八年级数学公开课教案

合集下载

八年级数学教案【优秀6篇】

八年级数学教案【优秀6篇】

八年级数学教案【优秀6篇】作为一名教职工,常常要根据教学需要编写教案,教案是教学活动的总的组织纲领和行动方案。

来参考自己需要的教案吧!的精心为您带来了6篇《八年级数学教案》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。

八年级数学教案篇一【教学目标】1、了解分式概念。

2、理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。

【教学重难点】重点:理解分式有意义的条件,分式的值为零的条件。

难点:能熟练地求出分式有意义的条件,分式的值为零的条件。

【教学过程】一、课堂导入1、让学生填写[思考],学生自己依次填出:,,,。

2、问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时。

轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=。

3、以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式。

分数的分子A与分母B都是整数,而这些式子中的A、B 都是整式,并且B中都含有字母。

[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零。

注意只有满足了分式的分母不能为零这个条件,分式才有意义。

即当B≠0时,分式才有意义。

二、例题讲解例1:当x为何值时,分式有意义。

【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围。

(补充)例2:当m为何值时,分式的值为0?(1);(2);(3)。

【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解。

三、随堂练习1、判断下列各式哪些是整式,哪些是分式?9x+4,,,,,2、当x取何值时,下列分式有意义?3、当x为何值时,分式的值为0?四、小结谈谈你的收获。

八级上册数学教案人教版(全册)

八级上册数学教案人教版(全册)

八级上册数学教案人教版(第一部分)一、教学目标1. 知识与技能:使学生掌握本册数学的基本概念、性质、定理和公式,提高学生的数学思维能力和解决问题的能力。

2. 过程与方法:通过自主学习、合作探讨、实践操作等方式,培养学生的数学学习兴趣,提高学生的数学素养。

3. 情感态度与价值观:让学生体验到数学在实际生活中的运用,认识到数学的重要性,培养学生的责任感和使命感。

二、教学内容1. 第一章:实数与函数(1) 实数的概念、性质和运算;(2) 函数的定义、性质和图像;(3) 一次函数、二次函数、反比例函数的解析式、图像和性质。

2. 第二章:几何基础(1) 点、线、面的基本概念和性质;(2) 直线方程、圆方程;(3) 三角形、四边形的性质和判定;(4) 坐标系的应用。

三、教学重点与难点1. 教学重点:实数的运算、函数的性质、几何图形的判定与性质。

2. 教学难点:函数的图像、几何图形的复杂计算和证明。

四、教学方法1. 采用问题驱动法,引导学生主动探究数学问题;2. 运用案例分析法,让学生通过实际例子理解数学概念;3. 利用数形结合法,培养学生直观的数学思维;4. 实施分组合作学习,培养学生的团队协作能力。

五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业完成情况:检查学生作业的准确性、书写规范性,评估学生的学习效果。

3. 考试成绩:定期进行数学考试,对学生的知识掌握程度进行评估。

4. 学生自评:鼓励学生自我评价,反思自己的学习过程,提出改进措施。

八级上册数学教案人教版(第二部分)六、教学安排1. 课时分配:本部分共安排课时,具体分配如下:第一章:实数与函数:课时第二章:几何基础:课时第十五章:课时2. 教学计划:根据课时分配,合理安排每个章节的教学内容,确保教学目标的达成。

七、教学资源1. 教材:使用人教版八级上册数学教材。

2. 教辅资料:提供相应的教辅资料,辅助教学。

冀教版八年级公开课数学教案

冀教版八年级公开课数学教案

冀教版八年级公开课数学教案数学学科知识在不断进展,作为知识的传播者,老师自己也要不断进展。

只有不断地充实自我,脑子里面才会有东西传授给学生。

今天在这给大家整理了一些冀教版八班级公开课数学教案,我们一起来看看吧!冀教版八班级公开课数学教案1教学目标:1、经历用数格子的办法探索勾股定理的过程,进一步进展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步进展学生的说理和简单的推理的意识及能力。

