高考物理专题汇编带电粒子在磁场中的运动(一)
高考物理带电粒子在磁场中的运动知识点汇总
高考物理带电粒子在磁场中的运动知识点汇总一、带电粒子在磁场中的运动压轴题1.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A点出发后,第一次回到A点所经过的总时间为多少?【答案】(1EqRm(2)212R;11n+;(3)2πmREq【解析】【分析】【详解】(1)由题可知,粒子进入静电分析器做圆周运动,则有:2mvEqR=解得:EqR vm =(2)粒子从D到A匀速圆周运动,轨迹如图所示:由图示三角形区域面积最小值为:22R S = 在磁场中洛伦兹力提供向心力,则有:2mv Bqv R= 得:mv R Bq=设MN 下方的磁感应强度为B 1,上方的磁感应强度为B 2,如图所示:若只碰撞一次,则有:112R mv R B q== 22mvR R B q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒子在电场中运动时间:1242R mRt v Eqππ== 在MN 下方的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=⨯⨯== 在MN 上方的磁场中运动时间:232142R mRt v Eq ππ=⨯=总时间:1232mRt t t t Eqπ=++=2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 2md qE R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2EqmdE B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆===Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得 0221221L qE n E v n md n B=⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=02(1)21221L qE n E v n md n B+=⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).3.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL =(2)04nmv B qL =n=1、2、3......(3)02L t v π=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==4.如图甲所示,在直角坐标系0≤x ≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L ,0)为圆心、半径为L 的圆形区域,圆形区域与x 轴的交点分别为M 、N .现有一质量为m 、带电量为e 的电子,从y 轴上的A 点以速度v 0沿x 轴正方向射入电场,飞出电场后从M 点进入圆形区域,此时速度方向与x 轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E 的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴.求所加磁场磁感应强度B 的大小和电子刚穿出圆形区域时的位置坐标; (3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N 点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B 0的大小、磁场变化周期T 各应满足的关系表达式.【答案】(1) (2) (3) (n=1,2,3…)(n=1,2,3…) 【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y =v 0tanθ=v 0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.5.在如图所示的xoy坐标系中,一对间距为d的平行薄金属板竖直固定于绝缘底座上,底座置于光滑水平桌面的中间,极板右边与y轴重合,桌面与x轴重合,o点与桌面右边相距为74d,一根长度也为d的光滑绝缘细杆水平穿过右极板上的小孔后固定在左极板上,杆离桌面高为1.5d,装置的总质量为3m.两板外存在垂直纸面向外、磁感应强度为B的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有一个质量为m、电量为+q的小环(可视为质点)套在杆的左端,给极板充电,使板内有沿x正方向的稳恒电场时,释放小环,让其由静止向右滑动,离开小孔后便做匀速圆周运动,重力加速度取g.求:(1)环离开小孔时的坐标值;(2)板外的场强E2的大小和方向;(3)讨论板内场强E1的取值范围,确定环打在桌面上的范围.【答案】(1)环离开小孔时的坐标值是-14 d;(2)板外的场强E2的大小为mgq,方向沿y轴正方向;(3)场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d~.【解析】【详解】(1)设在环离开小孔之前,环和底座各自移动的位移为x1、x2.由于板内小环与极板间的作用力是它们的内力,系统动量守恒,取向右为正方向,根据动量守恒定律,有:mx1-3mx2=0 ①而x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开小孔时的坐标值为:x m=34d-d=-14d(2)环离开小孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,方向沿y轴正方向(3)环打在桌面上的范围可画得如图所示,临界点为P、Q,则若环绕小圆运动,则R=0.75d ④根据洛仑兹力提供向心力,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开小孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联立③④⑤⑥解得:2 138qB d Em=若环绕大圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联立③⑤⑥⑦解得:2 16qB d Em≈故场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d-~.6.如图,第一象限内存在沿y轴负方向的匀强电场,电场强度大小为E,第二、三、四象限存在方向垂直xOy平面向外的匀强磁场,其中第二象限的磁感应强度大小为B,第三、四象限磁感应强度大小相等,一带正电的粒子,从P(-d,0)点沿与x轴正方向成α=60°角平行xOy平面入射,经第二象限后恰好由y轴上的Q点(图中未画出)垂直y轴进入第一象限,之后经第四、三象限重新回到P点,回到P点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 23603d d dr sin sin α===︒ 根据200mv qv B r =得0233qBdv m=粒子在第一象限中做类平抛运动,则有21602qE r cos t m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得03222y v y tan x v α===由几何知识可得 y=r-rcosα= 1323r d = 则得23x d =所以粒子在第三、四象限圆周运动的半径为1253239d d R d sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度004323v qBdv v cos mα===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动7.如图所示,真空中有一个半径r=0.5m 的圆柱形匀强磁场区域,磁场的磁感应强度大小B=2×10-3T ,方向垂直于纸面向外,x 轴与圆形磁场相切于坐标系原点O ,在x=0.5m 和x=1.5m 之间的区域内有一个方向沿y 轴正方向的匀强电场区域,电场强E=1.5×103N/C ,在x=1.5m 处竖有一个与x 轴垂直的足够长的荧光屏,一粒子源在O 点沿纸平面向各个方向发射速率相同、比荷9110qm=⨯C/kg 的带正电的粒子,若沿y 轴正方向射入磁场的粒子恰能从磁场最右侧的A 点沿x 轴正方向垂直进入电场,不计粒子的重力及粒子间的相互作用和其他阻力.求:(1)粒子源发射的粒子进入磁场时的速度大小;(2)沿y 轴正方向射入磁场的粒子从射出到打到荧光屏上的时间(计算结果保留两位有效数字);(3)从O 点处射出的粒子打在荧光屏上的纵坐标区域范围.【答案】(1)61.010/v m s =⨯;(2)61.810t s -=⨯;(3)0.75 1.75m y m ≤≤ 【解析】 【分析】(1)粒子在磁场中做匀速圆周运动,由几何关系确定半径,根据2v qvB m R=求解速度;(2)粒子在磁场中运动T/4,根据周期求解在磁场中的运动时间;在电场中做类平抛运动,根据平抛运动的规律求解在电场值的时间;(3)根据牛顿第二定律结合运动公式求解在电场中的侧移量,从而求解从O 点处射出的粒子打在荧光屏上的纵坐标区域范围. 【详解】(1)由题意可知,粒子在磁场中的轨道半径为R=r=0.5m ,由2v qvB mR= 进入电场时qBR v m = 带入数据解得v=1.0×106m/s(2)粒子在磁场中运动的时间61121044R t s v ππ-=⨯=⨯ 粒子从A 点进入电场做类平抛运动,水平方向的速度为v ,所以在电场中运动的时间62 1.010xt s v-==⨯ 总时间6612110 1.8104t t t s s π--⎛⎫=+=+⨯=⨯⎪⎝⎭(3)沿x 轴正方向射入电场的粒子,在电场中的加速度大小121.510/qEa m s m==⨯ 在电场中侧移:2121261111.5100.7522110y at m m ⎛⎫==⨯⨯⨯= ⎪⨯⎝⎭打在屏上的纵坐标为0.75;经磁场偏转后从坐标为(0,1)的点平行于x 轴方向射入电场的粒子打在屏上的纵坐标为1.75;其他粒子也是沿x 轴正方向平行的方向进入电场,进入电场后的轨迹都平行,故带电粒子打在荧光屏上 的纵坐标区域为0.75≤y ≤1.75.8.如图,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为.现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.【答案】2145qRB E m=【解析】 【分析】 【详解】解答本题注意带电粒子先在匀强磁场运动,后在匀强电场运动.带电粒子在磁场中做圆周运动.粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛仑兹力公式得2v qvB m r=①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 和d 点.由几何关系知,线段ac bc 、和过a 、b 两点的轨迹圆弧的两条半径(未画出)围成一正方形.