四边形ABCD是菱形的概率为:=.故答案为:.14.【解答】解:设CF=x,由折叠的性质可知,BE=BC=5,EF=FC=x,∴AE==4,DF=3﹣x,∴ED=AD﹣AE=1,在Rt△DEF中,EF2=DF2+DE2,即x2=1+(3﹣x)2,解得,x=,故答案为:.15.【解答】解:(1),由①得,x>﹣1,由②得,x≤,故不等式组的解集为:﹣1<x≤,其整数解为:0,1.(2)原式=÷=•=,当m=时,原式=.16.【解答】解:去分母得:x(x﹣2)﹣2=x2﹣4,解得:x=1,经检验x=1是分式方程的解.17.【解答】解:(1)如图1,△A1B1C1为所作;(2)如图1,△A2B2C2为所作;(3)如图2,点D和点D′为所作,点D的坐标为(0,1)或(1,0).18.【解答】(1)证明:如图:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2∴∠5=∠6∵在△ADE与△CBF中,∴△ADE≌△CBF(ASA),∴AE=CF;(2)证明:∵∠1=∠2,∴DE∥BF.又∵由(1)知△ADE≌△CBF,∴DE=BF,∴四边形EBFD是平行四边形.19.【解答】解:设乙工程队单独做要x天才能完成任务,甲的速度为,乙的速度为,由题意得:+20(+)=1,解得:x=100,经检验得x=100是原方程的根.答:乙工程队单独做要100天才能完成任务.20.【解答】(1)证明:∵M是BC的中点,∴BM=CM.∵AB=AC,∴∠ABC=∠ACB,∴∠ABC+∠ABD=∠ACB+∠ACE,即∠DBM=∠ECM.在△DBM和△ECM中,∴△DBM≌△ECM(SAS),∴MD=ME;(2)解:MD=ME,理由:取AB、AC的中点F、G,连接DF,MF,EG,MG,∴AF=AB,AG=AC.∵△ABD和△AEC是等腰直角三角形,∴DF⊥AB,DF=AB,EG⊥AC,EG=AC,∴∠AFD=∠AGE=90°,DF=AF,GE=AG.∵M是BC的中点,∴MF∥AC,MG∥AB,∴四边形AFMG是平行四边形,∴AG=MF,MG=AF,∠AFM=∠AGM.∴MF=GE,DF=MG,∠AFM+∠AFD=∠AGM+∠AGE,∴∠DFM=∠MGE.∵在△DFM和△MGE中,,∴△DFM≌△MGE(SAS),∴DM=ME.21.【解答】解:方程两边都乘(x﹣2),得:﹣2+2x+m=x﹣2,∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,把x=2代入﹣2+2x+m=x﹣2得:﹣2+4+m=2﹣2,解得:m=﹣2.故答案为:﹣2.22.【解答】解:解方程组得,,∵方程组的解为非负数,∴,解得m≥,∴原式==2m﹣1.故答案为:2m﹣1.23.【解答】解:∵x2﹣5x+1=0,∴x2=5x﹣1,∴原式======.故答案为:.24.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=BC=AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6﹣t=9﹣2t或6﹣t=2t﹣9,解得:t=3或t=5.故答案为:3或5.25.【解答】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),代入y=kx+b得,解得:.则直线的解析式是:y=x+1.∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),…,∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1.B n的坐标是(2n﹣1,2n﹣1)∴B2014的坐标是(22014﹣1,22013).故答案为:(22014﹣1,22013).26.【解答】解:(1)原式=1﹣+﹣+…+﹣=1﹣=;(2)方程整理得:﹣+﹣+…+﹣=,即=,去分母得:x=2012,经检验x=2012是分式方程的解.故答案为:(1)27.【解答】解:(1)依题意,得:,解得:.(2)∵y≥4,x≥1,z≥1,∴,解得:12≤x≤15,∴共有四种方案可供安排,方案1:安排12人养殖甲鱼,10人养殖大闸蟹,1人养殖河虾;方案2:安排13人养殖甲鱼,8人养殖大闸蟹,2人养殖河虾;方案3:安排14人养殖甲鱼,6人养殖大闸蟹,3人养殖河虾;方案4:安排15人养殖甲鱼,4人养殖大闸蟹,4人养殖河虾.(3)设总产值为w万元,依题意,得:w=1.5×2x+1×3y+0.8×4z=0.2x+66.8,∵0.2>0,∴w的值随x值的增大而增大,∴当x=15时,w取得最大值,最大值为69.8.答:方案4安排15人养殖甲鱼,4人养殖大闸蟹,4人养殖河虾时总产值最大,最大总产值是69.8万元.28.【解答】证明:(1)∵四边形ABCD为正方形,∴∠DCF=90°.∵G为线段DF的中点,∴CG=DF.∵FE⊥BD,∴∠FED=90°,∵G为线段DF的中点,∴EG=DF,∴CG=EG.∵将△EGC沿直线EC翻折到△EG′C,∴CG=CG′,EG=EG′,∴四边形EGCG′四条边相等,∴四边形EGCG′是菱形.(2)(1)中的结论”四边形EGCG′是菱形”依然成立.证明:在图2中,连接BG,GM,如图所示.∵FE⊥BC于点E,且BE=EF,∴△BEF为等腰直角三角形,∴∠EBF=45°.∵四边形ABCD为正方形,∴∠DBE=45°,∴∠DBF=∠DBE+∠EBF=90°.∵G为线段DF的中点,∴BG=DF.∵FM⊥CD于点M,∴∠DMF=90°,∵G为线段DF的中点,∴MG=DF,∴BG=MG.∵FE⊥BC,FM⊥CD,∴四边形EFMC为矩形,∴EF=CM.∴BE=EF=MC.∵BG=GD,MG=GD,∴∠DBG=∠BDG,∠GMD=∠GDM,∵∠DBC=∠CDB=45°,∴∠GBE=∠DBC﹣∠DBG=45°﹣∠BDG,∠GMC=∠GDM=∠CBD﹣∠BDG=45°﹣∠BDG,∴∠GBE=∠GMC.在△GBE和△GMC中,有,∴△GBE≌△GMC(SAS).∴GE=GC.∵将△EGC沿直线EC翻折到△EG′C,∴CG=CG′,EG=EG′,∴四边形EGCG′四条边相等,∴四边形EGCG′是菱形.(3)在图2的基础上过点G′作G′N⊥CE于点N,如图3所示.∵△GBE≌△GMC,∴∠BEG=∠MCG,∵∠BEG=∠EGC+∠ECG,∠MCG=∠MCG+∠ECM,∴∠EGC=∠ECM=90°.∴∠EG′C=90°,△EG′C为等腰直角三角形.∵AB=4,BE=x,∴EC=BC﹣BE=4﹣x,G′N=EC=2﹣.四边形EGCG′的面积S=2×EC•G′N=(4﹣x)(2﹣)=x2﹣4x+8(0<x<4)。

四川省成都市 八年级(下)期末数学试卷(含答案)

四川省成都市   八年级(下)期末数学试卷(含答案)

2017-2018学年八年级(下)期末数学试卷副标题题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.若等腰三角形一个内角为100°,则此等腰三角形的顶角为()A. B. C. 或 D.2.已知a<b,下列不等式中正确的是()A. B. C. D.3.已知关于x的分式方程无解,则k的值为()A. 0B. 0或C. 0D. 0或4.分式有意义的条件是()A. B. C. D.5.如图,菱形ABCD的对角线AC与BD交于点O,过点C作AB垂线交AB延长线于点E,连结OE,若AB=2,BD=4,则OE的长为()A. 6B. 5C.D. 46.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.7.已知四边形ABCD,对角线AC与BD交于点O,从下列条件中:①AB∥CD;②AD=BC;③∠ABC=∠ADC;④OA=OC,任取其中两个,以下组合能够判定四边形ABCD是平行四边形的是()A. B. C. D.8.已知关于x的不等式组的解集是x≥1,则a的取值范围是()A. B. C. D.二、填空题(本大题共8小题,共32.0分)9.已知关于x、y方程组的解满足x>1,y≥2,则k的取值范围是______.10.已知关于x的分式方程=a有解,则a的取值范围是______.11.多项式x2-kx+6因式分解后有一个因式为x-2,则k的值为______.12.如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,则的值是______.13.如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段M绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值是______.14.已知ab≠0,a2+2ab-3b2=0,那么分式的值等于______.15.如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连结DE,DE=2.5cm,AB=4cm,则BC的长为______cm.16.如图,一次函数y1=-2x+m与y2=ax+6的图象相交于点P(-2,3),则关于x的不等式m-2x<ax+6的解集是______三、计算题(本大题共3小题,共28.0分)17.(1)分解因式:2mx2-4mxy+2my2.(2)解方程:.18.先化简,再求值:,其中x=-3.19.某新能源汽车销售公司销售A品牌电动汽车,今年5月份电动汽车的售价比去年同期降价了1万元,如果销售的数量相同,去年5月份的销售额为110万元,今年5月份的销售额就只有105万元.(1)求今年5月份A品牌电动汽车的售价;(2)该公司同时销售B品牌混合动力汽车,已知A、B品牌汽车的进价分别为20万元/辆、12万元/辆,若公司预计用不超过236万元且不少于204万元的资金购进两款汽车共15辆,求公司的进货方案有多少种?(3)在(2)的条件下,今年5月份B品牌汽车的售价为13.8万元/辆,且每售出一辆A品牌电动汽车,政府将给予公司a万元奖励(0<α<2),已知该公司销售两款汽车的最大利润为28.4万元,求a的值.四、解答题(本大题共6小题,共56.0分)20.在平面直角坐标系中,△ABC的位置如图所示:(每个小方格都是边长为1个单位长度的正方形)(1)将△ABC沿y轴方向向下平移4个单位长度得到△A1B1C1,则点C1坐标为______;(2)将△ABC绕着点O逆时针旋转90°,画出旋转后得到的△△A2B2C2;(3)直接写出点B2,C2的坐标.21.(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长FG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连结DN,求∠NDC 的度数.22.在某学校的八年级课外活动中,体育组想把篮球分给班级活动用,如果每个班分4个篮球,则剩余20个篮球;如果每个班分8个篮球,则最后一个班分到的篮球个数不到8个(也不为0个),问:(1)这个学校八年级共有几个班?(2)如果每个班分8个篮球,最后一个班分到的篮球个数到底是多少个?23.在直角三角形ABC中,∠BAC=90°,(AC>AB),在边AC上取点D,使得BD=CD,点E、F分别是线段BC、BD的中点,连接AF和EF,作∠FEM=∠FDC,交AC于点M,如图1所示,(1)请判断四边形EFDM是什么特殊的四边形,并证明你的结论;(2)将∠FEM绕点E顺时针旋转到∠GEN,交线段AF于点G,交AC于点N,如图2所示,请证明:EG=EN;(3)在第(2)条件下,若点G是AF中点,且∠C=30°,AB=2,如图3,求GE的长度.24.如图,在平面直角坐标系中,直线AB分别交x、y轴于点A、B,直线BC分别交x、y轴于点C、B,点A的坐标为(2,0),∠ABO=30,且AB⊥BC.(1)求直线BC和AB的解析式;(2)将点B沿某条直线折叠到点0,折痕分别交BC、BA于点E、D,在x轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请直接写出这两点的坐标;若不存在,请说明理由.25.如图,在▱ABCD中,BE平分∠ABC交CD延长线于点E,作CF⊥BE于F.(1)求证:BF=EF;(2)若AB=6,DE=3,求▱ABCD的周长.答案和解析1.【答案】A【解析】解:①当这个角是顶角时,底角=(180°-100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故选:A.题中没有指明已知的角是顶角还是底角,故应该分情况进行分析,从而求解.此题主要考查等腰三角形的性质及三角形内角和定理的综合运用,关键是分情况进行分析.2.【答案】B【解析】解:A、两边都除以2,不等号的方向不变,故A错误;B、两边都减1,不等号的方向不变,故B正确;C、两边都乘-1,不等号的方向改变,故C错误;D、两边都加3,不等号的方向不变,故D错误;故选:B.根据不等式的性质,可得答案.本题考查了不等式的性质,利用不等式的性质是解题关键.3.【答案】D【解析】解:分式方程去分母得:x=3kx+3k,即(3k-1)x=-3k,当3k-1=0,即k=时,方程无解;当k≠时,x==0或-1,方程无解,此时k=0,综上,k的值为0或,故选:D.分式方程去分母转化为整式方程,由分式方程无解确定出j的值即可.此题考查了分式方程的解,始终注意分母不为0这个条件.4.【答案】C【解析】解:由题意可知:x-2≠0,∴x≠2故选:C.根据分式有意义的条件即可求出答案.本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.5.【答案】D【解析】解:∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=4,∴OB=BD=2,在Rt△AOB中,AB=2,OB=2,∴OA==4,∴OE=OA=4.故选:D.先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.6.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.【答案】D【解析】解:以①④作为条件,能够判定四边形ABCD是平行四边形.理由:∵AB∥CD,∴∠OAB=∠OCD,在△AOB和△COD中,,∴△AOB≌△COD(ASA),∴OB=OD,∴四边形ABCD是平行四边形.故选:D.以①④作为条件能够判定四边形ABCD是平行四边形,根据平行得出全等三角形,即可求出OB=OD,根据平行四边形的判定推出即可;本题考查了平行四边形的判定,相似三角形的性质和判定,等腰梯形的判定等知识点的应用,主要考查学生的推理能力和辨析能力,题目比较好,但是一道比较容易出错的题目.8.【答案】C【解析】解:∵关于x的不等式组的解集是x≥1,∴a<1,故选:C.利用不等式取解集的方法判断即可确定出a的范围.此题考查了不等式的解集,熟练掌握不等式取解集的方法是解本题的关键.9.【答案】-1≤k<1【解析】解:,解得:,∵x>1,y≥2,∴解得:-1≤k<1,故答案为:-1≤k<1.解方程组得到含有k的x和与,根据x>1,y≥2,得到关于k的一元一次不等式组,解之即可.本题考查解一元一次不等式组和解二元一次方程组,根据不等量关系列出不等式组是解题的关键.10.【答案】a≠2【解析】解:分式方程去分母得:2a+1=ax+a,整理得:(a-2)x=1-a,当a-2≠0,即a≠2时,x=,由分式方程有解,得到≠-1,解得:a≠2,则a的范围是a≠2.分式方程去分母转化为整式方程,表示出分式方程的解,确定出a的范围即可.此题考查了分式方程的解,始终注意分母不为0这个条件.11.【答案】5【解析】解:∵多项式x2-kx+6因式分解后有一个因式为x-2,∴另一个因式是(x-3),即x2-kx+6=(x-2)(x-3)=x2-5x+6,则k的值为5,故答案为:5利用十字相乘法法判断即可.此题考查了因式分解的意义,熟练掌握因式分解的方法是解本题的关键.12.【答案】【解析】解:在矩形ABCD中,AD=BC=AB=CD,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AH⊥DE,∴△ADH是等腰直角三角形,∴AD=AB,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=22.5°,∴∠OAH=∠OHA,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE,∴OH=AE,即=.故答案为:.根据矩形的性质得到AD=BC=AB=CD,由DE平分∠ADC,得到△ADH是等腰直角三角形,△DEC是等腰直角三角形,得到DE=CD,得到等腰三角形求出∠AED=67.5°,∠AEB=180°-45°-67.5°=67.5°,进而求出△AOH和△OEH是等腰三角形,即可得出结论.本题考查了矩形的性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而判断出等腰三角形是解题的关键,也是本题的难点.13.【答案】2【解析】解:如图,作ME⊥AD交AB于E,连接EN′、AC、作CF⊥AB于F.∵∠MAE=45°,∴△MAE是等腰直角三角形,∴MA=ME,∵∠AME=∠NMN′=90°,∴∠AMN=∠EMN′,∵MN=MN′,∴△AMN≌△EMN′,∴∠MAN=∠MEN′=45°,∴∠AEN′=90°,∴EN′⊥AB,∵AM=DM=,AB=4,∴AE=2,EB=2,∴AE=EB,∴N′B=N′A,∴N′B+N′C=N′A+N′C,∴当A、N′、C共线时,N′B+N′C的值最小,最小值=AC,在Rt△BCF中,∵BC=AD=2,∠CBF=∠DAB=45°,∴CF=BF=2,在Rt△ACF中,AC==2,故答案为2.如图,作ME⊥AD交AB于E,连接EN′、AC、作CF⊥AB于F.首先证明AN′=BN′,因为N′B+N′C=N′A+N′C,即可推出当A、N′、C共线时,N′B+N′C的值最小,最小值=AC;本题考查平行四边形的性质、旋转变换、两点之间线段最短、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考填空题中的压轴题.14.【答案】3或【解析】解:∵a2+2ab-3b2=0,∴(a2-b2)+(2ab-2b2)=0,∴(a+b)(a-b)+2b(a-b)=0,∴(a-b)(a+3b)=0,∴a-b=0或a+3b=0,∴a=b或a=-3b.当a=b时,原式=(ab≠0)=3;当a=-3b时,原式=(ab≠0)=.故答案为:3或.先将条件变形为a2+2ab-2b2-b2=0,得(a2-b2)+(2ab-2b2)=0,得(a+b)(a-b)+2b(a-b)=0,(a-b)(a+3b)=0,再将a用含b的式子表示出来代入代数式就可以求出结论.本题考查了利用因式分解把一个字母用另一个字母表示出来代入代数式求出其值的运用.在解答时注意不要漏解.15.【答案】6.5【解析】解:∵BF平分∠ABC,AG⊥BF,∴△ABG是等腰三角形,∴AB=GB=4cm,∵BF平分∠ABC,∴AD=DG,∵E为AC的中点,∴DE是△AGB的中位线,∴DE=CG,∴CG=2DE=5cm,∴BC=BG+CG=4+2.5=6.5cm,故答案为:6.5由条件“BF平分∠ABC,AG⊥BF”可判定三角形ABG是等腰三角形(AB=GB),再由条件“E为AC的中点”,可判定DE是三角形AGB的中位线,由此可得GC=2DE,进而可求出BC的长.本题考查了等腰三角形的判断和性质、三角形中位线定理的运用,熟记判断等腰三角形的各种方法是解题的关键.16.【答案】x>-2【解析】解:观察函数图象可知:当x>-2时,一次函数y1=-2x+m的图象在y2=ax+6的图象的下方,∴关于x的不等式m-2x<ax+6的解集是x>-2.故答案为x>-2.观察函数图象,根据两函数图象的上下位置关系即可找出关于x的不等式m-2x<ax+6的解集.本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.17.【答案】解:(1)原式=2m(x2-2xy+y2)=2m(x-y)2;(2)两边都乘以x-2,得:1-x=x-2+3,解得:x=0,检验:x=0时,x-2=-2≠0,所以原分式方程的解为x=0.【解析】(1)先提取公因式2m,再利用完全平方公式分解可得;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了提公因式与解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.【答案】解:==,当x=-3时,原式=====.【解析】根据完全平方公式和提公因式法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.【答案】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=21.经检验,m=21是原方程的根且符合题意.答:今年5月份A款汽车每辆售价21万元;(2)设购进A款汽车x辆.则:204≤20x+12(15-x)≤236.解得:3≤x≤7.∵x的正整数解为3,4,5,6,7,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(21-20)x+(13.8-12-a)(15-x)=28.4.解得:a=1时,该公司销售两款汽车的最大利润为28.4万元.【解析】(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:204≤A款汽车总价+B款汽车总价≤236.(3)设总获利为W万元,购进A款汽车x辆,根据题意列出方程解答即可.本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.20.【答案】(3,0)【解析】解:(1)如图,△A1B1C1为所作,点C1坐标为(3,0);故答案为(3,0);(2)如图,△A2B2C2为所作;(3)点B2,C2的坐标分别为(-2,5),(-4,3);(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A 1B1C1;(2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,从而得到△A2B2C2;(3)利用(2)中所画图形写出点B2,C2的坐标.本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.21.【答案】解:(1)∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠CBG=∠D=90°,∵BG=DP,∴△BCG≌△DCP(SAS),∴CP=CG,∠BCG=∠DCP,∵∠PCG=45°,∴∠BCG+∠DCP=45°,∴∠DCP=∠BCG=22.5°,∴∠PCF=∠PCG+∠BCG=67.5°,在△PCG中,CP=CG,∠PCG=45°,∴∠CPG=(180°-45°)=67.5°=∠PCF,∴PF=CF;(2)如图2,∵四边形ABCD是正方形,∴∠CBG=∠BCD=90°,过点C作CH⊥CG交AD的延长线于H,∴∠CDH=90°=∠HCG.∴∠BCG=∠DCH,∴△BCG≌△DCH(ASA),∴CG=CH,∵∠HCG=90°,∠PCG=45°,∴∠PCH=45°=∠PCG,∵CP=CP,∴△PCH≌△PCG(SAS),∴∠CPG=∠CPH,∵∠CPD+∠DCP=90°,∴∠CPF+∠DCP=90°,∵∠PCF+∠DCP=90°,∴∠CPF=∠PCF,∴PF=CF;(3)如图3,连接PN,由(2)知,PF=CF,∵EF⊥CP,∴PE=CE,∴EF是线段CP的垂直平分线,∴PN=CN,∴∠CPN=∠PCN,∵∠PCN=45°,∴∠CPN=45°,∴∠CNP=90°,∵PE=CE,∴EN=CP,在Rt△CDP中,CE=PE,∴DE=CE=CP,∴EN=DE,∴∠DNE=∠NDE,设∠DCP=α,∴∠CED=∠DCP=α,∴∠DEP=2α,∵∠PEF=90°,∴∠DEN=90°+2α,∴∠NDE=(180°-∠DEN)=45°-α,∴∠NDC=∠NDE+∠CDE=45°-α+α=45°.【解析】(1)先判断出△BCG≌△DCP(SAS),得出CP=CG,∠BCG=∠DCP,进而求出∠PCF=∠PCG+∠BCG=67.5°,再求出∠CPG=67.5°=∠PCF,即可得出结论;(2)先判断出△BCG≌△DCH(ASA),得出CG=CH,进而判断出△PCH≌△PCG (SAS),得出∠CPG=∠CPH,再用等角的余角相等判断出∠CPF=∠PCF,即可得出结论;(3)先判断出∠CNP=90°,再判断出EN=DE,得出∠DNE=∠NDE,设∠DCP=α,表示出∠CED=∠DCP=α,∠DEP=2α,即可得出结论.此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,直角三角形的判定和性质,三角形的外角的性质,判断出EN=DE是解本题的关键.22.【答案】解:(1)设学校八年级共有x个班,则有(4x+20)个篮球,依题意得:0<(4x+20)-8(x-1)<8,解得5<x<7,∵x是整数,∴x=6,答:学校八年级共有6个班.(2)由(1)可知,篮球的个数是:4×6+20=44(个)所以44-5×8=4(个)答:如果每个班分8个篮球,最后一个班分到的篮球个数是4个.【解析】(1)首先设学校共有x个班,则篮球有(4x+9)个,再根据关键语句“如果每个班分6个,则最后一个班能分到球但不超过2个”可得不等式组,再解不等式组即可.(2)根据(1)中的数据进行计算.此题主要考查了一元一次不等式组的应用,关键是弄清题意,设出未知数,根据不等关系列出不等式组.23.【答案】解:(1)∵E,F是BC,BD的中点,∴EF∥CD,∴∠BFE=∠BDC,∵∠FEM=∠FDC,∴∠BFE=∠FEM,∴DF∥EM,∵EF∥CD,∴四边形EFDM是平行四边形,∵EM∥BD,点E是BC的中点,∴点M是CD的中点,∴DM=CD,∵点F是BD中点,∴DF=BD,∵BD=CD,∴DF=DM,∵四边形DFEM是平行四边形,∴▱DFEM是菱形;(2)由旋转知,∠FEM=∠GEN,∴∠FEG=∠MEN,在Rt△ABD中,点F是BD中点,∴AF=DF,∴∠DAF=∠ADF,∵EF∥CD,∴∠ADF=∠DFE,∴∠DAF=∠DFE,∴∠AFE=∠AFD+∠EFD=∠AFD+∠ADF=∠CDF,∵EM∥BD,∴∠CDF=∠EMN,∴∠AFE=∠CME,由(1)知,四边形DFEM是菱形,∴EF=EM,∴△EFG≌△EMN(AAS),∴EG=EN;(3)在Rt△ABC中,∠C=30°,AB=2,∴BC=4,∠ABC=60°,∵点E是BC的中点,∴CE=2,∵BD=CD,∴∠CBD=∠C=30°,∴∠ABD=30°,∴BD=,∴CD=,AF=BD=,∵G是AF的中点,∴FG=AF=,∵△EFG≌△EMN(AAS),∴EG=EN,MN=FG=,∵E,F是BC,BD的中点,∴EF=CD=,∴DM=EF=,∴CN=CD-DM-MN=--=过点N作NH⊥BC于H∴EH=CN=,CH=EH=,∴EH=CE-CH=,在Rt△ENH中,EN==,∴EG=.【解析】(1)先判断出DF∥EM,进而判断出EF∥CD,得出四边形DFEM是平行四边形,再判断出DF=DM,即可得出结论;(2)先判断出∠FEG=∠MEN,进而判断出∠DAF=∠ADF,即可得出∠AFE=∠CDF,进而得出∠AFE=∠CME,进而判断出△EFG≌△EMN(AAS),即可得出结论;(3)先求出BC=4,进而求出CE=2,BD=,CD=,进而求出FG=AF=,即可求出MN=FG=,再求出EF=CD=,进而得出CN=,即可求出EH=CN=,CH=EH=,进而得出EH=CE-CH=,最后用勾股定理即可得出结论.此题是四边形综合题,主要考查了直角三角形的性质,全等三角形的判定和性质,三角形中位线的性质,平行四边形的判定,菱形的判定和性质,判断出EG=EN是解本题的关键.24.【答案】解:(1)在Rt△AOB中,∵OA=2,∠ABO=30°,∴OB=2,在Rt△OBC中,∵∠BCO=30°,OB=2,∴OC=6,∴B(0,2),C(6,0),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=-x+2,设直线BC的解析式为y=k′x+b′则有,解得,∴直线BC的解析式为y=x+2.(2)如图1中,根据对称性可知,当点F与O重合时,∠EF′D=∠EBD=90°,此时F′(0,0),设DE交OB于K,作FH⊥DE于H.当△EFD≌△DF′E时,∠EFD=∠DF′E=90°,易证DK=EH=1,DE=AC=4,∴KH=OF=4-2=2,∴F(-2,0),综上所述,满足条件的点F坐标为(-2,0)或(0,0).(3)如图2中,∵B(0,2),C((-6,0),∴BC=4,当BC为正方形BCMN的边时,M(-6-2,6),N(-2,2+6)或M′(2-6,-6),N′(2,2-6).当BC为正方形的对角线时,M″(-3-,3+),N″(-3,-3).【解析】(1)解直角三角形求出B、C两点坐标,利用待定系数法即可解决问题;(2)如图1中,根据对称性可知,当点F与O重合时,∠EF′D=∠EBD=90°,此时F′(0,0);设DE交OB于K,作FH⊥DE于H.当△EFD≌△DF′E时,∠EFD=∠DF′E=90°,想办法求出OF的长即可解决问题;(3)画出图形,分两种情形分别求解即可解决问题;本题考查一次函数综合题、解直角三角形、全等三角形的判定和性质、正方形的性质、待定系数法等知识,解题的关键是熟练掌握待定系数法,学会用分类讨论的思想思考问题,属于中考压轴题.25.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CE,∴∠E=∠ABE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠E=∠CBE,∴CB=CE,∵CF⊥BE,∴BF=EF.(2)∵四边形ABCD是平行四边形,∴AB=CD=6,∵DE=3,∴BC=CE=9,∴平行四边形ABCD的周长为30.【解析】(1)只要证明CB=CE,利用等腰三角形的三线合一的性质即可解决问题;(2)根据CE=CB,求出BC的长即可解决问题;本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

