【附20套中考模拟试题】甘肃省兰州市城关区天庆实验中学2019-2020学年中考数学模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甘肃省兰州市城关区天庆实验中学2019-2020学年中考数学模拟试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.关于反比例函数4y x
=-,下列说法正确的是( ) A .函数图像经过点(2,2);
B .函数图像位于第一、三象限;
C .当0x >时,函数值y 随着x 的增大而增大;
D .当1x >时,4y <-.
2.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为
A .2
B .3
C .4
D .5
3.矩形具有而平行四边形不具有的性质是( )
A .对角相等
B .对角线互相平分
C .对角线相等
D .对边相等
4.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )
A .BE=DF
B .AE=CF
C .AF//CE
D .∠BAE=∠DCF
5.如图,BD 为⊙O 的直径,点A 为弧BDC 的中点,∠ABD =35°,则∠DBC =( )
A .20°
B .35°
C .15°
D .45°
6.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )
A .3π+
B .3π-
C .23π-
D .223π-7.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,﹣4),顶点C 在x 轴的正半轴上,函数y=k x
(k <0)的图象经过点B ,则k 的值为( )
A .﹣12
B .﹣32
C .32
D .﹣36
8.如图,将木条a ,b 与c 钉在一起,∠1=70°,∠2=50°,要使木条a 与b 平行,木条a 旋转的度数至少是( )
A .10°
B .20°
C .50°
D .70°
9.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )
A .4个
B .3个
C .2个
D .1个
10.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( ).
A .50°
B .40°
C .30°
D .25°
11.若0<m <2,则关于x 的一元二次方程﹣(x+m )(x+3m )=3mx+37根的情况是( ) A .无实数根
B .有两个正根
C .有两个根,且都大于﹣3m
D .有两个根,其中一根大于﹣m
12.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12
AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC

