算法设计与分析-习题参考答案
算法设计与分析习题答案
算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。
以下是一些典型的算法设计与分析习题及其答案。
习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。
答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。
这个过程会不断重复,直到找到目标值或搜索范围为空。
```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。
答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。
```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。
算法设计与分析习题答案1-6章
mid=(low+high)/2;
if (k<r[mid])high=mid-1;
elseif (k>r[mid]) low=mid+1;
else return mid;
}
return 0;
}
2.请写出折半查找的递归算法,并分析时间性能。
求两个正整数m和n的最小公倍数。(提示:m和n的最小公倍数lcm(m,n)与m和n的最大公约数gcd(m,n)之间有如下关系:lcm(m,n)=m×n/gcd(m,n))
设计递归算法生成n个元素的所有排列对象。
#include <iostream>
using namespace std;
int data[100];
设计分治算法求解一维空间上n个点的最近对问题。
参见4.4.1最近对问题的算法分析及算法实现
9. 在有序序列(r1,r2, …,rn)中,存在序号i(1≤i≤n),使得ri=i。请设计一个分治算法找到这个元素,要求算法在最坏情况下的时间性能为O(log2n)。
习题6
1.动态规划法为什么都需要填表如何设计表格的结构
在填写表格过程中,不仅可以使问题更加清晰,更重要的是可以确定问题的存储结构;
设计表格,以自底向上的方式计算各个子问题的解并填表。
2. 对于图所示多段图,用动态规划法求从顶点0到顶点12的最短路径,写出求解过程。
将该多段图分为四段;
首先求解初始子问题,可直接获得:
七桥问题属于一笔画问题。
输入:一个起点
输出:相同的点
1,一次步行
2,经过七座桥,且每次只经历过一次
3,回到起点
该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。另一类是只有二个奇点的图形。
算法设计与分析-习题参考答案
算法设计与分析基础习题1.15..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d一定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.7.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—山羊C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5.描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法DectoBin(n)//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.31.考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表‖60,35,81,98,14,47‖排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表‖60,35,81,98,14,47‖排序的过程如下所示:b.该算法不稳定.比如对列表‖2,2*‖排序c.该算法不在位.额外空间for S and Count[] 4.(古老的七桥问题)习题1.41.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i 个元素(1<=i<=n)b.删除有序数组的第i 个元素(依然有序) hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array ’s element(e.g., 0 for an array of positive numbers ) to mark the i th position is empty. (―lazy deletion ‖)第2章 习题2.17.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n )∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断言是正确的。
算法设计与分析习题解答
算法设计与分析习题解答第一章作业1.证明下列Ο、Ω和Θ的性质1)f=Ο(g)当且仅当g=Ω(f)证明:充分性。
若f=Ο(g),则必然存在常数c1>0和n0,使得?n≥n0,有f≤c1*g(n)。
由于c1≠0,故g(n) ≥ 1/ c1 *f(n),故g=Ω(f)。
必要性。
同理,若g=Ω(f),则必然存在c2>0和n0,使得?n≥n0,有g(n) ≥ c2 *f(n).由于c2≠0,故f(n) ≤ 1/ c2*f(n),故f=Ο(g)。
2)若f=Θ(g)则g=Θ(f)证明:若f=Θ(g),则必然存在常数c1>0,c2>0和n0,使得?n≥n0,有c1*g(n) ≤f(n) ≤ c2*g(n)。
由于c1≠0,c2≠0,f(n) ≥c1*g(n)可得g(n) ≤ 1/c1*f(n),同时,f(n) ≤c2*g(n),有g(n) ≥ 1/c2*f(n),即1/c2*f(n) ≤g(n) ≤ 1/c1*f(n),故g=Θ(f)。
3)Ο(f+g)= Ο(max(f,g)),对于Ω和Θ同样成立。
