苏教版小学数学六年级上册《比和按比例分配》练习.doc
苏教版六年级数学上册《按比例分配的实际问题练习》说课稿
苏教版六年级数学上册《按比例分配的实际问题练习》说课稿一. 教材分析苏教版六年级数学上册《按比例分配的实际问题练习》这一节的内容,是在学生已经掌握了比例的基本知识、求比值、求比例等知识的基础上进行学习的。
这部分内容主要是让学生学会如何运用比例解决实际问题,培养学生运用数学知识解决生活问题的能力。
二. 学情分析六年级的学生已经具备了一定的比例知识,对于如何求比值、求比例等问题,大部分学生能够掌握。
但是,学生在解决实际问题时,往往因为对问题的理解不深入,找不准数量关系,导致无法正确运用比例知识解决问题。
因此,在教学中,我需要引导学生深入理解问题,找准数量关系,提高学生解决实际问题的能力。
三. 说教学目标1.知识与技能目标:使学生掌握按比例分配的实际问题的解题方法,能够正确找出问题中的数量关系,并用比例解决问题。
2.过程与方法目标:通过解决实际问题,培养学生的数学思维能力,提高学生运用数学知识解决生活问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极思考、合作交流的良好学习习惯。
四. 说教学重难点1.教学重点:使学生掌握按比例分配的实际问题的解题方法,能够正确找出问题中的数量关系,并用比例解决问题。
2.教学难点:如何引导学生找出问题中的数量关系,如何运用比例知识解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究、合作交流,提高学生解决问题的能力。
2.教学手段:利用多媒体课件、实际问题案例等,帮助学生形象直观地理解问题,提高学生的学习兴趣。
六. 说教学过程1.导入新课:通过一个简单的实际问题,引导学生复习比例知识,为新课的学习做好铺垫。
2.讲解新课:讲解按比例分配的实际问题的解题方法,引导学生找出问题中的数量关系,并用比例解决问题。
3.案例分析:分析几个典型的实际问题案例,让学生在实践中掌握按比例分配的解题方法。
4.小组讨论:让学生分组讨论,互相交流解决问题的方法,提高学生的合作交流能力。
苏教版数学六年级上册 按比例分配实际问题练习题
按比例分配1、有糖水200克,糖与水的比是1:4。
糖和水各有多少克?2、有6捆树苗,每捆15棵,把这些树苗按7:8分给六(1)、六(2)两个班栽。
每个班分得多少棵?3、一袋大米吃了与剩下的比是3:2。
吃了30千克。
剩下多少千克?4、一套服装720元,上衣与裤子的价格比是3:1,上衣和裤子分别是多少元?5、六(1)班男生与女生人数的比是4:5,男生有20人。
六(1)班共有多少人?6、配制什锦糖,所用的巧克力、水果糖、奶糖的比是1:3:4。
三种糖各有27千克,那么配制这种什锦糖时,当水果糖用完后,奶糖应增加多少千克?巧克力还剩多少千克?7、用96厘米长的铁丝围成一个长与宽的比是5:3的长方形。
长方形面积是多少平方厘米?8、甲、乙两车同时从相距462千米的两地相对开出,3小时后相遇。
甲、乙两车速度比是3:4。
甲、乙两车每小时分别行多少千米?9、配置一种盐水,盐和水的质量比是1:5,盐水有150克,盐有多少克?10、一个长方体的棱长总和是72厘米,长、宽、高的比是4:3:2。
这个长方体的体积是多少立方厘米?11、校园里松树比柏树多60棵,松树与柏树棵数的比是3:2。
校园里松树和柏树各有多少棵?12.李大伯共栽了240棵杨树和柳树,杨树与柳树棵数的比是5∶3,杨树、柳树各栽了多少棵?13.公鸡、母鸡的只数比是4∶7,母鸡有84只,公鸡有多少只?14.某种混凝土是黄沙、水泥、石子按4∶3∶5搅拌而成,一个建筑工地需混凝土65吨,需黄沙、水泥、石子各多少吨?15.一个直角三角形的两个锐角的度数比是2∶3,两个锐角分别是多少度?19.甲数、乙数、丙数的平均数是150,甲数、乙数、丙数的比是3∶5∶7,甲数、乙数、丙数分别是多少?。