的度数是()
A.68︒B.112︒C.124︒D.146︒二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=4
3
,反比例函数y=
k
x
的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于_____________.
14.有三个大小一样的正六边形,可按下列方式进行拼接:
方式1:如图1;
方式2:如图2;
若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_______.有n个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为__________.
15.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,则可列方程为__________.
16.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为_____.
17.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP 的大小为_______.
18.一个凸多边形的内角和与外角和相等,它是______边形.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)根据图中给出的信息,解答下列问题:
放入一个小球水面升高,cm,放入一个大球水面
升高cm;如果要使水面上升到50cm,应放入大球、小球各多少个?
20.(6分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.
21.(6分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.
22.(8分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.
23.(8分)已知P 是⊙O 外一点,PO 交⊙O 于点C ,OC=CP=2,弦AB ⊥OC ,∠AOC 的度数为60°,连接PB .
求BC 的长;求证:PB 是⊙O 的切线.
24.(10分)如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x
=的图象于点B ,AB=32.求反比例函数的解析式;若P (1x ,1y )、Q (2x ,2y )是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.
25.(10分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?
26.(12分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m )绘制成不完整的频数分布表和频数分布直方图.
学生立定跳远测试成绩的频数分布表
分组频数
1.2≤x<1.6 a
1.6≤x<
2.0 12
2.0≤x<2.4 b
2.4≤x<2.8 10
请根据图表中所提供的信息,完成下列问题:表中a=,b=,样本成绩的中位数落在
范围内;请把频数分布直方图补充完整;该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?
27.(12分)车辆经过润扬大桥收费站时,4个收费通道A.B、C、D中,可随机选择其中的一个通过.一辆车经过此收费站时,选择A通道通过的概率是;求两辆车经过此收费站时,选择不同通道通过的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.C
【解析】
【分析】
直接利用反比例函数的性质分别分析得出答案.
【详解】
A、关于反比例函数y=-4
x
,函数图象经过点(2,-2),故此选项错误;
B、关于反比例函数y=-4
x
,函数图象位于第二、四象限,故此选项错误;
C、关于反比例函数y=-4
x
,当x>0时,函数值y随着x的增大而增大,故此选项正确;
D、关于反比例函数y=-4
x
,当x>1时,y>-4,故此选项错误;
故选C.
【点睛】
此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.
2.D
【解析】
∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,
解得a=1.故选D.
3.C
【解析】
试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.
解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;
平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;
∴矩形具有而平行四边形不一定具有的性质是对角线相等,
故选C.
4.B
【解析】
【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.
【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,
∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;
B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;
C、如图,∵四边形ABCD是平行四边形,∴OA=OC,
∵AF//CE,∴∠FAO=∠ECO,
又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,
∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;
D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,
∴∠ABE=∠CDF,
又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,
∴AE//CF,
∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,
故选B.
【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.
5.A
【解析】
【分析】
∠的根据∠ABD=35°就可以求出»AD的度数,再根据»180
BD︒
=,可以求出»AB,因此就可以求得ABC
度数,从而求得∠DBC
【详解】
解:∵∠ABD=35°,
∴的度数都是70°,
∵BD为直径,
∴的度数是180°﹣70°=110°,
∵点A为弧BDC的中点,
∴的度数也是110°,
∴的度数是110°+110°﹣180°=40°,
∴∠DBC==20°,
故选:A.
【点睛】
本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力.
6.D
【解析】
【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.
【详解】过A作AD⊥BC于D,
∵△ABC是等边三角形,
∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,
∵AD⊥BC,
∴BD=CD=1,33
∴△ABC的面积为1
2
BC•AD=
1
23
2
⨯3
S扇形BAC=
2
602
360
π⨯
=
2
3
π,
∴莱洛三角形的面积S=3×2
3
π﹣2×3﹣3,
故选D.
【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.
7.B
【解析】
【详解】
解:
∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,
∴OA=5,AB∥OC,
∴点B的坐标为(8,﹣4),
∵函数y=k
x
(k<0)的图象经过点B,
∴﹣4=k
8
,得k=﹣32.
故选B.
【点睛】
本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A 点坐标求得OA 的长,再根据菱形的性质求得B 点坐标,然后用待定系数法求得反函数的系数即可.
8.B
【解析】
【分析】
要使木条a 与b 平行,那么∠1=∠2,从而可求出木条a 至少旋转的度数.
【详解】
解:∵要使木条a 与b 平行,
∴∠1=∠2,
∴当∠1需变为50 º,
∴木条a 至少旋转:70º-50º=20º.
故选B.
【点睛】
本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.
9.B
【解析】
【详解】
解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;
∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),
∴方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以②正确;
∵x=﹣2b a
=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0,∴a+2a+c=0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;
∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确.
故选:B .
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交
点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.
10.B
【解析】
【详解】
解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,
根据平角为180°可得,∠2=90°﹣50°=40°.
故选B .
【点睛】
本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.
11.A
【解析】
【分析】
先整理为一般形式,用含m 的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.
【详解】
方程整理为22x 7mx 3m 370+++=,
△()()
22249m 43m 3737m 4=-+=-,
∵0m 2<<,
∴2m 40-<,
∴△0<,
∴方程没有实数根,
故选A .
【点睛】
本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
12.B
【解析】
【分析】
根据题意可知DE 是AC 的垂直平分线,CD=DA .即可得到∠DCE=∠A ,而∠A 和∠B 互余可求出∠A ,由三角形外角性质即可求出∠CDA 的度数.
【详解】
解:∵DE是AC的垂直平分线,
∴DA=DC,
∴∠DCE=∠A,
∵∠ACB=90°,∠B=34°,
∴∠A=56°,
∴∠CDA=∠DCE+∠A=112°,
故选B.
【点睛】
本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.﹣24
【解析】
分析:
如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,由tan∠AOC=4
3

