2008年江苏省常州市数学中考试卷(含答案)
A2008年常州巿中考数学试卷附参考答案和评分标准
常州市二二〇〇八年初中毕业、升学统一考试数 学 试 卷注意事项:1.全卷共8页,28题,满分120分,考试时间120分钟.2.用蓝色或黑色钢笔、圆珠笔直接答在试卷上.3.答卷前将密封线内的项目填写清楚,并将座位号填写在试卷规定的位置上.4.考生在答题过程中,不得使用任何型号的计算器,若试题计算结果没有要求取近似值,则计算结果取精确值(保留根号和π).1. -3的相反数是_______,-12的绝对值是________,2-1=______. 2. 点A(-2,1)关于y 轴对称的点的坐标为___________,关于原点对称的点的坐标为________.3. 如图,在△ABC 中BE 平分∠ABC,DE ∥BC,∠ABE=35°,则∠DEB=______°,∠ADE=_______°.4. 已知一组数据为5,6,8,6,8,8,8,则这组数据的众数是_________,平均数是_________.5. 已知扇形的半径为3cm,扇形的弧长为πcm,则该扇形的面积是______cm 2,扇形的圆心角为______°. 6. 过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______. 7. 已知函数22y x x c =-++的部分图象如图所示,则c=______,当x______时,y 随x 的增大而减小.8. 若将棱长为2的正方体切成8个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍; 若将棱长为3的正方体切成27个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍; 若将棱长为n(n>1,且为整数)的正方体切成n 3个棱长为1的小正方体,则所有小正方体的表面积的和_______倍.一.填空题(本大题每个空格1分,共18分,把答案填在题中横线上)二.选择题(在每小题给出的四个选项中,只有一项最符合题目要求,把符合要求的选项的代号填在题后的【 】内,每小题2分,共18分)(第3题)9. 下列实数中,无理数是【 】B.2πC.13D.1210.在实数范围内有意义,则x 的取值范围是【 】A.x >-5B.x <-5C.x ≠-5D.x ≥-511. 若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是 【 】A.-1B.3C.0D.-312. 在体育课上,九年级2名学生各练习10次立定跳远,要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生立定跳远成绩的 【 】 A.方差B.平均数C.频率分布D.众数13. 顺次连接菱形各边中点所得的四边形一定是 【 】A.等腰梯形B.正方形C.平行四边形D.矩形14. 如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是 【 】A.B.C. D. 15. 如图,在△ABC 中,若D E ∥BC,AD DB =12,DE=4cm,则BC 的长为【 】A.8cmB.12cmC.11cmD.10cm16. 如图,若⊙的直径AB 与弦AC 的夹角为30°,切线CD 与AB 的延长线交于点D,且⊙O 的半径为2,则CD 的长为 【 】A.B.C.2D. 4(第15题) (第16题) (第17题) 17. 甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法: 【 】 (1)他们都骑行了20km;C(2)乙在途中停留了0.5h;(3)甲、乙两人同时到达目的地;(4)相遇后,甲的速度小于乙的速度. 根据图象信息,以上说法正确的有B.2个C.3个D.4个18.(本小题满分10分)化简:12⎛⎫⎪⎝⎭(2) 111112-+-∙-+aaaa19.(本小题满分8分)解方程(组)(1)245x yx y+=⎧⎨-=⎩(2)2133xx x-=--20.(本小题满分6分)为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量, 所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):三.解答题(本大题共2小题,共18分,解答时应写出演算步骤)四.解答题(本大题共2小题,共12分,解答时应写出文字说明或演算步骤)cm)(第20题)根据以上图表,回答下列问题:(1)M=_______,m=_______,N=_______,n=__________; (2)补全频数分布直方图. 21. (本小题满分6分)小敏和小李都想去看我市举行的乒乓球比赛,但俩人只有一张门票.小敏建议通过摸球来决定谁去欣赏,他的方法是:把1个白球和2个红球放在一只不透明的袋子中(这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录下颜色后放袋中并搅匀,再从中任意摸出1个球.如果两次都摸出相同颜色的球,则小敏自己去看比赛,否则小李去看比赛.问小敏的这个方法对双方公平吗?请说明理由.22. (本小题满分7分)已知:如图,AB=AD,AC=AE ,∠BAD=∠CAE.五.解答题(本大题共2小题,共14分,解答时应写出证明过程)求证:C=DE.23. 已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,E F ⊥ED. 求证:AE 平分∠BAD.24. (本小题满分6分)已知:如图,在8×12的矩形网格中,每个小正方形的边长都为1,四边形ABCD 的顶点都在格点上.