第4单元:电磁感应现象楞次定律doc高中物理

合集下载

法拉第电磁感应定律与楞次定律

法拉第电磁感应定律与楞次定律

法拉第电磁感应定律与楞次定律法拉第电磁感应定律和楞次定律是电磁学中两个关键的物理定律,它们描述了电磁感应现象和电磁场的相互作用。

这两个定律的提出和发展对于电磁学的发展产生了深远的影响。

本文将介绍法拉第电磁感应定律和楞次定律的原理、应用以及它们之间的关系。

一、法拉第电磁感应定律法拉第电磁感应定律是由英国物理学家迈克尔·法拉第于1831年提出的。

该定律描述了导体中电磁感应现象的产生。

根据法拉第电磁感应定律,当导体中的磁通量发生变化时,导体中就会产生电动势(即电压),从而产生电流。

具体来说,法拉第电磁感应定律可以用如下公式表示:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间,d/dt表示对时间的导数。

根据该公式,当磁通量的变化率增大时,感应电动势的大小也会增大。

而当磁通量的变化率减小或保持不变时,感应电动势的大小也会相应减小或保持不变。

法拉第电磁感应定律的应用十分广泛。

例如,感应电动势的产生是电感器、变压器等电子设备工作的基础原理之一。

另外,发电机的工作原理也是基于法拉第电磁感应定律。

当发电机中的导线在磁场中旋转时,磁通量的变化就会引起导线中的感应电动势,进而产生电流,从而实现转化机械能为电能的过程。

二、楞次定律楞次定律是由法国物理学家亨利·楞次于1834年提出的。

该定律描述了电磁感应现象中的一个重要规律,即感应电流的产生会产生一个与产生它的磁场方向相反的磁场。

楞次定律可以简述为:感应电流产生的磁场方向总是尽可能地抵消引起它的磁场的变化。

具体来说,当磁场发生变化时,感应电流将会在闭合回路中产生。

根据楞次定律,这个感应电流会产生一个磁场,其方向与原来的磁场方向相反,从而抵消了原来的磁场变化。

这一定律使得磁场变化时系统能够自我调节,保持了磁场的相对稳定性。

楞次定律的应用也非常广泛。

一个重要的应用是电感器。

当电流通过电感器时,电感器中会产生一个磁场,该磁场会抵消电流产生的磁场变化,从而使电感器的电流保持稳定。

电磁感应的现象法拉第定律和楞次定律

电磁感应的现象法拉第定律和楞次定律

电磁感应的现象法拉第定律和楞次定律电磁感应的现象:法拉第定律和楞次定律电磁感应是指通过变化的磁场引起电场和电流的产生的现象。

电磁感应现象的研究对于我们理解电磁学的基本原理具有重要意义。

在电磁感应的研究中,法拉第定律和楞次定律是两个基础理论,本文将围绕这两个定律进行详细的探讨。

一、法拉第定律法拉第定律是描述磁场变化引起电动势产生的定律,它的数学表达式为:ε = -dΦ/dt其中,ε表示电动势,Φ表示磁通量,t表示时间。

根据法拉第定律,只有在磁场发生变化的情况下才会产生电动势。

根据法拉第定律,我们可以解释一些常见的电磁感应现象。

例如,当一个磁场与一个闭合线圈相交,而该磁场的强度发生变化时,线圈中就会产生感应电流。

这就是电磁感应现象中的电磁感应发电原理。

二、楞次定律楞次定律是描述磁场变化引起感应电流方向的定律,它的数学表达式为:ε = -dΦ/dt = -d(BA)/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间,B表示磁场的强度,A表示感应电路的面积。

根据楞次定律,当磁场发生变化时,感应电动势的方向使得由其产生的感应电流产生一个磁场,该磁场的磁通量与原来的磁场的变化趋势相反,从而阻碍了磁场变化的过程。

三、电磁感应实验为了验证法拉第定律和楞次定律,我们可以进行一些简单的电磁感应实验。

例如,我们可以将一个线圈与一个磁铁放置在一起,并通过测量线圈两端的电压来观察磁场变化对电动势的影响。

在实验过程中,我们可以改变磁铁的位置、线圈的匝数或者磁铁的磁场强度,然后记录相应的电动势值。

通过实验数据的分析,我们可以验证法拉第定律和楞次定律的正确性。

四、应用领域电磁感应的定律在现实生活中有着广泛的应用。

例如,发电机原理就是基于电磁感应的定律工作的。

在发电机中,通过旋转线圈剧烈改变磁通量,从而产生了交流电。

这种原理被广泛应用于电力工程中。

此外,电磁感应的定律也被应用于电磁感应加热、电磁感应刹车等领域。

在电磁感应加热中,我们可以通过改变感应线圈的电流来控制被加热物体的温度。

高中物理教科选修课件楞次定律

高中物理教科选修课件楞次定律

相关知识点回顾与总结
楞次定律内容
感应电流具有这样的方向,即感 应电流的磁场总要阻碍引起感应
电流的磁通量的变化。
楞次定律的理解
感应电流的磁场不一定与原磁场 方向相反,只是在原磁场的磁通 量增大时两者方向相反,而在原 磁场的磁通量减小时,两者方向
相同。
楞次定律的应用
判断感应电流的方向,判断电磁 感应现象中能量转化问题。
在电磁感应现象中,机械能转化为电能, 电能再转化为其他形式的能量(如热能、 光能等)。
能量在转化过程中会有一定的损失,因此 能量转化效率是评价电磁感应现象能量利 用效果的重要指标。
通过优化电磁感应装置的设计、提高导体 的导电性能、降低电阻等方法,可以提高 能量转化效率。
03
楞次定律在电路中应用
直流电路中楞次定律应用
节点电压法
选取电路中的某些节点作为参考点 ,将其他节点的电压表示为参考点 电压的函数。然后根据楞次定律和 基尔霍夫定律列出节点电压方程进 行求解。
04
实验验证与误差分析
实验设计思路及步骤
设计思路:通过对比实验,验证楞次定律的正 确性,并分析实验误差。
01
准备实验器材,包括线圈、电流表、电压 表、电源等。
前沿动态介绍及展望
电磁感应现象的研究
电磁感应是物理学中的重要现象,近年来在超导材料、拓扑物态 等领域的研究中取得了重要进展。
楞次定律在新技术中的应用
随着科技的发展,楞次定律在电磁炮、无线充电等新技术中得到了 广泛应用。
未来研究方向
未来研究将关注电磁感应现象中的微观机制、高效能量转换等方面 ,同时探索其在新能源、环保等领域的应用潜力。
表达式意义
当磁通量增加时,感应电动势的方向 与磁通量的方向相反;当磁通量减少 时,感应电动势的方向与磁通量的方 向相同。

电磁感应现象楞次定律

电磁感应现象楞次定律
变化。
(2)适用范围:
一切电磁感应现象
旧知回顾
三、感应电流方向的判定
2.右手定则
(1)内容:伸开右手,使拇指与其余四指垂直,
并且都与手掌在同一平面内;让磁感线从掌心进
入,并使拇指指向导线运动方向,这时四指所指
方向即为感应电流方向。
(2)适用情况:
导线切割磁感线产生感应电流
旧知回顾
三、感应电流方向的判定
楞次定律
来拒去留
右手定则
增缩减扩
闭合回路的磁通量发生变化或闭合回路的一
部分导体在磁场中做切割磁感线的运动
旧知回顾
二、电磁感应现象
3.实质:产生感应电动势。
①电路闭合,有感应电流
②电路不闭合,只有感应电动势,没有感应电流
旧知回顾
三、感应电流方向的判定
1.楞次定律
(1)内容:感应电流具有这样的方向,即感应
电流的磁场总要 阻碍 引起感应电流的磁通量的
右手定则
②闭合回路磁通量变化:
楞次定律
因动生电
例2 足够长的直导线固定在光滑水平面内,导
线中通有如图所示的恒定电流,一硬质金属环
在该平面内运动,初速度0 的方向与电流方向
垂直,下列判断正确的是( D )
A.金属环中感应电流方向始终沿逆时针方向
B.金属环所受合力始终保持不变
C.金属环做匀速直线运动
D.金属环最终停止在该水平面上
例3 如图所示的是一种延时继电器的示意图。铁芯
上有两个线圈A和B。当开关S断开后,电磁铁还会继
续吸住衔铁一小段时间,之后弹簧 才把衔铁D拉起,
能做到延时的主要原因是( )B
A.线圈A中的电流逐渐减小
B.线圈B中产生了感应电流

高中物理第四章电磁感应第3节楞次定律讲义含解析新人教版选修3_2

高中物理第四章电磁感应第3节楞次定律讲义含解析新人教版选修3_2

第3节楞次定律1.楞次定律的内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

2.楞次定律可广义地表述为:感应电流的“效果”总是要反抗(或阻碍)引起感应电流的“原因”,常见的有三种:①阻碍原磁通量的变化(“增反减同”);②阻碍导体的相对运动(“来拒去留”);③通过改变线圈面积来“反抗”(“增缩减扩”)。

3.闭合导体回路的一部分做切割磁感线运动时,可用右手定则判断感应电流的方向。

一、楞次定律1.探究感应电流的方向(1)实验器材:条形磁铁、电流表、线圈、导线、一节干电池(用来查明线圈中电流的流向与电流表中指针偏转方向的关系)。

(2)实验现象:如图所示,在四种情况下,将实验结果填入下表。

(3)实验分析:①线圈内磁通量增加时的情况②线圈内磁通量减少时的情况表述一:当穿过线圈的磁通量增加时,感应电流的磁场与原磁场的方向相反;当穿过线圈的磁通量减少时,感应电流的磁场与原磁场的方向相同。