得OF=3x,由此可得OC=5x,从而可得OA=5x,由已知条件易证S菱形ABCO=2S△COD=40=OA·CF=20x2,
从而可得,由此可得点C的坐标为( ,这样由点C在反比例函数的图象上即可得到k=-24.
详解:
如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,
∵四边形ABCO是菱形,
∴AB∥CO,AO∥BC,
∵DE∥AO,
∴四边形AOED和四边形DECB都是平行四边形,
∴S△AOD=S△DOE,S△BCD=S△CDE,
∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,
∵tan∠AOC=4
3
,CF=4x,
∴OF=3x,
∴在Rt△COF中,由勾股定理可得OC=5x,
∴OA==OC=5x,
∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:,
∴OF=CF=
∴点C 的坐标为(32?42)-,,
∵点C 在反比例函数k y x
=的图象上, ∴k=324224-⨯=-.
故答案为:-24.
点睛:本题的解题要点有两点:(1)作出如图所示的辅助线,设CF=4x ,结合已知条件把OF 和OA 用含x 的式子表达出来;(2)由四边形AOCB 是菱形,点D 在AB 上,S △COD =20得到S 菱形ABCO =2S △COD =40. 14.18 1
【解析】
【分析】
有四个边长均为1的正六边形,采用方式1拼接,利用4n+2的规律计算;把六个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多.
【详解】
解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×
4+2=18; 按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n 的最大值为1.
故答案为:18;1.
【点睛】
本题考查了正多边形和圆,以及图形的变化类规律总结问题,根据题意,得出规律是解决此题的关键. 15.8374x x -=+
【解析】
【分析】
根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决
【详解】
解:由题意可设有x 人,
列出方程:8374x x +﹣=,
故答案为8374x x +﹣=.
【点睛】
本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.
16.【解析】
【分析】
设两个正方形的边长是x 、y (x <y ),得出方程x 2=1,y 2=9,求出x y =1,代入阴影部分的面积是(y ﹣x )x 求出即可.
【详解】
设两个正方形的边长是x 、y (x <y ),则x 2=1,y 2=9,x =y =1,则阴影部分的面积是(y ﹣x )x
=(1=1.
故答案为1.
【点睛】
本题考查了二次根式的应用,主要考查学生的计算能力.
17.40°
【解析】
:在△QOC 中,OC=OQ ,
∴∠OQC=∠OCQ ,
在△OPQ 中,QP=QO ,
∴∠QOP=∠QPO ,
又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,
∴3∠OCP=120°,
∴∠OCP=40°
18.四
【解析】
【分析】
任何多边形的外角和是360度,因而这个多边形的内角和是360度.n 边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
【详解】
解:设边数为n ,根据题意,得
(n-2)•180=360,
解得n=4,则它是四边形.
故填:四.
【点睛】
此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.详见解析
【解析】
【分析】
(1)设一个小球使水面升高x 厘米,一个大球使水面升高y 厘米,根据图象提供的数据建立方程求解即可.
(1)设应放入大球m 个,小球n 个,根据题意列二元一次方程组求解即可.
【详解】
解:(1)设一个小球使水面升高x 厘米,由图意,得2x=21﹣16,解得x=1.
设一个大球使水面升高y 厘米,由图意,得1y=21﹣16,解得:y=2.
所以,放入一个小球水面升高1cm ,放入一个大球水面升高2cm .
(1)设应放入大球m 个,小球n 个,由题意,得
m n 103m 2n 5026+=⎧⎨+=-⎩,解得:m 4n 6
=⎧⎨=⎩. 答:如果要使水面上升到50cm ,应放入大球4个,小球6个.
20. (1)26°;(2)1.
【解析】
试题分析:(1)根据垂径定理,得到»»AD DB
=,再根据圆周角与圆心角的关系,得知∠E=12
∠O ,据此即可求出∠DEB 的度数; (2)由垂径定理可知,AB=2AC ,在Rt △AOC 中,OC=3,OA=5,由勾股定理求AC 即可得到AB 的长.
试题解析:(1)∵AB 是⊙O 的一条弦,OD ⊥AB ,
∴»»AD DB
=, ∴∠DEB=12∠AOD=12
×52°=26°; (2)∵AB 是⊙O 的一条弦,OD ⊥AB ,
∴AC=BC ,即AB=2AC ,
在Rt △AOC 中,,
考点:垂径定理;勾股定理;圆周角定理.
21.(1)详见解析;(2).
【解析】
∵四边形ABCD是矩形,
∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,
∴∠EAD=∠AFB,
∵DE⊥AF,
∴∠AED=90°,
在△ADE和△FAB中,
∴△ADE≌△FAB(AAS),
∴AE=BF=1
∵BF=FC=1
∴BC=AD=2
故在Rt△ADE中,∠ADE=30°,DE=,
∴的长==.
22.有触礁危险,理由见解析.
【解析】
试题分析:过点P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根据三角函数AD,BD就可以用PD 表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD.从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.
试题解析:有触礁危险.理由:过点P作PD⊥AC于D.
设PD为x,
在Rt△PBD中,∠PBD=90°-45°=45°.
在Rt △PAD 中,
∵∠PAD=90°-60°=30°
∴AD=30x tan ︒
∵AD=AB+BD