重点难点:重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现教学过程一、创设问题的情境,激发学生的学习热情,导入课题出示投影1(章前的图文p1)老师道白:介绍我国古代在勾股定理讨论方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2(书中的P2图1—2)并回答:1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

2、你是怎样得出上面的结果的?在学生沟通回答的基础上老师直接发问:3、图1—2中,A,B,C之间的面积之间有什么关系?学生沟通后形成共识,老师板书,A+B=C,接着提出图1—1中的A.B,C的关系呢?二、做一做出示投影3(书中P3图1—4)提问:1、图1—3中,A,B,C之间有什么关系?2、图1—4中,A,B,C之间有什么关系?3、从图1—1,1—2,1—3,1|—4中你发现什么?学生讨论、沟通形成共识后,老师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、议一议1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?2、你能发现直角三角形三边长度之间的关系吗?在同学的沟通基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。

八年级数学优质课一等奖教学设计3篇

八年级数学优质课一等奖教学设计3篇

第1篇教学设计作为一位杰出的老师,很有必要精心设计一份教案,教案是备课向课堂教学转化的关节点。

那要怎么写好教案呢?下面是小编帮大家整理的菱形人教版数学八年级上册教案,仅供参考,希望能够帮助到大家。

一、教学目的:1、掌握菱形概念,知道菱形与平行四边形的关系;2、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积;3、通过运用菱形知识解决具体问题,提高分析能力和观察能力;4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想;二、重点、难点1、教学重点:菱形的性质1、2;2、教学难点:菱形的性质及菱形知识的综合应用;三、例题的意图分析本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材P108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题、此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识;四、课堂引入1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2、(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念;《18、2、2菱形》课时练习含答案;5、在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是( )A、矩形B、菱形C、正方形D、梯形答案:B知识点:等边三角形的性质;菱形的判定解析:解答:用两个边长为a的等边三角形拼成的四边形,它的四条边长都为a,根据菱形的定义四边相等的四边形是菱形、根据题意得,拼成的四边形四边相等,则是菱形、故选B、分析:此题主要考查了等边三角形的性质,菱形的定义、6、用两个边长为a的等边三角形纸片拼成的四边形是( )A、等腰梯形B、正方形C、矩形D、菱形答案:D知识点:等边三角形的性质;菱形的`判定解析:解答:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形、由题意可得:得到的四边形的四条边相等,即是菱形、故选D、分析:本题利用了菱形的概念:四边相等的四边形是菱形、《菱形的性质与判定》练习题一选择题:1、下列四边形中不一定为菱形的是( )A、对角线相等的平行四边形B、每条对角线平分一组对角的四边形C、对角线互相垂直的平行四边形D、用两个全等的等边三角形拼成的四边形2、下列说法中正确的是( )A、四边相等的四边形是菱形B、一组对边相等,另一组对边平行的四边形是菱形C、对角线互相垂直的四边形是菱形D、对角线互相平分的四边形是菱形3、若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )A、菱形B、对角线互相垂直的四边形C、矩形D、对角线相等的四边形第2篇教学设计1、教材分析(1)知识结构(2)重点、难点分析本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.本节内容的.难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.2、教法建议本节课教学模式主要采用“学生主体性学习”的教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人. 具体说明如下:(1)参与探索发现,领略知识形成过程学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”. 然后学生完成证明,找一名学生的证明过程,进行投影总结. 最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理. 这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.(2)采用“类比”的学习方法,获取逆定理线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.(3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.第3篇教学设计一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。

八年级数学教案(最新6篇)

八年级数学教案(最新6篇)

八年级数学教案(最新6篇)八年级数学教案篇一一、教学目标①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。

②理解整式除法的算理,发展有条理的思考及表达能力。

二、教学重点与难点重点:整式除法的运算法则及其运用。

难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。

三、教学准备卡片及多媒体课件。

四、教学设计(一)情境引入教科书第161页问题:木星的质量约为1。

90×1024吨,地球的质量约为5。

98×1021吨,你知道木星的质量约为地球质量的多少倍吗?重点研究算式(1。

90×1024)÷(5。

98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。

注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。

(二)探究新知(1)计算(1。

90×1024)÷(5。

98×1021),说说你计算的根据是什么?(2)你能利用(1)中的方法计算下列各式吗?8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