苏教版六年级数学按比例分配练习-word
苏教版六年级数学——按比例分配练习课题:按比例分配练习教学目标:1、进一步理解按比例分配实际问题的意义。
2、通过运用比的意义和基本性质,进一步提高解答有关按比例分配的实际问题。
教学重点、难点:理解按比例分配实际问题的意义,掌握解题的关键。
对策:引导学生分析明晰题意,体会数量之间的关系。
教学预案:一、基本练习1、写出几个比值是2/3的比。
2/3=4:6=8:12=10:15学生独立完成再进行交流。
师:这些比是怎么得到的?你是怎样想的?2、盐与盐水的比是1:10,根据这个条件,你想到了什么?引导学生从两个方面思考:(1)从份数来理解;(2)转化为分数来理解。
3、从份数理解还是很容易的,转化成分数有点难度,继续训练转化成分数练习。
请看书上第76页上的第6题。
学生思考口答。
二、解决实际问题:1、一个学校食堂9月份与10月份用煤量的比7:8,两个月一共用煤3/4吨,这两个月各用煤多少吨?先独立完成,再组织交流。
复习解决问题的方法有两种:(1)从份数来考虑;(2)转化成分数问题再解决。
2、男生与女生的比是5:3,女生有12人,求男生有多少人?请学生独立完成。
组织交流,估计学生解决的方法还是两种:(1)从份数来考虑;(2)转化成分数问题再解决。
3、总结:以上两题都可用两种方法解答,分别是怎样解决问题的?你喜欢哪种方法?4、书上第77页上的第7题(1)学生读题(2)独立思考,独立解题(3)引导学生分析:1:40是谁与谁的比?第1题中的400克是什么?怎样求水?第二题中的400克是什么?怎样求药粉?三、变式练习1、一个长方形的周长是40厘米,这个长方形的长与宽的比是2:3,那么长和宽各是多少厘米?学生独立完成,如学生将40厘米按比例分配,可让学生检验。
引导学生寻找错误原因。
追问:怎么改就可以了?得到两种方案:(1)先将周长除以2后再按比例分配;(2)先把40厘米按比例分配,算出两条长和两条宽各是多少,再分别除以2,算出一条长和一条宽各是多少?2、书上第77页上的第8题(1)学生读题,独立思考(2)引导学生分析:(1)三种材料是按怎样的比例配制的?你是怎么看的?(2)第2题你是怎样解决的?你是怎样想的?(3)第3个问题什么意思,谁来用自己的话解释一下?引导学生体会到现在按2:3:5来配制,黄沙用去18吨时,水泥只用去18的2/3得12吨,所以还剩6吨,石子要用去18吨的5/3,得30吨,所以又要增加12吨。
苏教版小学数学六年级上册《按比分配解决实际问题》同步练习
《按比分配解决实际问题》同步练习一、填空题。
1、把200按():()分配,能够分成150和50。
2、阳光小学图书馆共有150本书,按2:3的比例分配各甲乙两个班,甲班可分()本,乙班可分()本。
3、五(1)班46人,五(2)班44人,两个班人数的最简整数比是()。
学校把植树180棵的任务交给他们两个班,按人数比分配,五(2)班应植树()棵。
4、甲、乙、丙三人按1:2:3分配资金,已知丙分到450元,这笔资金一共有()元。
5、一个分数,它的分子和分母的和是20,分子和分母的比是2∶3,这个分数是()。
二、解答题。
6、学校把清扫一块长51米,宽20米的绿地任务分配给两个班,甲班有40人,乙班有45人,如果按人数分配,每班应清扫多少平方米?7、一个长方体的长宽高的比是3:2:1,这个长方体的周长是48厘米,则长方体的长、宽、高分别是多少厘米?8、小花读一本240页的故事书,已经读的和未读的页数比是3∶5,再读多少页,已经读的和未读的页数之比5∶3?9、学校体育室有50个篮球,按人数分配给六年级一、二两个班,一班有48人,二班有52人,两个班各得跳篮球多少个?参考答案1. 答案:3:1【解析】150:50=3:12. 答案:60 【解析】甲班:2150=602+3⨯ (本);乙班:3150=902+3⨯ (本) 3. 答案:23:22 92 88 【解析】46:44=23:22 ;五(1):23180=9223+22⨯(棵);五(2):22180=8823+22⨯(棵) 4. 答案:900 【解析】丙分配的资金占总资金的31=1+2+32 ;1450=9002÷(元)。