四川省成都市八年级(下)期末数学试卷(含答案)

四川省成都市八年级(下)期末数学试卷(含答案)

2017-2018学年四川省成都市金牛区八年级(下)期末数学试卷副标题一、选择题(本大题共8小题.共24.0分)1.若等腰三角形一个内角为100°.则此等腰三角形的顶角为()A. 100B. 0C. 100或 0D. 02.已知a<b.下列不等式中正确的是()A. B. 11 C. D.3.已知关于x的分式方程1无解.则k的值为()1A. 0B. 0或1C. 0D. 0或14.分式有意义的条件是()A. B. C. D. 05.如图.菱形ABCD的对角线AC与BD交于点O.过点C作AB垂线交AB延长线于点E.连结OE.若AB=2.BD=4.则OE的长为()A. 6B. 5C.D. 46.下列图形中.既是轴对称图形又是中心对称图形的是()A. B. C. D.7.已知四边形ABCD.对角线AC与BD交于点O.从下列条件中:①AB∥CD;②AD=BC;③∠ABC=∠ADC;④OA=OC.任取其中两个.以下组合能够判定四边形ABCD是平行四边形的是()A. ①②B. ②③C. ②④D. ①④8.已知关于x的不等式组1的解集是x≥1.则a的取值范围是()A. 1B. 1C. 1D. 1二、填空题(本大题共8小题.共32.0分)9.已知关于x、y方程组的解满足x>1.y≥ .则k的取值范围是______.10.已知关于x的分式方程1=a有解.则a的取值范围是______.111.多项式x2-kx+6因式分解后有一个因式为x-2.则k的值为______.12.如图.在矩形ABCD中.BC=AB.∠ADC的平分线交边BC于点E.AH⊥DE于点H.连接CH并延长交边AB于点F.连接AE交CF于点O.则的值是______.13.如图.在平行四边形ABCD中.∠A= °.AB=4.AD=2.M是AD边的中点.N是AB边上一动点.将线段M绕点M逆时针旋转90至MN′.连接N′B.N′C.则N′B+N′C的最小值是______.14.已知ab≠0.a2+2ab-3b2=0.那么分式的值等于______.15.如图.在△ABC中.BF平分∠ABC.AG⊥BF.垂足为点D.交BC于点G.E为AC的中点.连结DE.DE=2.5cm.AB=4cm.则BC的长为______cm.16.如图.一次函数y1=-2x+m与y2=ax+6的图象相交于点P(-2.3).则关于x的不等式m-2x<ax+6的解集是______三、计算题(本大题共3小题.共28.0分)17.(1)分解因式:2mx2-4mxy+2my2.(2)解方程:11.18.先化简.再求值:.其中x=-3.19.某新能源汽车销售公司销售A品牌电动汽车.今年5月份电动汽车的售价比去年同期降价了1万元.如果销售的数量相同.去年5月份的销售额为110万元.今年5月份的销售额就只有105万元.(1)求今年5月份A品牌电动汽车的售价;(2)该公司同时销售B品牌混合动力汽车.已知A、B品牌汽车的进价分别为20万元/辆、12万元/辆.若公司预计用不超过236万元且不少于204万元的资金购进两款汽车共15辆.求公司的进货方案有多少种?(3)在(2)的条件下.今年5月份B品牌汽车的售价为13.8万元/辆.且每售出一辆A品牌电动汽车.政府将给予公司a万元奖励(0<α<2).已知该公司销售两款汽车的最大利润为28.4万元.求a的值.四、解答题(本大题共6小题.共56.0分)20.在平面直角坐标系中.△ABC的位置如图所示:(每个小方格都是边长为1个单位长度的正方形)(1)将△ABC沿y轴方向向下平移4个单位长度得到△A1B1C1.则点C1坐标为______;(2)将△ABC绕着点O逆时针旋转 0°.画出旋转后得到的△△A2B2C2;(3)直接写出点B2.C2的坐标.21.(1)如图1.正方形ABCD中.∠PCG= °.且PD=BG.求证:FP=FC;(2)如图2.正方形ABCD中.∠PCG= °.延长FG交CB的延长线于点F.(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下.作FE⊥PC.垂足为点E.交CG于点N.连结DN.求∠NDC的度数.22.在某学校的八年级课外活动中.体育组想把篮球分给班级活动用.如果每个班分4个篮球.则剩余20个篮球;如果每个班分8个篮球.则最后一个班分到的篮球个数不到8个(也不为0个).问:(1)这个学校八年级共有几个班?(2)如果每个班分8个篮球.最后一个班分到的篮球个数到底是多少个?23.在直角三角形ABC中.∠BAC= 0°.(AC>AB).在边AC上取点D.使得BD=CD.点E、F分别是线段BC、BD的中点.连接AF和EF.作∠FEM=∠FDC.交AC于点M.如图1所示.(1)请判断四边形EFDM是什么特殊的四边形.并证明你的结论;(2)将∠FEM绕点E顺时针旋转到∠GEN.交线段AF于点G.交AC于点N.如图2所示.请证明:EG=EN;(3)在第(2)条件下.若点G是AF中点.且∠C= 0°.AB=2.如图3.求GE的长度.24.如图.在平面直角坐标系中.直线AB分别交x、y轴于点A、B.直线BC分别交x、y轴于点C、B.点A的坐标为(2.0).∠ABO=30.且AB⊥BC.(1)求直线BC和AB的解析式;(2)将点B沿某条直线折叠到点0.折痕分别交BC、BA于点E、D.在x轴上是否存在点F.使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在.请求出F点坐标;若不存在.请说明理由;(3)在平面直角坐标系内是否存在两个点.使得这两个点与B、C两点构成的四边形是正方形?若存在.请直接写出这两点的坐标;若不存在.请说明理由.25.如图.在▱ABCD中.BE平分∠ABC交CD延长线于点E.作CF⊥BE于F.(1)求证:BF=EF;(2)若AB=6.DE=3.求▱ABCD的周长.答案和解析1.【答案】A【解析】解:①当这个角是顶角时.底角=(1 0°-100°)÷ = 0°;②当这个角是底角时.另一个底角为100°.因为100°+100°= 00°.不符合三角形内角和定理.所以舍去.故选:A.题中没有指明已知的角是顶角还是底角.故应该分情况进行分析.从而求解.此题主要考查等腰三角形的性质及三角形内角和定理的综合运用.关键是分情况进行分析.2.【答案】B【解析】解:A、两边都除以2.不等号的方向不变.故A错误;B、两边都减1.不等号的方向不变.故B正确;C、两边都乘-1.不等号的方向改变.故C错误;D、两边都加3.不等号的方向不变.故D错误;故选:B.根据不等式的性质.可得答案.本题考查了不等式的性质.利用不等式的性质是解题关键.3.【答案】D【解析】解:分式方程去分母得:x=3kx+3k.即(3k-1)x=-3k.当3k-1=0.即k=时.方程无解;当k≠时.x==0或-1.方程无解.此时k=0.综上.k的值为0或.故选:D.分式方程去分母转化为整式方程.由分式方程无解确定出j的值即可.此题考查了分式方程的解.始终注意分母不为0这个条件.4.【答案】C【解析】解:由题意可知:x- ≠0.∴x≠故选:C.根据分式有意义的条件即可求出答案.本题考查分式有意义的条件.解题的关键是熟练运用分式有意义的条件.本题属于基础题型.5.【答案】D【解析】解:∵四边形ABCD是菱形.∴OA=OC.BD⊥AC.∵CE⊥AB.∴OE=OA=OC.∵BD=4.∴OB=BD=2.在Rt△AOB中.AB=2.OB=2.∴OA==4.∴OE=OA=4.故选:D.先判断出OE=OA=OC.再求出OB=1.利用勾股定理求出OA.即可得出结论.此题主要考查了菱形的判定和性质.平行四边形的判定和性质.角平分线的定义.勾股定理.判断出CD=AD=AB是解本题的关键.6.【答案】D【解析】解:A、不是轴对称图形.是中心对称图形.故此选项错误;B、不是轴对称图形.也不是中心对称图形.故此选项错误;C、不是轴对称图形.是中心对称图形.故此选项错误;D、是轴对称图形.也是中心对称图形.故此选项正确.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴.图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心.旋转180度后与原图重合.7.【答案】D【解析】解:以①④作为条件.能够判定四边形ABCD是平行四边形.理由:∵AB∥CD.∴∠OAB=∠OCD.在△AOB和△COD中..∴△AOB≌△COD(ASA).∴OB=OD.∴四边形ABCD是平行四边形.故选:D.以①④作为条件能够判定四边形ABCD是平行四边形.根据平行得出全等三角形.即可求出OB=OD.根据平行四边形的判定推出即可;本题考查了平行四边形的判定.相似三角形的性质和判定.等腰梯形的判定等知识点的应用.主要考查学生的推理能力和辨析能力.题目比较好.但是一道比较容易出错的题目.8.【答案】C【解析】解:∵关于x的不等式组的解集是x≥1.∴a<1.故选:C.利用不等式取解集的方法判断即可确定出a的范围.此题考查了不等式的解集.熟练掌握不等式取解集的方法是解本题的关键.9.【答案】-1≤k<1【解析】解:.解得:.∵x>1.y≥ .∴解得:-1≤k<1.故答案为:-1≤k<1.解方程组得到含有k的x和与.根据x>1.y≥ .得到关于k的一元一次不等式组.解之即可.本题考查解一元一次不等式组和解二元一次方程组.根据不等量关系列出不等式组是解题的关键.10.【答案】a≠【解析】解:分式方程去分母得:2a+1=ax+a.整理得:(a-2)x=1-a.当a- ≠0.即a≠ 时.x=.由分式方程有解.得到≠-1.解得:a≠ .则a的范围是a≠ .分式方程去分母转化为整式方程.表示出分式方程的解.确定出a的范围即可.此题考查了分式方程的解.始终注意分母不为0这个条件.11.【答案】5【解析】解:∵多项式x2-kx+6因式分解后有一个因式为x-2.∴另一个因式是(x-3).即x2-kx+6=(x-2)(x-3)=x2-5x+6.则k的值为5.故答案为:5利用十字相乘法法判断即可.此题考查了因式分解的意义.熟练掌握因式分解的方法是解本题的关键.12.【答案】1【解析】解:在矩形ABCD中.AD=BC=AB=CD.∵DE平分∠ADC.∴∠ADE=∠CDE= °.∵AH⊥DE.∴△ADH是等腰直角三角形.∴AD=AB.∴AH=AB=CD.∵△DEC是等腰直角三角形.∴DE=CD.∴AD=DE.∴∠AEH= 7. °.∴∠EAH= . °.∵DH=CD.∠EDC= °.∴∠DHC= 7. °.∴∠OHA= . °.∴∠OAH=∠OHA.∴OA=OH.∴∠AEH=∠OHE= 7. °.∴OH=OE.∴OH=AE.即=.故答案为:.根据矩形的性质得到AD=BC=AB=CD.由DE平分∠ADC.得到△ADH是等腰直角三角形.△DEC是等腰直角三角形.得到DE=CD.得到等腰三角形求出∠AED= 7. °.∠AEB=1 0°- °- 7. °= 7. °.进而求出△AOH和△OEH是等腰三角形.即可得出结论.本题考查了矩形的性质.角平分线的定义.等腰三角形的判定与性质.熟记各性质并仔细分析题目条件.根据相等的度数求出相等的角.从而判断出等腰三角形是解题的关键.也是本题的难点.13.【答案】210【解析】解:如图.作ME⊥AD交AB于E.连接EN′、AC、作CF⊥AB于F.∵∠MAE= °.∴△MAE是等腰直角三角形.∴MA=ME.∵∠AME=∠NMN′= 0°.∴∠AMN=∠EMN′.∵MN=MN′.∴△AMN≌△EMN′.∴∠MAN=∠MEN′= °.∴∠AEN′= 0°.∴EN′⊥AB.∵AM=DM=.AB=4.∴AE=2.EB=2.∴AE=EB.∴N′B=N′A.∴N′B+N′C=N′A+N′C.∴当A、N′、C共线时.N′B+N′C的值最小.最小值=AC.在Rt△BCF中.∵BC=AD=2.∠CBF=∠DAB= °.∴CF=BF=2.在Rt△ACF中.AC==2.故答案为2.如图.作ME⊥AD交AB于E.连接EN′、AC、作CF⊥AB于F.首先证明AN′=BN′.因为N′B+N′C=N′A+N′C.即可推出当A、N′、C共线时.N′B+N′C的值最小.最小值=AC;本题考查平行四边形的性质、旋转变换、两点之间线段最短、全等三角形的判定和性质、勾股定理等知识.解题的关键是学会添加常用辅助线.构造全等三角形解决问题.学会用转化的思想思考问题.属于中考填空题中的压轴题.14.【答案】3或17【解析】解:∵a2+2ab-3b2=0.∴(a2-b2)+(2ab-2b2)=0.∴(a+b)(a-b)+2b(a-b)=0.∴(a-b)(a+3b)=0.∴a-b=0或a+3b=0.∴a=b或a=-3b.当a=b时.原式=(ab≠0)=3;当a=-3b时.原式=(ab≠0)=.故答案为:3或.先将条件变形为a2+2ab-2b2-b2=0.得(a2-b2)+(2ab-2b2)=0.得(a+b)(a-b)+2b(a-b)=0.(a-b)(a+3b)=0.再将a用含b的式子表示出来代入代数式就可以求出结论.本题考查了利用因式分解把一个字母用另一个字母表示出来代入代数式求出其值的运用.在解答时注意不要漏解.15.【答案】6.5【解析】解:∵BF平分∠ABC.AG⊥BF.∴△ABG是等腰三角形.∴AB=GB=4cm.∵BF平分∠ABC.∴AD=DG.∵E为AC的中点.∴DE是△AGB的中位线.∴DE=CG.. .∴CG=2DE=5cm.∴BC=BG+CG=4+2.5=6.5cm.故答案为:6.5由条件“BF平分∠ABC.AG⊥BF”可判定三角形ABG是等腰三角形(AB=GB).再由条件“E为AC的中点”.可判定DE是三角形AGB的中位线.由此可得GC=2DE.进而可求出BC的长.本题考查了等腰三角形的判断和性质、三角形中位线定理的运用.熟记判断等腰三角形的各种方法是解题的关键.16.【答案】x>-2【解析】解:观察函数图象可知:当x>-2时.一次函数y1=-2x+m的图象在y2=ax+6的图象的下方.∴关于x的不等式m-2x<ax+6的解集是x>-2.故答案为x>-2.观察函数图象.根据两函数图象的上下位置关系即可找出关于x的不等式m-2x<ax+6的解集.本题考查了一次函数与一元一次不等式.根据两函数图象的上下位置关系找出不等式的解集是解题的关键.17.【答案】解:(1)原式=2m(x2-2xy+y2)=2m(x-y)2;(2)两边都乘以x-2.得:1-x=x-2+3.解得:x=0.检验:x=0时.x-2=- ≠0.所以原分式方程的解为x=0.【解析】(1)先提取公因式2m.再利用完全平方公式分解可得;(2)分式方程去分母转化为整式方程.求出整式方程的解得到x的值.经检验即可得到分式方程的解.此题考查了提公因式与解分式方程.解分式方程的基本思想是“转化思想”.把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.【答案】解:==.当x=-3时.原式==== 1 =.【解析】根据完全平方公式和提公因式法可以化简题目中的式子.然后将x的值代入化简后的式子即可解答本题.本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.19.【答案】解:(1)设今年5月份A款汽车每辆售价m万元.则:10 1101.第12页,共19页解得:m=21.经检验.m=21是原方程的根且符合题意.答:今年5月份A款汽车每辆售价21万元;(2)设购进A款汽车x辆.则:0 ≤ 0x+12(15-x)≤ .解得: ≤x≤7.∵x的正整数解为3.4.5.6.7.∴共有5种进货方案;(3)设总获利为W万元.购进A款汽车x辆.则:W=(21-20)x+(13.8-12-a)(15-x)=28.4.解得:a=1时.该公司销售两款汽车的最大利润为28.4万元.【解析】(1)求单价.总价明显.应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为: 0 ≤A款汽车总价+B款汽车总价≤ .(3)设总获利为W万元.购进A款汽车x辆.根据题意列出方程解答即可.本题考查分式方程和一元一次不等式组的综合应用.找到合适的等量关系及不等关系是解决问题的关键.20.【答案】(3.0)【解析】解:(1)如图.△A1B1C1为所作.点C1坐标为(3.0);故答案为(3.0);(2)如图.△A2B2C2为所作;(3)点B2.C2的坐标分别为(-2.5).(-4.3);(1)利用点平移的坐标特征写出A1、B1、C1的坐标.然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2.从而得到△A2B2C2;(3)利用(2)中所画图形写出点B2.C2的坐标.. .本题考查了作图-旋转变换:根据旋转的性质可知.对应角都相等都等于旋转角.对应线段也相等.由此可以通过作相等的角.在角的边上截取相等的线段的方法.找到对应点.顺次连接得出旋转后的图形.也考查了平移变换.21.【答案】解:(1)∵四边形ABCD是正方形.∴BC=CD.∠BCD=∠CBG=∠D= 0°.∵BG=DP.∴△BCG≌△DCP(SAS).∴CP=CG.∠BCG=∠DCP.∵∠PCG= °.∴∠BCG+∠DCP= °.∴∠DCP=∠BCG= . °.∴∠PCF=∠PCG+∠BCG= 7. °.在△PCG中.CP=CG.∠PCG= °.∴∠CPG=1(1 0°- °)= 7. °=∠PCF.∴PF=CF;(2)如图2.∵四边形ABCD是正方形. ∴∠CBG=∠BCD= 0°.过点C作CH⊥CG交AD的延长线于H.∴∠CDH= 0°=∠HCG.∴∠BCG=∠DCH.∴△BCG≌△DCH(ASA).∴CG=CH.∵∠HCG= 0°.∠PCG= °.∴∠PCH= °=∠PCG.∵CP=CP.∴△PCH≌△PCG(SAS).∴∠CPG=∠CPH.∵∠CPD+∠DCP= 0°.∴∠CPF+∠DCP= 0°.∵∠PCF+∠DCP= 0°.∴∠CPF=∠PCF.∴PF=CF;(3)如图3.连接PN.由(2)知.PF=CF. ∵EF⊥CP.∴PE=CE.∴EF是线段CP的垂直平分线.∴PN=CN.∴∠CPN=∠PCN.∵∠PCN= °.∴∠CPN= °.∴∠CNP= 0°.∵PE=CE.∴EN=1CP.在Rt△CDP中.CE=PE.第14页,共19页∴DE=CE=1CP.∴EN=DE.∴∠DNE=∠NDE.设∠DCP=α.∴∠CED=∠DCP=α.∴∠DEP= α.∵∠PEF= 0°.∴∠DEN= 0°+ α.∴∠NDE=1(1 0°-∠DEN)= °-α.∴∠NDC=∠NDE+∠CDE= °-α+α= °.【解析】(1)先判断出△BCG≌△DCP(SAS).得出CP=CG.∠BCG=∠DCP.进而求出∠PCF=∠PCG+∠BCG= 7. °.再求出∠CPG= 7. °=∠PCF.即可得出结论;(2)先判断出△BCG≌△DCH(ASA).得出CG=CH.进而判断出△PCH≌△PCG (SAS).得出∠CPG=∠CPH.再用等角的余角相等判断出∠CPF=∠PCF.即可得出结论;(3)先判断出∠CNP= 0°.再判断出EN=DE.得出∠DNE=∠NDE.设∠DCP=α.表示出∠CED=∠DCP=α.∠DEP= α.即可得出结论.此题是四边形综合题.主要考查了正方形的性质.全等三角形的判定和性质.直角三角形的判定和性质.三角形的外角的性质.判断出EN=DE是解本题的关键.22.【答案】解:(1)设学校八年级共有x个班.则有(4x+20)个篮球.依题意得:0<(4x+20)-8(x-1)<8.解得5<x<7.∵x是整数.∴x=6.答:学校八年级共有6个班.(2)由(1)可知.篮球的个数是: × + 0= (个)所以44- × = (个)答:如果每个班分8个篮球.最后一个班分到的篮球个数是4个.【解析】(1)首先设学校共有x个班.则篮球有(4x+9)个.再根据关键语句“如果每个班分6个.则最后一个班能分到球但不超过2个”可得不等式组.再解不等式组即可.(2)根据(1)中的数据进行计算.此题主要考查了一元一次不等式组的应用.关键是弄清题意.设出未知数.根据不等关系列出不等式组.23.【答案】解:(1)∵E.F是BC.BD的中点.∴EF∥CD.∴∠BFE=∠BDC.∵∠FEM=∠FDC.∴∠BFE=∠FEM.∴DF∥EM.. .∵EF∥CD.∴四边形EFDM是平行四边形.∵EM∥BD.点E是BC的中点.∴点M是CD的中点.∴DM=1CD.∵点F是BD中点.∴DF=1BD.∵BD=CD.∴DF=DM.∵四边形DFEM是平行四边形.∴▱DFEM是菱形;(2)由旋转知.∠FEM=∠GEN.∴∠FEG=∠MEN.在Rt△ABD中.点F是BD中点.∴AF=DF.∴∠DAF=∠ADF.∵EF∥CD.∴∠ADF=∠DFE.∴∠DAF=∠DFE.∴∠AFE=∠AFD+∠EFD=∠AFD+∠ADF=∠CDF.∵EM∥BD.∴∠CDF=∠EMN.∴∠AFE=∠CME.由(1)知.四边形DFEM是菱形.∴EF=EM.∴△EFG≌△EMN(AAS).∴EG=EN;(3)在Rt△ABC中.∠C= 0°.AB=2.∴BC=4.∠ABC= 0°.∵点E是BC的中点.∴CE=2.∵BD=CD.∴∠CBD=∠C= 0°.∴∠ABD= 0°.∴BD=.∴CD=.AF=1BD=.∵G是AF的中点.∴FG=1AF=.∵△EFG≌△EMN(AAS).∴EG=EN.MN=FG=.第16页,共19页∵E.F是BC.BD的中点.∴EF=1CD=.∴DM=EF=.∴CN=CD-DM-MN=--=过点N作NH⊥BC于H∴EH=1CN=.CH=EH=1.∴EH=CE-CH=.在Rt△ENH中.EN== 1.∴EG= 1.【解析】(1)先判断出DF∥EM.进而判断出EF∥CD.得出四边形DFEM是平行四边形.再判断出DF=DM.即可得出结论;(2)先判断出∠FEG=∠MEN.进而判断出∠DAF=∠ADF.即可得出∠AFE=∠CDF.进而得出∠AFE=∠CME.进而判断出△EFG≌△EMN(AAS).即可得出结论;(3)先求出BC=4.进而求出CE=2.BD=.CD=.进而求出FG=AF=.即可求出MN=FG=.再求出EF=CD=.进而得出CN=.即可求出EH=CN=.CH=EH=.进而得出EH=CE-CH=.最后用勾股定理即可得出结论.此题是四边形综合题.主要考查了直角三角形的性质.全等三角形的判定和性质.三角形中位线的性质.平行四边形的判定.菱形的判定和性质.判断出EG=EN是解本题的关键.24.【答案】解:(1)在Rt△AOB中.∵OA=2.∠ABO= 0°.∴OB=2.在Rt△OBC中.∵∠BCO= 0°.OB=2.∴OC=6.∴B(0.2).C(6.0).设直线AB的解析式为y=kx+b.则有.解得.∴直线AB的解析式为y=-x+2.设直线BC的解析式为y=k′x+b′则有′′′0.. .解得′.∴直线BC的解析式为y=x+2.(2)如图1中.根据对称性可知.当点F与O重合时.∠EF′D=∠EBD= 0°.此时F′(0.0).设DE交OB于K.作FH⊥DE于H.当△EFD≌△DF′E时.∠EFD=∠DF′E= 0°.易证DK=EH=1.DE=1AC=4.∴KH=OF=4-2=2.∴F(-2.0).综上所述.满足条件的点F坐标为(-2.0)或(0.0).(3)如图2中.∵B(0.2).C((-6.0).∴BC=4.当BC为正方形BCMN的边时.M(-6-2.6).N(-2.2+6)或M′(2-6.-6).N′(2.2-6).当BC为正方形的对角线时.M″(-3-.3+).N″(-3.-3).【解析】(1)解直角三角形求出B、C两点坐标.利用待定系数法即可解决问题;(2)如图1中.根据对称性可知.当点F与O重合时.∠EF′D=∠EBD= 0°.第18页,共19页此时F′(0.0);设DE交OB于K.作FH⊥DE于H.当△EFD≌△DF′E时.∠EFD=∠DF′E= 0°.想办法求出OF的长即可解决问题;(3)画出图形.分两种情形分别求解即可解决问题;本题考查一次函数综合题、解直角三角形、全等三角形的判定和性质、正方形的性质、待定系数法等知识.解题的关键是熟练掌握待定系数法.学会用分类讨论的思想思考问题.属于中考压轴题.25.【答案】(1)证明:∵四边形ABCD是平行四边形.∴AB∥CE.∵BE平分∠ABC.∴∠ABE=∠CBE.∴∠E=∠CBE.∴CB=CE.∵CF⊥BE.∴BF=EF.(2)∵四边形ABCD是平行四边形.∴AB=CD=6.∵DE=3.∴BC=CE=9.∴平行四边形ABCD的周长为30.【解析】(1)只要证明CB=CE.利用等腰三角形的三线合一的性质即可解决问题;(2)根据CE=CB.求出BC的长即可解决问题;本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定和性质等知识.解题的关键是熟练掌握基本知识.属于中考常考题型.. .。