表述二:当磁铁靠近线圈时,两者相斥;当磁铁远离线圈时,两者相吸。

2.楞次定律感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

二、右手定则1.内容伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。

如图所示。

2.适用范围适用于闭合电路部分导体切割磁感线产生感应电流的情况。

1.自主思考——判一判(1)感应电流的磁场总与原磁场方向相反。

(×)(2)感应电流的磁场总是阻碍原磁场的磁通量。

(×)(3)感应电流的磁场有可能阻止原磁通量的变化。

(×)(4)导体棒不垂直切割磁感线时,也可以用右手定则判断感应电流方向。

(√)(5)凡可以用右手定则判断感应电流方向的,均能用楞次定律判断。

(√)(6)右手定则即右手螺旋定则。

(×)2.合作探究——议一议(1)楞次定律中“阻碍”与“阻止”有何区别?提示:阻碍不是阻止,阻碍只是延缓了磁通量的变化,但这种变化仍将继续进行。

高三物理知识点:电磁感应和电磁感应现象

高三物理知识点:电磁感应和电磁感应现象

高三物理知识点:电磁感应和电磁感应现象一、电磁感应的基本概念电磁感应是指在导体周围的磁场发生变化时,导体中会产生电动势的现象。

这个现象是由英国科学家迈克尔·法拉第在1831年发现的,因此也被称为法拉第电磁感应定律。

1.1 感应电动势当闭合导体回路所围面积内的磁通量发生变化时,回路中就会产生电动势,这个电动势称为感应电动势。

数学表达式为:[ = - ]其中,( ) 表示感应电动势,( _B ) 表示磁通量,( t ) 表示时间。

负号表示楞次定律,即感应电动势的方向总是阻碍磁通量的变化。

1.2 楞次定律楞次定律是描述感应电动势方向的重要定律。

它指出,感应电动势的方向总是使得其产生的电流所产生的磁通量变化方向与原磁通量变化方向相反。

1.3 法拉第电磁感应定律法拉第电磁感应定律是描述感应电动势大小的重要定律。

它指出,感应电动势的大小与磁通量的变化率成正比,即:[ = N ]其中,( N ) 表示闭合导体回路的匝数。

二、电磁感应现象电磁感应现象是指在电磁感应过程中,导体中会产生电流的现象。

2.1 感应电流的产生当闭合导体回路所围面积内的磁通量发生变化时,回路中就会产生感应电流。

感应电流的产生遵循楞次定律和法拉第电磁感应定律。

2.2 感应电流的方向根据楞次定律,感应电流的方向总是使得其产生的磁通量变化方向与原磁通量变化方向相反。

2.3 感应电流的大小根据法拉第电磁感应定律,感应电流的大小与感应电动势的大小成正比,与闭合导体回路的电阻成反比。

即:[ I = ]其中,( I ) 表示感应电流,( R ) 表示闭合导体回路的电阻。

三、电磁感应的应用电磁感应现象在生产和生活中有广泛的应用。

3.1 发电机发电机是利用电磁感应现象将机械能转化为电能的装置。

它通过旋转磁场和线圈之间的相对运动,产生感应电动势,从而产生电流。

3.2 变压器变压器是利用电磁感应现象改变电压的装置。

它通过两个或多个线圈之间的互感现象,实现电压的升高或降低。

2025年高考精品备课物理教案讲义:电磁感应现象 楞次定律

2025年高考精品备课物理教案讲义:电磁感应现象 楞次定律

电磁感应电磁感应现象楞次定律课标要求核心考点五年考情核心素养对接1.知道磁通量.通过实验,了解电磁感应现象,了解产生感应电流的条件.知道电磁感应现象的应用及其对现代社会的影响.2.探究影响感应电流方向的因素,理解楞次定律.电磁感应现象及感应电流方向的判断2023:山东T12;2020:全国ⅡT14,天津T6;2019:浙江4月T21 1.物理观念:理解电磁感应现象;用能量的观点解释楞次定律.2.科学思维:运用电磁感应现象及“三定则、一定律”分析相关问题.3.科学探究:观察、分析电磁感应现象,探究、论证产生感应电流的条件.4.科学态度与责任:通过了解电磁感应的实际应用,体会科技进步对人类生活和社会发展的重要影响,增强社会责任感.楞次定律推论的应用2022:上海T15;2020:全国ⅢT14,江苏T3;2019:全国ⅢT14,上海T10“三定则、一定律”的应用2022:江苏T3命题分析预测高考主要考查电磁感应现象的分析与判断、楞次定律推论的应用以及“三定则、一定律”的应用,多以选择题的形式呈现,难度较小.预计2025年高考将继续考查应用楞次定律和右手定则判断感应电流的方向.电磁感应现象在生产生活中有着广泛的应用,一些相关的生活化的素材将是高考命题的热点素材.考点1电磁感应现象及感应电流方向的判断1.电磁感应现象2.楞次定律与右手定则定律或定则内容适用范围楞次定律感应电流具有这样的方向,即感应电流的磁场总要[8]阻碍引起感应电流的[9]磁通量的变化一切电磁感应现象右手定则如图,伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让[10]磁感线从掌心进入,并使拇指指向[11]导线运动的方向,这时四指所指的方向就是[12]感应电流的方向导线[13]切割磁感线产生感应电流3.感应电流方向的判断(1)用楞次定律判断①楞次定律中“阻碍”的含义②应用楞次定律的思路(2)用右手定则判断该方法只适用于导体切割磁感线产生的感应电流,注意三个要点:①掌心——磁感线穿入;②拇指——指向导体运动的方向;③四指——指向感应电流的方向.每当高考考生入场时,监考老师要用金属探测器对考生进行安检,当探测器靠近金属物体时,探测器就会发出警报.判断下列说法的正误.(1)探测器靠近非金属物体时不发生报警现象.(√)(2)探测器靠近金属物体报警时利用了静电感应现象.(✕)(3)探测器靠近金属物体和远离金属物体时产生的感应电流方向不同.(√)如图所示,在光滑水平面上,通有电流I的长直导线附近有一个矩形线圈ABCD,线圈与导线始终在同一个平面内.线圈在导线的一侧,垂直于导线左右平移时,其中产生了A→B→C→D→A方向的电流.已知距离载流直导线较近的位置磁场较强.则线圈在向左(选填“左”或“右”)移动.如果通电导线电流减小,线圈将向左(选填“左”或“右”)运动.如果矩形线圈周长不变,由矩形突然变成圆形,在此过程中,线圈中有(选填“有”或“无”)感应电流.解析选择矩形线圈为研究对象,画出通电直导线一侧的磁感线分布如图所示,磁感线方向垂直于纸面向里,用“×”表示.已知矩形线圈中感应电流的方向为A→B→C→D→A,根据安培定则,感应电流的磁场方向是垂直于纸面向外的,用矩形中心的圆点“·”表示.根据楞次定律,感应电流的磁场应该是阻碍穿过线圈的磁通量变化的.现在已经判明感应电流的磁场垂直于纸面向外,跟原来磁场的方向相反.因此,线圈移动时通过它的磁通量一定在增加,这说明线圈在向左移动.如果通电导线电流减小,穿过线圈的磁通量将减少,根据楞次定律,感应电流的磁场将阻碍磁通量的减少,线圈将向左运动.由矩形突然变成圆形,穿过线圈的磁通量发生变化,在此过程中,线圈中有感应电流.如图,假定导体棒CD不动,磁感应强度B减小但方向不变.(1)我们研究的是哪个闭合导体回路?(2)磁感应强度减小时,穿过这个闭合导体回路的磁通量是增加还是减少?(3)感应电流的磁场应该是沿哪个方向的?(4)导体棒CD中的感应电流是沿哪个方向的?答案(1)CDEF(2)减少(3)与原磁感应强度方向相同(4)从D到C命题点1感应电流有无的判断1.下列各图所描述的物理情境中,没有感应电流的是(A)A BC D解析开关S闭合稳定后,穿过线圈N的磁通量保持不变,线圈N中不产生感应电流;磁铁向铝环A靠近,穿过铝环A的磁通量在增大,铝环A中产生感应电流;金属框从A向B 运动,穿过金属框的磁通量时刻在变化,金属框中产生感应电流;铜盘在磁场中按题图所示方向转动,铜盘的无数辐条切割磁感线,与外电路构成闭合回路,产生感应电流.故选A.方法点拨判断感应电流有无的方法命题点2感应电流方向的判断2.