5. 答案:8 12 【解析】分子:220=82+3⨯ ;分母:320=122+3⨯6.答案:面积:5120=1020⨯(平方米)甲乙两班人数的最简整数比是:40:45=8:9甲班分得:81020=4808+9⨯(平方米)乙班分得:61020=5408+9⨯(平方米)答:甲班分得480平方米,乙班分得540平方米。
12苏教版六年级上册数学第12周同步练习:比的意义和基本性质、按比例分配问题
12苏教版六年级上册数学第12周同步练习:比的意义和基本性质、按比例分配问题【同步教育信息】一、本周主要内容:比的意义和基本性质、按比例分配问题二、本周学习目标:1、了解比的意义,掌握比的读、写方法,知道比的各部分名称以及比与分数、除法的关系.2、理解并掌握比的基本性质,能应用比的意义和基本性质求比值、化简比,能应用比的知识解答按比例分配的实际问题。
3、经历比的概念的抽象过程,经历探索比与分数、除法的关系以及比的基本性质的过程,积累数学活动的经验,进一步体会数学知识之间内在联系,培养观察、比较、抽象、概括以及推理的能力.三、考点分析:1、两个数相除又叫做两个数的比。
如:3÷2也就是3:2。
比的前项除以后项所得的商叫做比值。
比值通常用分数表示,也可以用小数表示,有时也可以是整数。
3:2的比值是1。
5。
2、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;同分数比较,比的前项相当于分子,后项相当于分母,比值相当于分数值。
3、比的基本性质相当于除法中的商不变性质和分数中的基本性质.因此应用比的基本性质可以将比进行化简。
比的前项和后项为互质数时,这个比就是最简整数比。
4、求比值和化简比的核心区别在于结果的表达形式不同,求比值的结果一定要是一个数,化简比的结果一定要是一个比.5、把一个数量按照一定的比来进行分配,这种分配的方法叫做按比例分配。
四、典型例题例1、(重点展示)从甲地到乙地共300千米,甲车要行8小时,乙车要行6小时。
甲车所行的路程与所用时间的比是(),比值是();乙车所行的路程与所用时间的比是(),比值是().分析与解:求哪两个量的比就把这两个量按先后顺序写下来,再在中间添上比号.求比值,就用前项除以后项.从甲地到乙地共300千米,甲车要行8小时,乙车要行6小时。
甲车所行的路程与所用时间的比是(300:8),比值是(37.5);乙车所行的路程与所用时间的比是(300:6),比值是(50)。
苏教版数学六年级上册按比例分配
例5 给30个方格分别涂上红色和 黄色,使红色与黄色方格数的比是 13::12。两种颜色各应涂多少格?
试一试
把30个方格按1:2:3涂成红、 黄、绿三种颜色,你能算出三种 颜色各应涂多少格吗?
把30个方格按1:2:3涂成红、黄、 绿三种颜色,你能推算出三种颜色各 应涂多少格吗?
1+2+3=6
1+3=4
方法A 48÷4=12(人)
48÷4×3=36(人)
答:男生有12人,女生有36人。
学校合唱队有48人,其中男生和
女生人数的比是1:3。男、女生各
有多少人? 方法B
48×
1 1+3
=48×
1 4
=12(人)
48×
3 1+3
=48×
3 4
=36(人)
答:男生有12人,女生有36人。
蓓蕾幼儿园大班有35人, 中班有31人,小班有24人。张 阿姨准备把180块巧克力按班 级人数的比分给三个班。每班 各应分得多少块?
=180×
31 90
=62(块)
180×
24 35+31+24
=180×
24 90
=48(块)
答:一班分得70块,二班分得62块,
三班分得48块。
陈天和李明合资开了一家 文具用品店,经过辛勤经营, 一年的净利润是15万元。他们 两人各应分得多少钱?
