2019届高考数学二轮复习专题一三角函数及解三角形高频考点
高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-
专题二 三角函数、三角变换、解三角形、平面向量第一讲 三角函数的图象与性质1.角的概念.(1)终边相同的角不一定相等,相等的角终边一定相同(填“一定”或“不一定”). (2)确定角α所在的象限,只要把角α表示为α=2k π+α0[k ∈Z,α0∈[0,2π)],判断出α0所在的象限,即为α所在象限.2.诱导公式.诱导公式是求三角函数值、化简三角函数的重要依据,其记忆口诀为:奇变偶不变,符号看象限.1.三角函数的定义:设α是一个任意大小的角,角α的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx.2.同角三角函数的基本关系. (1)sin 2α+cos 2α=1. (2)tan α=sin αcos α.判断下面结论是否正确(请在括号中打“√”或“×”).(1)角α终边上点P 的坐标为⎝ ⎛⎭⎪⎫-12,32,那么sin α=32,cos α=-12;同理角α终边上点Q 的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.(×)(2)锐角是第一象限角,反之亦然.(×) (3)终边相同的角的同一三角函数值相等.(√)(4)常函数f (x )=a 是周期函数,它没有最小正周期.(√) (5)y =cos x 在第一、二象限上是减函数.(×) (6)y =tan x 在整个定义域上是增函数.(×)1.(2015·某某卷)若sin α=-513,且α为第四象限角,则tan α的值等于(D )A.125 B .-125 C.512 D .-512解析:解法一:因为α为第四象限的角,故cos α=1-sin 2α=1-(-513)2=1213,所以tan α=sin αcos α=-5131213=-512. 解法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=y x =-512.故选D.2.已知α的终边经过点A (5a ,-12a ),其中a <0,则sin α的值为(B ) A .-1213 B.1213 C.513 D .-5133.(2014·新课标Ⅰ卷)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎪⎫2x +π6,④y=tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为(A ) A .①②③ B .①③④C .②④D .①③解析:①中函数是一个偶函数,其周期与y =cos 2x 相同,T =2π2=π;②中函数y =|cos x |的周期是函数y =cos x 周期的一半,即T =π;③T =2π2=π;④T =π2.故选A.4.(2015·某某卷)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin(π6x +φ)+k .据此函数可知,这段时间水深(单位:m)的最大值为(C )A .5B .6C .8D .10解析:根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.一、选择题1.若sin(α-π)=35,α为第四象限角,则tan α=(A )A .-34B .-43C.34D.43 解析:∵sin(α-π)=35,∴-sin α=35,sin α=-35.又∵α为第四象限角, ∴cos α= 1-sin 2α= 1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-3545=-34.2. 定义在R 上的周期函数f (x ),周期T =2,直线x =2是它的图象的一条对称轴,且f (x )在[-3,-2]上是减函数,如果A ,B 是锐角三角形的两个内角,则(A )A .f (sin A )>f (cosB ) B .f (cos B )>f (sin A )C .f (sin A )>f (sin B )D .f (cos B )>f (cos A )解析:由题意知:周期函数f (x )在[-1,0]上是减函数,在[0,1]上是增函数.又因为A ,B 是锐角三角形的两个内角,A +B >π2,得:sin A >cos B ,故f (sin A )>f (cos B ).综上知选A.3.函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为(A )A .2- 3B .0C .-1D .-1- 3解析:用五点作图法画出函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的图象,注意0≤x ≤9知,函数的最大值为2,最小值为- 3.故选A.4. 把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是(A )解析:y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的解析式为y =cos (x +1).故选A.5.(2015·新课标Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为(D )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 解析:由图象知周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z.故选D.6.已知函数f (x )=A sin(ωx +φ)(x ∈R,A >0,ω>0,|φ|<π2)的图象(部分)如图所示,则f (x )的解析式是(A )A .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6(x ∈R)B .f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π6(x ∈R)C .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π3(x ∈R)D .f (x )=2sin ⎝⎛⎭⎪⎫2πx +π3(x ∈R) 解析:由图象可知其周期为:4⎝ ⎛⎭⎪⎫56-13=2,∵2πω=2,得ω=π,故只可能在A ,C 中选一个,又因为x =13时达到最大值,用待定系数法知φ=π6.二、填空题7.若sin θ=-45,tan θ>0,则cos θ=-35.8.已知角α的终边经过点(-4,3),则cos α=-45.解析:由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.三、解答题9. (2014·某某卷)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.思路二 先应用和差倍半的三角函数公式化简函数f (x )=2sin x cos x +2cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算;(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.解析:解法一 (1)f ⎝⎛⎭⎪⎫5π4=2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4=-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.解法二 因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.10.函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6+1(A >0,ω>0)的最大值为3, 其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;word(2)设α∈⎝ ⎛⎭⎪⎫0,π2,则f ⎝ ⎛⎭⎪⎫α2=2,求α的值. 解析:(1)∵函数f (x )的最大值为3,∴A +1=3,即A =2.∵函数图象的相邻两条对称轴之间的距离为π2, ∴最小正周期为 T =π,∴ω=2,故函数f (x )的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x -π6+1. (2)∵f ⎝ ⎛⎭⎪⎫α2=2sin ⎝⎛⎭⎪⎫α-π6+1=2, 即sin ⎝⎛⎭⎪⎫α-π6=12, ∵0<α<π2,∴-π6<α-π6<π3. ∴α-π6=π6,故α=π3. 11.(2015·卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解析:(1)由题意得f (x )=22sin x -22(1-cos x )=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22.。
(新课标)高考数学二轮复习 专题一 三角函数与解三角形 第2讲 三角恒等变换与解三角形学案 理 新人
第2讲 三角恒等变换与解三角形[做真题]题型一 三角恒等变换1.(2019·高考全国卷Ⅱ)已知α∈⎝⎛⎭⎪⎫0,π2,2sin 2α=cos 2α+1,则sin α=( )A .15 B .55C .33D .255解析:选B .由2sin 2α=cos 2α+1,得4sin αcos α=1-2 sin 2α+1,即2sin αcosα=1-sin 2α.因为α∈⎝⎛⎭⎪⎫0,π2,所以cos α=1-sin 2α,所以2sin α1-sin 2α=1-sin 2α,解得sin α=55,故选B . 2.(2018·高考全国卷Ⅲ)若sin α=13,则cos 2α=( )A .89 B .79 C .-79D .-89解析:选B .cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫132=79.3.(2016·高考全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α=( )A .725 B .15 C .-15D .-725解析:选D .因为cos ⎝ ⎛⎭⎪⎫π4-α=cos π4cos α+sin π4sin α=22(sin α+cos α)=35,所以sin α+cos α=325,所以1+sin 2α=1825,所以sin 2α=-725,故选D .题型二 三角形中的边角计算问题1.(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .4 2B .30C .29D .2 5解析:选A .因为cos C2=55,所以cos C =2cos 2C 2-1=2×⎝ ⎛⎭⎪⎫552-1=-35.于是,在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =4 2.故选A .2.(2016·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.解析:因为cos A =45,cos C =513,所以sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A sin C =6365,由正弦定理b sin B =a sin A ,得b =a sin B sin A =6365×53=2113.答案:21133.(2019·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sinC )2=sin 2A -sin B sin C .(1)求A ;(2)若2a +b =2c ,求sin C .解:(1)由已知得sin 2B +sin 2C -sin 2A =sinB sinC ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin (120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22. 由于0°<C <120°,所以sin(C +60°)=22, 故sin C =sin(C +60°-60°)=sin(C +60°)cos 60°-cos(C +60°)sin 60° =6+24. 题型三 与三角形面积有关的问题1.(2018·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A .π2B .π3C .π4D .π6解析:选C .根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24,所以sin C =a 2+b 2-c22ab =cos C ,所以在△ABC 中,C =π4.2.(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________.解析:法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3. 法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC的面积S =12×23×6=6 3.答案:6 33.(2019·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sinA +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 解:(1)由题设及正弦定理得 sin A sinA +C2=sin B sin A .因为sin A ≠0,所以sinA +C2=sin B .由A +B +C =180°,可得sinA +C2=cos B 2,故cos B 2=2sin B 2cos B2. 因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a . 由正弦定理得a =c sin A sin C =sin(120°-C )sin C =32tan C +12. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值范围是⎝⎛⎭⎪⎫38,32. [明考情]1.高考对此部分的考查一般以“二小”或“一大”的命题形式出现.2.若无解答题,一般在选择题或填空题各有一题,主要考查三角恒等变换、解三角形,难度一般,一般出现在第4~9题或第13~15题位置上.3.若以解答题形式出现,主要考查三角函数与解三角形的综合问题,一般出现在解答题第17题位置上,难度中等.三角恒等变换与求值[考法全练]1.(2019·高考全国卷Ⅰ)tan 255°=( ) A .-2- 3 B .-2+ 3 C .2- 3D .2+ 3解析:选D .由正切函数的周期性可知,tan 255°=tan (180°+75°)=tan 75°=tan (30°+45°)=33+11-33=2+3,故选D .2.(一题多解)(2019·福建五校第二次联考)已知cos ⎝ ⎛⎭⎪⎫π4-α=45,则sin 2α=( )A .15 B .-15C .725D .-725解析:选C .法一:因为cos ⎝ ⎛⎭⎪⎫π4-α=45,所以sin 2α=sin ⎣⎢⎡⎦⎥⎤π2-2⎝ ⎛⎭⎪⎫π4-α=cos2⎝ ⎛⎭⎪⎫π4-α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1=2×⎝ ⎛⎭⎪⎫452-1=725.故选C .法二:令π4-α=θ,则α=π4-θ,cos θ=45,所以sin 2α=sin 2⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θ=cos 2θ=2cos 2θ-1=2×⎝ ⎛⎭⎪⎫452-1=725.故选C .法三:因为cos ⎝⎛⎭⎪⎫π4-α=45,所以22(cosα+sin α)=45,所以cos α+sin α=425,平方得1+sin 2α=3225,得sin 2α=725.故选C .3.已知α∈⎝ ⎛⎭⎪⎫0,π2,tan α=2,则cos ⎝⎛⎭⎪⎫α-π4=________. 解析:因为α∈⎝⎛⎭⎪⎫0,π2,tan α=2, 所以sin α=255,cos α=55,所以cos ⎝⎛⎭⎪⎫α-π4=cos αcos π4+sin αsin π4=22×⎝ ⎛⎭⎪⎫255+55=31010. 答案:310104.(2019·江西七校第一次联考)若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫α+π4=13,sin ⎝ ⎛⎭⎪⎫β2+π4=33,则cos(2α+β)=________. 解析:因为0<α<π2,所以π4<α+π4<3π4,又cos ⎝ ⎛⎭⎪⎫α+π4=13,所以sin ⎝ ⎛⎭⎪⎫α+π4=223, sin 2⎝ ⎛⎭⎪⎫α+π4=2sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=429, cos 2⎝ ⎛⎭⎪⎫α+π4=2cos 2⎝ ⎛⎭⎪⎫α+π4-1=-79. 因为-π2<β<0,所以0<β2+π4<π4,又sin ⎝⎛⎭⎪⎫β2+π4=33,所以cos ⎝ ⎛⎭⎪⎫β2+π4=63,sin 2⎝ ⎛⎭⎪⎫β2+π4=2sin ⎝ ⎛⎭⎪⎫β2+π4cos ⎝ ⎛⎭⎪⎫β2+π4=223, cos 2⎝ ⎛⎭⎪⎫β2+π4=1-2sin 2⎝ ⎛⎭⎪⎫β2+π4=13. 所以cos(2α+β)=-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π4+2⎝ ⎛⎭⎪⎫β2+π4=-cos 2⎝ ⎛⎭⎪⎫α+π4cos 2⎝ ⎛⎭⎪⎫β2+π4+sin 2⎝⎛⎭⎪⎫α+π4·sin 2⎝ ⎛⎭⎪⎫β2+π4=2327.答案:2327三角恒等变换要遵循的“三看”原则一看“角”,通过看角之间的差别与联系,把角进行合理的拆分;二看“函数名称”,是需进行“切化弦”还是“弦化切”等,从而确定使用的公式;三看“结构特征”,了解变式或化简的方向.三角形的基本量的计算[典型例题]命题角度一 求解三角形中的角(1)(2019·江西七校第一次联考)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =a (cos C +33sin C ),a =2,c =263,则角C =( ) A .3π4B .π3C .π6D .π4(2)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且b cos C +b sin C =a . ①求角B 的大小;②若BC 边上的高等于14a ,求cos A 的值.【解】 (1)选D .由b =a ⎝ ⎛⎭⎪⎫cos C +33sin C ,得sin B =sin A ⎝ ⎛⎭⎪⎫cos C +33sin C . 因为sin B =sin []π-(A +C )=sin(A +C ), 所以sin A cos C +cos A sin C =sin A cos C +33sin A sin C (sin C ≠0),即cos A =33sin A ,所以tan A = 3.因为0<A <π,所以A =π3.由正弦定理a sin A =c sin C ,得sin C =22.因为0<C <2π3,所以C =π4.故选D .(2)①由b cos C +b sin C =a , 得sin B cos C +sin B sin C =sin A . 因为A +B +C =π,所以sin B cos C +sin B sin C =sin(B +C ),即sin B cos C +sin B sin C =sin B cos C +cos B sin C , 因为sin C ≠0,所以sin B =cos B .因为B ∈(0,π),所以B =π4. ②设BC 边上的高为AD ,则AD =14a .因为B =π4,所以BD =AD =14a ,所以CD =34a ,所以AC =AD 2+DC 2=104a ,AB =24a . 由余弦定理得cos A =AB 2+AC 2-BC 22AB ·AC =-55.利用正、余弦定理求三角形角的方法(1)已知两边及其夹角,先由余弦定理求第三边,再由正弦定理求角. (2)已知三边,直接由余弦定理求角.(3)已知两边及其中一边的对角,先由正弦定理求另一边的对角,再由三角形内角和求第三角.[技能] 利用正、余弦定理求角时的两个失分点:(1)已知两边及其中一边的对角求其他角时,有一解、两解的情况,容易把握不准而出错;(2)在变形时,直接两边约去公因式,没有移项后提公因式,产生漏解.命题角度二 求解三角形中的边与面积如图所示,在△ABC 中,点D 为BC 边上一点,且BD =1,E 为AC 的中点,AE =32,cos B =277,∠ADB =2π3.(1)求AD 的长; (2)求△ADE 的面积.【解】 (1)在△ABD 中,因为cos B =277,B ∈(0,π),所以sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫2772=217,所以sin ∠BAD =sin(B +∠ADB )=217×⎝ ⎛⎭⎪⎫-12+277×32=2114. 由正弦定理知AD sin B =BD sin ∠BAD ,得AD =BD ·sin Bsin ∠BAD=1×2172114=2.(2)由(1)知AD =2,依题意得AC =2AE =3,在△ACD 中,由余弦定理得AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC ,即9=4+DC 2-2×2×DC cos π3,所以DC 2-2DC -5=0,解得DC =1+6(负值舍去),所以S △ACD =12AD ·DC sin ∠ADC =12×2×(1+6)×32=3+322,从而S △ADE =12S △ACD =3+324.利用余弦定理求边,一般是已知三角形的两边及其夹角.利用正弦定理求边,必须知道两角及其中一边,如该边为其中一角的对边,要注意解的多样性与合理性.而三角形的面积主要是利用两边与其夹角的正弦值求解.[技能] 三角形的面积主要是利用S =12ab sin C 求解,有时可以直接利用余弦定理求出ab 的整体值再求面积,而不必分别求出a ,b 的值.[对点训练]1.(一题多解)(2019·广州市综合检测一)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 已知c cos B =(3a -b )cos C .(1)求sin C 的值;(2)若c =26,b -a =2,求△ABC 的面积. 解:(1)法一:因为c cos B =(3a -b )cos C ,所以由正弦定理得sin C cos B =(3sin A -sin B )cos C , 即sin C cos B +sin B cos C =3sin A cos C , 所以sin(B +C )=3sin A cos C ,由于A +B +C =π,所以sin(B +C )=sin (π-A )=sin A , 则sin A =3sin A cos C .因为0<A <π,所以sin A ≠0,cos C =13.因为0<C <π,所以sin C =1-cos 2C =223.法二:因为c cos B =(3a -b )cos C ,所以由余弦定理得c ×a 2+c 2-b 22ac =(3a -b )×a 2+b 2-c 22ab,化简得a 2+b 2-c 2=23ab ,所以cos C =a 2+b 2-c 22ab =23ab2ab =13.因为0<C <π,所以sin C =1-cos 2C =223.(2)法一:由余弦定理c 2=a 2+b 2-2ab cos C , 及c =26,cos C =13,得a 2+b 2-23ab =24,即(a -b )2+43ab =24.