[2023海南]汽车测速利用了电磁感应现象,汽车可简化为一个矩形线圈abcd,埋在地下的线圈分别为1、2,通上顺时针(俯视)方向的电流,当汽车经过线圈时(C)A.线圈1、2产生的磁场方向竖直向上B.汽车进入线圈1过程产生的感应电流方向为abcdC.汽车离开线圈1过程产生的感应电流方向为abcdD.汽车进入线圈2过程受到的安培力方向与速度方向相同解析由安培定则可知,线圈1、2产生的磁场方向都是竖直向下的,A错误;汽车进入线圈1时,线圈abcd中向下的磁通量增加,由楞次定律可判断,线圈abcd中的感应电流方向与线圈1中的电流方向相反,是逆时针,即感应电流方向为adcb,同理,汽车离开线圈1时,线圈abcd中向下的磁通量减少,线圈abcd中的感应电流方向是顺时针,即感应电流方向为abcd,故B错误,C正确;由楞次定律可知,安培力为阻力,与速度方向相反,D 错误.3.[右手定则/2023广东佛山模拟]如图所示,光滑平行金属导轨PP'和QQ',都处于同一水平面内,P 和Q 之间连接一电阻R ,整个装置处于竖直向下的匀强磁场中.现在垂直于导轨放置一根导体棒MN ,用一水平向右的力F 拉动导体棒MN ,以下关于导体棒MN 中的感应电流方向和它所受安培力的方向的说法正确的是(A)A.感应电流方向是N →M ,安培力水平向左B.感应电流方向是M →N ,安培力水平向左C.感应电流方向是N →M ,安培力水平向右D.感应电流方向是M →N ,安培力水平向右解析根据右手定则判断可知导体棒MN 中的感应电流方向是N →M ,根据左手定则判断可知MN 所受安培力的方向水平向左,故A 正确,B 、C 、D 错误.方法点拨楞次定律的本质是能量守恒,右手定则是楞次定律的特例,楞次定律适用于所有的电磁感应现象,而右手定则适用于一段导体在磁场中切割磁感线运动的情况.考点2楞次定律推论的应用楞次定律的推论增反减同磁体靠近线圈,B 感与B 原方向相反当I 1增大时,环B 中的感应电流方向与I 1相反;当I 1减小时,环B 中的感应电流方向与I 1相同来拒去留磁体靠近,是斥力;磁体远离,是引力.阻碍磁体与圆环的相对运动增缩减扩(适用于单向磁场)P 、Q 是光滑固定导轨,a 、b 是可动金属棒,磁体下移(上移),a 、b 靠近(远离),使回路面积有缩小(扩大)的趋势增离减靠当开关S 闭合时,左环向左摆动、右环向右摆动,远离通电线圈.当开关断开时,情况相反.通过远离和靠近阻碍磁通量的变化说明以上情况“殊途同归”,实质上都是以不同的方式阻碍磁通量的变化如图所示,一轻质绝缘横杆两侧各固定一铝环,横杆可绕中心点自由转动,拿一条形磁铁插向A 环,后又取出插向B 环.判断下列说法的正误.(1)磁铁插向A 环,横杆发生转动.(√)(2)磁铁插向B 环,横杆发生转动.(✕)(3)磁铁插向A 环,A 环中产生感应电动势和感应电流.(√)(4)磁铁插向B 环,B 环中不产生感应电动势和感应电流.(✕)引起感应电流的原因感应电流产生的效果如何“阻碍”口诀闭合回路中的磁通量变化在闭合回路中产生磁场感应电流在闭合回路中产生的磁场在磁通量增加时与原磁场方向相反,反之相同增反减同导体相对运动产生安培力产生的安培力总是阻碍导体的相对运动,而不是阻碍导体的运动来拒去留线圈中磁通量变化产生安培力使线圈面积变化线圈面积在磁通量增加时有收缩趋势,反之则扩大增缩减扩命题点1阻碍原磁通量的变化——“增反减同”4.[楞次定律]如图所示,水平放置的圆柱形光滑玻璃棒左边绕有一线圈,右边套有一金属圆环.圆环初始时静止.将图中开关S 由断开状态拨至连接状态,电路接通的瞬间,可观察到(B)A.拨至M端或N端,圆环都向左运动B.拨至M端或N端,圆环都向右运动C.拨至M端时圆环向左运动,拨至N端时向右运动D.拨至M端时圆环向右运动,拨至N端时向左运动解析将开关S由断开状态拨至M端或N端,都会使线圈中的电流突然增大,穿过右边圆环的磁通量突然增大,由楞次定律可知,圆环都会向右运动以阻碍磁通量的增大,B正确,A、C、D均错误.命题点2阻碍相对运动——“来拒去留”5.[2023河北邢台模拟]如图所示,当条形磁铁突然向闭合铜环运动时,铜环的运动情况是(A)A.向右摆动B.向左摆动C.静止D.竖直向上运动解析由于条形磁铁相对铜环向右运动,铜环中产生感应电流,由楞次定律可知,铜环中的感应电流的磁场将阻碍由于磁铁的靠近而引起的磁通量的增大,铜环将向右运动以阻碍这种相对运动,A正确.命题拓展命题情境变化若用弹簧悬挂条形磁铁,磁铁下端的水平桌面上放一个固定的闭合铜环,并使磁铁上下振动,如图所示.磁铁在向下运动的过程中,判断铜环给磁铁的磁场力方向.答案向上解析根据楞次定律的“来拒去留”,磁铁向闭合铜环靠近,受到阻力作用,即铜环给磁铁的磁场力向上.命题点3使回路面积有扩大或缩小的趋势——“增缩减扩”6.如图所示,水平桌面上放有一个闭合铝环,在铝环轴线上方有一个条形磁铁.当条形磁铁沿轴线竖直向下迅速移动时,下列判断正确的是(A)A.铝环有收缩的趋势,对桌面的压力增大B.铝环有收缩的趋势,对桌面的压力减小C.铝环有扩张的趋势,对桌面的压力减小D.铝环有扩张的趋势,对桌面的压力增大解析根据楞次定律可知,当条形磁铁沿轴线竖直向下迅速移动时,穿过闭合铝环的磁通量增大,因此铝环有收缩的趋势,同时有远离磁铁的趋势,从而阻碍磁通量的增大,故增大了和桌面的挤压程度,从而使铝环对桌面的压力增大,A正确,B、C、D错误.考点3“三定则、一定律”的应用“三定则、一定律”的比较定则或定律适用的现象因果关系安培定则电流的磁效应——电流、运动电荷产生的磁场因电生磁(1)安培力——磁场对通电导线的作用力;因电受力左手定则(2)洛伦兹力——磁场对运动电荷的作用力右手定则导体做切割磁感线运动产生的电磁感应现象因动生电楞次定律穿过闭合回路的磁通量变化产生的电磁感应现象因磁生电(1)如图,已知导线运动方向与感应电流的方向,可根据右手定则画出磁场方向,请在图上画出.(2)如图,已知电流方向与磁场方向,可根据左手定则画出导线在磁场中的受力方向,请在图上画出.7.如图所示,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场方向垂直.金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆形金属线框T位于回路围成的区域内,线框与导轨共面.现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是(D)A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向解析金属杆PQ突然向右运动,则其速度v方向向右,由右手定则可知,金属杆PQ中的感应电流方向由Q指向P,则PQRS中感应电流沿逆时针方向.PQRS中感应电流产生的磁场垂直纸面向外,穿过T的总磁通量减少,根据楞次定律和安培定则可知,T中的感应电流沿顺时针方向,D正确.命题拓展命题条件拓展(1)若金属杆PQ不动,让线圈T突然向右运动,在运动开始的瞬间,判断T中感应电流的情况.(2)若金属杆PQ与线圈T都不动,增大匀强磁场的磁感应强度,判断T中感应电流的情况.答案(1)金属杆PQ不动,让线圈T突然向右运动,在运动开始的瞬间,T内的磁通量不发生变化,所以T中没有感应电流.(2)若金属杆PQ与线圈T都不动,增大匀强磁场的磁感应强度,则T内的磁通量增大,根据楞次定律和安培定则可知,T中的感应电流沿逆时针方向.方法点拨二次感应问题的程序分析法电磁感应现象在生活实际中的应用电磁感应现象在生产、生活中有着广泛的应用,如测量列车速度和加速度的装置、电梯坠落的应急安全装置、安检门、电磁炉、磁悬浮列车等,这些生活化的素材将是未来高考命题的热点素材之一.1.[测量列车速度和加速度的装置]为了测量列车运行的速度和加速度的大小,可采用如图甲所示的装置,它由一块安装在列车车头底部的强磁体和埋设在轨道地面的一组线圈及电流测量记录仪组成(测量记录仪未画出).当列车经过线圈上方时,线圈中产生的电流被记录下来,P、Q为接测量仪器的端口,若俯视轨道平面,磁场垂直于地面向下(如图乙所示),则在列车经过测量线圈的过程中,流经线圈的电流方向为(B)A.