(1) 在所给网格中按下列要求画图:① 在网格中建立平面直角坐标系(坐标原点为O),使四边形ABCD 各个顶点的坐标分别为A(-5,0)、B(-4,0)、C(-1,3),D(-5,1);② 将四边形ABCD 沿坐标横轴翻折180°,得到四边形A ’B ’C ’D ’,再将四边形A ’B ’C ’D ’绕原点O 旋转180°,得到四边形A ”B ”C ”D ”; (2)写出C ”、D ”的坐标;五.画图与探究(本大题共2小题,共14分)(第23题)(3)请判断四边形A ”B ”C ”D ”与四边形ABCD 成何种对称?若成中心对称,请写出对称中心;若成轴对称,请写出对称轴.CD BA(第24题)25. 如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意图...,并写出它们的周长.26. (本小题满分8分)如图,港口B 位于港口O 正西方向120海里外,小岛C 位于港口O 北偏西60°的方向.一艘科学考察船从港口O 出发,沿北偏东30°的OA 方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B 出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C 用1小时装补给物资后,立即按原来的速度给考察船送去.(1) 快艇从港口B 到小岛C 需要多少时间?(2) 快艇从小岛C 出发后最少需要多少时间才能和考察船相遇?五.解答题(本大题共3小题,共26分,解答时应写出文字说明、证明过程或演算步骤)北27.(本小题满分7分)2008年5月12日四川汶川地区发生8.0级特大地震.举国上下通过各种方式表达爱心.某企业决定用p万元援助灾区n所学校,用于搭建帐篷和添置教学设备.根据各校不同的受灾情况,该企业捐款的分配方案是:所有学校得到的捐款数都相等,到第n所学校的捐款恰好分完,捐款的分配根据以上信息,解答下列问题:(1)写出p与n的关系式;(2)当p=125时,该企业能援助多少所学校?(3)根据震区灾情,该企业计划再次提供不超过20a万元的捐款,按照原来的分配方案援助其它学校.若a由(2)确定,则再次提供的捐款最多又可以援助多少所学校?28. 如图,抛物线24y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l ,设P 是直线l 上一动点. (1) 求点A 的坐标;(2) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;(3) 设以点A 、B 、O 、P 为顶点的四边形的面积为S,点P 的横坐标为x,当46S +≤≤+,求x 的取值范围.(4)(第28题)。
2008江苏省南通市中考试卷及答案(数学)
2008年南通市初中毕业、升学考试数 学(满分150分,考试时间120分钟)一、填空题:本大题共14小题,每小题3分,共42分.不需写出解答过程,请 把最后结果填在题中横线上.1. 计算:0-7 =. 2. = .3. 已知∠A =40°,则∠A 的余角等于 度. 4. 计算:3(2)a = .5. 一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积是 cm 2.6. 一组数据2,4,x ,2,3,4的众数是2,则x =. 7. 函数y 中自变量x 的取值范围是 . 8. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小 正方形中任取一个涂上阴影,能构成这个正方体的表面展开图 的概率是 .9. 一次函数(26)5y m x =-+中,y 随x 增大而减小,则m 的取值 范围是 .10.如图,DE ∥BC 交AB 、AC 于D 、E 两点,CF 为BC 的延长线,若∠ADE =50°,∠ACF =110°,则∠A = 度.11.将点A (,0)绕着原点顺时针方向旋转45°角得到点B , 则点B 的坐标是 .12.苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克 元. (第8题)AB C FED(第10题)(第5题)13.已知:如图,△OAD ≌△OBC ,且∠O =70°,∠C =25°,则∠AEB = 度.14.已知三角形三个顶点坐标,求三角形面积通常有以下三种方法:方法1:直接法.计算三角形一边的长,并求出该边上的高. 方法2:补形法.将三角形面积转化成若干个特殊的四边形和 三角形的面积的和与差.方法3:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形. 现给出三点坐标:A (-1,4),B (2,2),C (4,-1),请你选择一种方法计算△ABC 的面积,你的答案是S △ABC = .二、选择题:本大题共4小题,每小题4分,共16分.在每小题给出的四个选 项中,恰有一项....是符合题目要求的,请将正确选项的代号填入题后括号内.15.下列命题正确的是 【 】A .对角线相等且互相平分的四边形是菱形B .对角线相等且互相垂直的四边形是菱形C .对角线相等且互相平分的四边形是矩形D .对角线相等的四边形是等腰梯形16.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 【 】A .203210x y x y +-=⎧⎨--=⎩,B .2103210x y x y --=⎧⎨--=⎩,C .2103250x y x y --=⎧⎨+-=⎩,D .20210x y x y +-=⎧⎨--=⎩,17.已知△ABC 和△A′B′C′是位似图形.△A′B′C′的面积为6cm 2,周长是△ABC 的一半.AB =8cm ,则AB 边上高等于 【 】 A .3 cm B .6 cm C .9cm D .12cm 18.设1x 、2x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且10x <,2130x x -<,则 【 】 A .1,2m n >⎧⎨>⎩B .1,2m n >⎧⎨<⎩C .1,2m n <⎧⎨>⎩D .1,2m n <⎧⎨<⎩O A B CD E (第13题) (第16题)三、解答题:本大题共10小题,共92分.