2017-2018学年度八年级第二学期期末考试数学试卷

2017-2018学年度八年级第二学期期末考试数学试卷

2017-2018学年度八年级第二学期期末考试数学试卷2017-2018学年八年级第二学期期末测试数学试卷(考试时间100分钟,满分120分)2018.06一、选择题(每题3分,共18分)1.(3分)二次根式有意义的条件是x≥2.2.(3分)下列各组数中能作为直角三角形的三边长的是3,4,5.3.(3分)若一次函数 y=x+4 的图象上有两点 A(-1,y1)、B(1,y2),则下列说法正确的是 y1<y2.4.(3分)如图,四边形 ABCD 的对角线 AC 和 BD 交于点 O,则下列不能判断四边形 ABCD 是平行四边形的条件是∠ABD=∠ADB,∠BAO=∠DCO。

5.(3分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同。

其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的中位数。

6.(3分)在平面直角坐标系中,平行四边形 ABCD 的顶点 A,B,D 的坐标分别是(0,0),(5,0),(2,3),则顶点 C 的坐标是(7,3)。

二、填空题(每题3分,共24分)7.(3分)将直线 y=2x 向下平移2个单位,所得直线的函数表达式是 y=2x-2.8.(3分)直线y=kx+b(k>0)与x 轴的交点坐标为(2,0),则关于 x 的不等式 kx+b>0 的解集是 x>-b/k。

9.(3分)计算:(-2)²=4.10.(3分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点 C 与点 A 重合,折痕为 DE,则△ABE 的周长为6+2√13.11.(3分)如图,平行四边形ABCD 中,AD=5,AB=3,若 AE 平分∠BAD 交边 BC 于点 E,则线段 EC 的长度为 3/2.12.(3分)已知一组数据1,2,-1,x,1 的平均数是1,则这组数据的中位数为 1.13.(3分)一次函数 y=kx+3 的图象过点 A(1,4),则这个一次函数的解析式 y=kx+1.14.(3分)如图,菱形ABCD 周长为16,∠ADC=120°,E 是 AB 的中点,P 是对角线 AC 上的一个动点,则 PE+PB 的最小值是 8.2三、计算题15.计算:-8 + 3.5 = -4.516.如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:1)在图1中,作出∠DAE的角平分线;2)在图2中,作出∠AEC的角平分线.四、应用题17.已知一次函数y=kx-4,当x=2时,y=-3.1)求一次函数的解析式:由题意得,-3=k(2)-4,解得k=1,所以一次函数的解析式为y=x-4.2)将该函数的图象向上平移6个单位,求平移后的图象与x轴的交点的坐标。

2017-2018年第二学期八年级数学期末试卷(参考答案)

2017-2018年第二学期八年级数学期末试卷(参考答案)

∴ BC AC 2 AB 2 32 42 5 ……8 分
作 AH⊥BC
则 1 BC AH 1 AC AB
2
2
∴5AH=3×4
八年级数学 第 3 页(共 8 页)
∴AH= 12 ……9 分 5
∴ S菱形ADCF

DC AH

5 12 25
6
答:菱形 ADCF 的面积是 6.……10 分
∴点 D’在直线 y=x-3 上运动,当 OD’⊥直线 y=x-3 时,OD’最小,此时∆OBD’是等腰直
角三角形,……9 分
作 D’H⊥x 轴,垂足为 H,则 OH=HD’=HB= 3 ……10 分 2
∴4-m= 3 , m 5 ……11 分
2
2
∴D 点坐标( 5 , 1 )……12 分 22
∵四边形 ABCD 是正方形,
∴∠ABK=∠ABC=∠ADC=∠BAD=90°,AB=AD
在∆AKB 和∆AFD 中
BE
C
图2
AB AD ABK ADF KB DF
∴∆AKB≌∆AFD……1 分 ∴AK=AF,∠KAB=∠FAD ∵2∠EAF=∠ADC=90° ∴∠EAF=45° ∴∠BAK+∠BAE=∠DAF+∠BAE=45° 即∠KAE=∠FAE 在∆AKE 和∆AFE 中
说明:此题可用平行线等积变换,即△ABF 的面积与△ACF 的面积相等,或连接 DF 等。
五.解答题(本题共 3 小题,其中 24 题 11 分,25、26 题各 12 分,共 35 分)
24.(1)1,16;……2 分
(2)∵四边形 ABCD 是正方形
D
C
∴AB=AD,∠ADB=∠ABD=45°

2017-2018学年成都市双流区八年级(下)期末数学试卷(含解析)

2017-2018学年成都市双流区八年级(下)期末数学试卷(含解析)

2017-2018学年成都市双流区八年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.已知2x<﹣1,则下列结论正确的是()A.x>B.x<C.x>﹣D.x<﹣2.下列图形中,是中心对称图形的是()A.B.C.D.3.根据天气预报,2018年6月20日双流区最高气温是30℃,最低气温是23℃,则当天双流区气温t(℃)的变化范围是()A.t≤30 B.t≥23 C.23<t<30 D.23≤t≤304.下列哪组条件能判别四边形ABCD是平行四边形()A.AB∥CD,AD=BC B.AB=CD,AD=BCC.∠A=∠B,∠C=∠D D.AB=AD,CB=CD5.把多项式x2+x﹣2分解因式,下列结果正确的是()A.(x+2)(x﹣1)B.(x﹣2)(x+1)C.(x﹣1)2D.(2x﹣1)(x+2)6.如图,在△ABC中,D,E,F分别是边BC,CA,AB的中点.已知AB=4,BC=5,AC=6,则四边形AFDE 的周长为()A.B.9 C.10 D.117.在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)8.下列分式中,无论a取何值,分式总有意义的是()A.B.C.D.9.已知点A(﹣3,0)在直线y=kx+b(k>0)上,则关于x的不等式kx+b>0的解集是()A.x>3 B.x<3 C.x>﹣3 D.x<﹣310.如图,点E在正方形ABCD外,连接AE,BE,DE,过点A作AE的垂线交DE于点F.若AE=AF=,BF=.则下列结论不正确的是()A.△AFD≌△AEB B.点B到直线AE的距离为2C.EB⊥ED D.S△AFD+S△AFB=1+二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.分解因式:9x2+6x+1=.12.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AB的垂直平分线.若CD=a,AD=b,则用含a,b的代数式表示△ABC的周长为.13.已知一个多边形的每一个外角都等于72°,则这个多边形的边数是.14.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)因式分解:2ax3﹣8ax.(2)解不等式组:.16.(6分)先化简,再求值:,其中a=﹣1.17.(8分)在下列网格图中,每个小正方形的边长均为1个单位长度.已知△ABC在网格图中的位置如图所示.(1)请在网格图中画出△ABC向右平移7个单位后的图形△A1B1C1,并直接写出平移过程中线段BC扫过的面积.(2)请在网格图中画出△ABC以P为对称中心的图形△A2B2C2(保留作图痕迹).18.(8分)如图,在四边形ABCD中,AB=CD,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,交BE于点G,且BE⊥CF.(1)求证:四边形ABCD是平行四边形;(2)若AB=,BC=6,求线段EF的长.19.(10分)骑自行车旅行越来越受到人们的喜爱,顺风车行经营的A型车2017年7月份销售总额为3.2万元,今年经过改造升级后,A型车每辆的销售价比去年增加400元,若今年7月份与去年7月份卖出的A 型车数量相同,则今年7月份A型车销售总额将比去年7月份销售总额增加25%.求今年7月份顺风车行A 型车每辆的销售价格.20.(10分)在Rt△ABC中,∠ACB=90°,AC=5,以斜边AB为底边向外作等腰三角形PAB,连接PC.(1)如图1,当∠APB=90°时,①求证:PC平分∠ACB;②若PC=6,求BC的长;(2)如图2,当∠APB=60°,PC=5时,求BC的长.B卷(50分)一、填空题(每小题4分,共20分,答案写在答题卡上)21.如图,在▱ABCD中,对角线AC,BD相交于点O,且BD⊥AD.已知AB=5,BC=3,则AO=.22.不等式3x﹣a≤0的正整数解是1,2,3,则a的取值范围是.23.如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为.24.若关于x的分式方程=的解为非负数,则a的取值范围是.25.如图,正方形ABCD的对角线AC与BD相交于点E,正方形EFGH绕点E旋转,直线FB与直线CH相交于点P,若AB=2,∠DBP=75°,则DP2的值是.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下 2.2 0.80超过17吨但不超过30吨的部分 4.2 0.80超过30吨的部分 6.00 0.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费)(1)设小王家一个月的用水量为x吨,所应交的水费为y元,请写出y与x的函数关系式;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把7月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家7月份最多能用水多少吨?27.(10分)如图1,在正方形ABCD和正方形AEFG中,边AE在边AB上,AB=2AE=4.将正方形AEFG绕点A按逆时针方向旋转α(0°≤α≤60°).(1)如图2,当α>0°时,求证:△DAG≌△BAE;(2)在旋转的过程中,设BE的延长线交直线DG于点P.①如果存在某时刻使得BF=BC,请求出此时DP的长;②若正方形AEFG绕点A按逆时针方向旋转了60°,求旋转过程中点P运动的路线长.28.(12分)已知直线y=﹣x+6与x轴,y轴分别相交于点A,B,将∠OBA对折,使点O的对应点E落在直线AB上,折痕交x轴于点C.(1)求点C的坐标;(2)若已知第四象限内的点D(,﹣),在直线BC上是否存在点P,使得四边形OPAD为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)设经过点D(,﹣)且与x轴垂直的直线与直线BC的交点为F,Q为线段BF上一点,求|QA﹣QO|的取值范围.参考答案与试题解析1.【解答】解:不等式两边都除以2,得:x<﹣,故选:D.2.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.3.【解答】解:由于最高气温是30℃,最低气温是23℃,∴23≤t≤30,故选:D.4.【解答】解:根据平行四边形的判定,A、C、D均不能判定四边形ABCD是平行四边形;B选项给出了四边形中,两组对边相等,故可以判断四边形是平行四边形.故选:B.5.【解答】解:x2+x﹣2=(x﹣1)(x+2)故选:A.6.【解答】解:∵D,E分别是边BC,CA的中点,∴DE=AB=2,AF=AB=2,∵D,F分别是边BC,AB的中点,∴DF=AC=3,AE=AC=3,∴四边形AFDE的周长=AF+DF+DE+AE=2+3+2+3=10,故选:C.7.【解答】解:点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5),故选:C.8.【解答】解:A、∵a2≥0,∴a2+1>0,∴总有意义;B、当a=﹣时,2a+1=0,无意义;C、当a=1时,a3﹣1=0,无意义;D、当a=0时,无意义;无意义;故选:A.9.【解答】解:点A(﹣3,0)在直线y=kx+b(k>0)上,∴当x=﹣3时,y=0,且函数值y随x的增大而增大;∴关于x的不等式kx+b>0的解集是x>﹣3.故选:C.10.【解答】解:在正方形ABCD中,AB=AD,∵AF⊥AE,∴∠BAE+∠BAF=90°,又∵∠DAF+∠BAF=∠BAD=90°,∴∠BAE=∠DAF,在△AFD和△AEB中,,∴△AFD≌△AEB(SAS),故A正确;∵AE=AF,AF⊥AE,∴△AEF是等腰直角三角形,∴∠AEF=∠AFE=45°,∴∠AEB=∠AFD=180°﹣45°=135°,∴∠BEF=135°﹣45°=90°,∴EB⊥ED,故C正确;∵AE=AF=,∴FE=AE=2,在Rt△FBE中,BE===,∴S△APD+S△APB=S△APE+S△BPE,=××+×2×,=1+,故D正确;过点B作BP⊥AE交AE的延长线于P,∵∠BEP=180°﹣135°=45°,∴△BEP是等腰直角三角形,∴BP=×=,即点B到直线AE的距离为,故B错误,故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:原式=(3x+1)2,故答案为:(3x+1)212.【解答】解:∵AB=AC,CD=a,AD=b,∴AC=AB=a+b,∵DE是线段AB的垂直平分线,∴AD=BD=b,∴∠DBA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠DBC=∠ABC﹣∠DBA=36°,∴∠BDC=180°﹣∠ACB﹣∠CBD=72°,∴BD=BC=b,∴△ABC的周长为:AB+AC+BC=2a+3b.故答案为:2a+3b.13.【解答】解:边数n=360°÷72°=5.故答案为:5.14.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA==67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.故答案为22.5°.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2ax(x2﹣1)=2ax(x+1)(x﹣1);(2),由①得:x>﹣3,由②得:x<5,则不等式组的解集为﹣3<x<5.16.【解答】解:原式=[﹣]÷=•(a﹣1)=﹣,当a=﹣1时,原式==﹣.17.【解答】解:(1)如图,△A1B1C1为所作,线段BC扫过的面积=7×4=28;(2)如图,△A2B2C2为所作.18.【解答】(1)证明:∵BE⊥CF,∴∠BGF=90°,∴∠GBC+∠GCB=90°,∵∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,∴∠ABC=2∠GBC,∠BCD=2∠DCF,∴∠ABC+∠BCD=180°,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=,AD=BC=6,∴∠AEB=∠CBE,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB=,同理:DF=DC,∴AE=DF,∴AF=DE,∵AE+DF=AD+EF,∴2AB=AD+EF,∴EF=2AB﹣AD=9﹣6=3.19.【解答】解:设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得=,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.20.【解答】证明:(1)①如图1,过点P作PM⊥CA于点M,作PN⊥CB于点N,∴∠PMC=∠PNC=90°,∵∠ACB=90°∴四边形MCNP是矩形,∴∠MPN=90°,∵PA=PB,∠APB=90°,∴∠MPN﹣∠APN=∠APB﹣∠APN,∴∠APM=∠NPB,∵∠PMA=∠PNB=90°,在△APM和△BPN中,∴△APM≌△BPN(AAS),∴PM=PN,∴CP平分∠ACB;②∵四边形MCNP是矩形,且PN=PM,∴四边形MCNP是正方形,∴PN=CN=PM=CM∴PC=PN=6,∴PN=6=CN=CM=MP∴AM=CM﹣AC=1∵△APM≌△BPN∴AM=BN,∴BC=CN+BN=6+AM=6+1=7.(2)如图,以AC为边作等边△AEC,连接BE,过点E作EF⊥BC于F,∵△AEC是等边三角形∴AE=AC=EC=5,∠EAC=∠ACE=60°,∵△APB是等腰三角形,且∠APB=60°∴△APB是等边三角形,∴∠PAB=60°=∠EAC,AB=AP,∴∠EAB=∠CAP,且AE=AC,AB=AP,∴△ABE≌△APC(SAS)∴BE=CP=5,∵∠ACE=60°,∠ACB=90°,∴∠ECF=30°,∴EF=EC=,FC=EF=,∵BF===,∴BC=BF﹣CF=一、填空题(每小题4分,共20分,答案写在答题卡上)21.【解答】解:延长CB,过点A作AE⊥CB交于点E,∵四边形ABCD是平行四边形,∴AB=DC=5,BC=AD=3,DC∥AB,∵AD⊥CB,AB=5,BC=3,∴BD=4,∵DC∥AB,∠ADB=90°,∴∠DAB=90°,可得:∠ADB=∠DAE=∠ABE=90°,则四边形ADBE是矩形,故DB=EA=4,∴CE=6,∴AC==2,∴AO=AC=.故答案为:.22.【解答】解:解不等式3x﹣a≤0,得x≤,∵不等式的正整数解是1,2,3,∴3≤<4,解得9≤a<12.故答案为:9≤a<12.23.【解答】解:如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,把A(2,﹣4)代入可得,a=﹣2,∴平移后的直线为y=﹣x﹣2,令x=0,则y=﹣2,即B(0,﹣2)∴B'(0,2),设直线AB'的解析式为y=kx+b,把A(2,﹣4),B'(0,2)代入可得,,解得,∴直线AB'的解析式为y=﹣3x+2,令y=0,则x=,∴P(,0),故答案为:(,0).24.【解答】解:两边同时乘以2(x﹣2),得:4x﹣2a=x﹣2,解得x=,由题意可知,x≥0,且x≠2,∴,解得:a≥1,且a≠4,故答案为:a≥1,且a≠4.25.【解答】解:如图,设EF交AB于M,EH交BC于N,PF交EH于O,作PT⊥AD于T交BC于R.∵四边形ABCD是正方形,∴AC⊥BD,AE=EB,∠EAM=∠EBN=45°,∵四边形EFGH是正方形,∴∠MEN=∠AEB=90°,∴∠AEM=∠BEN,∴△AEM≌△BEN(ASA),∴AM=BN,EM=EN,∠AME=∠BNE,∵AB=BC,EF=EH,∴FM=NH,BM=CN,∵∠FMB=∠AME,∠CNH=∠BNE,∴∠FMB=∠CNH,∴△FMB≌△HNC(SAS),∴∠MFB=∠NHC,∵∠EFO+∠EOF=90°,∠EOF=∠POH,∴∠POH+∠PHO=90°,∴∠OPH=∠BPC=90°,∵∠DBP=75°,∠DBC=45°,∴∠CBP=30°,∵BC=AB=2,∴PB=BC•cos30°=,PR=PB=,RC=PR•tan30°=,∵∠RTD=∠TDC=∠DCR=90°,∴四边形TDCR是矩形,∴TD=CR=,TR=CD=AB=2,在Rt△PDT中,PD2=DT2+PT2=()2+(2+)2=5+2,故答案为5+2.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设小王家一个月的用水量为x吨,所应交的水费为y元,则①当用水量17吨及以下时,y=(2.2+0.8)x=3x;②当17<x≤30时,y=17×2.2+4.2(x﹣17)+0.8x=5x﹣34;③当x>30时,y=17×2.2+13×4.2+6(x﹣30)+0.8x=6.8x﹣88.∴;(2)当用水量为30吨时,水费为:6.8×30﹣88=116元,9200×2%=184元,∵116<184,∴小王家七月份的用水量超过30吨,设小王家7月份用水量为x吨,由题意得:6.8x﹣88≤184,解得:x≤40,∴小王家七月份最多用水40吨).27.【解答】(1)证明:在正方形ABCD和正方形AEFG中,AD=AB,AG=AE,∠BAD=∠EAG=90°,∵∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,∴∠BAE=∠DAG,在△DAG和△BAE中,,∴△DAG≌△BAE(SAS);∴BE=DG;(2)解:①∵AB=2AE=4,∴AE=2,由勾股定理得,AF=AE=2,∵BF=BC=4,∴AB=BF=4,∴△ABF是等边三角形,∵AE=EF,∴直线BE是AF的垂直平分线,设BE的延长线交AF于点O,交AD于点H,如图3所示:则OE=OA===,∴OB===,∵cos∠ABO==,cos∠ABH==,∴=,∴BH=,AH===,∴DH=AD﹣AH=4﹣,∵∠DHP=∠BHA,∠BAH=∠DPH=90°,∴△BAH∽△DPH,∴=,即:=,∴DP=﹣;②∵△DAG≌△BAE,∴∠ABE=∠ADG,∵∠BPD=∠BAD=90°,∴点P的运动轨迹为以BD为直径的,BD=AB=4,∵正方形AEFG绕点A按逆时针方向旋转了60°,∴∠BAE=60°,∵AB=2AE,∴∠BEA=90°,∠ABE=30°,∴B、E、F三点共线,同理D、F、G三点共线,∴P与F重合,∴∠ABP=30°,∴所对的圆心角为60°,∴旋转过程中点P运动的路线长为:=.28.【解答】解:(1)连接CE,则CE⊥AB,y=﹣x+6与x轴,y轴分别相交于点A,B,则点A、B的坐标分别为:(8,0)、(0,6),则AB=10,设:OC=a,则CE=a,BE=OB=6,AE=10﹣6=4,CA=8﹣a,由勾股定理得:CA2=CE2+AE2,即(8﹣a)2=a2+42,解得a=3,故点C(3,0);(2)不存在,理由:将点B、C的坐标代入一次函数表达式y=kx+b并解得:直线BC的表达式为:y=﹣2x+6,设点P(m,n),当四边形OPAD为平行四边形时,OA的中点即为PD的中点,即:m+=8,n﹣=0,解得:m=,n=,当x=时,y=﹣2x+6=1,故点P不在直线BC上,即在直线BC上不存在点P,使得四边形OPAD为平行四边形;(3)当x=时,y=﹣2x+6=﹣5,故点F(,﹣5),当点Q为AO的垂直平分线与直线BC的交点时,QO=QA,则|QA﹣QO|=0,当点Q在点B处时,|QA﹣QO|有最大值,此时:点A(8,0)、点O(0,0)、点Q(0,6),则AQ=10,QO=6,|QA﹣QO|=4,故|QA﹣QO|的取值范围为:0≤|QA﹣QO|≤4。