始终沿逆时针方向B.先沿逆时针方向,再沿顺时针方向C.先沿顺时针方向,再沿逆时针方向D.始终沿顺时针方向解析列车经过线圈上方时,穿过线圈的磁通量先增大后减小,根据楞次定律和安培定则可知线圈中产生的电流方向为先沿逆时针方向,再沿顺时针方向,B正确.2.[无线充电]随着科技的不断发展,无线充电已经进入人们的日常生活.小到手表、手机,大到电脑、电动汽车的无线充电,都已经实现了从理论研发到实际应用的转化.如图是某无线充电手机的充电图及原理图,下列说法正确的是(C)A.无线充电时手机接收线圈部分的工作原理是“电流的磁效应”B.只有将充电底座接到直流电源上才能对手机进行充电C.接收线圈中交变电流的频率与发射线圈中交变电流的频率相同D.只要有无线充电底座,所有手机都可以进行无线充电解析无线充电是互感现象的一种应用,可类比为常见的变压器,接收线圈部分的工作原理是变化的磁场产生感应电流,属于电磁感应,充电底座接交流电源时发射线圈能产生变化的磁场,可以对手机充电,线圈互感时不改变交变电流的频率,故两线圈中交变电流频率相同,A、B错误,C正确;只有具备合适的接收线圈的手机才可以进行无线充电,D错误.3.[安检门]如图所示为安检门原理图,左边门框中有一通电线圈,右边门框中有一接收线圈.工作过程中某段时间通电线圈中存在顺时针方向(从左向右看)均匀增大的电流,则(D )A.无金属片通过时,接收线圈中的感应电流方向为顺时针方向B.无金属片通过时,接收线圈中的感应电流增大C.有金属片通过时,接收线圈中的感应电流方向为顺时针方向D.有金属片通过时,接收线圈中的感应电流大小发生变化解析当通电线圈中有不断增大的顺时针方向的电流时,知穿过接收线圈的磁通量向右,且增大,根据楞次定律,接收线圈中产生逆时针方向的电流,即使有金属片通过时,接收线圈中的感应电流方向仍然为逆时针方向,故A 、C 错误;通电线圈中存在顺时针方向均匀增大的电流,则通电线圈产生的磁感应强度均匀增大,所以穿过接收线圈的磁通量均匀增大,则磁通量的变化率为定值,由法拉第电磁感应定律可知,接收线圈中的感应电流大小不变,故B 错误;有金属片通过时,则穿过金属片的磁通量发生变化,金属片中会产生感应电流,感应电流的方向与接收线圈中的感应电流的方向相同,所以会将该空间中的磁场的变化削弱一些,使接收线圈中的感应电流大小发生变化,故D 正确.4.[电磁驱动原理/多选]航母上飞机弹射起飞所利用的电磁驱动原理如图所示.当固定线圈上突然通过直流电时,线圈左侧的金属环被弹射出去.现在线圈左侧同一位置,先后放上用横截面积相等的铜和铝导线制成的形状、大小相同的两个闭合环,已知电阻率ρ铜<ρ铝,则合上开关S 的瞬间(BCD )A.从右侧看,环中产生沿逆时针方向的感应电流B.铜环受到的安培力大于铝环受到的安培力C.电池正、负极调换后,金属环仍将向左弹射D.若将金属环置于线圈右侧,环将向右弹射解析闭合开关S 的瞬间,金属环中的磁通量向右增大,根据楞次定律可知,从右侧看,环中产生沿顺时针方向的感应电流,A 错误;由于电阻率ρ铜<ρ铝,先后放上用横截面积相等的铜和铝导线制成的形状、大小相同的两个闭合环,铜环中产生的感应电流大于铝环中产生的感应电流,由安培力公式可知,铜环受到的安培力大于铝环受到的安培力,B 正确;电池正、负极调换后,闭合开关S 的瞬间,穿过金属环的磁通量向左增大,根据楞次定律可知,金属环仍将向左弹射,C 正确;若将金属环置于线圈右侧,则闭合开关S 的瞬间,环将向右弹射,D 正确.5.[电梯坠落的应急安全装置]某研究性学习小组的同学设计的电梯坠落的应急安全装置如图所示,在电梯轿厢上安装永久磁铁,并在电梯的井壁上铺设线圈,这样可以在电梯突然坠落时减小对人员的伤害.关于该装置,下列说法正确的是(B )A.当电梯突然坠落时,该安全装置可使电梯停在空中B.当电梯坠落至永久磁铁在图示位置时,闭合线圈A、B中的电流方向相反C.当电梯坠落至永久磁铁在图示位置时,只有闭合线圈A在阻碍电梯下落D.当电梯坠落至永久磁铁在图示位置时,只有闭合线圈B在阻碍电梯下落解析若电梯突然坠落,线圈闭合时,线圈内的磁通量发生变化,将在线圈中产生感应电流,感应电流会阻碍永久磁铁的运动,可起到应急避险作用,但不能阻止永久磁铁的运动,故A错误;当电梯坠落至永久磁铁在图示位置时,闭合线圈A中向上的磁通量减少,感应电流的方向从上向下看是逆时针方向,闭合线圈B中向上的磁通量增加,感应电流的方向从上向下看是顺时针方向,可知闭合线圈A与B中感应电流方向相反,故B正确;结合A的分析可知,当电梯坠落至永久磁铁在图示位置时,闭合线圈A、B都在阻碍电梯下落,故C、D错误.1.[电磁感应现象/2020天津/多选]手机无线充电是比较新颖的充电方式.如图所示,电磁感应式无线充电的原理与变压器类似,通过分别安装在充电基座和接收能量装置上的线圈,利用产生的磁场传递能量.当充电基座上的送电线圈通入正弦式交变电流后,就会在邻近的受电线圈中感应出电流,最终实现为手机电池充电.在充电过程中(AC)A.送电线圈中电流产生的磁场呈周期性变化B.受电线圈中感应电流产生的磁场恒定不变C.送电线圈和受电线圈通过互感现象实现能量传递D.手机和基座无需导线连接,这样传递能量没有损失解析由题意可知送电线圈中通入正弦式交变电流,可知电流产生的磁场也呈周期性变化,A正确;由变压器的工作原理可知,受电线圈输出的电流也是正弦式交变电流,受电线圈中感应电流产生的磁场随电流的变化而变化,B错误;送电线圈和受电线圈的能量传递是通过互感现象实现的,C正确;由于送电线圈产生的磁场并没有全部穿过受电线圈,即有磁通的损失,因此该充电过程存在能量的损失,D错误.2.[利用楞次定律判断感应电流的方向/2020江苏]如图所示,两匀强磁场的磁感应强度B1和B2大小相等、方向相反.金属圆环的直径与两磁场的边界重合.下列变化会在环中产生顺时针方向感应电流的是(B)A.同时增大B1减小B2B.同时减小B1增大B2C.同时以相同的变化率增大B1和B2D.同时以相同的变化率减小B1和B2解析当同时增大B1减小B2时,通过金属圆环的总磁通量增加,且方向垂直纸面向里,根据楞次定律知,感应电流产生的磁场方向垂直纸面向外,根据安培定则知,此时金属圆环中的感应电流沿逆时针方向,A错误;同理当同时减小B1增大B2时,金属圆环中产生顺时针方向的感应电流,B正确;当同时以相同的变化率增大或减小B1和B2时,金属圆环中的总磁通量没有变化,仍然为0,金属圆环中无感应电流产生,C、D均错误.3.[利用左手定则判断感应电流的方向/2023山东/多选]足够长U形导轨平置在光滑水平绝缘桌面上,宽为1m,电阻不计.质量为1kg、长为1m、电阻为1Ω的导体棒MN放置在导轨上,与导轨形成矩形回路并始终接触良好,Ⅰ和Ⅱ区域内分别存在竖直方向的匀强磁场,磁感应强度分别为B1和B2,其中B1=2T,方向向下.用不可伸长的轻绳跨过固定轻滑轮将导轨CD段中点与质量为0.1kg的重物相连,绳与CD垂直且平行于桌面.如图所示,某时刻MN、CD同时分别进入磁场区域Ⅰ和Ⅱ并做匀速直线运动,MN、CD与磁场边界平行.MN的速度v1=2m/s,CD的速度为v2且v2>v1,MN和导轨间的动摩擦因数为0.2.重力加速度大小取10m/s2,下列说法正确的是(BD)A.B2的方向向上B.B2的方向向下C.v2=5m/sD.v2=3m/s解析导轨的速度v2>v1,对导体棒受力分析可知导体棒受到向右的摩擦力以及向左的安培力,摩擦力大小为F f=μmg=2N,导体棒受到的安培力大小为F A1=F f=2N,由F A1=ILB1得I=1A,由左手定则可知回路中的电流方向为N→M→D→C→N.由于F f>m0g,故导轨受到的安培力水平向右,安培力大小为F A2=F f-m0g=1N,由F A2=ILB2得B2=1T,由左手定则可知B2的方向向下,A错误,B正确;电路中的电流为I=1B1−2B2,代入数据解得v2=3m/s,C错误,D正确.1.如图所示,闭合线圈abcd水平放置,其面积为S,匝数为n,线圈与磁感应。