解答时应写出文字说明、证明过程或演算步骤.(19~20题,第19题10分,第20题6分,共16分)19.(1)计算-; (2)分解因式2(2)(4)4x x x +++-.20.解分式方程225103x x x x-=+-.(21~22题,第21题7分,第22题8分,共15分)21.如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?A BP 北 东 (第21题)22.已知:如图,M 是AB 的中点,过点M 的弦MN 交AB 于点C ,设⊙O 的半径为4cm ,MN =.(1)求圆心O 到弦MN 的距离; (2)求∠ACM 的度数.(23~24题,第23题7分,第24题8分,共15分)23.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元. (1)求A 市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A 市三年共投资“改水工程”多少万元?24.已知点A (-2,-c )向右平移8个单位得到点A ',A 与A '两点均在抛物线2y ax bx c =++上,且这条抛物线与y 轴的交点的纵坐标为-6,求这条抛物线的顶点坐标.(第22题) A BC M NO·(25~26题,第25题10分,第26题12分,共22分)25.随着我国人民生活水平和质量的提高,百岁寿星日益增多.某市是中国的长寿之乡,截至2008年2月底,该市五个地区的100周岁以上的老人分布如下表(单位:人):解答下列问题:(1)请把统计图中地区二和地区四中缺失的数据、图形补充完整;(2)填空:该市五个地区100周岁以上老人中,男性人数的极差是 人,女性人数的中位数是 人;(3)预计2015年该市100周岁以上的老人将比2008年2月的统计数增加100人,请你估算2015年地区一增加100周岁以上的男性老人多少人?(第25题)26.如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E .(1)求证:AB ·AF =CB ·CD ;(2)已知AB =15 cm ,BC =9 cm ,P 是射线DE 上的动点.设DP =x cm (0x ),四边形BCDP 的面积为y cm 2.①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小,并求出此时y 的值.A B C D E FP · (第26题)27.在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.方案一方案二(第27题)28.已知双曲线kyx=与直线14y x=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线kyx=上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线kyx=于点E,交BD于点C.(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.2008年南通市初中毕业、升学考试数学试题参考答案与评分标准说明:本评分标准每题只提供一种解法,如有其他解法,请参照本标准的精神给分.一、填空题:本大题共14小题,每小题3分,共42分.1.-7 2.12 3.50 4.38a5.6 6.2 7.x≥2 8.4 79.m<3 10.60 11.(4,-4)12.4 13.120 14.5 2二、选择题:本大题共4小题,每小题4分,共16分.15.C 16.D 17.B 18.C三、解答题:本大题共10小题,共92分.19.(1)解:原式=-÷……………………………………………………4分=÷=2.………………………………………………………………5分(第28题)(2)解:原式=(2)(4)(2)(2)x x x x ++++- …………………………………………………7分=(2)(22)x x ++ ………………………………………………………………9分 =2(2)(1)x x ++.………………………………………………………………10分 20.解:方程两边同乘以x (x+3)(x -1),得5(x -1)-(x+3)=0.…………………………2分解这个方程,得2x =.……………………………………………………………………4分 检验:把2x =代入最简公分母,得2×5×1=10≠0.∴原方程的解是2x =.……………………………………………………………………6分21.解: 过P 作PC ⊥AB 于C 点,根据题意,得AB =18×2060=6,∠P AB =90°-60°=30°, ∠PBC =90°-45°=45°,∠PCB =90°, ∴PC =BC . ……………………………2分 在Rt △P AC 中, tan30°=6PC PCAB BC PC=++, …………4分6PCPC=+,解得PC=3+. 6分∵3+>6,∴海轮不改变方向继续前进无触礁危险.……………………………7分22.解:(1)连结OM .∵点M 是AB 的中点,∴OM ⊥AB . …………………………………1分过点O 作OD ⊥MN 于点D ,由垂径定理,得12MD MN ==. ………………………3分在Rt △ODM 中,OM =4,MD =,∴OD 2=. 故圆心O 到弦MN 的距离为2 cm . …………………………5分 (2)cos ∠OMD =MD OM =,…………………………………6分 ∴∠OMD =30°,∴∠ACM =60°.……………………………8分23.解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.…………………………………………………………………………2分解之,得0.4x =或 2.4x =-(不合题意,舍去).