成都市20172018学年初中八年级的下阶段性教学水平数学试卷习题包括答案.docx

成都市20172018学年初中八年级的下阶段性教学水平数学试卷习题包括答案.docx

四川省市区重点初中二学期教学水平测试卷数学试题本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

总分150 分。

考试时间120 分钟。

第Ⅰ卷(选择题,满分48 分)注意事项:1.答题前,考生务必将自己的姓名、班级、考号用 0.5 毫米的黑色墨水签字笔填写在答题卡上。

并检查条形码粘贴是否正确。

2.选择题使用 2B铅笔填涂在答题卡对应题目标号的位置上,非选择题用 0.5 毫米黑色墨水签字笔书写在答题卡对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

3.考试结束后,将答题卡收回。

一、选择题(本题共16 小题,每小题 3 分,共 48 分。

每小题都有A、 B、C、 D 四个选项,其中只有一个选项是正确的。

)1.若分式x1的值为零,则 x 等于x2A.x =0B.x=1C. x =-2D.x =- 1 1a b2.将分式2中分子与分母的各项系数都化成整数,正确的是a0.5b A. a 2b B.a bC. 2a 2b D.a b2a b2a b2a b a b 3.某种流感病毒的直径为0.00000008m ,这个数据用科学记数法表示为初二数学试题第 1 页(共 15 页)A. 8×10-6 m B .8×10 -7 m C . 8×10-8 m D . 8×10-9 m 4.函数y x中自变量 x 的取值范围是x1A.x≥0B. x <0且 x ≠1C.x<0D. x ≥0且 x ≠15.一次函数y2x1的图象不经过的象限是A.第一象限B.第二象限C.第三象限 D .第四象限6.如图, AD⊥BC, D 是 BC的中点,那么下列结论错误的是A.△ ABD≌△ ACDB.∠ B=∠CC.△ ABC是等腰三角形D.△ ABC是等边三角形7.若点 ( - 3,y 1),(-2,y2),(-1,y3)在反比例函数y 1图像上,则x下列结论正确的是A. y1> y2>y3B. y2> y1> y3C.y3> y1> y2 D. y3> y2> y18.如图,某中学制作了300 名学生选择棋类、摄影、书法、短跑四门校内课程情况的扇形统计图,从图中可以看出选择短跑的学生人数为初二数学试题第 2 页(共 15 页)A. 33B. 36C. 39D. 429.下列命题中,逆命题是假命题的是A.全等三角形的对应角相等B.直角三角形两锐角互余C.全等三角形的对应边相等D.两直线平行,同位角相等10.用尺规作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧分别交OA、 OB于点 C、D,再分别以点 C、 D 为圆心,以大于1CD 长为半2径画弧,两弧交于点P,作射线OP,由作法得△OCP≌△ ODP的根据是A. SAS B.SSS C.AAS D. ASA 11.某校八年级 1 班一个学习小组的7 名同学在半期考试中数学成绩分别是 :85 , 93, 62, 99, 56, 93, 89,这七个数据的众数和中位数分别是A. 93、 89B. 93、 93C.85、93D.89、93 12.将一张矩形纸对折再对折,然后沿着右图中的虚线剪下,打开,这个图形一定是一个A.三角形B.矩形初二数学试题第 3 页(共 15 页)C.菱形D.正方形13.等腰梯形两底的差是4,两腰的长也是4,则这个等腰梯形的两锐角都是A. 750B.600C.450D.30014.如图,矩形 ABCD中, BE、 CF 分别平分∠ ABC 和∠ DCB,点 E、 F都在 AD上,下列结论不正确的是A.△ ABE≌△ DCFB.△ ABE 和△ DCF都是等腰直角三角形C.四边形BCFE是等腰梯形D. E 、 F 是 AD的三等分点15.一盘蚊香长 100cm,点燃时每小时缩短 10cm,小明在蚊香点燃 5h后将它熄灭,过了2h,他再次点燃了蚊香,下列四个图像中,大致能表示蚊香长度y(cm) 与所经过的时间x(h) 之间的函数关系的是16. 如图,点 p 是菱形 ABCD内一点, PE⊥AB,PF⊥AD,垂足分别是E和 F,若 PE=PF,下列说法不正确的是A.点 P 一定在菱形ABCD的对角线 AC上B.可用 H·L证明 Rt△AEP≌Rt△AFP初二数学试题第 4 页(共 15 页)C. AP平分∠ BADD.点 P 一定是菱形ABCD的两条角的交点第Ⅱ卷(非选择题,满分102 分)注意事:1.用黑笔或珠笔在第Ⅱ卷答卡上作答,不能答在此卷上。

2017-2018学年第二学期初二年级期末数学试卷及答案

2017-2018学年第二学期初二年级期末数学试卷及答案

2017-2018学年第二学期初二年级期末数学试卷(满分100分。

考试时间120分钟)一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一.个.是符合题意的. 1.下列数学符号中,属于中心对称图形的是∴ ∽⊥AB C D2.函数1y x =-中,自变量x 的取值范围是A. 1x ?B. 1x <C. x ≤1D. x ≥13.如右图,足球图片中的一块黑色皮块的内角和是A .180°B .360°C .540°D .720°4.“健步走”越来越受到人们的喜爱,某个“健步走”小组将自己的活动场地定在奥林匹克公园,所走路线如图所示:森林公 园— 玲珑塔—国家体育场—水立方.设在奥林匹克公园设计 图上玲珑塔的坐标为(–1,0),森林公园的坐标为(–2,2), 那么,水立方的坐标为A .(–2,–4)B .(–1,–4)C .(–2,4)D .(–4,–1)5.手鼓是鼓中的一个大类别,是一种打击乐器.如图是我国某少数民族手鼓的轮廓图,其主视图是ABC D6. 右图是甲、乙两名运动员正式比赛前的5次训练成绩的 折线统计图,你认为成绩较稳定的是乙甲乙甲分数A.甲B.乙C.甲、乙的成绩一样稳定D.无法确定7. 一幢4层楼房只有一个房间亮着灯,一棵小树和一根电线杆在 窗口灯光下的影子如图所示,则亮着灯的房间是 A. 1号房间 B. 2号房间 C. 3号房间 D. 4号房间8. 为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45°B .BD 的长度变小C .AC =BD D .AC ⊥BDA BCDDCBA→9. 如图所示,已知P 、R 分别是四边形ABCD 的边BC 、 CD 上的点,E 、F 分别是PA 、PR 的中点,点P 在BC 上从B 向C 移动,点R 不动,那么EF 的长 A .逐渐增大 B .逐渐变小 C .不变 D .先增大,后变小 10. 如图,矩形ABCD 中,对角线AC 、BD 相交于点G ,E 、F 分别是边AD 、BC 的中点,AB =2,BC =4,一动点P 从点B 出发,沿着B —A —D —C 的方向在矩形的边上运动,运动到点C 停止.点M 为图1中的某个定点,设点P 运动的路程为x ,△BPM 的面积为y ,表示y 与x 的函数关系的图象大致如图2所示.那么,点M 的位置可能是图1中的图1图2P A BCDE F G 2286xOyRFEPDC BAE DBCA A . 点CB .点EC .点FD .点G 二、填空题(共6道小题,每小题3分,共18分)11.北京市今年5月份最后六天的最高气温分别为31,34,36,27,25,33(单位:℃). 这组数据的极差是 .12.已知两个相似三角形的相似比为2∶3,则这两个三角形的周长比为____________.13. 如图,在□ABCD 中,AB =4,BC =7,∠ABC 的平分线BE交AD 于点E ,则DE =____________.14. 写出一个经过点(1,2)的函数表达式____________.15.如右图,已知点A (0,4),B (4,1),BC ⊥x 轴于点C ,点P 为线段OC 上一点,且PA ⊥PB ,则点P 的坐标为 ____________.16.尺规作图:作一个角的平分线.小涵是个喜欢动脑筋的孩子,他继续对图形进行探究:连接BD 、CD 和BC ,发现BC 与AD 的位置关系是____________,依据是____________.三、解答题(本题共6道小题,第17-19小题各3分;第20-22小题各4分,共21分) 17.已知:一次函数(3)5y m x m =-+-.(1)若一次函数的图象过原点,求实数m 的值;yxOPB CA小涵是这样做的:已知:∠MAN ,如图1所示. 求作:射线AD ,使它平分∠MAN .作法:(1)如图2,以A 为圆心,任意长为半径作弧,交AM 于点B ,交AN 于点C ;(2)分别以B 、C 为圆心,AB 的长为半径作弧,两弧交于点D ; (3)作射线AD .所以射线AD 就是所求作的射线.图1图2MANNDMB C A(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.18.如图,点E、F在□ABCD的对角线AC上,且AE=CF.求证:DE = BF.19.已知:如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.20.如图,在△ABC中,∠C=90°,AC=5,BC=12,D是BC的中点,过点D作DE⊥AB于E,求DE的长.21.如图,在平面直角坐标系xOy中,一次函数y kx b=+的图象经过点A(-3,-1)和点B(0,2).(1)求一次函数的表达式;(2)若点P在y轴上,且12PB BO=,直接写出点P的坐标.22.如图,在四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB 于E.如果点E是AB的中点,AC=4,EC=2.5,写出求四边形ABCD的面积的思路.四、解答题(本题共4道小题,每小题4分,共16分)23.为弘扬中华传统文化,了解学生整体数学阅读能力,某校组织全校1000名学生进行一次阅读理解大赛的初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图:分组/分频数频率50≤x<60 6 0.12 60≤x<70 a 0.2816128频数yxOABAB CDEA BDCEFABCDEEA BCDyx-5-4512341234-1-2-3-4-5-1-3-25O70≤x <80 16 0.32 80≤x <90 10 0.20 90≤x ≤10040.08(1)表中的a = ;(2)把上面的频数分布直方图补充完整,并画出频数分布折线图;(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,那么请你估计该校进入决赛的学生大约有多少人.24.在平面直角坐标系xOy 中,直线y=x -1与y轴交于点A ,与双曲线ky x=交于点B (m ,2) .(1)求点B 的坐标及k 的值;(2)将直线AB 平移后与x 轴交于点C ,若6ABC S △,求点C 的坐标.25. 在《测量旗杆高度》的综合与实践活动课中,第一组的同学设计了如下测量方案,并根据测量结果填写了如下《数学活动报告》,请你补充完整. 数学活动报告活动小组:第一组 组长:许佳莹 活动地点:学校操场 天气:晴朗无云 活动时间:2017年6月8日上午9:00 课题 测量校内旗杆高度目的 利用相似三角形的有关知识解决实际问题--测量旗杆高度 测量工具皮尺测量数据:许佳莹的身高AB =1.6m ,在阳光照射下落在地面上的影长BC 约为2.4m ;旗杆在同一时刻阳光照射下落在地面上的影子EF 约为20m .~~ABCDE示意图(请你画出旗杆的影子EF )计算过程(请你写出 求DE 的计算过程) 解: 旗杆高度(结果精确到0.1)26.某班“数学兴趣小组”对函数1xy x =-的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x 的取值范围是 ; (2)下表是y 与x 的几组对应数值:①写出m 的值为 ;②在平面直角坐标系中,描出了以表中各对对应值为坐标的点. 根据描出的点,画出该函数的图象;(3)当1xx x >-时,直接写出x 的取值范围为 .五、解答题(本题共3道小题,每小题5分,共15分)27. 2017年5月31日,昌平区举办了首届初二年级学生“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在6月1日购买笔袋或彩色铅笔作为奖品.已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元.x … -3-2-112-0 14 1234542 3 4 … y…34 23 121313- -1-3m232 43…xy –1–2–312345–1–2–312345O(1)每个笔袋、每筒彩色铅笔原价各多少元?(2)时逢“儿童节”,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠. 若买x 个笔袋需要y 1元,买x 筒彩色铅笔需要y 2元. 请用含x 的代数式表示y 1、y 2; (3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱.28.(1)如图1,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D .①如果AD =4,BD =9,那么CD = ;②如果以CD 的长为边长作一个正方形,其面积为1s ,以BD ,AD 的长为邻边长作一个矩形,其面积为2s ,则1s 2s (填“>”、“=”或“<”).(2)基于上述思考,小泽进行了如下探究:①如图2,点C 在线段AB 上,正方形FGBC , ACDE 和EDMN ,其面积比为1:4:4,连接AF ,AM ,求证AF ⊥AM ;②如图3,点C 在线段AB 上,点D 是线段CF 的黄金分割点,正方形ACDE 和矩形CBGF 的面积相等,连接AF 交ED 于点M ,连接BF 交ED 延长线于点N ,当CF =a 时,直接写出线段MN 的长为 .BCAEDFGNACBGFDE图3M图2图1AB CD29.如图1,点A (a ,b )在平面直角坐标系xOy 中,点A 到坐标轴的垂线段AB ,AC 与坐标轴围成矩形OBAC ,当这个矩形的一组邻边长的和与积相等时,点A 称作“垂点”,矩形称作“垂点矩形”.(1)在点P (1,2),Q (2,-2),N (12,-1)中,是“垂点”的点为 ; (2)点 M (-4,m )是第三象限的“垂点”,直接写出m 的值 ; (3)如果 “垂点矩形”的面积是163,且“垂点”位于第二象限,写出满足条件的“垂点”的坐标 ;(4)如图2,平面直角坐标系的原点O 是正方形DEFG 的对角线的交点,当正方形DEFG的边上存在“垂点”时,GE 的最小值为 .图2FEDG xOy图1C BA-1-111xOy2017-2018学年第二学期初二年级 数学试卷参考答案及评分标准一、选择题(本题共10道小题,每题3分,共30分)题号 12345678910答案BDCACABCCD二、填空题(本题共6道小题,每小题3分,共18分)题号 11 12 13 14 15 16答案112:332y x =,1y x =+ (答案不唯一)(2,0)垂直;四条边都相等的四边形是菱形,菱形的对角线互相垂直等.三、解答题(本题共6道小题,第17-19小题各3分;第20-22小题各4分,共21分) 17.解:(1)∵一次函数图象过原点,∴3050m m -≠⎧⎨-=⎩,.解得: m =5. …………………………………………………1分 (2) ∵一次函数的图象经过第二、三、四象限,∴3050m m -<⎧⎨-<⎩,. …………………………………………………………2分∴ 3﹤m ﹤5. ………………………………………………………3分 18.解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC .∴∠DAE=∠BCF . ……………………… 1分 又∵AE =CF .∴△ADE ≌△BCF (SAS ). ………………2分∴DE = BF. (3)分19.证明:在△ABC 中,AB=AC ,BD=CD ,∴AD ⊥BC .………………………………………1分 ∵CE ⊥AB ,∴∠ADB=∠CEB=90º. …………………… 2分 ∵∠B=∠B ,∴△ABD ∽△CBE . …………………………3分20.解:在Rt △ABC 中,∠C =90º AC =5,BC =12,ABDCEFABCDE∴222251213AB AC BC =+=+=. …………………………………………………1分∵点D 是线段BC 中点,∴BD =12BC =12×12=6.∵DE ⊥AB , ∴∠DEB =90º=∠C . ∵∠B =∠B ,∴△BDE ∽△BAC . ……………………………………………………2分∴DE BDAC BA = 即 6513DE =. ……………………………………………3分 解得,3013DE =. ………………………………………………4分21.(1)解:∵一次函数的图象经过点A (-3,-1)和点B (0,2),∴1= 32.k b b --+⎧⎨=⎩, …………………………………… 1分解得:12.k b =⎧⎨=⎩,∴一次函数的表达式为y=x+2. ……………………2分(2)1P (0,1),2P (0,3). ……………………………………………………4分 22.①AD ∥CE ,AE ∥CD ⇒四边形AECD 为平行四边形.………………………1分②AC 平分∠BAD ,AD ∥CE ⇒AE =CE . ……………………2分 由①②得,四边形AECD 是菱形.③由∠ACE =∠EAC ,∠ECB =∠B 和△ABC 内角和180º⇒△ABC 是直角三角形. ……………………………3分④由菱形AECD 和E 为中点⇒AEC ACD BEC S S S ==△△△=3. ∴四边形ABCD 的面积为9.…………………………………4分 四、解答题(本题共4道小题,每小题4分,共16分) 23.解:(1)a =14. …………………………………1分(2)频数分布直方图、折线图如图.………3分 (3)1000×(4÷50)=80(人).………………4分24.解:(1)把B (m ,2)代入y=x -1中得,m=3.ABCDEyxOABO 频数成绩/分50 60 70 80 90 1001612 8 414EABCD则B (3,2). …………………………1分 ∵B (3,2)在双曲线ky x=的图象上, ∴k=6. ………………………………………………………………2分 (2)∵直线y=x -1与y 轴交于点A ,∴A (0,-1).设直线y=x -1与x 轴交于点D , 则D (1,0).∵ABC BCD ACD S S S △△△=+=6,∴11622ABC B A S CD y CD y △=+=,即12CD ×2+12CD ×1=6.解得,CD =4. ∵D (1,0),∴1C (-3,0),2C (5,0). ……………………… 4分25.解:(1)如图所示.……1分(2)解:如图,由题意知,AB =1.6m ,BC =2.4m ,EF =20 m ,∵太阳光线是平行的,∴AC ∥DF . ∴∠ACB =∠DFE . ∵AB ⊥BF ,DE ⊥BF , ∴∠ABC =∠DEF =90º.∴△ABC ∽△DEF . ………………………………………2分∴AB BCDE EF =.1.62.420DE =. ………………………………………………3分 ∴403DE =. (3)答:旗杆的高度大约为13.3 m . ………………………………………4分26.解:(1)x ≠1. ………………………………………………1分(2)①5. ……………………………………………2分~~FAB CDEy12345②如图所示. ……………………………………3分 (3)x <0或1<x <2. ………………………………4分五、解答题(本题共3道小题,每小题5分,共15分)27.解:(1)设每个笔袋原价x 元,每筒彩色铅笔原价y 元,根据题意,得:2442373.x y x y +=⎧⎨+=⎩,……………………………………………………………………… 1分 解得:1415.x y =⎧⎨=⎩,………………………………………… 2分所以每个笔袋原价14元,每筒彩色铅笔原价15元.(2)y 1=14×0.9x =12.6x . ………………………………………… 3分当x ≤10时:y 2=15x ;当x >10时:y 2=12x +30. ………………………… 4分 (3)方法1: ∵95>10,∴将95分别代入y 1=12.6x 和y 2=12x +30中,得y 1> y 2. ∴买彩色铅笔省钱. ……………………………………… 5分方法2:当y 1<y 2时,有12.6x <12x +30,解得x <50,因此当购买同一种奖品的数量少于50件时,买笔袋省钱.当y 1=y 2时,有12.6x =12x +30,解得x =50,因此当购买同一种奖品的数量为50件时,两者费用一样.当y 1>y 2时,有12.6x >12x +30,解得x >50,因此当购买同一种奖品的数量大于50件时,买彩色铅笔省钱.∵奖品的数量为95件,95>50,∴买彩色铅笔省钱. ……………………………… 5分 28.解:(1)①CD =6. ……………………………………1分②=. …………………………………………………2分 (2)①证明:如图2,连接AF ,AM .∵正方形BCFG 、ACDE 和EDMN 的面积比为1:4:4, ∴FC :CD :DM =1:2:2.设每份为k ,则FC =k ,CD =2k ,DM =2k . ∵四边形BCFG ,ACDE 是正方形, ∴CD =AC =2k ,∠ACF =∠ACM =90º. ∵122FC k AC k ==, ∵21222AC AC k CM CD DM k k ===++, ∴FC AC AC CM= . ∵∠ACF =∠ACM =90º,∴△AFC ∽△MAC . …………………………3分 ∴∠FAC =∠AMC . ∵∠ACM =90º, ∴∠CAM +∠AMC =90º. ∴∠FAC +∠CAM =90º. 即∠FAM =90º.∴AF ⊥AM . ……………………………………………4分②352MN a -=. ……………………………………………………5分 29.解:(1)Q . ………………………………………………………1分(2)43- .………………………………………………………………2分(3)(-4,43),(43-,4). …………………………………4分(4)8. ……………………………………………………………………………5分注:所有题目使用其它证明方法酌情给分.NACBGFDEM图2。