2020学年高中物理人教版选修3-2检测:第四章电磁感应4.3楞次定律Word版含答案

2020学年高中物理人教版选修3-2检测:第四章电磁感应4.3楞次定律Word版含答案

4.3 楞次定律课时作业基础达标1.在电磁感应现象中,下列说法正确的是( )A.感应电流的磁场总是阻碍引起感应电流原磁场的磁通量的变化B.感应电流的磁场方向总是与引起感应电流的磁场方向相反C.感应电流的磁场总是阻碍引起感应电流原磁场的磁通量D.感应电流的磁场阻止了引起感应电流原磁场磁通量的变化【解析】根据楞次定律,感应电流的磁场总是阻碍引起感应电流的磁场磁通量的变化,A对,C错;同时阻碍不是阻止,只是延缓了原磁场磁通量的变化,D错;感应电流的磁场方向与原磁场方向的关系是“增反减同”,选项B错误.【答案】A2.如图所示,一根条形磁铁自左向右穿过一个闭合螺线管,则电路中( )A.始终有感应电流自a向b流过电流表GB.始终有感应电流自b向a流过电流表GC.先有a→G→b方向的感应电流,后有b→G→a方向的感应电流D.将不会产生感应电流【解析】当条形磁铁进入螺线管的时候,闭合线圈中的磁通量增加;当条形磁铁穿出螺线管时,闭合线圈中的磁通量减少,根据楞次定律判断出选项C正确.【答案】C3.如图所示,闭合线圈上方有一竖直放置的条形磁铁,磁铁的N极朝下.当磁铁向下运动时(但未插入线圈内部)( )A.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互吸引B.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互排斥C.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互吸引D.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互排斥【解析】由题意可知穿过线圈的磁场B方向向下,磁铁向下运动造成穿过线圈的磁通量增加,由楞次定律可知感应电流的磁场方向与B相反,由此可以判定感应电流的方向与题中所标电流方向相同,磁铁与线圈相互排斥.故选项B是正确的.【答案】B4.如图所示,一水平放置的通以恒定电流的圆形线圈1固定,另一较小的圆形线圈2从线圈1的正上方下落,在下落过程中由线圈1的正上方下落到线圈1的正下方的过程中,从上往下看,线圈2中( )A.无感应电流B.有顺时针方向的感应电流C.有先是顺时针方向,后是逆时针方向的感应电流D.有先是逆时针方向,后是顺时针方向的感应电流【解析】线圈1中恒定电流形成的磁场分布情况如图所示.当线圈2从线圈1的正上方下落,并处于线圈1的上方时,磁感线向上,且磁通量增大,根据楞次定律知,线圈2中产生的感应电流的磁场方向向下,由右手螺旋定则,俯视线圈2中感应电流应为顺时针方向;同时,线圈2落至线圈1的正下方时,磁通量向上且是减小的,由楞次定律和右手螺旋定则,俯视线圈2中感应电流应为逆时针方向.【答案】C5.如图所示,金属环所在区域存在着匀强磁场,磁场方向垂直纸面向里.当磁感应强度逐渐增大时,内、外金属环中感应电流的方向为( )A.外环顺时针、内环逆时针B.外环逆时针、内环顺时针C.内、外环均为逆时针D.内、外环均为顺时针【解析】首先明确研究的回路由外环和内环共同组成,回路中包围的磁场方向垂直纸面向里且内、外环之间的磁通量增加.由楞次定律可知两环之间的感应电流的磁场方向与原磁场方向相反,垂直于纸面向外,再由安培定则判断出感应电流的方向是:在外环沿逆时针方向,在内环沿顺时针方向,故选项B正确.【答案】B6.如图所示,两个相同的轻质铝环套在一根水平光滑绝缘杆上,当一条形磁铁向左运动靠近两环时,两环的运动情况是( )A.同时向左运动,间距增大B.同时向左运动,间距不变C.同时向左运动,间距变小D.同时向右运动,间距增大【解析】当条形磁铁插入铝环的过程中,穿过铝环的磁通量增加,两环为了阻碍磁通量的增加,应向条形磁铁左端磁场越来越弱的方向运动,即两铝环同时向左运动,由于两铝环上感应电流方向相同,故将相互吸引,而使间距变小,所以C正确.【答案】C7.如图表示闭合电路中的一部分导体ab在磁场中做切割磁感线运动的情景,其中能产生由a到b的感应电流的是( )【解析】由右手定则,可知选项A图中感应电流方向由a到b,选项A正确;选项B 图导体ab向纸外运动,产生感应电流由b到a,选项B错误;选项C图中由于三角形线框的一部分在磁场中运动;由楞次定律,判断可得导体ab中电流由b到a,故选项C错误;选项D图中ab棒切割磁感线由右手定则可知,导体棒ab中电流由b到a,故选项D错误.【答案】A8.如图所示,通有恒定电流的螺线管竖直放置,铜环R沿螺线管的轴线加速下落,在下落过程中,环面始终保持水平,铜环先后经过轴线上1、2、3位置时的加速度分别为a1、a2、a3,位置2处于螺线管的中心,位置1、3与位置2等距离,则( )A.a1<a2=g B.a3<a1<gC.a1=a3<a2D.a3<a1<a2【解析】由楞次定律知,感应电流的磁场总是阻碍导体间的相对运动,所以当线圈在位置1时,受到向上的安培力,阻碍靠近,在位置3时,受到向上的安培力,阻碍远离,故a1和a3均小于g,又由于整个下落过程中,铜环速度逐渐增大,而从位置1到位置2和位置2到位置3的磁通量变化相同.但后者所用时间短,所以后者磁通量变化率大,即感应电动势大,感应电流大,圆环在位置3的安培力大,故a3<a1,在位置2时,磁铁内部磁感线为平行等距的匀强磁场,故线圈在位置2附近运动磁通量不变,无感应电流,只受重力,故a2=g.【答案】ABD9.夜晚,楼梯上漆黑一片,但随着我们的脚步声响,楼梯灯亮了;我们登上一层楼,灯光照亮一层楼,而身后的灯则依次熄灭,这种楼梯灯好像能“听到”我们的到来,能“看见”我们的离去,之所以能如此,是因为电路中安装了光声控延时开关,探究这种开关有什么转换器件.【解析】打开光声控开关,内部构造如图.光声控延时开关中安装有光敏感元件,用于感知外界光线的强弱.还安装有声敏感元件用于感知外界声响.当白天外界光线较强时,光声控制延时开关总处于断开状态,灯不亮;当夜晚光线较弱且有声响时光声控延时开关处于导通状态,灯亮,延时一段时间后,开关断开,灯熄灭.【答案】见解析能力提升1.如图所示,在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为m、阻值为R的闭合矩形金属线框abcd用绝缘轻质细杆悬挂在O点,并可绕O点摆动.金属线框从右侧某一位置由静止开始释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面.则线框中感应电流的方向是( )A.a→b→c→d→aB.d→c→b→a→dC.先是d→c→b→a→d,后是a→b→c→d→aD.先是a→b→c→d→a,后是d→c→b→a→d【解析】如题图,磁场方向向上,开始磁通量减小,后来磁通量增大.由“增反减同”可知电流方向是d→c→b→a→d,B项正确.【答案】B2.如图所示,ab是一个可绕垂直于纸面的轴O转动的闭合线圈,在滑动变阻器R的滑片P 向右滑动的过程中,ab线圈将( )A.静止不动B.逆时针转动C.顺时针转动D.发生转动,因电源正负极不明,无法确定转动方向【解析】当P向右滑动时,电路中的总电阻是减小的,因此通过线圈的电流增加,电磁铁两磁极间的磁场增强,穿过ab线圈的磁通量增加,线圈中有感应电流,线圈受磁场力作用发生转动.直接使用楞次定律中的“阻碍”,线圈中的感应电流将阻碍原磁通量的增加,线圈就会通过转动来改变与磁场的正对面积,从而阻碍原磁通量的增加,只有逆时针转动才会减小有效面积,以阻碍磁通量的增加.故选项B正确.【答案】B3.如图所示,粗糙水平桌面上有一质量为m的铜质矩形线圈.当一竖直放置的条形磁铁从线圈中线AB正上方等高快速经过时,若线圈始终不动,则关于线圈受到的支持力F N及在水平方向运动趋势的正确判断是( )A.F N先小于mg后大于mg,运动趋势向左B.F N先大于mg后小于mg,运动趋势向左C.F N先小于mg后大于mg,运动趋势向右D.F N先大于mg后小于mg,运动趋势向右【解析】条形磁铁从线圈正上方等高快速经过时,通过线圈的磁通量先增加后又减小.当通过线圈磁通量增加时,为阻碍其增加,在竖直方向上线圈有向下运动的趋势,所以线圈受到的支持力大于其重力,在水平方向上有向右运动的趋势;当通过线圈的磁通量减小时,为阻碍其减小,在竖直方向上线圈有向上运动的趋势,所以线圈受到的支持力小于其重力,在水平方向上有向右运动的趋势.综上所述,线圈所受到的支持力先大于重力后小于重力,运动趋势总是向右.【答案】D4.如图所示,A、B为大小、形状均相同且内壁光滑、用不同材料制成的圆筒,竖直固定在相同高度,两个相同的条形磁铁,同时从A、B上端管口同一高度无初速度同时释放,穿过A管的条形磁铁比穿过B管的条形磁铁先落到地面.下面关于两管的制作材料的描述可能的是( )A.A管是用塑料制成的,B管是用铜制成的B.A管是用铝制成的,B管是用胶木制成的C.A管是用胶木制成的,B管是用塑料制成的D.A管是铜制成的,B管是用塑料制成的【解析】如果圆筒是用金属材料制成的,当条形磁铁进入和离开筒口位置时都会产生感应电流.磁铁和圆筒之间有力的作用,阻碍其产生相对运动,故落地较晚.如果筒由绝缘材料制成,则不会产生感应电流,两者之间没有力的作用.磁铁做自由落体运动通过圆筒,用时较少,先落地.【答案】A5.如图所示,螺线管B置于闭合金属圆环A的轴线上,当B中通过的电流I减小时( )A.环A有缩小的趋势B.环A有扩张的趋势C.螺线管B有缩短的趋势D.螺线管B有伸长的趋势【解析】当B中通过的电流逐渐减小时,穿过A线圈中向右的磁通量逐渐减小,由楞次定律可知,在线圈A中产生顺时针的感应电流(从左向右看),A、B两环之间的作用力使A 有缩小的趋势,故选项A正确;又因为B中电流减小,螺线管环与环之间的作用的引力减小,螺线管B有伸长的趋势,故选项D正确.【答案】AD6.如图所示,Ⅰ是竖直放置的闭合的接有毫安表的螺线管,Ⅱ是悬挂在弹簧下端的(不大)强磁铁棒,现使之在Ⅰ中振动.试用能量转化和守恒的观点分析将会出现什么现象,并说明原因.【答案】由于磁铁棒Ⅱ在线圈中振动,线圈Ⅰ内磁通量不断发生变化,从而产生感应电流,毫安表指针偏转.此过程中由于机械能向电能的不断转化,磁铁棒的振幅不断减小,直至停止振动,原振动的能量全部转化为电能在线圈中消耗.。