因为b -a =2,所以ab =15.所以△ABC 的面积S =12ab sin C =12×15×223=5 2.法二:由余弦定理c 2=a 2+b 2-2ab cos C , 及c =26,cos C =13,得a 2+b 2-23ab =24.又b -a =2, 所以a =3,b =5.所以△ABC 的面积S =12ab sin C =12×15×223=5 2.2.(2019·郑州市第一次质量预测)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为S ,且满足sin B =b 24S.(1)求sin A sin C ;(2)若4cos A cos C =3,b =15,求△ABC 的周长.解:(1)由三角形的面积公式可得S =12bc sin A ,又sin B =b 24S,所以2bc sin A sin B =b 2,即2c sin A sin B =b ,由正弦定理可得2sin C sin A sin B =sin B , 因为sin B ≠0,所以sin A sin C =12.(2)因为4cos A cos C =3,所以cos A cos C =34,所以cos A cos C -sin A sin C =34-12=14,即cos(A +C )=14,所以cos B =-14,因为0<B <π,所以sin B =154, 因为a sin A =b sin B =c sin C =15154=4,所以sin A sin C =ac 16=12,所以ac =8,因为b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B , 所以(a +c )2=15+12=27,所以a +c =3 3. 所以△ABC 的周长为a +b +c =33+15.解三角形的综合问题[典型例题]命题角度一 以平面几何为载体的解三角形问题(2019·洛阳尖子生第二次联考)如图,在平面四边形ABCD 中,∠ABC 为锐角,AD⊥BD ,AC 平分∠BAD ,BC =23,BD =3+6,△BCD 的面积S =3(2+3)2.(1)求CD ; (2)求∠ABC .【解】 (1)在△BCD 中,S =12BD ·BC ·sin ∠CBD =3(2+3)2,因为BC =23,BD =3+6, 所以sin ∠CBD =12.因为∠ABC 为锐角,所以∠CBD =30°.在△BCD 中,由余弦定理得CD 2=BC 2+BD 2-2BC ·BD ·cos ∠CBD =(23)2+(3+6)2-2×23×(3+6)×32=9,所以CD =3. (2)在△BCD 中,由正弦定理得BC sin ∠BDC =CDsin ∠CBD ,即23sin ∠BDC =3sin 30°,解得sin ∠BDC =33.因为BC <BD ,所以∠BDC 为锐角,所以cos ∠BDC =63. 在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即ACcos ∠BDC =3sin ∠CAD.①在△ABC 中,由正弦定理得AC sin ∠ABC =BCsin ∠BAC ,即ACsin ∠ABC =23sin ∠BAC.②因为AC 平分∠BAD ,所以∠CAD =∠BAC . 由①②得sin ∠ABC cos ∠BDC =323,解得sin ∠ABC =22.因为∠ABC 为锐角,所以∠ABC =45°.解决以平面几何为载体的问题,主要注意以下几方面:一是充分利用平面几何图形的性质;二是出现多个三角形时,从条件较多的三角形突破求解;三是四边形问题要转化到三角形中去求解;四是通过三角形中的不等关系(如大边对大角,最大角一定大于等于π3)确定角或边的范围.命题角度二 三角形中的最值或范围问题(1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,外接圆的半径为1,且tan Atan B=2c -bb,则△ABC 面积的最大值为________.(2)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2-c 2)(a cos B +b cos A )=abc ,若a +b =2,则c 的取值范围为________.【解析】 (1)因为tan A tan B =2c -b b ,所以b sin A cos A =(2c -b )sin Bcos B,由正弦定理得sin B sinA cosB =(2sinC -sin B )sin B cos A ,又sin B ≠0,所以sin A cos B =(2sin C -sin B )cos A ,所以sin A cos B +sin B cos A =2sin C cos A ,即sin(A +B )=2sin C cos A ,即sin C =2sin C cos A ,又sin C ≠0,所以cos A =12,sin A =32.设外接圆的半径为r ,则r =1,由余弦定理得bc =b 2+c 2-a 22cos A=b 2+c 2-a 2=b 2+c 2-(2r sin A )2=b 2+c 2-3≥2bc -3(当且仅当b=c 时,等号成立),所以bc ≤3,所以S △ABC =12bc sin A =34bc ≤334.所以△ABC 面积的最大值为334.(2)由sin A cos B +sin B cos A =sin(A +B )=sin C 及正弦定理,可知a cos B +b cos A =c ,则由(a 2+b 2-c 2)(a cos B +b cos A )=abc ,得a 2+b 2-c 2=ab ,由余弦定理可得cos C =12,则C =π3,B =2π3-A , 由正弦定理asin A=bsin B=csin C,得asin A=bsin ⎝ ⎛⎭⎪⎫2π3-A =csinπ3,又a +b =2,所以c sin A32+c sin ⎝⎛⎭⎪⎫2π3-A 32=2,即c =3sin A +sin ⎝ ⎛⎭⎪⎫2π3-A =1sin ⎝⎛⎭⎪⎫A +π6,因为A ∈⎝ ⎛⎭⎪⎫0,2π3,所以A +π6∈⎝ ⎛⎭⎪⎫π6,5π6,sin ⎝⎛⎭⎪⎫A +π6∈⎝ ⎛⎦⎥⎤12,1,则c ∈[1,2).【答案】 (1)334(2)[1,2)解三角形中的最值与范围问题主要有两种解决方法:一是利用基本不等式求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围确定所求式的范围.[对点训练]1.(2019·重庆市七校联合考试)如图,在平面四边形ABCD 中,E 为AB 边上一点,连接CE ,DE .CB =2,BE =1,∠B =∠CED =2π3.(1)求sin ∠AED 的值; (2)若AB ∥CD ,求CD 的长.解:(1)在△BEC 中,由余弦定理得,CE =CB 2+BE 2-2CB ·BE cos ∠B =7, 又BEsin ∠BCE =CE sin ∠B ,所以sin ∠BCE =2114,因为∠B =∠CED ,所以sin ∠AED =sin ∠BCE =2114. (2)因为AB ∥CD ,所以∠CDE =∠AED , 所以sin ∠CDE =sin ∠AED =2114, 在△CDE 中,CD sin ∠CED =CE sin ∠CDE ,所以CD =CE sin ∠CEDsin ∠CDE=7×322114=7.2.(2019·福建五校第二次联考)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cosC =(2b -3c )cos A .(1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值.解:(1)由正弦定理可得,3sin A cos C =2sin B cos A -3sin C cos A , 从而3sin(A +C )=2sin B cos A ,即3sin B =2sin B cos A . 又B 为三角形的内角,所以sin B ≠0,于是cos A =32,又A 为三角形的内角,所以A =π6.(2)由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ×32≥2bc -3bc ,所以bc ≤4(2+3),所以S △ABC =12bc sin A ≤2+3,故△ABC 面积的最大值为2+ 3.[A 组 夯基保分专练]一、选择题1.(2019·湖南省五市十校联考)已知函数f (x )=23sin x cos x +2cos 2x +1,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4解析:选B .f (x )=23sin x cos x +2cos 2x +1=3sin 2x +cos 2x +2=2sin(2x +π6)+2,则f (x )的最小正周期为2π2=π,最大值为2+2=4.故选B .2.(2019·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A -b sin B =4c sin C ,cos A =-14,则bc=( )A .6B .5C .4D .3解析:选A .由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc=-3c 22bc =-14,得b c=6.故选A . 3.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若c =2a ,b sin B -a sin A =12a sinC ,则sin B 为( )A .74 B .34 C .73D .13解析:选A .由b sin B -a sin A =12a sin C ,且c =2a ,得b =2a ,因为cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34, 所以sin B =1-⎝ ⎛⎭⎪⎫342=74.4.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则cb sin B=( )A .32 B .233C .33D . 3解析:选B .由a ,b ,c 成等比数列得b 2=ac ,则有a 2=c 2+b 2-bc ,由余弦定理得cos A=b 2+c 2-a 22bc =bc 2bc =12,故A =π3,对于b 2=ac ,由正弦定理得,sin 2B =sin A sinC =32·sinC ,由正弦定理得,c b sin B =sin C sin 2B =sin C 32sin C=233.故选B . 5.(一题多解)在△ABC 中,已知AB =2,AC =5,tan ∠BAC =-3,则BC 边上的高等于( )A .1B . 2C . 3D .2解析:选A .法一:因为tan ∠BAC =-3,所以sin ∠BAC =310,cos ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC =5+2-2×5×2×⎝⎛⎭⎪⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1,故选A .法二:因为tan ∠BAC =-3,所以cos ∠BAC =-110<0,则∠BAC 为钝角,因此BC 边上的高小于2,故选A .6.如图,在△ABC 中,∠C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( )A .223B .24 C .64D .63解析:选C .依题意得,BD =AD =DE sin A =22sin A ,∠BDC =∠ABD +∠A =2∠A .在△BCD 中,BCsin ∠BDC=BDsin C ,4sin 2A =22sin A ×23=423sin A ,即42sin A cos A =423sin A,由此解得cos A =64. 二、填空题7.若sin ⎝ ⎛⎭⎪⎫π3-α=14,则cos ⎝ ⎛⎭⎪⎫π3+2α=________. 解析:依题意得cos ⎝⎛⎭⎪⎫π3+2α=-cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3+2α=-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3-α=2sin 2⎝ ⎛⎭⎪⎫π3-α-1=2×⎝ ⎛⎭⎪⎫142-1=-78.答案:-788.已知a ,b ,c 是△ABC 中角A ,B ,C 的对边,a =4,b ∈(4,6),sin 2A =sin C ,则c 的取值范围为________.解析:由4sin A =c sin C ,得4sin A =csin 2A ,所以c =8cos A ,因为16=b 2+c 2-2bc cos A ,所以16-b 2=64cos 2A -16b cos 2A ,又b ≠4,所以cos 2A =16-b 264-16b =(4-b )(4+b )16(4-b )=4+b16,所以c 2=64cos 2A =64×4+b 16=16+4b .因为b ∈(4,6),所以32<c 2<40,所以42<c <210.答案:(42,210)9.(一题多解)(2019·合肥市第一次质检测)设△ABC 的内角A ,B ,C 的对边a ,b ,c 成等比数列,cos(A -C )-cos B =12,延长BC 至点D ,若BD =2,则△ACD 面积的最大值为________.解析:法一:由题意知b 2=ac ,由正弦定理得sin 2B =sin A sinC ①,又由已知,得cos(A -C )+cos(A +C )=12,可得cos A cos C =14 ②,②-①,得14-sin 2B =-cos B ,所以cos 2B+cos B -34=0,解得cos B =12或cos B =-32(舍去),所以B =60°,再由题得cos(A -C )=1,则A -C =0,即A =C ,则a =c ,所以△ABC 为正三角形,则∠ACD =120°,AC =b ,CD =2-b ,故S △ACD =12×b ×(2-b )×32≤34⎝ ⎛⎭⎪⎫b +2-b 22=34,当且仅当b =2-b ,即b =1时取等号.故填34. 法二:由题意知b 2=ac ,且cos(A -C )+cos(A +C )=12,即cos A cos C +sin A sin C +cos A cos C -sin A sin C =12,即cos A cos C =14,由余弦定理得b 2+c 2-a 22bc ·b 2+a 2-c 22ab =14,整理得b 4-(a 2-c 2)2=b 4,所以a 2-c 2=0,即a =c ,又b 2=ac ,所以a =b =c ,即△ABC 为正三角形,所以S △ACD =S △ABD -S △ABC =12×2×c ×32-34c 2=-34(c -1)2+34≤34,当c =1时取等号,故填34. 答案:34三、解答题10.(2019·广东六校第一次联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2+c 2-b 2=ab cos A +a 2cos B .(1)求角B ;(2)若b =27,tan C =32,求△ABC 的面积. 解:(1)因为a 2+c 2-b 2=ab cos A +a 2cos B ,所以由余弦定理,得2ac cos B =ab cos A +a 2cos B ,又a ≠0,所以2c cos B =b cos A +a cos B ,由正弦定理,得 2sin C cos B =sin B cos A +sin A cos B =sin(A +B )=sin C , 又C ∈(0,π),sin C >0,所以cos B =12.因为B ∈(0,π),所以B =π3. (2)由tan C =32,C ∈(0,π),得sin C =217,cos C =277, 所以sin A =sin(B +C )=sin B cos C +cos B sin C =32×277+12×217=32114. 由正弦定理a sin A =b sin B ,得a =b sin Asin B =27×3211432=6,所以△ABC 的面积为12ab sin C =12×6×27×217=6 3.11.(2019·武汉模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,A =2B ,cos B =255. (1)求sin C 的值;(2)若角A 的平分线AD 的长为5,求b 的值. 解:(1)由cos B =255及0<B <π,得sin B =55,又A =2B ,所以sin A =sin 2B =2sin B cos B =2×55×255=45, cos A =cos 2B =2cos 2B -1=35.故sin C =sin(A +B )=sin A cos B +cos A sin B =45×255+35×55=11525.(2)由题意得,∠ADC =B +12∠BAC =∠BAC (如图),所以sin ∠ADC =45.在△ADC 中,AD sin C =ACsin ∠ADC ,即511525=AC 45,AC =2011,故b =2011.12.(2019·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a ,3c sin B =4a sin C .(1)求cos B 的值; (2)求sin ⎝⎛⎭⎪⎫2B +π6的值. 解:(1)在△ABC 中,由正弦定理b sin B =csin C,得b sin C =c sin B ,又由3c sin B =4a sinC ,得3b sin C =4a sin C ,即3b =4a .又因为b +c =2a ,得到b =43a ,c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14.(2)由(1)可得sin B =1-cos 2B =154, 从而sin 2B =2sin B cos B =-158,cos 2B =cos 2B -sin 2B =-78, 故sin ⎝⎛⎭⎪⎫2B +π6=sin 2B cos π6+cos 2B sin π6=-158×32-78×12=-35+716.[B 组 大题增分专练]1.(2019·江西七校第一次联考)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a (sinA -sinB )=(c -b )(sinC +sin B ).(1)求角C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.解:(1)由a (sin A -sin B )=(c -b )(sin C +sin B )及正弦定理,得a (a -b )=(c -b )(c +b ),即a 2+b 2-c 2=ab .所以cos C =a 2+b 2-c 22ab =12,又C ∈(0,π),所以C =π3.(2)由(1)知a 2+b 2-c 2=ab ,所以(a +b )2-3ab =c 2=7, 又S =12ab sin C =34ab =332,所以ab =6,所以(a +b )2=7+3ab =25,a +b =5.所以△ABC 的周长为a +b +c =5+7. 2.(一题多解)(2019·福州模拟)如图,在△ABC 中,M 是边BC 的中点,cos ∠BAM =5714,cos ∠AMC =-277.(1)求∠B 的大小;(2)若AM =21,求△AMC 的面积.解:(1)由cos ∠BAM =5714, 得sin ∠BAM =2114, 由cos ∠AMC =-277,得sin ∠AMC =217. 又∠AMC =∠BAM +∠B ,所以cos ∠B =cos (∠AMC -∠BAM )=cos∠AMC cos ∠BAM +sin ∠AMC sin ∠BAM=-277×5714+217×2114=-12, 又∠B ∈(0,π),所以∠B =2π3. (2)法一:由(1)知∠B =2π3, 在△ABM 中,由正弦定理AM sin ∠B =BM sin ∠BAM, 得BM =AM sin ∠BAM sin ∠B =21×211432= 3.因为M 是边BC 的中点,所以MC = 3.故S △AMC =12AM ·MC ·sin ∠AMC =12×21×3×217=332. 法二:由(1)知∠B =2π3, 在△ABM 中,由正弦定理AM sin ∠B =BM sin ∠BAM, 得BM =AM sin ∠BAM sin ∠B =21×211432= 3.因为M 是边BC 的中点,所以S △AMC =S △ABM ,所以S △AMC =S △ABM =12AM ·BM ·sin ∠BMA =12×21×3×217=332. 3.(2019·昆明市质量检测)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2(c -a cos B )=3b .(1)求角A ;(2)若a =2,求△ABC 面积的取值范围.解:(1)由2(c -a cos B )=3b 及正弦定理得2(sin C -sin A cos B )=3sin B , 所以2sin(A +B )-2sin A cos B =3sin B ,即2cos A sin B =3sin B , 因为sin B ≠0,所以cos A =32,又0<A <π,所以A =π6. (2)因为a =2,由正弦定理得b =4sin B ,c =4sin C ,所以S △ABC =12bc sin A =14bc , 所以S △ABC =4sin B sin C ,因为C =π-(A +B )=5π6-B ,所以sin C =sin ⎝ ⎛⎭⎪⎫5π6-B , 所以S △ABC =4sin B sin ⎝ ⎛⎭⎪⎫5π6-B =4sin B ⎝ ⎛⎭⎪⎫12cos B +32sin B , 即S △ABC =2sin B cos B +23sin 2B=sin 2B -3cos 2B + 3 =2sin ⎝ ⎛⎭⎪⎫2B -π3+ 3. 因为0<B <5π6,所以-π3<2B -π3<4π3,所以-32<sin ⎝⎛⎭⎪⎫2B -π3≤1, 所以0<S △ABC ≤2+ 3.即△ABC 面积的取值范围为(0,2+3].4.已知在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,AB 边上的高h =23c . (1)若△ABC 为锐角三角形,且cos A =35,求角C 的正弦值; (2)若C =π4,M =a 2+b 2+13c 2ab ,求M 的值. 解:(1)作CD ⊥AB ,垂足为D ,因为△ABC 为锐角三角形,且cos A =35, 所以sin A =45,tan A =43, 所以AD =c 2,BD =AB -AD =c 2, 所以BC =CD 2+BD 2=⎝ ⎛⎭⎪⎫23c 2+⎝ ⎛⎭⎪⎫c 22=5c 6, 由正弦定理得sin ∠ACB =AB sin A BC =c ×455c 6=2425. (2)因为S △ABC =12c ×23c =12ab sin ∠ACB =24ab , 所以c 2=324ab , 又a 2+b 2-c 2=2ab cos ∠ACB =2ab ,所以a 2+b 2=2ab +c 2,所以a 2+b 2+13c 2=2ab +43c 2=2ab +43×324ab =22ab , 所以M =a 2+b 2+13c 2ab =22ab ab =2 2.。
高考数学二轮总复习第1篇核心专题提升多维突破专题1三角函数与解三角形第2讲三角恒等变换与解三角形课件
π 4 π 4
=
-3-1 1-3
=
2
,
则
tan
β = tan(α + β - α) =
1t+antaαn+αβ+-βttaannαα=1+3-3×2 2=17.故选 D.