………………………………………4分所以,A 市投资“改水工程”年平均增长率为40%. …………………………………5分(第22题)A BCMN O· D (第21题)AP60︒45︒北东(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元. ………………………………………………7分24.解:由抛物线2y ax bx c =++与y 轴交点的纵坐标为-6,得c =-6.……………………1分∴A (-2,6),点A 向右平移8个单位得到点A '(6,6). …………………………3分 ∵A 与A '两点均在抛物线上,∴426636666a b a b --=⎧⎨+-=⎩,. 解这个方程组,得14a b =⎧⎨=-⎩,. ……………………………………6分故抛物线的解析式是2246(2)10y x x x =--=--.∴抛物线的顶点坐标为(2,-10). ……………………………………………………8分25.解:(1)……………………4分(2)22,50; ……………………………………………………………………………………8分 (3)[21÷(21+30+38+42+20+39+50+73+70+37)]×100=5,预计地区一增加100周岁以上男性老人5人. …………………………………………10分26.(1)证明:∵AD CD =,DE AC ⊥,∴DE 垂直平分AC ,∴AF CF =,∠DF A =∠DFC =90°,∠DAF =∠DCF .……………………………1分 ∵∠DAB =∠DAF +∠CAB =90°,∠CAB +∠B =90°,∴∠DCF =∠DAF =∠B .2分 在Rt △DCF 和Rt △ABC 中,∠DFC =∠ACB =90°,∠DCF =∠B ,∴△DCF ∽△ABC . ……………………………………………………………………3分∴CD CF AB CB =,即CD AFAB CB=.∴AB ·AF =CB ·CD . ………………………………4分 (2)解:①∵AB =15,BC =9,∠ACB =90°,∴12AC ===,∴6CF AF ==.……………………………5分(第25题)∴1963272y x x=+⨯=+()(0x>).………………………………………………7分②∵BC=9(定值),∴△PBC的周长最小,就是PB+PC最小.由(1)知,点C关于直线DE的对称点是点A,∴PB+PC=PB+P A,故只要求PB+P A最小.显然当P、A、B三点共线时PB+P A最小.此时DP=DE,PB+P A=AB.………8分由(1),ADF FAE∠=∠,90DFA ACB∠=∠=︒,得△DAF∽△ABC.EF∥BC,得11522AE BE AB===,EF=92.∴AF∶BC=AD∶AB,即6∶9=AD∶15.∴AD=10.……………………………10分Rt△ADF中,AD=10,AF=6,∴DF=8.∴925822DE DF FE=+=+=.………………………………………………………11分∴当252x=时,△PBC的周长最小,此时1292y=.………………………………12分27.解:(1)理由如下:∵扇形的弧长=16×π2=8π,圆锥底面周长=2πr,∴圆的半径为4cm.………2分由于所给正方形纸片的对角线长为,而制作这样的圆锥实际需要正方形纸片的对角线长为16420++=+cm,20+>,∴方案一不可行.………………………………………………………………………5分(2)方案二可行.求解过程如下:设圆锥底面圆的半径为r cm,圆锥的母线长为R cm,则(1r R++=,①2π2π4Rr=.②…………………………7分由①②,可得R==r==.………………9分cm.………10分28.解:(1)∵D(-8,0),∴B点的横坐标为-8,代入14y x=中,得y=-2.∴B点坐标为(-8,-2).而A、B两点关于原点对称,∴A(8,2).从而8216k=⨯=.……………………………………………………………………3分(2)∵N(0,-n),B是CD的中点,A、B、M、E四点均在双曲线上,∴mn k =,B (-2m ,-2n ),C (-2m ,-n ),E (-m ,-n ). ……………4分 S 矩形DCNO 22mn k ==,S △DBO =1122mn k =,S △OEN =1122mn k =, ………………7分 ∴S 四边形OBCE = S 矩形DCNO -S △DBO - S △OEN =k .∴4k =. …………………………8分 由直线14y x =及双曲线4y x=,得A (4,1),B (-4,-1), ∴C (-4,-2),M (2,2).………………………………………………………9分 设直线CM 的解析式是y ax b =+,由C 、M 两点在这条直线上,得42,2 2.a b a b -+=-⎧⎨+=⎩ 解得23a b ==. ∴直线CM 的解析式是2233y x =+.………………………………………………11分 (3)如图,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1、M 1.设A 点的横坐标为a ,则B 点的横坐标为-a .于是 111A M MA a m p MP M O m -===. 同理MB m a q MQ m+==,……………………………13分 ∴2a m m a p q m m -+-=-=-.……………………14分。
2008年江苏省中考数学几何解答题精选37题
