试述玉米碳同化过程用于小麦的条件与原因

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试述玉米碳同化过程用于小麦的条件与原因
小麦属于C3植物,玉米属于C4植物。

二者光合作用的碳循环过程不一样,决定了两者碳同化效率不一样。

小麦仅有叶肉细胞含有叶绿体,整个光合作用过程都是在叶肉细胞里进行,光合作用产物亦只是积累在叶肉细胞中,维管束薄壁细胞不积存光合产物。

CO2固定途径仅有C3途径;而玉米属于C4植物,在固定CO2时,首先由叶肉细胞完成C4途径,然后维管束鞘薄壁细胞完成C3途径。

光合作用产物的形成只有C3途径,故光合产物只积累在维管束鞘薄壁细胞中。

详细来说:小麦在进行光合作用时,CO2的固定主要取决于1,5-二磷酸核酮糖羧化霉(RuBPCase)的活化状态,因为该酶是光合碳循环的入口钥匙。

它催化1,5-二磷酸核酮糖(RuBP)羧化,将大气中的CO2同化,产生两分子磷酸甘油酸。

玉米是从C3植物进化而来的一种高光效种类。

与C3植物相比,它具有在高光强,高温及低CO2浓度下,保持高光效的能力。

玉米固定CO2的酶为磷酸烯醇式丙酮酸羧化(PEPCase),与小麦中RuBPCase相比,PEPCase对CO2的亲和力高。

玉米的细胞分化为叶肉细胞和鞘细胞,而光合酶在两类细胞中的分布不同,如PEPCase在叶肉细胞固定CO2,生成草酰乙酸(OAA),OAA进一步转化为苹果酸(Mal),Mal进入鞘细胞,脱羧,被位于鞘细胞内的RuBPCase羧化,重新进入卡尔文循环。

这种CO2的浓缩机理导致了鞘细胞内的高浓度的CO2,一方面提高RuBPCase的羧化能力,另一方面又大大抑制RuBPCase的加氧活性,降低了光呼吸,从而使玉米保持高的光合效率。

相关文档
最新文档