标准电极电势表 (碱)
电极电势表
备注 气体 (g) 水溶液 (aq) 注释 1 注 1 注 1 注 1 注 1 注 1 注 1 注 1
+2+
+
+
-
+ 2e = Mg
- -
-
Ce3 + 3e = Ce H 2(g) + 2e = 2H H + e = H(g) Sc
3+
+ -
注 2
-2.23 -2.107 -2.077 注 3
- + - - - - + - + - -
-
0.2476 0.268 0.308 0.337 0.354 0.3572
HAsO 2 .H2O
SO42 + 8H + 6e = S+4H 2 O
2 Ag 2 CrO 4+ 2e = 2Ag + CrO 4
+ - -
0.447 0.449 0.4647 0.521 0.5355
2+
+ 2e = Cr
+ - + -
H 3BO 3+ 3H + 3e = B + 3H 2O SiO2 + 4H + 4e = Si+2H2O SiO + 2H + 2e = Si+H2O Te + 2H + 2e = H2Te Zn 2 + 2e = Zn Cr 3 + 3e = Cr H2SeO3 + 4H + 4e = Se+3H2O As + 3H + 3e = AsH 3 H3PO2+ H + e = P+2H2O H 3PO3 + 2H + 2e = H 3PO 2+ H 2O
3 Fe + 3e = Fe 2S Ag 2 S+ 2H + 2e = 2Ag +H
+ - + - - - + -
+
-
-0.12 -0.063 -0.0405 -0.037 -0.0366 0.00 气体 (g)
标准氢电极和标准电极电势
11.10.2 标准氢电极和标准电极电势二、标准氢电极和标准电极电势(1)标准氢电极为确定各不同电极的相对电极电势,目前国际上采用标准氢电极作为标准电极,并令其电极电势为零。
氢电极电极电势的温度系数很小。
若条件控制得当,电极电势稳定,重现性好。
其构造如图11-21所示。
它是由镀有铂黑﹡的铂片浸入a H+=1 的溶液中,并以P H2=100kPa 的纯净干燥氢气不断冲击到铂电极上而构成的。
氢气为一还原剂,氧气或其他氧化剂的存在会影响实验测定,而含砷、硫化物的气体易被铂黑吸附而使它失去吸附氢气的能力(即"中毒"现象),故氮气通入之前应预先流经碱性没食子酸溶液和碱性高锰酸钾溶液以净化之。
*铂黑是由许多微小铂晶体组成的,表面积很大,当光线射入经过不断反射均被吸收,因而呈现黑色。
镀铂黑的工艺为:① 1~1.5 克铂用热硝酸洗过后用 HCl:HNO3:H2O=3:1:4 的王水溶解加入 2ml HCl得红棕色 H2PtCl6(无水氯铂酸)即成镀液。
②在 100~200 mA/cm2的电流密度下,电镀 1~3 分钟,得到均匀一致的铂黑镀层。
(2)标准电极电势将任意一待测电极(指定为阴极)与标准氢电极(阳极)组成电池,在消除液接电势后用对消法测其电动势,则此电动势的数值和符号就是待测电极电势的数值和符号。
例如,298K 时以标准氯化银电极与标准氢电极构成一电池:测得电池电动势为 0.2224V 。
则此值即为氯化银电极的标准电极电势。
又例如,298K 时,以标准锌电极与标准氢电极构成一电池,测得电池电动势为 0.763V 。
但由于电池自发放电时,锌电极上实际进行的是氧化反应,锌电极应为负极。
故锌电极的标准电极电势为 -0.763V 。
表11-5列举一些水溶液中标准电极电势的数据。
表11-5 水溶液中的标准电极电势(298K)电极电极反应酸性溶液(a H+=1)Pt,F2F-F2(g)+2e-=2F-+2.87PtH2O2,H+H2O2+2H++2e-=2H2O +1.77PtMn2+,MnO-4MnO-4+8H++5e-=Mn2++4H2O +1.51Pt,Cl2Cl-Cl2+2e-=2Cl-+1.3595PtTl+,Tl3+Tl3++2e-=Tl++1.25PtBr2,Br-Br2+2e-=2Br-+1.065AgAg+Ag++e-=Ag 0.7991 PtFe2+,Fe3+Fe3++e-=Fe2++0.771Pt,O2H2O2O2+2H++2e-=H2O2+0.682PtI2,I-I-3+2e-=3I-+0.536CuCu2+Cu2++2e-=Cu +0.337 PtHgHg2Cl2,Cl-Hg2Cl2+2e-=2Cl-+2Hg +0.2676AgAgCl,Cl-AgCl+e-=Ag+Cl-+0.2224PtCu+,Cu2+Cu2++e-=Cu++0.153AgAgBr,Br-AgBr+e-=Ag+Br-+0.0713Pt,H2H+2H++2e-=H20.0000PbPb2+Pb2++2e-=Pb -0.126AgAgI,I-AgI+e-=Ag+I--0.1518CuCuI,I-CuI+e-=Cu+I--0.1852 PbPbSO4,SO42-PbSO4+2e-=Pb+SO42--0.3588 PtTi2+,Ti3+Ti3++e-=Ti2+-0.369 CdCd2+Cd2++2e-=Cd -0.403 FeFe2+Fe2++2e-=Fe -0.4402 CrCr3+Cr3++3e-=Cr -0.744 ZnZn2+Zn2++2e-=Zn -0.7628 MnMn2+Mn2++2e-=Mn -1.180 AlAl3+Al3++3e-=Al -1.662 MgMg2+Mg2++2e-=Mg -2.363 NaNa+Na++e-=Na -2.7142 CaCa2+Ca2++2e-=Ca -2.866 BaBa2+Ba2++2e-=Ba -2.906 KK+K++e-=K -2.925 LiLi+Li2++e-=Li -3.045 碱性溶液(a OH-=1)PtMnO2,MnO-4MnO-4+2H2O+3e-=MnO2+4OH-+0.588 Pt,O2OH-O2+2H2O+4e-=4OH-+0.401 PtS,S2-S+2e-=S2--0.447 Pt,H2OH-2H2O+2e-=H2+2OH--0.82806 PtSO32-,SO42-SO42-+H2O+2e-=SO32-+2OH--0.93氢电极装置和实验手续均较麻烦,一般只用作一级基准,实际使用中常用一类微溶盐电极如甘汞电极、氯化银电极和硫酸亚汞电极作为二级基准,这类电极常称为"参比电极"。
标准电极电势表
标准电极电势表目录[隐藏]电极电势的产生—双电层理论定义公式电极电势内容标准电极电势表[编辑本段]电极电势的产生—双电层理论德国化学家能斯特(H.W.Nernst)提出了双电层理论(electron double lay er theory)解释电极电势的产生的原因。
当金属放入溶液中时,一方面金属晶体中处于热运动的金属离子在极性水分子的作用下,离开金属表面进入溶液。
金属性质越活泼,这种趋势就越大;另一方面溶液中的金属离子,由于受到金属表面电子的吸引,而在金属表面沉积,溶液中金属离子的浓度越大,这种趋势也越大。
在一定浓度的溶液中达到平衡后,在金属和溶液两相界面上形成了一个带相反电荷的双电层(electron double layer),双电层的厚度虽然很小(约为10-8厘米数量级), 但却在金属和溶液之间产生了电势差。
通常人们就把产生在金属和盐溶液之间的双电层间的电势差称为金属的电极电势(electrode potential),并以此描述电极得失电子能力的相对强弱。
电极电势以符号E Mn+/ M表示, 单位为V(伏)。
如锌的电极电势以EZn2+/ Zn 表示, 铜的电极电势以ECu2+/Cu 表示。
电极电势的大小主要取决于电极的本性,并受温度、介质和离子浓度等因素的影响。
[编辑本段]定义标准电极电势是可逆电极在标准状态及平衡态时的电势,也就是标准态时的电极电势.标准电极电势有很大的实用价值,可用来判断氧化剂与还原剂的相对强弱,判断氧化还原反应的进行方向,计算原电池的电动势、反应自由能、平衡常数,计算其他半反应的标准电极电势,等等。
将半反应按电极电势由低到高排序,可以得到标准电极电势表,可十分简明地判断氧还反应的方向.[编辑本段]公式任何温度下标准氢电极的标准电极电势值都为0,但其他电极电势值会受到温度影响。
以Ni/NiO电极为例,它可以用作高温伪参比电极,在0-400°C时的电极电势大致符合以下公式:E°(T)=-0.0003T+0.1414,T为温度[编辑本段]电极电势内容1 在酸性溶液中(298K)电对方程式Eq/VLi(I)-(0) Li++e-=Li -3.0401Cs(I)-(0) Cs++e-=Cs -3.026Rb(I)-(0) Rb++e-=Rb -2.98K(I)-(0) K++e-=K -2.931Ba(II)-(0) Ba2++2e-=Ba -2.912Sr(II)-(0) Sr2++2e-=Sr -2.89Ca(II)-(0) Ca2++2e-=Ca -2.868Na(I)-(0) Na++e-=Na -2.71La(III)-(0) La3++3e-=La -2.379Mg(II)-(0) Mg2++2e-=Mg -2.372Ce(III)-(0) Ce3++3e-=Ce -2.336H(0)-(-I) H2(g)+2e-=2H--2.23Al(III)-(0) AlF63-+3e-=Al+6F--2.069Th(IV)-(0) Th4++4e-=Th -1.899Be(II)-(0) Be2++2e-=Be -1.847U(III)-(0) U3++3e-=U -1.798Hf(IV)-(0) HfO2++2H++4e-=Hf+H2O -1.724Al(III)-(0) Al3++3e-=Al -1.662Ti(II)-(0) Ti2++2e-=Ti -1.630Zr(IV)-(0) ZrO2+4H++4e-=Zr+2H2O -1.553Si(IV)-(0) [SiF6]2-+4e-=Si+6F--1.24Mn(II)-(0) Mn2++2e-=Mn -1.185Cr(II)-(0) Cr2++2e-=Cr -0.913Ti(III)-(II) Ti3++e-=Ti2+-0.9B(III)-(0) H3BO3+3H++3e-=B+3H2O -0.8698*Ti(IV)-(0) TiO2+4H++4e-=Ti+2H2O -0.86Te(0)-(-II) Te+2H++2e-=H2Te -0.793Zn(II)-(0) Zn2++2e-=Zn -0.7618Ta(V)-(0) Ta2O5+10H++10e-=2Ta+5H2O -0.750Cr(III)-(0) Cr3++3e-=Cr -0.744Nb(V)-(0) Nb2O5+l0H++10e-=2Nb+5H2O -0.644 As(0)-(-III) As+3H++3e-=AsH3 -0.608U(IV)-(III) U4++e-=U3+-0.607Ga(III)-(0) Ga3++3e-=Ga -0.549P(I)-(0) H3PO2+H++e-=P+2H2O -0.508P(III)-(I) H3PO3+2H++2e-=H3PO2+H2O -0.499 *C(IV)-(III) 2CO2+2H++2e-=H2C2O4 -0.49Fe(II)-(0) Fe2++2e-=Fe -0.447Cr(III)-(II) Cr3++e-=Cr2+-0.407Cd(II)-(0) Cd2++2e-=Cd -0.4030Se(0)-(-II) Se+2H++2e-=H2Se(aq) -0.399Pb(II)-(0) PbI2+2e-=Pb+2I--0.365Eu(III)-(II) Eu3++e-=Eu2+-0.36Pb(II)-(0) PbSO4+2e-=Pb+SO42--0.3588In(III)-(0) In3++3e-=In -0.3382Tl(I)-(0) Tl++e-=Tl -0.336Co(II)-(0) Co2++2e-=Co -0.28P(V)-(III) H3PO4+2H++2e-=H3PO3+H2O -0.276 Pb(II)-(0) PbCl2+2e-=Pb+2Cl--0.2675Ni (II)-(0) Ni2++2e-=Ni -0.257V(III)-(II) V3++e-=V2+-0.255Ge(IV)-(0) H2GeO3+4H++4e-=Ge+3H2O -0.182 Ag(I)-(0) AgI+e-=Ag+I--0.15224Sn(II)-(0) Sn2++2e-=Sn -0.1375Pb(II)-(0) Pb2++2e-=Pb -0.1262*C(IV)-(II) CO2(g)+2H++2e-=CO+H2O -0.12P(0)-(-III) P(white)+3H++3e-=PH3(g) -0.063Hg(I)-(0) Hg2I2+2e-=2Hg+2I--0.0405Fe(III)-(0) Fe3++3e-=Fe -0.037H(I)-(0) 2H++2e-=H2 0.0000Ag(I)-(0) AgBr+e-=Ag+Br-0.07133S(II.V)-(II) S4O62-+2e-=2S2O32-0.08*Ti(IV)-(III) TiO2++2H++e-=Ti3++H2O 0.1S(0)-(-II) S+2H++2e-=H2S(aq) 0.142Sn(IV)-(II) Sn4++2e-=Sn2+0.151Sb(III)-(0) Sb2O3+6H++6e-=2Sb+3H2O 0.152Cu(II)-(I) Cu2++e-=Cu+0.153Bi(III)-(0) BiOCl+2H++3e-=Bi+Cl-+H2O 0.1583 S(VI)-(IV) SO42-+4H++2e-=H2SO3+H2O 0.172 Sb(III)-(0) SbO++2H++3e-=Sb+H2O 0.212Ag(I)-(0) AgCl+e-=Ag+Cl-0.22233As(III)-(0) HAsO2+3H++3e-=As+2H2O 0.248Hg(I)-(0) Hg2Cl2+2e-=2Hg+2Cl-(饱和KCl) 0.26808 Bi(III)-(0) BiO++2H++3e-=Bi+H2O 0.320U(VI)-(IV) UO22++4H++2e-=U4++2H2O 0.327C(IV)-(III) 2HCNO+2H++2e-=(CN)2+2H2O 0.330V(IV)-(III) VO2++2H++e-=V3++H2O 0.337Cu(II)-(0) Cu2++2e-=Cu 0.3419Re(VII)-(0) ReO4-+8H++7e-=Re+4H2O 