配位键和共价键
配位化合物的讲义
配位化合物的讲义第一节配位化合物的基本概念(一)配位共价键由一个原子单方面提供l对电子与另一个有空轨道的原子(或离子)共用而形成的共价键,称为配位共价键(coordinate bond),简称配位键.在配位键中,提供电子对的原子称为电子对的给予体;接受电子对的原子称为电子对的接受体.配位键常用"→"表示,箭头指向电子对的接受体.例如,铵离子(NH)可看作是氨NH3分子与H+离子结合形成的.在氨分子中,氮原子的2p轨道上有一对没有与其他原子共用的电子,这对电子称为孤对电子,氢离子上具有1s空轨道.在氨分子与氢离子作用时,氨分子上的孤对电子进入氢离子的空轨道,与氢共用,形成配位键.在铵离子中,虽然1个N→H键和其他3个N-H键的形成过程不同,但一旦形成了铵离子,这4个氮氢键的性质完全相同.配位键是一种特殊的共价键,广泛存在于无机化合物中.凡一方有空轨道,另一方有未共用电子对时,两者就可能形成配位键.例如:HNO3,H2SO4及其盐中均存在着配位键.(二)配位化合物配位化合物简称配合物,是一类组成复杂,发展迅速,应用广泛的化合物.1.配位化合物的概念配位化合物是一类含有配位单元的复杂化合物.通常以酸,碱,盐形式存在,也可以电中性的配位分子形式存在.如[Cu(NH3)4]SO4,K4[Fe(CN)6],[Fe(CO)5]等.配位单元一般是指由金属原子或金属离子与其他分子或离子以配位键结合而形成的复杂离子或化合物.如[Cu(NH3)4]2+,[Fe(CN)6]4-,[Fe(CO)5],[PtCl2(NH3)2]等.离子型配位单元又称为配离子.根据配离子所带电荷的不同,可分为配阳离子和配阴离子,如[Cu(NH3)4]2+,[Fe(CN)6]4-.含有配位单元的化合物称为配位化合物(coordination compound).习惯上把配离子也称为配合物.2.配位化合物的组成配位化合物的核心是配位单元.通常把配位化合物分为内界和外界两个部分.内界是配离子,外界是反离子,内界和外界之间以离子键结合.现以硫酸四氨合铜(Ⅱ)为例来说明配合物的组成.(1)中心原子(或离子) 在配离子(或配位分子)中,接受孤对电子的阳离子或原子统称为中心原子(central atom).中心原子位于配位化合物的中心位置,是配合物的核心部分,也称为配合物的形成体.中心原子必须具有空轨道,可以接受孤对电子.常见的中心原子多为副族的金属离子或原子.如[Cu(NH3)4]2+的中心原子Cu2+,[Fe(CO)5]的中心原子Fe等.(2)配位体和配位原子在配合物中,与中心原子以配位键结合的阴离子或中性分子称为配位体(ligand),简称配体.如[Cu(NH3)4]SO4,K4[Fe(CN)6]和[Fe(CO)5]中的NH3,CN-和CO都是配位体.配位体中能提供孤对电子与中心原子以配位键相结合的原子称为配位原子(ligating atom).如NH3中的N,CN-中的C,CO中的C.常见的配位体有:NH3,H2O,CN-,SCN-,Cl-等.常见的配位原子有:N,O,C,S,Cl等.按配位体中配位原子的多少,配位体可分为单齿配位体和多齿配位体.含有一个配位原子的配位体为单齿配位体(monodentate ligand);含有两个或两个以上配位原子的配位体为多齿配位体(polydentate ligand).如:乙二胺乙二胺四乙酸根离子多齿配位体与中心原子形成的配合物也称为螯合物(chelate).(3)配位数在配合物中,与中心原子结合成键的配位原子的数目称为配位数(coordination number).如K4[Fe(CN)6]中有6个C原子与Fe2+成键,Fe2+的配位数是6.而[Cu(en)2] (OH)2中配位体en是双齿配位体,因此Cu2+的配位数是4而不是2.若配位体有两种(或两种以上),则配位数是配位原子数之和.如[Pt(NO2)2(NH3)4]Cl2中Pt4+的配位数是6.(4)配离子的电荷配离子的电荷数等于中心原子与配位体电荷数的代数和.例如,在[Cu(NH3)4]SO4中,配离子的电荷数为: +2,写作[Cu(NH3)4]2+.在K4[Fe(CN)6]中,配离子的电荷数为:-4,写作[Fe(CN)6]4-.由于配合物是电中性的,因此,外界离子的电荷总数和配离子的电荷总数相等,符号相反,所以配离子的电荷数也可以根据外界离子来确定.3.配合物的命名配合物的命名与一般无机化合物的命名原则相同.(1)配合物的命名顺序阴离子在前,阳离子在后,像一般无机化合物中的二元化合物,酸,碱,盐一样,命名为"某化某","某酸","氢氧化某"和"某酸某".(2)配离子的命名顺序配位体数目(中文数字表示)—配位体名称—合—中心原子名称—中心原子氧化值(罗马数字表示).有的配离子可用简称.(3)配位体命名顺序若配位体不止一种,则先无机配位体,后有机配位体;先阴离子,后中性分子.若均为中性分子或均为阴离子,可按配位原子元素符号英文字母顺序排列.不同配位体之间以圆点"·"分开,复杂的配位体名称写在圆括号中,以免混淆.下列是一些配合物的命名实例:[Ag(NH3)2]+ 二氨合银(Ⅰ)配离子 (银氨配离子)[Fe(CN)6]3- 六氰合铁(Ⅲ) 配离子[Fe(CO)5] 五羰基合铁(0)[Pt(NO2)2(NH3)4]2+ 二硝基·四氨合铂(Ⅳ)配离子[Co(NH3)5H2O]3+ 五氨·一水合钴(Ⅲ)配离子[Ag(NH3)2]OH 氢氧化二氨合银(I)[Cu(NH3)4]SO4 硫酸四氨合铜(Ⅱ)K3[Fe(CN)6] 六氰合铁(Ⅲ)酸钾 (铁氰化钾或赤血盐)H2[PtCl6] 六氯合铂(Ⅳ)酸[Pt(NO2)2(NH3)4]Cl2 二氯化二硝基·四氨合铂(Ⅳ)[Co(NH3)5H2O]Cl3 三氯化五氨·一水合钴(Ⅲ)第二节配合物的稳定性一,配离子的离解平衡将氨水加到硝酸银溶液中,则有[Ag(NH3)2]+配离子生成,反应式为:Ag++2NH3→[Ag(NH3)2]+此反应称为配合反应(也叫络合反应).由于配离子是由中心离子和配位体以配价键结合起来的,因此,在水溶液中比较稳定.但也并不是完全不能离解成简单离子,实质上和弱电解质类似,也有微弱的离解现象.(一)配合物的稳定常数配合物的稳定性,可以用生成配合物的平衡常数来表示,例如:应用化学平衡原理,可得:K值越大,表示形成配离子的倾向越大,此配合物越稳定.所以配离子的生成常数又称为稳定常数(Ks).(二)不稳定常数在水溶液中,[Ag(NH3)2]+是稳定的,不过像其他弱电解质一样也有少数[Ag(NH3)2] +发生离解,可用下式表示:则平衡常数表达式为:K不稳值愈大,表示配离子离解愈多,故称K不稳为配离子的不稳定常数. Ks和K 不稳互成倒数.二,配合平衡的移动金属离子Mn+和配位体A-生成配离子MA x (n-x)+,在水溶液中存在如下平衡:根据平衡移动原理,改变Mn+或A-的浓度,会使上述平衡发生移动.若在上述溶液中加入某种试剂使Mn+生成难溶化合物,或者改变Mn+的氧化状态,都会使平衡向左移动.