电磁感应定律与楞次定律

电磁感应定律与楞次定律

电磁感应定律与楞次定律电磁感应定律和楞次定律是电磁学中重要的基本定律,它们描述了电流的产生和变化如何与磁场相互作用的关系。

这两个定律的发现和应用对于电磁学的发展和实际应用都具有重要意义。

一、电磁感应定律电磁感应定律是由英国科学家法拉第在19世纪中叶发现的。

它提供了电磁感应现象的定量描述。

电磁感应定律有两种形式,分别是法拉第电磁感应定律和楞次-法拉第电磁感应定律。

1. 法拉第电磁感应定律法拉第电磁感应定律指出当磁场相对于闭合线圈发生变化时,线圈内部就会产生感应电动势。

法拉第电磁感应定律可以用数学公式表示为:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间。

负号表示感应电动势的方向与磁场变化方向相反。

2. 楞次-法拉第电磁感应定律楞次-法拉第电磁感应定律是对法拉第电磁感应定律的一个补充和推广。

它指出当闭合线圈中有电流通过时,线圈会对外部磁场产生反作用,抵消部分磁通量。

楞次-法拉第电磁感应定律可以表示为:ε = -d(Φ+NBA)/dt其中,N表示线圈中的匝数,B表示磁感应强度,A表示线圈的面积。

电磁感应定律的应用非常广泛。

它是发电机和变压器等电磁设备的基础原理,也是许多传感器和电磁感应器的工作原理。

二、楞次定律楞次定律是由法国科学家楞次于1834年发现的。

它描述了当闭合回路中有变化的磁通量时,闭合回路中产生的感应电流会阻碍变化的磁场。

楞次定律是电磁学中的重要定律之一,也是法拉第电磁感应定律的一个特例。

楞次定律可以用数学公式表示为:ΔV=−V(d VV/d V)其中,ΔV表示感应电动势,V表示闭合回路的电阻,VV/VV表示磁场的变化率。

负号表示感应电动势的方向与磁场变化方向相反。

楞次定律广泛应用于电磁感应器、发电设备和电磁 interference 中,它对电磁学的研究和应用产生了深远的影响。

总结:电磁感应定律和楞次定律是电磁学中两个重要的基本定律。

电磁感应定律描述了磁场变化如何引起感应电动势的产生,楞次定律描述了变化的磁场如何受到闭合回路电流的反作用。

电磁感应现象与楞次定律

电磁感应现象与楞次定律

电磁感应现象与楞次定律电磁感应是一个千真万确的自然现象,它被广泛应用于电力工程、电动机、发电机、变压器等领域。

这个现象的探索与研究,始于19世纪初的欧洲。

电磁感应现象最早由迈克尔·法拉第在1831年发现。

他通过一系列的实验,发现当一个导体在磁场中移动时,就会在导体两端产生电流。

这个电流的产生只有在导体与磁场相对运动时才会发生,而当导体静止时则不会有电流产生。

这一现象,称为电磁感应现象。

电磁感应现象的探索并没有停止在法拉第的实验,而是继续延伸到了一位法国物理学家楞次的实验中。

楞次通过一系列实验,通过精确的测量和观察,发现了一个深层的定律,被称为楞次定律。

楞次定律是电磁感应现象的基本定律,它描述了当一个磁通量通过一个线圈时,该线圈中的感应电动势的大小与导线的环路、磁通量的变化率以及线圈的匝数有关。

楞次定律的数学表达式为Φ=BANcosθ,其中Φ表示磁通量,B表示磁场的磁感应强度,A表示线圈的面积,N表示线圈的匝数,θ表示磁场与线圈面的夹角。

楞次定律的一个重要应用是发电机的工作原理。

在一个发电机中,通过机械能驱动转子进行转动,转子上的磁场经过线圈时,由于磁通量的变化,就会在线圈中产生感应电动势。

这个感应电动势通过电路传输,最终驱动电器工作。

因此,发电机是一种将机械能转化为电能的装置,它的基本原理就是利用楞次定律。

除了发电机,电磁感应现象与楞次定律在电动机、变压器中也有着广泛的应用。

电动机将电能转化为机械能,通过利用电磁感应的原理,通过电流产生磁场,从而使得转子在磁场中运动。

而变压器则是通过变换线圈的匝数来改变电压的装置。

通过楞次定律,我们可以控制输入线圈的磁感应强度和匝数,从而实现输入电压和输出电压之间的变换。

电磁感应现象与楞次定律在现代电力工程中有着重要的地位。

通过这些原理,我们可以实现电能的输送、电压的调节、电动机的驱动等。

同时,电磁感应现象和楞次定律也为我们理解自然界中的其他物理现象提供了深入的思路。

楞次定律知识点总结

楞次定律知识点总结

楞次定律知识点总结楞次定律主要包括以下几个方面的内容:1. 磁感应线圈中的感应电流方向; 2. 磁感应线圈中的感应电流大小; 3. 磁感应力的方向。

首先,楞次定律指出,在一个磁通量变化的闭合回路中,感应电流的方向是这样的,这个电流的磁场会阻碍使磁通量发生变化的原因。

即感应电流的方向是使得磁通量变化的原因受到抵消的方向。

我们可以通过右手螺旋法则来判断磁场方向,当右手握住线圈的方向,并且手指指向磁通量方向,那么大拇指的方向就是感应电流的方向。

这里需要注意的是,楞次定律中的“抵消”是指为了使原因减小或者消失,感应电流需要产生一个磁场,此磁场与原因的磁场相对应,因而会使原因减小或消失。

这样的话,楞次定律不仅适用于产生感应电流的线圈自身,也适用于任何封闭回路中的感应电流。

其次,楞次定律还指出了在闭合回路中的感应电流的大小。

楞次定律表明感应电流的大小和其原因的变化速率成正比,而反侧电动势的大小与其原因的变化速率成正比。

最后,楞次定律还告诉我们,在电流载流子受到磁场力作用时,这个力的方向是这样的,这个力会使得载流子受力方向产生抵消原因的效果。

即磁场对载流子的作用力方向是使载流子受力方向产生抵消原因的效果。

这里需要指出的是,楞次定律在这一方面的适用较窄,只适用于在均匀磁场中运动的电流载流子。

总的来说,楞次定律是电磁学中不可或缺的一部分,它对于理解电磁感应现象和磁场的相互作用具有重要的意义。

在实际应用中,楞次定律被广泛地应用于电磁感应现象的分析中,比如感应电动势产生、电磁感应现象中的磁场的产生和磁场的变化等方面。

同时,楞次定律也为我们提供了一种方法,通过电磁感应现象来获取有关磁场的信息。

因此,深入理解和掌握楞次定律对于进一步理解电磁学知识以及实际应用都具有重要的意义。

电磁感应现象 楞次定律

电磁感应现象 楞次定律

年级:高复班授课时间:2015.01.22 授课教师:科目:物理课题电磁感应现象楞次定律教学目标1.掌握磁通量和磁通量的变化量的计算方法2.知道电磁感应现象,掌握产生感应电流和感应电动势的条件3.熟练掌握利用楞次定律判断感应电流方向的步骤4.能够区分安培定则、左手定则、右手定则、楞次定律的异同教学重点与难点1.产生感应电流和感应电动势的条件2.安培定则、左手定则、右手定则、楞次定律的异同教学过程一、磁通量1.定义:设在磁感应强度为B的匀强磁场中,有一个与磁场方向垂直的平面,面积为S,则B与S的乘积叫做穿过这个面积的磁通量,简称磁通,符号是Φ,单位是韦伯(Wb).2.公式:Φ=BS. 适用条件:(1)匀强磁场;(2)S为垂直磁场的有效面积,同一平面,当它跟磁场方向垂直时,磁通量最大;当它跟磁场方向平行时,磁通量为零.注意:磁通量是标量,但有正负.3.磁通量的计算:(1)磁通量可以理解为穿过某一面积的磁感线的条数(B有时也称作磁通密度).如果穿过某一面积的磁感线由两部分组成时,应注意:①同向:②反向:当正向穿过线圈平面的磁感线条数和反向穿过的一样多时,磁通量为零.(2)磁通量与线圈的匝数无关举例:1.两个线圈,只在里面一个线圈存在磁场;2.垂直面积抬起;3.围绕磁铁的线圈4.磁通量的变化量:ΔΦ=Φ2-Φ1.磁通量发生变化的四种常见情况:(1)磁场强弱不变,回路面积改变;(2)回路面积不变,磁场强弱改变;(3)磁场强弱和回路面积同时改变;(4)回路面积和磁场强弱均不变,但二者的相对位置发生改变.二、电磁感应现象1.电磁感应现象:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.当回路不闭合时,没有感应电流,但有感应电动势,只产生感应电动势的现象也可以称为电磁感应现象.2.产生感应电流的条件:表述1:闭合回路的一部分导体在磁场内做切割磁感线的运动.教学过程表述2:穿过闭合回路的磁通量发生变化.3.产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势,且产生感应电动势的那部分导体或线圈相当于电源.4.能量转化:发生电磁感应现象时,机械能或其他形式的能转化为电能.例1:试分析下列各种情形中,金属线框或线圈里能否产生感应电流?三、感应电流方向的判断1.楞次定律(1)内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适用情况:所有的电磁感应现象.(3)楞次定律中“阻碍”的含义:①谁阻碍谁:感应电流的磁场阻碍引起感应电流的磁通量的变化;②阻碍什么:阻碍的是磁通量的变化,而不是阻碍磁通量本身;③如何阻碍:当磁通量增加时,感应电流的磁场方向与原磁场的方向相反;当磁通量减少时,感应电流的磁场方向与原磁场的方向相同;④阻碍效果:阻碍并不是阻止,只是延缓了磁通量的变化,这种变化将继续进行。

电磁感应中的楞次定律

电磁感应中的楞次定律

电磁感应中的楞次定律电磁感应是电磁学中的重要概念,而楞次定律则是电磁感应的基本规律之一。

楞次定律揭示了电流的产生原理和电磁感应的本质,对于理解电磁感应现象以及应用于实际生活中的电磁设备都具有重要意义。

楞次定律是由法国物理学家楞次于1831年首次提出。

它描述了当磁通量变化时,经过一个闭合回路的导线中就会产生感应电流,而且这个感应电流的方向和大小都与磁通量的变化有关。

根据楞次定律,电磁感应中的楞次定律可以用以下公式来表示:ε = -dΦ/dt其中,ε代表感应电动势,dΦ/dt代表磁通量的变化率。

这个公式表明,当磁通量的变化率为正时,感应电动势的方向与变化率相反;当磁通量的变化率为负时,感应电动势的方向与变化率一致。

楞次定律的严格数学表达为积分形式:∮ E · dl = -∂/∂t ∬ B · dA其中,∮ E · dl代表感应电场沿闭合回路的环路积分,-∂/∂t ∬B · dA代表磁通量的变化率。