3. (2023·怀仁市校级四模)已知 α 为锐角,且 sin α+sinα+π3+
sinα+23π= 3,则 tan α=_____3___.
2cos 40°+cos 80°+sin 80°tan θ=0,
所以
tan
θ=-2cos
40°+cos sin 80°
80°=-2cos120°s-in8800°°+cos
80°
=-2cos
120°cos
80°+sin 120°sin sin 80°
80°+cos
80°=-
3sin 80° sin 80°
2 α+3tan
≤ α2
2
1 tan
α·3tan
α
= 33,当且仅当tan1 α=3tan α,即 tan α= 33时,等号成立,tan β 取得最
大值 33.故选 B.
核心考点2 正弦定理、余弦定理的应用
核 心 知 识·精 归 纳
1.正弦定理:在△ABC 中,sina A=sinb B=sinc C=2R(R 为△ABC 的外 接圆半径).
第一篇
核心专题提升•多维突破
专题一 三角函数与解三角形
第2讲 三角恒等变换与解三角形
分析考情·明方向 真题研究·悟高考 考点突破·提能力
分析考情·明方向
高频考点
高考预测
三角函数的化简与求值(倍角公式、
两角和与差公式进行恒等变换,角 继续以选择、填空题形式考查三角
高考总复习二轮文科数学精品课件 专题1 三角函数与解三角形 考点突破练1 三角函数的图象与性质
7.(2023 陕西榆林二模)已知函数
π
π
2 7π
f(x)=2sin(2x+6 )在[-4 , 6 ]和[ 5 , 12 ]上都是单调
的,则 a 的取值范围是( D )
π
f(x)=2sin(ωx+6 )(ω>0),若方程|f(x)|=1
在区间(0,2π)内恰有 5 个实
根,则 ω 的取值范围是( D )
7 5
A.( , ]
6 3
解析 由|f(x)|=
5 13
B.( , ]
3 6
π
|2sin(ωx+ )|=1
6
4
C.(1, ]
3
可得
π
1
sin(ωx+ )=± ,若
6
5
π·
=1,∴当
2
5
f(2)>f(1)=2,当
5
2
x=2时,f(x)< +sin
5
x=2时,得
πx 不成立,即
5
5 2
4
4
g(2)=f(2)- 5 >f(1)-5=2-5
2
=
6
>sin
5
5
5π
g(2)<sin 2 不成立,由此可在坐标系
中画出 g(x)与 y=sin πx 大致图象如图所示:
由图象可知,当 x∈(-∞,-1)∪(0,1)时,g(x)<sin πx,即
f(x)的单调递增区间为[kπ-
5π
π
高考数学大二轮复习 专题一 平面向量、三角函数与解三角形 第二讲 三角函数的图象与性质限时规范训练
第二讲 三角函数的图象与性质1.(2019·豫南九校联考)将函数y =sin ⎝⎛⎭⎪⎫x -π4的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移π6个单位,则所得函数图象的解析式为( )A .y =sin ⎝ ⎛⎭⎪⎫x 2-5π24B .y =sin ⎝ ⎛⎭⎪⎫x 2-π3C .y =sin ⎝ ⎛⎭⎪⎫x 2-5π12 D.y =sin ⎝⎛⎭⎪⎫2x -7π12 解析:函数y =sin ⎝ ⎛⎭⎪⎫x -π4经伸长变换得y =sin ⎝ ⎛⎭⎪⎫x 2-π4,再作平移变换得y =sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x -π6-π4=sin ⎝ ⎛⎭⎪⎫x 2-π3.答案:B2.(2019·某某亳州一中月考)函数y =tan ⎝ ⎛⎭⎪⎫12x -π3在一个周期内的图象是( )解析:由题意得函数的周期为T =2π,故可排除B ,D.对于C ,图象过点⎝ ⎛⎭⎪⎫π3,0,代入解析式,不成立,故选A. 答案:A3.(2019·某某某某十校期末测试)要得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =cos 2x的图象( )A .向左平移π3个单位长度B .向左平移π6个单位长度C .向右平移π6个单位长度D .向右平移π3个单位长度解析:∵y =cos ⎝ ⎛⎭⎪⎫2x +π3=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6,∴要得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =cos 2x 的图象向左平移π6个单位长度.答案:B4.(2019·东北三省三校一模)已知函数f (x )=3sin ωx +cos ωx (ω>0)的图象的相邻两条对称轴之间的距离是π2,则该函数的一个单调增区间为( )A.⎣⎢⎡⎦⎥⎤-π3,π6 B.⎣⎢⎡⎦⎥⎤-5π12,π12 C.⎣⎢⎡⎦⎥⎤π6,2π3D.⎣⎢⎡⎦⎥⎤-π3,2π3解析:由题意得2πω=2×π2,解得ω=2,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6.令-π2+2k π≤2x +π6≤π2+2k π(k ∈Z),解得-π3+k π≤x ≤π6+k π.当k =0时,有x ∈⎣⎢⎡⎦⎥⎤-π3,π6.故选A.答案:A5.(2019·高考全国卷Ⅱ)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( ) A .2B.32 C .1D.12解析:由题意及函数y =sin ωx 的图象与性质可知, 12T =3π4-π4,∴T =π,∴2πω=π,∴ω=2. 故选A. 答案:A6.(2019·某某某某一模)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,其中ω为常数,且ω∈(1,3).若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( ) A .1 B.π2C .2D.π解析:∵函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,∴π3ω+π3=k π,k ∈Z ,∴ω=3k -1,k ∈Z ,由ω∈(1,3),得ω=2.由题意得|x 1-x 2|的最小值为函数的半个周期,即T 2=πω=π2.答案:B7.(2019·某某平遥中学调研)已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,已知点A (0,3),B ⎝ ⎛⎭⎪⎫π6,0,若将它的图象向右平移π6个单位长度,得到函数g (x )的图象,则函数g (x )图象的一条对称轴方程为( ) A .x =π12B.x =π4C .x =π3D.x =2π3解析:由题意知图象过A (0,3),B ⎝ ⎛⎭⎪⎫π6,0, 即f (0)=2sin φ=3,f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫π6·ω+φ=0,又ω>0,|φ|<π,并结合图象知φ=2π3,π6·ω+φ=π+2k π(k ∈Z),得ω=2,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +2π3, 移动后g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+2π3=2sin ⎝ ⎛⎭⎪⎫2x +π3,所以对称轴满足2x +π3=π2+k π(k ∈Z),解得x =π12+k π2(k ∈Z),所以满足条件的一条对称轴方程是x =π12,故选A.答案:A8.(2019·某某某某适应性统考)已知A ,B ,C ,D ,E 是函数y =sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ<π2一个周期内的图象上的五个点,如图所示,A ⎝ ⎛⎭⎪⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B.ω=2,φ=π6C .ω=12,φ=π3D.ω=12,φ=π12解析:由题意知T =4×⎝⎛⎭⎪⎫π12+π6=π,所以ω=2.因为A ⎝ ⎛⎭⎪⎫-π6,0,所以0=sin ⎝ ⎛⎭⎪⎫-π3+φ. 又0<φ<π2,所以φ=π3.答案:A9.(2019·某某某某3月模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f (0)=-f ⎝ ⎛⎭⎪⎫π2,若f (x )在⎝⎛⎭⎪⎫0,π2上有且仅有三个零点,则ω的可能取值为( )A.23 B.2 C.143D.263解析:∵函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f (0)=-f ⎝ ⎛⎭⎪⎫π2, ∴sin ⎝ ⎛⎭⎪⎫-π6=-sin ⎝ ⎛⎭⎪⎫π2ω-π6=-12,∴π2ω-π6=2k π+π6或π2ω-π6=2k π+5π6,k ∈Z ,∴ω=4k +23或ω=4k +2,k ∈Z.∵函数f (x )在⎝⎛⎭⎪⎫0,π2上有且仅有三个零点,∴ωx -π6∈⎝ ⎛⎭⎪⎫-π6,ωπ2-π6,∴2π<ωπ2-π6≤3π,∴133<ω≤193,∴ω=143或ω=6.故选C.答案:C10.(2019·贺州一模)已知函数f (x )=sin(2x +φ)(φ∈R),若f ⎝ ⎛⎭⎪⎫π3-x =f (x ),且f (π)>f ⎝ ⎛⎭⎪⎫π2,则函数f (x )取得最大值时x 的可能值为( )A.π6B.π5C.π3D.π2解析:因为f ⎝ ⎛⎭⎪⎫π3-x =f (x ), 即y =f (x )的图象关于直线x =π6对称,即函数f (x )在x =π6时取得最值,①当函数f (x )在x =π6时取得最大值时,又因为函数f (x )的周期为π,所以f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π3=f (π),满足题意, ②当函数f (x )在x =π6时取得最小值时,又因为函数f (x )的周期为π,所以f ⎝ ⎛⎭⎪⎫π2>f ⎝ ⎛⎭⎪⎫π3=f (π),不满足题意, 综合①②得:函数f (x )取得最大值时x 的可能值为π6.故选A. 答案:A11.(2019·某某一模)若函数f (x )=sinωx2·sin ⎝⎛⎭⎪⎫ωx 2+π2(ω>0)在⎣⎢⎡⎦⎥⎤-π3,π2内有且仅有一个最大值,则ω的取值X 围是( ) A .(0,5)B.[1,5)C.⎝ ⎛⎭⎪⎫0,92 D.⎣⎢⎡⎭⎪⎫1,92 解析:f (x )=sinωx2sin ⎝⎛⎭⎪⎫ωx 2+π2=12sin ωx ,当ωx =2k π+π2,即x =2k π+π2ω(k ∈Z)时函数取最大值,又函数f (x )在⎣⎢⎡⎦⎥⎤-π3,π2内有且仅有一个最大值,即有两种情况,一是区间⎣⎢⎡⎦⎥⎤-π3,π2内只有一个极值点,二是函数f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π2内单调递增,所以有⎩⎪⎨⎪⎧π2≤ωπ2<5π2,-3π2<-ωπ3或⎩⎪⎨⎪⎧π2≥ωπ2,-π2≤-ωπ3,解得ω∈⎣⎢⎡⎭⎪⎫1,92或ω∈(-∞,1],又∵ω>0,所以ω∈⎝ ⎛⎭⎪⎫0,92,故选C. 答案:C12.(2019·某某一模)函数f (x )=sin(2x +θ)+cos 2x ,若f (x )最大值为G (θ),最小值为g (θ),则( )A .∃θ0∈R ,使G (θ0)+g (θ0)=πB .∃θ0∈R ,使G (θ0)-g (θ0)=πC .∃θ0∈R ,使|G (θ0)·g (θ0)|=πD .∃θ0∈R ,使⎪⎪⎪⎪⎪⎪G (θ0)g (θ0)=π解析:f (x )=sin(2x +θ)+cos 2x =cos θ·sin 2x +⎝ ⎛⎭⎪⎫sin θ+12·cos 2x +12=54+sin θsin(2x +φ)+12,所以G (θ)=54+sin θ+12,g (θ)=-54+sin θ+12, ①对于选项A ,G (θ0)+g (θ0)=54+sin θ+12-54+sin θ+12=1,显然不满足题意,即A 错误,②对于选项B ,G (θ0)-g (θ0)=54+sin θ+12+54+sin θ-12=254+sin θ∈[1,3],显然不满足题意,即B 错误, ③对于选项C ,G (θ0)·g (θ0)=⎝ ⎛⎭⎪⎫54+sin θ+12·⎝ ⎛⎭⎪⎫54+sin θ-12=1+sin θ∈[0,2],显然不满足题意,即C 错误,④对于选项D ,⎪⎪⎪⎪⎪⎪G (θ)g (θ)=⎪⎪⎪⎪⎪⎪⎪⎪154+sin θ-12+1∈[2,+∞),即∃θ0∈R ,使⎪⎪⎪⎪⎪⎪G (θ0)g (θ0)=π,故D 正确, 故选D. 答案:D13.(2019·某某模拟)函数f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1(x ∈R)的最大值为________.解析:∵f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1=4cos x ⎝ ⎛⎭⎪⎫32sin x +12cos x -1=23sin x cos x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,∴f (x )max =2. 答案:214.设函数f (x )=A sin(ωx +φ)(A >0,ω>0).若函数f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则函数f (x )的最小正周期为________. 解析:∵f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3, ∴x =π2和x =2π3均不是f (x )的极值点,其极值应该在x =π2+2π32=7π12处取得,∵f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,∴x =π6也不是函数f (x )的极值点,又f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性, ∴x =π6-⎝⎛⎭⎪⎫7π12-π2=π12为f (x )的另一个相邻的极值点,故函数f (x )的最小正周期T =2×⎝⎛⎭⎪⎫7π12-π12=π.答案:π15.(2019·某某某某武邑中学模拟)将f (x )=2sin ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π4ω个单位,得到y =g (x )的图象,若y =g (x )在⎣⎢⎡⎦⎥⎤-π6,π4上为增函数,则ω的最大值为________.解析:将f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π4ω个单位,得到y =g (x )=2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π4ω+π4=2sin ωx 的图象,若y =g (x )在⎣⎢⎡⎦⎥⎤-π6,π4上为增函数,则满足T 4≥π4,即T ≥π,即2πω≥π,所以0<ω≤2,即ω的最大值为2.答案:216.已知函数f (x )=2a sin(πωx +φ)⎝ ⎛⎭⎪⎫a ≠0,ω>0,|φ|≤π2,直线y =a 与f (x )的图象的相邻两个距离最近的交点的横坐标分别是2和4,现有如下命题: ①该函数在[2,4]上的值域是[a ,2a ];②在[2,4]上,当且仅当x =3时函数取得最大值; ③f (x )的图象可能过原点. 其中真命题的个数为________.解析:对于①,∵直线y =a 与函数f (x )=2a sin(πωx +φ)的图象的相邻两个距离最近的交点的横坐标分别为2和4,∴结合图象可以看出,当a >0时,f (x )在[2,4]上的值域为[a ,2a ],当a <0时,f (x )在[2,4]上的值域为[2a ,a ],①错误;对于②,根据三角函数图象的对称性,显然x =2和x =4的中点是x =3,即当a >0时,f (x )在x =3处有最大值f (3)=2a ,当a <0时,f (x )在x =3处有最小值f (3)=2a ,②错误; 对于③,f (0)=2a sin φ,令f (0)=0,得φ=0,此时f (x )=2a sin πωx ,由2a sin πωx =a 得sin πωx =22,则πωx =2k π+π4(k ∈Z)或πωx =2k π+3π4(k ∈Z),∴x =2k +14ω(k ∈Z)或x =2k +34ω(k ∈Z),∵直线y =a 与函数f (x )=2a sin(πωx +φ)的图象的相邻两个距离最近的交点的横坐标分别为2和4,∴令⎩⎪⎨⎪⎧2k +14ω=2,2k +34ω=4,解得k =18∉Z ,即不存在这样的k 符合题意,③错误. 综上,没有真命题. 答案:0。
2020高考数学二轮复习第2部分专题一三角函数与解三角形必考点文1
(6)若求出2x -的范围,再求函数的最值,同样得分.1.已知函数f(x)=4cos ωx·sin(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间上的单调性.解:(1)f(x)=4cos ωxsin ⎝ ⎛⎭⎪⎫ωx+π4=2sin ωxcos ωx+2cos2ωx=(sin 2ωx+cos 2ωx)+ 2=2sin +.因为f(x)的最小正周期为π,且ω>0,所以=π,故ω=1.(2)由(1)知,f(x)=2sin +.若0≤x≤,则≤2x+≤.当≤2x+≤,即0≤x≤时,f(x)单调递增;当≤2x+≤,即≤x≤时,f(x)单调递减.综上可知,f(x)在上单调递增,在上单调递减.类型二 学会审题[例2] 已知函数f(x)=sin(ωx+φ)的图象关于直线x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f =,求cos 的值.审题路线图(1)条件:f x 图象上相邻两个最高点距离为π(2)条件:f ⎝ ⎛⎭⎪⎫α2=343.已知在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,向量m =(2b,1),n =(2a -c ,cos C),且m∥n.(1)若b2=ac ,试判断△ABC 的形状;(2)求y =1-的值域.解:(1)由已知,m∥n,则2bcos C =2a -c ,由正弦定理,得2sin Bcos C =2sin(B +C)-sin C ,即2sin Bcos C =2sin Bcos C +2cos Bsin C -sin C , 在△ABC 中,sin C≠0,因而2cos B =1,则B =.又b2=ac ,b2=a2+c2-2accos B ,因而ac =a2+c2-2accos ,即(a -c)2=0,所以a =c ,△ABC 为等边三角形.(2)y =1-2cos 2A 1+tan A=1-2cos2A -sin2A1+sin A cos A=1-2cos A(cos A -sin A)=sin 2A -cos 2A=sin ,由已知条件B =知A∈.所以,2A -∈.因而所求函数的值域为(-1,].4.已知函数f(x)=2sinsin ,x∈R.(1)求函数f(x)的最小正周期;(2)在△ABC 中,若A =,c =2,且锐角C 满足f =,求△ABC 的面积S.解:(1)由题意得,。
高考数学专题复习-三角函数与解三角形