若改变溶液的酸度使A-生成难离解的弱酸,也可使平衡向左移动.配合平衡同样是一种相对的平衡状态,它同溶液的pH值,沉淀反应,氧化还原反应等都有密切的关系.(一)与酸度的关系根据酸碱质子理论,所有的配位体都可以看作是一种碱.因此,在增加溶液中的H+浓度时,由于配位体同H+结合成弱酸面使配合平衡向右移动,配离子平衡遭到破坏,这种现象称为酸效应,例如:配位体的碱性愈强,溶液的pH值愈小,配离子愈易被破坏.金属离子在水中,都会有不同程度的水解作用.溶液的pH值愈大,愈有利于水解的进行.例如:Fe3+在碱性介质中容易发生水解反应,溶液的碱性愈强,水解愈彻底(生成Fe(OH)3沉淀).因此,在碱性介质中,由于Fe3+水解成难溶的Fe(OH)3沉淀而使平衡向右移动,因而[FeF6]3-遭到破坏,这种现象称为金属离子的水解效应.(二)与沉淀反应的关系当向含有氯化银沉淀的溶液中加入氨水时,沉淀即溶解.当在上述溶液中加入溴化钠溶液时,又有淡黄色的沉淀生成.由于AgBr的溶解度比AgCl的溶解度小得多,因而Br-争夺Ag+的能力比Cl-的大,所以能产生AgBr沉淀而不能产生AgCl沉淀.沉淀剂与金属离子生成沉淀的溶解度愈小,愈能使配离子破坏而生成沉淀.(三)与氧化还原反应的关系配合反应的发生可以改变金属离子的氧化能力.例如:当PbO2(Pt+)与盐酸反应时,其产物不是PbCl4,而是PbCl2和Cl2.但是当它形成[PbCl6]2-配离子后,Pb就能保持它的+4氧化态.配合反应影响氧化还原反应的方向.例如,Fe3+可以把I-氧化成I2:在加入F-后,由于生成[FeF6]3-,减少了Fe3+的浓度,使平衡向左移动.当我们考查配合反应对氧化还原反应的影响时,不仅要注意配离子的形成,而且还要注意配离子的稳定性.第三节螯合物(内络合物)一,螯合物的概念螯合物又称内络合物,是螯合物形成体(中心离子)和某些合乎一定条件的螯合剂(配位体)配合而成具有环状结构的配合物."螯合"即成环的意思,犹如螃蟹的两个螯把形成体(中心离子)钳住似的,故叫螯合物.形成螯合物的第一个条件是螯合剂必须有两个或两个以上都能给出电子对的配位原子(主要是N,O,S等原子).第二个条件是每两个能给出电子对的配位原子,必须隔着两个或三个其他原子,因为只有这样,才可以形成稳定的五原子环或六原子环.例如,在氨基乙酸根离子(H2N-CH2-COO-)中,给出电子的羟基氧和氨基氮之间,隔着两个碳原子,因此它可以形成稳定的具有五原子环的化合物.四原子环在螯合物中是不常见的,六原子以上的环也是比较少的.中心离子有一定的电荷数,同时也有一定的配位数.Cu(Ⅱ)带有二个正电荷,它的配位数为4.氨基乙酸根离子(H2N-CH2-COO-)既有氨基氮,都能给出电子对;氨基氮能满足中心离子的配位数,羟基氧则能使配位数和电荷数同时得到满足,因此Cu 2+和两个(H2N-C H2-COO-)螯合后,得到的是中性分子二氨基乙酸合铜(Ⅱ)(简称氨基乙酸酮)[Cu(H 2N-CH2-COO)2]由于羟基氧带有负电荷,故它与Cu 2+形成的配键通常用"-"表示. 螯合物的特殊稳定性是环形结构带给它们的特征之一.环愈多使螯合物愈稳定.通常所说的"螯合反应"就是指由于螯合而使化合物具有特殊的稳定性.由于螯合物的特殊稳定性,已很少能反映金属离子在未螯合前的性质.金属离子在形成螯合物后,在颜色,氧化还原稳定性,溶解度及晶形等性质发生了巨大的变化.很多金属螯合物具有特征性的颜色,而且这些螯合物可以溶解于有机溶剂中.利用这些特点,可以进行沉淀,溶剂萃取分离,比色定量等分析分离工作.二,螯合剂常用的螯合剂是氨螯合剂,是一类似以氨基二乙酸[HN(CH2COOH)2]为基体的螯合剂,它以N,O为螯合原子,与金属离子螯合时形成环状的螯合物.最常用的氨羧螯合剂是EDTA(乙二胺四乙酸或其二钠盐的统称).它的结构是:乙二胺四乙酸是四元酸,如果用Y表示它的酸根,则乙二胺四乙酸可以简写成H4Y. 由于乙二胺四乙酸在水中的溶解度比较小,而其二钠盐在水中的溶解度却比较大.因些在实际应用中人们常采用EDTA二钠盐.EDTA二钠盐含有2分子结晶水,用简式Na2H2Y·2H2O表示它.EDTA是四元酸,它在水中是分步离解.除碱金属离子外,EDTA几乎能与所有的金属离子形成稳定的金属螯合物.并且,在一般情况下,不论金属离子是几价,1个金属离子都能与1个EDTA酸根(Y4-)形成可溶性的稳定螯合物.例如:式中M表示金属离子,右上角的数字和符号表示离子的离子价.虽然,除碱金属离子外,各金属离子大多数能与EDTA形成螯合物,但它们的稳定性差别很大.EDTA是应用最广的一种氨羧螯合剂,用EDTA标准液可以滴定几十种金属离子,这个方法就称EDTA滴定法.目前所谓螯合滴定法主要是指EDTA滴定.三,螯合物在医学上的应用螯合物在自然界存在得比较广泛,并且对生命现象有着重要的作用.例如,血红素就是一种含铁的螯合物,它在人体内起着送氧的作用.维生素B12是含钴的螯合物,对恶性贫血有防治作用.胰岛素是含锌的螯合物,对调节体内的物质代谢(尤其是糖类代谢)有重要作用.有些螯合剂可用作重金属(Pb2+, Pt2+,Cd2+,Hg2+)中毒的解毒剂.如二巯基丙醇或EDTA二钠盐等可治疗金属中毒.因为它们能和有毒金属离子形成稳定的螯合物,水溶性螯合物可以从肾脏排出. 有些药物本身就是螯合物.例如,有些用于治疗疾病的某些金属离子,因其毒性,刺激性,难吸收性等不适合临床应用,将它们变成螯合物后就可以降低其毒性和刺激性,帮助吸收.另外在生化检验,药物分析,环境监测等方面也经常用到螯合物.。
化学配位键知识点总结
化学配位键知识点总结化学配位键是指发生在过渡金属和配体之间的一种特殊键,是由金属离子与一个或多个配体分子之间的相互作用形成的。
配位化合物是一类具有广泛应用的化合物,包括有机金属化合物、配合物和配位聚合物等。
1. 配位键的性质配位键是一种共价键,同时也含有离子性。
在配位键中,金属离子的空轨道和配体分子的非键电子对之间形成较弱的相互作用,这种相互作用是通过配体向金属离子提供一个或多个孤对电子对而形成的。
配位键的形成是独立于金属的价电子构型的,因此金属空轨道的个数不一定等于金属的配位数,这也是与共价键的一个重要区别。
2. 配体配体是发生在金属离子周围的化合物或离子。
配体可以是一些有机分子,如胺、醇、醛、酮等,也可以是一些无机分子,如水、氨、氯化物离子等。
配体通过配位键与金属离子形成配合物,不同的配体可以给金属离子带来不同的特性,如颜色、磁性等。
配体的选择对配合物的性质有着重要的影响。
3. 配位数金属离子能够形成的配位键个数称为配位数,它是指金属离子周围最多能够存在的配位键的数量。
金属的配位数决定了配合物的结构和性质。
一般情况下,金属的配位数和其在周期表中的位置有关,而且金属的电荷也会对其配位数产生影响。
4. 配位化合物的命名配位化合物的命名一般以配体名或离子名开头,其次是金属的名称。