楞次定律告诉我们,当磁通量变化时,就会在闭合回路中产生感应电场和感应电流。

这种感应电流的产生方式是通过库仑定律和洛伦兹力相互作用导致的。

当磁通量变化时,感应电场会沿着闭合回路产生环路电场积分,从而驱动电荷在导线中形成感应电流。

楞次定律的应用非常广泛,尤其是在电磁感应现象的解释和电磁设备的设计上。

例如,变压器就是利用楞次定律来实现电能的传输和转换的重要设备。

变压器中通过变化的磁通量来感应次级线圈中的电动势,从而实现电压的升降变换。

此外,楞次定律还被应用于电磁感应传感器、发电机、电动机等领域。

电磁感应传感器利用外部磁场的变化来产生感应电流,从而检测物理量的变化;发电机将机械能转化为电能,其中的关键就是基于楞次定律的电磁感应原理;电动机则是利用楞次定律产生的感应力驱动电荷运动,实现机械能转化为电能的设备。

在实际应用中,理解和应用楞次定律能够帮助我们更好地理解电磁感应现象的本质,从而提高电磁设备的设计和使用效果。

高中物理楞次定律详解

高中物理楞次定律详解

高中物理“楞次定律”详解磁通量1.概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S与B的乘积。

2.公式:Φ=BS。

3.适用条件(1)匀强磁场。

(2)S为垂直磁场的有效面积。

4.磁通量是标量。

5.物理意义:相当于穿过某一面积的磁感线的条数.如图所示,矩形abcd、abb′a′、a′b′cd的面积分别为S1、S2、S3,匀强磁场的磁感应强度B与平面a′b′cd垂直,则:(1)通过矩形abcd的磁通量为BS1cosθ或BS3。

(2)通过矩形a′b′cd的磁通量为BS3。

(3)通过矩形abb′a′的磁通量为0。

6.磁通量变化:ΔΦ=Φ2-Φ1。

电磁感应现象1.定义当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应。

2.条件(1)条件:穿过闭合电路的磁通量发生变化。

(2)例如:闭合电路的一部分导体在磁场内做切割磁感线的运动。

3.实质产生感应电动势,如果电路闭合,则有感应电流.如果电路不闭合,则只有感应电动势而无感应电流。

感应电流方向的判定1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

(2)适用范围:一切电磁感应现象。

2.右手定则(1)内容:如图,伸开右手,使拇指与其余四个手指垂直并且都与手掌在同一平面内,让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。

(2)适用情况:导线切割磁感线产生感应电流。

用右手定则时应注意①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定。

②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直。

③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向。

④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势。

⑤“因电而动”用左手定则;“因动而电”用右手定则。

电磁感应现象 楞次定律

电磁感应现象 楞次定律

第一单元 电磁感应现象 楞次定律一、电磁感应现象1、磁通量:磁感应强度B 与垂直磁场方向的面积S 的乘积叫穿过这个面积的磁通量,Φ=B ·S ,若面积S 与B 不垂直,应以B 乘以S 在垂直磁场方向上的投影面积S ′,即Φ=B ·S ′=B ·S sin α,θ为B 与S 的夹角单位为韦伯,符号为W b 。

1W b =1T ❿m 2=1V ❿s=1kg ❿m 2/(A ❿s 2)。

(1)磁通量的物理意义就是穿过某一面积的磁感线条数.(2)S 是指闭合回路中包含磁场的那部分有效面积如图所示,若闭合电路abcd 和ABCD 所在平面均与匀强磁场B 垂直,面积分别为S 1和S 2,且S 1>S 2,但磁场区域恰好只有ABCD 那么大,穿过S 1和S 2的磁通量是相同的,因此Φ=BS 中的S 应是指闭合回路中包含磁场的那部分有效面积。

(3)磁通量虽然是标量,却有正负之分磁通量如同力做功一样,虽然功是标量,却有正负之分,如果穿过某个面的磁通量为Ф,将该面转过180°,那么穿过该面的磁通量就是-Ф.如图甲所示两个环a 和b ,其面积S a <S b ,它们套在同一磁铁的中央,试比较穿过环a 、b 的磁通量的大小?我们若从上往下看,则穿过环a 、b 的磁感线如图乙所示,磁感线有进 有出相互抵消后,即Φa =Φ出-Φ进,’进‘出ΦΦ=Φb ,得Φa >Φb 由此可知,若有像图乙所示的磁场,在求磁通量时要按代数和的方法求总的磁通量。

(4)磁通量与线圈的匝数无关磁通量与线圈的匝数无关,也就是磁通量大小不受线圈匝数影响。

同理,磁通量的变化量也不受匝数的影响。

2、磁通量的变化磁通量Φ=B ∙S ∙sin α(α是B 与S 的夹角),磁通量的变化ΔΦ=Φ2-Φ1有多种形式,主要有:①S 、α不变,B 改变,这时ΔΦ=ΔB ❿S sin α②B 、α不变,S 改变,这时ΔΦ=ΔS ❿B sin α③B 、S 不变,α改变,这时ΔΦ=BS (sin α2-sin α1)④B 、S 、α中有两个或三个一起变化时,就要分别计算Φ1、Φ2,再求Φ2-Φ1了。

电磁感应中的楞次定律与电磁感应中的动生电动势

电磁感应中的楞次定律与电磁感应中的动生电动势

电磁感应中的楞次定律与电磁感应中的动生电动势电磁感应是电磁学中重要的基础理论之一。

在电磁感应过程中,楞次定律和动生电动势是两个核心概念。

本文将详细介绍楞次定律和动生电动势的原理及其在实际应用中的意义。

一、楞次定律楞次定律是由法国物理学家楞次于1831年提出的。

楞次定律表明,当导体中的磁通量发生变化时,导体中将产生感应电流。

此时感应电流的方向与磁通量的变化方向相反。

楞次定律的数学表达式可以表示为:ε = -dφ/dt其中,ε表示感应电动势,φ表示磁通量,dt表示时间的变化量。

负号表示感应电动势的方向和磁通量的变化方向相反。

楞次定律的实质是磁场的变化导致电场的产生,从而产生电动势和感应电流。

这一定律被广泛应用于发电机、变压器以及许多电磁设备中。

通过控制磁场的变化,可以有效地产生电能,并将其应用于各个领域。

二、动生电动势动生电动势是指导体在磁场中运动时产生的电动势。

当导体相对于磁场运动时,导体中将产生感应电流。

动生电动势的大小与导体相对速度、导体长度、磁感应强度之间的关系可以用下面的公式表示:ε = Blv其中,ε表示动生电动势,B表示磁感应强度,l表示导体长度,v表示导体相对磁场的速度。

公式中的Bl称为磁通量密度。

动生电动势的产生与导体在磁场中的运动密切相关。

通过改变导体的速度、角度等参数,可以调控动生电动势的大小和方向。

这一原理被广泛应用于涡流制动、涡流检测等领域。

三、楞次定律与动生电动势的联系楞次定律和动生电动势都是描述电磁感应现象的重要概念。

尽管两者的表达方式不同,但它们之间有密切的联系。

首先,楞次定律中的感应电动势与动生电动势的物理意义是相同的,都代表磁场变化引起的电势差。

无论是导体中的磁通量变化,还是导体的相对运动,都将引起感应电势的产生。

其次,楞次定律和动生电动势都遵循了能量守恒和电磁场的基本原理。

根据能量守恒定律,由磁场做功产生的感应电动势等于磁场中消耗的能量。

这一原理为电能的产生和传输提供了基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4单元:电磁感应现象楞次定律doc高中物理一、内容黄金组:1、磁通量2、电磁感应现象;3、用右手定那么判定感应电流的方向;4、楞次定律的内容;5、楞次定律的应用。

二、要点大揭密:〔一〕磁通量:1、定义:穿过某一面积的磁感线的条数称为穿过这一面积的磁通量。

2、公式:Φ= BS 。

〔注意:此公式只适用于与S垂直的匀强磁场。

假设S与B不垂直,应将B分解到与平面S垂直的方向或把S投影到与B垂直的方一直处理〕。

3、单位:韦伯〔符号:Wb〕1Wb = 1T.1m24、磁通量有大小也有方向,然而标量,遵从代数运算法那么。

5、磁通密度:单位面积上的磁通量,即磁感应强度B 。

〔二〕电磁感应现象1、电磁感应现象:在磁场中的导体产生感应电动势或感应电流的现象。

2、产生感应电流的条件:穿过闭合电路的磁通量发生变化。

注意:〔1〕只有同时满足电路闭合、磁通量变化这两个条件才会产生感应电流。

〔2〕引起磁通量变化的因素:从Φ= BSsinθ可知当a、磁感强度发生变化。

b、线圈的面积S变化。

C、磁感强度B与面积S之间的夹角θ发生变化。

这三种情形都能够引起磁通量变化。

〔三〕感应电流的方向:1、用右手定那么判定感应电流的方向:方法:伸开右手,让大拇指与四指垂直,磁感线垂直穿入掌心,大拇指指向导体运动方向四指指向那么为感应电流方向。

适用条件:只适用于闭合电路中的部分导体作切割磁感线运动时的感应电流的方向判定。

2、楞次定律:内容:感应电流具有如此的方向,确实是感应电流产生的磁场,总是阻碍引起感应电流的磁通量的变化。

注意点:〔1〕把握楞次定律的关键是〝阻碍〞而不是阻止,能够明白得为:当原磁场磁通量增加时,感应电流的磁场与原磁场方向相反;当原磁场磁通量减小时,感应电流的磁场与原磁场方向相同。