0.368Ag(I)-(0) Ag2CrO4+2e-=2Ag+CrO42-0.4470S(IV)-(0) H2SO3+4H++4e-=S+3H2O 0.449Cu(I)-(0) Cu++e-=Cu 0.521I(0)-(-I) I2+2e-=2I-0.5355I(0)-(-I) I3-+2e-=3I-0.536As(V)-(III) H3AsO4+2H++2e-=HAsO2+2H2O 0.560 Sb(V)-(III) Sb2O5+6H++4e-=2SbO++3H2O 0.581 Te(IV)-(0) TeO2+4H++4e-=Te+2H2O 0.593U(V)-(IV) UO2++4H++e-=U4++2H2O 0.612**Hg(II)-(I) 2HgCl2+2e-=Hg2Cl2+2Cl-0.63Pt(IV)-(II) [PtCl6]2-+2e-=[PtCl4]2-+2Cl-0.68O(0)-(-I) O2+2H++2e-=H2O2 0.695Pt(II)-(0) [PtCl4]2-+2e-=Pt+4Cl-0.755*Se(IV)-(0) H2SeO3+4H++4e-=Se+3H2O 0.74Fe(III)-(II) Fe3++e-=Fe2+0.771Hg(I)-(0) Hg22++2e-=2Hg 0.7973Ag(I)-(0) Ag++e-=Ag 0.7996Os(VIII)-(0) OsO4+8H++8e-=Os+4H2O 0.8N(V)-(IV) 2NO3-+4H++2e-=N2O4+2H2O 0.803 Hg(II)-(0) Hg2++2e-=Hg 0.851Si(IV)-(0) (quartz)SiO2+4H++4e-=Si+2H2O 0.857 Cu(II)-(I) Cu2++I-+e-=CuI 0.86N(III)-(I) 2HNO2+4H++4e-=H2N2O2+2H2O 0.86 Hg(II)-(I) 2Hg2++2e-=Hg22+0.920N(V)-(III) NO3-+3H++2e-=HNO2+H2O 0.934Pd(II)-(0) Pd2++2e-=Pd 0.951N(V)-(II) NO3-+4H++3e-=NO+2H2O 0.957N(III)-(II) HNO2+H++e-=NO+H2O 0.983I(I)-(-I) HIO+H++2e-=I-+H2O 0.987V(V)-(IV) VO2++2H++e-=VO2++H2O 0.991V(V)-(IV) V(OH)4++2H++e-=VO2++3H2O 1.00Au(III)-(0) [AuCl4]-+3e-=Au+4Cl- 1.002Te(VI)-(IV) H6TeO6+2H++2e-=TeO2+4H2O 1.02N(IV)-(II) N2O4+4H++4e-=2NO+2H2O 1.035N(IV)-(III) N2O4+2H++2e-=2HNO2 1.065I(V)-(-I) IO3-+6H++6e-=I-+3H2O 1.085Br(0)-(-I) Br2(aq)+2e-=2Br- 1.0873Se(VI)-(IV) SeO42-+4H++2e-=H2SeO3+H2O 1.151 Cl(V)-(IV) ClO3-+2H++e-=ClO2+H2O 1.152Pt(II)-(0) Pt2++2e-=Pt 1.18Cl(VII)-(V) ClO4-+2H++2e-=ClO3-+H2O 1.189I(V)-(0) 2IO3-+12H++10e-=I2+6H2O 1.195Cl(V)-(III) ClO3-+3H++2e-=HClO2+H2O 1.214Mn(IV)-(II) MnO2+4H++2e-=Mn2++2H2O 1.224O(0)-(-II) O2+4H++4e-=2H2O 1.229Tl(III)-(I) T13++2e-=Tl+ 1.252Cl(IV)-(III) ClO2+H++e-=HClO2 1.277N(III)-(I) 2HNO2+4H++4e-=N2O+3H2O 1.297**Cr(VI)-(III) Cr2O72-+14H++6e-=2Cr3++7H2O 1.33 Br(I)-(-I) HBrO+H++2e-=Br-+H2O 1.331Cr(VI)-(III) HCrO4-+7H++3e-=Cr3++4H2O 1.350Cl(0)-(-I) Cl2(g)+2e-=2Cl- 1.35827Cl(VII)-(-I) ClO4-+8H++8e-=Cl-+4H2O 1.389Cl(VII)-(0) ClO4-+8H++7e-=1/2Cl2+4H2O 1.39Au(III)-(I) Au3++2e-=Au+ 1.401Br(V)-(-I) BrO3-+6H++6e-=Br-+3H2O 1.423I(I)-(0) 2HIO+2H++2e-=I2+2H2O 1.439Cl(V)-(-I) ClO3-+6H++6e-=Cl-+3H2O 1.451Pb(IV)-(II) PbO2+4H++2e-=Pb2++2H2O 1.455Cl(V)-(0) ClO3-+6H++5e-=1/2Cl2+3H2O 1.47Cl(I)-(-I) HClO+H++2e-=Cl-+H2O 1.482Br(V)-(0) BrO3-+6H++5e-=l/2Br2+3H2O 1.482Au(III)-(0) Au3++3e-=Au 1.498Mn(VII)-(II) MnO4-+8H++5e-=Mn2++4H2O 1.507Mn(III)-(II) Mn3++e-=Mn2+ 1.5415Cl(III)-(-I) HClO2+3H++4e-=Cl-+2H2O 1.570Br(I)-(0) HBrO+H++e-=l/2Br2(aq)+H2O 1.574N(II)-(I) 2NO+2H++2e-=N2O+H2O 1.591I(VII)-(V) H5IO6+H++2e-=IO3-+3H2O 1.601Cl(I)-(0) HClO+H++e-=1/2Cl2+H2O 1.611Cl(III)-(I) HClO2+2H++2e-=HClO+H2O 1.645Ni(IV)-(II) NiO2+4H++2e-=Ni2++2H2O 1.678Mn(VII)-(IV) MnO4-+4H++3e-=MnO2+2H2O 1.679Pb(IV)-(II) PbO2+SO42-+4H++2e-=PbSO4+2H2O 1.6913 Au(I)-(0) Au++e-=Au 1.692Ce(IV)-(III) Ce4++e-=Ce3+ 1.72N(I)-(0) N2O+2H++2e-=N2+H2O 1.766O(-I)-(-II) H2O2+2H++2e-=2H2O 1.776Co(III)-(II) Co3++e-=Co2+(2mol·L-1 H2SO4) 1.83Ag(II)-(I) Ag2++e-=Ag+ 1.980S(VII)-(VI) S2O82-+2e-=2SO42- 2.010O(0)-(-II) O3+2H++2e-=O2+H2O 2.076O(II)-(-II) F2O+2H++4e-=H2O+2F- 2.153Fe(VI)-(III) FeO42-+8H++3e-=Fe3++4H2O 2.20O(0)-(-II) O(g)+2H++2e-=H2O 2.421F(0)-(-I) F2+2e-=2F- 2.866F2+2H++2e-=2HF 3.0532 在碱性溶液中(298K)电对方程式Eq/VCa(II)-(0) Ca(OH)2+2e-=Ca+2OH--3.02Ba(II)-(0) Ba(OH)2+2e-=Ba+2OH--2.99La(III)-(0) La(OH)3+3e-=La+3OH--2.90Sr(II)-(0) Sr(OH)2·8H2O+2e-=Sr+2OH-+8H2O -2.88Mg(II)-(0) Mg(OH)2+2e-=Mg+2OH--2.690Be(II)-(0) Be2O32-+3H2O+4e-=2Be+6OH--2.63Hf(IV)-(0) HfO(OH)2+H2O+4e-=Hf+4OH--2.50Zr(IV)-(0) H2ZrO3+H2O+4e-=Zr+4OH--2.36Al(III)-(0) H2AlO3-+H2O+3e-=Al+OH--2.33P(I)-(0) H2PO2-+e-=P+2OH--1.82B(III)-(0) H2BO3-+H2O+3e-=B+4OH--1.79P(III)-(0) HPO32-+2H2O+3e-=P+5OH--1.71Si(IV)-(0) SiO32-+3H2O+4e-=Si+6OH--1.697P(III)-(I) HPO32-+2H2O+2e-=H2PO2-+3OH--1.65Mn(II)-(0) Mn(OH)2+2e-=Mn+2OH--1.56Cr(III)-(0) Cr(OH)3+3e-=Cr+3OH--1.48*Zn(II)-(0) [Zn(CN)4]2-+2e-=Zn+4CN--1.26Zn(II)-(0) Zn(OH)2+2e-=Zn+2OH--1.249Ga(III)-(0) H2GaO3-+H2O+2e-=Ga+4OH--1.219Zn(II)-(0) ZnO22-+2H2O+2e-=Zn+4OH--1.215Cr(III)-(0) CrO2-+2H2O+3e-=Cr+4OH--1.2Te(0)-(-I) Te+2e-=Te2--1.143P(V)-(III) PO43-+2H2O+2e-=HPO32-+3OH--1.05*Zn(II)-(0) [Zn(NH3)4]2++2e-=Zn+4NH3 -1.04*W(VI)-(0) WO42-+4H2O+6e-=W+8OH--1.01*Ge(IV)-(0) HGeO3-+2H2O+4e-=Ge+5OH--1.0Sn(IV)-(II) [Sn(OH)6]2-+2e-=HSnO2-+H2O+3OH--0.93 S(VI)-(IV) SO42-+H2O+2e-=SO32-+2OH--0.93Se(0)-(-II) Se+2e-=Se2--0.924Sn(II)-(0) HSnO2-+H2O+2e-=Sn+3OH--0.909P(0)-(-III) P+3H2O+3e-=PH3(g)+3OH--0.87N(V)-(IV) 2NO3-+2H2O+2e-=N2O4+4OH--0.85H(I)-(0) 2H2O+2e-=H2+2OH--0.8277Cd(II)-(0) Cd(OH)2+2e-=Cd(Hg)+2OH--0.809Co(II)-(0) Co(OH)2+2e-=Co+2OH--0.73Ni(II)-(0) Ni(OH)2+2e-=Ni+2OH--0.72As(V)-(III) AsO43-+2H2O+2e-=AsO2-+4OH--0.71Ag(I)-(0) Ag2S+2e-=2Ag+S2--0.691As(III)-(0) AsO2-+2H2O+3e-=As+4OH--0.68Sb(III)-(0) SbO2-+2H2O+3e-=Sb+4OH--0.66*Re(VII)-(IV) ReO4-+2H2O+3e-=ReO2+4OH--0.59*Sb(V)-(III) SbO3-+H2O+2e-=SbO2-+2OH--0.59Re(VII)-(0) ReO4-+4H2O+7e-=Re+8OH--0.584*S(IV)-(II) 2SO32-+3H2O+4e-=S2O32-+6OH--0.58Te(IV)-(0) TeO32-+3H2O+4e-=Te+6OH--0.57Fe(III)-(II) Fe(OH)3+e-=Fe(OH)2+OH--0.56S(0)-(-II) S+2e-=S2--0.47627Bi(III)-(0) Bi2O3+3H2O+6e-=2Bi+6OH--0.46N(III)-(II) NO2-+H2O+e-=NO+2OH--0.46*Co(II)-C(0) [Co(NH3)6]2++2e-=Co+6NH3 -0.422Se(IV)-(0) SeO32-+3H2O+4e-=Se+6OH--0.366Cu(I)-(0) Cu2O+H2O+2e-=2Cu+2OH--0.360Tl(I)-(0) Tl(OH)+e-=Tl+OH--0.34*Ag(I)-(0) [Ag(CN)2]-+e-=Ag+2CN--0.31Cu(II)-(0) Cu(OH)2+2e-=Cu+2OH--0.222Cr(VI)-(III) CrO42-+4H2O+3e-=Cr(OH)3+5OH--0.13 *Cu(I)-(0) [Cu(NH3)2]++e-=Cu+2NH3 -0.12O(0)-(-I) O2+H2O+2e-=HO2-+OH--0.076Ag(I)-(0) AgCN+e-=Ag+CN--0.017N(V)-(III) NO3-+H2O+2e-=NO2-+2OH-0.01Se(VI)-(IV) SeO42-+H2O+2e-=SeO32-+2OH-0.05 Pd(II)-(0) Pd(OH)2+2e-=Pd+2OH-0.07S(II,V)-(II) S4O62-+2e-=2S2O32-0.08Hg(II)-(0) HgO+H2O+2e-=Hg+2OH-0.0977Co(III)-(II) [Co(NH3)6]3++e-=[Co(NH3)6]2+0.108Pt(II)-(0) Pt(OH)2+2e-=Pt+2OH-0.14Co(III)-(II) Co(OH)3+e-=Co(OH)2+OH-0.17Pb(IV)-(II) PbO2+H2O+2e-=PbO+2OH-0.247I(V)-(-I) IO3-+3H2O+6e-=I-+6OH-0.26Cl(V)-(III) ClO3-+H2O+2e-=ClO2-+2OH-0.33Ag(I)-(0) Ag2O+H2O+2e-=2Ag+2OH-0.342Fe(III)-(II) [Fe(CN)6]3-+e-=[Fe(CN)6]4-0.358Cl(VII)-(V) ClO4-+H2O+2e-=ClO3-+2OH-0.36*Ag(I)-(0) [Ag(NH3)2]++e-=Ag+2NH3 0.373O(0)-(-II) O2+2H2O+4e-=4OH-0.401I(I)-(-I) IO-+H2O+2e-=I-+2OH-0.485*Ni(IV)-(II) NiO2+2H2O+2e-=Ni(OH)2+2OH-0.490Mn(VII)-(VI) MnO4-+e-=MnO42-0.558Mn(VII)-(IV) MnO4-+2H2O+3e-=MnO2+4OH-0.595 