在进行配位化合物的命名时,需要注意考虑到金属的配位数、配位键的类型、配体的特性等因素,以保证名称的准确性和完整性。
5. 配位化合物的性质配位化合物具有许多重要的性质,例如颜色、磁性、催化性能等。
这些性质与配体的选择和金属的种类有关,不同的配体和金属可以给配合物带来不同的性质。
这些性质的研究对于认识配位化合物的结构和性质具有重要的意义。
6. 配位聚合物配位聚合物是一类具有重要应用价值的化合物,它是由大量的配位化合物重复单元组成的高分子化合物。
配位聚合物在催化、材料和生物领域具有广泛的应用,它们的性质和应用也备受关注。
7. 配位化合物的应用配位化合物在催化、材料、医药等领域有着广泛的应用,如铂类化合物在抗癌药物中的应用、氮配合物在氮化学中的应用等。
突破08 文字说理题之配位键和配合物-备战2021年高考化学《物质结构与性质》逐空突破系列
《物质结构与性质》文字说理题之配位键和配合物【方法和规律】1、配位键(一种特殊的共价键)(1)孤电子对:分子或离子中没有跟其他原子共用的电子对称为孤电子对(2)配位键的形成:成键的两个原子或离子一方提供孤电子对,一方提供空轨道而形成的共价键。
即:共用电子对由一个原子单方向提供给另一原子共用所形成的共价键(3)成键的性质:共用电子对对两个原子的电性作用(4)配位键的表示方法:常用“―→”来表示配位键,箭头指向接受孤电子对的原子即:BA电子对接受体电子对给予体−→−,如:NH+4可表示为(5)成键条件:其中一个原子提供孤对电子,另一原子提供空轨道2、配合物(1)中心原子:提供空轨道接受孤对电子的原子叫中心原子。
中心原子一般是带正电荷的金属离子(此时又叫中心离子),过渡元素最常见如:Fe3+、Cu2+、Zn2+、Ag+(2)配位体:含有并提供孤电子对的分子或离子,即电子对的给予体。
常见的配位体:H2O、NH3、SCN—、CO、N2、X—、OH—、CN—(3)配位原子:配体中提供孤对电子的原子叫配位原子,如:H2O中的O原子,NH3中的N原子(4)配离子:由中心原子(或离子)和配位体组成的离子叫做配离子,如:[Cu(NH3)4]2+、[Ag(NH3)2]+(5)配位数:作为配位体直接与中心原子结合的离子或分子的数目,即形成的配位键的数目称为配位数如:[Cu(NH3)4]2+的配位数为4,[Ag(NH3)2]+的配位数为2(6)配离子的电荷数:配离子的电荷数等于中心离子和配位体电荷数的代数和(7)内界和外界:配合物分为内界和外界,期中配离子称为内界,与内界发生电性匹配的的阳离子(或阴离子)称为外界,如:[Cu(NH3)4]SO4的内界是[Cu(NH3)4]2+,外界是SO42—,配合物在水溶液中电离成内界和外界两部分即:[Cu(NH3)4]SO4===[Cu(NH3)4]2++SO42—,而内界很难电离,其电离程度很小,[Cu(NH3)4]2+Cu2++4NH3 3、配位键的强弱:配位键的强弱取决于配位体给电子的能力,配位体给出电子能力越强,则配位体与中心离子形成的配位键就越强,配合物也就越稳定【例题精讲】配位键的形成条件答题策略其中一个原子提供孤对电子,另一原子提供空轨道答题模板×××提供孤对电子,×××提供空轨道1 Fe原子或离子外围有较多能量相近的空轨道,因此能与一些分子或离子形成配合物,则与之形成配合物的分子的配位原子应具备的结构特征是:具有孤电子对2 BF3和NH3的分子能够通过配位键相结合的原因是:NH3的N具有孤对电子,BF3中的B核外具有空轨道配位键强弱判断答题策略配位键的强弱取决于配位体给电子的能力,给出电子能力越强,则配位键就越强答题模板A元素的电负性比B元素小,A原子提供孤电子对的倾向更大,形成配位键更强3 Co2+在水溶液中以[Co(H2O)6]2+存在。
特殊的共价键-配位键
《大学化学先修课》课程小论文第五章小论文题目:特殊的共价键-配位键xxxxxxxxxxxxxxxx摘要:配位键,又称配位共价键,是一种特殊的共价键。
当共价键中共用的电子对是由其中一原子独自供应,另一原子提供空轨道时,就形成配位键。
配位键形成后,就与一般共价键无异。
成键的两原子间共享的两个电子不是由两原子各提供一个,而是来自一个原子。
配位键既可以存在于分子中,又可以存在于离子之中。
配位键由于从成键原理上的不同,使得配位化合物、配位离子有了与共共价化合物、共价离子截然不同的一些特性,也使得化合物的种类有了更多可能。
例如强荧光稀土配合物的获得,以配合物为核心的超分子化合物作为抗癌药物,在分子器件中的应用,在催化化学方面,金属卟啉形成的配合物催化剂是超分子催化研究领域的重要内容之一,金属有机配合物的分子识别功能也是其重要的研究领域之一。
关键词:配位键荧光稀土配合物催化分子识别正文:配位键,又称配位共价键,是一种特殊的共价键。
当共价键中共用的电子对是由其中一原子独自供应,另一原子提供空轨道时,就形成配位键。
配位键形成后,就与一般共价键无异。
成键的两原子间共享的两个电子不是由两原子各提供一个,而是来自一个原子。
配位键要求成键的两个原子中一个原子A有孤对电子,另一个原子B有接受孤对电子的“空轨道”,所以配位键的表示方法为A → B,A称为配体,B称为中心原子或离子。
有时为了增强成键能力,中心原子或离子B利用能量相近的空轨道进行杂化后,再来接收以配体原子A的孤电子对。
配位键既可以存在于分子中(如H2SO4等),又可以存在于离子之中(如铵根离子、水合氢离子等)。
[1]配位键由于从成键原理上的不同,使得配位化合物、配位离子有了与共共价化合物、共价离子截然不同的一些特性,也使得化合物的种类有了更多可能。
例如强荧光稀土配合物的获得得益于具有与稀土离子匹配的三重态能量的第一和第二配体的引入。
关于稀土铕配合物分子内部能量传递机理一直是光致发光配合物研究中的热点。
第二章 第二节 第3课时 配合物理论简介(教师版)
第3课时配合物理论简介一、配位键1.概念:由一个原子单方面提供孤电子对,而另一个原子提供空轨道而形成的共价键,即“电子对给予-接受键”。
2.表示方法:配位键常用A→B表示,其中A是提供孤电子对的原子,叫给予体,B是接受孤电子对的原子,叫接受体。
如:H3O+的结构式为。
判断正误(1)任意两个原子都能形成配位键() (2)配位键和共价键没有本质区别()(3)形成配位键的条件是一方有空轨道,一方有孤电子对() (4)配位键是一种特殊的共价键()(5)共价键的形成条件是成键原子必须有未成对电子()答案(1)×(2)√(3)√(4)√(5)×应用体验1.Ag+、NH3、H2O、H+、Co3+、CO中能提供空轨道的是_________________;能提供孤电子对的是__________________。
答案Ag+、H+、Co3+NH3、H2O、CO2.以下微粒含配位键的是________________(填序号)。