因此ac bc r ==② 设,cd x =有几何关系得45ac R x =+③ 2235bc R R x =+- 联立②③④式得75r R =再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE="m a" ⑥ 粒子在电场方向和直线方向所走的距离均为r ,有运动学公式得212r at =⑦ r=vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得2145qRB E m=⑨【点睛】带电粒子在磁场中运动的题目解题步骤为:定圆心、画轨迹、求半径,同时还利用圆弧的几何关系来帮助解题.值得注意是圆形磁场的半径与运动轨道的圆弧半径要区别开来.9.磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源s 发出质量为m 、电量为q 的粒子沿垂直磁场方向进入磁感应强度为B 的匀强磁场,被限束光栏Q 限制在2ϕ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P 上.(重力影响不计)(1)若能量在E ~E +ΔE (ΔE >0,且ΔE <<E )范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围Δx 1.(2)实际上,限束光栏有一定的宽度,α粒子将在2ϕ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围Δx 2 【答案】见解析 【解析】 【详解】(1)设α粒子以速度v 进入磁场,打在胶片上的位置距s 的距离为x 圆周运动2q B mRυυ=α粒子的动能212E m υ=2x R =由以上三式可得22mEx qB= 所以()12222m E E mEx qBqB+∆∆=-化简可得122mEx E qBE∆≈∆; (2)动能为E 的α粒子沿φ±角入射,轨道半径相同,设为R ,粒子做圆周运动2q B mRυυ=α粒子的动能212E m υ=由几何关系得()22224222cos 1cos sin 2mE mE φx R R φφqB qB ∆=-=-=10.如图所示,虚线OL 与y 轴的夹角为θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .一质量为m 、电荷量为q (q >0)的粒子从左侧平行于x 轴射入磁场,入射点为M .粒子在磁场中运动的轨道半径为R .粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出),且OP =R .不计重力.求M 点到O 点的距离和粒子在磁场中运动的时间.【答案】当α=30°时,粒子在磁场中运动的时间为π126T mt qB== 当α=90°时,粒子在磁场中运动的时间为π42T m t qB== 【解析】根据题意,粒子进入磁场后做匀速圆周运动,设运动轨迹交虚线OL 于A 点,圆心在y 轴上的C 点,AC 与y 轴的夹角为α;粒子从A 点射出后,运动轨迹交x 轴的P 点,设AP 与x 轴的夹角为β,如图所示.有(判断出圆心在y 轴上得1分)2v qvB m R=(1分)周期为2πmT qB=(1分) 过A 点作x 、y 轴的垂线,垂足分别为B 、D .由几何知识得sin αAD R =,cot 60OD AD =︒,,OP AD BP =+α=β (2分) 联立得到sin αα13+=(2分) 解得α=30°,或α=90° (各2分) 设M 点到O 点的距离为h ,有sin αAD R =h R OC =-,3cos αOC CD OD R AD =-=联立得到h=R 3cos(α+30°) (1分) 解得h=3R (α=30°) (2分) h=3R (α=90°) (2分) 当α=30°时,粒子在磁场中运动的时间为π126T m t qB ==(2分) 当α=90°时,粒子在磁场中运动的时间为π42T m t qB==(2分) 【考点定位】考查带电粒子在匀强磁场中的运动及其相关知识.。
(完整版)高考物理带电粒子在磁场中的运动解析归纳
难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。
(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。
圆心的确定,通常有以下两种方法。
① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。
高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析
高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长.【答案】(1)12mg E =2mgE q =122m gd 121626d d gd gd π+ 【解析】 【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mgE =微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d =1tan45mg ma ︒=2302360Rt vπ︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=2.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m ,若粒子重力不计、比荷qm=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29% 【解析】 【详解】(1)由洛伦兹力充当向心力,即qvB =m 2v R可得:v =6×105m/s ;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,作出速度方向的垂线与y 轴交于一点Q ,根据几何关系可得PQ=0.0637cos =0.08m ,即Q 为轨迹圆心的位置; Q 到圆上y 轴最高点的距离为0.18m-0.0637sin =0.08m ,故粒子刚好从圆上y 轴最高点离开; 故它打出磁场时的坐标为(0,0.18m );(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180×100%=29%3.如图甲所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m、带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,此时速度方向与x轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x轴.求所加磁场磁感应强度B的大小和电子刚穿出圆形区域时的位置坐标;(3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B0的大小、磁场变化周期T各应满足的关系表达式.【答案】(1)(2)(3)(n=1,2,3…)(n=1,2,3…)【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y=v0tanθ=v0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.4.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.(1)求电子离开偏转电场时的位置到OO’的最远位置和最近位置之间的距离(2)要使所有电子都能垂直打在荧光屏上,①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm= 又:1mv R Be =解得:00U tB dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=5.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为2R的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.(1)求电场强度大小及粒子经过P点时的速度大小和方向;(2)为使粒子从AC边界射出磁场,磁感应强度应满足什么条件;(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?【答案】(1)22mvE=;2v,速度方向沿y轴负方向(2)82225mv mvBqR qR≤≤(3)()22713mvqR-【解析】【分析】【详解】(1)在电场中,粒子沿初速度方向做匀速运动132cos4522cos45RL R R=-︒=︒1L vt=沿电场力方向做匀加速运动,加速度为a22sin452L R R=︒=2212L at=qEam=设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v、2v,合速度v'1v v =、2v at =,2tan v vθ=联立可得224mv E qR=进入磁场的速度22122v v v v =+='45θ=︒,速度方向沿y 轴负方向(2)由左手定则判定,粒子向右偏转,当粒子从A 点射出时,运动半径12Rr =由211mv qv B r =''得122mvB qR=当粒子从C 点射出时,由勾股定理得()222222R R r r ⎛⎫-+= ⎪⎝⎭解得258r R =由222mv qv B r =''得2825mvB qR=根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当82225mv mvB qR qR≤≤时,粒子从AC 边界射出(3)为使粒子不再回到电场区域,需粒子在CD 区域穿出磁场,设出磁场时速度方向平行于x 轴,其半径为3r ,由几何关系得222332R r r R ⎛⎫+-= ⎪⎝⎭解得()3714R r =由233mv qv B r =''得)322713mv B qR= 磁感应强度小于3B ,运转半径更大,出磁场时速度方向偏向x 轴下方,便不会回到电场中6.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-7.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 2360d d dr sin sin α===︒ 根据200mv qv B r =得023qBdv =粒子在第一象限中做类平抛运动,则有21602qE r cost m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得0322y v y tan x v α===由几何知识可得 y=r-rcosα= 132r = 则得23x d =所以粒子在第三、四象限圆周运动的半径为125323d d R sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度00432v qBdv v cos α===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动8.如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN 一侧有电场强度为E 的匀强电场(垂直于MN ),另一侧有匀强磁场(垂直纸面向里).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,身边有多个质量均为m、电量不等的带负电小球.他先后以相同速度v0、沿平行于MN方向抛出各小球.其中第1个小球恰能通过MN上的C点第一次进入磁场,通过O点第一次离开磁场,OC=2h.求:(1)第1个小球的带电量大小;(2)磁场的磁感强度的大小B;(3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到宇航员的手中?如有,则磁感强度应调为多大.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q Eh tm=2h v t=解得:212mvqEh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B由2 1v q vBmR=得1mvRq B=由几何关系得:22sinR hθ=解得:2EBv=;(3)后面抛出的小球电量为q,磁感应强度B'①小球作平抛运动过程2hmx v t vqE==2yqEv hm=②小球穿过磁场一次能够自行回到A,满足要求:sinR xθ=,变形得:sinmvxqBθ'=解得:EBv'=.9.如图所示,在直角坐标系xOy平面内有两个同心圆,圆心在坐标原点O,小圆内部(I区)和两圆之间的环形区域(Ⅱ区)存在方向均垂直xOy平面向里的匀强磁场(图中未画出),I、Ⅱ区域磁场磁感应强度大小分别为B、2B。