证明:设F(n)= Ο(f+g),则存在c1>0,和n1,使得?n≥n1,有F(n) ≤ c1 (f(n)+g(n))= c1 f(n) + c1g(n)≤ c1*max{f,g}+ c1*max{f,g}=2 c1*max{f,g}所以,F(n)=Ο(max(f,g)),即Ο(f+g)= Ο(max(f,g))对于Ω和Θ同理证明可以成立。
4)log(n!)= Θ(nlogn)证明:由于log(n!)=∑=ni i 1log ≤∑=ni n 1log =nlogn ,所以可得log(n!)= Ο(nlogn)。
由于对所有的偶数n 有,log(n!)= ∑=ni i 1log ≥∑=nn i i 2/log ≥∑=nn i n 2/2/log ≥(n/2)log(n/2)=(nlogn)/2-n/2。
算法分析与设计试题及答案
算法分析与设计试题及答案一、选择题1. 下列哪个是属于分治算法的例子?A. 冒泡排序B. 归并排序C. 顺序查找D. 选择排序答案:B2. 在排序算法中,时间复杂度最优的是:A. 冒泡排序B. 插入排序C. 归并排序D. 快速排序答案:C3. 哪个不是动态规划的特点?A. 具有重叠子问题B. 通过递归求解C. 需要保存子问题的解D. 具有最优子结构答案:B4. 在图的广度优先搜索算法中,使用的数据结构是:A. 栈B. 队列C. 数组D. 堆栈答案:B5. 在最小生成树算法中,下列哪个不属于贪心策略?A. Kruskal算法B. Prim算法C. Dijkstra算法D. Prim-Kruskal混合算法答案:C二、简答题1. 请简述分治算法的思想和应用场景。
答案:分治算法的思想是将原问题分解成若干个规模较小且类似的子问题,然后解决子问题,最后将子问题的解合并得到原问题的解。
其应用场景包括排序算法(如归并排序、快速排序)、搜索算法(如二分查找)等。
2. 什么是动态规划算法?请给出一个动态规划算法的示例。
答案:动态规划算法是一种通过将问题分解成子问题并解决子问题来解决复杂问题的方法。
它的特点是具有重叠子问题和最优子结构性质。
以斐波那契数列为例,可以使用动态规划算法求解每一项的值,而不需要重复计算。
3. 图的深度优先搜索和广度优先搜索有什么区别?答案:图的深度优先搜索(Depth First Search,DFS)是一种先访问子节点再访问兄弟节点的遍历算法,通常使用递归或者栈实现。
而广度优先搜索(Breadth First Search,BFS)则是以层次遍历的方式展开搜索,使用队列来实现。
DFS更适合用于搜索路径,BFS则适用于寻找最短路径等。
4. 请简述贪心算法的特点及其应用场景。
答案:贪心算法的特点是每一步都采取当前状态下最优的选择,以期望得到全局最优解。
然而,贪心算法并不一定能求解所有问题的最优解,但对于一些特定问题,贪心算法往往能得到近似最优解。
(陈慧南 第3版)算法设计与分析——第1章课后习题答案
第一章课后习题
姓名:赵文浩 学号:16111204082 班级:2016 级计算机科学与技术
1-4 证明等式 gcd(m,n)=gcd(n mod m, m) 对每对正整数 m 和 n,m>0 都成立。
1-13 写一个递归算法和一个迭代算法计算二项式系数:
#include<stdio.h> int Coef_recursive(int n,int m);//递归算法 int Coef_iteration(int n,int m);//迭代算法 int Factorial(int n);//计算 n 的阶乘 int main() { int n,m;
1-12 试用归纳法证明程序 1-7 的排列产生器算法的正确性。
证明:主函数中,程序调用 perm(a,0,n),实现排列产生器。 ① 当 n=1 时,即数组 a 中仅包含一个元素。函数内 k=0,与(n-1)=0 相等,因此函 数内仅执行 if(k==n-1)下的 for 语句块,且只执行一次。即将 a 数组中的一个元 素输出,实现了对一个元素的全排列。因此当 n=1 时,程序是显然正确的; ② 我们假设程序对于 n=k-1 仍能够满足条件, 将 k-1 个元素的全排列产生并输出; ③ 当 n=k 时,程序执行 else 下语句块的内容。首先执行 swap(a[0],a[0]),然后执 行 Perm(a,1,n),根据假设②可知,该语句能够产生以 a[0]为第一个元素,余下 (k-1)个元素的全排列; 然后再次执行 swap(a[0],a[0]), 并进行下一次循环。 此时 i=1, 即在本次循环中, 先执行 swap(a[0],a[1]), 将第二个元素与第一个元素互换, 下面执行 Perm(a,1,n), 根据假设②可知, 该语句产生以 a[1]为第一个元素, 余下(k-1)个元素的全排列; 以此类推,该循环每一次将各个元素调到首位,通过执行语句 Perm(a,1,n)以及 基于假设②,能够实现产生 k 个元素的全排列。 因此 n=k 时,程序仍满足条件。 ④ 综上所述,该排列器产生算法是正确的,证毕。
(完整版)算法设计与分析考试题及答案
一、填空题(20分)1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
黄宇《算法设计与分析》课后习题解析(二)精选全文
黄宇《算法设计与分析》课后习题解析(⼆)第2章:从算法的视⾓重新审视数学的概念2.1:(向下取整)题⽬:请计算满⾜下⾯两个条件的实数的区间解析:根据向下取整的含义,令,讨论a的取值范围即可解答:令,则可得:即:故的取值区间为:2.2: (取整函数)题⽬:证明:对于任意整数,(提⽰:将n划分为)。