①N2H+5②CH4 ③OH-④NH+4⑤Fe(CO)3 ⑥Fe(SCN)3 ⑦H3O+⑧[Ag(NH3)2]OH答案①④⑤⑥⑦⑧解析①氢离子提供空轨道,N2H4中氮原子提供孤电子对,所以能形成配位键,N2H+5含有配位键;②甲烷中碳原子满足8电子稳定结构,氢原子满足2电子稳定结构,无空轨道,无孤电子对,CH4不含有配位键;③OH-电子式为,无空轨道,OH-不含有配位键;④氨气分子中氮原子含有孤电子对,氢离子提供空轨道,可以形成配位键,NH+4含有配位键;⑤Fe(CO)3中Fe原子提供空轨道,CO提供孤电子对,可以形成配位键,故正确;⑥SCN-的电子式为,铁离子提供空轨道,硫原子提供孤电子对,Fe(SCN)3含有配位键;⑦H3O+中O提供孤电子对,H+提供空轨道,二者形成配位键,H3O+含有配位键;⑧Ag+有空轨道,NH3中的氮原子提供孤电子对,可以形成配位键,[Ag(NH3)2]OH 含有配位键。
共价键的分类
共价键的分类共价键的分类方法很多,可以从不同的角度分类:1)从共用电子对是否偏移,分成极性共价键和非极性共价键;2)从形成的共用电子对的数目,分成单键、双键和叁键;3)从共用电子对的形成方式,分成一般共价键(电子对来自成键原子双方,即两个原子都拿出相等的电子,形成共用电子对)和配位键(电子对来自一方,即一方提供孤对电子,一方提供空轨道);4)从电子对形成时的重叠方式,分成σ键和π键.①σ键:a、σ键的特点:由两个原子轨道沿轨道对称轴方向相互重叠导致电子在核间出现概率增大而形成的共价键,叫做σ键,可以简记为“头碰头”.σ键属于定域键,它可以是一般共价键,也可以是配位共价键.一般的单键都是σ键.原子轨道发生杂化后形成的共价键也是σ键.由于σ键是沿轨道对称轴方向形成的,轨道间重叠程度大,所以,通常σ键的键能比较大,不易断裂,而且,由于有效重叠只有一次,所以两个原子间至多只能形成一条σ键.b、σ键的分类:s﹣s(2个s电子)、s﹣p x(1个s电子和1个p电子)和p x﹣p x(2个p 电子).如图所示:②π键:a、π键的特点:成键原子的未杂化p轨道,通过平行、侧面重叠而形成的共价键,叫做π键,可简记为“肩并肩”.π键与σ键不同,它的成键轨道必须是未成对的p轨道.π键性质各异,有两中心,两电子的定域键,也可以是共轭π键和反馈π键.两个原子间可以形成最多2条π键,例如,碳碳双键中,存在一条σ键,一条π键,而碳碳三键中,存在一条σ键,两条π键.b、p﹣pπ键.如图所示:③σ键和π键的区别:a、σ键可以绕键轴旋转,π键不能;b、σ键可以单独存在与两原子之间,π键不可以;c、π键的轨道重叠程度比σ键小,不如σ键牢固.【命题方向】本考点主要考察共价键的形成以及共价键的分类,需要重点掌握.题型一:物质所含化学键类型的判断典例1:(2014•朝阳区)下列物质中,既含离子键又含共价键的是()A.NaCl B.CO2C.NaOH D.N2分析:一般来说,活泼金属和活泼非金属元素之间易形成离子键,非金属元素之间易形成共价键,既含离子键、又含共价键的物质应为离子化合物,并且含有由多个原子组成的阴离子,据此分析解答.解答:A.氯化钠只含离子键,故A错误;B,二氧化碳中只含共价键,故B错误;C.氢氧化钠中钠离子和氢氧根离子之间存在离子键,氧原子和氢原子之间存在共价键,故C正确;D.氮气中只含共价键,故D错误;故选C.点评:本题考查化学键知识,题目难度不大,注意离子键与共价键的区别.题型二:σ键和π键的比较典例2:下列说法不正确的是()A.σ键比π键重叠程度大,形成的共价键强B.两个原子之间形成共价键时,最多有一个σ键C.气体单质中,一定有σ键,可能有π键D.N2分子中有一个σ键,2个π键分析:A.σ键是电子“头对头”重叠形成的,π键是电子“肩并肩”重叠形成的;B.σ键是电子“头对头”重叠形成的;C.有些物质不含化学键;D.氮气分子中氮原子间存在共价三键.解答:A.σ键是电子“头对头”重叠形成的,π键是电子“肩并肩”重叠形成的,所以σ键比π键重叠程度大,故A正确;B.σ键是头碰头形成的,两个原子之间能形成一个,原子轨道杂化的对成性很高,一个方向上只可能有一个杂化轨道,所以最多有一个,故B正确;C.气体单质分子中,可能只有键,如Cl2;也可能既有σ键又有π键,如N2;但也可能没有化学键,如稀有气体,故C错误;D.氮气分子的结构式为N≡N,所以一个氮气分子中含有一个σ键,2个π键,故D正确;故选C.点评:本题考查了σ键、π键,明确σ键和π键的形成是解本题关键,注意并不是所有的物质中都含有化学键,单原子分子不含化学键,为易错点.题型三:σ键和π键的判断典例3:在乙烯分子中有5个σ键、一个π键,它们分别是()A.sp2杂化轨道形成σ键、未杂化的2p轨道形成π键B.sp2杂化轨道形成π键、未杂化的2p轨道形成σ键C.C﹣H之间是sp2形成的σ键,C﹣C之间是未参加杂化的2p轨道形成的π键D.C﹣C之间是sp2形成的σ键,C﹣H之间是未参加杂化的2p轨道形成的π键分析:乙烯中存在4个C﹣H键和1个C=C双键,没有孤对电子,成键数为3,则C原子采取sp2杂化,以此来解答.解答:乙烯中存在4个C﹣H键和1个C=C双键,没有孤对电子,成键数为3,则C原子采取sp2杂化,C﹣H之间是sp2形成的σ键,C﹣C之间有1个是sp2形成的σ键,C﹣C之间还有1个是未参加杂化的2p轨道形成的π键,故选AC.点评:本题考查共价键的形成,注意C=C双键中有1个σ键、一个π键,π键是未参与杂化的2p轨道肩并肩形成的,题目难度中等.【解题思路点拨】规律方法:化学键与物质类别的关系:1)只含共价键的物质①同种非金属元素构成的单质,如I2、N2、P4、金刚石、晶体硅等;②不同种非金属元素构成的共价化合物,如HCl、NH3、SiO2、CS2等;2)只含有离子键的物质:活泼非金属元素与活泼金属元素形成的化合物,如Na2S、K2O等.3)既含有离子键又含有共价键的物质:如Na2O2、NH4Cl、NaOH等.4)无化学键的物质:惰性气体等.5)碳碳双键中,存在一条σ键,一条π键,而碳碳三键中,存在一条σ键,两条π键.。
第三节_离子键、配位键与金属键_第二课时:配位键
[Cu(NH3) 4]2+ +2OH—+4H2O
深蓝色溶液
〔Ag(NH3)2〕OH 、〔 Cu(NH3)4〕SO4易溶于水。
认识铜氨络离子
[Cu(NH3) 4]2+
NH3 H3N Cu NH3 NH3
2+
2、配合物
配体有 孤电子对
▲配位键的存在是配合物与其它物质最本质 的区别。
(1)概念: 由提供孤电子对的配体与接受 孤电子对的中心原子以配位键结合形成 的化合物称为配合物。
金属元素在化合物中一定显正化合价 金属元素在不同化合物中化合价均不相同 金属元素的单质在常温下均为晶体
3. 金属的下列性质与金属键无关的是( C )
A. 金属不透明并具有金属光泽
B. 金属易导电、传热
C. 金属具有较强的还原性
D. 金属具有延展性 4.能正确描述金属通性的是 ( AC )
A. 易导电、导热
比较离子晶体、金属晶体导电的区别:
晶体类型 导电时的状态 导电粒子 离子晶体 金属晶体
水溶液或 熔融状态下
晶体状态
自由移动的离子 自由电子
2、导热性
【讨论2】金属为什么易导热?