陈天和李明合资开了一家 文具用品店,经过辛勤经营, 一年的净利润是15万元。陈天 和李明两人投资额的比是3:2。 他们两人各应分得多少钱?
30×
3 1+2+3
=
30×
3 6
=15(格)
例5 给30个方格分别涂上红色和 黄色,使红色与黄色方格数的比是 3:2。两种颜色各应涂多少格?
六年级数学上册【基础+提升】3.11按比例分配的实际问题习(含答案)(苏教版)
3.11按比例分配的实际问题练习1.填空。
(1)5本作业本共9元,总价与数量的比是( ),比值是( ),这个比值表示( )。
(2)一个比的前、后项互为倒数,其中后项是101,前、后项的最简比是( ),比值是( )。
(3)在一个直角三角形中,两个锐角度数的比是1∶4,这两个锐角分别为( )°和( )°。
(4)走一段路,甲用了15小时,乙用了12小时,甲与乙所行时间的最简比是( ),甲与乙行走的速度的最简比是( )。
2.3.某车间男、女工人数的比是3∶2 。
。
? 请补充合适的条件和问题,并解答出来。
4、学校有一个长方形花坛,周长是800米,长与宽的比是3:2.这个花坛的长和宽各是多少米?5、学校把70棵树苗按3个班的人数分配给各班,一班有48人,二班有50人,三班有42人。
3个班个应分得多少棵树?6、一种糖水是糖与水按1∶19的比配制而成的。
要配制这种糖水2千克,需要糖和水各多少千克?7、用一段铁丝围成一个三角形,三条边长度的比是4∶5∶7。
已知最长边的长度是28厘米,这段铁丝长多少厘米?8、一种泡泡液是由甘油、洗洁精和水按照1∶2∶7的比配制而成的。
小新有洗洁精30毫升,如果按这样的比配制泡泡液,需要甘油和水各多少毫升?参考答案:1.(1)9∶5 1.8 作业本的单价是1.8元。
(2)100∶1 100(3)18 72(4)5∶4 4∶52. 21÷3×2=14(名)3.答案(略)4、长:800÷2÷(3+2)×3=240(米)宽:800÷2÷(3+2)×2=160(米)5、一班:70÷(48+42+50)×48=24(棵)二班:70÷(48+42+50)×42=21(棵)三班:70÷(48+42+50)×50=25(棵)6、糖:2÷(1+19)×1=0.1(千克)水:2÷(1+19)×19=1.9(千克)7、28÷7×(4+5+7)=64(厘米)8、30÷(1+2+7)×1=3(毫升) 30÷(1+2+7)×2=6(毫升)。
苏教版六年级数学上册 第三单元 按比例分配的实际问题 提优练习卷
苏教版六年级数学上册第三单元分数除法按比例分配的实际问题1.仔细想,认真填。
(1)公鸡与母鸡的只数比是2:11,也就是公鸡只数占总只数的()(),母鸡只数占总只数的()(),公鸡只数是母鸡只数的()(),母鸡只数是公鸡只数的()()。
(2)把一箱儿童读物按2:3:5分给幼儿园小、中、大三个班。
大班分得这箱儿童读物的()()。
中班分得这箱儿童读物的()()。
小班分得这箱儿童读物的() ()。
(3)水是由氢元素与氧元素按1:8的质量比混合而成的。
108千克水中含氢元素( )千克,氧元素( )千克。
2.(1)果园里苹果树与桃树棵数的比是5:4,这个果园里共有果树360棵,苹果树与桃树各多少棵?(2)果园里苹果树与桃树棵数的比是5:4,已知桃树有160棵。
这个果园共有果树多少棵?(3)果园里苹果树与桃树棵数的比是5:4,已知桃树比苹果树少40棵,这个果园共有果树多少棵?3.学校把520本书按五年级和六年级人数的比分给两个年级。
已知五年级有168人,六年级有144人,五、六年级各分得多少本书?4.4.一种甜品由巧克力、花生、奶粉按下面的比例加工而成。
(1)加工140千克这样的甜品,巧克力、花生、奶粉各需要多少千克?(2)如果三种原料各购进50千克,当花生用完时,奶粉还有多少千克?巧克力又购进了多少千克?5.谨慎选择(1)六(1)班有学生45人,男生与女生人数的比可能是( )。