Mn(VI)-(IV) MnO42-+2H2O+2e-=MnO2+4OH-0.60Ag(II)-(I) 2AgO+H2O+2e-=Ag2O+2OH-0.607Br(V)-(-I) BrO3-+3H2O+6e-=Br-+6OH-0.61Cl(V)-(-I) ClO3-+3H2O+6e-=Cl-+6OH-0.62Cl(III)-(I) ClO2-+H2O+2e-=ClO-+2OH-0.66I(VII)-(V) H3IO62-+2e-=IO3-+3OH-0.7Cl(III)-(-I) ClO2-+2H2O+4e-=Cl-+4OH-0.76Br(I)-(-I) BrO-+H2O+2e-=Br-+2OH-0.761Cl(I)-(-I) ClO-+H2O+2e-=Cl-+2OH-0.841*Cl(IV)-(III) ClO2(g)+e-=ClO2-0.95O(0)-(-II) O3+H2O+2e-=O2+2OH- 1.24标准电极电势表半反应E°(V) 来源& -9Zz 9N N2(g) + H+ + e− HN3(aq) -3.09 [6]Li+ + e− Li(s) -3.0401 [5]N2(g) + 4H2O + 2e− 2N H2OH(aq) + 2OH− -3.04 [6] Cs+ + e− Cs(s) -3.026 [5]Rb+ + e− Rb(s) -2.98 [4]K+ + e− K(s) -2.931 [5]Ba2+ + 2e− Ba(s) -2.912 [5]La(OH)3(s) + 3e− La(s) + 3OH− -2.90 [5]Sr2+ + 2e−Sr(s) -2.899 [5]Ca2+ + 2e− Ca(s) -2.868 [5]Eu2+ + 2e− Eu(s) -2.812 [5]Ra2+ + 2e− Ra(s) -2.8 [5]Na+ + e− Na(s) -2.71 [5][9]La3+ + 3e− La(s) -2.379 [5]Y3+ + 3e− Y(s) -2.372 [5]Mg2+ + 2e− Mg(s) -2.372 [5]ZrO(OH)2(s) + H2O + 4e− Zr(s) + 4OH− -2.36 [5]Al(OH)4− + 3e− Al(s) + 4OH− -2.33Al(OH)3(s) + 3e− Al(s) + 3OH− -2.31H2(g) + 2e− 2H− -2.25Ac3+ + 3e− Ac(s) -2.20Be2+ + 2e− Be(s) -1.85U3+ + 3e− U(s) -1.66 [7]Al3+ + 3e− Al(s) -1.66 [9]Ti2+ + 2e− Ti(s) -1.63 [9]ZrO2(s) + 4H+ + 4e− Zr(s) + 2H2O -1.553 [5]Zr4+ + 4e− Zr(s) -1.45 [5]TiO(s) + 2H+ + 2e− Ti(s) + H2O -1.31Ti2O3(s) + 2H+ + 2e− 2T iO(s) + H2O -1.23Ti3+ + 3e− Ti(s) -1.21Te(s) + 2e− Te2− -1.143 [2]V2+ + 2e− V(s) -1.13 [2]Nb3+ + 3e− Nb(s) -1.099Sn(s) + 4H+ + 4e− SnH4(g) -1.07Mn2+ + 2e− Mn(s) -1.029 [9]SiO2(s) + 4H+ + 4e− Si(s) + 2H2O -0.91B(OH)3(aq) + 3H+ + 3e− B(s) + 3H2O -0.89TiO2+ + 2H+ + 4e− Ti(s) + H2O -0.86Bi(s) + 3H+ + 3e− BiH3 -0.8H2H2O + 2e− H2(g) + 2OH− -0.8277 [5]Zn2+ + 2e− Zn(Hg) -0.7628 [5]Zn2+ + 2e− Zn(s) -0.7618 [5]Ta2O5(s) + 10H+ + 10e− 2T a(s) + 5H2O -0.75Cr3+ + 3e− Cr(s) -0.74Au[Au(CN)2]− + e− Au(s) + 2C N− -0.60Ta3+ + 3e− Ta(s) -0.6PbO(s) + H2O + 2e− Pb(s) + 2OH− -0.58Ti2T iO2(s) + 2H+ + 2e− Ti2O3(s) + H2O -0.56Ga3+ + 3e− Ga(s) -0.53U4+ + e− U3+ -0.52 [7]P H3PO2(aq) + H+ + e− P(白磷[10]) + 2H2O -0.508 [5]P H3PO3(aq) + 2H+ + 2e− H3PO2(aq) + H2O -0.499 [5] P H3PO3(aq) + 3H+ + 3e− P(红磷)[10] + 3H2O -0.454 [5] Fe2+ + 2e− Fe(s) -0.44 [9]C2C O2(g) + 2H+ + 2e− HOOCCOOH(aq) -0.43Cr3+ + e− Cr2+ -0.42Cd2+ + 2e− Cd(s) -0.40 [9]GeO2(s) + 2H+ + 2e− GeO(s) + H2O -0.37Cu2O(s) + H2O + 2e− 2C u(s) + 2O H− -0.360 [5]PbSO4(s) + 2e− Pb(s) + SO42− -0.3588 [5]PbSO4(s) + 2e− Pb(Hg) + SO42− -0.3505 [5]Eu3+ + e− Eu2+ -0.35 [7]In3+ + 3e− In(s) 0.34 [2]Tl+ + e− Tl(s) -0.34 [2]Ge(s) + 4H+ + 4e− GeH4(g) -0.29Co2+ + 2e− Co(s) -0.28 [5]P H3PO4(aq) + 2H+ + 2e− H3PO3(aq) + H2O -0.276 [5] V3+ + e− V2+ 0.26 [9]Ni2+ + 2e− Ni(s) -0.25As(s) + 3H+ + 3e− AsH3(g) -0.23 [2]MoO2(s) + 4H+ + 4e− Mo(s) + 2H2O -0.15Si(s) + 4H+ + 4e− SiH4(g) -0.14Sn2+ + 2e− Sn(s) -0.13O2(g) + H+ + e− HO2•(aq) -0.13Pb2+ + 2e− Pb(s) -0.13 [9]WO2(s) + 4H+ + 4e− W(s) + 2H2O -0.12P(红磷) + 3H+ + 3e− PH3(g) -0.111 [5]C CO2(g) + 2H+ + 2e− HCOOH(aq) -0.11Se(s) + 2H+ + 2e− H2Se(g) -0.11C CO2(g) + 2H+ + 2e− CO(g) + H2O -0.11SnO(s) + 2H+ + 2e− Sn(s) + H2O -0.10SnO2(s) + 2H+ + 2e− SnO(s) + H2O -0.09WO3(aq) + 6H+ + 6e− W(s) + 3H2O -0.09 [2]P(白磷) + 3H+ + 3e− PH3(g) -0.063 [5]C HCOOH(aq) + 2H+ + 2e− HCHO(aq) + H2O -0.03 H 2H+ + 2e− H2(g) ≡ 0S4O62− + 2e− 2S2O32− +0.08Fe3O4(s) + 8H+ + 8e− 3F e(s) + 4H2O +0.085 [8]N2(g) + 2H2O + 6H+ + 6e− 2N H4OH(aq) +0.092 HgO(s) + H2O + 2e− H g(l) + 2O H− +0.0977Cu(NH3)42+ + e− Cu(NH3)2+ + 2N H3 +0.10 [2]Ru(NH3)63+ + e− Ru(NH3)62+ +0.10 [7]N2H4(aq) + 4H2O + 2e− 2N H4+ + 4O H− +0.11 [6] Mo H2MoO4(aq) + 6H+ + 6e− Mo(s) + 4H2O +0.11 Ge4+ + 4e− Ge(s) +0.12C(s) + 4H+ + 4e− CH4(g) +0.13 [2]C HCHO(aq) + 2H+ + 2e− CH3OH(aq) +0.13S(s) + 2H+ + 2e− H2S(g) +0.14Sn4+ + 2e− Sn2+ +0.15Cu2+ + e− Cu+ +0.159 [2]S HSO4− + 3H+ + 2e− SO2(aq) + 2H2O +0.16UO22+ + e− UO2+ +0.163 [7]S SO42− + 4H+ + 2e− SO2(aq) + 2H2O +0.17TiO2+ + 2H+ + e− Ti3+ + H2O +0.19Bi3+ + 2e− Bi+ +0.2SbO+ + 2H+ + 3e− Sb(s) + H2O +0.20As H3AsO3(aq) + 3H+ + 3e− As(s) + 3H2O +0.24 GeO(s) + 2H+ + 2e− Ge(s) + H2O +0.26UO2+ + 4H+ + e− U4+ + 2H2O +0.273 [7]Re3+ + 3e− Re(s) +0.300Bi3+ + 3e− Bi(s) +0.32VO2+ + 2H+ + e− V3+ + H2O +0.34Cu2+ + 2e− Cu(s) +0.340 [2]Fe [Fe(CN)6]3− + e− [Fe(CN)6]4− +0.36O2(g) + 2H2O + 4e− 4OH−(aq) +0.40 [9]Mo H2MoO4 + 6H+ + 3e− Mo3+ +2H2O +0.43Bi+ + e− Bi(s) +0.50C CH3OH(aq) + 2H+ + 2e− CH4(g) + H2O +0.50S SO2(aq) + 4H+ + 4e− S(s) + 2H2O +0.50Cu+ + e− Cu(s) +0.520 [2]C CO(g) + 2H+ + 2e− C(s) + H2O +0.52I2(s) + 2e− 2I− +0.54 [9]I3− + 2e− 3I− +0.53 [9]Au [AuI4]− + 3e− Au(s) + 4I− +0.56As H3AsO4(aq) + 2H+ + 2e− H3AsO3(aq) + H2O +0.56 Au [AuI2]− + e− Au(s) + 2I− +0.58MnO4− + 2H2O + 3e− MnO2(s) + 4O H− +0.59S2O32−+ 6H+ + 4e− 2S(s) + 3H2O +0.60Mo H2MoO4(aq) + 2H+ + 2e− MoO2(s) + 2H2O +0.65 O2(g) + 2H+ + 2e− H2O2(aq) +0.70Tl3+ + 3e− Tl(s) +0.72PtCl62− + 2e− PtCl42− + 2C l− +0.726 [7]Se H2SeO3(aq) + 4H+ + 4e− Se(s) + 3H2O +0.74PtCl42− + 2e− Pt(s) + 4C l− +0.758 [7]Fe3+ + e− Fe2+ +0.77Ag+ + e− Ag(s) +0.7996 [5]Hg22+ + 2e− 2H g(l) +0.80N NO3−(aq) + 2H+ + e− NO2(g) + H2O +0.80Au [AuBr4]− + 3e− Au(s) + 4B r− +0.85Hg2+ + 2e− Hg(l) +0.85MnO4− + H+ + e− HMnO4− +0.90Hg 2H g2+ + 2e− Hg22+ +0.91 [2]Pd2+ + 2e− Pd(s) +0.915 [7]Au [AuCl4]− + 3e− Au(s) + 4C l− +0.93MnO2(s) + 4H+ + e− Mn3+ + 2H2O +0.95Au [AuBr2]− + e− Au(s) + 2B r− +0.96Br2(l) + 2e− 2B r− +1.07Br2(aq) + 2e− 2B r− +1.09 [9]I IO3− + 5H+ + 4e− HIO(aq) + 2H2O +1.13Au [AuCl2]− + e− Au(s) + 2C l− +1.15Se HSeO4− + 3H+ + 2e− H2SeO3(aq) + H2O +1.15 Ag2O(s) + 2H+ + 2e− 2A g(s) + H2O +1.17ClO3− + 2H+ + e− ClO2(g) + H2O +1.18Pt2+ + 2e− Pt(s) +1.188 [7]ClO2(g) + H+ + e− HClO2(aq) +1.19I 2I O3− + 12H+ + 10e− I2(s) + 6H2O +1.20ClO4− + 2H+ + 2e− ClO3− + H2O +1.20O2(g) + 4H+ + 4e− 2H2O +1.23 [9]MnO2(s) + 4H+ + 2e− Mn2+ + 2H2O +1.23Tl3+ + 2e− Tl+ +1.25Cl2(g) + 2e− 2C l− +1.36 [9]Cr2O7−−+ 14H+ + 6e− 2C r3+ + 7H2O +1.33CoO2(s) + 4H+ + e− Co3+ + 2H2O +1.42N 2N H3OH+ + H+ + 2e− N2H5+ + 2H2O +1.42 [6]I 2H IO(aq) + 2H+ + 2e− I2(s) + 2H2O +1.44Ce4+ + e− Ce3+ +1.44BrO3− + 5H+ + 4e− HBrO(aq) + 2H2O +1.45PbO β-PbO2(s) + 4H+ + 2e− Pb2+ + 2H2O +1.460 [2] PbO α-PbO2(s) + 4H+ + 2e− Pb2+ + 2H2O +1.468 [2] Br 2B rO3− + 12H+ + 10e− Br2(l) + 6H2O +1.48Cl 2ClO3− + 12H+ + 10e− Cl2(g) + 6H2O +1.49MnO4− + 8H+ + 5e− Mn2+ + 4H2O +1.51O HO2• + H+ + e− H2O2(aq) +1.51Au3+ + 3e− Au(s) +1.52NiO2(s) + 4H+ + 2e− Ni2+ + 2OH− +1.59Cl 2H ClO(aq) + 2H+ + 2e− Cl2(g) + 2H2O +1.63Ag2O3(s) + 6H+ + 4e− 2A g+ + 3H2O +1.67Cl HClO2(aq) + 2H+ + 2e− HClO(aq) + H2O +1.67Pb4+ + 2e− Pb2+ +1.69 [2]MnO4− + 4H+ + 3e− MnO2(s) + 2H2O +1.70O H2O2(aq) + 2H+ + 2e− 2H2O +1.78AgO(s) + 2H+ + e− Ag+ + H2O +1.77Co3+ + e− Co2+ +1.82Au+ + e− Au(s) +1.83 [2]BrO4− + 2H+ + 2e− BrO3− + H2O +1.85Ag2+ + e− Ag+ +1.98 [2]S2O82− + 2e− 2SO42− +2.07O3(g) + 2H+ + 2e− O2(g) + H2O +2.075 [7]Mn HMnO4− + 3H+ + 2e− MnO2(s) + 2H2O +2.09 F2(g) + 2e− 2F− +2.87 [2][9]F2(g) + 2H+ + 2e− 2H F(aq) +3.05 [2]。