自由电子在运动时经常与金属离子碰撞, 引起两者能量的交换。当金属某部分受热时, 那个区域里的自由电子能量增加,运动速度加 快,通过碰撞,把能量传给金属离子。
说明金属晶体中存在着强烈的相互作用;金属具有 导电性,说明金属晶体中存在着能够自由流动的电 子。
分析:
通常情况下,金属原子的部分或全 部外围电子受原子核的束缚比较弱,在 金属晶体内部,它们可以从金属原子上 “脱落”下来的价电子,形成自由流动 的电子。这些电子不是专属于某几个特 定的金属离子,是均匀分布于整个晶体 中。
简单配合物的定义
简单配合物的定义简单配合物,也被称为均相配位化合物,是由一个中心金属离子或原子与一些配体离子或分子以化学键结合形成的化合物。
在简单配合物中,中心金属离子充当了配位中心,而配体则通过共价键或配位键与中心金属离子相连。
简单配合物的结构通常由中心金属离子和其配位体构成,使得简单配合物具有独特的性质和功能。
一般来说,简单配合物具有以下几个特点:1. 配位键结构:在简单配合物中,中心金属离子与配体之间通过化学键形成了配位键。
配位键可以是共价键或配位键,共价键是通过共享电子对形成的化学键,而配位键是由配体中的原子或配位体上的可供给电子对与中心金属离子上的电子进行配对形成的键。
这种结构使得中心金属离子与配体之间形成了稳定的配位络合物。
2. 配位数:简单配合物的配位数指的是中心金属离子与配体之间的键的数量。
根据简单配合物的配位数不同,可以将其分为二配位、三配位、四配位等不同的类型。
不同的配位数决定了简单配合物的空间结构和性质。
3. 形成常数:简单配合物的形成常数是描述配位化学反应的平衡性质的参数。
它表示在特定条件下形成配位化合物的平衡浓度比。
形成常数越大,表示形成的配位化合物越稳定。
4. 电荷平衡:简单配合物中的中心金属离子通常具有正电荷,而配体则具有负电荷或中性。
这种电荷平衡是通过配位键的形成达到的,使得整个配位化合物带有零总电荷。
简单配合物的应用非常广泛。
它们可以用作催化剂、光敏染料、生物活性分子等。
具体的应用取决于简单配合物的结构和性质。
总结起来,简单配合物是由中心金属离子和配体通过配位键结合形成的化合物。
它们具有特定的配位数、形成常数和电荷平衡。
简单配合物的结构和性质决定了它们在化学反应和应用中的重要性。
配位化合物与共价化合物的关系
配位化合物与共价化合物的关系【摘要】配位化合物与共价化合物是化学中常见的两种化合物类型,它们在分子结构和化学性质上有着明显的区别。
配位化合物通常是由一个中心原子或离子与周围的配位基团形成的复合物,而共价化合物则是由原子之间通过共用电子而形成的分子。
两者之间的区别在于配位化合物中存在金属-配体键,而共价化合物中存在共价键。
它们之间还可以通过一系列反应相互转化,例如络合物的配体可以被取代为其他配体形成共价键。
配位化合物与共价化合物之间也可以通过相互作用发生化学反应,如氧化还原反应。
配位化合物与共价化合物在结构和性质上有一定联系,但又各自具有独特的特点。
【关键词】配位化合物,共价化合物,特点,区别,相互转化,相互作用,关系总结1. 引言1.1 配位化合物与共价化合物的关系配位化合物与共价化合物是化学中常见的两种化合物类型,它们在性质和结构上有着明显的差异。
它们之间也存在一些相互关系和相互作用。
配位化合物的特点是由配位子与中心金属离子形成配位键,通过共价键或离子键进行相互连接。
配位键通常是由配位子的配位原子与中心金属原子之间的电子云之间的相互作用形成的。
而共价化合物则是由原子通过共用电子对来形成的化合物,其中原子之间的共价键是通过电子云之间相互重叠形成的。
配位化合物与共价化合物的区别主要在于它们的化学键的性质和形成方式。
配位化合物通常具有比共价化合物更局域化的化学键,而共价化合物则更具有扩散性的化学键。
配位化合物通常包含有中心金属离子,而共价化合物则通常是由非金属原子形成的。
虽然配位化合物与共价化合物在性质和结构上有着明显的差异,但它们之间存在着一些相互转化的可能性。
一些配位化合物可以在适当的条件下失去配位子,从而转化为共价化合物;而一些共价化合物也可以在适当的条件下与金属离子形成配位键,转化为配位化合物。
配位化合物与共价化合物之间还存在着一些相互作用。
配位化合物和共价化合物可以通过化学反应相互转化;配位化合物还可以通过配位子与其他分子发生吸附或萃取等过程与共价化合物进行相互作用。
化学反应中的配位化合物与配位键的结构与性质
化学反应中的配位化合物与配位键的结构与性质在化学领域,配位化合物是由一个或多个已有配对电子的物种(称为配体)与一个中心金属离子形成的化合物。
配位化合物广泛应用于催化剂、材料科学和生物化学等领域,其结构和性质的研究对于理解化学反应机理和开发新型功能材料具有重要意义。
一、配位键的基本概念与结构配位键是指配体与中心金属离子之间的化学键,其中配体通过配位原子上的孤电子对与中心金属离子形成配位键。
根据配体的电子性质和配位原子数量的不同,配位键可以分为配位共价键和配位离子键。
1. 配位共价键配位共价键的形成是由于配位体通过与中心金属离子共享电子而形成的。
典型的例子是铂配合物中的Pt-Cl键和Pt-C键。
在配位共价键中,配体通过提供自身配对电子与金属离子进行共享,从而形成稳定的化学键。
此类配位键常见于过渡金属配合物中,具有较高的配位键能和配位键长度相对较短。
2. 配位离子键配位离子键的形成是由于配体通过捐出孤电子对形成的。
典型的例子是氨合铜离子[Cu(NH3)4]2+中的Cu-N键。
在配位离子键中,配体通过提供带负电荷的孤电子对与中心金属离子形成化学键。
此类配位键常见于主族元素离子和过渡金属离子之间形成的配位化合物中,具有较低的配位键能和配位键长度相对较长。
二、配位化合物的性质配位化合物的性质与其结构密切相关,主要包括热稳定性、溶解性、荧光性和磁性等。
1. 热稳定性不同的配位化合物具有不同的热稳定性。
一般来说,配位键键能较高的配位化合物具有较好的热稳定性,而键能较低的配位化合物热稳定性较差。
这是因为较高的键能可以提供足够的能量来克服化学键的形成和断裂过程中的能量差。
2. 溶解性配位化合物的溶解性是指其在溶剂中的溶解度。
与普通的无机盐相比,配位化合物常常具有更高的溶解度,这是因为配位化合物溶解过程中配位键的形成能够与溶剂分子之间发生相互作用,从而增强了其溶解度。