A.1:3B.2:3C.3:5(2)一个周长是36厘米的等腰三角形,相邻两边的比是2:5,则腰长( )厘米。
A.8B.15C.8或15(3)一个三角形三个内角度数的比是2:1:1,这个三角形是( )。
A.钝角三角形B.锐角三角形C.等腰直角三角形(4)师傅和徒弟加工零件个数的比是9:7,师傅给徒弟20个零件,他们俩加工零件的个数就相等。
徒弟一共加工了( )个零件。
A.70B.140C.160(5)一个长方形周长是24厘米,长与宽的比是2:1,这个长方形面积是( )平方厘米。
苏教版2021-2022年六年级上册数学比和按比例分配检测题
比和按比例分配检测题一、 填空题(共22分,每小题2分)。
1、某班有男生20人,女生有25人,这个班的男生与女生人数的比是( ),女生与男生人数的比( ),全班人数与女生人数的比是( )。
2、养鸡场中公鸡只数占总数的94,养鸡场的公鸡和母鸡的只数比是( )。
3、一个正方形的周长是45 米,它的边长是( )米,边长与周长的比值是( )。
4、100克海水中含盐10克,盐与水的比是( )。
5、5 :3的后项扩大4倍,要使比值的大小不变,比的前项应增加( )倍,如果比的前项增加10,要使比值不变后项应加上( )。
6、一个等腰三角形的两个内角的比为4︰1,顶角为( )或( )。
7、甲数除乙数的商是0.2,那么甲数与乙数的比是( )比值是( )。
8、甲:乙=4:5,甲:丙=2;3,那么甲:乙:丙=( ),甲:乙=8:7,丙是乙的 87,那么甲:乙:丙=( )。
9、一个长方形的周长是56厘米,其中长与宽的比是4︰3,这个长方形的面积是( )。
10、一个直角三角形的三条边的比是3:4:5,周长是48厘米,面积是( )。
11、一件工作,甲独做41小时完成,乙独做51小时完成,甲乙完成的时间比是( )。
二、判断题。
(共10分,每小题2分)。
1、ba 可以读作b 分之a,也可以读作a 比b.( )2、足球比赛的得分可以是3:0,所以比的后项也可以是0.( )3、a:b=(a ×c):(b ×c )= (a ÷c):(b ÷c). (a 、b 均不为零)。
( )4、某班男生人数是女生人数的41,女生人数比男生人数多43。
( ) 5、比的前项和后项同时扩大或缩小相同的倍数,比值不变。
( ) 三、选择题。
(共8分,每空2分)1、在8∶5中,后项增加15,要使比值不变,前项应( ) A 、加上24 B 、扩大4倍 C 、加上15 D 、增加3倍A 、1∶25B 、1∶26C 、1∶24D 、25∶243、两个正方体的棱长之比是1∶2,那么它们的体积比是( )表面积之比是( )A 、1∶2B 、4C 、1∶8D 、1∶16 四、求比值(9分)五、化简比。
苏教版六上按比例分配的实际问题共33页文档
16、云无心以出岫,鸟倦飞而知还。 17、童孺纵行歌,斑白欢游诣。 18、福不虚至,祸不易来。 19、久在樊笼里,复得返自然。 20、羁鸟恋旧林,池鱼思故渊。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
按比例分配(苏教版六年级上册)
把180按照4∶4∶7来分配。
国标本数学六年级上册
按 比 例 分 配
陈天和李明合资开了一家文 具用品店,经过辛勤经营, 一年的净利润是15万元。他 们两人各应分得多少钱?
陈天和李明合资开了一家 文具用品店,经过辛勤经 营,一年的净利润是15万 元。陈天和李明两人投资 额的比是3:2。他们两人各 应分得多少钱?
学校合唱队有48人,其中男 1:1 。 生和女生人数的比是1:3 男、女生各有多少人?
陈天、李明和王军三人合资 开了一家文明和王军 三人投资额的比是3:2:1。 他们三人各应分得多少钱?