最新最全最实用电极电势表
标准电极电势表环境:摄氏25度,1标准大气压,离子浓度1摩尔/升,采用氢电极最全最实用电极电势表由xsm18倾情制作,转载请注明来源:/xsm18/homePbSO4(+2)/Pb PbSO4+2e-=Pb+SO42--0.3588PbBr2(+2)/Pb PbBr2+2e-=Pb+2Br--0.284Co2+/Co Co2++2e-=Co-0.28H3PO4/H3PO3H3PO4+2H++2e-=H3PO3+H2O-0.276PbCl2(+2)/Pb PbI2+2e-=Pb+2I--0.2675Ni2+/Ni Ni2++2e-=Ni-0.257CO2/HCOOH(甲酸)CO2(g)+2H++2e-=HCOOH(aq)-0.199CuI(+1)/Cu CuI+e-=Cu+I-0.1852AgI(+1)/Ag AgI+e-=Ag+I-0.15224Sn2+/Sn Sn2++2e-=Sn-0.1375Pb2+/Pb Pb2++2e-=Pb-0.1262C4+/C2+CO2(g)+2H++2e-=CO+H2O-0.12P/PH3P(白磷)+3H++3e-=PH3(g)-0.063气体(g)Hg2I2(+1)/Hg Hg2I2+2e-=2Hg+2I--0.0405Fe3+/Fe Fe3++3e-=Fe-0.037Ag2S(+1)/Ag Ag2S+2H++2e-=2Ag+H2S-0.0366H+/H22H++2e-=H20.00CuBr(+1)/Cu CuBr+e-=Cu+Br-0.033AgBr(+1)/Ag AgBr+e-=Ag+Br-0.07133Si/SiH4Si+4H++4e-=SiH40.102C(石墨)/CH4C+4H++4e-=CH40.1316CuCl(+1)/Cu CuCl+e-=Cu+Cl-0.137Hg2Br2(+1)/Hg Hg2Br2+2e-=2Hg+2Br-0.13923S/H2S(aq)S+2H++2e-=H2S(aq)0.142水溶液Sn4+/Sn2+Sn4++2e-=Sn2+0.151Cu2+/Cu+Cu2++e-=Cu+0.153S6+/S4+SO42-+4H++2e-=H2SO3+H2O0.172AgCl(+1)/Ag AgCl+e-=Ag+Cl-0.2223As3+/As(亚砷酸)HAsO2(aq)+3H++3e-=As+2H2O0.2476HAsO2.H2O Hg2Cl2/Hg Hg2Cl2+2e-=2Hg+2Cl-0.268Bi3+/Bi Bi3++3e-=Bi0.308Cu2+/Cu Cu2++2e-=Cu0.337AgIO3/Ag AgIO3+e-=Ag+IO3-0.354S6+/S SO42-+8H++6e-=S+4H2O0.3572Ag2CrO4/Ag Ag2CrO4+2e-=2Ag+CrO42-0.447铬酸银S4+/S H2SO3+4H++4e-=S+3H2O0.449Ag2C2O4/Ag Ag2C2O4+2e-=2Ag+C2O42-0.4647草酸银Cu+/Cu Cu++e-=Cu0.521I2/I-I2+2e-=2I-0.5355AgBrO3/Ag AgBrO3+e-=Ag+BrO3-0.546As5+/As3+H3AsO4(aq)+2H++2e-=HAsO2+2H2O0.56水溶液AgNO2/Ag AgNO2+e-=Ag+NO2-0.564Te4+/Te TeO2+4H++4e-=Te+2H2O0.593Hg2SO4/Hg Hg2SO4+2e-=2Hg+SO42-0.614Ag2SO4/Ag Ag2SO4+2e-=2Ag+SO42-0.654Pt4+(氯铂酸)/Pt2+[PtCl6]2-+2e-=[PtCl4]2-+2Cl-0.68O2/O-O2+2H++2e-=H2O20.695Pt2+/Pt(二氯化铂)[PtCl4]2-+2e-=Pt+4Cl-0.73Se4+/Se H2SeO3+4H++4e-=Se+3H2O0.74Fe3+/Fe2+Fe3++e-=Fe2+0.771AgF/Ag AgF+e-=Ag+F-0.779Hg+/Hg Hg22++2e-=2Hg0.788Ag+/Ag Ag++e-=Ag0.7991N5+/N4+(硝酸)2NO3-+4H++2e-=N2O4(g)+2H2O0.803气体(g) Hg2+/Hg Hg2++2e-=Hg(lq)0.853液态(水银) Si4+(石英)/Si SiO2+4H++4e-=Si+2H2O0.857Hg2+/Hg+2Hg2++2e-=Hg22+0.92N5+/N3+(亚硝酸)NO3-+3H++2e-=HNO2+H2O0.934Pd2+/Pd Pd2++2e-=Pd0.951N5+/N2+NO3-+4H++3e-=NO+2H2O0.957Au3+/Au(三溴化金)AuBr2-+e-=Au+2Br-0.959N3+/2+HNO2+H++e-=NO+H2O0.983Au3+/Au(三氯化金)[AuCl4]-+3e-=Au+4Cl- 1.002Te6+/Te4+H6TeO6+2H++2e-=TeO2+4H2O 1.02N4+/N2+N2O4+4H++4e-=2NO+2H2O 1.03Pt4+/Pt PtO2+4H++4e-=Pt+2H2O 1.045Br2(lq)/Br-Br2(lq)+2e-=2Br- 1.0652液溴(lq)N4+/N3+N2O4+2H++2e-=2HNO2 1.07Br2(aq)/Br-Br2(aq)+2e-=2Br- 1.087水溶液(aq) Se6+/Se4+SeO42-+4H++2e-=H2SeO3+H2O 1.151Cl5+/Cl4+ClO3-+2H++e-=ClO2+H2O 1.152O2/H2O(g)O2+4H++4e-=2H2O(g) 1.185水蒸汽(g) Pt2+/Pt Pt2++2e-=Pt 1.188Cl7+/Cl5+ClO4-+2H++2e-=ClO3-+H2O 1.189I5+/I22IO3-+12H++10e-=I2(s)+6H2O 1.195碘单质(s) Cl5+/Cl3+ClO3-+3H++2e-=HClO2+H2O 1.21Mn4+/Mn2+MnO2+4H++2e-=Mn2++2H2O 1.224O2/H2O(液态水)O2+4H++4e-=2H2O 1.229常温水S+(S2Cl2)/S S2Cl2+2e-=2S+2Cl- 1.23Fe3O4/Fe2+Fe3O4+8H++2e-=3Fe2++4H2O 1.23Tl3+/Tl+T13++2e-=Tl+ 1.25注4Cl4+/Cl3+ClO2+H++e-=HClO2 1.277N3+/N+2HNO2(aq)+4H++4e-=N2O(g)+3H2O 1.297Cr6+/Cr3+Cr2O72-+14H++6e-=2Cr3++7H2O 1.33重铬酸根Br+/Br-HBrO+H++2e-=Br-+H2O 1.331Cr6+/Cr3+HCrO4-+7H++3e-=Cr3++4H2O 1.35铬酸根Cl2/Cl-Cl2(g)+2e-=2Cl- 1.358(g)氯气Au2O3(+3)/Au Au2O3+6H++6e-=2Au+3H2O 1.36Cl7+/Cl-ClO4-+8H++8e-=Cl-+4H2O 1.388Cl7+/Cl2ClO4-+8H++7e-=1/2Cl2+4H2O 1.392Au3+/Au+Au3++2e-=Au+ 1.41Br5+/Br-BrO3-+6H++6e-=Br-+3H2O 1.424I+/I22HIO+2H++2e-=I2+2H2O 1.439Cl5+/Cl-ClO3-+6H++6e-=Cl-+3H2O 1.451Pb4+/Pb2+PbO2+4H++2e-=Pb2++2H2O 1.455Cl5+/Cl2ClO3-+6H++5e-=1/2Cl2+3H2O 1.47CrO2(+4)/Cr3+CrO2+4H++e-=Cr3++2H2O 1.48二氧化铬Cl+/Cl-HClO+H++2e-=Cl-+H2O 1.482Au3+/Au Au3++3e-=Au 1.498Mn7+/Mn2+MnO4-+8H++5e-=Mn2++4H2O 1.507Cl4+/Cl-ClO2+4H++5e-=Cl-+2H2O 1.511Br5+/Br2BrO3-+6H++5e-=l/2Br2+3H2O 1.52Mn3+/Mn2+Mn3++e-=Mn2+ 1.5415注5Cl3+/Cl-HClO2+3H++4e-=Cl-+2H2O 1.57N2+/N+2NO+2H++2e-=N2O+H2O 1.59Br+/Br2HBrO+H++e-=l/2Br2(aq)+H2O 1.595I7+/I5+H5IO6+H++2e-=IO3-+3H2O 1.603注6Cl+/Cl2HClO+H++e-=1/2Cl2+H2O 1.611Cl3+/Cl2HClO2+3H++2e-=1/2Cl2+2H2O 1.628Cl3+/Cl+HClO2+2H++2e-=HClO+H2O 1.645Ni4+/Ni2+NiO2+4H++2e-=Ni2++2H2O 1.678Mn7+/Mn4+MnO4-+4H++3e-=MnO2+2H2O 1.68注7Pb4+/Pb2+PbO2+SO42-+4H++2e-=PbSO4+2H2O 1.69Au+/Au Au++e-=Au 1.691Ce4+/Ce3+Ce4++e-=Ce3+ 1.74注8Br7+/Br5+BrO4-+2H++2e-=BrO3-+H2O 1.763注9N+/N2N2O+2H++2e-=N2+H2O 1.766O-(H2O2)/O2-(H2O)H2O2+2H++2e-=2H2O 1.776NiO42-/NiO2NiO42-+4H++2e-=NiO2+2H2O 1.8Co3+/Co2+Co3++e-=Co2+ 1.808Co3+/Co2+Co3++e-=Co2+ 1.83稀硫酸中Co3+/Co2+Co3++e-=Co2+ 1.92稀高氯酸Ag2+/Ag+Ag2++e-=Ag+ 1.93稀硝酸Ag2+/Ag+Ag2++e-=Ag+ 1.98稀硫酸Ag2+/Ag+Ag2++e-=Ag+ 2.0稀高氯酸S2O82-/SO42-S2O82-+2e-=2SO42- 2.01Bi5+/Bi3+BiO3-+2H++2e-=Bi3++H2O 2.03铋酸盐O3/O2-O3+2H++2e-=O2+H2O 2.076XeO3/Xe XeO3+6H++6e-=Xe+3H2O 2.1最全最实用电极电势表由xsm18倾情制作,转载请注明来源:/xsm18/home注释1:碱族和从钙开始的碱土元素均和水发生反应,其电极电势数值为理论计算值注释2:铈元素(Ce)属于镧系元素,有稳定的+3,+4价,+3价有很强的还原性,+4有很强的氧化性,该元素有很好的代表性。
电极电势
1111-15 电动势测定的实际应用
E → ∆Gi , ∆H i , ∆Si L Lγ ± , a± , ti , pH , pM , K
平衡常数的测定
弱酸(碱)离解常数,水 的离子积常数, 溶度积, 活度积
氧化还原反应
∆rG = ∆rG + RT ln
o
∏
i
ai
能斯特(Nernst)方程 方程 能斯特
M
z+
+ ze
M
平衡时电化学势
µ M z + ( Sol ) = µ M z + ( M )
平衡时电化学势
µi
sol +
zie0φ
sol
=
M+ ze φ M µi i 0
µ M z + ( Sol ) = µ M z + ( M )
µM z+ (Sol) = µM (M ) − zµe (M )
Ka
a ⋅a RT o ln o E=E − 2 F pH / p o ⋅ a
2 + H
2
2 − Cl 2 AgCl
mHA ⋅ mCl − γ HA ⋅ γ Cl − (E − E )F + ln = − ln − ln K a o RT γ A− m − ⋅m
o A
E' ~ I
I → 0 γ →1
γ±=0.795
一元弱酸解离
HA
aH + ⋅ a A− Ka = a HA
+ + AH
a HA = γ HA ⋅
m HA m
o
(-) Pt,H2(p)|HA(m1),NaA(m2),NaCl(m3)|AgCl(s)|Ag(+)
标准电极电势表
S2O +2e-=2SO
Mn +e-=MO
Mn +4H++3e-=MnO2+2H2O
2H2SO3+H++2e-=H2SO4-+2H20
Mn +8H++5e-=Mn2++4H2O
H2SO3+4H++4e-=S+3H2O
MO3++3e-=MO
电极反应
E/V
Te4++4e-=Te
V3++e-=V2+
TeO2+4H++4e-=Te+2H2O
VO2++2H++e-=V3++H2O
Te +8H++7e-=Te+4H2O
VO +2H++e-=VO2++H2O
H6TeO6+2H++2e-=TeO2+4 H2O
V(OH) +2H++e-=VO2++3H2O
3
F2+2e-=2F-
Br2(l)+2e-=2Br-
Fe2++2e-=Fe
HBrO+H++2e-=Br-+H2O
Fe3++3e-=Fe
HBrO+H++e-=l/2Br2(aq)+H2O
Fe3++e-=Fe2+
HBrO+H++e-=l/2Br2(l)+H2O
[Fe(CN)6]3-+e-=[Fe(CN)6]4-