2017-2018学八年级(下)期末数学试卷(解析版)

2017-2018学八年级(下)期末数学试卷(解析版)

2017-2018学年八年级(下)期末数学试卷一、选择题(每题只有一个正确答案,每题3分,共45分)1.式子有意义的实数x的取值范围是()A.x≥0B.x>0C.x≥﹣2D.x>﹣22.下列各组数中,是勾股数的一组是()A.7,8,9B.8,15,17C.1.5,2,2.5D.3,4,43.为了帮扶本市一名特困儿童,某班有20名同学积极捐款,他们捐款的数额如下表:对于这20名同学的捐款,众数是()A.20元B.50元C.80元D.100元4.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2B.﹣2C.1D.﹣15.在正方形、矩形、菱形、平行四边形、一般四边形中,两条对角线一定相等的四边形个数为()A.1个B.2个C.3个D.4个6.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定7.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE的长度是()A.5B.5.5C.6D.6.58.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是()A.y=﹣7x+7B.y=﹣7x+1C.y=﹣7x﹣17D.y=﹣7x+259.下列计算正确的是()A.=±5B.4﹣=1C.÷=9D.×=610.如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是﹣1,则对角线AC、BD的交点表示的数是()A.5.5B.5C.6D.6.511.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.12.某班六个兴趣小组人数分别是5,7,5,3,4,6,则这组数据的方差是()A.B.10C.D.13.如图,长方体的底面边长为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要()A.12cm B.11cm C.10cm D.9cm14.如图,直线y=kx+b经过点A(3,1)和点B(6,0),则不等式0<kx+b<x的解集为()A.x<0B.0<x<3C.3<x<6D.x>615.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元二、填空题.(每小题3分,共15分)16.已知函数y=(m﹣1)x|m|+3是一次函数,则m=.17.要使四边形ABCD是平行四边形,已知∠A=∠C=120°,则还需补充一个条件是.18.已知a=﹣,b=+,求a2+b2的值为.19.已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是.20.已知一组数据x1,x2,x3,x4的平均数为6,则数据3x1+1,3x2+1,3x3+1,3x4+1的平均数为.三、解答题.(8个小题,共60分)21.(6分)计算:(1)﹣+(2)×÷22.(6分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=3,求AB及BC2各是多少?23.(6分)如图,在四边形ABCD中,BC∥AD,AE∥DC,AB=DC.求证:∠B=∠C.24.(6分)某次歌咏比赛,前三名选手的成绩统计如下:(单位:分)将唱功、音乐常识综合知识三项测试成绩按6:3:1的加权平均分排出冠军、亚军季军,则冠军、亚军、季军各是谁?25.(8分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式.(2)判定点C(4,﹣2)是否在该函数的图象上?说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.26.(8分)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.27.(10分)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.28.(10分)如图,线段AB,CD分别是一辆轿车的油箱剩余油量y1(升)与一辆客车的油箱剩余油量y2(升)关于行驶路程x(千米)的函数图象.(1)分别求y1,y2与x的函数解析式;(2)如果两车同时出发轿车的行驶速度为100千米/时,客车的行驶速度为80千米/时,当油箱的剩余油量相同时,两车行驶的时间相差多少分?2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题只有一个正确答案,每题3分,共45分)1.式子有意义的实数x的取值范围是()A.x≥0B.x>0C.x≥﹣2D.x>﹣2【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:式子有意义的实数x的取值范围是:x≥﹣2.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.下列各组数中,是勾股数的一组是()A.7,8,9B.8,15,17C.1.5,2,2.5D.3,4,4【分析】满足a2+b2=c2的三个正整数,称为勾股数,由此求解即可.【解答】解:A、∵72+82≠92,∴此选项不符合题意;B、∵82+152=172,∴此选项符合题意;C、∵1.52+22=2.52,但1.5,2.5不是整数,∴此选项不符合题意;D、∵42+32≠42,∴此选项不符合题意.故选:B.【点评】此题考查了勾股数,说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…3.为了帮扶本市一名特困儿童,某班有20名同学积极捐款,他们捐款的数额如下表:对于这20名同学的捐款,众数是()A.20元B.50元C.80元D.100元【分析】众数指一组数据中出现次数最多的数据,结合题意即可得出答案.【解答】解:由题意得,所给数据中,50元出现了7次,次数最多,即这组数据的众数为50元.故选:B.【点评】此题考查了众数的定义及求法,一组数据中出现次数最多的数据叫做众数.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.4.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2B.﹣2C.1D.﹣1【分析】将点(m,n)代入函数y=2x+1,得到m和n的关系式,再代入2m﹣n即可解答.【解答】解:将点(m,n)代入函数y=2x+1得,n=2m+1,整理得,2m﹣n=﹣1.故选:D.【点评】本题考查了一次函数图象上点的坐标特征,要明确,一次函数图象上的点的坐标符合函数解析式.5.在正方形、矩形、菱形、平行四边形、一般四边形中,两条对角线一定相等的四边形个数为()A.1个B.2个C.3个D.4个【分析】根据菱形正方形、矩形、菱形、平行四边形、一般四边形的性质分析即可.【解答】解:由正方形、矩形、菱形、平行四边形、一般四边形的性质可知:正方形、矩形的两条对角线一定相等,而菱形的对角线只是垂直,平行四边形的对角线只是互相平分,一般四边形的对角线性质不确定,所以两条对角线一定相等的四边形个数为2个,故选:B.【点评】此题考查了正方形、矩形、菱形、平行四边形、一般四边的性质,需熟练掌握各特殊平行四边形的特点是解题关键.6.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定【分析】根据一次函数的增减性,k<0,y随x的增大而减小解答.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,∵1<3,∴a>b.故选:A.【点评】本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.7.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE的长度是()A.5B.5.5C.6D.6.5【分析】根据直角三角形斜边上的中线求出AB长,根据勾股定理求出BE即可.【解答】解:∵BE⊥AC,∴∠BEA=90°,∵DE=5,D为AB中点,∴AB=2DE=10,∵AE=8,∴由勾股定理得:BE==6,故选:C.【点评】本题考查了直角三角形斜边上的中线和勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.8.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是()A.y=﹣7x+7B.y=﹣7x+1C.y=﹣7x﹣17D.y=﹣7x+25【分析】根据一次函数的图象平移的法则即可得出结论.【解答】解:直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是y=﹣7x+4﹣3=﹣7x+1.故选:B.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.9.下列计算正确的是()A.=±5B.4﹣=1C.÷=9D.×=6【分析】根据二次根式的性质、二次根式的混合运算法则进行计算,判断即可.【解答】解:=5,A错误;4﹣=4﹣3=,B错误;÷=3,C错误;×==6,D正确,故选:D.【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.10.如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是﹣1,则对角线AC、BD的交点表示的数是()A.5.5B.5C.6D.6.5【分析】连接BD交AC于E,由矩形的性质得出∠B=90°,AE=AC,由勾股定理求出AC,得出OE,即可得出结果.【解答】解:连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=AC,∴AC===13,∴AE=6.5,∵点A表示的数是﹣1,∴OA=1,∴OE=AE﹣OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选:A.【点评】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.11.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.【分析】由k+b=0且k≠0可知,y=kx+b的图象在一、三、四象限或一、二、四象限,观察四个选项即可得出结论.【解答】解:∵在一次函数y=kx+b中k+b=0,∴y=kx+b的图象在一、三、四象限或一、二、四象限.故选:A.【点评】本题考查了一次函数图象与系数的关系,由k+b=0且k≠0找出一次函数图象在一、三、四象限或一、二、四象限是解题的关键.12.某班六个兴趣小组人数分别是5,7,5,3,4,6,则这组数据的方差是()A.B.10C.D.【分析】利用方差公式进而得出答案.【解答】解:这组数据的平均数为:这组数据的方差为:=,故选:D.【点评】此题主要考查了方差,正确记忆方差公式是解题关键.13.如图,长方体的底面边长为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要()A.12cm B.11cm C.10cm D.9cm【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将长方体展开,连接A、B′,则AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故选:C.【点评】本题考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.14.如图,直线y=kx+b经过点A(3,1)和点B(6,0),则不等式0<kx+b<x的解集为()A.x<0B.0<x<3C.3<x<6D.x>6【分析】先把A、B点坐标代入y=kx+b计算出k、b,然后解不等式0<kx+b<x即可.【解答】解:把点A(3,1)和B(6,0)两点代入y=kx+b中,可得:,解得:,所以解析式为:y=﹣x+2,所以有,解得:3<x<6故选:C.【点评】本题考查了一次函数与不等式(组)的关系.解决此类问题关键是利用代入法解得k,b,求得一次函数解析式,然后转化为解不等式.15.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元【分析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【解答】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选:D.【点评】本题考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.二、填空题.(每小题3分,共15分)16.已知函数y=(m﹣1)x|m|+3是一次函数,则m=﹣1.【分析】因为y=(m﹣1)x|m|+3是一次函数,所以|m|=1,m﹣1≠0,解答即可.【解答】解:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.则得到|m|=1,m=±1,∵m﹣1≠0,∴m≠1,m=﹣1.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.17.要使四边形ABCD是平行四边形,已知∠A=∠C=120°,则还需补充一个条件是∠B=∠D =60°.【分析】由条件∠A=∠C=120°,再加上条件∠B=∠D=60°,可以根据两组对边分别平行的四边形是平行四边形得到四边形ABCD是平行四边形.【解答】解:添加条件∠B=∠D=60°,∵∠A=∠C=120°,∠B=∠D=60°,∴∠A+∠B=180°,∠C+∠D=180°∴AD∥CB,AB∥CD,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形),故答案为:∠B=∠D=60°,【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.18.已知a=﹣,b=+,求a2+b2的值为10.【分析】把已知条件代入求值.【解答】解:原式=(﹣)2+(+)2=5﹣2+5+2=10.故本题答案为:10.【点评】此题直接代入即可,也可先求出a+b、ab的值,原式=(a+b)2﹣2ab,再整体代入.19.已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此点P的横坐标与纵坐标的值均符合方程组中两个方程的要求,因此方程组的解应该是.【解答】解:直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),即x=﹣5,y=﹣8满足两个解析式,则是即方程组的解.因此方程组的解是.【点评】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.20.已知一组数据x1,x2,x3,x4的平均数为6,则数据3x1+1,3x2+1,3x3+1,3x4+1的平均数为19.【分析】由原数据的平均数得出x1+x2+x3+x4=24,再根据平均数的计算公式可得.【解答】解:依题意,得=(x1+x2+x3+x4)=6,∴x1+x2+x3+x4=24,∴3x1+1,3x2+1,3x3+1,3x4+1的平均数为=[(3x1+1)+(3x2+1)+(3x3+1)+(3x4+1)]=×(3×24+1×4)=19,故答案为:19.【点评】此题考查平均数的意义,掌握平均数的计算方法是解决问题的关键.三、解答题.(8个小题,共60分)21.(6分)计算:(1)﹣+(2)×÷【分析】(1)首先化简二次根式进而利用二次根式加减运算法则计算得出答案;(2)首先化简二次根式进而利用二次根式乘除运算法则计算得出答案.【解答】解:(1)﹣+=3﹣2+=;(2)×÷=2××=8.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.22.(6分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=3,求AB及BC2各是多少?【分析】根据勾股定理解答即可.【解答】解:在Rt△ABC中,∠B=30°,∴AB=2AC=6,∴BC2=AB2﹣AC2=36﹣9=27.【点评】此题考查勾股定理.关键是根据勾股定理解答,23.(6分)如图,在四边形ABCD中,BC∥AD,AE∥DC,AB=DC.求证:∠B=∠C.【分析】根据平行四边形的判定和性质得出AE=DC,进而得出∠AEB=∠C,根据等腰三角形的性质得到∠B=∠AEB,进而得出∠B=∠C.【解答】证明:∵BC∥AD,AE∥DC,∴四边形AECD是平行四边形,∴AE=DC,AE∥DC,∴∠AEB=∠C,∵AB=CD,∴AB=AE,∴∠B=∠AEB,∴∠B=∠C.【点评】此题主要通过考查平行四边形判定和性质,关键是根据平行四边形的判定和性质得出AE=DC.24.(6分)某次歌咏比赛,前三名选手的成绩统计如下:(单位:分)将唱功、音乐常识综合知识三项测试成绩按6:3:1的加权平均分排出冠军、亚军季军,则冠军、亚军、季军各是谁?【分析】根据加权平均数的计算公式先分别求出三个人的最后得分,再进行比较即可.【解答】解:王晓丽的成绩是:(98×6+80×3+80)÷10=90.8(分);李真:(95×6+90×3+90)÷10=93(分);林飞杨:(80×6+100×3+100)÷10=88(分).∵93>90.8>88,∴冠军是李真、亚军是王晓丽、季军是林飞杨.【点评】本题主要考查了加权平均数,本题易出现的错误是求三个数的平均数,对平均数的理解不正确.25.(8分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式.(2)判定点C(4,﹣2)是否在该函数的图象上?说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.【分析】(1)首先求得B的坐标,然后利用待定系数法即可求得函数的解析式;(2)把C的坐标代入一次函数的解析式进行检验即可;(3)首先求得D的坐标,然后利用三角形的面积公式求解.【解答】解:(1)把x=1代入y=2x中,得y=2,所以点B的坐标为(1,2),设一次函数的解析式为y=kx+b,把A(0,3)和B(1,2)代入,得,解得,所以一次函数的解析式是y=﹣x+3;(2)点C(4,﹣2)不在该函数的图象上.理由:当x=4 时,y=﹣1≠﹣2,所以点C(4,﹣2)不在函数的图象上.(3)在y=﹣x+3中,令y=0,则0=﹣x+3,解得x=3,则D的坐标是(3,0),=×3×2=3.所以S△BOD【点评】本题主要考查了用待定系数法求函数的解析式.先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.26.(8分)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.【分析】(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由SAS证明△BCE≌△DCF即可;(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF 是正方形.【解答】(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.【点评】本题考查了正方形的判定、菱形的性质与判定、全等三角形的判定与性质、三角形中位线定理等知识;熟练掌握菱形的性质和全等三角形的判定是解决问题的关键.27.(10分)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.【分析】(1)由折线图中数据,根据中位数和加权平均数的定义求解可得;(2)根据中位数的意义求解可得;(3)可从平均数和方差两方面阐述即可.【解答】解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,∴其中位数a=6,乙组学生成绩的平均分b==7.2;(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于小组中上游,∴小英属于甲组学生;(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.【点评】本题主要考查折线统计图、加权平均数、中位数及方差,熟练掌握加权平均数、中位数及方差的定义是解题的关键.28.(10分)如图,线段AB,CD分别是一辆轿车的油箱剩余油量y1(升)与一辆客车的油箱剩余油量y2(升)关于行驶路程x(千米)的函数图象.(1)分别求y1,y2与x的函数解析式;(2)如果两车同时出发轿车的行驶速度为100千米/时,客车的行驶速度为80千米/时,当油箱的剩余油量相同时,两车行驶的时间相差多少分?【分析】(1)设出线段AB、CD所表示的函数解析式,由待定系数法结合图形可得出结论;(2)由(1)的结论算出当油箱的剩余油量相同时,跑的路程数,再由时间=路程÷速度,即可得出结论.【解答】解:(1)设AB、CD所表示的函数解析式分别为y1=k1x+50,y2=k2x+80.结合图形可知:,解得:.故y1=﹣0.1x+50(0≤x≤500),y2=﹣0.2x+80(0≤x≤400).(2)令y1=y2,则有﹣0.1x+50=﹣0.2x+80,解得:x=300.轿车行驶的时间为300÷100=3(小时);客车行驶的时间为300÷80=(小时),3﹣3=小时=45(分钟).答:当油箱的剩余油量相同时,两车行驶的时间相差45分钟.【点评】本题考查了一次函数的应用,解题的关键:(1)熟练运用待定系数法就解析式;(2)找出剩余油量相同时行驶的距离.本题属于基础题,难度不大,解决该类问题应结合图形,理解图形中点的坐标代表的意义.。

2017-2018学年 八年级(下)期末数学试卷(有答案和解析)

2017-2018学年 八年级(下)期末数学试卷(有答案和解析)

2017-2018学年八年级(下)期末数学试卷一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效.1.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x<0C.x≤2D.x≥22.已知直角三角形的两条直角边的长分别为1,,则斜边长为()A.1B.C.2D.33.下列计算正确的是()A.B.3﹣=3C.D.=4.点(a,﹣1)在一次函数y=﹣2x+1的图象上,则a的值为()A.a=﹣3B.a=﹣1C.a=1D.a=25.四边形ABCD中,已知AB∥CD,下列条件不能判定四边形ABCD为平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A+∠B=1806.匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是()A.(1)B.(2)C.(3)D.无法确定7.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1B.2C.3D.48.某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5B.4.5,6C.5,6D.5.5,69.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为()A.()7B.2()7C.2()8D.()910.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3B.﹣5C.7D.﹣3或﹣5二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.计算=,(﹣)2=,3﹣=.12.下表记录了某校篮球队队员的年龄分布情况,则该校篮球队队员的平均年龄为.13.如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为.14.将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为.15.“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是.16.如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.(8分)计算:(1)﹣+(2)(+3)(﹣2)18.(8分)如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19.(8分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.20.(8分)运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.(1)L号运动服一周的销售所占百分比为.(2)请补全条形统计图;(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL 号约多少件比较合适,请计算说明.21.(8分)如图,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延长线于F,点G为EF 的中点,连结DG.(1)求证:BC=DF;(2)连BD,求BD:DG的值.22.(10分)某移动通信公司推出了如下两种移动电话计费方式,说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)(1)请根据题意完成如表的填空;(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;(3)请计算说明选择哪种计费方式更省钱.23.(10分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).24.(12分)如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(,),B(,);(2)如图1,点E为直线y=x+2上一点,点F为直线y=x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效. 1.【分析】由二次根式的性质可以得到x﹣2≥0,由此即可求解.【解答】解:依题意得x﹣2≥0,∴x≥2.故选:D.【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.2.【分析】根据勾股定理进行计算,即可求得结果.【解答】解:直角三角形的两条直角边的长分别为1,,则斜边长=;故选:C.【点评】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.3.【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、3﹣=2,此选项错误;C、×=,此选项错误;D、=,此选项正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.【分析】把点A(a,﹣1)代入y=﹣2x+1,解关于a的方程即可.【解答】解:∵点A(a,﹣1)在一次函数y=﹣2x+1的图象上,∴﹣1=﹣2a+1,解得a=1,故选:C.【点评】此题考查一次函数图象上点的坐标特征;用到的知识点为:点在函数解析式上,点的横坐标就适合这个函数解析式.5.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形.故选:B.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.6.【分析】根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.【解答】解:由图形可得,从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,故(1)中函数图象符合题意,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.【分析】根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【解答】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选:B.【点评】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.【分析】先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【解答】解:根据题意知6月份的用水量为5×6﹣(3+6+4+5+6)=6(t),∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,则该户今年1至6月份用水量的中位数为=5.5、众数为6,故选:D.【点评】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.9.【分析】根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【解答】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为2,于是得到B3的纵坐标为2()2…∴B8的纵坐标为2()7故选:B.【点评】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出B n的坐标的变化规律.10.【分析】分三种情形讨论求解即可解决问题;【解答】解:对于函数y=|x﹣a|,最小值为a+5.情形1:a+5=0,a=﹣5,∴y=|x+5|,此时x=﹣5时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+5,得到a=﹣3.∴y=|x+3|,符合题意.情形3:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+5,方程无解,此种情形不存在,综上所述,a=﹣3.故选:A.【点评】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.【分析】根据二次根式的性质化简和(﹣)2,利用二次根式的加减法计算3﹣.【解答】解:=2,(﹣)2=6,3﹣=2.故答案为2,6,2.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12.【分析】根据加权平均数的计算公式计算可得.【解答】解:该校篮球队队员的平均年龄为=13.7(岁),故答案为:13.7.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.13.【分析】设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.【解答】解:设AC与BD的交点为O∵四边形ABCD是平行四边形∴AD=BC=2,AD∥BCAO=CO=1,BO=DO∵AC⊥BC∴BO==∴BD=2故答案为2【点评】本题考查了平行四边形的性质,关键是灵活运用平行四边形的性质解决问题.14.【分析】平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.【解答】解:可设新直线解析式为y=﹣x+b,∵原直线y=﹣x+1经过点(0,1),∴向右平移3个单位,(3,1),代入新直线解析式得:b=,∴新直线解析式为:y=﹣x+.故答案为:y=﹣x+.【点评】此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.15.【分析】利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.【解答】解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).将(0,60)、(30,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=8x+60;将(0,60)、(70,480)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=6x+60;将(0,60)、(50,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=4.8x+60.观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<8或v=4.8.故答案为:6<v<8或v=4.8【点评】本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.16.【分析】分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM =1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.【解答】解:过点E作ME⊥AD,延长ME交BC与N,∵四边形ABCD是矩形∴AD∥BC,且ME⊥DA∴EN⊥BC且∠A=90°=∠ABC=90°∴四边形ABNM是矩形∴AB=MN=5,AM=BN若ME:EN=1:4,如图1∵ME:EN=1:4,MN=5∴ME=1,EN=4∵折叠∴BE=AB=5,AP=PE在Rt△BEN中,BN==3∴AM=3在Rt△PME中,PE2=ME2+PM2AP2=(3﹣AP)2+1解得AP=若ME:EN=4:1,则EN=1,ME=4,如图2在Rt△BEN中,BN==2∴AM =2在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(2﹣AP )2+16解得AP =若点E 在矩形外,如图∵EN :EM =1:4∴EN =,EM =在Rt △BEN 中,BN ==∴AM =在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(AP ﹣)2+()2解得:AP =5故答案为,,5 【点评】本题考查了折叠问题,矩形的性质,勾股定理,利用分类思想解决问题是本题的关键.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用多项式乘法公式展开,然后合并即可.【解答】解:(1)原式=3﹣2+=;(2)原式=5﹣2+3﹣6=﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【分析】据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE=DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E、F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF,∴四边形BFDE是平行四边形,∴BE∥DF.【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.19.【分析】利用待定系数法即可解决问题;【解答】解:设一次函数的解析式为y=kx+b,则有,解得,∴一次函数的解析式为y=2x﹣3,当x=﹣1时,m=﹣5.【点评】本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.20.【分析】(1)利用百分比之和为1,计算即可;(2)求出M、L的件数,画出条形图即可;(3)利用不要告诉总体的思想解决问题即可;【解答】解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.故答案为20%.(2)总数=13÷26%=50,M有50×30%=15,L有50×20%=10,条形统计图如图所示:(3)购进XL号约600×16%=96(件)比较合适.【点评】本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【分析】(1)根据矩形的性质解答即可;(2)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.【解答】证明:(1)∵四边形ABCD为矩形,∴AD=BC,∠BAD=∠ADC=90°,∵AF平分∠BAD,∴∠DAF=45°,∴AD=DF,∴BC=DF;(2)连接CG,BG,∵点G为EF的中点,∴GF=CG,∴∠F=∠BCG=45°,在△BCG与△DFG中,∴△BCG≌△DFG(SAS),∴BG=DG,∠CBG=∠FDG,∴△BDG为等腰直角三角形,∴BD=DG,∴BD:DG=:1.【点评】此题考查矩形的性质,关键是根据矩形的性质和全等三角形的判定和性质解答.22.【分析】(1)根据题意得出表中数据即可;(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.【解答】解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,故答案为:70;100;(2)由题意可得:y1(元)的函数关系式为:;y2(元)的函数关系式为:;(3)①当0≤t≤300时方式一更省钱;②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,解得:t=400,即当t=400,两种方式费用相同,当300<t≤400时方式一省钱,当400<t≤600时,方式二省钱;③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,解得:t=1400,即当t=1400,两种方式费用相同,当600<t≤1400时方式二省钱,当t>1400时,方式一省钱;综上所述,当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【点评】本题考查了一次函数的应用,难度中等.得到两种计费方式的关系式是解决本题的关键,注意在列式时应保证单位的统一.23.【分析】(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴=,∴=,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S=BD×MN=×6×2=12;四边形BMDN(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=A+A=(+1)a,∴==﹣1.故答案为:﹣1.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.24.【分析】(1)利用待定系数法即可解决问题;(2)因为A,B,E,F为顶点的四边形是平行四边形,推出AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),再利用待定系数法求出m即可;(3)求出点M的坐标(用m表示),即可解决问题,利用特殊位置求出点M的坐标,可以解决点C移动过程中点M的运动路径长;【解答】解:(1)对于直线y=2x+6,令x=0,得到y=6,令y=0,得到x=﹣3,∴A(﹣3,0),B(0,6),故答案为﹣3,0,0,6;(2)∵A,B,E,F为顶点的四边形是平行四边形,∴AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),把F(m+3,m+8)代入y=x,得到m+8=(m+3),解得m=﹣13,∴E(﹣13,﹣11),F(﹣10,﹣5),把F(m﹣3,m﹣4)代入y=x中,m﹣4=(m﹣3),解得m=5,∴E(5,7),F(2,1),当AB为对角线时,设E(m,m+2),则F(m﹣3,6﹣m),把F(﹣m﹣3,4﹣m)代入y=x中,4﹣m=(﹣m﹣3),解得m=11,∴E(11,13),F(﹣14,﹣7).(3)∵C(m,n)在直线y=2x+6上,∴n=2m+6,∴C(m,2m+6),∵D(﹣7m,0),CM=MD,∴M(﹣3m,m+3),令x=﹣3m,y=m+3,∴y=﹣x+3,当点C与A重合时,m=﹣3,可得M(9,0),当点C与B重合时,m=0,可得M(0,3),∴点C移动过程中点M的运动路径长为:=3.【点评】本题考查一次函数综合题、平行四边形的判定和性质、中点坐标公式、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置寻找点的运动轨迹,属于中考压轴题.。