解析:根据提⽰将n进⾏划分,根据取整函数的定义⽤k表⽰取整函数,即可证明;证明如下:因为对于任意整数,可划分为,则:① ;② ;综上:对于任意整数,, 得证;2.3: (斐波拉契数列)对于斐波拉契数列,请证明:1)题⽬:是偶数当且仅当n能被3整除解析:由斐波拉契数列的递归定义式,容易联想到数学归纳法;证明如下:(采⽤数学归纳法)i)当n = 1,2,3时,依次为1,1,2,符合命题;ii)假设当(k>=1)时命题均成⽴,则:① 当n = 3k+1时,是奇数,成⽴;② 当n = 3k+2时,是奇数,成⽴;③ 当 n = 3(k+1)时,是偶数,成⽴;综上:归纳可得为偶数当且仅当,得证;2)题⽬:x x =1+a (0<a <1)x =1+a (0<a <1)⌊x ⌋=1⇒⌊x ⌋=21⌊x ⌋=2⌊1+a +22a ⌋=1a +22a <1⇒0<a <−21⇒1<a +1<⇒21<x <2x (1,)2n ≥1⌈log (n +1)⌉=⌊logn ⌋+12≤k n ≤2−k +11n ≥12≤k n ≤2−k +11k +1=⌈log (2+k 1)⌉≤⌈log (n +1)⌉≤⌈log (2)⌉=k +1k +1=>⌈log (n +1)⌉=k +1k =⌊log (2)⌋≤k ⌊logn ⌋≤⌊log (2−k +11)⌋=k =>⌊logn ⌋=k n ≥1⌈log (n +1)⌉=k +1=⌊logn ⌋+1F n F n n ≤3k F =n F +n −1F =n −2F +3k F =3k −1>F 3k +1F =n F +3k +1F =3k >F 3k +2F =n F +3k +2F =3k +1>F 3k +3F n 3∣n F −n 2F F =n +1n −1(−1)n +1解析:同1)理,容易联想到数学归纳法证明如下:(采⽤数学归纳法)i)当n = 2时,, 易知成⽴;ii)假设当 n = k 时命题成⽴,① 若k = 2m, 则,当n = k+1 = 2m+1时,要证命题成⽴,即证: => ,代⼊递推式, 得:, 易知是恒等式,故命题成⽴;②当 k=2m+1时,同①理可证命题成⽴;综上:归纳可得,得证;2.4:(完美⼆叉树)给定⼀棵完美⼆叉树,记其节点数为,⾼度为,叶节点数为,内部节点数为1)题⽬:给定上述4个量中的任意⼀个,请推导出其他3个量解析:根据完美⼆叉树的结构特点易得解答:(仅以已知⾼度h推导其他三个量为例,其余同理)已知⾼度为h,可得:节点数:叶节点数:内部节点数:2)题⽬:请计算完美⼆叉树任意⼀层的节点个数:① 如果任意指定深度为的⼀层节点,请计算该层节点个数;② 如果任意指定⾼度为的⼀层节点,请计算该层节点个数;解析:根据完美⼆叉树的结构特点易得(注意节点深度和节点⾼度是互补的,相加为树⾼)解答:① ; ② ;2.5: (⼆叉树的性质)对于⼀棵⾮空的⼆叉树T,记其中叶节点的个数为,有1个⼦节点的节点个数为,有两个⼦节点的节点个数为1)题⽬:如果T是⼀棵2-tree,请证明。
《算法分析与设计》练习题一答案.docx
《算法分析与设计》练习题一答案1.程序书写格式应该遵循哪四个原则?参考答案:(1)正确使用缩进:一定要有缩进,否则代码的层次不明显。
(2)在一行内只写一条语句。
(3), '}'位置不可随意放置。
(4)变量和运算符之间最好加1个空格2.什么是算法?参考答案:用计算机解决问题的过程可以分成三个阶段:分析问题、设计算法和实现算法。
算法可以理解为冇基本运算及规定的运算顺序所构成的完整的解题步骤,它是求解问题类的、机械的、统一的方法,它由有限多个步骤组成,对于问题类屮每个给定的具体问题,机械地执行这些步骤就可以得到问题的解答。
或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
3.什么是线性结构?什么是非线性结构?参考答案:线性结构:数据逻辑结构屮的一类。
它的特征是若结构为非空集,则该结构有且只有一个开始结点和一个终端结点,并且所冇结点都冇R只冇一个直接前趋和一个直接后继。
线性表就是一个典型的线性结构。
栈、队列、串等都是线性结构。
非线性结构:数据逻辑结构中的另一大类,它的逻辑特征是一个结点可能有多个直接而趋和直接后继。
数组、广义表、树和图等数据结构都是非线性结构。
4.已知二叉树后序遍丿力序列是DABEC,屮序遍丿力序列是DEBAC,则前序遍历序列是什么?参考答案:前序遍历序列是CEDBA5.什么是数制?参考答案:数制是人们利用符号进行计数的一种科学方法。
数制也称计数制,是用一组固定的符号和统一的规则來表示数值的方法。
6.如果将十进制数106转换为八进制数,结果是多少?参考答案:1527.请问查找算法的效率用什么进行度量?参考答案:平均查找长度ASL:在查找其关键字等于给定值的过程小,需要和给定值进行比较的关键字个数的期望值称为查找成功吋的平均查找长度。
AS厶=£皿/=1其屮,n是结点的个数;是杳找第i个结点的概率,是找到第i个结点所需要的比较次数。
算法设计与分析(第2版) 王红梅 胡明 习题参考答案
usingnamespacestd;
intmain()
{
longdoubleresult=1;
doublej=1;
for(inti=1;i<=64;++i)
{
j=j*2;
result+=j;
j++;
}
cout<<result<<endl;
return0;
}
习题3
1.假设在文本"ababcabccabccacbab"中查找模式"abccac",写出分别采用BF算法和KMP算法的串匹配过
else
value=a[i+2]-a[i+1];
}
cout<<value<<endl;
return0;
}
4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。要求分别给出伪代码和C++描述。
#include<iostream>
usingnamespacestd;
{
if(n==1)
return4;
elseif(n>1)
return3*T(n-1);
}
(2)
intT(intn)
{
if(n==1)
return1;
elseif(n>1)
return2*T(n/3)+n;
}
5.求下列问题的平凡下界,并指出其下界是否紧密。
(1)求数组中的最大元素;
(2)判断邻接矩阵表示的无向图是不是完全图;
田翠华著《算法设计与分析》课后习题参考答案