第1讲 三角函数的图象与性质高考定位 三角函数的图象与性质是高考考查的重点和热点内容,主要从以下两个方面进行考查:1.三角函数的图象,涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;2.利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查.真 题 感 悟1.(全国Ⅰ卷)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( ) A.15B.55C.255D.1解析 由题意知cos α>0.因为cos 2α=2cos 2α-1=23,所以cos α=306,sin α=±66,得|tan α|=55.由题意知|tan α|=⎪⎪⎪⎪⎪⎪a -b 1-2,所以|a -b |=55. 答案 B2.(全国Ⅲ卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6 D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减解析 A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x +π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误. 答案 D3.(全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4解析 易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. 答案 B4.(全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π解析 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π,得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数,所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4,所以0<a ≤π4,所以a 的最大值是π4. 答案 A考 点 整 合1.常用三种函数的图象与性质(下表中k ∈Z )图象递增 区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π]⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减 区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 奇偶性 奇函数 偶函数 奇函数 对称 中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴 x =k π+π2 x =k π 周期性2π2ππ2.三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得.(2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换热点一 三角函数的定义【例1】 (1)(北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=________.(2)如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ,已知点P 的坐标为⎝ ⎛⎭⎪⎫-35,45,则sin 2α+cos 2α+11+tan α=________.解析 (1)法一 由已知得β=(2k +1)π-α(k ∈Z ). ∵sin α=13,∴sin β=sin[(2k +1)π-α]=sin α=13(k ∈Z ). 当cos α=1-sin 2α=223时,cos β=-223,∴cos(α-β)=cos αcos β+sin αsin β=223×⎝ ⎛⎭⎪⎫-223+13×13=-79. 当cos α=-1-sin 2α=-223时,cos β=223,∴cos(α-β)=cos αcos β+sin αsin β=-79.综上可知,cos(α-β)=-79.法二 由已知得β=(2k +1)π-α(k ∈Z ),∴sin β=sin[(2k +1)π-α]=sinα, cos β=cos[(2k +1)π-α]=-cos α,k ∈Z .当sin α=13时,cos(α-β)=cos αcos β+sin αsin β=-cos 2α+sin 2α=-(1-sin 2α)+sin 2α=2sin 2α-1=2×19-1=-79.(2)由三角函数定义,得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2α=2×⎝ ⎛⎭⎪⎫-352=1825. 答案 (1)-79 (2)1825探究提高 1.当角的终边所在的位置不是唯一确定的时候要注意分情况解决,机械地使用三角函数的定义就会出现错误.2.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的.【训练1】 (1)(潍坊三模)在直角坐标系中,若角α的终边经过点P ⎝ ⎛⎭⎪⎫sin 23π,cos 23π,则sin(π-α)=( ) A.12B.32C.-12D.-32(2)(北京卷)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB ︵B.CD ︵C.EF ︵D.GH ︵解析 (1)∵角α的终边过点P ⎝ ⎛⎭⎪⎫sin 23π,cos 23π,且|OP |=1.∴由三角函数定义,知sinα=cos 2π3=-12.因此sin(π-α)=sin α=-12.(2)设点P 的坐标为(x ,y ),由三角函数的定义得yx <x <y ,所以-1<x <0,0<y <1.所以P 所在的圆弧是EF ︵. 答案 (1)C (2)C 热点二 三角函数的图象 考法1 三角函数的图象变换【例2-1】 (1)要想得到函数y =sin 2x +1的图象,只需将函数y =cos 2x 的图象( )A.向左平移π4个单位长度,再向上平移1个单位长度 B.向右平移π4个单位长度,再向上平移1个单位长度 C.向左平移π2个单位长度,再向下平移1个单位长度D.向右平移π2个单位长度,再向下平移1个单位长度(2)(湖南六校联考)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2,其图象相邻两条对称轴之间的距离为π2,将函数y =f (x )的图象向左平移π3个单位长度后,得到的图象关于y 轴对称,那么函数y =f (x )的图象( )A.关于点⎝ ⎛⎭⎪⎫π12,0对称B.关于点⎝ ⎛⎭⎪⎫-π12,0对称C.关于直线x =π12对称D.关于直线x =-π12对称解析 (1)因为y =sin 2x +1=cos ⎝ ⎛⎭⎪⎫2x -π2+1=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+1,故只需将函数y =cos 2x 的图象向右平移π4个单位长度,再向上平移1个单位长度,即可得到函数y =sin 2x +1的图象. (2)由题意,T =π,ω=2.又y =f ⎝ ⎛⎭⎪⎫x +π3=sin ⎝⎛⎭⎪⎫2x +φ+2π3的图象关于y 轴对称.∴φ+2π3=k π+π2,k ∈Z . 由|φ|<π2,取φ=-π6,因此f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6,代入检验f ⎝ ⎛⎭⎪⎫π12=0,A 正确.答案 (1)B (2)A探究提高 1.“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.2.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.考法2 由函数的图象特征求解析式【例2-2】 (1)函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A.f (x )=2sin ⎝ ⎛⎭⎪⎫x -π6B.f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3C.f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π12D.f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6(2)(济南调研)函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A.1B.12C.22D.32解析 (1)由题意知A =2,T =4⎝ ⎛⎭⎪⎫5π12-π6=π,ω=2,因为当x =5π12时取得最大值2,所以2=2sin ⎝ ⎛⎭⎪⎫2×5π12+φ, 所以2×5π12+φ=2k π+π2,k ∈Z ,解得φ=2k π-π3,k ∈Z , 因为|φ|<π2,得φ=-π3. 因此函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3.(2)观察图象可知,A =1,T =π,则ω=2. 又点⎝ ⎛⎭⎪⎫-π6,0是“五点法”中的始点,∴2×⎝ ⎛⎭⎪⎫-π6+φ=0,φ=π3. 则f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3. 函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),所以x 1+x 22=π12,则x 1+x 2=π6,因此f (x 1+x 2)=sin ⎝ ⎛⎭⎪⎫2×π6+π3=32. 答案 (1)B (2)D探究提高 已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.【训练2】 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)将函数y =f (x )的图象上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再把所得的函数图象向左平移π6个单位长度,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎢⎡⎦⎥⎤0,π8上的最小值.解 (1)设函数f (x )的最小正周期为T ,由题图可知 A =1,T 2=2π3-π6=π2,即T =π,所以π=2πω,解得ω=2,所以f (x )=sin(2x +φ),又过点⎝ ⎛⎭⎪⎫π6,0,由0=sin ⎝ ⎛⎭⎪⎫2×π6+φ可得π3+φ=2k π,k ∈Z , 则φ=2k π-π3,k ∈Z ,因为|φ|<π2,所以φ=-π3,故函数f (x )的解析式为f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3. (2)根据条件得g (x )=sin ⎝ ⎛⎭⎪⎫4x +π3,当x ∈⎣⎢⎡⎦⎥⎤0,π8时,4x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6,所以当x =π8时,g (x )取得最小值,且g (x )min =12. 热点三 三角函数的性质 考法1 三角函数性质【例3-1】 (合肥质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π. (1)求函数y =f (x )图象的对称轴方程; (2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 解 (1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π,∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.探究提高 1.讨论三角函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.2.求函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间,是将ωx +φ作为一个整体代入正弦函数增区间(或减区间),求出的区间即为y =A sin(ωx +φ)的增区间(或减区间),但是当A >0,ω<0时,需先利用诱导公式变形为y =-A sin(-ωx -φ),则y =A sin(-ωx -φ)的增区间即为原函数的减区间,减区间即为原函数的增区间. 考法2 三角函数性质与图象的综合应用【例3-2】 已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π.(1)求函数f (x )的单调递增区间.(2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值. 解 (1)f (x )=2sin ωx cos ωx +3(2sin 2ωx -1) =sin 2ωx -3cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx -π3.由最小正周期为π,得ω=1, 所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,整理得k π-π12≤x ≤kx +5π12,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin 2x +1的图象;所以g (x )=2sin 2x +1.令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ),所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可.所以b 的最小值为4π+11π12=59π12.探究提高 1.研究三角函数的图象与性质,关键是将函数化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B )的形式,利用正余弦函数与复合函数的性质求解. 2.函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx +φ)|的最小正周期为T =π|ω|.【训练3】 (湖南师大附中质检)已知向量m =(2cos ωx ,-1),n =(sin ωx -cos ωx ,2)(ω>0),函数f (x )=m·n +3,若函数f (x )的图象的两个相邻对称中心的距离为π2. (1)求函数f (x )的单调增区间;(2)若将函数f (x )的图象先向左平移π4个单位,然后纵坐标不变,横坐标缩短为原来的12倍,得到函数g (x )的图象,当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,求函数g (x )的值域.解 (1)f (x )=m·n +3=2cos ωx (sin ωx -cos ωx )-2+3 =sin 2ωx -cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx -π4.依题意知,最小正周期T =π.∴ω=1,因此f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令-π2+2k π≤2x -π4≤π2+2k π,k ∈Z ,求得f (x )的增区间为⎣⎢⎡⎦⎥⎤-π8+k π,3π8+k π,k ∈Z .(2)将函数f (x )的图象先向左平移π4个单位,得y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4的图象. 然后纵坐标不变,横坐标缩短为原来的12倍,得到函数g (x )=2sin ⎝ ⎛⎭⎪⎫4x +π4的图象.故g (x )=2sin ⎝ ⎛⎭⎪⎫4x +π4,由π4≤x ≤π2,知5π4≤4x +π4≤9π4.∴-1≤sin ⎝ ⎛⎭⎪⎫4x +π4≤22.故函数g (x )的值域是[-2,1].1.已知函数y=A sin(ωx+φ)+B(A>0,ω>0)的图象求解析式(1)A=y max-y min2,B=y max+y min2.(2)由函数的周期T求ω,ω=2πT.(3)利用“五点法”中相对应的特殊点求φ.2.运用整体换元法求解单调区间与对称性类比y=sin x的性质,只需将y=A sin(ωx+φ)中的“ωx+φ”看成y=sin x中的“x”,采用整体代入求解.(1)令ωx+φ=kπ+π2(k∈Z),可求得对称轴方程;(2)令ωx+φ=kπ(k∈Z),可求得对称中心的横坐标;(3)将ωx+φ看作整体,可求得y=A sin(ωx+φ)的单调区间,注意ω的符号.3.函数y=A sin(ωx+φ)+B的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y=A sin(ωx +φ)+B(一角一函数)的形式;第二步:把“ωx+φ”视为一个整体,借助复合函数性质求y=A sin(ωx+φ)+B的单调性及奇偶性、最值、对称性等问题.一、选择题1.(全国Ⅲ卷)函数f(x)=tan x1+tan2x的最小正周期为()A.π4 B.π2 C.π D.2π解析f(x)=tan x1+tan2x=sin xcos x1+sin2xcos2x=sin x cos xcos2x+sin2x=sin x cos x=12sin 2x,所以f(x)的最小正周期T=2π2=π.答案 C2.(全国Ⅲ卷)函数f(x)=15sin⎝⎛⎭⎪⎫x+π3+cos⎝⎛⎭⎪⎫x-π6的最大值为()A.65 B.1 C.35 D.15解析 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝ ⎛⎭⎪⎫x +π3,函数的最大值为65. 答案 A3.(湖南六校联考)定义一种运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,将函数f (x )=⎪⎪⎪⎪⎪⎪2 2sin x 3 cos x 的图象向左平移φ(φ>0)个单位,所得图象对应的函数为偶函数,则φ的最小值是( ) A.π6B.π3C.2π3D.5π6解析 f (x )=2cos x -23sin x =4cos ⎝ ⎛⎭⎪⎫x +π3,依题意g (x )=f (x +φ)=4cos ⎝ ⎛⎭⎪⎫x +π3+φ是偶函数(其中φ>0).∴π3+φ=k π,k ∈Z ,则φmin =23π. 答案 C4.偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,其中△EFG 是斜边为4的等腰直角三角形(E ,F 是函数与x 轴的交点,点G 在图象上),则f (1)的值为( )A.22B.62C. 2D.2 2解析 依题设,T 2=|EF |=4,T =8,ω=π4. ∵函数f (x )=A sin(ωx +φ)为偶函数,且0<φ<π. ∴φ=π2,在等腰直角△EGF 中,易求A =2. 所以f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +π2=2cos π4x ,则f (1)= 2.答案 C5.(天津卷)将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( )A.在区间⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增B.在区间⎣⎢⎡⎦⎥⎤3π4,π上单调递减C.在区间⎣⎢⎡⎦⎥⎤5π4,3π2上单调递增D.在区间⎣⎢⎡⎦⎥⎤3π2,2π上单调递减解析 把函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度得函数g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π10+π5=sin 2x 的图象,由-π2+2k π≤2x ≤π2+2k π(k ∈Z )得-π4+k π≤x ≤π4+k π(k ∈Z ),令k =1,得3π4≤x ≤5π4,即函数g (x )=sin 2x 的一个单调递增区间为⎣⎢⎡⎦⎥⎤3π4,5π4.答案 A 二、填空题6.(江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,则φ的值是________.解析 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.因为-π2<φ<π2,所以π6<2π3+φ<7π6,则2π3+φ=π2,φ=-π6.答案 -π67.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,其中|PQ |=2 5.则f (x )的解析式为________.解析 由题图可知A =2,P (x 1,-2),Q (x 2,2),所以|PQ |=(x 1-x 2)2+(-2-2)2=(x 1-x 2)2+42=2 5.整理得|x 1-x 2|=2,所以函数f (x )的最小正周期T =2|x 1-x 2|=4,即2πω=4,解得ω=π2.又函数图象过点(0,-3),所以2sin φ=-3,即sin φ=-32.又|φ|<π2,所以φ=-π3,所以f (x )=2sin ⎝ ⎛⎭⎪⎫π2x -π3.答案 f (x )=2sin ⎝ ⎛⎭⎪⎫π2x -π38.(北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23.答案 23 三、解答题9.已知函数f (x )=4tan x sin ⎝ ⎛⎭⎪⎫π2-x ·cos ⎝ ⎛⎭⎪⎫x -π3- 3. (1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解 (1)f (x )的定义域为{x |x ≠π2+k π,k ∈Z },f (x )=4tan x cos x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π. (2)由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4.所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.10.(西安模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32.(1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π,k ∈Z ,∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23,故cos(x 1-x 2)=23.11.设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3,已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.解 (1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx=32sin ωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx=3sin ⎝ ⎛⎭⎪⎫ωx -π3.由题设知f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z ,故ω=6k +2,k ∈Z . 又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12. 因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.。