(3)你能根据(2)说说单项式除以单项式的运算法则吗?注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。

单项式的。

除法法则的推导,应按从具体到一般的步骤进行。

探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。

在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。

重视算理算法的渗透是新课标所强调的。

(三)归纳法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

人教初中数学八上《整式的乘法 》教案 (公开课获奖)

人教初中数学八上《整式的乘法   》教案 (公开课获奖)

整式的乘法〔3〕〔一〕教学目标 知识与技能目标:理解多项式乘法的法那么,并会进行多项式乘法的运算. 过程与方法目标:经历探索多项式乘法的法那么的过程. 情感态度与价值观:通过探索多项式乘法法那么,让学生感受数学与生活的联系,同时感受整体思想、转化思想,并培养学生的抽象思维能力.教学重点:多项式与多项式相乘法那么及应用. 教学难点:● 多项式乘法法那么的推导. ● 多项式乘法法那么的灵活运用. 〔二〕教学程序 教学过程师生活动设计意图 一、问题情境导入新课为了扩大街心花园的绿地面积,把一块原长为m 米,宽为a 米的长方形绿地,增长了n 米,加宽了b 米.你能用几种方法求出扩大后的绿地面积?问题情境导入新课有助于激发学生的学习兴趣.二、新知讲解扩大后绿地的面积可以表示为(m+n)(a+b)或(ma+mb+na+nb),它们表示同一块地的面积,故有:(m+n)(a+b)= ma+mb+na+nb通过图示方法向学生展示多项式amb n多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加. 乘以多项式的过程.也可以这样考虑: 当X=m+n时, (a+b)X=?由单项式乘以多项式知 (a+b)X=aX+bX 于是,当X=m+n时,(a+b)X=(a+b)(m+n)=a(m+n)+b(m+n) 即 (a+b)(m+n)=am+an+bm+bn=am+an+bm+bn为学生提供不同的思维方式,以使学生更好的掌握此内容.例题讲解:例题1:计算:(1)(x+2y)(5a+3b); (2)(2x-3)(x+4);(3)(x+y)2; (4)(x+y)(x2-xy+y2)解:(1)(x+2y)(5a+3b)=x·5a+x·3b+2y·5a+2y·3b=5ax+3bx+10ay+6by;(2)(2x-3)(x+4)=2x2+8x-3x-12=2x2+5x-12(3)(x+y)2=(x+y)(x+y)=x2+xy+xy+y2=x2+2xy+y2;(4)(x+y)(x2-xy+y2)=x3-x2y+xy2+x2y-xy2+y3=x3+y3例题2:计算以下各题:多项式乘以多项式的具体应用,通过教师演示向学生提供严格的书写过程培养学生严谨的思维训练.〔1〕(a+3)·(b+5); 〔2〕(3x-y) (2x+3y); 〔3〕(a-b)(a+b); 〔4〕(a-b)(a 2+ab+b 2) 解:(1) (a+3)·(b+5) =ab+5a+3b+15; (2) (3x-y) (2x+3y)=6x 2+9xy-2xy-3y 2(多项式与多项式相乘的法那么) =6x 2+7xy-3y 2(合并同类项) (3)(a-b)(a+b) =a 2+ab-ab-b 2= a 2-b 2(4)(a-b)(a 2+ab+b 2) =a 3+a 2b+ab 2-a 2b-ab 2-b 3= a 3-b 3例题3:先化简,再求值:〔2a-3〕〔3a+1〕-6a 〔a-4〕其中a =2/17 解:〔2a-3〕〔3a+1〕-6a 〔a-4〕 =6a 2+2a-9a-3-6a 2+24a =17a-3当a =2/17时,原式=17×2/17-3=-1 例题4:观察以下解法,判断是否正确,假设错请说出理由。

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案全册5篇一、教材分析1、特点与地位:重点中的重点。

本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有肯定的有用意义。

2、重点与难点:结合学生现有抽象思维力量水平,已把握根本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下: (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