参考答案第1章一、选择题1. C2. A3. C4. C A D B5. B6. B7. D 8. B 9. B 10. B 11. D 12. B二、填空题1. 输入;输出;确定性;可行性;有穷性2. 程序;有穷性3. 算法复杂度4. 时间复杂度;空间复杂度5. 正确性;简明性;高效性;最优性6. 精确算法;启发式算法7. 复杂性尽可能低的算法;其中复杂性最低者8. 最好性态;最坏性态;平均性态9. 基本运算10. 原地工作三、简答题1. 高级程序设计语言的主要好处是:(l)高级语言更接近算法语言,易学、易掌握,一般工程技术人员只需要几周时间的培训就可以胜任程序员的工作;(2)高级语言为程序员提供了结构化程序设计的环境和工具,使得设计出来的程序可读性好,可维护性强,可靠性高;(3)高级语言不依赖于机器语言,与具体的计算机硬件关系不大,因而所写出来的程序可移植性好、重用率高;(4)把复杂琐碎的事务交给编译程序,所以自动化程度高,发用周期短,程序员可以集中集中时间和精力从事更重要的创造性劳动,提高程序质量。
2. 使用抽象数据类型带给算法设计的好处主要有:(1)算法顶层设计与底层实现分离,使得在进行顶层设计时不考虑它所用到的数据,运算表示和实现;反过来,在表示数据和实现底层运算时,只要定义清楚抽象数据类型而不必考虑在什么场合引用它。
这样做使算法设计的复杂性降低了,条理性增强了,既有助于迅速开发出程序原型,又使开发过程少出差错,程序可靠性高。
(2)算法设计与数据结构设计隔开,允许数据结构自由选择,从中比较,优化算法效率。
(3)数据模型和该模型上的运算统一在抽象数据类型中,反映它们之间内在的互相依赖和互相制约的关系,便于空间和时间耗费的折衷,灵活地满足用户要求。
(4)由于顶层设计和底层实现局部化,在设计中出现的差错也是局部的,因而容易查找也容易2 算法设计与分析纠正,在设计中常常要做的增、删、改也都是局部的,因而也都容易进行。
《算法设计与分析》试卷及答案
《算法设计与分析》试卷1一、多项选择题(每空2分, 共20分):1.以下关于算法设计问题的叙述中正确的是__________。
A.计算机与数值问题的求解——方程式求根、插值问题、数值积分、函数逼近等有关B.利用计算机无法解决非数值问题C.计算机在解决分类、语言翻译、图形识别、解决高等代数和组合分析等方面的数学问题、定理证明、公式推导乃至日常生活中各种过程的模拟等问题中, 主要进行的是判断、比较, 而不是算术运算D、算法设计与分析主要研究对象是非数值问题, 当然也包含某些数值问题2.算法的特征包括_________。
A.有穷性B、确定性C.输入和输出D.能行性或可行性3、以下描述是有关算法设计的基本步骤:①问题的陈述②算法分析③模型的拟制④算法的实现⑤算法的详细设计⑥文档的编制, 应与其它环节交织在一起其中正确的顺序是__________。
A.①②③④⑤⑥B.①③⑤②④⑥C.②④①③⑤⑥D.⑥①③⑤②④4.以下说法正确的是__________。
A.数学归纳法可以证明算法终止性B.良序原则是证明算法的正确性的有力工具C. x = 小于或等于x的最大整数(x的低限)D. x = 小于或等于x的最大整数(x的高限)5、汉诺塔(Hanoi)问题中令h(n)为从A移动n个金片到C上所用的次数, 则递归方程为__________, 其初始条件为__________, 将n个金片从A柱移到C柱上的移动次数是__________;设菲波那契(Fibonacci)数列中Fn为第n个月时兔子的对数, 则有递归方程为__________, 其中F1=F2=__________。
A.Fn=Fn-1+Fn-2 B、h(n)= 2h(n-1)+1C.1 D、h(1)= 1E、h(n)=2n-1F、06.在一个有向连通图中(如下图所示), 找出点A到点B的一条最短路为____ ______。
A.最短路: 1→3→5→8→10, 耗费: 20B、最短路:1→4→6→9→10, 耗费:16C.最短路: 1→4→6→9, 耗费: 12D.最短路: 4→6→9→10, 耗费: 13二、填空(每空2分, 共20分):1.快速排序法的基本思想是重新排列关键字, 把一个文件分成两个文件, 使得第一个文件中所有元素均小于第二个文件中的元素;然后再对两个子文件进行同样的处理。
算法设计与分析答案参考
1、用 Floyd 算法求下图每一对顶点之间的最短路径长度,计算矩阵D0,D1,D2和 D3,其中 D k [i, j] 表示从顶点 i 到顶点 j 的不经过编号大于 k 的顶点的最短路径长度。
解020202072D 0306D 1305D 2305D 330510501050850850在每条边的矩阵行中依次加入顶点1,2,3,判断有无最短路径2、设有 n=2k个运动员要进行循环赛,现设计一个满足以下要求的比赛日程表:①每个选手必须与其他 n-1 名选手比赛各一次;②每个选手一天至多只能赛一次;③循环赛要在最短时间内完成。
(1)如果 n=2k,循环赛最少需要进行几天;(2)当 n=23=8 时,请画出循环赛日程表。
1234567821436587解:(1)至少要进行 n 天3412785643218765(2)如右图:567812346587214378563412876543213、对于下图使用Dijkstra算法求由顶点 a 到顶点 h 的最短路径。
b e2g212a d233218c f2h解:用 V1表示已经找到最短路径的顶点, V2表示与 V1中某个顶点相邻接且不在 V1中的顶点; E1表示加入到最短路径中的边, E2为与 V1中的顶点相邻接且距离最短的路径。
步骤V 1V2E1 E 21.{a}{b}{}{ab}2.{a,b}{d}{ab}{bd}3.{a,b,d}{c,f}{ab,bd}{dc,df}4.{a,b,d,c}{f}{ab,bd}{df}5.{a,b,c,d,f}{e}{ab,bd,dc,df}{fe}6.{a,b,c,d,e,f}{g}{ab,bd,dc,df,fe}{eg}7.{a,b,c,d,e,f,g}{h}{ab,bd,dc,df,fe,eg}{gh}8.{a,b,c,d,e,f,g,h}{}{ab,bd,de,df,fe,eg,gh}{}结果:从 a 到 h 的最短路径为a b dfe g h ,权值为18。
《算法设计与分析实用教程》习题参考解答
《算法设计与分析实用教程》习题参考解答《算法设计与分析实用教程》参考解答1-1 加减得1的数学游戏西西很喜欢数字游戏,今天他看到两个数,就想能否通过简单的加减,使最终答案等于1。
而他又比较厌烦计算,所以他还想知道最少经过多少次才能得到1。
例如,给出16,9:16-9+16-9+16-9-9-9+16-9-9=1,需要做10次加减法计算。