说说你的身高。 说说你头部的长度。
12周岁的儿童,头与头部以下 的高度的比一般是2:13。
蓓蕾幼儿园大班有35人, 中班有31人,小班有24人。张 阿姨准备把180块巧克力按班 级人数的比分给三个班。每班 各应分得多少块?
35:31:24
1、一个三角形,三个内角的度数 比是1:2:3,这个三角形三个内 角分别是多少度?这是一个什么 三角形? 把180按照1:2:3来分配。
2、一个等腰三角形的顶角与底 角的度数的比是1:4,这个等腰 三角形的三个内角各是多少度? 把180按照1∶4∶4来分配。
3、一个等腰三角形的两个角的 度数比为4∶7,这个等腰三角 形的三个内角各是多少度? 把180按照4∶7∶7来分配。
苏教版六上数学3-11按比例分配的实际问题练习
配制一种药液,药粉和水的质量比是1: 40 (1)400克药粉需加水多少克? (2)400克水中应加药粉多少克?
问题条件有什么不同,怎么解答?
校园里玫瑰花和月季花棵数的比是3:5 (1)如果玫瑰和月季一共有120棵,这两种花各 有多少棵? (2)如果月季有120棵,玫瑰有多少棵?
水泥 黄沙 石子
Байду номын сангаас 谢谢
苏教版六年级上册数学
按比例分配的实际问题练 习
(1)母鸡和公鸡只数的比是4:3
①母鸡的只数是母鸡的几分之几? ②公鸡的只数是母鸡的几分之几?
(2)男生和全班人数的比是5:11。
①男生和女生人数的比是几比几? ②男生人数是女生的几分之几? ③女生人数是男生的几分之几?
一个直角三角形两个锐角度数的 比是3:2.这两个锐角分别是多少度?
(1)这种混凝土的三种材料是按怎样的比 配制的? (2)要配制120吨这样的混凝土,三种材料 各需要多少吨? (3)如果这三种材料都有18吨,当黄沙全 部用完时,水泥剩多少吨?石子又增加了多 少吨?
请同学们根据所给的条件动手画一画。
①.画一个长方形,面积是24平方 厘米,长和宽的比是3:2 ②.画一个长方形,周长是16厘米, 长和宽的比是5:3
苏教版六年级上册数学课件:按比例分配练习共29页
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
苏教版六年级上册数学课件:按比例
•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
ቤተ መጻሕፍቲ ባይዱ
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
•
30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
分配练习
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
苏教版六年级上册数学《按比例分配实际问题》重点练习题附答案
苏教版六年级上册数学《按比例分配实际问题》重点练习题附答案比的实际问题》练11.已知一个三角形三条边长度的比是3:5:4.求这个三角形的周长和三条边的长度。
解:假设三条边的长度分别为3x、5x、4x,则周长为12x=36,所以x=3.因此三条边的长度分别为9厘米、15厘米和12厘米。
2.一个分数的分子与分母之和是40,约分后分子与分母的比是3:5.求这个分数。
解:设分子为3x,分母为5x,则3x+5x=40,即x=4.因此分子为12,分母为20,所以这个分数是12/20=3/5.3.用一根长48厘米的铁丝围成一个长方形,长和宽的比是5:3.求这个长方形的面积。
解:设长为5x,宽为3x,则周长为2(5x+3x)=48,即x=4.因此长为20厘米,宽为12厘米,所以面积为240平方厘米。
4.一块长方体木料,棱长总和96厘米,长宽高三条棱长的比是2:3:3.求这块木料的体积。
解:设长、宽、高分别为2x、3x、3x,则2(2x+3x+3x)=96,即x=4.因此长为8厘米,宽为12厘米,高为12厘米,所以体积为1152立方厘米。
5.商店运来的苹果比橘子少30千克,已知苹果与橘子的比是5:7.求橘子运来多少千克?解:设苹果和橘子分别为5x和7x,则5x-7x=30,即x=15.因此橘子运来105千克。