(2)难点:求解最短路径算法的程序实现。

3、教学安排:最短路径问题包含两种状况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。

依据教学大纲安排,重点讲解第一种状况问题的解决。

安排一个课时讲授。

教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

二、教学目标分析1、学问目标:把握最短路径概念、能够求解最短路径。

2、力量目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培育学生的数据抽象力量。

(2)通过旅游景点线路选择问题的解决,培育学生的独立思索、分析问题、解决问题的力量。

3、素养目标:培育学生讲究工作方法、与他人合作,提高效率。

三、教法分析课前充分预备,研读教材,查阅相关资料,制作多媒体课件。

教学过程中除了使用传统的“讲授法”以外,主要采纳“案例教学法”,同时辅以多媒体课件,以启发的方式绽开教学。

由于本节课的内容属于图这一章的难点,考虑学生的承受力量,留意与学生沟通,依据学生的反响掌握好教学进度是本节课胜利的关键。

四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。

2、课中指导学生争论任务解决方法,引导学生分析本节课学问点。

3、课后给学生布置同类型任务,加强练习。

五、教学过程分析(一)课前复习(3~5分钟)回忆“路径”的概念,为引出“最短路径”做铺垫。

教学方法及留意事项:(1)采纳提问方式,留意准时小结,提问的目的是帮忙学生回忆概念。

八年级上册数学教案(优秀6篇)

八年级上册数学教案(优秀6篇)

八年级上册数学教案(优秀6篇)初二数学上册教案篇一教学目标1.等腰三角形的概念。

2.等腰三角形的性质。

3.等腰三角形的概念及性质的应用。

教学重点:1.等腰三角形的概念及性质。

2.等腰三角形性质的应用。

教学难点:等腰三角形三线合一的性质的理解及其应用。

教学过程Ⅰ.提出问题,创设情境在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,Ⅰ并且能够作出一个简单平面图形关于某一直线的轴对称图形,Ⅰ还能够通过轴对称变换来设计一些美丽的图案。

这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。

来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是。

问题:那什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称图形,Ⅰ也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

Ⅰ.导入新课:要求学生通过自己的思考来做一个等腰三角形。

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。

相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。

同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴。

2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?Ⅰ底边上的高所在的直线呢?结论:等腰三角形是轴对称图形。

它的对称轴是顶角的平分线所在的直线。

因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

八年级数学优质课一等奖教学设计6篇

八年级数学优质课一等奖教学设计6篇

第4篇教学设计教学内容:人教版《义务教育课程标准实验教科书·数学(二年级上册)》第五单元“观察物体”第二课时(第68页内容)教学目标:1、知识目标:使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。

2、能力目标:发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美。

3、情感、态度、价值观:通过探究活动,激发学生学习的热情,培养主动探究的能力;让学生感受对称图形的美,学会欣赏数学美。

教学重点:理解对称图形的概念,能正确找、画对称轴。

教学难点:准确找对称轴。

教学具准备:1、教具:图片、剪刀、彩纸、课件2、学具:蝴蝶几何图片、剪刀、白纸教学过程:一创设情境、激趣感知课件出示动画呈现:在绿草如茵的草地上,对称的房子、蝴蝶、蜻蜓、树叶、花朵……,一片迷人的景色。

师:谁来说说蝴蝶和蜻蜓怎么说?蜻蜓说:“:蝴蝶姐姐,你为什么总是绕着我飞呀?”蝴蝶说:“你不知道吧!在图形王国里我们都是对称图形呢!”蜻蜓说:“我才不信呢!”师:你们想知道对称图形的那些知识?生1:什么样的图形是对称图形?生2:对称图形有什么特点?[设计理念:充分体现了“数学来源于生活,又服务于生活”的理念,让学生感受对称图形的美,提出问题。