3. 荧光性一些配位化合物具有良好的荧光性能,即在受到激发后可以发射出可见光的现象。
四种化学键
离子键的特点
① 离子键的本质是静电引力 ② 离子键有饱和性,无方向性 与任何方向的电性不同的离子相吸引,所 以无方向性 ③ 键的离子性与元素的电负性有关 X > 1.7,发生电子转移,形成离子键; X < 1.7,不发生电子转移,形成共价键 ④ 离子键的强弱因素:离子电荷和离子半径
⑤ 以离子键结合的材料
四种化学键
化学键
直接相邻的两个或多个原子或离子之间的强烈相互作用
极性键 共价键 非极性键
化学键
离子键 金属键 配位键
形成离子化合物
(1)共价键
需遵守对称性原理 特点表现在:
①共价键是原子与原子共用电子来形成共价,电 子运动范围大大扩大,两个原子互相共用电子 ②饱和性 ③高度方向性,有严格的键角,不能随便变化 ④化学键的力不算大,宏观上看,它的强度相对 较低(C-C键能80 ~ 100KJ/mol)
④ 在所有化学键中,配位键强度最弱
硬度高、延展性差 因离子键强度大,所以硬度高 。但受到外力冲击时,易 发生位错,导致破碎 。 F
+
-
-
+
+
-
-
+
+
-
-
+
+
-
-
+ 位错
受力时发生错位,使正正离子相切,负负离子相 切,彼此排斥,离子键失去作用,故离子晶体无 延展性 。如 CaCO3 可 用于雕刻,而不可用于锻 造,即不具有延展性 。
(3)金属键
① 元素周期表中能形成配位键的大多是过渡元素离子, 形成配位络合物。一个原子提供空轨道,另一个原子
提供一对电子,所形成的共价键。
② 配位数最多为6,带f 轨道的基本都能形成 ③ 分子之间也能形成,被配位的物质之间要么是离子, 要么是分子;含有d、f轨道以分子之间配位的较多, 离子之间一般形成离子键,那些负离子强度弱的才形 成配位键,分子上含有未共用电子对的配位体易形成 配位键
配位键
简单的说,配位键是一种特殊的共价键,一般的共价键是成键的两个原子各拿出一个电子来共用,而配位键是一方原子拿出一对电子,与另一个原子共用,一般要求一个原子具有未共用电子对,而另一个原子具有空轨道,也就是缺电子,,比如NH3分子遇到H+。
就会形成配位键,,NH3+H+==NH4+ 。
NH3分子中N原子具有一对未共用的电子,而H+一个电子也没有,它们之间就可以形成配位键银氨离子中Ag+外层没有电子,而NH3有未共用电子对,就可以形成配位键,,以配位键形成的化合物叫配位化合物,化学中有一个分支学科叫配位化学,专门研究配位化合物的,,评论|002013-11-19 20:49 热心网友配合物由中心原子、配位体和外界组成,例如硫酸四氨合铜(Ⅱ)分子式为〔Cu (NH3)4〕SO4,其中Cu2+是中心原子,NH3是配位体,SO4 2-是外界。
中心原子可以是带电的离子,如〔Cu(NH3)4〕SO4中的Cu2+,也可以是中性的原子,如四羰基镍〔Ni(CO)4〕中的Ni。
周期表中所有的金属元素都可作为中心原子,但以过渡金属最易形成配合物。
配位体可以是中性分子,如〔Cu(NH3)4〕SO4中的NH3,也可以是带电的离子,如亚铁氰化钾K4〔Fe (CN)6〕中的CN-。
与中心原子相结合的配位体的总个数称为配位数,例如K4〔Fe(CN)6〕中Fe2+的配位数是6 。
中心原子和配位体共同组成配位本体(又称内界),在配合物的分子式中,配位本体被括在方括弧内,如〔Cu(NH3)4〕SO4中,〔Cu(NH3)4〕2+就是配位本体。
它可以是中性分子,如〔Ni(CO)4〕;可以是阳离子,如[Cu(NH3)4〕2+ ;也可以是阴离子,如〔Fe(CN)6〕4-。
带电荷的配位本体称为配离子。
在配合物中,中心原子与配位体之间共享两个电子,组成的化学键称为配位键,这两个电子不是由两个原子各提供一个,而是来自配位体原子本身,例如〔Cu (NH3)4〕SO4中,Cu2+与NH3共享两个电子组成配位键,这两个电子都是由N原子提供的。
化学反应中的配位化合物与配位键的化学原理
化学反应中的配位化合物与配位键的化学原理在化学反应中,配位化合物和配位键都扮演着重要的角色。
配位化合物是指由一个中心金属离子和周围配体离子或分子组成的化合物。
而配位键则是指连接中心金属离子和配体之间的化学键。
对于理解化学反应过程和性质,了解配位化合物和配位键的化学原理至关重要。
一、配位化合物的构成配位化合物由中心金属离子和配体组成。
中心金属离子通常是过渡金属或稀土金属离子,具有较高的化学活性。
配体可以是阳离子、阴离子或中性分子,它们通过配位键与中心金属离子结合。
配位化合物的构成可以通过配位理论来解释。
常见的配位理论有离子配位理论、共价配位理论和价键配位理论。
离子配位理论认为中心金属离子和配体之间是通过离子键结合的。
共价配位理论则认为中心金属离子和配体之间是通过共价键结合的。
而价键配位理论则融合了离子配位理论和共价配位理论,认为配位键是由离子键和共价键组成的。
二、配位键的形成配位键是中心金属离子和配体之间的化学键。
它的形成涉及到配体分子的给电子性和中心金属离子的接受电子性。
常见的配位键有配位离子键、配位共价键和配位金属键。
配位离子键是指配位体通过成为离子形式与中心金属离子结合。
配位共价键是指配体通过与中心金属离子共用一对电子形成化学键。
配位金属键则是指配体中的一个或多个配体原子与中心金属离子的键相比其他配体原子和中心金属离子的键更强。
三、配位化合物的性质与应用配位化合物具有丰富的性质和广泛的应用。
其中一些性质和应用与配位键的特性密切相关。
1. 形成的稳定性:配位键的强弱决定了配位化合物的稳定性。
一些稳定的配位化合物具有良好的溶解性和可控制的性质,因此广泛应用于化学合成和材料科学中。
2. 配位化合物的颜色:一些配位化合物具有鲜艳的颜色。
这是由于配位键的形成导致中心金属离子的电子跃迁,吸收并反射特定波长的光。
这些配位化合物在染料、颜料和染料敏化太阳能电池等领域具有广泛的应用。
3. 配位化合物的磁性:一些配位化合物具有磁性。
共价键和配位键 Word版含解析
共价键和配位键Word版含解析1.共价键(1)共价键的本质与特征共价键的本质是原子之间形成共用电子对;共价键具有方向性和饱和性的基本特征。
(2)共价键种类根据形成共价键的原子轨道重叠方式可分为σ键和π键。