设计算法,输入两个不同的正整数,输出得到1的最少计算次数。
(如果无法得到1,则输出-1)。
(1)若输入两个不同的正整数a,b均为偶数,显然不可能得到1。
设x*a与y*b之差为“1”或“-1”,则对于正整数a,b经n=x+y-1次加减可得到1。
为了求n的最小值,令n从1开始递增,x在1——n中取值,y=n+1-x:检测d=x*a+y*b,若d=1或-1,则n=x+y-1为所求的最少次数。
(2)算法描述// 两数若干次加减结果为1的数学游戏#includevoid main(){long a,b,d,n,x,y;printf(" 请输入整数a,b: ");scanf("%ld,%ld",&a,&b);if(a%2==0 && b%2==0){ printf(" -1\n");return;}n=0;while(1){ n++;for(x=1;x<=n;x++){ y=n+1-x;d=x*a-y*b;if(d==1 || d==-1) // 满足加减结果为1{ printf(" n=%ld\n",n);return;}}}}请输入整数a,b: 2012,19961请输入整数a,b: 101,20136061-2 埃及分数式算法描述分母为整数分子为“1”的分数称埃及分数,试把真分数a/b 分解为若干个分母不为b 的埃及分数之和。
(1)寻找并输出小于a/b 的最大埃及分数1/c ;(2)若c>900000000,则退出;(3)若c ≤900000000,把差a/b-1/c 整理为分数a/b ,若a/b 为埃及分数,则输出后结束。
算法设计与分析习题答案1-6章
习题11. 图论诞生于七桥问题。
出生于瑞士的伟大数学家欧拉(LeonhardEuler ,1707—1783)提出并解决了该问题。
七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图是这条河以及河上的两个岛和七座桥的草图。
请将该问题的数据模型抽象出来,并判断此问题是否有解。
七桥问题属于一笔画问题。
输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
图 七桥问题南2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。
请用伪代码描述这个版本的欧几里德算法=m-n2.循环直到r=0m=nn=rr=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。
要求分别给出伪代码和C++描述。
编写程序,求n至少为多大时,n个“1”组成的整数能被2013整除。
#include<iostream>using namespace std;int main(){double value=0;for(int n=1;n<=10000 ;++n){value=value*10+1;if(value%2013==0){cout<<"n至少为:"<<n<<endl;break;}}计算π值的问题能精确求解吗编写程序,求解满足给定精度要求的π值#include <iostream>using namespace std;int main (){double a,b;double arctan(double x);圣经上说:神6天创造天地万有,第7日安歇。
为什么是6天呢任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。
算法分析与设计作业及参考答案
算法分析与设计作业及参考答案作业题目1、请分析冒泡排序算法的时间复杂度和空间复杂度,并举例说明其在什么情况下性能较好,什么情况下性能较差。
2、设计一个算法,用于在一个已排序的整数数组中查找特定元素。
要求算法的时间复杂度为 O(log n)。
3、比较贪心算法和动态规划算法的异同,并举例说明它们在实际问题中的应用。
参考答案一、冒泡排序算法的分析冒泡排序(Bubble Sort)是一种简单的排序算法。
它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。
1、时间复杂度最坏情况:数组完全逆序,需要进行 n(n 1) / 2 次比较和交换操作,时间复杂度为 O(n^2)。
最好情况:数组已经有序,不需要进行交换操作,只需要进行 n 1 次比较,时间复杂度为 O(n)。
平均情况:时间复杂度也为 O(n^2)。
2、空间复杂度冒泡排序只在交换元素时使用了临时变量,空间复杂度为 O(1),是一个原地排序算法。
3、性能分析性能较好的情况:当数组规模较小且接近有序时,冒泡排序的性能相对较好。
因为在这种情况下,比较和交换的次数相对较少。
性能较差的情况:当数组规模较大且无序程度较高时,冒泡排序的性能会非常差。
因为需要进行大量的比较和交换操作,时间消耗很大。
例如,对于数组 2, 1, 3, 5, 4,冒泡排序需要经过多次比较和交换才能将其排序为 1, 2, 3, 4, 5。
而对于已经有序的数组 1, 2, 3, 4, 5,冒泡排序只需要进行较少的比较操作就能确定数组已经有序。
二、在已排序数组中查找特定元素的算法设计对于在已排序的整数数组中查找特定元素,我们可以使用二分查找(Binary Search)算法。
二分查找的基本思想是:将数组从中间分成两部分,比较目标元素与中间元素的大小,如果目标元素小于中间元素,则在左半部分继续查找;如果目标元素大于中间元素,则在右半部分继续查找;如果目标元素等于中间元素,则查找成功。
算法设计与分析课后答案