]二师生互动、探究新知(一)教学对称图形现在请同学们认真观察这些图形(出示对称和不对称图形,如下图),看看有什么发现?生1:我发现蝴蝶的左右两边是一样的。

生2:我发现年年有鱼的纸花的左右两边是不一样的。

生3:我发现京剧脸谱的左右两边是一样的。

让学生动手折一折、比一比、画一画,蜻蜓、树叶、蝴蝶、京剧脸谱的实物图共同的特点。

[设计理念:教学对称图形,引导学生仔细观察、动手折一折、比一比、画一画,在观察发现的基础上进行分类。

当学生分出对称与不对称的两类图形后,再次引导观察发现。

使学生在探索中学习新知,亲历探索过程。

]小结:同学们观察得真仔细,图形左右两边的形状完全相同的,我们就说这些图形是对称图形。

初中八年级数学教案-课题学习 最短路径问题-公开课比赛一等奖

初中八年级数学教案-课题学习 最短路径问题-公开课比赛一等奖

课题学习最短路径问题【教学目标】1.了解最短路径问题。

掌握解决最短路径问题的方法。

2.通过解决最短路径问题的过程培养学生分析问题的能力。

3.通过对最短路径问题的学习,增强应用数学知识解决实际问题的信心。

【教学重难点】最短路径的选择。

【课时安排】2课时。

【第一课时】【教学过程】一、情景导入。

前面我们研究过一些关于“两点的所有连线中,线段最短”,“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题。

同学们通过讨论下面两个问题,可以体会如何运用所学知识选择最短路径。

二、思考探究,获取新知。

问题:如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地。

牧马人到河边的什么地方饮马,可使所走的路径最短将A,B两地抽象为两个点,将河l抽象为一条直线。

设C为直线上的一个动点,上面的问题就转化为:当点C在l的什么位置时,AC与CB的和最小。

联想:如图所示,点A、B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短两点之间,线段最短。

连接AB,与直线l相交于一点,这个交点即为所求。

如果我们能把点B移到l的另一侧B′处,同时对直线l上的任意一点C,都保持CB与CB′的长度相等,就可以把问题转化为上面的情况。

作出点B关于l的对称点B′,利用轴对称的性质可以得到CB′=CB。

连接AB′,与直线l相交于点C。

则点C即为所求。

学生小组合作交流。

三、巩固练习。

1.如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点(保留作图痕迹)。

【第二课时】【教学过程】一、造桥选址问题。

问题:如图,A和B两地在一条河的两岸,现要在河上造一座桥MN。

桥造在何处可使从A到B的路径AMNB最短(假定河的两岸是平行的直线,桥要与河垂直。

)(1)C为直线l上的一个动点,那么,上面的问题可以转化为:当点C在l的什么位置时,AC与CB的和最小。

初中数学公开课教案

初中数学公开课教案

初中数学公开课教案•相关推荐初中数学公开课教案(精选10篇)作为一名优秀的教育工作者,往往需要进行教案编写工作,教案是备课向课堂教学转化的关节点。

那么教案应该怎么写才合适呢?以下是小编收集整理的初中数学公开课教案,仅供参考,希望能够帮助到大家。

初中数学公开课教案篇1教学目标1.了解公式的意义,使学生能用公式解决简单的实际问题;2.初步培养学生观察、分析及概括的能力;3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议一、教学重点、难点重点:通过具体例子了解公式、应用公式.难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。

如本课中梯形、圆的面积公式。

应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。

具体计算时,就是求代数式的值了。

有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。

用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。

整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

初中数学优秀优质公开课获奖教案设计5篇

初中数学优秀优质公开课获奖教案设计5篇

初中数学优秀优质公开课获奖教案设计5篇初中数学优秀教案篇1一、素质教育目标(一)知识教学点使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.(二)能力训练点逐步培养学生会观察、比较、分析、概括等逻辑思维能力.(三)德育渗透点引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.二、教学重点、难点1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.三、教学步骤(一)明确目标1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.通过四个例子引出课题.(二)整体感知1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.(三)重点、难点的学习与目标完成过程1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:若一组直角三角形有一个锐角相等,可以把其顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴形中,∠A的对边、邻边与斜边的比值,是一个固定值.通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.练习题为作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.(四)总结与扩展1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.四、布置作业本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.五、板书设计初中数学优秀教案篇2一、教材分析(一)本节课在教材中的地位及作用:本节课是中考考纲中规定的必考内容,它对整章节教学起承上启下的作用,学好梯形会有举一反三、以一当十的作用。