∵6)<18
∴渔船不改变航线继续向东航行,有触礁危险.
【点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键. 23.(1)BC=2;(2)见解析
【解析】
试题分析:(1)连接OB ,根据已知条件判定△OBC 的等边三角形,则BC=OC=2;
(2)欲证明PB 是⊙O 的切线,只需证得OB ⊥PB 即可.
(1)解:如图,连接OB .
∵AB ⊥OC ,∠AOC=60°,
∴∠OAB=30°,
∵OB=OA ,
∴∠OBA=∠OAB=30°,
∴∠BOC=60°,
∵OB=OC ,
∴△OBC 的等边三角形,
∴BC=OC .
又OC=2,
∴BC=2;
(2)证明:由(1)知,△OBC 的等边三角形,则∠COB=60°,BC=OC .
∵OC=CP ,
∴BC=PC ,
∴∠P=∠CBP .
又∵∠OCB=60°,∠OCB=2∠P ,
∴∠P=30°,
∴∠OBP=90°,即OB⊥PB.又∵OB是半径,
∴PB是⊙O的切线.
考点:切线的判定.
24.(1)
3
y
x
=-;(2)P在第二象限,Q在第三象限.
【解析】
试题分析:(1)求出点B坐标即可解决问题;
(2)结论:P在第二象限,Q在第三象限.利用反比例函数的性质即可解决问题;
试题解析:解:(1)由题意B(﹣2,3
2
),把B(﹣2,
3
2
)代入
k
y
x
=中,得到k=﹣3,∴反比例函数
的解析式为
3
y
x =-.
(2)结论:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.
点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
25.(1) 4800元;(2) 降价60元.
【解析】
试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.
试题解析:
(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;
(2)设每件商品应降价x元,
由题意得(360-x-280)(5x+60)=7200,
解得x1=8,x2=60.
要更有利于减少库存,则x=60.
即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.
点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.
26.(1)8,20,2.0≤x <2.4;(2)补图见解析;(3)该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有200人.
【解析】
【分析】(1)根据题意和统计图可以求得a 、b 的值,并得到样本成绩的中位数所在的取值范围;
(2)根据b 的值可以将频数分布直方图补充完整;
(3)用1000乘以样本中该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生比例即可得.
【详解】(1)由统计图可得,
a=8,b=50﹣8﹣12﹣10=20,
样本成绩的中位数落在:2.0≤x <2.4范围内,
故答案为:8,20,2.0≤x <2.4;
(2)由(1)知,b=20,
补全的频数分布直方图如图所示;
(3)1000×1050
=200(人), 答:该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有200人.
【点睛】本题考查了频数分布表、频数分布直方图、中位数等,读懂统计图与统计表,从中找到必要的信息是解题的关键.
27.(1)
14;(2)34. 【解析】
试题分析:(1)根据概率公式即可得到结论;
(2)画出树状图即可得到结论.
试题解析:(1)选择 A 通道通过的概率=
14, 故答案为14

(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过
的有12种结果,∴选择不同通道通过的概率=12
16
=
3
4

中考模拟数学试卷
*考试时间120分钟 试卷满分150分
一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)
1.sin30°的值为( )
A .21
B .23
C .33
D .22 2. △ABC 中,∠A =50°,∠B =60°,则∠C =( )
A .50°
B .60°
C .70°
D .80°
3.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )
A .一处.
B .两处
C .三处.
D .四处.
4.点P (-2,1)关于x 轴对称的点的坐标是( ) A .(-2,-1) B .(2,-1) C .(1,-2) D .(2,1)
5. 若x =3是方程x 2
-3mx +6m =0的一个根,则m 的值为 ( )
A .1
B . 2
C .3
D .4
6.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明 掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定
的点P 落在已知抛物线24y x x =-+上的概率为( ) A. 118 B.112 C.19 D.16
7.右图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( )
A .
B .
C .
D .
8.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。

三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在A 、B 、C 三人之外;(2)C 作案时总得有A 作从犯;(3)B 不会开车。