高考物理带电粒子在磁场中的运动的技巧及练习题及练习题(含答案)
高考物理带电粒子在磁场中的运动的技巧及练习题及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:3 5 lrπ=粒子在电场中沿虚线方向做匀变速直线运动,21cos22qEl r tmα-=⋅解得:220(23)9mvEqlππ-=2.核聚变是能源的圣杯,但需要在极高温度下才能实现,最大难题是没有任何容器能够承受如此高温。
高考物理带电粒子在磁场中的运动专题训练答案及解析
高考物理带电粒子在磁场中的运动专题训练答案及解析一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.如图所示,在竖直面内半径为R 的圆形区域内存在垂直于面向里的匀强磁场,其磁感应强度大小为B ,在圆形磁场区域内水平直径上有一点P ,P 到圆心O 的距离为2R,在P 点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不同的正离子. 已知离子的质量均为m ,电荷量均为q ,不计离子重力及离子间相互作用力,求:(1)若所有离子均不能射出圆形磁场区域,求离子的速率取值范围; (2)若离子速率大小02BqRv m=,则离子可以经过的磁场的区域的最高点与最低点的高度差是多少。
高考物理专题带电粒子在磁场中的运动
高考物理专题带电粒子在磁场中的运动Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】带电粒子在磁场中的运动【例1】磁流体发电机原理图如右。
等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。
该发电机哪个极板为正极两板间最大电压为多少 解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。
所以上极板为正。
正、负极板间会产生电场。
当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv 。
当外电路断开时,这也就是电动势E 。
当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发生偏转。
这时电动势仍是E=Bdv ,但路端电压将小于Bdv 。
在定性分析时特别需要注意的是:⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。
⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv ,但电动势不变(和所有电源一样,电动势是电源本身的性质。
) ⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。
在外电路断开时最终将达到平衡态。
【例2】 半导体靠自由电子(带负电)和空穴(相当于带正电)导电,分为p 型和n 型两种。
p 型中空穴为多数载流子;n 型中自由电子为多数载流子。
用以下实验可以判定一块半导体材料是p 型还是n 型:将材料放在匀强磁场中,通以图示方向的电流I ,用电压表判定上下两个表面的电势高低,若上极板电势高,就是p 型半导体;若下极板电势高,就是n 型半导体。
试分析原因。
解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指指电流方向,都向右,所以洛伦兹力方向都向上,它们都将向上偏转。
p 型半导体中空穴多,上极板的电势高;n 型半导体中自由电子多,上极板电势低。
注意:当电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,所以偏转方向相同。
专题带电粒子在磁场中的运动(一)运动轨迹
2专题:带电粒子在磁场中的运动(一)运动轨迹一.圆心,半径运动时间的确定(1)圆心的确定。
(在下图中动手画一画!)①已轨迹上两点的速度方向,作这两速度的垂线,交点即为圆心.②已知粒子入射点、入射方向及运动轨迹上的一条弦,作速度方向的垂线及弦的垂直平分线,.(2)半径的确定和计算。
(几何计算(3)在磁场中运动时间的确定。
公式t=360θ×T 可求出运动时间。
①速度的偏向角ϕ等于弧AB 所对的圆心角θ。
②偏向角与弦切角α的关系为:θ<180°,θ=2α;ϕ>180°,θ=360-2α; 二、基本轨迹。
(1)单直线边界磁场(如图1所示)。
①如果垂直磁场边界进入,粒子作半圆运动后垂直原边界飞出; ②如果与磁场边界成夹角θ进入,仍以与磁场边界夹角θ飞出 (2)平行直线边界磁场(如图2所示)。
①速度较小时,作半圆运动后从原边界飞出;②③速度较大时粒子作部分圆周运动后从另一边界飞出。
(3)矩形边界磁场(如图3所示)。
①速度较小时粒子作半圆运动后从原边界飞出; ②速度在某一范围内时从侧面边界飞出;③速度为某临界值时,粒子作部分圆周运动其轨迹与对面边界相切; ④速度较大时粒子作部分圆周运动从对面边界飞出。
(4)带电粒子在圆形磁场区域中做匀速圆周运动的几个特点。
特点1 :入射速度方向指向匀强磁场区域圆的圆心,则出射速度方向的反向延长线必过该区域圆的圆心。
特点2 :入射速度方向(不一定指向区域圆圆心)与轨迹圆弧对应的弦的夹角为θ(弦切角),则出射速度方向与入射速度方向的偏转角为2θ,轨迹圆弧对应的圆心角也为2θ,并且初末速度方向的交点、轨迹圆的圆心、区域圆的圆心都在弧弦的垂直平分线上。
三.典型例题【例1】 如图直线MN 上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?【例2】.电子自静止开始经M 、N 板间(两板间的电压为u )的电场加速后从A 点垂直于磁场边界射入宽度为d 的匀强磁场中,电子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m ,电量为e )【例题3】如图长为L 的水平极板间,有垂直纸面向内磁场强度为B 的匀强磁场,板间距离也为L ,板不带电,现有质量为m ,电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁场以速度v 平行极板射入磁场,欲使粒子不打在极板上,则入射速度v 应满足什么条件?【例题4】 如图,圆形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B ,现有一电荷量为q ,质量为m 的正离子从a 点沿圆形区域的直径入射,设正离子射出磁场区域方向与入射方向的夹角为60 ,求此离子在磁场区域内飞行的时间。
【高三】2021届高考物理基础知识归纳 带电粒子在磁场中的运动
【高三】2021届高考物理基础知识归纳带电粒子在磁场中的运动【高三】2021届高考物理基础知识归纳带电粒子在磁场中的运动第3课时带电粒子在磁场中的运动基础知识概括1.洛伦兹力运动电荷在磁场中受的力叫做洛伦兹力.通电导线在磁场中受的安培力就是在导线中定向移动的电荷受的洛伦兹力的合力的整体表现.(1)大小:当v∥b时,f=0 ;当v⊥b时,f=qvb .(2)方向:用左手定则认定,其中四指指向正电荷运动方向(或正数电荷运动的反方向),拇指所指的方向就是正电荷受力的方向.洛伦兹力旋转轴磁感应强度与速度所同意的平面.2.带电粒子在磁场中的运动(不计粒子的重力)(1)若v∥b,带电粒子搞平行于磁感线的匀速直线运动.(2)若v⊥b,带电粒子在垂直于磁场方向的平面内以入射速度v做匀速圆周运动.洛伦兹力提供带电粒子做圆周运动所需的向心力,由牛顿第二定律qvb=得带电粒子运动的轨道半径r=,运动的周期t=.3.电场力与洛伦兹力的比较电场力洛伦兹力存有条件促进作用于电场中所有电荷仅对运动着的且速度不与磁场平行的电荷存有洛伦兹力的促进作用大小f=qe与电荷运动速度无关f=bqv与电荷的运动速度有关方向力的方向与电场方向相同或恰好相反,但总在同一直线上力的方向始终和磁场方向横向对速度的改变可以改变电荷运动速度大小和方向只改变电荷速度的方向,不改变速度的大小作功可以对电荷作功,能够发生改变电荷动能无法对电荷作功,无法发生改变电荷的动能偏转轨迹静电偏转,轨迹为抛物线磁偏转,轨迹为圆弧重点难点突破一、对带电体在洛伦兹力作用下运动问题的分析思路1.确认对象,并对其展开受力分析.2.根据物体受力情况和运动情况确定每一个运动过程所适用的规律(力学规律均适用).总之化解这类问题的方法与氢铵力学问题一样,无非多了一个洛伦兹力,必须特别注意:(1)洛伦兹力不做功,在应用动能定理、机械能守恒定律时要特别注意这一点;(2)洛伦兹力可能将就是恒力也可能将就是变力.二、带电粒子做匀速圆周运动的圆心、半径及运动时间的确定1.圆心的确认通常存有以下四种情况:(1)已知粒子运动轨迹上两点的速度方向,作这两速度的垂线,交点即为圆心.(2)未知粒子入射点、入射光方向及运动轨迹上的一条弦,并作速度方向的垂线及弦的垂直平分线,交点即为为圆心.(3)已知粒子运动轨迹上的两条弦,作出两弦垂直平分线,交点即为圆心.(4)未知粒子在磁场中的入射点、入射光方向和辐照度方向(不一定在磁场中),缩短(或逆向缩短)两速度方向所在直线使之成一夹角,做出这一夹角的角平分线,角平分线下到两直线距离等同于半径的点即为圆心.2.半径的确定和计算.圆心找到以后,自然就有了半径,半径的计算一般是利用几何知识,常用到解三角形的方法及圆心角等于弦切角的两倍等知识.3.在磁场中运动时间的确认,利用圆心角与弦切角的关系,或者就是四边形内角和等同于360°排序出来圆心角θ的大小,由公式t=t纡出来运动时间,有时也用弧长与线速度的比t=.三、两类典型问题1.极值问题:常利用半径r和速度v(或磁场b)之间的约束关系展开动态运动轨迹分析,确认轨迹圆和边界的关系,谋出来临界点,然后利用数学方法解极值.注意:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切;(2)当速度v一定时,弧长(或弦长)越短,圆周角越大,则带电粒子在有界磁场中运动的时间越短.2.多解问题:多解形成的原因一般包含以下几个方面:(1)粒子电性不确认;(2)磁场方向不确认;(3)临界状态不唯一;(4)粒子运动的往复性等.典例精析1.