高考数学(理)二轮专题练习:三角函数、解三角形、平面向量(含答案)
三角函数、解三角形、平面向量1.α终边与θ终边相同(α的终边在θ终边所在的射线上)⇔α=θ+2k π(k ∈Z ),注意:相等的角的终边一定相同,终边相同的角不一定相等.任意角的三角函数的定义:设α是任意一个角,P (x ,y )是α的终边上的任意一点(异于原点),它与原点的距离是r =x 2+y 2>0,那么sin α=y r ,cos α=x r ,tan α=yx (x ≠0),三角函数值只与角的大小有关,而与终边上点P 的位置无关.[问题1] 已知角α的终边经过点P (3,-4),则sin α+cos α的值为________. 答案 -152.同角三角函数的基本关系式及诱导公式 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:tan α=sin αcos α.(3)诱导公式记忆口诀:奇变偶不变、符号看象限[问题2] cos 9π4+tan ⎝⎭⎫-7π6+sin 21π的值为___________________________. 答案22-333.三角函数的图象与性质 (1)五点法作图;(2)对称轴:y =sin x ,x =k π+π2,k ∈Z ;y =cos x ,x =k π,k ∈Z ;对称中心:y =sin x ,(k π,0),k ∈Z ;y =cos x ,⎝⎛⎭⎫k π+π2,0,k ∈Z ;y =tan x ,⎝⎛⎭⎫k π2,0,k ∈Z . (3)单调区间:y =sin x 的增区间:⎣⎡⎦⎤-π2+2k π,π2+2k π (k ∈Z ), 减区间:⎣⎡⎦⎤π2+2k π,3π2+2k π (k ∈Z );y =cos x 的增区间:[]-π+2k π,2k π (k ∈Z ), 减区间:[2k π,π+2k π] (k ∈Z );y =tan x 的增区间:⎝⎛⎭⎫-π2+k π,π2+k π (k ∈Z ). (4)周期性与奇偶性:y =sin x 的最小正周期为2π,为奇函数;y =cos x 的最小正周期为2π,为偶函数;y =tan x 的最小正周期为π,为奇函数.易错警示:求y =A sin(ωx +φ)的单调区间时,容易出现以下错误: (1)不注意ω的符号,把单调性弄反,或把区间左右的值弄反; (2)忘掉写+2k π,或+k π等,忘掉写k ∈Z ;(3)书写单调区间时,错把弧度和角度混在一起.如[0,90°]应写为⎣⎡⎦⎤0,π2. [问题3] 函数y =sin ⎝⎛⎭⎫-2x +π3的递减区间是________. 答案 ⎣⎡⎦⎤k π-π12,k π+512π(k ∈Z ) 4.两角和与差的正弦、余弦、正切公式及倍角公式 sin(α±β)=sin αcos β±cos αsin β――→令α=βsin 2α=2sin αcos α.cos(α±β)=cos αcos β∓sin αsin β――→令α=βcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan(α±β)=tan α±tan β1∓tan αtan β.cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,tan 2α=2tan α1-tan 2α.在三角的恒等变形中,注意常见的拆角、拼角技巧,如: α=(α+β)-β,2α=(α+β)+(α-β), α=12[(α+β)+(α-β)].α+π4=(α+β)-⎝⎛⎭⎫β-π4,α=⎝⎛⎭⎫α+π4-π4. [问题4] 已知α,β∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=1213,则cos ⎝⎛⎭⎫α+π4=________. 答案 -56655.解三角形(1)正弦定理:a sin A =b sin B =csin C =2R (R 为三角形外接圆的半径).注意:①正弦定理的一些变式:(ⅰ)a ∶b ∶c =sin A ∶sin B ∶sin C ;(ⅱ)sin A =a 2R ,sin B =b 2R ,sin C =c2R;(ⅲ)a =2R sin A ,b =2R sin B ,c =2R sin C ;②已知三角形两边及一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解,要结合具体情况进行取舍.在△ABC 中A >B ⇔sin A >sin B .(2)余弦定理:a 2=b 2+c 2-2bc cos A ,cos A =b 2+c 2-a 22bc等,常选用余弦定理鉴定三角形的形状.[问题5] 在△ABC 中,a =3,b =2,A =60°,则B =________. 答案 45°6.向量的平行与垂直设a =(x 1,y 1),b =(x 2,y 2),且b ≠0,则a ∥b ⇔b =λa ⇔x 1y 2-x 2y 1=0. a ⊥b (a ≠0)⇔a·b =0⇔x 1x 2+y 1y 2=0.0看成与任意向量平行,特别在书写时要注意,否则有质的不同.[问题6] 下列四个命题:①若|a |=0,则a =0;②若|a |=|b |,则a =b 或a =-b ;③若a ∥b ,则|a |=|b |;④若a =0,则-a =0.其中正确命题是________. 答案 ④ 7.向量的数量积 |a |2=a 2=a·a ,a·b =|a||b |cos θ=x 1x 2+y 1y 2, cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22,a 在b 上的投影=|a |cos 〈a ,b 〉=a·b |b|=x 1x 2+y 1y 2x 22+y 22. 注意:〈a ,b 〉为锐角⇔a·b >0且a 、b 不同向; 〈a ,b 〉为直角⇔a·b =0且a 、b ≠0; 〈a ,b 〉为钝角⇔a·b <0且a 、b 不反向.易错警示:投影不是“影”,投影是一个实数,可以是正数、负数或零.[问题7] 已知|a |=3,|b |=5,且a ·b =12,则向量a 在向量b 上的投影为________. 答案1258.当a ·b =0时,不一定得到a ⊥b ,当a ⊥b 时,a ·b =0;a ·b =c ·b ,不能得到a =c ,消去律不成立;(a ·b )c 与a (b ·c )不一定相等,(a ·b )c 与c 平行,而a (b ·c )与a 平行.[问题8] 下列各命题:①若a ·b =0,则a 、b 中至少有一个为0;②若a ≠0,a ·b =a ·c ,则b =c ;③对任意向量a 、b 、c ,有(a ·b )c ≠a (b ·c );④对任一向量a ,有a 2=|a |2.其中正确命题是________. 答案 ④9.几个向量常用结论:①P A →+PB →+PC →=0⇔P 为△ABC 的重心;②P A →·PB →=PB →·PC →=PC →·P A →⇔P 为△ABC 的垂心; ③向量λ(AB →|AB →|+AC→|AC →|) (λ≠0)所在直线过△ABC 的内心;④|P A →|=|PB →|=|PC →|⇔P 为△ABC 的外心.易错点1 图象变换方向或变换量把握不准致误例1 要得到y =sin(-3x )的图象,需将y =22(cos 3x -sin 3x )的图象向______平移______个单位(写出其中的一种特例即可). 错解 右 π4或右 π12找准失分点 y =22(cos 3x -sin 3x )=sin ⎝⎛⎭⎫π4-3x =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12. 题目要求是由y =sin ⎝⎛⎭⎫-3x +π4→y =sin(-3x ). 右移π4平移方向和平移量都错了;右移π12平移方向错了.正解 y =22(cos 3x -sin 3x )=sin ⎝⎛⎭⎫π4-3x =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12, 要由y =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12得到y =sin(-3x )只需对x 加上π12即可,因而是对y =22(cos 3x -sin 3x )向左平移π12个单位.答案 左π12易错点2 忽视隐含条件的挖掘致误例2 已知cos α=17,sin(α+β)=5314,0<α<π2,0<β<π2,求cos β.错解 由0<α<π2,0<β<π2,得0<α+β<π,则cos(α+β)=±1114.由cos α=17,0<α<π2,得sin α=437.故cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)·sin α=7198或12.找准失分点 由0<α+β<π,且sin(α+β)=5314<32,∴0<α+β<π3或2π3<α+β<π,又cos α=17<12,∴π3<α<π2,即α+β∈⎝⎛⎭⎫2π3,π,∴cos(α+β)=-1114. 正解 ∵0<α<π2且cos α=17<cos π3=12,∴π3<α<π2,又0<β<π2, ∴π3<α+β<π,又sin(α+β)=5314<32, ∴2π3<α+β<π. ∴cos(α+β)=-1-sin 2(α+β)=-1114,sin α=1-cos 2α=437. ∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=12.易错点3 忽视向量共线致误例3 已知a =(2,1),b =(λ,1),λ∈R ,a 与b 的夹角为θ.若θ为锐角,则λ的取值范围是__________.错解 ∵cos θ=a·b|a|·|b |=2λ+15·λ2+1.因θ为锐角,有cos θ>0, ∴2λ+15·λ2+1>0⇒2λ+1>0,得λ>-12,λ的取值范围是⎝⎛⎭⎫-12,+∞. 找准失分点 θ为锐角,故0<cos θ<1,错解中没有排除cos θ=1即共线且同向的情况. 正解 由θ为锐角,有0<cos θ<1. 又∵cos θ=a·b|a|·|b |=2λ+15·λ2+1,∴0<2λ+15·λ2+1≠1,∴⎩⎨⎧2λ+1>0,2λ+1≠5·λ2+1,解得⎩⎪⎨⎪⎧λ>-12,λ≠2.∴λ的取值范围是⎩⎨⎧⎭⎬⎫λ|λ>-12且λ≠2.答案 ⎩⎨⎧⎭⎬⎫λ|λ>-12且λ≠21.(2014·大纲全国)已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35D .-45答案 D解析 因为角α的终边经过点(-4,3),所以x =-4,y =3,r =5,所以cos α=x r =-45.2.(2014·大纲全国)设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >a D .c >a >b 答案 C解析 ∵a =sin 33°,b =cos 55°=sin 35°,c =tan 35°=sin 35°cos 35°,又0<cos 35°<1,∴c >b >a .3.已知sin θ+cos θ=43 (0<θ<π4),则sin θ-cos θ的值为( )A.23 B .-23 C.13 D .-13答案 B解析 ∵sin θ+cos θ=43,∴(sin θ+cos θ)2=1+sin 2θ=169,∴sin 2θ=79,又0<θ<π4,∴sin θ<cos θ.∴sin θ-cos θ=-(sin θ-cos θ)2 =-1-sin 2θ=-23. 4.已知a ,b 是单位向量,a ·b =0,若向量c 满足|c -a -b |=1,则|c |的取值范围是( ) A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .[1,2+2]答案 A解析 ∵a ·b =0,且a ,b 是单位向量,∴|a |=|b |=1. 又∵|c -a -b |2=c 2-2c ·(a +b )+2a ·b +a 2+b 2=1, ∴2c ·(a +b )=c 2+1.∵|a |=|b |=1且a ·b =0,∴|a +b |=2, ∴c 2+1=22|c |cos θ(θ是c 与a +b 的夹角). 又-1≤cos θ≤1,∴0<c 2+1≤22|c |, ∴c 2-22|c |+1≤0, ∴2-1≤|c |≤2+1.5.函数f (x )=A sin(2x +φ)(A ,φ∈R )的部分图象如图所示,那么f (0)等于( ) A .-12B .-1C .-32D .- 3答案 B解析 由题图可知,函数的最大值为2,因此A =2. 又因为函数经过点⎝⎛⎭⎫π3,2,则2sin ⎝⎛⎭⎫2×π3+φ=2, 即2×π3+φ=π2+2k π,k ∈Z ,得φ=-π6+2k π,k ∈Z .f (0)=2sin φ=2sin ⎝⎛⎭⎫-π6+2k π=-1. 6.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( ) A.32 B.22 C.12 D .-12答案 C解析 ∵cos C =a 2+b 2-c 22ab =c 22ab ,又∵a 2+b 2≥2ab ,∴2ab ≤2c 2. ∴cos C ≥12.∴cos C 的最小值为12.7.(2014·山东)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为________.答案 16解析 已知A =π6,由题意得|AB →||AC →|cos π6=tan π6,|AB →||AC →|=23,所以△ABC 的面积S =12|AB →||AC →|sin π6=12×23×12=16. 8.(2014·江苏)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是________. 答案 π6解析 由题意,得sin ⎝⎛⎭⎫2×π3+φ=cos π3, 因为0≤φ<π,所以φ=π6.9.已知函数f (x )=A sin(ω+φ),x ∈R (其中A >0,ω>0,-π2<φ<π2),其部分图象如图所示.若横坐标分别为-1,1,5的三点M ,N ,P 都在函数f (x )的图象上,记∠MNP =θ,则cos 2θ的值是________. 答案 -725解析 由图可知,A =1,f (x )的最小正周期T =8, 所以T =2πω=8,即ω=π4.又f (1)=sin(π4+φ)=1,且-π2<φ<π2,所以-π4<φ+π4<3π4,即φ+π4=π2,所以φ=π4.所以f (x )=sin π4(x +1).因为f (-1)=0,f (1)=1,f (5)=-1, 所以M (-1,0),N (1,1),P (5,-1).所以NM →=(-2,-1),NP →=(4,-2),NM →·NP →=-6,|NM →|=5,|NP →|=25, 则cos ∠MNP =NM →·NP →|NM →|·|NP →|=-35,即cos θ=-35.于是cos 2θ=2cos 2θ-1=-725. 10.(2014·天津)已知函数f (x )=cos x ·sin(x +π3)-3cos 2x +34,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在闭区间[-π4,π4]上的最大值和最小值.解 (1)由已知,有f (x )=cos x ·(12sin x +32cos x )-3cos 2x +34=12sin x ·cos x -32cos 2x +34 =14sin 2x -34(1+cos 2x )+34 =14sin 2x -34cos 2x =12sin(2x -π3). 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间[-π4,-π12]上是减函数,在区间[-π12,π4]上是增函数,f (-π4)=-14,f (-π12)=-12,f (π4)=14,所以,函数f (x )在闭区间[-π4,π4]上的最大值为14,最小值为-12.。
高考数学二轮复习考点知识讲解与练习29---三角函数与解三角形热点问题