在此案中能肯定的作案对象是( )
A .嫌疑犯A
B .嫌疑犯B
C .嫌疑犯C
D .嫌疑犯A 和C
二、填空题(每小题3分,共24分)
9.据中新社报道:2010年我国粮食产量将达到千克,用科学记数法表示这个粮食产量为______千克.
10.用一个半径为6㎝的半圆围成一个圆锥的侧面,则这个圆锥的侧面积为 ㎝2.(结果保留π)
11.△ABC 中,AB =6,AC =4,∠A =45°,则△ABC 的面积为 .
12.若一次函数的图象经过反比例函数4y x =-
图象上的两点(1,m )和(n ,2),则这个一次函数的解析式是 .
13. 某品牌的牛奶由于质量问题,在市场上受到严重冲击,该乳业公司为了挽回市场,加大了产品质量的管理力度,并采取了“买二赠一”的促销手段,一袋鲜奶售价1.4元,一箱牛奶18袋,如果要买一箱牛奶,应该付款 元.
14.通过平移把点A(2,-3)移到点A’(4,-2),按同样的平移方式,点B(3,1)移到点B′, 则点B′的坐标是 ________
15.如图,在甲、乙两地之间修一条笔直的公路,
从甲地测得公路的走向是北偏东48°。

甲、乙两地间
同时开工,若干天后,公路准确接通,则乙地所修公
路的走向是南偏西 度。

16.如图,M 为双曲线y =x
1上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m 于D 、C 两点,若直线y=-x+m 与y轴
交于点A,与x轴相交于点B .则AD ·BC 的值为 .
三、(第17小题6分,第18、19小题各8分,第20小题10分,共
北 北 甲 乙
32分)
17.求值:计算:()10213(2cos301)(5)1-︒-+
----
18.先化简,再请你用喜爱的数代入求值 x
x x x x x x x x 42)44122(322-+÷+----+
19.已知⊙O 的直径AB 、CD 互相垂直,弦AE 交CD 于F ,若⊙O 的半径为R
求证:AE ·AF =2 R 2
20.据统计某外贸公司2007年、2008年的进出口贸易总额分别为3300万元和3760万元, 其中2008年的进口和出口贸易额分别比2007年增长20%和10%.
(1)试确定2007年该公司的进口和出口贸易额分别是多少万元;
(2)2009年该公司的目标是:进出口贸易总额不低于4200万元, 其中出口贸易额所占比重不低于60%, 预
计2009年的进口贸易额比2008年增长10%, 则为完成上述目标,2009年的出口贸易额比2008年至少应增加多少万元?
四、(每小题10分,共20分)
21.如图,河中水中停泊着一艘小艇,王平在河岸边的A处测得∠DAC=α,李月在河岸边的的B处测得∠DCA=β,如果A、C之间的距离为m,求小艇D到河岸AC的距离.
22.某书报亭开设两种租书方式:一种是零星租书,每册收费1元;另一种是会员卡租书,办卡费每月12元,租书费每册0.4元.小军经常来该店租书,若每月租书数量为x册.
(1)写出零星租书方式应付金额y1(元)与租书数量x(册)之间的函数关系式;
(2)写出会员卡租书方式应付金额y2(元)与租书数量x(册)之间的函数关系式;
(3)小军选取哪种租书方式更合算?
五、(本题12分)
23.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连结AE,点F是AE的中点,连结BF、DF,求证:BF⊥DF
六、(本题12分)
24.某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15.结合统计图回答下列问题:
(1)这次共抽调了多少人?
(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?
(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?
七、(本题12分)
25.在△ABC中,AC=BC,∠ACB=90°,D、E是直线AB上两点.∠DCE=45°
(1)当CE⊥AB时,点D与点A重合,显然DE2=AD2+BE2(不必证明)
(2)如图,当点D不与点A重合时,求证:DE2=AD2+BE2
(3)当点D在BA的延长线上时,(2)中的结论是否成立?画出图形,说明理由.
八(本题14分)
26.如图,已知抛物线y=x2-ax+a2-4a-4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿C →D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P 运动的时间为t秒.
(1)求a的值;
(2)当四边形ODPQ为矩形时,求这个矩形的面积;
(3)当四边形PQBC 的面积等于14时,求t 的值.
(4)当t 为何值时,△PBQ 是等腰三角形?(直接写出答
案)
数学试题
参考答案及评分标准
=x+2-2
2--x x x ………………5分 =
24--x x ………………6分
当x=6时,原式=
2
1………………8分
19.证明:连接BE …………………1分
∵AB 为⊙O 的直径。

相关文档
最新文档