2017-2018学年八年级(下)期末数学试卷含答案

2017-2018学年八年级(下)期末数学试卷含答案

2017-2018学年八年级(下)期末数学试卷一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a33.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.164.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠15.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.6.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>27.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.409.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为度.12.当x=时,分式的值为零.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为cm.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a b.(填“>”“<”或“=”号)17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是.18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个【考点】轴对称图形.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:图1是轴对称图形,符合题意;图2不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意;图3是轴对称图形,符合题意;图4不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意.共2个轴对称图案.故选B.2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、x•x2=x2同底数幂的乘法,底数不变指数相加,故本选项错误;B、(x5)3=x15,幂的乘方,底数不变指数相乘,故本选项错误.C、(ab)3=a3b3,故本选项正确;D、a6÷a2=a3同底数幂的除法,底数不变指数相减,故本选项错误.故选C.3.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.16【考点】方差.【分析】设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,代入方差的公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],计算即可.【解答】解:设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,∵S2= [(a1﹣)2+(a2﹣)2+…+(a n﹣)2],∴S′2= [(2a1﹣2)2+(2a2﹣2)2+…+(2a n﹣2)2]= [4(a1﹣)2+4(a2﹣)2+…+4(a n﹣)2]=4S2=4×2=8.故选C.4.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【考点】分式有意义的条件;二次根式有意义的条件.【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.5.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .B .C .D .【考点】矩形的性质. 【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .6.一次函数y=kx +b (k ≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .x <0B .x >0C .x <2D .x >2【考点】一次函数的图象.【分析】根据函数图象与x 轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.【解答】解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选:C.7.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的基本判定性质.【解答】解:A、两条对角线相等的平行四边形是矩形,故选项A错误;B、两条对角线互相垂直的平行四边形是菱形,故选项B错误;C、根据平行四边形的判定定理可知两条平行线相互平分的四边形是平行四边形,为真命题,故选项C是正确的;D、两条对角线互相垂直且相等的平行四边形是正方形,故选项D错误;故选C.8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.40【考点】规律型:图形的变化类.【分析】观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;由此代入n=12求得答案即可.【解答】解:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;当n=12时,共有小三角形的个数是3×12+4=40.故选:D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+【考点】一次函数与二元一次方程(组).【分析】根据一共20个人,进球49个列出关于x、y的方程即可得到答案.【解答】解:根据进球总数为49个得:2x+3y=49﹣5﹣3×4﹣2×5=22,整理得:y=﹣x+,∵20人一组进行足球比赛,∴1+5+x+y+3+2=20,整理得:y=﹣x+9.故选:C.二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为108度.【考点】多边形内角与外角.【分析】根据多边形的外角和是360度,而正五边形的每个外角都相等,即可求得外角的度数,再根据外角与内角互补即可求得内角的度数.【解答】解:正五边形的外角是:360÷5=72°,则内角的度数是:180°﹣72°=108°.故答案为:108.12.当x=2时,分式的值为零.【考点】分式的值为零的条件.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0⇒x=±2;而x=2时,分母x+2=2+2=4≠0,x=﹣2时分母x+2=0,分式没有意义.所以x=2.故答案为:2.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=3.【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AD=BC,AD∥BC,求出四边形BEDF是平行四边形,根据平行四边形的性质得出DE=BF,求出AE=CF,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE∥DF,∴四边形BEDF是平行四边形,∴DE=BF,∴AD﹣DE=BC﹣BF,∴AE=CF,∵AE=3,∴CF=3,故答案为:3.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是12.【考点】勾股定理;等腰三角形的性质.【分析】首先利用勾股定理求出AE的长,即可求出△ABC的面积,然后证明DE 是△ABC的中位线,进而求出△BDE的面积.【解答】解:∵△ABC中,AB=AC,AE平分∠BAC交BC于点E,∴AE⊥BC,且BE=CE,∴AE==8,=×BC×AE=×12×8=48,∴S△ABC∵点D为AB的中点,∴DE是△ABC的中位线,∴DE∥AC,且DE=AC,∴==,=S△ABC=×48=12.∴S△BDE故答案为:12.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为4cm.【考点】菱形的性质;线段垂直平分线的性质.【分析】首先连接AC,由BC的垂直平分线EF经过点A,根据线段垂直平分线的性质,可得AC的长,由菱形的性质,可求得AC=AB=4cm,然后由勾股定理,求得OB的长,继而求得答案.【解答】解:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为:4.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a>b.(填“>”“<”或“=”号)【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数的解析式判断出函数的增减性,再比较出﹣5与4的大小即可解答.【解答】解:∵直线y=﹣3x+2中,k=﹣3<0,∴此函数是减函数,∵﹣5<4,∴a>b.故答案为:>.17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是甲.【考点】方差.【分析】由s甲2=0.002、s乙2=0.03,可得到s甲2<s乙2,根据方差的意义得到甲的波动小,比较稳定.【解答】:∵s甲2=0.002、s乙2=0.03,∴s甲2<s乙2,∴甲比乙的产量稳定.故答案为:甲18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为y=﹣2x﹣2.【考点】一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.【考点】解分式方程;实数的运算;负整数指数幂.【分析】(1)l原式利用乘方的意义,算术平方根定义,以及负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1﹣3+3=﹣1;(2)方程两边同乘(x+2)(x﹣2)得x(x+2)﹣(x+2)(x﹣2)=8,解得:x=2,检验:当x=2时(x+2)(x﹣2)=0,则x=2不是原方程的解,原方程无解.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.【考点】作图—复杂作图;矩形的判定.【分析】(1)①利用线段垂直平分线的作法得出即可;②利用射线的作法得出D点位置;(2)利用直角三角形斜边与其边上中线的关系进而得出AM=MC=BM=DM,进而得出答案.【解答】解:(1)①如图所示:M点即为所求;②如图所示:四边形ABCD即为所求;(2)矩形,理由:∵Rt△ABC中,∠ABC=90°,BM是AC边上的中线,∴BM=AC,∵BM=DM,AM=MC∴AM=MC=BM=DM,∴四边形ABCD是矩形.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是30元;(2)这次调查获取的样本数据的中位数是50元;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有250人.【考点】条形统计图;用样本估计总体;中位数;众数.【分析】(1)众数就是出现次数最多的数,据此即可判断;(2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解.【解答】解:(1)众数是:30元,故答案是:30元;(2)中位数是:50元,故答案是:50元;(3)调查的总人数是:6+12+10+8+4=40(人),则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.【考点】一次函数的应用.【分析】(1)观察不难发现,每10分钟放水250m3,然后根据此规律求解即可;(2)设函数关系式为y=kx+b,然后取两组数,利用待定系数法一次函数解析式求解即可.【解答】解:(1)由图表可知,每10分钟放水250m3,所以,第80分钟时,池内有水4000﹣8×250=2000m3;答:池内有水2000m3.(2)设函数关系式为y=kx+b,∵x=20时,y=3500,x=40时,y=3000,∴,解得:,所以,y=﹣25x+4000(0≤x≤160).23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.【考点】正方形的性质;全等三角形的判定与性质;矩形的性质.【分析】根据题意我们不难得出四边形GEFC是个矩形,因此它的对角线相等.如果连接EC,那么EC=FG,要证明AE=FG,只要证明EC=AE即可.证明AE=EC就要通过全等三角形来实现.三角形ABE和BEC中,有∠ABD=∠CBD,有AB=BC,有一组公共边BE,因此构成了全等三角形判定中的SAS,因此两三角形全等,得AE=EC,即AE=GF.【解答】证明:连接EC.∵四边形ABCD是正方形,EF⊥BC,EG⊥CD,∴∠GCF=∠CFE=∠CGE=90°,∴四边形EFCG为矩形.∴FG=CE.又BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中,,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?【考点】一次函数的应用.【分析】(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可;(2)根据每天获取利润为14400元,则y=14400,求出即可;(3)根据每天获取利润不低于15600元即y≥15600,求出即可.【解答】解:(1)根据题意得出:y=12x×100+10(10﹣x)×180=﹣600x+18000;(2)当y=14400时,有14400=﹣600x+18000,解得:x=6,故要派6名工人去生产甲种产品;(3)根据题意可得,y≥15600,即﹣600x+18000≥15600,解得:x≤4,则10﹣x≥6,故至少要派6名工人去生产乙种产品才合适.25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.【考点】四边形综合题.【分析】(1)由△ABC和△DEF是两个边长为6cm的等边三角形,得出BC=DF,由∠ACD=∠FDE=60°,得出BC∥DE,证出四边形BCDE是平行四边形;(2)(a)根据有一组邻边相等的四边形是菱形即可得到结论;(b)根据有一个角是直角的平行四边形是矩形即可得到结论.【解答】(1)证明:∵△ABC和△DEF是两个边长为6cm的等边三角形,∴BC=DE,∠ABC=∠FDE=60°,∴BC∥DE,∴四边形BCDE是平行四边形;(2)解:(a)当t=2秒时,▱BCDE是菱形,此时A与D重合,∴CD=DE,∴▱ADEC是菱形;(b)若平行四边形BCDE是矩形,则∠CDE=90°,如图所示:∴∠CDB=90°﹣60°=30°同理∠DCA=30°=∠CDB,∴AC=AD,同理FB=EF,∴F与B重合,∴t=(6+2)÷1=8秒,∴当t=8秒时,平行四边形BCDE是矩形.。

2017-2018学年八年级(下)期末数学试卷含答案

2017-2018学年八年级(下)期末数学试卷含答案

2017-2018学年八年级(下)期末数学试卷一、选择题(每题3分,共10题,30分)1.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≥B.x>C.x≥D.x>2.(3分)下列二次根式中,最简二次根式是()A.B. C.D.3.(3分)某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元4.(3分)在本学期数学期中考中,某小组8名同学的成绩如下:90、103、105、105、105、115、140、140,则这组数据的众数为()A.105 B.90 C.140 D.505.(3分)下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2. 5 B.3,4,5 C.5,12,13 D.20,30,406.(3分)已知一组数据x1,x2,x3,…,x n的方差是7,那么数据x1﹣5,x2﹣5,x3﹣5,…,x n﹣5的方差为()A.2 B.5 C.7 D.97.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.x<B.x<3 C.x>D.x>38.(3分)名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm)如下表所示:设两队队员身高的平均数依次为甲,乙,身高的方差依次为S甲2,S乙2,则下列关系中完全正确的是()A.甲=乙,S>S B.甲=乙,S<SC.甲>乙,S>S D.甲<乙,S<S9.(3分)如图,在Rt△ABC中,角A=90°,AB=3,AC=4,P是BC边上的一点,作PE垂直AB,PF垂直AC,垂足分别为E、F,则EF的最小值是()A.2 B.2.2 C.2.4 D.2.510.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二.填空(每题3分,共15分)11.(3分)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=.12.(3分)若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1y2(选择“>”、“<”、=”填空).13.(3分)一直角三角形两条边长分别是12和5,则第三边长为.14.(3分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.15.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.二.解答题(本大题共8个小题,满分75分)16.(8分)计算(1)(+3﹣2)×2(2)(﹣1)2+(+2)2﹣2(﹣1)(+2)17.(9分)如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.18.(9分)现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是g;乙厂抽取质量的众数是g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样S乙2≈1.86.请你帮助计算出抽取甲厂的样本平均数及方本平均数乙=75,方差差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?19.(9分)直线y=ax﹣1经过点(4,3),交y轴于点A.直线y=﹣0.5x+b交y 轴于点B(0,1),且与直线y=ax﹣1相交于点C.求△ABC的面积.20.(9分)(1)如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.求证:AF=BE.(2)如图2,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,判断MP与NQ是否相等?并说明理由.21.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE 沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.22.(10分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?23.(11分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分,共10题,30分)1.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≥B.x>C.x≥D.x>【解答】解:根据题意得:2x﹣3≥0,解得x≥.故选:A.2.(3分)下列二次根式中,最简二次根式是()A.B. C.D.【解答】解:A、=,被开方数含分母,不是最简二次根式;B、满足最简二次根式的定义,是最简二次根式;C、,被开方数含能开得尽方的因数,不是最简二次根式;D、,被开方数含分母,不是最简二次根式,故选:B.3.(3分)某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元【解答】解:∵2400出现了4次,出现的次数最多,∴众数是2400;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(2400+2400)÷2=2400;故选:A.4.(3分)在本学期数学期中考中,某小组8名同学的成绩如下:90、103、105、105、105、115、140、140,则这组数据的众数为()A.105 B.90 C.140 D.50【解答】解:这组数据中105出现的次数最多,则众数为105.故选:A.5.(3分)下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选:D.6.(3分)已知一组数据x1,x2,x3,…,x n的方差是7,那么数据x1﹣5,x2﹣5,x3﹣5,…,x n﹣5的方差为()A.2 B.5 C.7 D.9【解答】解:由题意知,原数据的平均数为,新数据的每一个数都减去了5,则平均数变为﹣5,则原来的方差S12= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=7,现在的方差S22= [(x1﹣5﹣+5)2+(x2﹣5﹣+5)2+…+(x n﹣5﹣+5)2]= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=7,所以方差不变.故选:C.7.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.x<B.x<3 C.x>D.x>3【解答】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选:A.8.(3分)名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm)如下表所示:设两队队员身高的平均数依次为甲,乙,身高的方差依次为S甲2,S乙2,则下列关系中完全正确的是()A.甲=乙,S>S B.甲=乙,S<SC.甲>乙,S>S D.甲<乙,S<S【解答】解:∵=(173+175+175+175+177)÷5=175(cm),=(170+171+175+179+180)÷5=175(cm),∴=,∵S2甲= [(173﹣175)2+3×(175﹣175)2+(175﹣177)2]=1.6,S2乙= [(170﹣175)2+(171﹣175)2+(175﹣175)2+(179﹣175)2+(180﹣175)2]=16.4,∴S2甲<S2乙,故选:B.9.(3分)如图,在Rt△ABC中,角A=90°,AB=3,AC=4,P是BC边上的一点,作PE垂直AB,PF垂直AC,垂足分别为E、F,则EF的最小值是()A.2 B.2.2 C.2.4 D.2.5【解答】解:连接AP,∵∠BAC=90°,PE⊥AB,PF⊥AC,∴∠BAC=∠AEP=∠AFP=90°,∴四边形AFPE是矩形,∴EF=AP,要使EF最小,只要AP最小即可,过A作AP⊥BC于P,此时AP最小,在Rt△BAC中,∠BAC=90°,AC=4,AB=3,由勾股定理得:BC=5,由三角形面积公式得:×4×3=×5×AP,∴AP=2.4,即EF=2.4,故选:C.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮【解答】解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.二.填空(每题3分,共15分)11.(3分)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=3.【解答】解:如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.12.(3分)若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1>y2(选择“>”、“<”、=”填空).【解答】解:∵k=﹣1<0,∴函数值y随x的增大而减小,∵1<2,∴y1>y2.故答案为:>.13.(3分)一直角三角形两条边长分别是12和5,则第三边长为13或.【解答】解:①12和5均为直角边,则第三边为=13.②12为斜边,5为直角边,则第三边为=.故答案为:13或.14.(3分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是2.【解答】解:如图,连接BD,∵四边形ABCD是菱形,∴∠BAD=∠ADC=×120°=60°,∵AB=AD(菱形的邻边相等),∴△ABD是等边三角形,连接DE,∵B、D关于对角线AC对称,∴DE与AC的交点即为所求的点P,PE+PB的最小值=DE,∵E是AB的中点,∴DE⊥AB,∵菱形ABCD周长为16,∴AD=16÷4=4,∴DE=×4=2.故答案为:2.15.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.二.解答题(本大题共8个小题,满分75分)16.(8分)计算(1)(+3﹣2)×2(2)(﹣1)2+(+2)2﹣2(﹣1)(+2)【解答】(1)解:(+3﹣2)×2=(+)×2=6+6.(2)解:(﹣1)2+(+2)2﹣2(﹣1)(+2)=[(﹣1)﹣(+2)]2=917.(9分)如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.【解答】证明:∵AE⊥BD于E,CF⊥BD于F,∴∠AED=∠CFB=90°,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴AD=BC,∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形.18.(9分)现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是75g;乙厂抽取质量的众数是75g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样S乙2≈1.86.请你帮助计算出抽取甲厂的样本平均数及方本平均数乙=75,方差差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?【解答】解:(1)甲厂处在中间位置的数为第8个,为75克,故甲厂质量中位数为75克;乙厂75克出现了6次,故乙厂众数为75克.故答案为75,75.(2)根据=×[(73﹣75)2×2+(74﹣75)2×4+(75﹣75)2×4+(76﹣75)2×3+(77﹣75)2×1+(78﹣75)2×1)]≈1.87.∵>,∴快餐公司应选购甲加工厂的鸡腿.19.(9分)直线y=ax﹣1经过点(4,3),交y轴于点A.直线y=﹣0.5x+b交y 轴于点B(0,1),且与直线y=ax﹣1相交于点C.求△ABC的面积.【解答】解:∵直线y=ax﹣1经过点(4,3),∴4a﹣1=3,解得a=1,此直线解析式为y=x﹣1.∵直线y=﹣0.5x+b交y轴于点B(0,1),∴b=1,此直线解析式为y=﹣0.5x+1,∴,解得,∴点C(,),∴△ABC的面积=×(|1|+|﹣1|)×||=20.(9分)(1)如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.求证:AF=BE.(2)如图2,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,判断MP与NQ是否相等?并说明理由.【解答】证明:(1)∵AF⊥BE∴∠EAF+∠AEB=90°又∵正方形ABCD,∴∠ABE+∠AEB=90°,∴∠EAF=∠ABE,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴BE=AF,即AF=BE;(2)MP与NQ相等,理由:作AF∥PM,BE∥NQ,∵正方形ABCD,∴AM∥FP,BN∥EQ,∴四边形AMPF和四边形BNQE都是平行四边形,∴AF=MP,BE=NQ,又∵MP⊥QN,∴BE⊥AF,∵(1)结论知AF=BE,∴MP=NQ.21.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE 沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【解答】解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.22.(10分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?【解答】解:(1)设购进甲种服装x件,由题意可知:80x+60(100﹣x)≤7500,解得:x≤75.答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75,w=(120﹣80﹣a)x+(90﹣60)(100﹣x)=(10﹣a)x+3000,方案1:当0<a<10时,10﹣a>0,w随x的增大而增大,所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10﹣a<0,w随x的增大而减少,所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.23.(11分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴PC=PE,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠EDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE;。

2017-2018学年成都市青羊区八年级(下)期末数学试卷(含解析)

2017-2018学年成都市青羊区八年级(下)期末数学试卷(含解析)