在洛伦兹力促进作用下物体的运动【例1】一个质量m=0.1g的小滑块,带有q=5×10-4c的电荷,放置在倾角α=30°的光滑斜面上(斜面绝缘),斜面置于b=0.5t的匀强磁场中,磁场方向垂直纸面向里,如图所示.小滑块由静止开始沿斜面下滑,其斜面足够长,小滑块滑至某一位置时,要离开斜面.问:(1)大滑块拎何种电荷?(2)小滑块离开斜面时的瞬时速度多大?(3)该斜面的长度至少多长?【解析】(1)小滑块沿斜面下滑过程中,受到重力mg、斜面支持力fn和洛伦兹力f.若要小滑块离开斜面,洛伦兹力f方向应垂直斜面向上,根据左手定则可知,小滑块应带负电荷.(2)大滑块沿斜面大幅下滑时,横向斜面方向的加速度为零,存有qvb+fn-mgcosα=0当fn=0时,小滑块开始脱离斜面,此时qvb=mgcosα得v=m/s=2m/s(3)下滑过程中,只有重力做功,由动能定理得mgxsinα=mv2斜面的长度至少应当就是x=m=1.2m【思维提升】(1)在解决带电粒子在磁场中运动的力学问题时,对粒子进行受力分析、运动情况分析是关键;(2)根据力学特征,选用相应的力学规律求解,但由于洛伦兹力与速度有关,要注意动态分析.【开拓1】如图所示,质量为m的拎正电小球,电荷量为q,小球中间有一孔套在足够多短的绝缘细杆上,杆与水平方向成θ角,与球的动摩擦因数为μ,此装置放到沿水平方向、磁感应强度为b的坯强磁场中,若从高处将小球并无初速度释放出来,小球在大幅下滑过程中加速度的最大值为gsinθ,运动速度的最大值为.【解析】分析带电小球受力如图,在释放处a,由于v0=0,无洛伦兹力,随着小球加速,产生垂直杆向上且逐渐增大的洛伦兹力f,在b处,f=mgcosθ,ff=0此时加速度最小,am=gsinθ,随着小球稳步快速,f稳步减小,小球将受横向杆向上的弹力fn′,从而恢复正常了摩擦力,且逐渐减小,加速度逐渐增大,当ff′与mgsinθ均衡时,小球快速完结,将搞匀速直线运动,速度也达至最大值vm.在图中c位置:fn′+mgcosθ=bqvm①mgsinθ=ff′②ff′=μfn′③由①②③式Champsaurvm=2.带电粒子在有界磁场中的运动【基准2】两平面荧光屏互相横向置放,在两屏内分别挑旋转轴两屏交线的直线为x 轴和y轴,交点o为原点,如图所示.在y>0、00、x>a的区域有垂直纸面向外的匀强磁场,两区域内的磁感应强度大小均为b.在o 点处有一小孔,一束质量为m、带电荷量为q(q>0)的粒子沿x轴经小孔射入磁场,最后打在竖直和水平的荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各数值.已知速度最大的粒子在0a的区域中运动的时间之比是2∶5,在磁场中运动的总时间为7t/12,其中t为该粒子在磁感应强度为b的坯强磁场中搞圆周运动的周期.试求两个荧光屏上亮线的范围(数等重力的影响).【解析】如右图所示,粒子在磁感应强度为b的匀强磁场中运动的半径为r=速度大的粒子将在x轨道半径大于a的粒子开始进入右侧磁场,考虑r=a的极限情况,这种粒子在右侧的圆轨迹与x轴在d点相切(图中虚线),od=2a,这是水平屏上发亮范围的左边界.速度最小的粒子的轨迹例如图中实线右图,它由两段圆弧共同组成,圆心分别为c和c′,c在y轴上,由对称性所述c′在x=2a的直线上.设t1为粒子在0a的区域中运动的时间,由题意所述,t1+t2=由此Champsaurt1=,t2=再由对称性可得∠ocm=60°,∠mc′n=60°∠mc′p=360°×=150°所以∠nc′p=150°-60°=90°即为1/4圆周.因此圆心c′在x轴上.设立速度为最大值时粒子的轨道半径为r,由直角△coc′只须2rsin60°=2a,r=由图可知op=2a+r,因此水平荧光屏发亮范围的右边界坐标x=2(1+)a【思维提高】带电粒子在相同的有界磁场中的已连续运动问题,一就是必须分别根据步入和返回磁场的点速度方向确认带电粒子搞匀速圆周运动的圆心,进而图画出来带电粒子在有界磁场中的运动轨迹;二就是选准由一个磁场步入另一个磁场这一关键点,确认出来这一关键点上速度的方向;三就是必须特别注意磁场方向和大小变化引发带电粒子的运动轨迹的变化.【拓展2】下图是某装置的垂直截面图,虚线a1a2是垂直截面与磁场区边界面的交线,匀强磁场分布在a1a2的右侧区域,磁感应强度b=0.4t,方向垂直纸面向外,a1a2与垂直截面上的水平线夹角为45°.在a1a2左侧,固定的薄板和等大的挡板均水平放置,它们与垂直截面交线分别为s1、s2,相距l=0.2m,在薄板上p处开一小孔,p与a1a2线上点d的水平距离为l.在小孔处装一个电子快门.起初快门开启,一旦有带正电微粒刚通过小孔,快门立即关闭,此后每隔t=3.0×10-3s开启一次并瞬间关闭,从s1s2之间的某一位置水平发射的一速度为v0的带正电微粒,它经过磁场区域后入射到p处小孔.通过小孔的微粒与挡板发生碰撞而反弹,反弹速度大小是碰前的0.5倍.(1)经过一次回调轻易从小孔射向的微粒,其初速度v0应属多少?(2)求上述微粒从最初水平射入磁场到第二次离开磁场的时间.(忽略微粒所受重力影响,碰撞过程中无电荷转移.已知微粒的荷质比=1.0×103c/kg.只考虑纸面上带电微粒的运动)【解析】(1)如下图右图,设带正电微粒在s1、s2之间任一点q以水平速度v0步入磁场,微粒受的洛伦兹Vihiersf,在磁场中搞圆周运动的半径为r,存有:f=qv0b①f=②由①②式解得r=,欲使微粒能进入小孔,半径r的取值范围为l代入数据得80m/s欲并使步入小孔的微粒与挡板一次互不相让回到后能够通过小孔,还必须满足条件:=nt,其中n=1,2,3…④由①②③④式所述,只有n=2满足条件,即为存有v0=100m/s⑤(2)设立微粒在磁场中搞圆周运动的周期为t0,从水平步入磁场至第二次返回磁场的总时间为t,设t1、t4分别为磁铁微粒第一次、第二次在磁场中运动的时间,第一次返回磁场运动至挡板的时间为t2,相撞后再回到磁场的时间为t3,运动轨迹如图所示,则存有t0=⑥t1=t0⑦t2=⑧t3=⑨t4=t0⑩Champsaurt=t1+t2+t3+t4=2.8×10-2s?3.带电粒子在有界磁场运动的临界问题【基准3】如图所示,一个质量为m,电荷量大小为q的磁铁微粒(忽略重力),与水平方向成45°射入宽度为d、磁感应强度为b、方向横向纸面向内的坯强磁场中,若并使粒子不从磁场mn边界箭出来,粒子的初速度大小应属多少?【解析】带电粒子垂直b进入匀强磁场做匀速圆周运动,若不从边界mn射出,粒子运动偏转至mn边界时v与边界平行即可.由左手定则可知:若粒子带正电荷,圆周轨迹由a→b;若粒子带负电荷,圆周轨迹由a→c,如图所示,圆周轨迹的圆心位置可根据粒子线速度方向垂直半径的特点,作初速度v0的垂线与边界mn的垂线的交点即为圆轨迹的圆心o1与o2.粒子拎正电荷情况:粒子沿圆轨迹a→b运动方向发生改变了45°,由几何关系所述∠ao1b=45°,那么d=r1-r1?cos45°①r1=②将②式代入①式得v0=即粒子若带正电荷,初速度满足0粒子拎负电荷情况:粒子沿圆轨迹a→c运动,方向发生改变了135°,由几何关系言∠ao2c=135°,∠o2af=45°,那么d=r2+r2?sin45°③r2=④将④式代入③式得v0′=即粒子若带负电荷,初速度满足0【思维提高】(1)充份认知临界条件;(2)题中没有表明电荷的电性,应当分正、正数两种电性加以分析.【拓展3】未来人类要通过可控热核反应取得能源,要持续发生热核反应必须把温度高达几百万摄氏度以上的核约束在一定的空间内.约束的办法有多种,其中技术上相对成熟的是用磁场约束,称为“托卡马克”装置.如图所示为这种装置的模型图:垂直纸面的有环形边界的匀强磁场(b区域)围着磁感应强度为零的圆形a区域,a区域内的离子向各个方向运动,离子的速度只要不超过某值,就不能穿过环形磁场的外边界而逃逸,从而被约束.设环形磁场的内半径r1=0.5m,外半径r2=1.0m,磁场的磁感应强度b0=1.0t,被约束的离子比荷q/m=4.0×107c/kg.(1)若a区域中沿半径om方向射入磁场的离子无法沿着磁场,则离子的速度无法少于多小?(2)若要使从a区域沿任何方向射入磁场的速率为2.0×107m/s的离子都不能越出磁场的外边界,则b区域磁场的磁感应强度b至少要有多大?【解析】(1)速度越大轨迹圆半径越大,要使沿om方向运动的离子无法横越磁场,则其在环形磁场内的运动轨迹圆中半径最大者与磁场外边界圆切线,如图所示.设轨迹圆的半径为r1,则r+r=(r2-r1)2代入数据解得r1=0.375m设立沿该圆运动的离子速度为v1,由牛顿运动定律存有qv1b0=解得v1==1.5×107m/s(2)当离子以v2的速度沿与内边界圆切线的方向射入磁场,且轨迹与磁场外边界圆切线时,以该速度沿各个方向射入磁场区的离子都无法穿出来磁场边界,如图所示.设轨迹圆的半径为r2,则r2==0.25mChampsaurb==2.0t易错门诊4.带电粒子在磁场中的运动及功能关系【例4】如图所示,匀强磁场中放置一与磁感线平行的薄铅板,一个带电粒子垂直进入匀强磁场,以半径r1=20cm做匀速圆周运动,第一次垂直穿过铅板后以半径r2=19cm 做匀速圆周运动,则带电粒子能够穿过铅板的次数是多少?(每次穿过铅板时阻力大小相同)【羽蛛属】因为r1=,所以v1=同理:v2=设立粒子每沿着铅板一次,速度增加δv,则δv=v1-v2=(r1-r2)故粒子能沿着铅板的次数为n==20次【错因】粒子每穿过一次铅板应该是损失的动能相同,故粒子每穿过一次铅板减少的速度不同.速度大时,其速度变化量小,速度小时,速度变化量大.【Auterive】粒子每沿着铅板一次损失的动能为δe=沿着铅板的次数n==10.26次,取n=10次【思维提高】对于物理问题必须弄清问题的本质,此题中每次沿着铅板后,必须就是损失的动能相同,而不是速度的变化相同.。
高三一轮专题复习 带电粒子在磁场中的运动
洛伦兹力、带电粒子在磁场中的运动一.【复习回顾】1.带电粒子在洛伦兹力作用下的圆周运动的半径公式推导:(1)向心力公式:qvB =m v2r 轨道半径公式:r =mv Bq. 2.带电粒子在洛伦兹力作用下的圆周运动的周期公式推导:(3)周期公式:T =2πr v =2πm qB .f =1T =Bq 2πm .ω=2πT =2πf =Bq m. 二.【带电粒子在磁场中运动情况研究】1、找圆心的方法:利用v ⊥R利用弦的中垂线2、定半径:几何法求半径向心力公式求半径3、确定运动时间:注意:θ用弧度表示三.【典型习题】题型一:基本概念和公式1.如图所示,在阴极射线管的正下方平行放置一根通有强直流电流的长直导线,且电流的方向水平向右,则阴极射线将会 ( )A .向上偏转B .向下偏转C .向纸内偏转D .向纸外偏转2.有a 、b 、c 三个带电粒子,其质量之比为m a :m b :m c =1:2:3,带电量相同,以相同的初动能射入同一匀强磁场中,都做匀速圆周运动,则A .轨道半径最大的是aB .轨道半径最大的是cC .轨道周期最小的是bD .轨道周期最小的是c 题型二:带电粒子在有界磁场中的偏转【例题1】:如图中,一个不计重力、带电量为 -q 、质量为m 的带电粒子,垂直飞入一宽度为d 、磁感应强度为B 的匀强磁场,要使粒子能穿过该磁场区域,那么粒子速度应满足什么条件?相应地,粒子在磁场中经历的时间满足什么关系?【例题2】:一匀强磁场宽度d = 16cm,磁感应强度B = 0.5T ,电子源在A 点以速度大小v = 1.0×10¹0 m/s在纸面内向不同方向发射电子,且在右侧边界处放一荧光屏(足够大),电子的比荷e /m = 2×10¹¹ C/kg,求电子打中荧光屏的区域的长度 ?【例题3】:如图所示,为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大于B =2.0×10-³T ,在x 轴上距坐标原点L =0.50m 的P 处为粒子的入射口,在y 轴上安放接收器.现将一带正电荷的粒子以v =3.5×104m/s 的速率从P 处射入磁场,若粒子在y 轴上距坐标原点L =0.50m 的M 处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m ,电量为q ,不计其重力。