5..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d一定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.7.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—山羊C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5.描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法DectoBin(n)//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.31.考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表‖60,35,81,98,14,47‖排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表‖60,35,81,98,14,47‖排序的过程如下所示:b.该算法不稳定.比如对列表‖2,2*‖排序c.该算法不在位.额外空间for S and Count[]4.(古老的七桥问题)习题1.41.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i 个元素(1<=i<=n)b.删除有序数组的第i 个元素(依然有序) hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array ’s element(e.g., 0 for an array of positive numbers ) to mark the i th position is empty. (―lazy deletion ‖)第2章 习题2.17.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n )∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断言是正确的。
《算法设计与分析实用教程》习题参考解答
《算法设计与分析实用教程》参考解答1-1 加减得1的数学游戏西西很喜欢数字游戏,今天他看到两个数,就想能否通过简单的加减,使最终答案等于1。
而他又比较厌烦计算,所以他还想知道最少经过多少次才能得到1。
例如,给出16,9:16-9+16-9+16-9-9-9+16-9-9=1,需要做10次加减法计算。
设计算法,输入两个不同的正整数,输出得到1的最少计算次数。
(如果无法得到1,则输出-1)。
(1)若输入两个不同的正整数a,b均为偶数,显然不可能得到1。
设x*a与y*b之差为“1”或“-1”,则对于正整数a,b经n=x+y-1次加减可得到1。
为了求n的最小值,令n从1开始递增,x在1——n中取值,y=n+1-x:检测d=x*a+y*b,若d=1或-1,则n=x+y-1为所求的最少次数。
(2)算法描述// 两数若干次加减结果为1的数学游戏#include <stdio.h>void main(){long a,b,d,n,x,y;printf(" 请输入整数a,b: ");scanf("%ld,%ld",&a,&b);if(a%2==0 && b%2==0){ printf(" -1\n");return;}n=0;while(1){ n++;for(x=1;x<=n;x++){ y=n+1-x;d=x*a-y*b;if(d==1 || d==-1) // 满足加减结果为1{ printf(" n=%ld\n",n);return;}}}}请输入整数a,b: 2012,19961请输入整数a,b: 101,20136061-2 埃及分数式算法描述分母为整数分子为“1”的分数称埃及分数,试把真分数a/b 分解为若干个分母不为b 的埃及分数之和。
(1) 寻找并输出小于a/b 的最大埃及分数1/c ; (2) 若c>900000000,则退出;(3) 若c ≤900000000,把差a/b-1/c 整理为分数a/b ,若a/b 为埃及分数,则输出后结束。
算法设计与分析-课后习题集答案
第一章3. 最大公约数为1。
快1414倍。
程序1-2的while 循环体做了10次,程序1-3的while 循环体做了14141次(14142-2循环)8.(1)画线语句的执行次数为log n ⎡⎤⎢⎥。
(log )n O 。
(2)画线语句的执行次数为111(1)(21)16jnii j k n n n ===++=∑∑∑。
3()n O 。
(3)画线语句的执行次数为。
O 。
(4)当n 为奇数时画线语句的执行次数为(1)(1)4n n +-, 当n 为偶数时画线语句的执行次数为 (2)4n n +。
2()n O 。
10.(1) 当 1n ≥ 时,225825n n n -+≤,所以,可选 5c =,01n =。
对于0n n ≥,22()5825f n n n n =-+≤,所以,22582()-+=O n n n 。
(2) 当 8n ≥ 时,2222582524n n n n n -+≥-+≥,所以,可选 4c =,08n =。
对于0n n ≥,22()5824f n n n n =-+≥,所以,22582()-+=Ωn n n 。
(3) 由(1)、(2)可知,取14c =,25c =,08n =,当0n n ≥时,有22212582c n n n c n ≤-+≤,所以22582()-+=Θn n n 。
11. (1) 当3n ≥时,3log log n n n <<,所以()20log 21f n n n n =+<,3()log 2g n n n n =+>。
可选212c =,03n =。
对于0n n ≥,()()f n cg n ≤,即()(())f n g n =O 。
(2) 当 4n ≥ 时,2log log n n n <<,所以 22()/log f n n n n =<,22()log g n n n n =≥。