σ键强度比π键强度大。
(3)键参数①键参数对分子性质的影响②键参数与分子稳定性的关系键能越大,键长越短,分子越稳定。
2.配位键及配合物(1)配位键由一个原子提供弧电子对与另一个接受弧电子对的原子形成的共价键。
(2)配位键的表示方法如A→B:A表示提供孤电子对的原子,B表示接受共用电子对的原子。
(3)配位化合物①组成:②形成条件: ⎩⎨⎧ 配位体有孤电子对⎩⎪⎨⎪⎧ 中性分子:如H 2O 、NH 3和CO 等。
离子:如F -、Cl -、CN -等。
中心原子有空轨道:如Fe 3+、Cu 2+、Zn 2+、Ag +等。
【重难点指数】★★★【重难点考向一】σ键、π键的判断【典型例题1】(1)【2015·高考全国卷Ⅰ,37 (3)节选】CS 2分子中,共价键的类型有________。
(2)【2014·高考全国卷Ⅰ,37(3)节选】1 mol 乙醛分子中含有的σ键的数目为________。
【答案】(1)σ键和π键 (2)6N A【重难点考向二】键参数的应用【典型例题2】(1)【2015·高考全国卷Ⅰ,37 (2)节选】碳在形成化合物时,其键型以共价键为主,原因是________________。
(2)【2014·高考全国卷Ⅰ,37(2)节选】O 、N 、S 与氢元素形成的二元共价化合物分子中,既含有极性共价键、又含有非极性共价键的化合物是________________(填化学式,写出两种)。
【答案】(1)C 有4个价电子且半径较小,难以通过得或失电子达到稳定结构(2)H 2O 2、N 2H 4【名师点睛】(1)通过物质的结构式,可以快速有效地判断键的种类及数目;判断成键方式时,需掌握:共价单键全为σ键,双键中有一个σ键和一个π键,三键中有一个σ键和两个π键。
共价键名词解释
共价键名词解释
共价键:化学键的一种,两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定的化学结构叫做共价键。
其本质是原子轨道重叠后,高概率地出现在两个原子核之间的电子与两个原子核之间的电性作用。
共价键按成键过程分为一般共价键和配位共价键。
一般共价键有时也称正常共价键,是为了和配位共价键进行区分时使用的概念,指成键时两个原子各自提供一个未成对电子形成的共价键。
配位共价键简称“配位键,是指两原子的成键电子全部由一个原子提供所形成的共价键。
化学中的配位键和共价键的区别
化学中的配位键和共价键的区别化学是一个广泛的领域,它涵盖了众多的反应和物质性质。
在这个领域中,配位键和共价键是两个不同而又相关的概念。
虽然它们都是化学键,但它们有着明显的区别和不同的特征。
1. 定义配位键通常指的是金属离子与一个或多个配体之间的键。
金属离子是指一个离子化学中具有正电荷的中心原子。
它们是通过吸收或捐赠电子来形成化学键的。
配体是指与金属离子结合的分子或离子。
共价键是通过共享电子对形成的化学键。
它们是由两个非金属原子之间的电子共享形成的。
2. 原子间交换电子数目的不同金属离子和配体之间的配位键是通过静电相互作用形成的。
金属离子通过与配体的亲和力形成配合物,其过程中涉及了电子转移。
这种过程称为配位作用。
在配位中,金属离子会失去电子,而配体会获得电子。
换句话说,配位键是通过配体捐赠电子对给金属离子来生成的。
共价键则是由非金属原子之间的电子共享形成的。
共价键的特点是原子之间传递电子时,每个原子都最终获得了完整的价层。
3. 配位键和共价键的形状差异配位键形成的配合物通常是平面的,这是因为配体通常以一个平面的角度与金属离子形成配位键。
另一方面,共价键形成的分子由于电子云的排布通常具有三维形状。
4. 配位键的特殊性配位键和共价键之间的最大区别是,配位键具有独特的特殊性,这是由于配位键往往是由一个金属离子和多个配体组成的。
这种多对一的化学键形成了复杂的分子结构。
这对于构建新的有机化合物非常重要,可以通过引入不同的配体,设计出具有更强大生物活性的化合物。
5. 结束语综上所述,配位键和共价键虽然都是化学键的代表性概念,但是它们的性质和特点却大相径庭。
了解它们的特点有助于我们进一步理解化学反应的本质,以及它们在我们日常生活中的重要性。
高三复习-配位键怎么判断数目
配位键怎么判断数目
配位数就是在配位个体中与一个形成体成键的配位原子的总数,如果是由单齿配体形成的配合物,中心离子的配位数等于配体数目,比如说[Cu(NH3)4]2的配位数就是4了,[CoCl3(NH3)3]中Co3的配位数就是33=6了,如果是由多齿构成的配体,那配体的数目就不等于中心离子的配数了。
配位键,又称配位共价键,或简称配键,是一种特殊的共价键。
当共价键中共用的电子对是由其中一原子独自供应,另一原子提供空轨道时,就形成配位键。
配位键形成后,就与一般共价键无异。
成键的两原子间共享的两个电子不是由两原子各提供一个,而是来自一个原子。
例如氨和三氟化硼可以形成配位化合物:图片式中→表示配位键。
在N和B之间的一对电子来自N原子上的孤对电子。
配位键是极性键,电子总是偏向一方,根据极性的强弱,或接近离子键,或接近极性共价键。
在一些配合物中,除配体向受体提供电子形成普通配位键外,受体的电子也向配体转移形成反馈配键。
例如Ni(CO)4中CO中碳上的孤对电子向镍原子配位形成σ配位键,镍原子的d电子则反过来流向CO的空π*反键轨道,形成四电子三中心d-pπ键,就是反馈配键。
非金属配位化合物中也可能存在这种键。
配位键疑难释疑
配位键疑难释疑配位键及配位化合物知识尽管在教材中所占内容不多,但它常常与化学键、轨道杂化及物质性质等内容结合在一起设计问题,因而明晰配位键的本质、存在、形成条件等相关内容具有很重要的意义。
一、配位键与共价键的本质是否相同原子之间形成共价键时,若共用电子对只是由一方原子提供电子,而非来自双方原子,这样的共价键就称为配位键,故配位键一定是共价键,也就具有共价键的特征:方向性与饱和性,所以说配位键与共价键没有本质上的差异。
共价键不一定是配位键,关键是看共用电子对的来源是一个成键原子还是两个成键原子提供的,若是由成键的一个原子单方面提供的则为配位键,若是由成键双方原子共同提供的则是普通共价键,所以说配位键与共价键只是在形成过程上有所不同而已。