人教版初二数学上册教案市公开课一等奖教案省赛课金奖教案

人教版初二数学上册教案市公开课一等奖教案省赛课金奖教案

人教版初二数学上册教案一、教材分析:《人教版初二数学上册》是根据国家新课改要求编写的一套适合初中二年级学生的数学教材。

该教材内容明确、结构清晰,注重培养学生的数学思维和解决问题的能力。

本教案将围绕教材的内容和教学目标进行设计,以提高学生的数学学习兴趣和能力为目标。

二、教学目标:1. 知识与技能目标:(1)掌握整数的加法、减法、乘法和除法运算法则;(2)学会解简单的整式方程;(3)掌握数轴的基本概念及简单的数轴运算方法。

2. 过程与方法目标:(1)培养学生合作学习和独立思考的能力;(2)引导学生通过实例分析与归纳的方式掌握数学方法;(3)激发学生对数学的兴趣,积极参与课堂活动。

3. 情感态度与价值观目标:(1)培养学生认真负责的学习态度和团队合作精神;(2)鼓励学生勇于发问和提出自己的观点;(3)培养学生解决问题的耐心和毅力。

三、教学内容与教学步骤:1. 教学内容:整数的加法和减法运算(1)整数的定义和性质教师通过具体例子,引导学生理解整数的概念及整数的大小关系,并让学生总结整数的性质。

(2)同号整数的加法教师以实例引导学生掌握同号整数相加的规律,并通过多个练习题辅助学生练习运算。

(3)异号整数的加法教师以实例引导学生掌握异号整数相加的规律,并通过多个练习题加深学生对整数加法运算的理解。

(4)整数的减法运算教师以实例引导学生掌握整数的减法运算规律,并通过多个练习题加深学生对整数减法运算的理解。

2. 教学步骤:(1)导入:教师通过问题导入,引起学生对整数运算的兴趣。

(2)知识讲解:教师通过示意图和具体例子,讲解整数的加法和减法运算规则及注意事项。

(3)练习:教师与学生一起做例题,引导学生按照规则进行运算,并解释其中的原理。

(4)巩固:教师设计合适的练习题,要求学生独立完成,并互相交流检查答案。

(5)总结:教师带领学生总结整数加法和减法运算的规律,并让学生归纳出解决整数运算问题的方法。

四、教学评价方法:1. 学生自评:学生在课堂上积极参与讨论和练习,通过与同学的交流和讨论,提高自己的数学解题能力。

初二数学优秀教案5篇

初二数学优秀教案5篇

初二数学优秀教案5篇作为一位不辞辛劳的人民教师,总归要编写教案,借助教案可以让教学工作更科学化。

那么写教案需要注意哪些问题呢?以下是小编为大家整理的初二数学优秀教案,仅供参考,希望能够帮助到大家。

初二数学优秀教案1教学目标:1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。

2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。

教学重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。

教学方法:动手实践、讨论。

教学工具:课件教学过程:一、先复习轴对称图形的定义,以及轴对称的相关的性质:1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________。

2.轴对称的三个重要性质_______________________________________________________。

二、提出问题:二、探索练习:1. 提出问题:如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。

你能画出这个图案的另一半吗?吸引学生让学生有一种解决难点的想法。

2.分析问题:分析图案:这个图案是由重要六个点构成的,要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可问题转化成:已知对称轴和一个点A,要画出点A关于L的对应点,可采用如下方法:`在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。

三、对所学内容进行巩固练习:1. 如图,直线L是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。

八年级上册数学教案优秀11篇

八年级上册数学教案优秀11篇

八年级上册数学教案优秀11篇八年级数学上册教案篇一教学目标知识与技能:会推导平方差公式,并且懂得运用平方差公式进行简单计算。

过程与方法:经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。

情感、态度与价值观:通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。

教学重难点重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。

难点:平方差公式的应用。

关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。

教学过程一、创设情境,故事引入情境设置教师请一位学生讲一讲《狗熊掰棒子》的故事学生活动1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。