Sb2O5+6H++4e-=2SbO++3H2O
N2O4+2H++2e-=2HNO2
SbO++2H++3e-=Sb+H2O
N2O4+4H++4e-=2NO+2H2O
Sc3++3e-=Sc
2NO+2H++2e-=N2O+H2O
Se+2H++2e-=H2Se(aq)
HNO2+H++e-=NO+H2O
标准电极电势
由下列元素电势图判断所发生反应的是:
E(酸性或中性) BrO3- 1.51V Br2 1.07V Br-
E (碱性)
BrO3- 0.52V Br2 1.07V Br-
(A) 3 Br2 +3H2O=5Br-+BrO3-+6H+ (B) 5Br-+BrO3-+3H2O= 3 Br2 +6OH(C) 3 Br2 +6OH-= 5Br-+BrO3-+3H2O (D)以上答案都不对
a. 元素电势图
1.15 ClO2 1.27
1.19
1.21
ClO4¯
ClO3¯
1.64
HClO2
1.43
1.47
1.63
HClO
1.49
1.358
½ Cl2
Cl¯
1.45
如果一种元素具有多种氧化态,就可形成多对氧化 还原电对,为了便于比较各种氧化态的氧化还原性 质,将它们的E从高氧化态到低氧化态以图解的方 式表示出来,表明元素各氧化态之间标准电极电势
① 自然界均以化合物形式存在 ② 单质易与强碱反应 ③ 氧化物是难熔固体 ④ H3BO3 和 H2SiO3 在水中溶解度不大 ⑤ 由于B—B和Si—Si键能较小,烷的数目比 碳烷烃少得多,且易水解 ⑥ 卤化物易水解 ⑦ 易形成配合物,如 HBF4 和 H2SiF6
2B + 6NaOH == 2Na3BO3 +3H2 Si+2NaOH+H2O == Na2SiO3+2H2
对角线规则
下面三对处于对角线上的元素及其化合物 的性质有许多相似之处,叫做对角线规则
Li Be B C Na Mg AI Si
电对的电极电势
电对的电极电势1、电极电势的产生——双电层理论电极电势的大小主要取决于电极的本性,并受温度、介质和离子浓度等因素的影响。
为了赢得各种电极的电极电势数值,通常以某种电极的电极电势并作标准与其它各试样电极共同组成电池,通过测量电池的电动势, 而确认各种相同电极的相对电极电势e值。
年国际单纯化学与应用化学联合会(iupac)的建议,使用标准氢电极做为标准电极,并人为地规定标准氢电极的电极电势为零。
(1)标准氢电极电极符号: pt|h2(.3kpa)|h+(1mol.l-1)电极反应: 2h+ + 2e = h2(g)eφh+/ h2 = 0 v右上角的符号“φ”代表标准态。
标准态要求电极处于标准压力(.kpa)下,组成电极的固体或液体物质都是纯净物质;气体物质其分压为.kpa;组成电对的有关离子(包括参与反应的介质)的浓度为1mol.l-1(严格的概念是活度)。
通常测定的温度为k。
(2) 标准电极电势用标准氢电极和试样电极在标准状态下共同组成电池,测出该电池的电动势值,并通过直流电压表确认电池的正负极,即可根据e池 = e(+)- e(-)排序各种电极的标准电极电势的相对数值。
例如在k,用电位计测得标准氢电极和标准zn电极所组成的原电池的电动势(e池)为0.v,根据上式计算zn2+/zn电对的标准电极为-0.v。
用同样的办法可测得cu2+/cu电对的电极电势为+0.34v。
电极的 e为正值则表示共同组成电极的水解型物质,得电子的女性主义大于标准氢电极中的h+,例如铜电极中的 cu2+;例如电极的为负值,则共同组成电极的水解型物质得电子的女性主义大于标准氢电极中的h+,例如锌电极中的zn2+。
实际应用领域中,常采用一些电极电势较平衡电极例如饱和状态甘汞电极和银-氯化银电极做为参比电极和其它试样电极形成电池,求出其它电极的电势。
饱和状态甘汞电极的.电极电势为0.v。
银-氯化银电极的电极电势为0.v。
将不同氧化还原电对的标准电极电势数值按照由小到大的顺序排列,得到电极反应的标准电极电势表。
标准电极电势表 (碱)
电对方程式E /VCa(II)-(0) Ca(OH)2+2e-=Ca+2OH--3.02 Ba(II)-(0) Ba(OH)2+2e-=Ba+2OH--2.99 La(III)-(0) La(OH)3+3e-=La+3OH--2.90 Sr(II)-(0) Sr(OH)2·8H2O+2e-=Sr+2OH-+8H2O -2.88 Mg(II)-(0) Mg(OH)2+2e-=Mg+2OH--2.690 Be(II)-(0) Be2O32-+3H2O+4e-=2Be+6OH--2.63 Hf(IV)-(0) HfO(OH)2+H2O+4e-=Hf+4OH--2.50 Zr(IV)-(0) H2ZrO3+H2O+4e-=Zr+4OH--2.36 Al(III)-(0) H2AlO3-+H2O+3e-=Al+OH--2.33 P(I)-(0) H2PO2-+e-=P+2OH--1.82 B(III)-(0) H2BO3-+H2O+3e-=B+4OH--1.79 P(III)-(0) HPO32-+2H2O+3e-=P+5OH--1.71 Si(IV)-(0) SiO32-+3H2O+4e-=Si+6OH--1.697 P(III)-(I) HPO32-+2H2O+2e-=H2PO2-+3OH--1.65 Mn(II)-(0) Mn(OH)2+2e-=Mn+2OH--1.56 Cr(III)-(0) Cr(OH)3+3e-=Cr+3OH--1.48 *Zn(II)-(0) [Zn(CN)4]2-+2e-=Zn+4CN--1.26 Zn(II)-(0) Zn(OH)2+2e-=Zn+2OH--1.249 Ga(III)-(0) H2GaO3-+H2O+2e-=Ga+4OH--1.219 Zn(II)-(0) ZnO22-+2H2O+2e-=Zn+4OH--1.215 Cr(III)-(0) CrO2-+2H2O+3e-=Cr+4OH--1.2 Te(0)-(-I) Te+2e-=Te2--1.143 P(V)-(III) PO43-+2H2O+2e-=HPO32-+3OH--1.05*Zn(II)-(0) [Zn(NH3)4]2++2e-=Zn+4NH3-1.04*W(VI)-(0) WO42-+4H2O+6e-=W+8OH--1.01*Ge(IV)-(0) HGeO3-+2H2O+4e-=Ge+5OH--1.0Sn(IV)-(II) [Sn(OH)6]2-+2e-=HSnO2-+H2O+3OH--0.93S(VI)-(IV) SO42-+H2O+2e-=SO32-+2OH--0.93Se(0)-(-II) Se+2e-=Se2--0.924 Sn(II)-(0) HSnO2-+H2O+2e-=Sn+3OH--0.909P(0)-(-III) P+3H2O+3e-=PH3(g)+3OH--0.87N(V)-(IV) 2NO3-+2H2O+2e-=N2O4+4OH--0.85H(I)-(0) 2H2O+2e-=H2+2OH--0.8277 Cd(II)-(0) Cd(OH)2+2e-=Cd(Hg)+2OH--0.809 Co(II)-(0) Co(OH)2+2e-=Co+2OH--0.73Ni(II)-(0) Ni(OH)2+2e-=Ni+2OH--0.72As(V)-(III) AsO43-+2H2O+2e-=AsO2-+4OH--0.71Ag(I)-(0) Ag2S+2e-=2Ag+S2--0.691 As(III)-(0) AsO2-+2H2O+3e-=As+4OH--0.68Sb(III)-(0) SbO2-+2H2O+3e-=Sb+4OH--0.66*Re(VII)-(IV) ReO4-+2H2O+3e-=ReO2+4OH--0.59*Sb(V)-(III) SbO3-+H2O+2e-=SbO2-+2OH--0.59Re(VII)-(0) ReO4-+4H2O+7e-=Re+8OH--0.584 *S(IV)-(II) 2SO32-+3H2O+4e-=S2O32-+6OH--0.58Te(IV)-(0) TeO32-+3H2O+4e-=Te+6OH--0.57Fe(III)-(II) Fe(OH)3+e-=Fe(OH)2+OH--0.56S(0)-(-II) S+2e-=S2--0.47627 Bi(III)-(0) Bi2O3+3H2O+6e-=2Bi+6OH--0.46N(III)-(II) NO2-+H2O+e-=NO+2OH--0.46 *Co(II)-C(0) [Co(NH3)6]2++2e-=Co+6NH3-0.422 Se(IV)-(0) SeO32-+3H2O+4e-=Se+6OH--0.366 Cu(I)-(0) Cu2O+H2O+2e-=2Cu+2OH--0.360 Tl(I)-(0) Tl(OH)+e-=Tl+OH--0.34 *Ag(I)-(0) [Ag(CN)2]-+e-=Ag+2CN--0.31 Cu(II)-(0) Cu(OH)2+2e-=Cu+2OH--0.222 Cr(VI)-(III) CrO42-+4H2O+3e-=Cr(OH)3+5OH--0.13 *Cu(I)-(0) [Cu(NH3)2]++e-=Cu+2NH3-0.12 O(0)-(-I) O2+H2O+2e-=HO2-+OH--0.076 Ag(I)-(0) AgCN+e-=Ag+CN--0.017 N(V)-(III) NO3-+H2O+2e-=NO2-+2OH-0.01 Se(VI)-(IV) SeO42-+H2O+2e-=SeO32-+2OH-0.05 Pd(II)-(0) Pd(OH)2+2e-=Pd+2OH-0.07S(II,V)-(II) S4O62-+2e-=2S2O32-0.08 Hg(II)-(0) HgO+H2O+2e-=Hg+2OH-0.0977 Co(III)-(II) [Co(NH3)6]3++e-=[Co(NH3)6]2+0.108 Pt(II)-(0) Pt(OH)2+2e-=Pt+2OH-0.14 Co(III)-(II) Co(OH)3+e-=Co(OH)2+OH-0.17 Pb(IV)-(II) PbO2+H2O+2e-=PbO+2OH-0.247 I(V)-(-I) IO3-+3H2O+6e-=I-+6OH-0.26Cl(V)-(III) ClO3-+H2O+2e-=ClO2-+2OH-0.33 Ag(I)-(0) Ag2O+H2O+2e-=2Ag+2OH-0.342 Fe(III)-(II) [Fe(CN)6]3-+e-=[Fe(CN)6]4-0.358 Cl(VII)-(V) ClO4-+H2O+2e-=ClO3-+2OH-0.36*Ag(I)-(0) [Ag(NH3)2]++e-=Ag+2NH30.373 O(0)-(-II) O2+2H2O+4e-=4OH-0.401 I(I)-(-I) IO-+H2O+2e-=I-+2OH-0.485 *Ni(IV)-(II) NiO2+2H2O+2e-=Ni(OH)2+2OH-0.490 Mn(VII)-(VI) MnO4-+e-=MnO42-0.558 Mn(VII)-(IV) MnO4-+2H2O+3e-=MnO2+4OH-0.595 Mn(VI)-(IV) MnO42-+2H2O+2e-=MnO2+4OH-0.60 Ag(II)-(I) 2AgO+H2O+2e-=Ag2O+2OH-0.607 Br(V)-(-I) BrO3-+3H2O+6e-=Br-+6OH-0.61 Cl(V)-(-I) ClO3-+3H2O+6e-=Cl-+6OH-0.62 Cl(III)-(I) ClO2-+H2O+2e-=ClO-+2OH-0.66 I(VII)-(V) H3IO62-+2e-=IO3-+3OH-0.7 Cl(III)-(-I) ClO2-+2H2O+4e-=Cl-+4OH-0.76 Br(I)-(-I) BrO-+H2O+2e-=Br-+2OH-0.761 Cl(I)-(-I) ClO-+H2O+2e-=Cl-+2OH-0.841 *Cl(IV)-(III) ClO2(g)+e-=ClO2-0.95。
第二节 电极电势
第二节电极电势知识要点一、电极电势和电池电动势1.电极电势(金属-金属离子电极)在铜锌原电池中,为什么电子从Zn原子转移给Cu2+离子而不是从Cu原子转移给Zn2+离子?这与金属在溶液中的情况有关,一方面金属M表面构成晶格的金属离子和极性大的水分子互相吸引,有一种使金属棒上留下电子而自身以水合离子M n+(aq)的形式进入溶液的倾向,金属越活泼,溶液越稀,这种倾向越大,另一方面,盐溶液中的M n+(aq)离子又有一种从金属M表面获得电子而沉积在金属表面上的倾向,金属越不活泼,溶液越浓,这种倾向越大.这两种对立着的倾向在某种条件下达到暂时的平衡:M n+(aq)+ne-M在某一给定浓度的溶液中,若失去电子的倾向大于获得电子的倾向,到达平衡时的最后结果将是金属离子M n+进入溶液,使金属棒上带负电,靠近金属棒附近的溶液带正电,如右图所示,这时在金属和盐溶液之间产生电位差,这种产生在金属定于温度.在铜锌原电池中,Zn片与Cu片分别插在它们各自的盐溶液中,构成Zn2+/Zn电极与Cu2+/Cu电极.实验告诉我们,如将两电极连以导线,电子流将由锌电极流向铜电极,这说明Zn片上留下的电子要比Cu片上多,也就是Zn2+/Zn电极的上述平衡比Cu2+/Cu电极的平衡更偏于右方,或Zn2+/Zn电对与Cu2+/Cu电对两者具有不同的电极电势,Zn2+/Zn 电对的电极电势比Cu2+/Cu电对要负一些.由于两极电势不同,连以导线,电子流(或电流)得以通过.2.原电池的电动势电极电势φ表示电极中极板与溶液之间的电势差.当用盐桥将两个电极的溶液连通时,若认为两溶液之间等电势,则两极板之间的电势差即两电极的电极电势之差,就是电池的电动势.用 E 表示电动势,则有E=φ+-φ-若两电极的各物质均处于标准状态,则其电动势为电池的标准电动势,E○—=φ○—(+)-φ○—(-)电池中电极电势φ大的电极为正极,故电池的电动势 E 的值为正.有时计算的结果 E 为负值,这说明计算之前对于正负极的判断有误.E > 0 是氧化还原反应可以自发进行的判据.3.标准氢电极(气体-离子电极)电极电势的绝对值无法测量,只能选定某种电极作为标准,其他电极与之比较,求得电极电势的相对值,通常选定的是标准氢电极.标准氢电极是这样构成的:将镀有铂黑的铂片置于H+浓度(严格的说应为活度a)为 1.0mol·kg-1的硫酸溶液(近似为1.0mol·dm-3)中,如右图.