如浓氨水与盐酸反应生成氯化铵,因氨气分子中的氮原子有一对孤电子,氢离子有空轨道,故H+与氨气通过配位键结合成铵根离子,尽管铵根离子中4个氮氢键的形成过程不同,但实验证明这4个氮氢键的性质完全相同,没有任何差异,这也进一步证明配位键与共价键是没有本质区别的。
二、形成配位键有何条件配位键是一种特殊的共价键,并不是任意的两个原子相遇就能形成。
它要求成键的两个原子中一个原子A有孤对电子,另一个原子B有接受孤对电子的“空轨道”,所以配位键的表示方法为A →B,A称为配体,B称为中心原子或离子。
有时为了增强成键能力,中心原子或离子B利用能量相近的空轨道进行杂化后,再来接收以配体原子A的孤电子对。
配位键既可以存在于分子中(如H2SO4等),又可以存在于离子之中(如铵根离子、水合氢离子等),如图所示:、例1:气态氯化铝(Al2Cl6)是具有配位键的化合物,分子中原子之间的关系如图示,请在图中标出你认为是配位键的斜线加上箭头。
解析:配位键是指成键双方一方提供空轨道一方提供孤对电子。
C1元素最外层有7个电子通过1个共用电子对就可以形成8电子稳定结构。
所以氯化铝(A12Cl6)中与两个铝形成共价健的氯原子中,有一条是配位键,氯原子提供电子,铝提供空轨道。
高考化学一轮复习重要知识点:共价键分类
高考化学一轮复习重要知识点:共价键分类共价键从不同的角度可以进行不同的分类,每一种分类都包括了所有的共价键(只是分类角度不同),下面是高考化学一轮复习重要知识点:共价键分类,请考生认真学习。
按成键方式由两个原子轨道沿轨道对称轴方向相互重叠导致电子在核间出现概率增大而形成的共价键,叫做σ键,可以简记为“头碰头”(见右图)。
σ键属于定域键,它可以是一般共价键,也可以是配位共价键。
一般的单键都是σ键。
原子轨道发生杂化后形成的共价键也是σ键。
由于σ键是沿轨道对称轴方向形成的,轨道间重叠程度大,所以,通常σ键的键能比较大,不易断裂,而且,由于有效重叠只有一次,所以两个原子间至多只能形成一条σ键。
π键成键原子的未杂化p轨道,通过平行、侧面重叠而形成的共价键,叫做π键,可简记为“肩并肩”(见右图)。
π键与σ键不同,它的成键轨道必须是未成对的p轨道。
π键性质各异,有两中心,两电子的定域键,也可以是共轭Π键和反馈Π键。
两个原子间可以形成最多2条π键,例如,碳碳双键中,存在一条σ键,一条π键,而碳碳三键中,存在一条σ键,两条π键。
π键中的π电子可以吸收紫外线并被激发,所以,含有π键的化合物有抵御紫外线的功能,防晒霜正是利用了这个原理防护紫外线对人的伤害。
共轭π键具有特殊的稳定性,例如苯环中存在6中心6电子的大π键,显现出芳香性,不易发生加成和氧化反应,而易发生亲电取代,与苯环有类似键型的化合物包括部分杂环化合物、稠环烃和其他烃类,化学家埃里希·休克尔通过分子轨道计算得出了环烯烃芳香性判定的休克尔规则(亦名4n+2规则),其它常见的非苯芳烃包括薁、[18]轮烯等;而石墨的每一层都有一个无穷大的π键,电子在这个超大π键中可以自由移动,类似于金属键,这也是石墨可以横向导电的原因。
δ键由两个d轨道四重交盖而形成的共价键称为δ键,可简记为“面对面”(见下图)。
δ键只有两个节面(电子云密度为零的平面)。
从键轴看去,δ键的轨道对称性与d轨道的没有区别,而希腊字母δ也正来源于d轨道。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配位键和共价键
一、引言
配位键和共价键是化学中最基本的两种键。
它们在分子化合物的结
构中起着重要的作用。
本文将从配位键和共价键的定义、特点和应用
等方面进行论述。
二、配位键
配位键是指两个原子通过共用一个或多个电子对而形成的键。
其中,一个原子为配位中心,可以是金属离子或亲电位较强的原子;另一个
原子为配位体,通常是亲核位较强的原子或离子。
1. 配位键的特点
(1)配位键是通过电子对的共用而形成的,电子对的数目决定了
配位键的键级。
例如,共用一个电子对形成单配位键,共用两个电子
对形成双配位键。
(2)配位键的键长通常较长,比共价键的键长要长。
(3)配位键的强度通常较弱,比共价键的强度要弱。
这是因为,
共价键是通过原子核间的相互作用而形成的,而配位键是通过电子对
之间的相互作用而形成的。
2. 配位键的应用
配位键广泛应用于化学反应和化学物质的合成。
在化学反应中,配位键的形成和断裂影响着反应的速度和产物的选择性。
在化学物质的合成中,配位键通常用于构建复杂结构和功能分子。
三、共价键
共价键是指两个原子通过共用电子对而形成的键。
共价键的形成是由于两个原子的电子云部分重叠而形成的。
共价键通常存在于非金属原子之间。
1. 共价键的特点
(1)共价键是通过电子的共用而形成的,电子对的数目决定了共价键的键级。
例如,共用一个电子对形成单共价键,共用两个电子对形成双共价键。
(2)共价键的键长通常较短,比配位键的键长要短。
(3)共价键的强度通常较强,比配位键的强度要强。
这是因为,共价键是通过原子核间的相互作用而形成的,而配位键是通过电子对之间的相互作用而形成的。
2. 共价键的应用
共价键广泛应用于有机化学和生物化学领域。
在有机化学中,共价键的形成和断裂是有机反应的基础。
在生物化学中,共价键参与了生物分子的结构和功能,如蛋白质的折叠和DNA的双螺旋结构。
四、共价键与配位键的比较
共价键和配位键在形成机理、键长和强度等方面存在差异。
共价键
是通过原子核间的相互作用形成的,而配位键是通过电子对之间的相
互作用形成的。
共价键的键长较短,强度较强,而配位键的键长较长,强度较弱。
此外,共价键主要存在于非金属原子之间,而配位键主要
存在于金属离子和配位体之间。
五、结论
配位键和共价键是化学中最基本的两种键。
通过电子对的共用来形
成配位键和共价键,在分子化合物的结构中起着重要的作用。
它们在
化学反应、有机合成和生物分子的结构中具有广泛的应用。
通过比较
共价键和配位键的差异,我们可以更好地理解它们在化学中的不同作
用和特点。
总结起来,配位键是通过电子对的共用而形成的较弱键,通常存在
于金属离子和配位体之间;而共价键是通过原子核间的相互作用而形
成的较强键,主要存在于非金属原子之间。
它们在化学反应和化学物
质的合成中发挥着重要的作用,并对分子化合物的结构产生影响。
深
入理解配位键和共价键的性质和应用对于化学研究和工业生产具有重
要意义。