高考物理带电粒子在磁场中的运动知识点汇总word
高考物理带电粒子在磁场中的运动知识点汇总word一、带电粒子在磁场中的运动压轴题1.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长.【答案】(1)12mg E q =,2mgE q =122m gd 121626d d gd gd π+ 【解析】 【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mgE q=微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d = 1tan45mg ma ︒=2302360Rt vπ︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=2.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
高考物理带电粒子在磁场中的运动(一)解题方法和技巧及练习题及解析
高考物理带电粒子在磁场中的运动(一)解题方法和技巧及练习题及解析一、带电粒子在磁场中的运动专项训练1.如图,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。
P是圆外一点,OP=3r。
一质量为m、电荷量为q(q>0)的粒子从P点在纸面内垂直于OP射出。
己知粒子运动轨迹经过圆心O,不计重力。
求(1)粒子在磁场中做圆周运动的半径;(2)粒子第一次在圆形区域内运动所用的时间。
【答案】(1)(2)【解析】【分析】本题考查在匀强磁场中的匀速圆周运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力。
【详解】(1)找圆心,画轨迹,求半径。
设粒子在磁场中运动半径为R,由几何关系得:①易得:②(2)设进入磁场时速度的大小为v,由洛伦兹力公式和牛顿第二定律有③进入圆形区域,带电粒子做匀速直线运动,则④联立②③④解得2.如图所示,同轴圆形区域内、外半径分别为R1=1 m、R2=3m,半径为R1的圆内分布着B1=2.0 T的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B2=0.5 T的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d=3cm,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P点由静止释放,经加速后通过右板小孔Q,垂直进入环形磁场区域.已知点P、Q、O在同一水平线上,粒子比荷4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应.求:(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件?(2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大?(3) 从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻.【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…)【解析】【分析】(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.【详解】(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2代入数据解得r1=1m粒子不能进入中间磁场,所以轨道半径r1<1m.(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m2 v r得r=mvqB易知r3=4r2且满足(r2+r3)2=(R2-r2)2+r32解得r2=34m,r3=3m又由动能定理有qU=12mv2代入数据解得U=3×107V.(3)带电粒子从P到Q的运动时间为t1,则t1满足12v t1=d得t1=10-9s令∠QO2O3=θ,所以cosθ=0.8,θ=37°(反三角函数表达亦可)圆周运动的周期T=2mqBπ故粒子从Q孔进入磁场到第一次到O点所用的时间为8221372180532610360360m mt sqB qBππ-⨯⨯⨯-=+=考虑到周期性运动,t总=t1+t2+k(2t1+2t2)=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…).3.在水平桌面上有一个边长为L的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P点(P为正方形框架对角线AC与圆盘的交点)以初速度v0水平射入磁场区,小球刚好以平行于BC边的速度从圆盘上的Q点离开该磁场区(图中Q点未画出),如图甲所示.现撤去磁场,小球仍从P点以相同的初速度v0水平入射,为使其仍从Q点离开,可将整个装置以CD边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g.求:(1)小球两次在圆盘上运动的时间之比;(2)框架以CD为轴抬起后,AB边距桌面的高度.【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD为轴抬起后,AB边距桌面的高度为222vg.【解析】【分析】【详解】(1)小球在磁场中做匀速圆周运动,由几何知识得:r2+r2=L2,解得:r=22L,小球在磁场中做圆周运的周期:T=2rvπ,小球在磁场中的运动时间:t1=14T=24Lvπ,小球在斜面上做类平抛运动,水平方向:x =r =v 0t 2, 运动时间:t 2=22L v , 则:t1:t 2=π:2;(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,位移:r =2212at ,解得,加速度:a =222v L,对小球,由牛顿第二定律得:a =mgsin mθ=g sinθ, AB 边距离桌面的高度:h =L sinθ=222v g;4.如图,平面直角坐标系中,在,y >0及y <-32L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-32L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(32L ,0)进入磁场.在磁场中的运转半径R =52L (不计粒子重力),求:(1)粒子到达P 2点时的速度大小和方向; (2)EB; (3)粒子第一次从磁场下边界穿出位置的横坐标; (4)粒子从P 1点出发后做周期性运动的周期. 【答案】(1)53v 0,与x 成53°角;(2)043v ;(3)2L ;(4)()04053760L v π+.【解析】 【详解】(1)如图,粒子从P 1到P 2做类平抛运动,设到达P 2时的y 方向的速度为v y ,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E=289mvqL粒子在磁场中做匀速圆周运动,根据qvB=m2vR解得:B=mvqR=5352m vq L⨯⨯=023mvqL解得:043vEB=;(3)粒子在磁场中做圆周运动的圆心为O′,在图中,过P2做v的垂线交y=-32L直线与Q′点,可得:P2O′=3253Lcos o=52L=r故粒子在磁场中做圆周运动的圆心为O′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y=-32L直线从M点穿出磁场,由几何关系知M的坐标x=32L+(r-r cos37°)=2L;(4)粒子运动一个周期的轨迹如上图,粒子从P1到P2做类平抛运动:t1=32Lv在磁场中由P2到M动时间:t2=372 360rvπ︒⨯o=37120Lvπ从M运动到N,a=qEm=289vL则t3=va=158Lv则一个周期的时间T=2(t1+t2+t3)=()4053760Lvπ+.5.如图所示,坐标原点O左侧2m处有一粒子源,粒子源中,有带正电的粒子(比荷为qm=1.0×1010C/kg)由静止进人电压U= 800V的加速电场,经加速后沿x轴正方向运动,O点右侧有以O1点为圆心、r=0.20m为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T的匀强磁场(图中未画出)圆的左端跟y轴相切于直角坐标系原点O,右端与一个足够大的荧光屏MN相切于x轴上的A点,粒子重力不计。
高三物理 专题三 带电粒子在磁场中运动(一)复习讲义
专题三 带电粒子在磁场中运动(一)【达标指要】1.掌握洛仑兹力的大小和方向的确定,带电粒子在匀强磁场中圆周运动及其规律2.掌握带电粒子在有界匀强磁场强度中的运动特点【名题精析】例1.如图11-3-1所示,真空室内有匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B =0.60T ,磁场内有一块平行感光板ab ,板面与磁场方向平行,在距ab 的距离l =16cm 处,有一个点状的α粒子发射源S ,它向各个方向发射α粒子,α粒子的速度都是v =3.0×106m/s .已知α粒子的电量与质量之比q/m =5.0×107C/kg ,现只考虑在纸平面中运动的α粒子,求ab 上被α粒子打中的区域长度.分析与解:洛伦兹力是α粒子作圆运动的向心力;计算出圆半径后,确定圆心的位置就成为解题的关键,α粒子轨迹与ab 相切,以及α粒子离S 最远的距离为2r 是判定最远点的条件.如图11-3-2.α粒子带正电,用左手定则判定α粒子在磁场中沿逆时针方向做匀速圆周运动,用r 表示轨道半径,有Bqv =m r v 2,解得67310m 0.10m 5.0100.6()v r q B m⨯===⨯⨯,可见2r >l >r . 因向不同方向发射的α粒子的圆轨迹都过S ,由此可知,某一圆轨迹在图中N 左侧与ab 相切,则此切点P 1就是α粒子能打中的左侧最远点,为定出P 1的位置,可作平行与ab 的直线cd ,cd 到ab 的距离为r =0.10m .以S 为圆心,r 为半径,作弧交cd 于Q 点,过Q 作ab 的垂线,它与ab 的交点即为P 1.由图中几何关系得:221)(r l r NP --=. 再考虑N 的右侧,任何α粒子在运动中离S 的距离不可能超过2r ,以2r 为半径,S 为圆心作圆,交ab 于N 右侧的P 2点,P 2即为α粒子在右侧能达到的最远点.由几何关系得:2224l r NP -=.所求长度为:P 1P 2=NP 1+NP 2=0.20m .ab图11-3-1ab c d图11-3-2例2.在xOy 平面内有许多电子(质量为m ,电荷量为e )从坐标原点O 不断以相同大小的速度v 0沿不同的方向射入第一象限,如图11-3-3所示.现加上一个垂直于xOy 平面的磁感应强度为B 的匀强磁场,要求这些电子穿过该磁场后都能平行于x 轴向x 轴正方向运动,试求出符合条件的磁场的最小面积.