然后不断地通入压力为1.013×105Pa的纯H2,使铂黑吸附H2达到饱和,形成一个氢电极.在这个电极的周围发生了如下的平衡:2H+ +2e-H2氢电极属于气体-离子电极.标准氢电极作为负极时,可以表示为Pt | H2(1.013×105Pa) | H+(1mol·dm-3)这时产生在标准氢电极和硫酸溶液之间的电势,叫做氢的标准电极电势,将它作为电极电势的相对标准,令其为零.在任何温度下都规定标准氢电极的电极电势为零(实际上电极电势同温度有关).所以很难制得上述那种标准氢电极,它只是一种理想电极.用标准氢电极与其他各种标准状态下的电极组成原电池,测得这些电池的电动势,从而计算各种电极的标准电极电势,通常测定时的温度为298K.所谓标准状态是指组成电极的离子其浓度为1mol·dm-3(对于氧化还原电极来讲,为氧化型离子和还原型离子浓度比为1),气体的分压为1.013×105Pa,液体或固体都是纯净物质.标准电极电势用符号φ○—表示.例如:标准氢电极与标准铜电极组成的电池,用电池符号表示为(-)Pt | H2(p○—) | H+(1mol·dm-3)‖Cu2+(1mol·dm-3) | Cu(+)在298K,用电位计测得该电池的电动势E○—= 0.34VE○—=φ○—(+)-φ○—(-),得φ○—(+) = E○—+φ○—(-),故φ○—( Cu2+/Cu)= E○—+φ○—(H+/H2)2-1=0.34V +0V=0.34V为测锌电极的电极电势,组成电池(-)Zn | Zn 2+(1mol·dm -3)‖H +(1mol·dm -3) | H 2(p ○—) | Pt(+) 用同样的的方法可测得该电池的电势为0.7628VE ○—=φ○—(+)-φ○—(-),得φ○— (-) =φ○— (+)-E ○—,故φ○— (Zn 2+/Zn)=φ○— (H +/H 2) – E ○—= 0V – 0.7629V= – 0.7628V 则Cu -Zn 电池(-)Zn | Zn 2+(1mol·dm -3)‖Cu 2+(1mol·dm -3) | Cu(+) 的电动势E ○—=φ○—Cu 2+/Cu- φ○—Zn 2+/Zn=0.34V -(-0.76V)=1.1V上述原电池装置不仅可以用来测定金属的标准电极电势,它同样可以用来测定非金属离子和气体的标准电极电势,对某些剧烈与水反应而不能直接测定的电极,例如Na +/Na,F 2/2F -等的电极则可以通过热力学数据用间接方法来计算标准电极电势.应当指出:所测得的标准电极电势φ○—是表示在标准条件下,某电极的电极电势.所谓标准条件是指以氢标准电极的电极电势φ○—H +/H2=0,电对的[氧化型]/[还原型]=1或[M n+]=1mol ·dm -3;T=298K.因此标准电极电势φ○—是相对值,实际上是该电极同氢电极组成电池的电动势,而不是电极与相应溶液间电位差的绝对值.二、 电极的类型及符号(四种电极) 1.金属-金属离子电极如 Zn 2+/Zn Cu 2+/Cu 等电极符号 Zn|Zn 2+ (c) Cu|Cu 2+ (c) 2.气体-离子电极如H +/H 2Cl 2/Cl -需用一个惰性固体导体如铂(Pt)或石墨. 电极符号 Pt,H 2(p)|H +(c) Pt,Cl 2(p)|Cl -(c) Pt 与H 2之间用逗号隔开,p 为气体的压力. 3.离子电极如 Fe 3+/Fe 2+ 等体系将惰性电极插入到同一种元素不同氧化态的两种离子的溶液中所组成的电极.电极符号 Pt|Fe 2+(c 1), Fe 3+(c 2)4.金属-金属难溶盐电极如 Hg 2Cl 2/Hg由金属及其难溶盐浸在含有难溶盐负离子溶液中组成的电极.电极符号 Pt,Hg,Hg 2Cl 2(s)|Cl -(c) 三、标准电极电势的应用 1. 标准电极电势表注意 ①标准电极电势的符号是正还是负,不因电极反应的写法而改变.如ZnZn 2+ + 2e -或ZnZn 2+ + 2e -对应的φ○—都是电对Zn 2+/Zn的标准电极电势.② 标准电极电势和得失电子数多少无关,即与半反应中的系数无关,例如C12+2e -2C1-,φ○—=1.358V .也可以书写为1/2C12+e-C1-,其φ○— 值(1.358V)不变.2. 判断判断氧化剂和还原剂的强弱标准电极电势高的电极,其氧化型的氧化能力强;标准电极电势低的电极,其还原型的还原能力强.于是根据标准电极电势表,原则上可以判断一种氧化还原反应进行的可能性.3.判断反应方向氧化还原反应进行的方向判断反应方向氧化还原反应进行的方向与多种因素有关,例如,反应物的性质,浓度、介质的酸度和温度等.但是多种因素存在时,内因是事物变化的根据,外因是变化的条件.当外界条件一定时,如皆取标准状态,反应的方向就取决于氧化剂或还原剂的本性.氧化还原反应发生的方向:强氧化型1+强还原型2 = 弱还原型1+弱氧化型2在标准状态下,标准电极电势较大的电对的氧化型能氧化标准电极电势数值较小的电对的还原型.这样判断氧化还原反应方向的根据是什么?将电池反应分解为两个电极反应,反应物中还原剂的电对作负极,反应物中氧化剂的电对作正极.当负极的电势更负,正极的电势更正,电子就可以自动地由负极流向正极.或者说,电流能自动地由正极流向负极.负极的还原型能将电子自动地给予正极的氧化型,电池电动势必须为正,即E>0,反应就能自动向右进行.例如:判断Zn+Cu2+=Zn2++Cu反应是否向右进行?分析将反应物中还原型和它的产物的电对作负极(-): Zn2++2e-=Zn,φ○— =-0.7628V将反应物中氧化型和它的产物的电对作正极(+): Cu2++2e-=Cuφ○—=0.337V查出标准电势,求出电池电动势:E○—=φ○—(+)-φ○—(-)=φ○—(Cu2+/Cu)-φ○—(Zn2+/Zn)=1.10V >0故反应向右进行.☆利用标准电极电势定量地判断氧化还原方向的具体步骤可总结如下:①首先,求出反应物和生成物中元素的氧化数,根据氧化数的变确定氧化剂和还原剂;②分别查出氧化剂电对的标准电极电势和还原剂电对的标准电极电势;③以反应物中还原型作还原剂,它的电对为负极,以反应物中氧化型作氧化剂,它的电对为正极,求出电池标准状态的电动势:E○—=φ○—(+)-φ○—(-)若E○—>0,则反应自发正向(向右)进行,以符号→表示;若E○—<0,则反应逆向(向左)进行,以符号←表示.五、元素电势图及其应用大多数非金属元素和过渡元素可以存在几种氧化态,各氧化态之间都有相应的标准电极电势,拉提默(Latimer)提出将它们的标准电极电势以图解方式表示,这种图称为元素电势图或拉提默图.比较简单的元素电势图是把同一种元素的各种氧化态按照高低顺序排成横列.关于氧化态的高低顺序有两种书写方式:一种是从左至右,氧化态由高到低排列(氧化型在左边,还原型在右边),另一种是从左到右,氧化态由低到高排列.两者的排列顺序恰好相反,所以使用时应加以注意.在两种氧化态之间若构成一个电对,就用一条直线把它们联接起来,并在上方标出这个电对所对应的标准电极电势.根据溶液的pH值不同,又可以分为两大类:φ○—A (A表示酸性溶液Acid solution)表示溶液的pH=0;φ○—B(B 表示碱性溶液Basic solution)表示溶液的pH=14.书写某一元素的元素电势图时,既可以将全部氧化态列出,也可以根据需要列出其中的一部分.例如碘的元素电势图:也可以列出其中的一部分,例如:从元素电势图不仅可以全面地看出一种元素各氧化态之间的电极电势高低和相互关系,而且可以判断哪些氧化态在酸性或碱性溶液中能稳定存在.现介绍以下几方面的应用.1.利用元素电势图求算某电对的未知的标准电极电势.若已知两个或两个以上的相邻电对的标准电极电势,即可求算出另一个电对的未知标准电极电势.例如某元素电势图为B Cφ○—1φ○—2Aφ○—高中化学竞赛辅导系列——电化学基础根据标准自由能变化和电对的标准电极电势关系,经过一系列变化,可得φ○—=n1φ○—1+ n2φ○—2n1+n2 (其中n1,n2分别为电对的电子转移数)2.判断歧化反应是否能够进行由某元素不同氧化态的三种物质所组成两个电对,按其氧化态由高到低排列如下:假设B能发生歧化反应,那么这两个电对所组成的电池电动势:E○—=φ○—正-φ○—负=φ○—右-φ○—左假设B能发生歧化反应,那么这两个电对所组成的电池电动势:E○—=φ○—右-φ○—左>0,即φ○—右>φ○—左根据以上原则,来看一看Cu+是否能够发生歧化反应?有关的电势图为:因为φ○—右>φ○—左,所以在酸性溶液中,Cu+离子不稳定,它将发生下列歧化反应:2Cu+=Cu+Cu2+又如铁的电势图因为φ○—右<φ○—左,Fe2+不能发生歧化反应.但是由于φ○—左>φ○—右,Fe3+/Fe2+电对中的Fe3+离子可氧化Fe生成Fe2+离子:Fe3++Fe=2Fe2+可将上面讨论的内容推广为一般规律:在元素电势图A —B —C中,若φ○—右>φ○—左,物质B将自发发生歧化反应,产物为A和C.若φ○—左>φ○—右,当溶液中有A 和C存在时,将自发地发生睦化反应的逆反应,产物为B.六、影响电极电势的因素1.定性的讨论如前所述,电极电势是电极和溶液间的电势差.这种电势差产生的原因,对于金属电极来讲,是由于在电极上存在M n++ne-M电极反应的缘故.对于氧化还原电极采讲(如Fe3+/Fe2+电极),是由于在惰性电极上存在Fe3++e-Fe2+电极反应的结果.因此,从平衡的角度上看,凡是影响上述平衡的因素都将影响电极电势的大小.显然,电极的本质、溶液中离子的浓度、气体的压强和温度等都是影响电极电势的重要因素,当然电极的种类是最根本的因素.对于一定的电极来讲,对电极电势影响较大的是离子的浓度,温度的影响较小.定性的看,在金属电极反应中,金属离子的浓度越大,则M n++ne-M 平衡向右移动,减少电极上的负电荷,使电极电势增大. M n+离子浓度越小,有更多的M失去电子变成M n+离子,从而增多电极上的负电荷,使电极电势减小.在Fe3++e-Fe2+电极反应中,增大Fe3+离子浓度或减小Fe2+离子浓度,都将使平衡向右移动,结果减少了电极上的负电荷,使电极电势增大.反之, 减少Fe3+离子浓度或增大Fe2+离子浓度,会使电极电势降低.总之,高氧化数(氧化型)离子的浓度越大,则电极电势越高;低氧化数(还原型)离子的浓度越大,则电极电势越低.换句话说, [氧化型]/[还原型] 越大,则电极电势越高.氧化型]或[还原型]表示氧化型物质(如Fe3+)或还原型物质(如Fe2+)的物质的量的浓度(严格的说应该是活度).2. 能斯特(Nernst)方程由热力学的关系式导,可得出电极电势同离子的浓度、温度等因素之间的定量关系——Nernst 方程:对电极反应氧化型+ne-=还原型有φ=φ○—+RTnF ln[氧化型][还原型]应用这个方程时应注意:①方程式中的[氧化型]和[还原型]并非专指氧化数有变化的物质,而是包括了参加电极反应的所有物质.②在电对中,如果氧化型或还原型物质的系数不是1,则[氧化型]或[还原型]要乘以与系数相同的方次.③如果电对中的某一物质是固体或液体,则它们A B Cφ○—左φ○—右氧化态降低Cu2++0.163+0.521φ○—A/v Cu+CuFe3++0.77+0.521φ○—A/v Fe2+Feφ左φ右φ○—左φ○—右的浓度均为常数,常认为是1.④如果电对中的某一物质是气体,它的浓度用气体分压来表示.典型例题例1 在稀H2SO4溶液中,KMnO4和FeSO4发生以下反应:MnO-4+H++Fe2+ Mn2++Fe3+如将此反应设计为原电池,写出正、负极的反应,电池反应和电池符号.解电极为离子电极,即将一金属铂片插入到含有Fe2+、Fe3+溶液中,另一铂片插入到含有MnO-4、Mn2+及H+ 的溶液中,分别组成负极和正极:负极反应: Fe2+=Fe3++ e-正极反应: MnO-4+8H++5e-=Mn2++4H2O电池反应:MnO-4+8H++5Fe2+=Mn2++5Fe3++ 4H2O 电池符号:(-)Pt|Fe2+(c1),Fe3+(c2)||MnO-4(c3),H+(c4),Mn2+(c5)|Pt (+)例2已知反应:AsO3-4+ I-→AsO3-3+ I2+H2O(未配平),现设计成如图的实验装置,进行下述操作:(Ⅰ)向(B)烧杯中逐滴加入浓盐酸发现微安表指针偏转;(Ⅱ)若改向(B)烧杯中滴加40%NaOH溶液,发现微安表指针向相反的方向偏转,试回答下列问题:⑴两次操作过程中指针为什么会发生偏转?⑵两次操作过程中指针偏转方向为什么相反?试用化学平衡移动的原理加以解释(3)(Ⅰ)操作中C1上发生的反应为,C2上发生的反应为 .(4)(Ⅱ)操作中C1上发生的反应为,C2上发生的反应为.分析(1)指针发生偏转表示有电流通过,说明形成了原电池,将化学能转化为电能.(2)在原电池中指针向负极一边偏转,两种操作指针偏转方向相反,说明总反应是一个可逆反应.加HCl与加NaOH时,发生的反应刚好相反即为可逆反应.从题给反应来看,加盐酸时,增大反应物H+浓度,平衡向正反应方向进行,加氢氧化钠时中和H+,减小反应物H+的浓度,平衡向逆反应方向进行,故两种操作刚好使得电子转移方向相反,故检流计的指针偏转方向相反.(3)加盐酸时,总反应向右进行,故C1上I-失电子生成I2,C2上AsO3-4得电子生成AsO3-3.(4)加氢氧化钠时,总反应向左进行,故I2得电子生成I-, AsO3-3失电子生成AsO3-4.解(1)形成了原电池,将化学能转化为电能.(2)该反应是一个可逆反应,加盐酸时,增大反应物H+浓度,平衡向正反应方向进行;加氢氧化钠时中和H+,减小反应物H+的浓度,平衡向逆反应方向进行.(3)C1:2I--2e-=I2,C2:AsO3-4+2e-+2H+= AsO3-3+H2O(4)C1:I2 +2e-=2I-,C2:AsO3-3-2e-+H2O= AsO3-4+2H+例3实验室制备氯气的方法之一是常用MnO2和浓度为12mol·L-1的浓HCl反应,而不用MnO2和浓度为1mol·L-1的稀HCl反应?请用电极电位说明理由.分析不仅酸、碱、盐之间进行离子互换反应是有条件的,同样地,氧化剂与还原剂之间的反应也是有条件的.条件是:⑴φ氧-φ还>0 反应向右进行⑵φ氧-φ还<0 反应向左进行⑶φ氧-φ还=0 反应达到平衡若氧化剂与还原剂的电位相差较大(一般大于0.2V)的情况下,可以用标准电极电位直接来判断.但是如果氧化剂与还原剂的电位相差较小(一般小于0.2V)时,由于溶液的浓度或酸度改变,均可引起电位的变化,从而可使反应方向改变.在这种情况下,必须算出非标准情况下的电位,然后才能进行判断.