2017-2018学年成都市青羊区八年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分)1.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b2.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列各式从左到右的变形中,是因式分解的是()A.(2﹣x)(﹣2﹣x)=x2﹣4B.x2﹣1+y2=(x+1)(x﹣1)+y2C.x2﹣x﹣2=(x﹣2)(x+1)D.x2﹣2x﹣3=x(x﹣2﹣)4.如图是两个关于x的一元一次不等式的解集在同一数轴上的表示,由它们组成的不等式组的解集是()A.x>﹣1 B.x>2 C.x≥2 D.﹣1<x≤25.若正n边形的每个内角都是120°,则n的值是()A.3 B.4 C.6 D.86.下列各式中,正确的是()A.=B.=C.=﹣D.=7.如图,在Rt△ABC中,∠B=90°,D、E、F分别是边BC、CA、AB的中点,AB=6,BC=8,则四边形AEDF 的周长是()A.18 B.16 C.14 D.128.如图所示,在▱ABCD中,对角线AC,BD相交于点O,下列条件能判定▱ABCD为菱形的是()A.∠ABC=90°B.AC=BDC.AC⊥BD D.OA=OC,OB=OD9.如图,△ABC中,∠C=63°,将△ABC绕点A顺时针旋转后,得到△AB'C',且C'在边BC上,则∠B'C'B 的度数为()A.45°B.54°C.87°D.70°10.在一块矩形地上被踩出两条宽1m(过A,B间任意一点作AD的平行线,被每条小路截得的线段的长度是1m)的小路,如图,小路①的面积记作S1,小路②的面积记作S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2C.S1<S2D.无法确定二、填空题:(本大题共4个小题,每小题4分,共16分)11.若x2+4x+m=(x﹣2)(x+6),则m=.12.如图,函数y=kx和y=﹣x+3的图象相交于点A(1,2),则不等式kx<﹣x+3的解集是.13.如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,若,则点D到AB的距离是.14.如图,将等腰直角△ABC沿BC方向平移得到△A'B'C',若BC=4,S△PB'C=4.5,则BB'=.三、解答题(共54分)15.(12分)(1)分解因式:(2a﹣3)2﹣4 (2)解不等式组16.(6分)解分式方程:﹣=1.17.(8分)先化简,再求值:÷(﹣a),其中a=.18.(8分)正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC绕点A逆时针旋转90°得到的△AB1C1,点B1的坐标为;(2)平移△ABC,使B点对应点B2的坐标是(1,2),画出平移后对应的△A2B2C2,点C2的坐标为;(3)求△ABC绕点A逆时针旋转90°后,线段AB扫过的图形面积.19.(8分)某校计划购买一批花卉装饰校园.已知一株海棠比一株牵牛花多1.2元,若用60元购买海棠,用27元购买牵牛花,则购买的牵牛花的株数是海棠的.求购买一株海棠,一株牵牛花各需要多少元?20.(12分)如图,在Rt△ABC中,∠ACB=90°,AE平分∠CAB交CB于点E,CD⊥AB于点D,交AE于点G.过点G作GF∥BC交AB于F,连结EF.(1)求证:CG=CE;(2)判断四边形CGFE的形状,并证明;(3)若BF=2AF,AC=3cm,求线段DG的长度.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.若实数m、n满足2m﹣3=n,则代数式4m2﹣4mn+n2的值是.22.若关于x的方程=3的解是非负数,则b的取值范围是.23.已知直线y=2x﹣k+4与直线y=3x+k相交于点P,若点P在第一象限内,且k为正整数,则点P坐标是.24.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x 轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2018的纵坐标为.25.如图,在△ABC中,∠ACB=90°,AC=6,BC=8,CD平分∠ACB交AB于点D.点E为CD的中点.在BC上有一动点P,则PD+PE的最小值是二、解答题(共30分)26.(8分)李阿姨开了一家服装店,计划购入甲、乙两种服装共60件,其进价和售价如表:甲乙进价(元/件)150 300售价(元/件)200 360(1)设甲种服装购进x件,李阿姨获得的总利润为y元,求y与x之间的函数关系式;(2)若李阿姨计划投入资金不多于15000元,怎么进货,才能使获得利润最大,并求出利润的最大值;(3)实际进货时,生产厂家对甲种服装出厂价下调a元(7≤a≤9)出售,且限定最多购入甲种服装40件,若李阿姨保持同种服装售价不变,请根据以上信息及(2)中条件,设计出使李阿姨获得最大利润的进货方案.27.(10分)如图,在平面直角坐标系中,直线交x轴于点A,交y轴于点B.点C坐标是(0,1),连结AC,过点C作CE⊥AB于点E.(1)求CE的长度.(2)如图2,点D为线段EA上一动点(不与E、A重合),连结CD并延长至点F,使DC=DF,作点F关于AB的对称点G,连结DG,CG,FG,线段FG交AB于点H,AC交DG于点M.①求证:;②当∠CAB=2∠F时,求线段AD的长度.28.(12分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连结DF,G为DF 的中点,连结EG、CG.(1)如图1,若点E在CB边的延长线上时,延长线段EG,CD相交于点M,求证:GE=GM,CE=CM.(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置时,延长EG到M,使GE=GM,连结MD,MC.①求证:∠EBC=∠MDC;②判断EG与CG的关系并证明.参考答案与试题解析1.【解答】解:A、如果a>b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,a﹣3<b﹣3不成立;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,<不成立;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以﹣2a<﹣2b成立;D、﹣a<﹣b.故选:C.2.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:B.3.【解答】解:A、(2﹣x)(﹣2﹣x)=x2﹣4,是整式乘法,故此选项不合题意;B、x2﹣1+y2=(x+1)(x﹣1)+y2,不符合因式分解的定义,故此选项不合题意;C、x2﹣x﹣2=(x﹣2)(x+1)是分解因式,符合题意;D、x2﹣2x﹣3=x(x﹣2﹣),不符合因式分解的定义,故此选项不合题意;故选:C.4.【解答】解:根据数轴得:不等式组的解集为x≥2,故选:C.5.【解答】解:∵正n边形的每个内角都是120°,∴每一个外角都是180°﹣120°=60°,∵多边形外角和为360°,∴多边形的边数为360÷60=6,故选:C.6.【解答】解:,故选项A不合题意;,故选项B不合题意;,故选项C不合题意;,故选项D符合题意.故选:D.7.【解答】解:∵∠B=90°,AB=6,BC=8,∴AC===10,∵D、E、F分别是边BC、CA、AB的中点,∴DE=AF=AB=3,DF=AE=AC=5,∴四边形AEDF的周长=5+3+5+3=16.故选:B.8.【解答】解:∵四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形;故选:C.9.【解答】解:∵将△ABC绕点A顺时针旋转后,得到△AB′C′,∴AC′=AC,∠C=∠AC'B'=63°∴∠C=∠AC′C=63°,∴∠AC′B=180°﹣63°=117°,∵∠AC′C=∠AC′B′=63°,∴∠B′C′B=∠AC′B﹣∠AC′B′=117°﹣63°=54°.故选:B.10.【解答】解:∵过A,B间任意一点作AD的平行线,被每条小路截得的线段长都是1米,∴S1=1×AB;S2=1×AB,∴S1=S2.故选:A.11.【解答】解:∵x2+4x+m可分解为(x﹣2)(x+6),∴(x﹣2)(x+6)=x2+4x﹣12,则m=﹣12.故答案为:﹣12.12.【解答】解:由图象可得:不等式kx<﹣x+3的解集是x<1,故答案为:x<113.【解答】解:∵∠C=90°,∠A=30°,∴∠ABC=180°﹣30°﹣90°=60°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=30°,∴BC=AB=2,∴CD=BC•tan30°=2×=2,∵BD是∠ABC的平分线,又∵角平线上点到角两边距离相等,∴点D到AB的距离=CD=2,故答案为:2.14.【解答】解:∵△ABC是等腰直角三角形,∴平移后∠PB'C=∠CBA=45°,∴△PB'C是等腰直角三角形,∴S△PB'C=B'C•(B'C)=4.5,解得:B'C=3,∴BB'=BC﹣B'C=4﹣3=.故答案为:.15.【解答】解:(1)原式=(2a﹣3+2)(2a﹣3﹣2)=(2a﹣1)(2a﹣5);(2)解2(x+3)≥3﹣x得:x≥﹣1;解≤﹣1得:x≥,得不等式组解集为:x≥.16.【解答】解:﹣=1(x+1)2﹣4=x2﹣1x2+2x+1﹣4=x2﹣1x=1,检验:把x=1代入x2﹣1=1﹣1=0,∴x=1不是原方程的根,原方程无解.17.【解答】解:原式=÷=,当a=﹣3时,原式==.18.【解答】解:(1)如图△AB1C1即为所求,点B1(﹣2,﹣3).(2)如图△A2B2C2,为所求作的三角形,点C2(3,3).(3)S==π.故答案为(﹣2,﹣3),(3,3).19.【解答】解:设购买一株牵牛花需要x元,则购买一株海棠花需要(x+1.2)元,依题意,得:×=,解得:x=1.8,经检验,x=1.8是原分式方程的解,且符合题意,∴x+1.2=3.答:购买一株海棠需3元,一株牵牛花需1.8元.20.【解答】证明:(1)∵AE平分∠CAB∴∠CAE=∠BAE∵∠ACB=90°,CD⊥AB∴∠CAE+∠CEA=∠BAE+∠AGD=90°∴∠CEG=∠AGD=∠CGE∴CG=CE(2)四边形CGFE是菱形理由如下:∵GF∥BC∴∠AEC=∠EGF=∠CGE∴∠AGC=∠AGF又∵∠CAE=∠BAE,AG=AG∴△AGC≌△AGF(ASA)∴CG=FG∴CE∥FG且CE=FG∴四边形CEFG是平行四边形又∵CG=CE,∴四边形CEFG是菱形.(3)∵△AGC≌△AGF∴AC=AF=3cm,∴BF=2AF=6cm,AB=9cm,∴BC==6cm∵四边形CGFE是菱形∴EF∥CG,且CD⊥AB∴EF⊥AB,设CE=EF=x,在Rt△EFB中,EF2+BF2=BE2,∴x2+36=(6﹣x)2,解得x=∴CE=CG=cm又∵∠ACB=90°,且CD⊥AB,∵S△ABC=×AC×BC=AB×CD∴CD==2cm∴DG=CD﹣CG=2﹣=cm21.【解答】解:∵实数m、n满足2m﹣3=n,∴2m﹣n=3,∴4m2﹣4mn+n2=(2m﹣n)2=32=9,故答案为:9.22.【解答】解:去分母得,2x﹣b=3x﹣3∴x=3﹣b ∵x≥0∴3﹣b≥0解得,b≤3又∵x﹣1≠0∴x≠1即3﹣b≠1,b≠2则b的取值范围是b≤3且b≠2.23.【解答】解:联立两直线表达式成方程组:,解得:,∴点P的坐标为(4﹣2k,12﹣5k).∵点P在第一象限,∴,解得:k<2.∵k是正整数,∴点P的坐标为(2,7).故答案为:(2,7).24.【解答】解:∵∠A1A2O=30°,点A1的坐标为(1,0),∴点A2的坐标为(0,).∵A2A3⊥A1A2,∴点A3的坐标为(﹣3,0).同理可得:A4(0,﹣3),A5(9,0),A6(0,9),…,即A1(1,0),A2[0,()1],A3[﹣()2,0].A4[0,﹣()3],A5[()4,0]…,∴序号除以4整除的话在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y轴的正半轴上,余数是3在x轴的负半轴上,∵2018÷4=504…2,∴A2018在y轴的正半轴上,纵坐标为()2017.故答案为()2017.25.【解答】解:根据如图坐标系:由题意:A(0,6),B(8,0),∴直线AB的解析式为y=﹣x+6,∵CD平分∠ACB,∴直线CD的解析式为y=x,由,解得,∴D(,),∴E(,),作点E关于BC的对称点E′(,﹣),连接DE′交BC于P,此时PD+PE的值最小,最小值为DE′的长,∵DE′=,∴PD+PE的最小值为,故答案为.26.【解答】解:(1)由题意可得,y=(200﹣150)x+(360﹣300)(60﹣x)=﹣10x+3600,即y与x之间的函数关系式为y=﹣10x+3600(0≤x≤60);(2)由题意可得,150x+200(60﹣x)≤15000,解得x≥20,∵一次函数y=﹣10x+3600中,y随x的增大而减小,∴当x=20时,最大利润为:﹣10×20+3600=3400元;(3)依题意y=(200﹣150+a)x+(360﹣300)(60﹣x)=(a﹣10)x+3600,由(150﹣a)x+300(60﹣x)≤15000得,所以,∵7≤a≤9时,a﹣10<0,y随x的增大而减小.可知当时,,此时x=20时,即购入甲种服装20件,乙种服装40件时利润最大,而当时,,此时x=19时,即购入甲种服装19件,乙种服装41件时利润最大.27.【解答】解:(1)∵直线交x轴于点A,交y轴于点B∴A(﹣3,0),B(0,4)∴OA=3,OB=4,AB=5∵C(0,1)∴BC=3∵S△ABC==∴CE==(2)①∵F点与G点关于直线AB成轴对称∴直线AB是线段FG的垂直平分线,HF=HG∴DF=DG又∵DF=DC∴DF=DG=DC∴∠FGC=90°又∵∠HEC=∠EHG=∠HGC=90°∴四边形ECGH是矩形.∴EH=CG又∵DF=DC,HF=HG据中位线定理得DH=CG=HG=DE即DE=CG(也可以证△FDH≌△CDE得DH=DE)②∵直线AB是线段FG的垂直平分线,DF=DG∴∠FDH=∠GDH=∠EDC,且∠CDG=∠F+∠FGD=2∠F 又∵∠CAB=2∠F∴∠CAB=∠CDG∴180°﹣∠ADG﹣∠CAB=180°﹣∠ADG﹣∠CDG∴∠AMD=∠BDC=∠ADG∴AD=AM∵矩形ECGH中CG∥AB易得∠CGM=∠ADM=∠AMD=∠CMG∴CM=CG设AD=AM=a,则CM=CG=﹣a∴DE=CG=∴AE=AD+DE=a+=∵Rt△AEC中,∠AEC=90°,∴AE2+CE2=AC2即()2+()2=()2解得:AD=a=.28.【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠BCD=90°,BC=CD,∵∠CEF=90°,∴∠CEF+∠ECM=180°,∴EF∥CD,∴∠FEG=∠M,又∵G为DF中点,∴DG=FG∵∠FGE=∠DGM,∴△FGE≌△DGM(AAS),∴EG=GM,EF=DM,∵EF=BE,∴EF=DM=BE,∵CB=CD,∴BE+BC=CD+DM,∴CE=CM.(2)延长MD,BE交于点N,连结EC,①∵EG=MG,DG=FG,∠EGF=∠MGD,∴△EFG≌△MDG(SAS),∴∠EFG=∠MDG,∴EF∥DM,∴∠END=∠BEF=90°=∠BCD,∴∠CBN+∠NDC=∠CDM+∠NDC=180°,∴∠CBE=∠CDM.②结论:CG=EG,CG⊥EG.理由:∵△EFG≌△MDG,∴EF=DM=EB,又∵BC=DC,∠CBE=∠CDM,∴△CBE≌△CDM(SAS),∴EC=MC,且∠BCE=∠DCM,∴∠ECM=∠BCD=90°,∵G为EM中点,∴CG=EG,CG⊥EG。

2017---2018学年度第二学期末考试八年级数学试卷(答案)

2017---2018学年度第二学期末考试八年级数学试卷(答案)

2017~2018学年度第二学期期末考试八年级数学答案1.B 2. D 3. D 4. C 5. C 6.D 7 .A 8.B 9.B 10.A11.x≥512.26 13.5, 18 14.3 215.216.y x a=-,-3≤a≤117.解:(1)设一次函数的解析式y=kx+b, ……………………………………………………………1分∵经过点(1,3)与(﹣1,﹣1),∴31k bk b+=⎧⎨-+=-⎩……………………………………………………………3分∴解得:k=2;b=1……5分∴直线的解析式为y=2x+1……………6分(2)∵在y=2x+1中,当x=12-时,y=0 ∴一次函数的图象是经过点12-(,)…8分18. 证明:∵□ABCD,∴AD=CB,AD∥CB ∴∠ADE=∠CBF又∵AE⊥BD,CF⊥BD ∴∠AED=∠CFB=90°∴△AED≌△CFB(AAS)……………………………………………………………………………5分∴AE=CF∵AE⊥BD,CF⊥BD ∴∠AEF=∠CFE=90°AE∥CF∴四边形AFCE是平行四边形…………………………………………………………………………8分19.解:(1)方式一:y=0.3x+30方式二:y=0.4x………………………………………………………………………………………4分(2) ∵0.3x+30=0.4x ∴x=300答:通话300分钟时,两种计费方式费用相等…………………………………………………………8分20. (1) 12 图略(2) 72°(3) 中位数是2 ……………………………………………………6分(4) (1102203124652)50 2.4⨯+⨯+⨯+⨯+⨯÷=…………………………………………8分21.解:(1)∵80x+60(100-x)≤7500 ∴x≤75……………………………….……………………………2分y=40x+30(100-x)=10x+3000 (65≤x≤75)……………………….……………………………………5分(2)∵y =(40-a)x+30(100-x)=(10-a)x+3000 ……………………….…………………………………………………….…………6分方案1:当0<a<10时,10-a>0,y随x的增大而增大所以当x=75时,y有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10-a<0,w随x的增大而减小所以当x=65时,y有最大值,则购进甲种服装65件,乙种服装35件..……………………….….….8分22.解:(1)B (2,0),A (0,4) …………….……………………………………………….3分 (2)∵直线y =2x ﹣2k 经过A (0,4) ∴k=﹣2………….…………………………………………………………4分 作CF ⊥x 轴于点F, 证△AOB ≌△BFC(AAS) ………….………………………………………………………5分 CF=BO=2, BF=AO=4,∴OF=6 ,∴OF=6 ∴C (6,2)………………………………………………6分 ∵DC ∥AB ,设DC :y =﹣2x +b ∵直线y =﹣2x +b 经过C (6,2) ∴b=14∴直线DC 的解析式为y =﹣2x +14………….………………………………………………………………………7分 (3) ﹣3<x <0或x >3 …….……………………………………………………………………………………10分23.(1)∵正方形ABCD 中 BA=AD=CD, ∠BAE =D=90° 又DE=CF ∴AE=DF∴△BAE ≌△ADF(SAS) …………………………….………………………………………………………………1分 ∴BE=AF …………………………….………………………………………………………………2分 ∠1=∠2∴∠1+∠BAG=∠2+∠BAG=90° ∴∠BGA=90°即BE ⊥AF……………………………………………………………………………………………………………3分 (2)过点D 作DN ⊥AF 于N,DM ⊥BE 交BE 延长线于M 在Rt △ADF 中,∵1122ADF S AD FD AF DN =⋅=⋅△∴DN =分 ∵△BAE ≌△ADF(已证)∴BAE S △=ADF S △ ,BE=AF ∴AG=DN又∵△AEG ≌△DEM(AAS) ∴AG=DM……………………………………………………………………………5分 ∴DN=DM ∴GD 平分∠MGN ∴∠DGN=12∠MGN=45°…………………………………………………………………………………………6分 ∴有等腰直角△DGNGD==…………………………………………………………………………………………………7分 (3)FQ 分24. (1)令x=0,则 y=6,∴A (0,6)………………………………………….…………………………1分令y=0,则3064x =-+,解得x=8, ∴D (8,0)………………………………………………2分∴AC=AO=6,OD=8=10 ∴CD=AD-AC=4设BC=BO=x ,则BD=8-x,CD=4 在Rt △BCD 中,222BC CD BD += ∴2224(8x)x +=-,解得x=3∴点B 的坐标为(3,0) ……………………………………………………………………………4分(2)设直线AB 的解析式为y=kx+6 ∵点B 的坐标为(3,0) ∴0=3k+6 解得:k= -2∴直线AB 的解析式为y=-2x+6……………………………………………………………………5分 过点G 、F 作GM ⊥x 轴于M ,FN ⊥x 轴于N ∵△DFG 为等腰直角三角形∴DG=FD ∠1=∠2, ∠DMG =∠FND,∴△DMG ≌△FND (AAS )………………………………………………………………………6分 ∴设GM=DN=m ,DM=FN=n 求出G(8-n , m), F(8-m , -n) ∵点G 、F 在直线AB 上 ∴2(8n)62(8)6m n m =--+⎧⎨-=--+⎩ 解得 m=2,n=6∴点G 的坐标为(2,2) ……………………………………8分(3)如图, 设点3(,6)4Q a a -+,∵PQ ∥x 轴,且点P 在直线26y x =-+上∴点P 坐标为33(,6)84P a a -+…………………………………9分∴PQ=58a = DQ作QH ⊥x 轴于点H,∴DH=a -8, QH=364a -∴34QH DH = 由勾股定理可知 QH :DH :DQ= 3:4:5 …………………………………………10分 ∴QH=35DQ =38a即38a = 364a -,解得a=16∴点Q 、P 的坐标为 (16,6)Q - (6,6)P -∵ED ∥PQ ,ED=PQ D(8,0)∴E(2,0)-…………………………………………………………………………………………12分。

四川省成都市 八年级(下)期末数学试卷(含答案)

四川省成都市 八年级(下)期末数学试卷(含答案)