分析与解:所有电子在所求的匀强磁场中均做匀速圆周运动,由200v ev B m r =,得半径为0mv R eB=. 设与x 轴成α角入射的电子从坐标为(x ,y )的P点射出磁场,则有x 2+(R –y )2=R 2 ① ①式即为电子离开磁场的边界b , 当α=90°时,电子的运动轨迹为磁场的上边界a ,其表达式为(R –x )2+y 2=R 2 ② 由①②式所确定的面积就是磁场的最小范围,如图11-3-4所示,其面积为222022)422mv R R S ππ-=-=()(eB【思路点拨】例1中左右两边最远点考虑方式不一样,不少同学会利用左右对称来解,这就失去了一半.错误的主要原因在于对于α粒子在空间飞行的轨迹不熟悉例2中电子从原点沿各个不同的方向不断地以速度v 0射入第一象限中,要求经过磁场偏转后均能平行于x 轴方向,磁感应强度B 已知,那么电子在磁场中做圆周运动的半径是已知的,实际上相当于每个电子的轨迹都是已知的:过原点作速度方向的垂线,在偏向x 正方向这一侧上截取一段长为R 处即为其圆心O n ,在过O n 作与x 轴的垂线,在此垂线选取O n P =R ,这P 点就是电子从磁场飞出的点(如图11-3-4所示)所有这些点的集合就是磁场的下边界b .具体方向就是本题所采用的选一任意角α,确定其出磁场点P 的关系式①就是这些电子的下边界线了.对于上边界线的确定:只要沿y 轴正方向运动的电子的轨迹能在磁场中,也就是说沿y 轴正方向运动的电子轨迹线就是磁场的上边界.【益智演练】1.有一个电子射线管(阴极射线管),放在一通电直导线AB 的上方,发现射线的径迹如图11-3-5所示,则( )A .直导线电流从A 流向BB .直导线电流从B 流向AC .直导线电流垂直于纸面,并流向纸内D .直导线电流垂直于纸面,并流向纸外2.赤道附近地磁场方向向北,同时存在方向竖直向下的电场,若在该处发射一电子(重力作用不计),电子沿直线飞行而不发生偏转,则该电子的飞行方向为 ( ) A B 图11-3-5 图11-3-3y 图 11 -3 - 4A .水平向东B .水平向西C .竖直向上D .竖直向下3.在匀强磁场中一个带电粒子做匀速圆周运动,如果又顺利垂直进入另一个磁感应强度是原来磁感应强度2倍的匀强磁场,则( )A .粒子的速率加倍,周期减半B .粒子的速率不变,轨道半径减半C .粒子的速率减半,轨道半径变为原来的1/4D .粒子的速率不变,周期减半4.如图11-3-6所示,ab 是一弯管,其中心线是半径为R 的一段圆弧,将它置于一给定的匀强磁场中,磁场方向垂直于圆弧所在平面,并且指向纸外.有一束粒子对准a 端射入弯管,粒子有不同的质量、不同的速度,但都是一价正离子,则( )A .只有速度大小一定的粒子可以沿中心线通过弯管B .只有质量大小一定的粒子可以沿中心线通过弯管C .只有动量大小一定的粒子可以沿中心线通过弯管D .只有能量大小一定的粒子可以沿中心线通过弯管5.如图11-3-7所示,一个带电粒子,在磁感应强度B =0.8 T 的匀强磁场中运动,其速度方向与磁场方向垂直,从a 到b 所需时间为2×10-4 s ,从b 到a 所需时间为1×10-3 s ,已知a 、b 两点距离为0.3 m ,粒子带电量为3×10-8 C ,则该粒子的动量大小为( ) A .7.2×10-9 kg·m/s B .1.44×10-8 kg·m/s C .3.6×10-9 kg·m/s D .条件不足,无法确定6.如图11-3-8所示,PQ 是匀强磁场中的一片薄金属片,其平面与磁场方向平行,一个带电粒子从某点以与PQ 垂直的速度v 射出,动能是E ,射出后带电粒子的运动轨迹如图15-83所示.今测得它在金属片两边的轨迹半径之比为10∶9,若在穿越板的过程中粒子受到的阻力大小及电量恒定,则( )A .带电粒子一定带正电B .带电粒子每穿过一次金属片,速度减小了mE 2101 C .带电粒子每穿过一次金属片,动能减少了0.19E D .带电粒子穿过5次后陷在金属片里7.一重力可以忽略的带电粒子,以速度v 射入某一空间,下列各种说法中,正确的( )A.如果空间只存在电场,则带电粒子穿过该空间时,动能、动量一定发生变化B.如果空间只存在磁场,则带电粒子穿过该空间时,动能、动量一定发生变化C .如果空间只存在电场,则带电粒子穿过该空间时,动能可能不变,动量一定发生变化D .如果带电粒子穿过空间后,动能和动量都不改变,空间也可能同时存在电场和磁场8.一个原来静止的U238原子核,发生α衰变,衰变后α粒子的初速度方向水平向右,且两个产物均在垂直于它们速度方向的匀强磁场中运动,它们的轨迹和运动方向可能是下图11-3-9中哪一个所示?( )P Q 图11-3-8 图11-3-6a图11-3-79.如图11-3-10所示,两电子沿MN 方向从M 点射入两平行平面间的匀强磁场中,它们分别以v 1、v 2的速率射出磁场,则v 1∶v 2=______,通过匀强磁场所用时间之比t 1∶t 2=______.10.如图11-3-11所示,在圆心为O 、半径为r 的圆形区域内有方向垂直纸面向里的匀强磁场,一电子以速度v 沿AO 方向射入,后沿OB 方向射出匀强磁场,若已知∠AOB =120°,则电子穿越此匀强磁场所经历的时间是___________.11.如图11-3-12所示,半径为R 的圆形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B .若在圆心处静止的原子核中释放一个质量为m 、电量为q 的粒子,粒子的速度v 0垂直于磁场,则初速度v 0大小必须满足条件 时,粒子才能从磁场中穿出,粒子穿过磁场需要的最长时间为 .图11-3-10 M N a图11-3-11 OAB A B D图11-3-912.一质量为m 、带电量为q 的带电粒子以某一初速射入如图11-3-13所示的匀强磁场中(磁感应强度为B ,磁场宽度为L ) ,要使此带电粒子穿过这个磁场,则带电粒子的初速度应为多大?13.图11-3-14中虚线AB 右侧是磁感应强度为B 1的匀强磁场,左侧是磁感应强度为B 2的匀强磁场.已知221 B B .磁场的方向都直于图中的纸面并指向纸面内.现有一带正电的粒子自图中O 处以初速度开始向右运动,求从开始时刻到第10次通过AB 线向右运动的时间内,该粒子在AB 方向的平均速度.14.初速度为零的离子经电势差为U 的电场加速后,从离子枪T 中水平射出,经过一段路程后进入水平放置的两平行金属板MN 和PQ 之间,离子所经空间存在一磁感强度为B 的匀强磁场.如图11-3-15所示(不考虑重力作用),离子的比荷mq (q 、m 分别是离子的电量和质量)在什么范围内,离子才能打在金属板上?2图11-3-15v 0 图11-3-1315.如图11-3-16所示,一足够长的矩形区域abcd 内有磁感应强度为B ,方向垂直纸面向里的匀强磁场,现从ad 边的中点O 处,以垂直磁场且跟ad 边成30º角的速度方向射入一带电粒子.已知粒子质量为m ,带电量为q ,ad 边长为l ,不计粒子重力.(1)若粒子从ab 边上射出,则入射速度v 0的范围是多少?(2)粒子在磁场中运动的最长时间为多少?16.如图11-3-17所示,为显像管电子束偏转示意图,电子质量为m ,电量为e ,进入磁感应强度为B 的匀强磁场中,该磁场束缚在直径为l 的圆形区域,电子初速度v 0的方向过圆形磁场的轴心O ,轴心到光屏距离为L (即P 0O =L ),设某一时刻电子束打到光屏上的P 点,求PP 0之间的距离.17.如图11-3-18所示,在xoy 平面内有垂直坐标平面的范围足够大的匀强磁场,磁感强度为B ,一带正电荷量q 的粒子,质量为m ,从O点以某一初速度垂直射入磁场,其轨迹与x 、y 轴的交点A 、B 到O 点的距离分别为a 、b ,试求:(1)初速度方向与x 轴夹角θ. (2)初速度的大小.18.如图所示,半径为R =10cm 的圆形匀强磁场,区域边界跟y 轴相切于坐标系原点O ,磁感应强度B =0.332T ,方向垂直纸面向里,在O 处放有一放射源s ,可沿纸面向各个方向射出速率均为v =3.2×106m/s 的α粒子,已知α粒子质量为m =6.64×10-27kg ,q =3.2×10-19m/s ,求:(1)画出α粒子通过磁场空间做圆周运动的圆心点的连线形状;(2)求出α粒子通过磁场的最大偏向角;(3)再以过O 并垂直纸面的直线为轴轴旋转磁场区域,能使穿过磁场区域且偏转角0 Oa 图11-3-16 d最大的α粒子射出磁场后,沿y 轴正方向运动,则圆形磁场直径OA 至少应转过多少角度.19.图11-3-20中,虚线MN 是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B 的匀强磁场,方向垂直纸面向外.O 是MN 上的一点,从O 点可以向磁场区域发射电量为+q 、质量为m 、速率为v 的粒子.粒子射入磁场时的速度可在纸面内向各个方向.已知先后射入的两个粒子恰好在磁场中给定的P 点相遇,P 到O 的距离为L ,不计重力及粒子间的相互作用. (1)求所考查的粒子在磁场中的轨道半径.(2)求这两个粒子从O 点射入磁场的时间间隔.20.如图11-3-21,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a 、b 、c 和d ,外筒的外半径为r 0.在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感应强度的大小为B .在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场.一质量为m 、带电量为+q 的粒子,从紧靠内筒且正对狭缝a 的S 点出发,初速为零.如果该粒子经过一段时间的运动之后恰好又回到出发点S ,则两电极之间的电压U 应是多少?(不计重力,整个装置在真空中)21.边长为100cm 的正三角形光滑且绝缘的刚性框架ABC 固定在光滑的水平面上,如图11-3-22内有垂直于框架平面B =0.5T 的匀强磁场.一质量m =2×10-4kg ,带电量为q =4×10-3C 小球,从BC 的中点小孔P 处以某一大小的速度垂直于BC 边沿水平面射入磁场,设小球与框架相碰后不损失动能,求:图11-3-20o 图11-3-19 s 图11-3-21 b(1)为使小球在最短的时间内从P 点出来,小球的入射速度v 1是多少?(2)若小球以v 2=1m/s 的速度入射,则需经过多少时间才能由P 点出来?22.如图11-3-23甲所示,MN 为竖直放置彼此平行的两块平板,板间距离为d ,两板中央有一个小孔OO ′正对,在两板间有垂直于纸面方向的磁场,磁感应强度随时间的变化如图乙所示.有一群正离子在t =0时垂直于M 板从小孔O 射入磁场,已知正离子质量为m 、带电量为q ,正离子在磁场中做匀速圆周运动的周期与磁感应强度的变化周期都为T 0.不考虑由于磁场的变化而产生电场的影响,不计离子所受重力.求:(1)磁感应强度B 0的大小;(2)要使正离子从O ′孔垂直于N 板射出磁场,正离子射入磁场时的速度v 0的可能值.23.如图11-3-24所示,abcd 是一个正方形的盒子,在cd 边的中点有一小孔e .盒子中存在着沿ad 方向的匀强电场,场强大小为E .一粒子源不断地从a 处的小孔沿ad 方向向盒内发射相同的带电粒子,粒子的初速度为v 0,经电场作用后恰好从e 处的小孔射出.现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B (图中未画出),粒子仍恰好从e 孔射出.