解MnO2与HCl的反应MnO2+4HCl=MnCl2+Cl2↑+2H2O 当HCl浓度为lmol·L-1时,按标准电极电位判断反应方向:MnO2+4H++2e-Mn2++2H2O φ○—=1.23VCl 2+2e-2Cl-φ○— =1.36V因为E ○— =φ○— (MnO 2/Mn 2+) -φ○—( Cl 2/ Cl -)=1.23V -1.36V=-0.13V<0,故MnO 2与lmol·l -1的稀HCl 不会发生反应. 当HCI 浓度为12mol·L-1的浓HCl时,[H +]=12mol·L -1.若 [Mn 2+]=lmol·L -1,此时氧化剂的电位为 φ(MnO 2/Mn 2+)=φ○—(MnO2/Mn 2+)+0.05912 lg [H +]4[Mn 2+]=1.23V+0.05912V lg124=1.38V当用12mol·L-1盐酸时,其[Cl -]=12mol·L -1.若p Cl 2=101.3kPa,此时还原剂的电位为 φ(Cl 2/Cl -)=φ○—(Cl 2/Cl -)+0.05912 lg p Cl 2[Cl -]2=1.36V+0.05912 Vlg 1122 =1.296V因为E=φ(MnO 2/Mn 2+)-φ(Cl 2/Cl -)=1.38V -1.296V=0.084V>0,所以MnO 2与浓HCl 反应就变成可以进行. 注意:①只有当两个电对的E ○— 值相差较小时,才能比较容易地通过改变溶液的酸度来改变反应的方向.受溶解度的限制,酸度的变化也是有限制的,不能认为酸度改变时一定能使原来不能进行的反应变得可以实现.②当用MnO 2与12mol·L -1浓盐酸反应时,不能利用标准电极电位来直接判断反应进行的方向,否则会得出相反的结论.用E ○— 判断结果与实际反应方向发生矛盾的原因在于:盐酸不是1mol·L -1,Cl 2分压也不一定是101.3kPa,加热也会改变电极电势的数值.由于化学反应常在非标准状态下进行,所以就应算出非标准状态下的电极电位,然后才能进行判断.例4 (2002) 镅(Am)是一种用途广泛的锕系元素.241Am 的放射性强度是镭的3倍,在我国各地商场里常常可见到241Am 骨密度测定仪,检测人体是否缺钙:用241Am 制作的烟雾监测元件已广泛用于我国各地建筑物的火警报警器(制作火警报警器的1片241Am 我国批发价仅10元左右).镅在酸性水溶液里的氧化态和标准电极电势(E/V)如下,图中2.62是Am 4+/Am 3+的标准电极电势,-2.07是Am 3+/Am 的标准电极电势,等等.一般而言,发生自发的氧化还原反应的条件是氧化剂的标准电极电势大于还原剂的标准电极电势.试判断金属镅溶于过量稀盐酸溶液后将以什么离子形态存在.简述理由.附:E (H +/H 2)=0V;E (Cl 2/Cl -)=1.36V ;E (O 2/H 2O)=1.23V . 【答案】要点1:E (Am n +/Am)<0, 因此Am 可与稀盐酸反应放出氢气转化为Am n +,n =2,3,4;但E (Am 3+/Am 2+)<0,Am 2+一旦生成可继续与H +反应转化为Am 3+.(1分)(或答:E (Am 3+/Am)<0,n =3)要点2:E (Am 4+/Am 3+)>E (AmO 2+/Am 4+), 因此一旦生成的Am 4+会自发歧化为AmO 2+和Am 3+.(2分)要点3:AmO 2+是强氧化剂,一旦生成足以将水氧化为O 2, 或将Cl -氧化为Cl 2,转化为Am 3+, 也不能稳定存在.(1分)相反AmO 2+是弱还原剂, 在此条件下不能被氧化为AmO 22+.要点4:Am 3+不会发生歧化(原理同上),可稳定存在.(1分)结论:镅溶于稀盐酸得到的稳定形态为Am 3+.练习题1.阿波罗宇宙飞船上,使用的是氢氧燃料电池,其电池反应为: 2H 2+ O 2→2H 2O,介质为75%的KOH 溶液.请用方程式填充.(1)电池的正极反应: ; (2)电池的负极反应: . 2.(1995江苏浙江)已知蓄电池在放电时起原电池的作用,充电时起电解他的作用.铅蓄电池在放电和充电时发生的化学反应可用下式表示:Pb +PbO 2+2H 2SO 42PbSO 4+2H 2O据此判断下列叙述中正确的是A. 放电时铅蓄电池负极的电极反应为: PbO 2+4H ++SO 42-十2e =PbSO 4+2H 2OB. 充电时铅蓄电池阴极的电极反应为;PbSO 4+2e -=Pb 2++SO 42-C. 用铅蓄电池来电解CuSO 4溶液,要生成1.6克Cu,电池内部要消耗0.05摩H2SO4D. 铅蓄电池充电时,若要使3.03千克PbSO4转变为Pb和PbO2,需通过20摩电子3.(2001北京)镍镉充电电池,电极材料是Cd和NiO(OH),电解质是KOH,电极反应分别是: Cd+2OH--2e=Cd(OH)22NiO(OH)+2H2O+2e=2Ni(OH)2+2OH-下列说法不正确的是A. 电池放电时,负极周围溶液的pH不断增大B. 电池的总反应是Cd+2NiO(OH)+2H2O=Cd(OH)2+2Ni(OH)2C. 电池充电时,镉元素被还原D. 电池充电时,电池的正极和电源的正极相连接4.(2003)下图是一种正在投入生产的大型蓄电系统.左右两侧为电解质储罐,中央为电池,电解质通过泵不断在储罐和电池间循环;电池中的左右两侧为电极,中间为离子选择性膜,在电池放电和充电时该膜可允许钠离子通过;放电前,被隔开的电解质为Na2S2和NaBr3,放电后,分别为Na2S4和NaBr.①左、右储罐中的电解质分别是________.②写出电池充电时,阳极和阴极的电极反应.③写出电池充、放电的反应方程式.④指出在充电过程中钠离子通过膜的流向.5.(2001)设计出燃料电池使汽油氧化直接产生电流是本世纪最富有挑战性的课题之一.最近有人制造了一种燃料电池,一个电极通入空气,另一电极通入汽油蒸气.电解质是掺杂了Y2O3的ZrO2晶体,它在高温下能传导O2-离子.回答如下问题:①以丁烷代表汽油,这个电池放电时发生的化学反应的化学方程式是____________________.②这个电池的正极发生的反应是_________;负极发生的反应是__________________;固体电解质里的O2-的移动方向是___________________;向外电路释放电子的电极是_________________.③人们追求燃料电池氧化汽油而不在内燃机里燃烧汽油产生动力的主要原因是___________.④你认为ZrO2晶体里掺杂Y2O3用Y3+代替晶体里部分Zr4+对提高固体电解质的导电能力起什么作用?其可能的原因是什么?⑤汽油燃料电池最大的障碍是氧化反应不完全产生__________堵塞电极的气体通道,有人估计,完全避免这种副反应至少还需10年时间,正是新一代化学家的历史使命.6.(1992)金属纳和金属铅的2︰5(摩尔比)的合金可以部分地溶解于液态氨,得到深绿色的溶液A,残留的固体是铅,溶解的成分和残留的成分的质量比为9.44︰1,溶液A可以导电,摩尔电导率的测定实验证实,溶液A中除液氨原有的少量离子(NH4+和NH2-)外只存在一种阳离子和一种阴离子(不考虑溶剂合,即氨合的成分),而且它们的个数比是4︰1,阳离子只带一个电荷.通电电解,在阳极上析出铅,在阴极上析出钠.用可溶于液氨并在液氨中电离的盐PbI2配制的PbI2的液氨溶液来滴定溶液A,达到等当点时,溶液A的绿色褪尽,同时溶液里的铅全部以金属铅的形式析出.回答下列问题:(1)写出溶液A中的电解质的化学式;(2)写出上述滴定反应的配平的离子方程式;(3)已知用于滴定的碘化铅的浓度为0.009854mol/L,达到等当点时消耗掉碘化铅溶液21.03毫升,问共析出金属铅多少克?附:铅的原子量207.2;钠的原子量22.99.练习题答案1. (1)正极反应:O2+2H2O+4e-=4OH-(2)负极反应:2H2+4OH--4e-=4H2O2. B C3. A4.解析:蓄电池的放电、充电过程就是电解质的氧化还原反应过程.氧化还原反应的实质是电子的转移,表现形式则是元素化合价的变化:化合价升高,发生氧化反应,该反应发生在电池的负极;相反化合价降低,发生还原反应,发生这一反应的是电池的正极.因此,只要找出电池放电前后元素化合价的变化,该题所有设问都会得以解答.由题给信息可知:电池放电时,电解质Na 2S 2→Na 2S 4,NaBr 3→NaBr ,其中S 元素的平均化合价由-1→-1/2, Br 元素的平均化合价由 -1/3→-1.由此可见,电池放电时,S 元素化合价升高,被氧化,是电池的负极;Br 元素化合价降低,被还原,是电池的正极.故第1问答案左边储罐(跟正极相连)中的电解质是NaBr 3和NaBr,右边储罐(跟负极相连)中的电解质是Na 2S 2和Na 2S 4.充电是放电的逆过程,是将放电时的还原产物NaBr 重新氧化为NaBr 3,将氧化产物Na 2S 4还原为Na 2S 2的过程.故第2问中阳极反应为:3NaBr -2e -= NaBr 3+2Na +, 阴极反应为:Na 2S 4+2Na ++2e -=2Na 2S 2. 第3问的充、放电反应方程式是第2问中两电极反应的和:2Na 2S 2+NaBr 3=Na 2S 4+3NaBr.从第2问的电极反应可知,充电时,阳极(左边)反应产生了“多余”的Na +,而阴极(右边)反应中则需要Na +,所以第4问中Na +的流动方向是从离子选择性膜的左边流向右边.第4问也可以这样理解:充电过程中,电池在外加电场的作用下,左边的电压高于右边,而Na +带正电荷,必然要从高电势的位置流向低电势的位置.答案 ①左:NaBr 3/NaBr(1分;只写一种也可)右:Na 2S 2/Na 2S 4(1分;只写一种也可)②阳极:3NaBr -2e -=NaBr 3+2Na +(1分) 阴极:Na 2S 4+2Na ++2e -=2Na 2S 2(1分)③2Na 2S 2+NaBr 3Na 2S 2+ NaBr 3Na 2S 4+NaBr 3Na 2S 4+3NaBr(1分) ④Na +的流向为从左到右.(1分)5. 解析:该题以燃料电池为载体,考查电池反应方程式和电极反应式的书写,电池内部电解质中离子的移动方向和外电路中电子移动方向的判断,燃料电池的优点和汽油燃料电池的工艺缺点等.第1问要求写出汽油燃料电池放电时的化学反应方程式,燃料电池的制作原理就是燃料气体被氧化剂氧化而发生了氧化还原反应,故该问化学反应方程式为:2C 4H 10+13O 2====8CO 2+10H 2O.第2问要求写出电池正负极的反应式.因为放电时,电池正极发生还原反应(元素化合价降低),负极发生氧化反应.所以正极反应式是:O 2+4e-===2O 2-(或13O 2+52e -===26O 2-),负极反应式是:C 4H 10+13O 2-—26e -===4CO 2+5H 2O(或2C 4H 10+26O 2-—52e -===8CO 2+10H 2O).由上述电池正、负极反应式可以看出:正极反应“源源不断”地产生O 2-,负极反应要持续进行,则需要“持续不断”的O 2-供应,故电池内O 2-的移动方向是由正极流向负极.电池的负极发生氧化反应,失掉电子,故外电路电子从负极流出.第3问考查了燃料电池的优点.燃料电池是将燃料燃烧反应所产生的化学能直接转化为电能的“能量转化器”,其能量转化率很高,可达70%以上,而内燃机的能量转化率较低.故该问答案为“燃料电池具有较高的能量转化率”.第4问要求参赛选手依据电荷守恒原理,得出掺有Y 2O 3的ZrO 2晶体中O 2-减少了,致使晶体中O 2-缺陷,从而使其在电场作用下向负极移动.故该问答案为:“为维持电荷平衡,晶体中的O 2-将减少,从而使O 2-得以在电场作用下向负极(或阳极)移动.”第5问的答案在题中已给出暗示,“氧化反应不完全”即汽油不完全燃烧.含碳化合物不完全燃烧的固体产物是碳,故第5问是“碳”堵塞了电极的气体通道. 答案① 2C 4H 10+13O 2=8 CO 2+10H 2O (1分) (必须配平;所有系数除2等方程式均应按正确论.) ② O 2+4e -=2 O 2– (2分)(O 2取其他系数且方程式配平也给满分.)C 4H 10+13O 2– –26e -=4 CO 2+5 H 2O(2分)(系数加倍也满分.)向负极移动;(1分;答向阳极移动或向通入汽油蒸气的电极移动也得满分.)负极.(1分;答阳极或通入汽油蒸气的电极也得满分)。
标准电极电势表(酸+碱)
0.761
68
BrO 3-+6H ++6e═ Br -+3H 2O
1.423
69
BrO 3-+3H 2O+6e═ Br -+6OH -
0.61
70
2BrO 3-+12H ++10e═Br 2+6H 2O
1.482
71
HBrO+H ++2e═Br -+H 2O
1.331
72
2HBrO+2H ++2e═Br 2(水溶液 ,aq)+2H 2O
0.465
9
Ag2CrO
4+2e═ 2Ag+CrO
24
0.447
10
AgF+e═ Ag+F -
6]+4e═ 4Ag+[Fe(CN) 6]4-
0.148
12
AgI+e ═ Ag+I -
-0.152
13
AgIO
3+e═ Ag+IO
3
0.354
14
Ag2MoO
4+2e═ 2Ag+MoO
2ClO 3-+12H ++10e═Cl 2+6H 2O
1.47
97
ClO 3-+6H ++6e═ Cl -+3H 2O
1.451
98
ClO 3-+3H 2O+6e═ Cl -+6OH -
0.62
99
ClO 4-+8H ++8e═ Cl -+4H 2O
最全最实用的电极电势表
最全最实用的电极电势表新年快到了想写一篇化学方面的文章作为总结吧,但是要查很多资料,事情也多,拖到现在。
其实这个电极电势,标准电极电势表,我读化学的时候就比较感兴趣,因为可以用它来判断元素和化合物在标准状况下氧化性,还原性的强弱,当时有些地方是不懂的,比如g,s都是什么意思,那个氟的标准电极电势是怎么来的,老师没有多讲,只是让我们记住常用的氧化剂,还原剂的电极电势数值就行了。
电极电势表,许多化学书,包括网上,有很多的,当然数据来源不同,数值有差别也是正常的,不能说谁对谁错。
我自己动手做个电极电势表,我的口的是实用,元素周期表118个元素,化合物更是成千上万,我们不可能一个一个去记住,知道常见的即可;有些数据化学家那里也是没有的。
另外既然标题有这个“最” 字,就要满足学生,以及化学爱好者的愿望,比如LI前最强的氧化剂是什么,最强的还原剂是什么,最实用的氧化剂是什么,等等;对于有异议的给予说明。