高考数学二轮复习考点知识讲解与练习第29讲三角函数与解三角形热点问题核心热点真题印证核心素养三角函数的图象与性质2022·全国Ⅰ,7;2022·全国Ⅲ,16;2022·天津,8;2019·全国Ⅰ,11;2019·北京,9;2019·全国Ⅲ,12;2019·天津,7;2018·全国Ⅱ,10;2018·全国Ⅰ,16;2018·全国Ⅲ,15直观想象、逻辑推理三角恒等变换2022·全国Ⅰ,9;2022·全国Ⅱ,2;2022·全国Ⅲ,9;2019·全国Ⅱ,10;2019·浙江,18;2018·浙江,18;2018·江苏,16;2018·全国Ⅱ,15;2018·全国Ⅲ,4逻辑推理、数学运算解三角形2022·全国Ⅰ,16;2022·全国Ⅲ,7;2022·北京,17;2022·天津,16;2022·新高考山东,17;2022·浙江,18;2019·全国Ⅰ,17;2019·全国Ⅲ,18;2019·北逻辑推理、数学运算京,15;2019·江苏,15;2018·全国Ⅰ,17三角函数的图象与性质(必修4P147复习参考题A 组第9题、第10题)题目9 已知函数y =(sin x +cos x )2+2cos 2x . (1)求它的递减区间; (2)求它的最大值和最小值.题目10 已知函数f (x )=cos 4x -2sin x cos x -sin 4x . (1)求f (x )的最小正周期;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求f (x )的最小值及取得最小值时x 的集合.[试题评析]两个题目主要涉及三角恒等变换和三角函数的性质,题目求解的关键在于运用二倍角公式及两角和公式化为y =A sin(ωx +φ)+k 的形式,然后利用三角函数的性质求解. 【教材拓展】 已知函数f (x )=4tan x sin ⎝ ⎛⎭⎪⎫π2-x ·cos ⎝ ⎛⎭⎪⎫x -π3- 3.(1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解 (1)f (x )的定义域为{x |x ≠π2+k π,k ∈Z}, f (x )=4tan x cos x cos ⎝⎛⎭⎪⎫x -π3- 3=4sin x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x -3cos 2x =2sin ⎝⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π. (2)由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z),得-π12+k π≤x ≤5π12+k π(k ∈Z).设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4. 所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.探究提高 1.将f (x )变形为f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3是求解的关键,(1)利用商数关系统一函数名称;(2)活用和、差、倍角公式化成一复角的三角函数.2.把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.【链接高考】(2019·浙江卷)设函数f (x )=sin x ,x ∈R. (1)已知θ∈[0,2π),函数f (x +θ)是偶函数,求θ的值;(2)求函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42的值域.解 (1)因为f (x +θ)=sin(x +θ)是偶函数, 所以,对任意实数x 都有sin(x +θ)=sin(-x +θ), 即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ, 故2sin x cos θ=0,所以cos θ=0. 又θ∈[0,2π),因此θ=π2或3π2. (2)y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42=sin 2⎝ ⎛⎭⎪⎫x +π12+sin 2⎝⎛⎭⎪⎫x +π4=12⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫2x +π6+12⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫2x +π2=1-12⎝ ⎛⎭⎪⎫32cos 2x -32sin 2x=1-32cos ⎝⎛⎭⎪⎫2x +π3.由于x ∈R ,知cos ⎝ ⎛⎭⎪⎫2x +π3∈[-1,1],因此,所求函数的值域为⎣⎢⎡⎦⎥⎤1-32,1+32.三角函数与平面向量【例题】(2021·湘赣十四校联考)已知向量m =(sin x ,-1),n =(3,cos x ),且函数f (x )=m ·n .(1)若x ∈⎝⎛⎭⎪⎫0,π2,且f (x )=23,求sin x 的值;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =7,△ABC 的面积为332,且f ⎝⎛⎭⎪⎫A +π6=73b sin C ,求△ABC 的周长.[自主解答]解 (1)f (x )=m ·n =(sin x ,-1)·(3,cos x ) =3sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π6.∵f (x )=23,∴sin ⎝⎛⎭⎪⎫x -π6=13.又∵x ∈⎝ ⎛⎭⎪⎫0,π2,∴x -π6∈⎝ ⎛⎭⎪⎫-π6,π3,∴cos ⎝⎛⎭⎪⎫x -π6=223.∴sin x =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -π6+π6=13×32+223×12=3+226. (2)∵f ⎝⎛⎭⎪⎫A +π6=73b sin C , ∴2sin A =73b sin C ,即6sin A =7b sin C . 由正弦定理可知6a =7bc . 又∵a =7,∴bc =6.由已知△ABC 的面积等于12bc sin A =332,∴sin A =32. 又∵A ∈⎝⎛⎭⎪⎫0,π2,∴A =π3.由余弦定理,得b 2+c 2-2bc cos A =a 2=7,故b 2+c 2=13, ∴(b +c )2=25,∴b +c =5, ∴△ABC 的周长为a +b +c =5+7.探究提高 1.破解平面向量与“三角”相交汇题的常用方法是“化简转化法”,即先利用三角公式对三角函数式进行“化简”;然后把以向量共线、向量垂直、向量的数量积运算等形式出现的条件转化为三角函数式;再活用正、余弦定理对边、角进行互化. 2.这种问题求解的难点一般不是向量的运算,而是三角函数性质、恒等变换及正、余弦定理的应用,只不过它们披了向量的“外衣”.【尝试训练】(2021·沧州质检)已知a =(53cos x ,cos x ),b =(sin x,2cos x ),函数f (x )=a ·b +|b |2.(1)求函数f (x )的最小正周期; (2)求函数f (x )的单调减区间;(3)当π6≤x ≤π2时,求函数f (x )的值域.解 f (x )=a ·b +|b |2=53cos x sin x +2cos 2x +sin 2x +4cos 2x =53sin x cos x +sin 2x +6cos 2x =532sin 2x +1-cos 2x 2+3(1+cos 2x ) =532sin 2x +52cos 2x +72=5sin ⎝⎛⎭⎪⎫2x +π6+72.(1)f (x )的最小正周期T =2π2=π. (2)由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z)得k π+π6≤x ≤k π+2π3(k ∈Z).∴f (x )的单调减区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z).(3)∵π6≤x ≤π2,∴π2≤2x +π6≤7π6,∴-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1, ∴1≤5sin ⎝⎛⎭⎪⎫2x +π6+72≤172. ∴当π6≤x ≤π2时,函数f (x )的值域为⎣⎢⎡⎦⎥⎤1,172.解三角形【例题】(12分)(2022·全国Ⅱ卷)△ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求△ABC 周长的最大值. [规范解答]解 (1)由正弦定理和已知条件得用正弦定理化角为边BC 2-AC 2-AB 2=AC ·AB .①2′由余弦定理得BC 2=AC 2+AB 2-2AC ·AB cos A .② 由①②得cos A =-12. 用余弦定理化边为角4′因为0<A <π,所以A =2π3.6′ (2)由正弦定理及(1)得AC sin B=AB sin C=BC sin A=23,8′从而AC =23sin B ,AB =23sin(π-A -B )=3cos B -3sin B . 故BC +AC +AB =3+3sin B +3cos B=3+23sin ⎝ ⎛⎭⎪⎫B +π3. 两角和正弦公式的逆用10′又0<B <π3,所以当B =π6时,△ABC 周长取得最大值3+2 3. 三角函数性质的应用12′❶写全得步骤分:对于解题过程中得分点的步骤有则给分,无则没分,所以得分点步骤一定要写全,如第(1)问中只要写出0<A <π就有分,没写就扣1分,第(2)问中0<B <π3也是如此.❷写明得关键分:对于解题过程中的关键点,有则给分,无则没分,所以在答题时要写清得分关键点,如第(1)问中由正弦定理得BC 2-AC 2-AB 2=AC ·AB ,由余弦定理得BC 2=AC 2+AB 2-2AC ·AB ·cos A ,第(2)问中ACsin B=AB sin C=BC sin A=23等.❸保证正确得计算分:解题过程中计算准确,是得满分的根本保证,如第(1)问中,cos A =-12,若计算错误,则第(1)问最多2分;再如第(2)问3+3sin B +3cos B =3+23sin ⎝⎛⎭⎪⎫B +π3化简如果出现错误,则第(2)问最多得2分.……利用正弦、余弦定理,对条件式进行边角互化……由三角函数值及角的范围求角……由正弦、余弦定理及条件式实现三角恒等变换……利用角的范围和三角函数性质求出最值……检验易错易混,规范解题步骤得出结论【规范训练】(2022·浙江卷)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知2b sin A -3a =0. (1)求角B 的大小;(2)求cos A +cos B +cos C 的取值范围. 解 (1)由正弦定理,得2sin B sin A =3sin A ,故sin B =32,由题意得B =π3. (2)由A +B +C =π,得C =2π3-A . 由△ABC 是锐角三角形,得A ∈⎝ ⎛⎭⎪⎫π6,π2 .由cos C =cos ⎝⎛⎭⎪⎫2π3-A =-12cos A +32sin A ,得 cos A +cos B +cos C =32sin A +12cos A +12=sin ⎝⎛⎭⎪⎫A +π6+12∈⎝⎛⎦⎥⎤3+12,32. 故cos A +cos B +cos C 的取值范围是⎝ ⎛⎦⎥⎤3+12,32.1.(2019·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a , 3c sin B =4a sin C . (1)求cos B 的值; (2)求sin ⎝ ⎛⎭⎪⎫2B +π6的值.解 (1)在△ABC 中,由正弦定理b sin B=c sin C,得b sin C =c sin B .又由3c sin B =4a sin C , 得3b sin C =4a sin C ,即3b =4a . 因为b +c =2a ,所以b =43a ,c =23a . 由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a =-14. (2)由(1)可得sin B =1-cos 2B =154, 从而sin 2B =2sin B cos B =-158, cos 2B =cos 2B -sin 2B =-78, 故sin ⎝⎛⎭⎪⎫2B +π6=sin 2B cos π6+cos 2B sin π6 =-158×32-78×12=-35+716. 2.已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R.(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.解 (1)f (x )=2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝⎛⎭⎪⎫2x +π3, 令2k π≤2x +π3≤2k π+π(k ∈Z), 解得k π-π6≤x ≤k π+π3(k ∈Z), ∴函数y =f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z). (2)∵f (A )=1+2cos ⎝⎛⎭⎪⎫2A +π3=-1, ∴cos ⎝⎛⎭⎪⎫2A +π3=-1,又π3<2A +π3<7π3, ∴2A +π3=π,即A =π3. ∵a =7,∴由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①∵向量m =(3,sin B )与n =(2,sin C )共线,∴2sin B =3sin C ,由正弦定理得2b =3c ,②由①②得b =3,c =2.3.已知函数f (x )=cos x (cos x +3sin x ).(1)求f (x )的最小值;(2)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若f (C )=1,S △ABC =334,c =7,求△ABC 的周长.解 (1)f (x )=cos x (cos x +3sin x )=cos 2x +3sin x cos x =1+cos 2x 2+32sin 2x =12+sin ⎝⎛⎭⎪⎫2x +π6. 当sin ⎝⎛⎭⎪⎫2x +π6=-1时,f (x )取得最小值-12. (2)f (C )=12+sin ⎝ ⎛⎭⎪⎫2C +π6=1,∴sin ⎝⎛⎭⎪⎫2C +π6=12, ∵C ∈(0,π),2C +π6∈⎝ ⎛⎭⎪⎫π6,13π6,∴2C +π6=5π6,∴C =π3.∵S △ABC =12ab sin C =334,∴ab =3. 又(a +b )2-2ab cos π3=7+2ab , ∴(a +b )2=16,即a +b =4,∴a +b +c =4+7, 故△ABC 的周长为4+7.4.(2021·东北三省三校联考)已知在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若b 2tan A =a 2tan B ,2sin 2A +B 2=1+cos 2C .(1)求角A 的大小; (2)若点D 为AB 上一点,满足∠BCD =45°,且CD =32-6,求△ABC 的面积. 解 (1)由2sin 2A +B2=1+cos 2C 得1-cos(A +B )=2cos 2C ,即2cos 2C -cos C -1=0, 解得cos C =-12(cos C =1舍去),故C =120°. 因为asin A =bsin B ,b 2tan A =a 2tan B ,所以sin 2B sin A cos A =sin 2A sin B cos B, 即sin A ·cos A =sin B cos B ,故sin 2A =sin 2B ,因此A =B 或A +B =90°(舍去),故A =30°.(2)由(1)知△ABC 为等腰三角形,设BC =AC =m ,由S △ABC =S △ACD +S △BCD 得12m 2·sin 120°=12m · CD ·sin 45°+12m ·CD ·sin 75°,整理得32m=CD⎝⎛⎭⎪⎫22+2+64=()32-6×32+64,解得m=23,故S△ABC=12m2·sin 120°=3 3.5.(2021·郑州调研)已知△ABC的内角A,B,C所对的边分别是a,b,c,其面积S=b2+c2-a24.(1)若a=6,b=2,求cos B;(2)求sin(A+B)+sin B cos B+cos(B-A)的最大值.解(1)∵S=b2+c2-a24,∴12bc sin A=b2+c2-a24,即sin A=b2+c2-a22bc=cos A,则tan A=1,又A∈(0,π),∴A=π4.由正弦定理asin A =bsin B,得622=2sin B,∴sin B=66,又a>b,∴cos B=1-16=306.(2)由第(1)问可知,A=π4,sin(A +B )+sin B cos B +cos(B -A )=sin ⎝ ⎛⎭⎪⎫B +π4+sin B cos B +cos ⎝⎛⎭⎪⎫B -π4 =22sin B +22cos B +sin B cos B +22cos B +22sin B =2(sin B +cos B )+sin B cos B ,令t =sin B +cos B ,则t 2=1+2sin B cos B ,sin(A +B )+sin B cos B +cos(B -A )=2t +12(t 2-1), 令y =12t 2+2t -12=12(t +2)2-32,t ∈(0,2], ∴当t =2,即B =π4时, sin(A +B )+sin B cos B +cos(B -A )取得最大值52.。
高考数学复习第3章三角函数与解三角形第2讲同角三角函数的基本关系式与诱导公式
考向 3 证明
例 4:求证:tatannαα-·ssininαα=tatannαα+·ssininαα.
证明:方法一,右边= tan
tan2α-sin2α α-sin α·tan αsin
α
=tantaαn-2α-sintaαn2·αtacnosα2sαin
α=tan
tan2α1-cos2α α-sin α·tan αsin
10°cos 10° 1-cos210°.
解:原式= csoisn1100°°--|scions1100°°|2=
|sin cos
10°-cos 10°-sin
10°|=cos 10° cos
10°-sin 10°-sin
1100°°=1.
【规律方法】化简三角函数式应看清式子的结构特征并作 有目的的变形,注意“1”的代换、乘法公式、切化弦等变形技巧, 对于有平方根的式子,去掉根号的同时加绝对值号再化简.
答案:C
【规律方法】已知sin α,cos α,tan α三个三角函数值中的 一个,就可以求另外两个.但在利用平方关系开方时,符号的选 择要看α属于哪个象限,这是易出错的地方,应引起重视.而当 角α的象限不确定时,则需分象限讨论,不要遗漏终边在坐标轴 上的情况.
考向 2 化简
例
3:化简:cos11-0°2-sin
考点 2 同角三角函数基本关系式 考向 1 三角函数求值 例 2:(1)(2019 年新课标Ⅱ)已知 α∈0,π2,2sin 2α=cos 2α +1,则 sin α=( )
1
5
A.5
B. 5
3 C. 3
25 D. 5
解析:2sin 2α=cos 2α+1,即4sin αcos α=2cos2α, 则 2sin α=cos α, 联立2sisnin2αα+=ccoos2sαα=,1 ,得 sin α=± 55, 又 α∈0,π2,∴sin α= 55. 答案:B
2023年高考数学二轮复习第二篇经典专题突破专题一三角函数和解三角形第1讲三角函数的图象和性质
返回导航
专题一 三角函数和解三角形
高考二轮总复习 • 数学
所以 ω=-16+23k,k∈Z, 所以 ω=52,f(x)=sin 52x+π4+2, 所以 fπ2=sin 54π+π4+2=1. 故选 A.
返回导航
专题一 三角函数和解三角形
高考二轮总复习 • 数学
返回导航
2.(2022·全国甲卷)设函数 f(x)=sin ωx+π3在区间(0,π)恰有三个极
返回导航
【解析】 f′(x)=-sin x+sin x+(x+1)cos x=(x+1)cos x,所以 f(x) 在区间0,π2和32π,2π上 f′(x)>0,即 f(x)单调递增;在区间π2,32π上 f′(x)<0, 即 f(x)单调递减,又 f(0)=f(2π)=2,fπ2=π2+2,f32π=-32π+1+1=- 32π,所以 f(x)在区间[0,2π]上的最小值为-32π,最大值为π2+2.故选 D.
值点、两个零点,则 ω 的取值范围是
( C)
A.53,163
B.53,169
C.163,83
D.163,169
专题一 三角函数和解三角形
高考二轮总复习 • 数学
返回导航
【解析】 依题意可得 ω>0,因为 x∈(0,π),所以 ωx+π3∈π3,ωπ+π3,
要使函数在区间(0,π)恰有三个极值点、两个零点,
又 y=sin x,x∈π3,3π的图象如下所示:
则52π<ωπ+π3≤3π,解得163<ω≤83,即 ω∈163,83.故选 C.
专题一 三角函数和解三角形
高考二轮总复习 • 数学
返回导航
3.(2022·全国甲卷)将函数 f(x)=sin ωx+π3(ω>0)的图象向左平移π2个 单位长度后得到曲线 C,若 C 关于 y 轴对称,则 ω 的最小值是 ( C )
高考数学二轮复习专题篇素养提升 专题1三角函数三角恒等变换与解三角形第2讲三角恒等变换与解三角形文理
②由 f(x)=12sin2x-π6= 63,
得 sin2x-π6= 33,
∵x∈0,π4,∴-π6≤2x-π6≤π3,
∴cos2x-π6=
6 3.
∴cos 2x=cos2x-π6+π6 =cos2x-π6× 23-sin2x-π6×21 = 36× 23- 33×12= 22- 63.
三角恒等变换的“四大策略” (1)常值代换:特别是“1”的代换, 1=sin2θ+cos2θ=tan 45°等. (2)项的拆分与角的配凑: 如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等. (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化:一般是切化弦.
分值 10 12 10
年份 卷别 Ⅰ卷
2019 Ⅱ卷 Ⅲ卷 Ⅰ卷
2018 Ⅱ卷 Ⅲ卷
题号
考查角度
分值
17 正余弦定理
12
二倍角公式、基本关系式、余弦定理、
15
5
三角形面积公式
18
正余弦定理、三角形面积公式
12
17
正余弦定理、解三角形
12
二倍角、辅助角公式、基本关系式、
10、15 和的正弦公式、余弦定理
10°=
典例1
A.34
(1)(2020·全国Ⅱ卷模拟)cos2 40°+2sin 35°sin 55°sin
( A)
B.14
C.12+
3 2
D.3
3 4
(2)(2020·宜宾模拟)已知 α∈0,π2,且 3sin2α-5cos2α+sin 2α=0,则
sin 2α+cos 2α=
( A)
A.1
B.-2137
新高考新教材数学二轮复习六大核心专题1三角函数与解三角形解答题专项1三角函数与解三角形pptx课件
π
φ=-6.
考点二
利用正弦、余弦定理解三角形
考向1 求三角形中的边或角
例 2(2023 北京海淀一模)在△ABC 中,bsin2A= 3asinB.