教师归纳听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?学生回答多项式乘以多项式。

教师激发大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的。

错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。

问题牵引计算:(1)(x+2)(x—2);(2)(1+3a)(1—3a);(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。

学生活动分四人小组,合作学习,获得以下结果:(1)(x+2)(x—2)=x2—4;(2)(1+3a)(1—3a)=1—9a2;(3)(x+5y)(x—5y)=x2—25y2;(4)(y+3z)(y—3z)=y2—9z2。

教师活动请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。

学生活动讨论教师引导刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?学生回答可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

八年级下册数学公开课教案

八年级下册数学公开课教案

八年级下册数学公开课教案八年级下册数学公开课教案(通用10篇)作为一名人民教师,可能需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。

怎样写教案才更能起到其作用呢?以下是小编收集整理的八年级下册数学公开课教案(通用10篇),仅供参考,大家一起来看看吧。

八年级下册数学公开课教案篇1一、学习目标1.多项式除以单项式的运算法则及其应用。

2.多项式除以单项式的运算算理。

二、重点难点重点:多项式除以单项式的运算法则及其应用。

难点:探索多项式与单项式相除的运算法则的过程。

三、合作学习(一)回顾单项式除以单项式法则(二)学生动手,探究新课1.计算下列各式:(1)(am+bm)÷m;(2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy。

2.提问:①说说你是怎样计算的;②还有什么发现吗?(三)总结法则1.多项式除以单项式:2.本质:四、精讲精练(1)(12a3—6a2+3a)÷3a;(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);(3)[(x+y)2—y(2x+y)—8x]÷2x;(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

随堂练习:教科书练习。

五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;E、多项式除以单项式法则。

八年级下册数学公开课教案篇2一、学习目标1.使学生了解运用公式法分解因式的意义;2.使学生掌握用平方差公式分解因式二、重点难点重点:掌握运用平方差公式分解因式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学公开课教案
教者:范胜班级:八(2)班地点:多媒体教室时间:2015/5/14
课题:矩形的判定
一.教学目标:
知识技能:
1.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
2.通过矩形判定的教学渗透矛盾可以互相转化的唯物辩证法思想
过程与方法:
经历矩形的判定的探究过程,并能有效的解决问题,培养学生的逻辑思维能力
和演绎能力。

情感态度与价值观:
通过矩形判定的推导证明,培养学生热爱数学和生活中的图形,锻炼客服困难的意志,建立自信心。

教学重点难点:
矩形的判定及性质的综合应用
二教学过程:
(一)复习引入:
1.平行四边形的性质是什么?怎样判定一个四边形是平行四边形?
2.什么是矩形?矩形有哪些性质?
(二)新课讲解:
矩形的判定方法有哪些?.
矩形是有一个角是直角的平行四边形,在判定一个四边形是不是矩形,首先看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这体现了定义作用的双重性、性质和判定).除此之外,还有其它几种判定矩形的方法,下面就来研究这些方法.
(请学生通过观察、探索构成矩形的条件,思考并探讨)
方法1:有三个角是直角的四边形是矩形.(并让学生写出推理过程。


方法2:对角钱相等的平行四边形是矩形.(分析判定方法2和学生一道写出证明过程。


归纳矩形判定方法(由学生小结):
(1)一个角是直角的平行四边形.(2)对角线相等的平行四边形.(3)有三个角是直角的四边形.
(针对自我尝试所完成的问题,让学生总结问题解决时所用到的知识点、方法规律问题解决策略及易错点。

通过学生自己动手操作,找到解决问题的方法。


例1:已知:O是矩形ABCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,AE=BF=CG=DH,
求证:四边形EFGH为矩形
分析:利用对角线互相平分且相等的四边形是矩形可以证明
例2:判断
(1)两条对角线相等四边形是矩形()
(2)两条对角线相等且互相平分的四边形是矩形()
(3)有一个角是直角的四边形是矩形()
(4)在矩形内部没有和四个顶点距离相等的点()
(三)巩固练习
(四)课后小结:
判断(平行)四边形是矩形的条件。

(五)作业
(六)教学反思。

相关文档
最新文档