6.有一种药水,按药液与水的比为1:500配制而成。
用0.5千克药液,可配制多少千克药水?解:药液与水的比为1:500,所以0.5千克药液可以配制500千克药水。
7.客货两车从相距570千米的两地同时相对开邮,已知客车每小时行50千米,货车与客车的速度比是9:10.两车开出几小时相遇?解:设货车的速度为9x,客车的速度为10x,则9x+10x=570,即x=30.因此货车的速度为270千米/小时,客车的速度为300千米/小时。
相对速度为270+300=570千米/小时,所以两车开出1小时相遇。
六年级上册数学专项训练-按比例分配 苏教版
按比例分配专项训练按比例分配是指在日常生活生产中,常常需要把一定的数量按照一定的比例来进行分配,这种分配方法称为按比例分配。
它是比的概念的一种应用。
基本的解题方法是求出一份的数量:数量÷对应的份数=一份的数量。
也可以把比转化成所占的百分比或分数,再用乘法来计算。
已学过的平均分其实是按比例分配的一种特例。
【例题精讲】例1.一个长方体棱长总和为144厘米,长、宽、高的比是5∶3∶4,这个长方体的体积是多少立方厘米?解析:144厘米是4条长、4条宽和4条高的长度总和,所以对应的份数和应是4条长、4条宽和4条高的份数和,或者求出1条长、1条宽和1条高的数量,对应着(3+4+5)份数,求出一份的数量。
144÷4÷(5+3+4)=3(厘米)(3×5)×(3×3)×(3×4)=1620(立方厘米)或144÷(5×4+3×4+4×4)=3(厘米)(3×5)×(3×3)×(3×4)=1620(立方厘米)也可用乘法:144÷4×55+3+4= 15(厘米) 144÷4×35+3+4= 9(厘米) 144÷4×45+3+4=12(厘米) 15×9×12=1620(立方厘米) 答:略。
例2.某工厂男职工人数的52与女职工人数的43相等,已知全厂有职工460人,这个工厂男女职工各有多少人?解析:根据“男职工人数的52与女职工人数的43相等”,可以写出数量关系等式:4352⨯=⨯女职工人数男职工人数,从而求出男、女职工的人数比,转化为按比例分配的问题。
14352=⨯=⨯女职工人数男职工人数男职工人数:女职工人数=25:34=15:8 460÷(15+8)×15=300(人) 460÷(15+8)×8=160(人)答:略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学上册比和按比例分配练习
班级姓名
1、学校买来一批书,共1000本,把这批书按1:4:5分给四、五、六三个年级,每个年级各分到多少本?
2、(1)果园里梨树与桃树的比是3:5,这个果园里共有果树40棵,梨树与桃树各多少棵?
(2)果园里梨树与桃树的比是3:5,已知桃树有40棵。
这个果园共有果树多少棵?
(3)果园里梨树与桃树的比是3:5,已知梨树比桃树少40棵,这个果园共有果树多少棵?
3、一个长方形的周长是40分米,它的长与宽的比是3:2,这个长方形的面积是多少?
4、小明在期末考试中语文、数学、英语的均分为75分,它的三门学科成绩的比为8:8:9,它的三门成绩分别是多少?
5、用一段长96厘米的铁丝做一个长方体框架,长方体的长宽高的比是5:4:3,这个长方体的长、宽、高分别是多少?
6、加工一批零件,王师傅每小时加工48个,与李师傅每小时加工个数的比是4:5。
两个共同加工3小时,可以加工多少个零件?
7、一种药水是用药粉和水按3:100配成的。
(1)要配制这种药水515千克,需要药粉多少千克?
(2)有水60千克,需要药粉多少千克?
(3)用90千克的药粉,可配成多少千克的药水?
9、一杯盐水,盐与盐水的比为1:5,再加上16克盐后,盐与盐水的比为1:4,原来盐水有多少千克?
10、甲乙两地相距600千米,两车分别从两地相向同时出发,3小时后两车相遇,已知快车与慢车的速度比为11:9,快车与慢车的速度分别是多少?
11、某车间有140名职工,分成三个生产小组,已知第一组和第二组人数比为2:3,第二组和第三组人数比为4:5,这三个小组名有多少人?
12、一班和二班的人数比为8:7,如果将一班的8名同学调到二班去,那么一班和二班的人数的比为4:5,求原来两班各有多少人?。