(1)求 A;
(2)若△ABC 的面积为 3 3,再从条件①、条件②、条件③这三个条件中选择
一个作为已知,使△ABC 存在且唯一确定,求 a 的值.
1
∵0<B<π,∴sinB≠0,则 cosA=-2.
2π
∵0<A<π,∴A= . ........................................................................................ 10
3
1
1
2π
1
3
3
由(1)知 bc=1,故 S△ABC=2bcsinA=2×1×sin 3 = 2×1× 2 = 4 . ................... 12
4
2
3
4
π
3
π
π
π
2π
整理得 sin(2x+3)= 2 ,即 2x+3=2kπ+3或 2x+3=2kπ+ 3 (k∈Z),
π
π
2π
π
当 k=0 时,2x+ = 或 ,即 x=0 或 ;
3
3
3
6
7π
当 k=1 时,x=π 或 6 .
π
7π
7π
故所有零点之和为 0+ +π+ = .
6
6
3
增分技巧1.三角恒等变换在三角函数图象与性质中应用的基本思路:通过
2024届高考数学二轮复习专题1三角函数与解三角形课件
即 cos A=-12,
由 A 为三角形内角得 A=23π,
△ABC
面积
S=12bcsin
A=12×1×
23=
3 4.
专题一 三角函数与平面向量
类型四 平面向量及其应用
1.(2023·新课标Ⅰ卷)已知向量 a=(1,1),b=(1,-1).若(a+λb)⊥(a+μb),
则( )
A.λ+μ=1
B.λ+μ=-1
A.79 解析:因为
sin
B.19 (α-β)=sin
αcos
C.-19 β-sin βcos
α=13,
cos αsin β=16,
所以 sin αcos β=12,
所以 sin(α+β)=sin αcos β+sin βcos α=12+16=23,
则 cos(2α+2β)=1-2sin2(α+β)=1-2×49=19.
答案:-
3 2
专题一 三角函数与平面向量
3.(2023·全国甲卷)函数 y=f(x)的图象由函数 y=cos (2x+π6)的图象向左平移π6个
单位长度得到,则 y=f(x)的图象与直线 y=12x-12的交点个数为( )
A.1
B.2
C.3
D.4
解析:把函数 y=cos(2x+π6)向左平移π6个单位可得 函数 f(x)=cos(2x+π2)=-sin 2x 的图象, 而直线 y=12x-12=12(x-1)经过点(1,0),且斜率为12,
Bcos Bcos
AA-ssiinn
CB=1,所以ssiinn
((AA-+BB))-
sin sin
CB=sin
(A-sinBC)-sinB=1,
专题一 三角函数与平面向量
高考数学二轮总复习第1篇核心专题提升多维突破专题1三角函数与解三角形微专题解三角形中的结构不良问题
题型选讲 题型一 研究三角形是否存在的问题
典例1 (2023·海南省直辖县级单位统考模拟预测)在△ABC 中,
角 A,B,C 的对边分别为 a,b,c,2sin2B+2 C=1+sin A.
∵0<B<23π, ∴B+π6∈π6,56π, ∴sinB+π6∈12,1, 故 cos B+cos C 的最大值为 1.
典例5 在①c(sin A-sin C)=(a-b)(sin A+sin B),②2bcos A+a
=2c,③2 3
3 acsin
B=a2+c2-b2 三个条件中任选一个,补充在下面问题
5.所涉及的概念、规则和原理不确定.“解三角形”属于三角 形、三角函数、三角恒等变换的知识的范畴,与学生学习、生活紧密相 连,具有广泛的命题背景,可以设置数学内部或外部、简单或复杂、形 式多样的结构不良问题.主要考查理性思维、运算求解、数学探究、数 学抽象、数学建模等学科素养.
解题策略
1.题目所给的三个可选择的条件是平行的,无论选择哪个条件, 都可以解答题目;
(注意:如果选择多个条件分别解答,按第一个解答计分.)
【解析】
若选①:2a-3b3c=ccooss
CB,2sin
A- 3sin
3sin B
C=ccooss
CB,2sin
Acos B= 3sin(B+C)= 3sin(π-A)= 3sin A,
cos B= 23,B=π6; 若选②:sisninAB-+s3isninCC=b-a c,a-b+c3c=b-a c,b2=a2+c2- 3ac,
2019版高考数学复习三角函数解三角形3.6正弦定理和余弦定理学案理
3.6 正弦定理和余弦定理[知识梳理]1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则2.在△ABC中,已知a,b和A时,三角形解的情况3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =12ac sin B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).4.在△ABC 中,常有的结论 (1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边. [诊断自测] 1.概念思辨(1)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( )(2)在△ABC 中,a sin A =a +b -csin A +sin B -sin C.( )(3)若a ,b ,c 是△ABC 的三边,当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )(4)在△ABC 中,若sin A sin B <cos A cos B ,则此三角形是钝角三角形.( ) 答案 (1)√ (2)√ (3)√ (4)√ 2.教材衍化(1)(必修A5P 10A 组T 4)在△ABC 中,a =4,b =5,c =6,则sin2Asin C =________.答案 1解析 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =4∶5∶6,又由余弦定理知cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin2A sin C =2sin A cos A sin C =2×46×34=1. (2)(必修A5P 20A 组T 11)若锐角△ABC 的面积为103,且AB =5,AC =8,则BC 等于________.答案 7解析 因为△ABC 的面积S △ABC =12AB ·AC sin A ,所以103=12×5×8sin A ,解得sin A =32,因为角A 为锐角,所以cos A =12.根据余弦定理,得BC 2=52+82-2×5×8cos A =52+82-2×5×8×12=49,所以BC =7.3.小题热身(1)(2016·天津高考)在△ABC 中,若AB =13,BC =3,∠C =120°,则AC =( ) A .1 B .2 C .3 D .4 答案 A解析 在△ABC 中,设A ,B ,C 所对的边分别为a ,b ,c ,则由c 2=a 2+b 2-2ab cos C ,得13=9+b 2-2×3b ×⎝ ⎛⎭⎪⎫-12,即b 2+3b -4=0,解得b =1(负值舍去),即AC =1.故选A.(2)(2016·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C=513,a =1,则b =________. 答案2113解析 由已知可得sin A =35,sin C =1213,则sin B =sin(A +C )=35×513+45×1213=6365,再由正弦定理可得a sin A =bsin B ⇒b =1×636535=2113.题型1 利用正、余弦定理解三角形典例1 (2018·郑州预测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 3cos B=asin A,则cos B =( )A .-12 B.12 C .-32 D.32边角互化法.答案 B解析 由正弦定理知sin B3cos B =sin A sin A=1,即tan B =3,由B ∈(0,π),所以B =π3,所以cos B =cos π3=12,故选B.典例2 (2018·重庆期末)在△ABC 中,已知AB =43,AC =4,∠B =30°,则△ABC 的面积是( )A .4 3B .8 3C .43或8 3D. 3注意本题的多解性.答案 C解析 在△ABC 中,由余弦定理可得AC 2=42=(43)2+BC 2-2×43BC cos30°, 解得BC =4或BC =8.当BC =4时,AC =BC ,∠B =∠A =30°,△ABC 为等腰三角形,∠C =120°, △ABC 的面积为12AB ·BC sin B =12×43×4×12=4 3.当BC =8时,△ABC 的面积为12AB ·BC sin B =12×43×8×12=83,故选C.方法技巧正、余弦定理在解三角形中的应用技巧1.已知两边和一边的对角或已知两角和一边都能用正弦定理解三角形,正弦定理的形式多样,其中a =2R sin A ,b =2R sin B ,c =2R sin C 能够实现边角互化.见典例1.2.已知两边和它们的夹角、已知两边和一边的对角或已知三边都能直接运用余弦定理解三角形.见典例2.3.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.见典例2.冲关针对训练1.(2017·河西五市联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(b -a )sin A =(b -c )(sin B +sin C ),则角C 等于( )A.π3 B.π6 C.π4 D.2π3答案 A解析 由题意,得(b -a )a =(b -c )(b +c ),∴ab =a 2+b 2-c 2,∴cos C =a 2+b 2-c 22ab =12,∴C =π3,故选A.2.(2018·山东师大附中模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知cos2A =-13,c =3,sin A =6sin C .(1)求a 的值;(2)若角A 为锐角,求b 的值及△ABC 的面积.解 (1)在△ABC 中,c =3,sin A =6sin C ,由正弦定理asin A=csin C,得a =6·c=6×3=3 2.(2)由cos2A =1-2sin 2A =-13得,sin 2A =23,由0<A <π2,得sin A =63,则cos A =1-sin 2A =33. 由余弦定理a 2=b 2+c 2-2bc cos A , 化简,得b 2-2b -15=0, 解得b =5(b =-3舍去).所以S △ABC =12bc sin A =12×5×3×63=522.题型2 利用正、余弦定理判断三角形的形状典例 (2017·陕西模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定用边角互化法.答案 B解析 ∵b cos C +c cos B =a sin A ,由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又sin A >0,∴sin A =1,∴A =π2,故△ABC 为直角三角形.故选B.[条件探究1] 将典例条件变为“若2sin A cos B =sin C ”,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等边三角形答案 B解析 解法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .故选B. 解法二:由正弦定理得2a cos B =c ,由余弦定理得2a ·a 2+c 2-b 22ac=c ⇒a 2=b 2⇒a =b .故选B.[条件探究2] 将典例条件变为“若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13”,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 答案 C解析 在△ABC 中,sin A ∶sin B ∶sin C =5∶11∶13, ∴a ∶b ∶c =5∶11∶13,故设a =5k ,b =11k ,c =13k (k >0),由余弦定理可得cos C =a 2+b 2-c 22ab =25k 2+121k 2-169k 22×5×11k 2=-23110<0, 又∵C ∈(0,π),∴C ∈⎝ ⎛⎭⎪⎫π2,π,∴△ABC 为钝角三角形.故选C.[条件探究3] 将典例条件变为“若b cos B +c cos C =a cos A ”,试判断三角形的形状. 解 由已知得b ·a 2+c 2-b 22ac +c ·a 2+b 2-c 22ab =a ·b 2+c 2-a 22bc,∴b 2(a 2+c 2-b 2)+c 2(a 2+b 2-c 2)=a 2(b 2+c 2-a 2). ∴(a 2+c 2-b 2)(b 2+a 2-c 2)=0.∴a 2+c 2=b 2或b 2+a 2=c 2,即B =π2或C =π2.∴△ABC 为直角三角形. 方法技巧判定三角形形状的两种常用途径提醒:“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.冲关针对训练在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状.解 (1)由2a sin A =(2b -c )sin B +(2c -b )sin C 及正弦定理,得2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12,∵0°<A <180°,∴A =60°. (2)∵A +B +C =180°, ∴B +C =180°-60°=120°.由sin B +sin C =3,得sin B +sin(120°-B )=3, ∴sin B +sin120°cos B -cos120°sin B = 3. ∴32sin B +32cos B =3,即sin(B +30°)=1. ∵0°<B <120°,∴30°<B +30°<150°. ∴B +30°=90°,即B =60°.∴A =B =C =60°,∴△ABC 为等边三角形.题型3 与三角形有关的最值角度1 与三角形边长有关的最值典例 (2017·杏花岭区模拟)已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =b cos C +33c sin B . (1)求B ;(2)若b =2,求ac 的最大值.本题采用转化法.解 (1)在△ABC 中,∵a =b cos C +33c sin B , ∴sin A =sin B cos C +33sin C sin B , ∴sin A =sin(B +C )=sin B cos C +33sin C sin B , 化为cos B sin C =33sin C sin B ,sin C ≠0, 可得tan B =3,B ∈(0,π),∴B =π3.(2)由正弦定理得b sin B =2R =43,令y =ac =2R sin A ·2R sin C =163sin A sin C=163sin A sin ⎝ ⎛⎭⎪⎫2π3-A =83sin ⎝ ⎛⎭⎪⎫2A -π6+43. ∵0<A <π2,0<2π3-A <π2,∴π6<A <π2.故π6<2A -π6<5π6,∴sin ⎝⎛⎭⎪⎫2A -π6∈⎝ ⎛⎦⎥⎤12,1,∴y ∈⎝ ⎛⎦⎥⎤83,4.∴ac 的最大值为4.角度2 与三角形内角有关的最值典例 (2017·庄河市期末)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,设f (x )=a 2x 2-(a 2-b 2)x -4c 2.(1)若f (1)=0,且B -C =π3,求角C 的大小;(2)若f (2)=0,求角C 的取值范围.本题采用重要不等式法.解 (1)由f (1)=0,得a 2-a 2+b 2-4c 2=0, ∴b =2c .又由正弦定理,得sin B =2sin C , ∵B -C =π3,∴sin ⎝ ⎛⎭⎪⎫π3+C =2sin C , 整理得3sin C =cos C ,∴tan C =33. ∵角C 是三角形的内角,∴C =π6.(2)∵f (2)=0,∴4a 2-2a 2+2b 2-4c 2=0,即a 2+b 2-2c 2=0,由余弦定理,得cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12(当且仅当a =b 时取等号).又∵余弦函数在⎝⎛⎭⎪⎫0,π2上递减,C 是锐角, ∴0<C ≤π3.方法技巧求与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角的取值范围、函数值域的求法求解范围即可.冲关针对训练(2018·绵阳检测)已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x4,记f (x )=m ·n .(1)若f (x )=1,求cos ⎝⎛⎭⎪⎫2π3-x 的值;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.解 (1)f (x )=m ·n =3sin x 4cos x4+cos 2x4=32sin x 2+12cos x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12. 因为f (x )=1,所以sin ⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=-12. (2)因为(2a -c )cos B =b cos C由正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B -sin C cos B =sin B cos C , 所以2sin A cos B =sin(B +C ),因为A +B +C =π,所以sin(B +C )=sin A ,且sin A ≠0, 所以cos B =12,B =π3,所以0<A <2π3,所以π6<A 2+π6<π2,12<sin ⎝ ⎛⎭⎪⎫A 2+π6<1. 又因为f (x )=m ·n =sin ⎝ ⎛⎭⎪⎫x 2+π6+12,所以f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12,故函数f (A )的取值范围是⎝ ⎛⎭⎪⎫1,32.1.(2017·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A 答案 A解析 ∵等式右边=sin A cos C +(sin A cos C +cos A sin C )=sin A cos C +sin(A +C )=sin A cos C +sin B ,等式左边=sin B +2sin B cos C , ∴sin B +2sin B cos C =sin A cos C +sin B . 由cos C >0,得sin A =2sin B . 根据正弦定理,得a =2b .故选A.2.(2018·南阳模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =________.答案π6解析 由正弦定理,得sin B (sin A cos C +sin C cos A )=12sin B ,即sin B sin(A +C )=12sin B ,因为sin B ≠0,所以sin B =12,所以B =π6或5π6,又因为a >b ,故B =π6.3.(2018·沈阳模拟)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b )(sin A +sin B )=(c -b )·sin C .若a =3,则b 2+c 2的取值范围是________.答案 5<b 2+c 2≤6解析 由正弦定理,可得(a -b )·(a +b )=(c -b )·c ,即b 2+c 2-a 2=bc ,cos A =b 2+c 2-a 22bc =12,又A ∈⎝⎛⎭⎪⎫0,π2,∴A =π3.∵b sin B =c sin C =3sinπ3=2, ∴b 2+c 2=4(sin 2B +sin 2C )=4[sin 2B +sin 2(A +B )]=4⎣⎢⎡⎦⎥⎤1-cos2B 2+1-cos2(A +B )2=3sin2B -cos2B +4=2sin ⎝ ⎛⎭⎪⎫2B -π6+4. ∵△ABC 是锐角三角形,且A =π3,∴B ∈⎝ ⎛⎭⎪⎫π6,π2,即2B -π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴12<sin ⎝⎛⎭⎪⎫2B -π6≤1,∴5<b 2+c 2≤6.4.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解 (1)由题设得12ac sin B =a 23sin A ,即12c sin B =a3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12,所以B +C =2π3,故A =π3.由题意得12bc sin A =a23sin A ,a =3,所以bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9.由bc =8,得b +c =33. 故△ABC 的周长为3+33.[重点保分 两级优选练]A 级一、选择题1.