(带电粒子的重力、粒子之间的相互作用力均可忽略). (1)所加的磁场方向如何?(2)电场强度E 与磁感应强度B 的比值为多大?24.如图11-3-25所示,在虚线范围内,用场强为E 的匀强电场可使初速度为v 0的某种正离子偏转θ角.在同样宽度范围内,若改用匀强磁场(方向垂直纸面向外),使该离 图11-3-22 ′-B 甲 乙 图11-3-23图11-3-24子通过该区域并使偏转角度也为θ,则磁感应强度为多少?离子穿过电场和磁场的时间之比为多少?25.匀强磁场分布在半径为R 的圆内,磁感应强度为B ,质量为m 、电量为q 的带电粒子由静止开始经加速电场加速后,沿着与直径CD 平行且相距0.6R 的直线从A 点进入磁场,如图11-3-26所示.若带电粒子在磁场中运动的时间是2mqBπ.求加速电场的加速电压.26.如图11-3-27所示,一个初速度为零的带正电的粒子经过MN 两平行板间电场加速后,从N 板上的孔射出,当带电粒子到达P 点时,长方形abcd 区域内出现大小不变、方向垂直于纸面且方向交替变化的匀强磁场,磁感应强度B =0.4T .每经过3104-⨯=πt s ,磁场方向变化一次,粒子到达P 点时出现的磁场方向指向纸外,在Q 处有一静止的中性粒子,PQ 间距离s =3.0m ,PQ 直线垂直平分ab 、cd .已知ab =1.6m ,带电粒子的荷质比为1.0×104 C/kg ,不计重力.求: (1)加速电压为200V 时带电粒子能否与中性粒子碰撞? (2)画出它的轨迹; (3)能使带电粒子与中性粒子碰撞时,加速电压的最大值为多大?27.某空间存在着一个变化的电场和一个变化的磁场,电场方向向右(如图11-3-28(a )中由B 到C 的方向),电场变化如图(b)中E -t 图象,磁感应强度变化如图(c )中B-t 图象.在A 点,从t =1 s (即1 s )开始,图11-3-26dc 图11-3-27 图11-3-25每隔2 s ,有一个相同的带电粒子(重力不计)沿AB 方向(垂直于BC )以速度v 射出,恰能击中C 点,若BC AC 2 且粒子在AC 间运动的时间小于1 s ,求(1)图线上E 0和B 0的比值,磁感应强度B 的方向.(2)若第1个粒子击中C 点的时刻已知为(1+Δt )s,那么第2个粒子击中C 点的时刻是多少?28.如图11-3-29所示,有两个方向相反,均垂直于纸面的匀强磁场,磁感应强度分别为B 和2B ,MN 是它们的分界面,有一束电量均为q ,但质量不全相同的带电粒子,经相同的电势差U 加速后从分界面上的O 点垂直于分界面射入磁场,求:(1)质量多大的粒子可到达距O 点为L 的分界面上的P 点?(2)这些不同的粒子到达P 点需要的时间最长是多少?29.如图11-3-30(a )所示x≥0的区域有如图(b )所示大小不变、方向随时间周期性变化的磁场,磁场方向垂直纸面向外时为正方向,现有一质量为m ,带电量为q 的正电粒子,在t=0时刻从坐标原点O 以速度v 沿着与x 轴正方向成75°射入.粒子运动一段时间到达P 点,P 点坐标为(a ,a ),此时粒子速度方向与OP 延长线的夹角为30°,粒子在这过程中只受磁场力作用.(1)若B 0为已知量,试求粒子在磁场中运动时轨道半径R 及磁场B 变化的周期T 的表达式(2)说明在OP 间运动时时间跟所加磁场的变化周期T 之间应有什么样的关系才能使粒子完成上述运动.(3)若B 0为未知量,那么所加磁场的变化周期T 、磁感应强度B 0的大小各应满足什BE(a) (b) (c) 图11-3-28M O N P 2B 图11-3-29么样的条件,才能使粒子完成上述运动?【学后反思】洛仑兹力的方向总是既垂直于运动电荷速度方向又垂直于磁场强度方向.因此洛仑兹力不做功.准确画出带电粒子的运动轨迹,找出几何关系,轨道半径、轨迹对应的圆心角等,是解决此类问题的重要步骤.【参考答案】1.B 2.A 3.BD 4.C 5.A 6.ACD 7.CD 8.B 9.1/2 3/2 10.v r 33π 11.v 0>m qBR 2,qBm π 12./(1cos )qBL m θ+和/(1cos )qBL m θ- 13.π32V v = 14.2222323228925U q U B d m B d << 15.(1)03qBl qBl v m m <<;(2)53m qB π 16.222202044l B e v m eBLl mv - 17.(1)arctan b a 或π+ arctan b a ;(2)v 0=mb a qB 222+ 18.(1)以原点为圆心,半径r =0.2m 的一个半圆;(2)60o ;(3)转过60o 19.(1)mv R qB =;(2)4arccos()2m LqB qB mv,当粒子的初速沿界面时,24arccos()2m m LqB t nT t n qB qB mvπ'∆=+∆=+,n =0,1,2,3… 20.m B qr 2220 21.(1)5m/s ;(2)1.3πs 22.(1)002m B qT π=;(2)00(1,2,3)2d v n nT π==⋅⋅⋅ y v 0B -B 图11-3-30 a23.(1)垂直纸面向外;(2)05E v B = 24.B =0V E cos θ,θθsin 25. 220.98qB R U m = 或220.02qB R U m = 26.(1)能;(2)略;(3)450V 27.(1)3400=B E v ,磁场方向垂直纸面向外;(2)第2个粒子击中C 点的时刻为(2+3π·v d 2) 28.(1) m = 22218qL B n U (n =1、2、3…)或m =2222(31)qL B n U -(n =1、2、3…);(2)t m =UBL 82π 29.(1)0/R mv qB =,02/3T m qB π=;(2)(21)t n T =-由O 至P 的运动过程也可能在磁场变化半周期的奇数倍时完成;(3)分2种情况讨论:01(21) 1.2.3)B K K =-=、1 1.2.3)T K ==;02 1.2.3)B n n ==、2 1.2.3)T n ==.。
带电粒子在磁场中的运动经典专题
带电粒子在磁场中运动问题专题一、基本公式带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,原始方程:r m v qvB 2=,推导出的半径公式和周期公式:Bqm T Bq mv r π2,==或v r T π2=。
二、基本方法解决带电粒子在匀强磁场中做匀速圆周运动的问题,物理情景非常简单,难点在准确描绘出带电粒子的运动轨迹。
可以说画好了图就是成功的90%。
因此基本方法是作图,而作图的关键是找轨迹圆的圆心、轨迹圆的半径、充分利用直线与圆、圆与圆相交(相切)图形的对称性。
作图时先画圆心、半径,后画轨迹圆弧。
在准确作图的基础上,根据几何关系列方程求解。
例1.如图,直线MN 上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点O 以与MN 成30º角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?(不考虑正、负电子间的相互作用)三、带电粒子射入条形匀强磁场区⑴质量m ,电荷量q 的带正电粒子,以垂直于边界的速度射入磁感应强度为B ,宽度为L 的匀强磁场区。
讨论各种可能的情况。
① 速率足够大的能够穿越该磁场区(临界速度对应的半径为L ),求临界速度。
Bv② 速率v 较小的未能穿越磁场区,而是从入射边射出。
求运动时间。
⑵质量m ,电荷量q 的带正电粒子,以与边界夹角为θ的速度射入磁感应强度为B ,宽度为L 的匀强磁场区。
为使粒子不能穿越该磁场区,求速度的取值范围。
⑶质量m ,电荷量q 的带正电粒子,以与边界成任意角度的相同速率射入磁感应强度为B ,宽度为L 的匀强磁场区。
为使所有粒子都不能穿越该磁场,求粒子的最大速度。
四、带电粒子射入圆形匀强磁场区⑴质量m ,电荷量q 的带正电粒子,沿半径方向射入磁感应强度为B 半径为r 的圆形匀强磁场区。
磁场区边界和粒子轨迹都是圆,由两圆相交图形的对称性知:沿半径方向射入的粒子,必然沿半径延长线方向射出。
高三总复习物理课件 带电粒子在磁场中的运动
B.B1=2B2
C.电子从射入磁场到回到 P 点用时为2Bπ1me D.B1=4B2
解析:根据左手定则可知,电子从 P 点沿垂直于磁场的方向射入匀强磁场 B1 时, 受到的洛伦兹力方向向上,所以电子的运行轨迹为 PDMCNEP,故 A 错误;电 子在题图所示运动过程中,在左侧匀强磁场中运动两个半圆,即运动一个周期, 在右侧匀强磁场中运动半个周期,所以 t=2Bπ1me +Bπm2e,故 C 错误;由题图可知, 电子在左侧匀强磁场中的运动半径是在右侧匀强磁场中的运动半径的一半,根 据 r=mBev可知,B1=2B2,故 B 正确,D 错误。 答案:B
3.大小
(1)v∥B 时,洛伦兹力 F=0。(θ=0°或 180°) (2)v⊥B 时,洛伦兹力 F=___q_v_B_。(θ=90°) (3)v=0 时,洛伦兹力 F=0。 二、带电粒子在匀强磁场中的运动 1.若 v∥B,带电粒子不受洛伦兹力,在匀强磁场中做_匀__速___直__线__运动。 2.若 v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速
场力作用,做匀速圆周运动。下列说法正确的是
()
A.若速率相等,则半径必相等
B.若质量相等,则周期必相等
C.若动量大小相等,则半径必相等
D.若动能相等,则周期必相等
解析:带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,qvB=
mvR2,可得 R=mqBv,又 T=2qπBm,可知 B、C 正确。 答案:BC
带电粒子在磁场中的运动
一、洛伦兹力 1.定义:_运__动__电__荷___在磁场中受到的力称为洛伦兹力。 2.方向 (1)判定方法:左手定则 掌心——磁感线垂直穿入掌心; 四指——指向正电荷运动的方向或负电荷运动的_反__方__向___; 拇指——指向洛伦兹力的方向。 (2)方向特点:F⊥B,F⊥v,即F垂直于B和v决定的_平__面___。
最新高考物理专题汇编带电粒子在磁场中的运动(一)
最新高考物理专题汇编带电粒子在磁场中的运动(一)一、带电粒子在磁场中的运动专项训练1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。
y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。
现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。
求: (1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。
【答案】(1)8qBLv m=;(2)41(1)45m t qB π=+ 【解析】 【详解】(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQO Q L ==在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R O Q QC =+21v qvB mR =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。
高中物理专题汇编物理带电粒子在磁场中的运动(一)含解析