2017-2018学年四川省成都市崇州市八年级(下)期末数学试卷副标题题号 一 二 三 四 总分 得分一、选择题(本大题共6小题,共18.0分)1. 如图,BC 为固定的木条,AB ,AC 为可伸缩的橡皮筋.当点A 在于BC 平行的轨道上滑动时,三角形ABC 的面积将如何变化( )A. 变大B. 变小C. 不变D. 不一定2. 在平行四边形、正方形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有( ) A. 1个 B. 2个 C. 3个 D. 4个 3. 下列各因式分解的结果正确的是( )A. a 3−a =a(a 2−1)B. b 2+ab +b =b(b +a)C. 1−2x +x 2=(1−x)2D. x 2+y 2=(x +y)(x −y)4. 若分式方程xx−1-1=m(x−1)(x+2)有增根,则它的增根为( )A. 0或3B. 1C. 1或−2D. 35. 分式2−xx−3有意义的x 的取值为( )A. x ≠2B. x ≠3C. x =2D. x =36. 能判定四边形ABCD 是平行四边形的是( )A. AB//CD ,AB =CDB. AB =BC ,AD =CDC. AC =BD ,AB =CDD. AB//CD ,AD =CB 二、填空题(本大题共4小题,共16.0分)7. 如图,矩形ABCD 中,AB =2,AD =1,点M 在边CD 上,若AM 平分∠DMB ,则DM的长是______.8. 如图,在△ABC 中,点E 、F 分别是AB 、AC 的中点,BC的长为8cm ,则EF =______cm .9.如图所示,矩形ABCD中,AE⊥BD于E,∠BAE=30°,BE=1cm,那么DE的长为______cm.10.如图,在平面直角坐标系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.若点Q在x轴上,点P在直线AB上,要使以Q、P、A1、C1为顶点的四边形是平行四边形,满足条件的点P的坐标为______.三、计算题(本大题共3小题,共29.0分)11.如图,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(-3,4).(1)求AO的长;(2)求直线AC的解析式和点M的坐标;(3)点P从点A出发,以每秒2个单位的速度沿折线A-B-C运动,到达点C终止.设点P的运动时间为t秒,△PMB的面积为S.①求S与t的函数关系式;②求S的最大值.12.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需用甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B种产品需用甲种原料4千克,乙种原料10千克,可获利润1200元.(1)设生产A种产品x件,完成表格:A产品B产品生产数量(件)x件______ 件需甲种原料(千克)______ ______需乙种原料(千克)______ ______(2)按要求安排A、B两种产品的件数有几种方案?请你设计出来.(3)以上方案哪种利润最大?是多少元?13.△ABC在如图所示的平面直角中,将其平移后得△A′B′C′,若B的对应点B′的坐标是(4,1).(1)在图中画出△A′B′C′;(2)此次平移可看作将△ABC向______平移了______个单位长度,再向______平移了______个单位长度得△A′B′C′;(3)△A′B′C′的面积为______.四、解答题(本大题共4小题,共36.0分)14.已知2x-y=1,xy=2,求4x3y-4x2y2+xy3的值.15.(1)先化简,再求值:2aa2−1÷a(a+1)2−2a−1,其中a=2(2)解分式方程:xx−2−4x2−4=116.如图,在平行四边形ABCD中,BE⊥AC,DF⊥AC,E,F分别为垂足,试说明四边形BEDF是平行四边形.17.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段AC,同时我们还发现损矩形中有公共边的两个三角形角的特点,在公共边的同侧的两个角是相等的.如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC.请再找一对这样的角来.(2)如图2,△ABC中,∠ABC=90°,以AC为一边向外作菱形ACEF,D为菱形ACEF的中心,连结BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.(3)在第(2)题的条件下,若此时AB=3,BD=4√2,求BC的长.答案和解析1.【答案】C【解析】解:∵AD∥BC,∴AD和BC之间的距离不变,∴当点A在于BC平行的轨道上滑动时,三角形ABC的面积不变(等底等高的三角形的面积相等),故选:C.根据等底等高的三角形的面积相等得出选项即可.本题考查了平行线之间的距离和三角形的面积,能得出AD和BC之间的距离不变是解此题的关键.2.【答案】C【解析】解:在平行四边形、正方形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有:正方形、矩形、菱形3个图形.故选:C.直接利用中心对称图形以及轴对称图形的性质分析得出答案.此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.3.【答案】C【解析】解:A、a3-a=a(a2-1)=a(a+1)(a-1),故原题错误;B、b2+ab+b=b(b+a+1),故原题错误;C、1-2x+x2=(1-x)2,故原题分解正确;D、x2+y2不能分解,故原题错误;故选:C.分解因式要先正确确定公因式,然后再利用完全平方公式或平方差公式进行分解,注意要分解彻底.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.4.【答案】C【解析】解:分式方程的最简公分母为(x-1)(x+2),由分式方程有增根,得到(x-1)(x+2)=0,解得:x=1或x=-2,故选:C.找出分式方程的最简公分母,由分式方程有增根求出x的值即可.此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.5.【答案】B【解析】解:由题意得:x-3≠0,解得:x≠3,故选:B.根据分式有意义的条件可得x-3≠0,再解即可.此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.6.【答案】A【解析】解:∵AB∥CD,AB=CD,∴四边形是平行四边形(一组对边平行且相等的四边形是平行四边形),故选:A.根据平行四边形的判定方法即可判断;本题考查平行四边形的判定方法,解题的关键是熟练掌握基本知识,属于中考基础题.7.【答案】2-√3【解析】解:过点A作AE⊥BM于E∵四边形ABCD是矩形∴AD=BC=1,CD=AB=2,∵AM平分∠DMB∴∠AMD=∠AMB,且AM=AM,∠ADM=∠AEM∴△ADM≌△AME∴DM=ME,AD=AE=1在Rt△AEB中,BE==∴ME=2-=DM故答案为2-过点A作AE⊥BM于E,由题意可证△ADM≌△AME,可得DM=ME,AD=AE=1,根据勾股定理可求BE的长,即可求DM=ME的长.本题考查了矩形的性质,全等三角形的判定和性质,添加适当的辅助线构造全等三角形是本题的关键.8.【答案】4【解析】解:∵E、F分别是AB、AC的中点.即EF是△ABC的中位线,∴EF=BC=×8=4(cm).故答案为4.根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有EF=BC,从而求出EF.本题考查了三角形的中位线定理:三角形的中位线等于第三边的一半.比较简单.9.【答案】3【解析】解:∵AE⊥BD,∠BAE=30°,∴AB=2BE=2,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠BDA=∠BAE=30°,∴BD=2AB=4,∴DE=BD-BE=3,故答案为:3.根据直角三角形的性质求出AB,根据矩形的性质得到∠BDA=∠BAE=30°,根据直角三角形的性质计算即可.本题考查的是矩形的性质、直角三角形的性质,掌握矩形的四个角都是直角是解题的关键.10.【答案】(-1.5,2)或(-3.5,-2)或(-0.5,4)【解析】解:∵点Q在x轴上,点P在直线AB上,以Q、P、A1、C1为顶点的四边形是平行四边形,当A1C1为平行四边形的边时,∴PQ=A1C1=2,∵P点在直线y=2x+5上,∴令y=2时,2x+5=2,解得x=-1.5,令y=-2时,2x+5=-2,解得x=-3.5,当A1C1为平行四边形的对角线时,∵A1C1的中点坐标为(3,2),∴P的纵坐标为4,代入y=2x+5得,4=2x+5,解得x=-0.5,∴P (-0.5,4),故P 为(-1.5,2)或(-3.5,-2)或(-0.5,4). 故答案为:(-1.5,2)或(-3.5,-2)或(-0.5,4).要使以Q 、P 、A 1、C 1为顶点的四边形是平行四边形,则PQ=A 1 C 1=2,在直线AB 上到x 轴的距离等于2 的点,就是P 点,因此令y=2或-2求得x 的值即可. 本题考查了利用旋转变换作图,旋转变换的旋转中心与旋转角的确定,利用待定系数法求一次函数的解析式,熟练掌握网格结构准确找出对应点的位置是解题的关键.11.【答案】(1)解:∵A (-3,4),∴AH =3,OH =4,由勾股定理得:AO =√AH 2+OH 2=5, 答:OA 的长是5.(2)解:∵菱形OABC , ∴OA =OC =BC =AB =5, 5-3=2,∴B (2,4),C (5,0),设直线AC 的解析式是y =kx +b ,把A (-3,4),C (5,0)代入得:{0=5k +b 4=−3k+b, 解得:{k =−12b =52,∴直线AC 的解析式为y =−12x +52, 当x =0时,y =2.5 ∴M (0,2.5),答:直线AC 的解析式是y =−12x +52,点M 的坐标是(0,2.5).(3)①解:过M 作MN ⊥BC 于N ,∵菱形OABC , ∴∠BCA =∠OCA ,∵MO ⊥CO ,MN ⊥BC , ∴OM =MN ,当0≤t <2.5时,P 在AB 上,MH =4-2.5=32,S =12×BP ×MH =12×(5-2t )×32=-32t +154,∴S =−32t +154,当t =2.5时,P 与B 重合,△PMB 不存在;当2.5<t ≤5时,P 在BC 上,S =12×PB ×MN =12×(2t -5)×52=52t -254, ∴S =52t −254,答:S 与t 的函数关系式是S =−32t +154(0≤t <2.5)或S =52t −254(2.5<t ≤5).②解:当P 在AB 上时,高MH 一定,只有BP 取最大值即可,即P 与A 重合,S 最大是12×5×32=154, 同理在BC 上时,P 与C 重合时,S 最大是12×5×52=254, ∴S 的最大值是254,答:S 的最大值是254.【解析】(1)根据A 的坐标求出AH 、OH ,根据勾股定理求出即可;(2)根据菱形性质求出B 、C 的坐标,设直线AC 的解析式是y=kx+b ,把A (-3,4),C (5,0)代入得到方程组,求出即可;(3)①过M 作MN ⊥BC 于N ,根据角平分线性质求出MN ,P 在AB 上,根据三角形面积公式求出即可;P 在BC 上,根据三角形面积公式求出即可;②求出P 在AB 的最大值和P 在BC 上的最大值比较即可得到答案.本题主要考查对勾股定理,三角形的面积,菱形的性质,角平分线性质,解二元一次方程组,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.12.【答案】(50-x );9x ;4(50-x );3x ;10(50-x )【解析】解:(1)补全表格如下:需甲种原料(千克)9x 4(50-x)需乙种原料(千克)3x 10(50-x)(2)根据题意有:,解得:30≤x≤32,所以有三种方案:①安排A种产品30件,B种产品20件;②安排A种产品31件,B种产品19件;③安排A种产品32件,B种产品18件.(2)∵方案一为:700×30+1200×20=45000元;方案二为:700×31+1200×19=44500元;方案三为:700×32+1200×18=44000元.采用方案①所获利润最大,为45000元.(1)根据“A、B两种产品共50件.已知生产一件A种产品需用甲种原料9千克,乙种原料3千克;生产一件B种产品需用甲种原料4千克,乙种原料10千克”可得答案;(2)首先找出题中的等量关系即甲种原料不超过360千克,乙种原料不超过290千克,然后列出不等式组并求出它的解集.由此可确定出具体方案.(3)本题可将三种方案的最大利润都求出来,再进行比较即可.本题主要考查一元一次不等式组的应用,解题关键是要读懂题目的意思,找出题中隐藏的不等关系甲种原料不超过360千克,乙种原料不超过290千克,列出不等式组解出即可.13.【答案】左;2;下;1;10【解析】解:(1)如图.(2)向左平移2个单位长度,向下平移1个单位长度.(平移的顺序可颠倒)(3)把△ABC补成矩形再把周边的三角形面积减去,即可求得△A′B′C′的面积=△ABC的面积为=24-4-4-6=10.(1)根据“B的对应点B′的坐标是(4,1)”的规律求出对应点的坐标,顺次连接即可.(2)通过作图可直接得到答案是:向左平移2个单位长度,向下平移1个单位长度.(3)平移后的面积与原面积相同,可用补全法求面积.本题考查的是平移变换.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.14.【答案】解:∵4x3y-4x2y2+xy3=xy(4x2-4xy+y2)=xy(2x-y)2,且2x-y=1,xy=2∴4x3y-4x2y2+xy3=2×1=2【解析】由4x3y-4x2y2+xy3=xy(4x2-4xy+y2)=xy(2x-y)2,将2x-y=1,xy=2代入可求值.本题考查了提公因式法与公式法的综合运用,熟练运用完全平方公式解决问题是本题的关键.15.【答案】解:(1)2aa2−1÷a(a+1)2−2a−1=2a(a+1)(a−1)⋅(a+1)2a−2a−1=2a+2 a−1−2a−1=2aa−1,当a=2时,原式=2×22−1=4;(2)xx−2−4x2−4=1方程两边同乘以(x+2)(x-2),得x(x+2)-4=(x+2)(x-2)去括号,得x2+2x-4=x2-4移项及合并同类项,得2x=0,系数化为1,得x=0,经检验,x=0是原分式方程的解.【解析】(1)根据分式的除法和减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题;(2)根据解分式方程的方法可以解答此方程.本题考查分式的化简求值、解分式方程,解答本题的关键是明确分式化简求值的方法和解分式方程的方法.16.【答案】证明:∵ABCD是平行四边形,∴AD=BC,∠DAF=∠BCE,OB=OD,OA=OC.∵BE⊥AC,DF⊥AC,∴∠AFD=∠CEB=90°.∴△ADF≌△CBE(AAS).∴AF=CE.∴OE=OF.∴四边形BEDF是平行四边形.(对角线互相平分的四边形是平行四边形)【解析】可先证明△ADF≌△CBE,得出AF=CE,根据对角线互相平分的四边形是平行四边形,可证四边形BEDF是平行四边形.此题主要考查平行四边形的判定:对角线互相平分的四边形是平行四边形.17.【答案】解:(1)由图1得:△ABD和△ADC有公共边AD,在AD同侧有∠ABD和∠ACD,此时∠ABD=∠ACD;(2)四边形ACEF为正方形,理由是:∵∠ABC=90°,BD平分∠ABC,∴∠ABD=∠CBD=45°,∴∠DAC=∠CBD=45°,∵四边形ACEF是菱形,∴AE⊥CF,∴∠ADC=90°,∴△ADC是等腰直角三角形,∴AD=CD,∴AE=CF,∴菱形ACEF是正方形;(3)如图2,过D作DG⊥BC于G,过E作EH⊥BC,交BC的延长线于H,∵∠DBG=45°,∴△BDG是等腰直角三角形,∵BD=4√2,∴BG=4,∵四边形ACEF是正方形,∴AC=CE,∠ACE=90°,AD=DE,易得△ABC≌△CHE,∴CH=AB=3,∵AB∥DG∥EH,AD=DE,∴BG=GH=4,∴CG=4-3=1,∴BC=BG+CG=4+1=5.【解析】(1)以AD为公共边,有∠ABD=∠ACD;(2)证明△ADC是等腰直角三角形,得AD=CD,则AE=CF,根据对角线相等的菱形是正方形可得结论;(3)如图2,作辅助线构建直角三角形,证明△ABC≌△CHE,得CH=AB=3,根据平行线等分线段定理可得BG=GH=4,从而得结论.本题是四边形的综合题,也是新定义问题,考查了损矩形和损矩形的直径的概念,平行线等分线段定理,菱形的性质,正方形的判定等知识,认真阅读理解新定义,第3问有难度,作辅助线构建全等三角形是关键.。

2017-2018成都市八年级数学下期末模拟试卷

2017-2018成都市八年级数学下期末模拟试卷

八年级数学成都市2017-2018学年度下期期末学业质量监测试题(模拟)八年级数学A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)2. 下列命题中是假命题的是A. 在一个角的内部,到角的两边距离相等的点在这个角的角平分线上B. 有一个角等于60的等腰三角形是等边三角形C. 线段垂直平分线上的点到线段两端点的距离相等D. 等腰三角形的角平分线、中线及高线互相重合3. 若a b >,则下列各式中,错误的是A. 33a b ->-B. 55a b ->-C. a b -<-D. 0a b ->4. 在平面直角坐标中,点P (2,0)绕坐标原点逆时针旋转90得到点'P ,则点'P 的坐标为 A. (2-,0) B. (0,2-) C. (0,2) D. (2,0)5. 下列多项式中,不能用公式法分解因式的是 A. 222x y xy --+ B. 2294a b - C. 214a a ++D. 22x y 6. 等腰三角形的两边长分别是3和6,则这个等腰三角形的周长为 A. 9 B. 12 C. 15 D. 12或15 7. 解关于x 的方程622x a x x =--产生增根,则常数a 的值等于A. 2B. 3-C. 4-D. 58. 如图,在Rt △ABC 中,90ACB ∠=,点D ,E ,F 分别是边AB ,BC ,CA 的中点,4CD =,则EF 的长为A. 2B. 3C. 4D. 8ABC1. 下列图形中,既是轴对称图形,又是中心对称图形的是 A. B. C.D.---八年级数学9. 如图,四边形ABCD 是矩形,四边形AEFG 是正方形,点E ,G 分别在AB ,AD 上,连接FC ,过点E 作EH ∥FC 交BC 于点H . 若30BCF ∠=,4CD =,6CF =,则正方形AEFG 的周长为A. 1B. 2C. 3D. 4第9题图 第10题图10. 如图,在四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,连接EF ,FG ,GH ,HE ,连接AC ,BD ,下列说法中,错误的是 A. 若四边形ABCD 为平行四边形,则四边形EFGH 一定为矩形 B. 若四边形ABCD 为矩形,则四边形EFGH 一定为菱形 C. 若四边形ABCD 为菱形,则四边形EFGH 一定为矩形D. 若四边形ABCD 为正方形,则四边形EFGH 一定为正方形第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.有意义,那么x 的取值范围是______.12. 一个正多边形的每个外角都等于36,那么它是______.13. 函数y kx b =+(0k ≠)的图象如图所示,则不等式0kx b +<的解集为______.第13题图 第14题图14. 如图,在□ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作射线AP ,交边CD 于点Q . 若2DQ QC =,3BC =,则□ABCD 的周长为______.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15. 因式分解(每小题4分,共8分)(1)443322242x y x y x y -+ (2)22x y ax ay-++EAB八年级数学16. (每小题6分,共12分)(1) 解不等式组: 523(1)25123x x x x +≥-⎧⎪+⎨->-⎪⎩,并写出它的所有整数解.(2)先化简,再求值:2122(2x x y x xy x++÷--,其中实数,x y满足1y =.17. (本小题满分8分)动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km ,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.18. (本小题满分8分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). (1)请画出△ABC 向左平移5个单位长度后得到的△A 1B 1C 1; (2)请画出△ABC 关于原点对称的△A 2B 2C 2;(3)在x 轴上求作一点P ,使△P AB 的周长最小,请画出△P AB ,并直接写出P 的坐标.八年级数学19. (本小题满分8分)如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE DC ⊥于点E ,GF BC ⊥于点F ,连接AG .(1)写出线段AG ,GE ,GF 长度之间的等量关系,并说明理由;(2)若正方形ABCD 的边长为1,105AGF ∠=,求线段BG 的长.20. (本小题满分10分) 如图1,Rt △ABC 中,90ACB ∠=,点D 为边AC 上一点,DE AE ⊥于点E ,点M 为BD 中点,CM 的延长线交AB 于点F .(1)求证:CM EM =;(2)若50BAC ∠=,求EMF ∠的大小; (3)如图2,若△DAE ≌△CEM ,点N 为CM 的中点,求证:AN ∥EM .图1 图2E BBB 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21. 若4xy =,2x y -=32231222x y x y xy -+=______.22. 已知关于x 的不等式组2131x x a +≥⎧⎨-<⎩有且只有两个整数解,则实数a 的取值范围是______.23. 已知关于x 的分式方程111x k kx x +-=+-的解为负数,则k 的取值范围是______.24. 如图,在矩形ABCD 中,2AB =,4BC =,点E ,F 分别在BC ,CD 上.若AE =45EAF ∠=,则AF 的长为______.25. 如图,四边形ABCD 的四个顶点坐标分别为(1,0)-,(0,,(2,,(1,0),BE DC ⊥于点E ,将OBE ∠以点B 为旋转中心旋转,其两边BO 、BE 分别与直线AD 、DC 相交于点'O 、'E ,连接''O E ,当△''BO E的面积等于时,则'E 的坐标为______.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26. (本小题满分8分)某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两种型号挖掘机,所生产的此两种型号挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?m ),(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(0该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)27. (本小题满分10分)在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B ,以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为点D ,E ,F .(1)如图1,当点D 落在BC 边上时,求点D 的坐标;(2)如图2,当点D 落在线段BE 上时,AD 与BC 交于点H .ⅰ)求证:△ADB ≌△AOB ;ⅱ)求点H 的坐标.(3)记K 为矩形AOBC 对角线的交点,S 为△KDE 的面积,求S 的取值范围(直接写出答案即可).图1 图228. (本小题满分12分)如图,Rt △OAB 的直角边OA 在x 轴上,顶点B 的坐标为(6,8),直线CD 交AB 于点(6,3)D ,交x 轴于点(12,0)C .(1)求直线CD 的函数表达式;(2)动点P 在x 轴上从点(12,0)-出发,以每秒1个单位的速度向x 轴正方向运动,过点P 作直线l垂直于x 轴,设运动时间为t .ⅰ)若12PBD OAB S S ∆∆=,求点P 的坐标;ⅱ)请探索当t 为何值时,在直线l 上存在点M ,在直线CD 上存在点Q ,使得以OB 为一边,O ,B ,M ,Q 为顶点的四边形为菱形,并求出此时t 的值.(备用图)。

双流县2017~2017学年度下期八年级数学期末试题 2

双流县2017~2017学年度下期八年级数学期末试题 2

2017~2017学年度下期期末学生学业质量监测试题八年级数学注意事项:1. 全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2. 考生使用答题卡作答.3. 在作答前,考生务必将自己的姓名、准考证号涂写在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.4.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚.5.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.6.保持答题卡面清洁,不得折叠、污染、破损等.A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求.1.不等式12<-x 的解集是( ) (A )21-<x (B )21<x (C )21->x (D )21>x2.如图,在△ABC 中,∠B =∠C ,AB =7,则AC 的长为( ) (A )7 (B )8 (C )9 (D )10 3.函数xy -=21中,自变量x 的取值范围是( ) (A )2<x (B )2≠x (C )2>x (D )2-≠x 4.观察下列图形,其中既是轴对称图形又是中心对称图形的是( )(B )(D )(A )(C )ABC5.下列从左到右的变形是因式分解的是( )(A )6)2)(3(2-+=-+x x x x (B )1)(1--=--y x a ay ax (C )3232428y x y x ⋅= (D ))2(22-=-m m m m6. 如图,在□ABCD 中,对角线AC ,BD 交于点O ,下列结论中不.一定成立....的是( ) (A )AC =BD (B )OB =OD (C )OA =OC (D )△ABC ≌△CDA7.下列各式变形正确的是( ) (A )x y y y x y --=+- (B )y x yy x y --=+-(C )yx x y x x -=+- (D ) y x yy x y +-=+-8.如图,在Rt △ABC 中,∠C =90°,∠B =30°,BA 的垂直平分线分别交CB ,AB 边于D ,E ,连接AD .则图中60°的角共有( ) (A )2个 (B )3个 (C )4个 (D )5个9.若二次三项式12--ax x 可分解为))(2(b x x +-,则b a +的值为( ) (A )1- (B )1 (C )2- (D )2 10.已知,四边形ABCD 的对角线AC 和BD 相交于点O .设有以下条件:①AB =AD ;②AC =BD ;③AO =CO ,BO =DO ;④四边形ABCD 是矩形;⑤四边形ABCD 是菱形;⑥四边形ABCD 是正方形.那么,下列推理不成立的是( )(A )①④⇒⑥ (B )①③⇒⑤ (C )①②⇒⑥ (D )②③⇒④ACBED第Ⅱ卷(非选择题,共70分)二、填空题:(每小题4分,共l6分)11.分解因式:142-a = .12.如图,在△ABC 中,∠C =90°,∠CAB 的平分线 AD 交BC 于点D .已知CD =3cm ,则点D 到AB 的距离 是 cm .13.已知323=+-b a b a ,则=+-ba ab 3626 . 14.如图,为估计池塘两岸边A ,B 两点间的距离,在池塘的一侧选取点C ,分别取CA 、CB 的中点E ,F ,测的EF =18m ,则A ,B 两点间的距离是 m .三、解答题:(本大题共6个小题,共54分)15.(本小题满分12分,每题6分)(1)解不等式组⎩⎨⎧>+<+054613x x .(2)解方程:)2(425++=+x x x x . 16. (本小题满分6分)当213-=a 时,求a a a a a a a a 4221442212122++÷++++-的值.17.(本小题满分8分)如图,在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 逆时针旋转90°. (1)画出旋转之后的△AB ′C ′;(2)求线段AC 旋转过程中扫过的扇形的面积.BCD ABC18.(本小题满分8分)如图,在四边形ABCD 中,E ,F 是对角线AC 上的两点.已知AE =CF ,DF =BE ,DF ∥BE .(1)求证:△AFD ≌△CEB ;(2)四边形ABCD 是平行四边形吗?请说明理由.19.(本小题满分10分)某工程由甲、乙两个施工队共同完成,乙队先单独做2天后,再由两队合作10天就能完成全部工程. 已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的54,求甲、 乙两个施工队单独完成此项工程各需多少天?20.(本小题满分10分)如图,在矩形ABCD 中,AD =4,M 是AD 的中点,点E 是线段AB 上一动点,连接EM 并延长交线段CD 的延长线于点F .(1)如图1,求证:AE =DF(2)如图2,若AB =2,过点M 作MG ⊥EF 交线段BC 于点G ,判断△GEF 的的形状,并说明理由;(3)如图3,若AB =23,过点M 作MG ⊥EF 交线段BC 的延长线于点G .请写出线段AE 长度的取值范围(不必写出解答过程).A B D M C E F (图1) (图2) A B D M C E F G (图3) A B DM E FG ABCD EFB 卷(共50分)一、填空题:(每小题4分,共20分)21. 若m ,n 为任意的实数,令156422+-++=n m n m a ,0=b ,则a ,b 之间的大小关系是:a _______b .(填”>”,”<”或”=”) 22.已知关于x 的分式方程)0(111≠=--++k x kx k x 有増根,则k 的值是_______. 23.如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2, BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时, △APD 的边AP 上的高为_______.24. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则实数a 的取值范围是_______.25. 如图,已知等边△ABC 的边长为8,E 是中线AD 上一点, 以CE 为一边在CE 下方作等边△CEF ,连接BF 并延长至点N , M 为BN 上一点,且CM =CN =5,则MN 的长为________.二、解答题:(本大题共3个小题,共30分)26.(本小题满分8分)某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?ABCD E FMNC27.(本小题满分10分)如图①所示,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一条直线上,P 是线段DF 的中点,连结PG 、PC .若∠ABC =∠BEF =60°,请解决下列问题:(1)写出PG 与PC 的位置关系及PGPC的值(不必写出解答过程).(2)将图①中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,其他条件不变(如图②).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.28. (本小题满分12分)如图,在平面直角坐标系x O y 中,直线1+=x y 与343+-=x y 交于点A ,两条直线分别与x 轴交于点B 和点C ,点D 是直线AC 上的一个动点.已知点D 的横坐标为非负数.(1)求点A 、B 、C 的坐标.(2)当△CBD 为等腰三角形时,求点D 的坐标.(3)在直线AB 上是否存在点E ,使得以点E ,D ,O ,A 为顶点的四边形是平行四边形?如果存在,直接写出BECD的值;如果不存在,请说明理由.图①DAB F CPG图②DCGPABF(备用图)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档