(2017·长沙模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c =( )A .1B .2C .4D .6 答案 C解析 a 2=c 2+b 2-2cb cos A ⇒13=c 2+9-6c cos60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).故选C.2.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c .若∠C =120°,c =2a ,则( ) A .a >b B .a <b C .a =bD .a 与b 的大小关系不能确定 答案 A解析 据题意由余弦定理可得a 2+b 2-2ab cos120°=c 2=(2a )2,化简整理得a 2=b 2+ab ,变形得a 2-b 2=(a +b )(a -b )=ab >0,故有a -b >0,即a >b .故选A.3.(2017·湖南长郡中学六模)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin2A =a sin B ,且c =2b ,则a b等于( )A .2B .3 C. 2 D. 3 答案 A解析 由2b sin2A =a sin B ,得4b sin A cos A =a sin B ,由正弦定理得4sin B sin A cos A =sin A sin B ,∵sin A ≠0,且sin B ≠0,∴cos A =14,由余弦定理得a 2=b 2+4b 2-b 2,∴a 2=4b 2,∴a b=2.故选A.4.(2017·衡水中学调研)在△ABC 中,三边之比a ∶b ∶c =2∶3∶4,则sin A -2sin Bsin2C =( )A .1B .2C .-2 D.12答案 B解析 不妨设a =2,b =3,c =4,故cos C =4+9-162×2×3=-14,故sin A -2sin B sin2C =a -2b2c cos C =2-68×⎝ ⎛⎭⎪⎫-14=2,故选B.5.在△ABC 中,A ,B ,C 是三角形的三个内角,a ,b ,c 是三个内角对应的三边,已知b 2+c 2=a 2+bc .若sin B sin C =34,△ABC 的形状( )A .等边三角形B .不含60°的等腰三角形C .钝角三角形D .直角三角形答案 A解析 在△ABC 中,由余弦定理,可得cos A =b 2+c 2-a 22bc,由已知,得b 2+c 2-a 2=bc ,∴cos A =12.∵0<A <π,故A =π3.∵A +B +C =π,A =π3,∴C =2π3-B .由sin B sin C =34,得sin B sin ⎝ ⎛⎭⎪⎫2π3-B =34.即sin B ⎝ ⎛⎭⎪⎫sin 2π3cos B -cos 2π3sin B =34.32sin B cos B +12sin 2B =34, 34sin2B +14(1-cos2B )=34, 32sin2B -12cos2B =1,∴sin ⎝ ⎛⎭⎪⎫2B -π6=1.又∵-π6<2B -π6<7π6,∴2B -π6=π2,即B =π3.∴C =π3,也就是△ABC 为等边三角形.故选A.6.(2014·江西高考)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.932 C.332 D .3 3答案 C解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6.① ∵C =π3,∴由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332, 故选C.7.(2018·上海杨浦质量调研)设锐角△ABC 的三内角A ,B ,C 所对边的边长分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为( )A .(2,3)B .(1,3)C .(2,2)D .(0,2) 答案 A解析 由a sin A =b sin B =bsin2A ,得b =2cos A .π2<A +B =3A <π,从而π6<A <π3. 又2A <π2,所以A <π4,所以π6<A <π4,22<cos A <32,所以2<b < 3.故选A.8.(2014·全国卷Ⅱ)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1 答案 B解析 S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°.若B=45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,∴AC = 5.故选B.9.(2018·辽宁五校第一次联考)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若直线bx +y cos A +cos B =0与ax +y cos B +cos A =0平行,则△ABC 一定是( )A .锐角三角形B .等腰三角形C .直角三角形D .等腰或者直角三角形 答案 C解析 由两直线平行可得b cos B -a cos A =0,由正弦定理可知sin B cos B -sin A cos A =0,即12sin2A =12sin2B ,又A 、B ∈(0,π),且A +B ∈(0,π),所以2A =2B 或2A +2B =π,即A =B 或A +B =π2.若A =B ,则a =b ,cos A =cos B ,此时两直线重合,不符合题意,舍去,故A +B =π2,则△ABC 是直角三角形,故选C.10.(2017·武昌调研)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a =2b sin C ,则tan A +tan B +tan C 的最小值是( )A .4B .3 3C .8D .6 3 答案 C解析 a =2b sin C ⇒sin A =2sin B sin C ⇒sin(B +C )=2sin B sin C ⇒tan B +tan C =2tan B tan C ,又根据三角形中的三角恒等式tan A +tan B +tan C =tan A tan B tan C (注:tan A =tan(π-B -C )=-tan(B +C )=-tan B +tan C 1-tan B tan C,即tan A +tan B +tan C =tan A tan B tan C )⇒tan B tan C =tan Atan A -2,∴tan A tan B tan C =tan A ·tan A tan A -2=m 2m -2(tan A =m ),令m -2=t ⇒(t +2)2t =t +4t +4≥8,当且仅当t =4t,即t =2,tan A =4时,取等号.故选C.二、填空题11.(2015·重庆高考)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.答案 4解析 由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由余弦定理cos C =a 2+b 2-c 22ab ,得-14=22+32-c22×2×3,解得c =4. 12.(2018·河北唐山一模)在△ABC 中,角A ,B ,C 的对边a ,b ,c 成等差数列,且A -C =90°,则cos B =________.答案 34解析 ∵a ,b ,c 成等差数列,∴2b =a +c . ∴2sin B =sin A +sin C .∵A -C =90°,∴2sin B =sin(90°+C )+sin C . ∴2sin B =cos C +sin C . ∴2sin B =2sin(C +45°).①∵A +B +C =180°且A -C =90°,∴C =45°-B2,代入①式中,2sin B =2sin ⎝⎛⎭⎪⎫90°-B 2.∴2sin B =2cos B2.∴4sin B 2cos B 2=2cos B2.∴sin B 2=24.∴cos B =1-2sin 2B 2=1-14=34. 13.(2018·沈阳监测)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为________.答案 8解析 由题意得4×12bc sin A =a 2-b 2-c 2+2bc .又a 2=b 2+c 2-2bc cos A ,代入上式得2bc sin A =-2bc cos A +2bc ,即sin A +cos A =1,2sin ⎝⎛⎭⎪⎫A +π4=1,又0<A <π,∴π4<A +π4<5π4,∴A +π4=3π4,∴A =π2,S =12bc sin A =12bc ,又b +c =8≥2bc ,当且仅当b =c 时取“=”,∴bc ≤16, ∴S 的最大值为8.14.(2017·浙江高考)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.答案152104解析 依题意作出图形,如图所示,则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2, 则cos ∠ABC =14,sin ∠ABC =154.所以S △BDC =12BC ·BD ·sin∠DBC=12×2×2×154=152.因为cos ∠DBC =-cos ∠ABC =-14=BD 2+BC 2-CD22BD ·BC=8-CD28,所以CD =10.由余弦定理,得cos ∠BDC =4+10-42×2×10=104. B 级三、解答题15.(2018·郑州质检)已知△ABC 的外接圆直径为433,角A ,B ,C 所对的边分别为a ,b ,c ,C =60°.(1)求a +b +csin A +sin B +sin C的值;(2)若a +b =ab ,求△ABC 的面积.解 (1)因为a sin A =b sin B =c sin C =2R =433,所以a =433sin A ,b =433sin B ,c =433sin C .所以a +b +c sin A +sin B +sin C =433(sin A +sin B +sin C )sin A +sin B +sin C =433.(2)由c =433sin C ,得c =433×32=2,c 2=a 2+b 2-2ab cos C ,即4=a 2+b 2-ab =(a +b )2-3ab ,又a +b =ab ,所以(ab )2-3ab -4=0,解得ab =4或ab =-1(舍去),所以S △ABC =12ab sin C =12×4×32= 3.16.(2017·湖北四校联考)已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足sin 2A +sin A sinB -6sin 2B =0.(1)求a b的值;(2)若cos C =34,求sin B 的值.解 (1)因为sin 2A +sin A sinB -6sin 2B =0,sin B ≠0, 所以⎝⎛⎭⎪⎫sin A sin B 2+sin A sin B-6=0,得sin A sin B =2或sin A sin B =-3(舍去).由正弦定理得a b =sin Asin B=2.(2)由余弦定理得cos C =a 2+b 2-c 22ab =34.①将a b=2,即a =2b 代入①,得5b 2-c 2=3b 2, 得c =2b .由余弦定理cos B =a 2+c 2-b 22ac,得cos B =(2b )2+(2b )2-b 22×2b ×2b =528,则sin B =1-cos 2B =148. 17.(2018·海淀区模拟)在△ABC 中,角A ,B ,C 所对的边长分别是a ,b ,c .满足2a cos C +c cos A =b .(1)求角C 的大小;(2)求sin A cos B +sin B 的最大值. 解 (1)由正弦定理及2a cos C +c cos A =b , 得2sin A cos C +sin C cos A =sin B . 在△ABC 中,A +B +C =π,∴A +C =π-B ,即sin(A +C )=sin B .∴2sin A cos C +sin C cos A =sin(A +C )+sin A cos C =sin B +sin A cos C =sin B , ∴sin A cos C =0, 又∵0<A <π,0<C <π, ∴sin A >0. ∴cos C =0, ∴C =π2.(2)由(1)得C =π2,∴A +B =π2,即A =π2-B .∵sin A cos B +sin B =cos 2B +sin B =-sin 2B +sin B +1=-⎝ ⎛⎭⎪⎫sin B -122+54.∵0<B <π2,∴当sin B =12,即B =π6时,sin A cos B +sin B 取得最大值54.18.已知等腰三角形ABC 满足AB =AC ,3BC =2AB ,点D 为BC 边上一点且AD =BD . (1)求tan ∠ADB 的值; (2)若CD =33,求S △ABC .解 (1)如图,设AB =AC =a ,AD =BD =b ,由3BC =2AB 得,BC =233a .在△ABC 中,由余弦定理得,cos ∠ABC =AB 2+BC 2-AC22AB ·BC=a 2+⎝⎛⎭⎪⎫23a 32-a 22a ·233a=33, ∴∠ABC 是锐角,则sin ∠ABC =1-cos 2∠ABC =63. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2AB ·BD cos ∠ABD , 得b 2=a 2+b 2-233ab ,解得a =233b .由正弦定理AD sin ∠ABD =AB sin ∠ADB ,得b 63=a sin ∠ADB,解得sin ∠ADB =223,又2b 2>a 2,∴∠ADB 为锐角,∴cos ∠ADB =1-sin 2∠ADB =13,tan ∠ADB =2 2.(2)由已知可得 3⎝ ⎛⎭⎪⎫b +33=2a ,① 由(1)可知a =233b ,②联立①②得a =2,b = 3.过A 作AH ⊥BC 于H ,则H 为BC 的中点,易求得DH =33. 则tan ∠ADB =AH33=2 2.∴AH =263,∴S △ABC =12×433×263=423.。
2019版高考数学一轮复习 第四章 三角函数、解三角形 第五节 两角和与差的正弦、余弦和正切公式
解析:∵cosπ6-x=cos
π 6cos
x12sin x=12(sin x+ 3cos x)=12×65=35.
答案:35
课 堂 考点突破
自主研、合作探、多面观、全扫命题题点
考点一 三角函数公式的基本应用
[题组练透]
1.已知 sinα+π6+cos α=- 33,则 cosπ6-α=(
2
·1ta-n2tαa+n2α1+
2 2
= 22×322×+31+ 2×312-+312+ 22=0.
答案:0
考点三 角的变换
[典例引领]
已知 0<β<π2<α<π,且 cosα-β2=-19,sinα2-β=23, 求 cos(α+β).
解:∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,
)
A.-2 3 2
B.2
2 3
C.-13
D.13
解析:由 sinα+π6+cos α=- 33,
展开化简可得 sinα+π3=-13,
所以 cosπ6-α=cos π2-α+π3 =sinα+π3=-13.
答案:C
2.已知函数 f(x)=sin x-cos x,且 f′(x)=12 f(x),则 tan 2x 的
3
C. 3
D.2 2-1
解析:
4cos
50°-tan
40°=4sin
40°-csions
40° 40°
=4sin
40°cos 40°-sin cos 40°
40°=2sin
80°-sin cos 40°
40°
=2sin120°-40°-sin 40°= 3cos 40°+sin 40°-sin 40°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一三角函数及解三角形
高频考点·真题回访
1.(2017·全国卷Ⅰ)已知曲线C1:y=cos x,C2:y=sin,则下面结论正确的是
( )
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
【解析】选D.C1:y=cos x,C2:y=sin,
首先把曲线C1,C2统一为同一三角函数名,可将C1:y=cos x用诱导公式处理.
y=cos x=cos=sin.横坐标变换需将ω=1变成ω=2,
即y=sin
y=sin=sin 2y=sin
=sin 2.
注意ω的系数,在左右平移时需将ω=2提到括号外面,这时x+平移至x+,
根据“左加右减”原则,“x+”到“x+”需加上,即再向左平移.
2.(2018·全国卷Ⅰ)已知函数f=2cos2x-sin2x+2,则( )
A.f的最小正周期为π,最大值为3
B.f的最小正周期为π,最大值为4
C.f的最小正周期为2π,最大值为3
D.f的最小正周期为2π,最大值为4
【解析】选B.f(x)=2cos2x-(1-cos2x)+2=3cos2x+1,
所以最小正周期为π,最大值为4.
3.(2016·全国卷Ⅰ)已知函数f(x)=sin(ωx+φ),x=-为f(x)的
零点,x=为y=f(x)图象的对称轴,且f(x)在上单调,则ω的最大值为( ) A.11 B.9 C.7 D.5
【解析】选B.由题意知:
②-①:ω=(k2-k1)π+,所以ω=2(k2-k1)+1,
设k=k2-k1∈Z,则ω=2k+1,其中k∈Z.
因为f(x)在上单调,
所以-=≤×,ω≤12.
接下来用排除法.
若ω=11,φ=-,此时f(x)=sin,
f(x)在上单调递增,在上单调递减,不满足f(x)在上单调,
若ω=9,φ=,此时f(x)=sin,满足f(x)在上单调递减.
4.(2016·全国卷Ⅱ)若cos=,则sin 2α= ( )
A. B.
C.-
D.-
【解析】选D.cos=,
sin 2α=cos=2cos2-1=-.
5.(2018·全国卷Ⅰ)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两
点A,B,且cos 2α=,则= ( )
A. B. C. D.1
【解析】选B.
由cos 2α=2cos2α-1=可得cos2α===,
化简可得tan α=±;当tan α=时,可得=,=,即a=,b=,此时
|a-b|=;当tan α=-时,仍有此结果,故|a-b|=.
6.(2018·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知bsin C+
csin B=4asin Bsin C,b2+c2-a2=8,则△ABC的面积为____________.
【解析】根据正弦定理有:
sin Bsin C+sin Csin B=4sin Asin Bsin C,
所以2sin Bsin C=4sin Asin Bsin C,
因为B,C∈(0,π),
所以sin B≠0,sin C≠0,
所以sin A=.因为b2+c2-a2=8,
所以cos A===,
所以bc=,所以S=bcsin A=.
答案:
7.(2018·全国卷Ⅱ)已知tan=,则tan α=____________.
【解析】因为tan=tan=,
所以=,解得tan α=.
答案:
8.(2016·全国卷Ⅲ)函数y=sin x-cos x的图象可由函数y=sin x+cos x的图象至少向右平移____________个单位长度得到.
【解析】函数y=sin x-cos x=2sin,根据左加右减原则可得只需将y=sin
x+cos x向右平移个单位即可.
答案:
9.(2017·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.
(1)求sin Bsin C.
(2)若6cos Bcos C=1,a=3,求△ABC的周长.
【解析】(1)因为△ABC面积S=且S=bcsin A, 所以=bcsin A,
所以a2=bcsin2A,
由正弦定理得sin2A=sin Bsin Csin2A,
由sin A≠0得sin Bsin C=.
(2)由(1)得sin Bsin C=,又cos Bcos C=,
A+B+C=π,
所以cos A = cos=-cos
=sin Bsin C-cos Bcos C = ,
又因为A∈,
所以A=,sin A=,
由余弦定理得a2=b2+c2-bc=9 ①,
由正弦定理得b=·sin B,c=·sin C,
所以bc=·sin Bsin C=8 ②,
由①②得b+c=,
所以a+b+c=3+,即△ABC的周长为3+.
10.(2017·上海高考)已知函数f(x)=cos2 x-sin2x+,x∈(0,π).
(1)求f(x)的单调递增区间.
(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求
△ABC的面积.
【解析】(1)f(x)=cos2x-sin2x+=cos 2x+,x∈(0,π),单调递增区间为.
(2)cos 2A=-⇒A=,
所以cos A==⇒c=2或c=3,
根据锐角三角形,cos B>0,
所以c=3,所以S=bcsin A=.
11.(2017·浙江高考)已知函数f(x)=sin2x-cos2x-2sin xcos x(x∈R).
(1)求f的值.
(2)求f(x)的最小正周期及单调递增区间.
【解析】(1)因为sin =,cos =-,
所以f=--2××,
即f=2.
(2)由cos 2x=cos2x-sin2x与sin 2x=2sin xcos x得
f=-cos 2x-sin 2x=-2sin,
所以f的最小正周期是π,
由正弦函数的性质得
+2kπ≤2x+≤+2kπ,k∈Z,
解得+kπ≤x≤+kπ,k∈Z,
所以f的单调递增区间是,k∈Z.。