高中物理专题汇编物理带电粒子在磁场中的运动(一)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则00tan y x qE x v m v v v θ⋅===有H =(3a -x )·tan θ=当=y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a2.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
带电粒子在电、磁场中的运动(高三专题)
带电粒子在电、磁场中的运动(高三专题)1、在图所示的坐标系中,x轴水平,y轴垂直,x轴上方空间只存在重力场,第Ⅲ象限存在沿y轴正方向的匀强电场和垂直xy 平面向里的匀强磁场,在第Ⅳ象限由沿x轴负方向的匀强电场,场强大小与第Ⅲ象限存在的电场的场强大小相等。
一质量为m,带电荷量大小为q的质点a,从y轴上y=h处的P1点以一定的水平速度沿x轴负方向抛出,它经过x=2h的P3点进入第Ⅳ象限,试求:⑴质点到达P2点时速度的大小和方向;⑵第Ⅲ象限中匀强电场的电场强度和匀强磁场的磁感应强度的大小;⑶质点a进入第Ⅳ象限且速度减为零时的位置坐标解、(2分)如图所示。
(1)质点在第Ⅱ象限中做平抛运动,设初速度为v0,由……① (2分)2h=v0t…… ② (2分)解得平抛的初速度(1分)在P2点,速度v的竖直分量(1分)所以,v=2,其方向与轴负向夹角θ=45 (1分)(2)带电粒子进入第Ⅲ象限做匀速圆周运动,必有mg=qE……③ (2分)又恰能过负y轴2h处,故为圆的直径,转动半径R= …… ④(1分)又由……⑤ (2分)、可解得 E =mg/q (1分); B = (2分)(3)带电粒以大小为v,方向与x轴正向夹45角进入第Ⅳ象限,所受电场力与重力的合力为,方向与过P3点的速度方向相反,故带电粒做匀减速直线运动,设其加速度大小为a,则:…… ⑥(2分);由(2分)由此得出速度减为0时的位置坐标是(1分)2、如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向在x 轴上空间第一、第二象限内,既无电场也无磁场,在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的均强磁场,在第四象限,存在沿y轴负方向、场强大小与第三象限电场场强相等的匀强电场。
一质量为m、电荷量为q的带电质点,从y轴上y=h处的P1点以一定的水平初速度沿x轴负方向进入第二象限。
然后经过x轴上x=3N,设v1为小球竖直分速度,由,则由得⑶小球离开管口进入复合场,其中qE=210-3N,mg=210-3N 故电场力与重力平衡,小球在复合场中做匀速圆周运动,合速度与MN成45角,故轨道半径为R,小球离开管口开始计时,到再次经过MN所通过的水平距离对应时间;小车运动距离为x2,所以小球此时离小车顶端的距离为11、(20分)如图甲所示,在两平行金属板的中线OO′的某处放置一个粒子源,粒子源沿OO′方向连续不断地放出速度v0=1、0105m/s(方向水平向右)的带正电的粒子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理专题汇编带电粒子在磁场中的运动(一)一、带电粒子在磁场中的运动专项训练1.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的金属圆柱A 可沿半径向外均匀发射速率为v 的电子;与A 同轴放置的金属网C 的半径为2a.不考虑A 、C 的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m ,电荷量为e.(1)若A 、C 间加速电压为U ,求电子通过金属网C 发射出来的速度大小v C ;(2)若在A 、C 间不加磁场和电场时,检测到电子从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电子的数量N.(忽略C 、D 间的距离以及电子碰撞到C 、D 上的反射效应和金属网对电子的吸收)(3)若A 、C 间不加电压,要使由A 发射的电子不从金属网C 射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B 的最小值. 【答案】(1)22e eUv v m=+4alt N ed π=(3) 43mv B ae = 【解析】 【分析】(1)根据动能定理求解求电子通过金属网C 发射出来的速度大小;(2)根据=neI t求解圆柱体A 在时间t 内发射电子的数量N ;(3)使由A 发射的电子不从金属网C 射出,则电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求解B. 【详解】(1)对电子经 CA 间的电场加速时,由动能定理得221122e e U mv mv =- 解得:22e eUv v m=+(2)设时间t 从A 中发射的电子数为N ,由M 口射出的电子数为n , 则 =ne I t224d dNn N a aππ==⨯解得4altN edπ=(3)电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切时,对应的磁感应强度为B .设此轨迹圆的半径为 r ,则222(2)a r r a -=+2v Bev m r=解得:43mvB ae=2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m=由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2LR = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=3.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.(1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ;(2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ; (3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围.【答案】(1)Bvd (2)Bb π(3)3B 2d 2b <U <221458B d b【解析】 【详解】(1)正电子匀速直线通过平行金属极板AB ,需满足 Bev=Ee因为正电子的比荷是b ,有 E=U d联立解得:u Bvd =(2)当正电子越过分界线ef 时恰好与分界线ef 相切,正电子在匀强磁场区域I 、II 运动的时间最长。
4T t =m t =2t2111v ev B m R =T =122R mv Be=ππ 联立解得:t Bbπ=(3)临界态1:正电子恰好越过分界线ef ,需满足 轨迹半径R 1=3d1ev B =m 211v R11U ev B ed=⑪ 联立解得:2213U d B b =临界态2:沿A 极板射入的正电子和沿B 极板射入的电子恰好射到收集板同一点 设正电子在磁场中运动的轨迹半径为R 1 有(R 2﹣14d )2+9d 2=22R 2Bev =m 222v RBe 2v =2U e d 联立解得:2221458B d bU =解得:U 的范围是:3B 2d 2b <U <221458B d b4.如图所示,在长度足够长、宽度d=5cm 的区域MNPQ 内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T .水平边界MN 上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C .现有大量质量m=6.6×10﹣27kg 、电荷量q=3.2×10﹣19C 的带负电的粒子,同时从边界PQ 上的O 点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s ,不计粒子的重力和粒子间的相互作用.求:(1)求带电粒子在磁场中运动的半径r ;(2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ;(3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~ 曲线方程为222x y R +=(30.10.1R m x m =≤≤) 【解析】 【分析】 【详解】(1)洛伦兹力充当向心力,根据牛顿第二定律可得2v qvB m r=,解得0.1r m =(2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场,粒子在电场中运动的加速度qE a m= 粒子在电场中运动的时间2v t a= 解得43.310t s -=⨯(3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°,则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上,曲线方程为22x y R += 30.1,0.120R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭【点睛】带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径5.在如图甲所示的直角坐标系中,两平行极板MN 垂直于y 轴,N 板在x 轴上且其左端与坐标原点O 重合,极板长度l =0.08m ,板间距离d =0.09m ,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y 轴上(0,d /2)处有一粒子源,垂直于y 轴连续不断向x 轴正方向发射相同的带正电的粒子,粒子比荷为qm=5×107C /kg ,速度为v 0=8×105m/s .t =0时刻射入板间的粒子恰好经N 板右边缘打在x 轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U 0的大小;(2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围.【答案】(1)40 2.1610V U =⨯ (2)0.04m x ∆= (3)0.1425m x ≥【解析】 【分析】 【详解】(1)对于t =0时刻射入极板间的粒子:0l v T = 7110T s -=⨯211()22T y a =2y T v a= 22yT y v = 122dy y =+ Eq ma =U E d=解得:40 2.1610V U =⨯(2)2Tt nT =+时刻射出的粒子打在x 轴上水平位移最大:032A T x v =所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y . 速度偏转角的正切值均为:0tan y v v β=37β=cos37v v=6110m/s v =⨯即:所有的粒子射出极板时速度的大小和方向均相同.2v qvB m R=0.03m R r ==由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A Rx x ︒=+0.1425m C x =.由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥6.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。