可选 1c =,04n =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法设计与分析基础习题1.15..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d一定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.7.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—山羊C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5.描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法DectoBin(n)//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.31.考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表‖60,35,81,98,14,47‖排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表‖60,35,81,98,14,47‖排序的过程如下所示:b.该算法不稳定.比如对列表‖2,2*‖排序c.该算法不在位.额外空间for S and Count[] 4.(古老的七桥问题)习题1.41.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i 个元素(1<=i<=n)b.删除有序数组的第i 个元素(依然有序) hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array ’s element(e.g., 0 for an array of positive numbers ) to mark the i th position is empty. (―lazy deletion ‖)第2章 习题2.17.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n )∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断言是正确的。
它指出如果t(n)的增长率小于或等于g(n)的增长率,那么 g(n)的增长率大于或等于t(n)的增长率由 t(n )≤c ·g(n) for all n ≥n0, where c>0则:)()()1(n g n t c ≤ for all n ≥n0b. 这个断言是正确的。
只需证明))(())(()),(())((n g n g n g n g ααΘ⊆ΘΘ⊆Θ。
设f(n)∈Θ(αg(n)),则有:)()(n g c n f α≤ for all n>=n0, c>0)()(1n g c n f ≤ for all n>=n0, c1=c α>0即:f(n)∈Θ(g(n))又设f(n)∈Θ(g(n)),则有:)()(n cg n f ≤ for all n>=n0,c>0)()()(1n g c n g cn f ααα=≤for all n>=n0,c1=c/α>0即:f(n)∈Θ(αg(n))8.证明本节定理对于下列符号也成立: a.Ω符号 b.Θ符号 证明:a 。
we need to proof that if t 1(n)∈Ω(g 1(n)) and t 2(n)∈Ω(g 2(n)), then t 1(n)+ t 2(n)∈Ω(max{g 1(n), g 2(n)})。
由 t 1(n)∈Ω(g 1(n)),t 1(n)≥c 1g 1(n) for all n>=n1, where c1>0 由 t 2(n)∈Ω(g 2(n)),T 2(n)≥c 2g 2(n) for all n>=n2, where c2>0 那么,取c>=min{c1,c2},当n>=max{n1,n2}时: t 1(n)+ t 2(n)≥c 1g 1(n)+ c 2g 2(n) ≥c g 1(n)+c g 2(n)≥c[g 1(n)+ g 2(n)] ≥cmax{ g 1(n), g 2(n)} 所以以命题成立。
b. t 1(n)+t 2(n) ∈Θ()))(2),(1max(n g n g证明:由大Ⓗ的定义知,必须确定常数c1、c2和n0,使得对于所有n>=n0,有:))(2),(1max()(2)(1))(2),(1max((1n g n g n t n t n g n g c ≤+≤由t 1(n)∈Θ(g1(n))知,存在非负整数a1,a2和n1使: a1*g1(n)<=t 1(n)<=a2*g1(n)-----(1)由t 2(n)∈Θ(g2(n))知,存在非负整数b1,b2和n2使: b1*g2(n)<=t 2(n)<=b2*g2(n)-----(2) (1)+(2):a1*g1(n)+ b1*g2(n)<=t1(n)+t2(n) <= a2*g1(n)+ b2*g2(n) 令c1=min(a1,b1),c2=max(a2,b2),则C1*(g1+g2)<= t 1(n)+t 2(n) <=c2(g1+g2)-----(3) 不失一般性假设max(g1(n),g2(n))=g1(n).显然,g1(n)+g2(n)<2g1(n),即g1+g2<2max(g1,g2)又g2(n)>0,g1(n)+g2(n)>g1(n),即g1+g2>max(g1,g2)。
则(3)式转换为:C1*max(g1,g2) <= t 1(n)+t 2(n) <=c2*2max(g1,g2)所以当c1=min(a1,b1),c2=2c2=2max(c1,c2),n0=max(n1,n2)时,当n>=n0时上述不等式成立。
证毕。
习题2.41. 解下列递推关系 (做a,b )a.解:b. 解:2. 对于计算n!的递归算法F(n),建立其递归调用次数的递推关系并求解。
解:3. 考虑下列递归算法,该算法用来计算前n 个立方的和:S(n)=13+23+…+n3。
算法S(n)//输入:正整数n//输出:前n 个立方的和 if n=1 return 1⎩⎨⎧=+-=0)1(5)1()(x n x n x ⎩⎨⎧=-=4)1()1(3)(x n x n x 当n>1时当n>1时else return S(n-1)+n*n*na. 建立该算法的基本操作次数的递推关系并求解b. 如果将这个算法和直截了当的非递归算法比,你做何评价?解:a.7. a. 请基于公式2n=2n-1+2n-1,设计一个递归算法。
当n是任意非负整数的时候,该算法能够计算2n的值。
b. 建立该算法所做的加法运算次数的递推关系并求解c. 为该算法构造一棵递归调用树,然后计算它所做的递归调用次数。