〔2〕要分清产生感应电流的〝原磁场〞和感应电流的磁场。

3、应用楞次定律的步骤:〔1〕明确所研究的闭合回路原磁场方向及磁通量的变化〔增加或减小〕。

〔2〕由楞次定律判定感应电流的磁场方向;〔3〕由右手螺旋定那么依照感应电流的磁场方向判定出感应电流的方向。

〔四〕楞次定律的应用:1、磁通量既有增加又有减小的过程而产生的感应电流的方向判定方法:先划分不同时期,再逐个时期分析。

2、合磁通量变化而产生感应电流的方向的判定方法:用合磁通的变化讨论。

3、电磁感应现象中导体间相对运动方向的判定方法:运用楞次定律的另一种表述〝电磁感应所产生的成效总是要阻碍引起感应电流的导体〔或磁体〕间的相对运动来进行判定。

三、好题解给你:〔一〕、本课预习题:1、以下关于磁通量的讲法中正确的有:A 、磁通量不仅有大小还有方向,因此磁通量是矢量;B 、在匀强磁场中,a 线圈的面积比线圈b 的面积大,那么穿过a 线圈的磁通量一定比穿过b 线圈的大;C 、磁通量大磁感应强度不一定大;D 、把某线圈放在磁场中的M 、N 两点,假设放在M 处的磁通量较在N 处的大,那么M 处的磁感强度一定比N 大。

2、发觉电流磁效应现象的科学家是________,发觉通电导线在磁场中受力方向规律的科学家是__________,发觉电磁感应现象的科学家是_____________ ,发觉点电荷间的相互作用力规律的科学家是__________。

3、关于感应电流,以下讲法中正确的有:A 、只要闭合电路内有磁通量,闭合电路中就有感应电流产生;B 、穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生;C 、线框不闭合时,即使穿过线圈的磁通量发生变化,线圈中也就没有感应电流;D 、只要电路的一部分作切割磁感线运动,电路中就一定有感应电流。

4、依照楞次定律可知感应电流的磁场一定是:A 、阻碍引起感应电流的磁通量;B 、与引起感应电流的磁场反向;C 、阻碍引起感应电流的磁通量的变化;D 、与引起感应电流的磁场方向相同。

5、如下图,导线框abcd 与导线在同一平面内,直导线通恒定电流I ,当线框由左向右匀速通过直导线时,线框中感应电流方向是: A 、先abcd ,后dcba ,再abcd ; B 、先abcd ,后dcba ;C 、始终沿dcba ;D 、先dcba ,后abcd ,再dcba 。

参考答案:1、C ;2、 奥斯特,安培,法拉第,库仑 ;3、C ;4、 C ;5、D 。

〔二〕基础题:1、两圆环a 、b 同心同平面放置,且半径R a >R b ,将一条形磁铁置于两环的轴线上,设通过a 、b 圆环所包围的面积的磁通量分不是a Φ、b Φ ,那么:A 、a Φ=b Φ ;B 、a Φ>b Φ ;C 、a Φ< b Φ ;D 、无法确定a Φ与b Φ的大小关系。

I2、带负电的圆围绕圆心旋转,在环的圆心处有一闭合小线圈,小线圈和圆环在同一平面,那么:A 、只要圆环在转动,小线圈内就一定有感应电流产生;B 、圆环不管如何样转动,小线圈内都没有感应电流产生;C 、圆环在作变速转动时,小线圈内一定有感应电流产生;D 、圆环作匀速转动时,小线圈内没有感应电流产生。

3、如下图,线圈abcd 自由下落进入匀强磁场中那么当只有ab 边进入磁场时,线圈中的感应电流方向是_________________,当整个线圈进入磁场中时,线圈中____________感应电流〔填〝有〞或〝无〞〕参考答案:1、C ;2、 C 、D ;3、 bcdab , 无 。

〔三〕应用题:1、如下图,线圈平面与水平方向成 角,磁感线竖直向下,设磁感强度为B ,线圈面积为S ,那么穿过线圈的磁通量为多大?2、如下图,竖直放置的长直导线通以恒定的电流,有一矩形线框与导线在同一平面,在以下情形中线圈产生感应电流的是:A 、导线中电流强度变大;B 、线框向右平动;C 、线框向下平动;D 、线框以ab 边为轴转动;E 、线框以直导线为轴转动。

3、如下图,试判定当开关S 闭合和断开瞬时,线圈ABCD 中的电流方向。

参考答案: a d cb1、分析和解答:此题的线圈平面abcd与磁感强度B方向不垂直,不能直截了当用Φ= BS 运算。

处理时能够用以下两种之一:〔1〕把S投影到与B垂直的方向即水平方向〔如图中的a’b’c’d’〕,因此S投= Scosθ,故Φ= BScosθ;〔2〕把B分解为平行于线圈平面的重量和垂直于线圈平面重量,明显平行方向的磁场并不穿过线圈,且B垂直= Bcosθ,故Φ= BScosθ。

2、A、B、D分析与解答:分析是否产生感应电流,关键确实是分析穿过闭合线框的磁通量是否变化,而分析磁通量是否变化,关键确实是分清磁感线的分布,亦即分清磁感线的疏密变化和磁感线方向的变化。

对A选项,因I增大而引起周围的磁场增强,使线框的磁通量增加,故A正确。

对B选项,因离开直导线方向越远,磁感线分布越疏。

因此线框向右平动时,穿过线框的磁通量变小,故B正确。

对C选项,线框向下平动时穿过线框的磁通量不变,故C不合适。

对D选项,可用一些专门位置来分析,当线框与直导线在同一个平面上时,穿过线框的磁通量最大,当线框转过90度时,穿过线框的磁通量减小,因此能够判定线框以ab轴转动时磁通量一定变化,故D正确。

对E选项,由于线框绕直导线转动时,穿过线框的磁通量不变,因此无感应电流,故E错。

3、分析与解答:按照管用楞次定律的应用步骤进行判定:当S闭合时:〔1〕研究回路是ABCD,穿过回路的磁场是电流I产生的磁场,方向由右手螺旋定那么判定出是指向读者,且磁通量增大;〔2〕由楞次定律得知感应电流的磁场方向应是和原磁场方向相反即离开读者方向向内。

〔3〕由右手螺旋定那么判知感应电流方向是B到A到D到C 。

当S断开时:〔1〕研究回路仍是线圈ABCD,穿过回路的原磁场仍是I产生的磁场,方向由右手螺旋定那么判知是指向读者,且磁通量减小;〔2〕由楞次定律知感应电流磁场方向应是和原磁场方向相同即指向读者;〔3〕由右手螺旋定那么判知感应电流方向是A到B到C到D 。

〔四〕提高题:1、如下图,当磁铁运动时,流过电阻的电流是由A经R到B,那么磁铁可能是:A、向下运动;B、向下运动;C、向左平移;D、以上都不可能。

2、某磁场磁感线如下图,有一铜线圈自图示位置A落至位置B,在下落过程中,自下向上看,线圈中的感应电流方向是什么方向?3、在两根平行的长直导线MN中〔如图甲所示〕,通以同方向同强度的电流,导线框abcd 和两导线在同一平面内,线框沿着与两导线垂直的方向,自右向左在两导线间匀速移动,在移动过程中,线框中感应电流的方向如何样?参考答案:1、B 、C分析与解答:判定顺序采纳逆顺序。

〔1〕感应电流方向从A经R到B,依照安培定那么得知感应电流在螺线管内产生的磁场方向应是从上到下;〔2〕由楞次定律判定出螺线管内磁通量的变化是向下的减小或向上的增加;〔3〕由条形磁铁的磁感线分布知螺线管内原磁场是向下的,故应是磁通量减小,即磁铁向上运动或向左平移或向右平移。

因此正确答案是B、C 。

2、分析与解答:把线圈从A至B的全过程分为两个过程处理:第一过程:是线圈从A位置下落到具有最大磁通量位置O,此过程中穿过线圈磁通量方向向上且不断增大,由楞次定律判定出感应电流方向〔自上向下看〕是顺时针的;第二过程:是线圈从具有最大磁通量位置O落到B位置,此过程中穿过线圈磁通量方向是向上不断减小,由楞次定律判定出感应电流方向〔自上向下看〕是逆时针的;因此线圈中的电流是先顺时针后逆时针方向。

3、分析与解答:先画出两电流产生的合磁场的磁感线分布如图乙所示,注意合磁场B的方向和大小情形。

〔1〕线框在两电流中线的右侧时,穿过线框的合磁通垂直纸面穿出,线框左移,磁通量变小,为阻碍那个方向的磁通量变小,感应电流方向应是adcb。

〔2〕当线框跨过两电流中线时,线框的合磁通量由穿出变到穿进,感应电流依旧adcb。

〔3〕线框再左移,线框合磁通穿入且增加,感应电流依旧adcb。

因此线框的感应电流方向始终是adcb 。

小结:可见处理合磁通量变化而产生感应电流的方向判定咨询题,关键是画出合磁场磁感线的方向及疏密的分布情形从而确定合磁通的变化。

〔五〕课后演武场:1、如下图,平均金属棒ab位于水平桌面上方的正交电磁场中,电场方向竖直向上,磁场方向垂直纸面向里,当金属棒从水平状态由静止开始自由下落〔不计空气阻力〕,ab两端落到桌面上的先后次序是:A、a先于b ;B、b先于a ;C、ab同时;D、无法确定。

2、互相平行的两金属导线固定在同一水平面内,上面架着两根相互平行的铜棒ab和cd,其中cd固定,磁场方向如下图,当外力使ab向右运动时,以下讲法中正确的选项是:A、cd中的电流方向是由d到c ;B、ab棒不受磁场力的作用;C、cd棒受到向右的磁场力的作用;D、ab棒受到向右的磁场力作用。

3、如下图,半径大小不同的金属环在同一平面内,当大环内通以不断增大的电流I时,小环中:A、有顺时针方向的感应电流;B、有逆时针方向感应电流;C、有感应电流,但方向无法判定;D、无感应电流。

相关文档
最新文档