我列出的电极电势表将去除不常用的氧化剂和还原剂;对于零度以下不能存在的不在列出,比如二氟化二氧,虽然它在零下100度就有极强的氧化能力,如:在零下100度将钎迅速氧化到+6价,而氟,三氟化氯常温,甚至加热也不能将杯氧化到+6价氟只能将环氧化到+4价,+6价需要700摄氏度,用强紫外线照射才能发生反应;将氤氧化到+6价,氟需要加压加热。
但它在零下93度就会显著分解,零下57度迅速分解完。
大家只要知道它即使在极低温下氧化性也比氟强即可关于自由基,只列出疑基自由基OH-,其他象OF, XeF, KrF自山基,这些都属于很少见,瞬间存在的东西,这儿个自山基的氧化性以KrF最强,XeF最弱,我看到有些化学书籍上说XeF自山基的电极电势数值为3. 4,这个数值应该是佔汁值,XeF在普通条件下是不存在的,只是在加热或者强光照射合成二氟化氤,四氟化氤,六氟化氛的时候瞬间存在。
疑基自山基这个是常见的自111基,水溶液里就有。
如果把XeF列上,那么氮离子也可以列上。
标准氢电极的电极电势
标准氢电极的电极电势标准氢电极是电化学中常用的参比电极,它的电极电势被定义为零。
在标准状态下,标准氢电极的电极电势被规定为0V,用于作为其他电极电势的参比。
标准氢电极的电极电势对于电化学研究和实验具有非常重要的意义,下面我们将详细介绍标准氢电极的电极电势及其相关知识。
首先,标准氢电极是由铂电极和饱和的氢气电解液组成的。
在标准状态下,氢气的分压被定义为1大气压,电解液的酸度被定义为pH=0。
在这种条件下,铂电极与氢气电解液达到平衡,其电极电势被规定为0V。
因此,标准氢电极可以作为其他电极电势的参比,用于测定其他物质的氧化还原电位。
其次,标准氢电极的电极电势与温度密切相关。
在不同温度下,标准氢电极的电极电势会发生变化。
根据尼斯特方程,标准氢电极的电极电势与温度的关系可以用以下公式表示:E = E° (RT/nF)ln(Q)。
其中,E表示在特定温度下的标准氢电极的电极电势,E°表示在25摄氏度下的标准氢电极的电极电势,R表示气体常数,T表示温度,n表示电子转移的数量,F表示法拉第常数,Q表示电解质的活度积。
由此可见,标准氢电极的电极电势随温度的变化而变化,需要根据具体温度进行修正。
此外,标准氢电极的电极电势还受到溶液中氢离子活度的影响。
在实际应用中,通常使用玻璃电极和饱和甘汞电极来测定溶液中氢离子的活度,从而计算出标准氢电极的电极电势。
通过测定不同溶液中标准氢电极的电极电势,可以得到溶液中氢离子的活度,进而了解溶液的酸碱性质。
总的来说,标准氢电极是电化学研究中极为重要的参比电极,其电极电势的准确测定对于氧化还原反应的研究具有重要意义。
在实际应用中,需要注意标准氢电极的温度修正和溶液中氢离子活度的影响,以确保测定结果的准确性。
希望本文对标准氢电极的电极电势有所帮助,谢谢阅读!。
化合物氧化能力强弱的判断
化合物的氧化能力强弱可以通过以下几个方面来判断:
1. 标准电极电势(Standard Reduction Potential):
- 标准条件下,可以比较不同氧化剂在氧化还原反应中的电极电势。
标准电极电势越高,该氧化剂的氧化性越强。
2. 化学反应:
- 通过观察化合物在化学反应中作为氧化剂的表现,分析其能否将其他物质氧化至较高氧化态。
如果一个化合物能够容易地氧化其它物质,那么它的氧化性强。
3. 反应条件:
- 在相似条件下,若多个氧化剂作用于同一还原剂时,能较快进行反应并生成更稳定氧化产物的氧化剂,其氧化性较强。
4. 元素周期表位置:
- 同周期从左到右,非金属元素形成的化合物通常氧化性逐渐增强;同主族从上到下,非金属元素形成的化合物氧化性逐渐减弱。
5. 物质活动顺序:
- 对于一些常见金属离子的氧化能力,可以根据金属活动性顺序进行大致判断,例如金属活动性顺序可以反映金属阳离子作为氧化剂的能力。
6. 酸碱性与氧化性关系:
- 非金属最高价氧化物对应的水化物酸性强弱,一般情况下可以说明中心元素的氧化性强弱。
如高氯酸是无机酸中最强的,说明氯的氧化性相对较强。
7. 热力学数据:
ΔG值(吉布斯自由能变化)也可以间接反映氧化还原反应的可能性和氧化剂的强度。
当ΔG为负时,反应自发进行,此时氧化剂的氧化能力强。
综合以上因素,可以全面评估和比较不同化合物的氧化性强弱。
最全的标准电极电势(无表格版)
——标准电极电势表—-1 在酸性溶液中(298K)电对方程式E/VLi(I)-(0) Li++e-=Li -3。
0401 Cs(I)-(0)Cs++e-=Cs -3。
026 Rb(I)-(0) Rb++e-=Rb -2。
98 K(I)-(0)K++e-=K -2。
931 Ba(II)-(0)Ba2++2e-=Ba -2。
912 Sr(II)-(0)Sr2++2e-=Sr -2。
89 Ca(II)-(0) Ca2++2e-=Ca -2。
868 Na(I)-(0)Na++e-=Na -2。
71 La(III)-(0) La3++3e-=La -2.379 Mg(II)-(0)Mg2++2e-=Mg -2。
372 Ce(III)-(0) Ce3++3e-=Ce -2。
336 H(0)-(-I) H2(g)+2e-=2H--2.23Al(III)-(0) AlF63-+3e-=Al+6F--2.069 Th(IV)-(0)Th4++4e-=Th -1.899 Be(II)-(0)Be2++2e-=Be -1。
847 U(III)-(0)U3++3e-=U -1.798 Hf(IV)-(0)HfO2++2H++4e-=Hf+H2O -1。
724 Al(III)-(0)Al3++3e-=Al -1。
662 Ti(II)-(0) Ti2++2e-=Ti -1.630Zr(IV)-(0)ZrO2+4H++4e-=Zr+2H2O -1.553 Si(IV)-(0)[SiF6]2-+4e-=Si+6F--1。
24 Mn(II)-(0)Mn2++2e-=Mn -1.185 Cr(II)-(0)Cr2++2e-=Cr -0。
913 Ti(III)-(II)Ti3++e-=Ti2+-0。
9B(III)-(0) H3BO3+3H++3e-=B+3H2O -0。
8698 *Ti(IV)-(0)TiO2+4H++4e-=Ti+2H2O -0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电对方程式E /V
Ca(II)-(0) Ca(OH)2+2e-=Ca+2OH--3.02 Ba(II)-(0) Ba(OH)2+2e-=Ba+2OH--2.99 La(III)-(0) La(OH)3+3e-=La+3OH--2.90 Sr(II)-(0) Sr(OH)2·8H2O+2e-=Sr+2OH-+8H2O -2.88 Mg(II)-(0) Mg(OH)2+2e-=Mg+2OH--2.690 Be(II)-(0) Be2O32-+3H2O+4e-=2Be+6OH--2.63 Hf(IV)-(0) HfO(OH)2+H2O+4e-=Hf+4OH--2.50 Zr(IV)-(0) H2ZrO3+H2O+4e-=Zr+4OH--2.36 Al(III)-(0) H2AlO3-+H2O+3e-=Al+OH--2.33 P(I)-(0) H2PO2-+e-=P+2OH--1.82 B(III)-(0) H2BO3-+H2O+3e-=B+4OH--1.79 P(III)-(0) HPO32-+2H2O+3e-=P+5OH--1.71 Si(IV)-(0) SiO32-+3H2O+4e-=Si+6OH--1.697 P(III)-(I) HPO32-+2H2O+2e-=H2PO2-+3OH--1.65 Mn(II)-(0) Mn(OH)2+2e-=Mn+2OH--1.56 Cr(III)-(0) Cr(OH)3+3e-=Cr+3OH--1.48 *Zn(II)-(0) [Zn(CN)4]2-+2e-=Zn+4CN--1.26 Zn(II)-(0) Zn(OH)2+2e-=Zn+2OH--1.249 Ga(III)-(0) H2GaO3-+H2O+2e-=Ga+4OH--1.219 Zn(II)-(0) ZnO22-+2H2O+2e-=Zn+4OH--1.215 Cr(III)-(0) CrO2-+2H2O+3e-=Cr+4OH--1.2 Te(0)-(-I) Te+2e-=Te2--1.143 P(V)-(III) PO43-+2H2O+2e-=HPO32-+3OH--1.05
*Zn(II)-(0) [Zn(NH3)4]2++2e-=Zn+4NH3-1.04
*W(VI)-(0) WO42-+4H2O+6e-=W+8OH--1.01
*Ge(IV)-(0) HGeO3-+2H2O+4e-=Ge+5OH--1.0
Sn(IV)-(II) [Sn(OH)6]2-+2e-=HSnO2-+H2O+3OH--0.93
S(VI)-(IV) SO42-+H2O+2e-=SO32-+2OH--0.93
Se(0)-(-II) Se+2e-=Se2--0.924 Sn(II)-(0) HSnO2-+H2O+2e-=Sn+3OH--0.909
P(0)-(-III) P+3H2O+3e-=PH3(g)+3OH--0.87
N(V)-(IV) 2NO3-+2H2O+2e-=N2O4+4OH--0.85
H(I)-(0) 2H2O+2e-=H2+2OH--0.8277 Cd(II)-(0) Cd(OH)2+2e-=Cd(Hg)+2OH--0.809 Co(II)-(0) Co(OH)2+2e-=Co+2OH--0.73
Ni(II)-(0) Ni(OH)2+2e-=Ni+2OH--0.72
As(V)-(III) AsO43-+2H2O+2e-=AsO2-+4OH--0.71
Ag(I)-(0) Ag2S+2e-=2Ag+S2--0.691 As(III)-(0) AsO2-+2H2O+3e-=As+4OH--0.68
Sb(III)-(0) SbO2-+2H2O+3e-=Sb+4OH--0.66
*Re(VII)-(IV) ReO4-+2H2O+3e-=ReO2+4OH--0.59
*Sb(V)-(III) SbO3-+H2O+2e-=SbO2-+2OH--0.59
Re(VII)-(0) ReO4-+4H2O+7e-=Re+8OH--0.584 *S(IV)-(II) 2SO32-+3H2O+4e-=S2O32-+6OH--0.58
Te(IV)-(0) TeO32-+3H2O+4e-=Te+6OH--0.57
Fe(III)-(II) Fe(OH)3+e-=Fe(OH)2+OH--0.56
S(0)-(-II) S+2e-=S2--0.47627 Bi(III)-(0) Bi2O3+3H2O+6e-=2Bi+6OH--0.46
N(III)-(II) NO2-+H2O+e-=NO+2OH--0.46 *Co(II)-C(0) [Co(NH3)6]2++2e-=Co+6NH3-0.422 Se(IV)-(0) SeO32-+3H2O+4e-=Se+6OH--0.366 Cu(I)-(0) Cu2O+H2O+2e-=2Cu+2OH--0.360 Tl(I)-(0) Tl(OH)+e-=Tl+OH--0.34 *Ag(I)-(0) [Ag(CN)2]-+e-=Ag+2CN--0.31 Cu(II)-(0) Cu(OH)2+2e-=Cu+2OH--0.222 Cr(VI)-(III) CrO42-+4H2O+3e-=Cr(OH)3+5OH--0.13 *Cu(I)-(0) [Cu(NH3)2]++e-=Cu+2NH3-0.12 O(0)-(-I) O2+H2O+2e-=HO2-+OH--0.076 Ag(I)-(0) AgCN+e-=Ag+CN--0.017 N(V)-(III) NO3-+H2O+2e-=NO2-+2OH-0.01 Se(VI)-(IV) SeO42-+H2O+2e-=SeO32-+2OH-0.05 Pd(II)-(0) Pd(OH)2+2e-=Pd+2OH-0.07
S(II,V)-(II) S4O62-+2e-=2S2O32-0.08 Hg(II)-(0) HgO+H2O+2e-=Hg+2OH-0.0977 Co(III)-(II) [Co(NH3)6]3++e-=[Co(NH3)6]2+0.108 Pt(II)-(0) Pt(OH)2+2e-=Pt+2OH-0.14 Co(III)-(II) Co(OH)3+e-=Co(OH)2+OH-0.17 Pb(IV)-(II) PbO2+H2O+2e-=PbO+2OH-0.247 I(V)-(-I) IO3-+3H2O+6e-=I-+6OH-0.26
Cl(V)-(III) ClO3-+H2O+2e-=ClO2-+2OH-0.33 Ag(I)-(0) Ag2O+H2O+2e-=2Ag+2OH-0.342 Fe(III)-(II) [Fe(CN)6]3-+e-=[Fe(CN)6]4-0.358 Cl(VII)-(V) ClO4-+H2O+2e-=ClO3-+2OH-0.36
*Ag(I)-(0) [Ag(NH3)2]++e-=Ag+2NH30.373 O(0)-(-II) O2+2H2O+4e-=4OH-0.401 I(I)-(-I) IO-+H2O+2e-=I-+2OH-0.485 *Ni(IV)-(II) NiO2+2H2O+2e-=Ni(OH)2+2OH-0.490 Mn(VII)-(VI) MnO4-+e-=MnO42-0.558 Mn(VII)-(IV) MnO4-+2H2O+3e-=MnO2+4OH-0.595 Mn(VI)-(IV) MnO42-+2H2O+2e-=MnO2+4OH-0.60 Ag(II)-(I) 2AgO+H2O+2e-=Ag2O+2OH-0.607 Br(V)-(-I) BrO3-+3H2O+6e-=Br-+6OH-0.61 Cl(V)-(-I) ClO3-+3H2O+6e-=Cl-+6OH-0.62 Cl(III)-(I) ClO2-+H2O+2e-=ClO-+2OH-0.66 I(VII)-(V) H3IO62-+2e-=IO3-+3OH-0.7 Cl(III)-(-I) ClO2-+2H2O+4e-=Cl-+4OH-0.76 Br(I)-(-I) BrO-+H2O+2e-=Br-+2OH-0.761 Cl(I)-(-I) ClO-+H2O+2e-=Cl-+2OH-0.841 *Cl(IV)-(III) ClO2(g)+e-=ClO2-0.95。