d. 对于该问题的求解来说,这是一个好的算法吗?解:a.算法power(n)//基于公式2n=2n-1+2n-1,计算2n//输入:非负整数n//输出: 2n的值If n=0 return 1Else return power(n-1)+ power(n-1)c.习题2.61.考虑下面的排序算法,其中插入了一个计数器来对关键比较次数进行计数.算法SortAnalysis(A[0..n-1])//input:包含n个可排序元素的一个数组A[0..n-1]//output:所做的关键比较的总次数count←0for i←1 to n-1 dov←A[i]j←i-1while j>0 and A[j]>v docount←count+1A[j+1]←A[j]j←j+1A[j+1]←vreturn count比较计数器是否插在了正确的位置?如果不对,请改正.解:应改为:算法SortAnalysis(A[0..n-1])//input:包含n个可排序元素的一个数组A[0..n-1]//output:所做的关键比较的总次数count←0for i←1 to n-1 dov←A[i]j←i-1while j>0 and A[j]>v docount←count+1A[j+1]←A[j]j←j+1if j>=0 count=count+1A[j+1]←vreturn count6.选择排序是稳定的吗?(不稳定)7.用链表实现选择排序的话,能不能获得和数组版相同的Θ(n2)效率?Yes.Both operation—finding the smallest element and swapping it –can be done as efficiently with the linked list as with an array.9.a.请证明,如果对列表比较一遍之后没有交换元素的位置,那么这个表已经排好序了,算法可以停止了.b.结合所做的改进,为冒泡排序写一段伪代码.c.请证明改进的算法最差效率也是平方级的.Hints:a.第i趟冒泡可以表示为:如果没有发生交换位置,那么:b.Algorithms BetterBubblesort(A[0..n-1])//用改进的冒泡算法对数组A[0..n-1]排序//输入:数组A[0..n-1]//输出:升序排列的数组A[0..n-1]count←n-1 //进行比较的相邻元素对的数目flag←true //交换标志while flag doflag←falsefor i=0 to count-1 doif A[i+1]<A[i]swap(A[i],A[i+1])flag←truecount←count-1c最差情况是数组是严格递减的,那么此时改进的冒泡排序会蜕化为原来的冒泡排序.10.冒泡排序是稳定的吗?(稳定)习题3.21.对限位器版的顺序查找算法的比较次数:a.在最差情况下b.在平均情况下.假设成功查找的概率是p(0<=p<=1)Hints:a.C worst(n)=n+1b.在成功查找下,对于任意的I,第一次匹配发生在第i个位置的可能性是p/n,比较次数是i.在查找不成功时,比较次数是n+1,可能性是1-p.6.给出一个长度为n的文本和长度为m的模式构成的实例,它是蛮力字符串匹配算法的一个最差输入.并指出,对于这样的输入需要做多少次字符比较运算.Hints:文本:由n个0组成的文本模式:前m-1个是0,最后一个字符是1比较次数: m(n-m+1)7.为蛮力字符匹配算法写一个伪代码,对于给定的模式,它能够返回给定的文本中所有匹配子串的数量.Algorithms BFStringmatch(T[0..n-1],P[0..m-1])//蛮力字符匹配//输入:数组T[0..n-1]—长度为n的文本,数组P[0..m-1]—长度为m的模式//输出:在文本中匹配成功的子串数量count←0for i←0 to n-m doj←0while j<m and P[j]=T[i+j]j←j+1if j=mcount←count+1return count8.如果所要搜索的模式包含一些英语中较少见的字符,我们应该如何修改该蛮力算法来利用这个信息.Hint:每次都从这些少见字符开始比较,如果匹配, 则向左边和右边进行其它字符的比较.//输出:最大值Max和最小值Minif(r=l) Max←A[l];Min←A[l]; //只有一个元素时elseif r-l=1 //有两个元素时if A[l]≤A[r]Max←A[r]; Min←A[l]elseMax←A[l]; Min←A[r]else //r-l>1MaxMin(A[l,(l+r)/2],Max1,Min1); //递归解决前一部分MaxMin(A[(l+r/)2..r],Max2,Min2); //递归解决后一部分if Max1<Max2 Max= Max2 //从两部分的两个最大值中选择大值if Min2<Min1 Min=Min2; //从两部分的两个最小值中选择小值}b.假设n=2k,比较次数的递推关系式:C(n)=2C(n/2)+2 for n>2C(1)=0, C(2)=1C(n)=C(2k)=2C(2k-1)+2=2[2C(2k-2)+2]+2=22C(2k-2)+22+2=22[2C(2k-3)+2]+22+2=23C(2k-3)+23+22+2...=2k-1C(2)+2k-1+2k-2+...+2 //C(2)=1=2k-1+2k-1+2k-2+...+2 //后面部分为等比数列求和=2k-1+2k-2 //2(k-1)=n/2,2k=n=n/2+n-2=3n/2-2b.蛮力法的算法如下:算法simpleMaxMin(A[l..r])//用蛮力法得到数组A的最大值和最小值//输入:数值数组A[l..r]//输出:最大值Max和最小值MinMax=Min=A[l];for i=l+1 to r doif A[i]>Max Max←A[i];else if A[i]<Min Min←A[i]return Max,Min}时间复杂度t(n)=2(n-1)算法MaxMin的时间复杂度为3n/2-2,simpleMaxMin的时间复杂度为2n-2,都属于Θ(n),但比较一下发现,MaxMin的速度要比simpleMaxMin的快一些。