2008年江苏省中考数学几何解答题精选37题1(08年江苏常州)(本小题满分7分) 已知:如图,AB=AD,AC=AE,∠BAD=∠CAE. 求证:AC=DE.2(08年江苏常州)已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED. 求证:AE 平分∠BAD.3(08年江苏常州)如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意..图.,并写出它们的周长.4(08年江苏常州)(本小题满分8分)如图,港口B 位于港口O 正西方向120海里外,小岛C 位于港口O 北偏西60°的方向.一艘科学考察船从港口O 出发,沿北偏东30°的OA 方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B 出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C 用1小时装补给物资后,立即按原来的速度给考察船送去.(1) 快艇从港口B 到小岛C 需要多少时间?(2) 快艇从小岛C(第22题)(第23题)5(08年江苏淮安24题)(本小题9分)已知;如图.矩形ABCD的对角线AC与BD相交于点O,点O关于直线AD的对称点是E,连结AE、DE. (1)试判断四边形AODE的形状,不必说明理由; (2)请你连结EB、EC.并证明EB=EC.6(08年江苏淮安26题)(本小题10分)如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若,DE=3.求:(1) ⊙O的半径; (2)弦AC的长; (3)阴影部分的面积.7(08年江苏淮安27题)(本小题lO分)我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图l是由△A复制出△A1,又由△Al复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A 全等的三角形)之间既无缝隙也无重叠.(1)图l中标出的是一种可能的复制结果.它用到_____次平移._______次旋转.小明发现△B∽△A,其相似比为_________.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是________;(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;(4)图3是正五边形EFGHI.其中心是O.连结O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.8(08年江苏连云港18题)(本小题满分8分)如图,A B C △内接于O ,A B 为O 的直径,2B A C B ∠=∠,6A C =,过点A 作O 的切线与O C 的延长线交于点P ,求P A 的长.9(08年江苏连云港20题)(本小题满分8分)如图,在直角梯形纸片A B C D 中,A B D C ∥,90A ∠= ,C D AD >,将纸片沿过点D 的直线折叠,使点A 落在边C D 上的点E 处,折痕为D F .连接E F 并展开纸片. (1)求证:四边形AD EF 是正方形;(2)取线段A F 的中点G ,连接E G ,如果B G C D =,试说明四边形G B C E 是等腰梯形.10(08年江苏连云港25题)(本小题满分12分)我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段A B 的最小覆盖圆就是以线段A B 为直径的圆.(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明);(3)某地有四个村庄E F G H ,,,(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.BCPO A(第18题图) ECBDAGF(第20题图)AAB BCC 80100(第25题图1)F11(08年江苏南京21题)(6分)如图,在A B C D 中,E F ,为B C 上两点,且B E C F =,AF D E =. 求证:(1)A B F D C E △≌△;(2)四边形A B C D 是矩形.12(08年江苏南京22题)(6分)如图,菱形A B C D (图1)与菱形E F G H (图2)的形状、大小完全相同.(1)请从下列序号中选择正确选项的序号填写;①点E F G H ,,,;②点G F E H ,,,;③点E H G F ,,,;④点G H E F ,,,.如果图1经过一次平移后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次轴对称后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次旋转后得到图2,那么点A B C D ,,,对应点分别是 ; (2)①图1,图2关于点O 成中心对称,请画出对称中心(保留画图痕迹,不写画法); ②写出两个图形成中心对称的一条..性质: .(可以结合所画图形叙述)13(08年江苏南京23题)(6分)如图,山顶建有一座铁塔,塔高30m C D =,某人在点A 处测得塔底C 的仰角为20,塔顶D 的仰角为23,求此人距C D 的水平距离A B .(参考数据:sin 200.342≈,cos 200.940≈,tan 200.364≈,sin 230.391≈,cos 230.921≈,tan 230.424≈)(第21题)A BCDEF图1(第22题)B图2EF G(第23题)ABCD 202314(08年江苏南通21题)如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?15(08年江苏南通22题)已知:如图,M 是 AB 的中点,过点M 的弦MN 交AB 于点C ,设⊙O 的半径为4cm ,MN =4.(1)求圆心O 到弦MN 的距离; (2)求∠ACM 的度数.16(08年江苏南通27题)在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm 的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切) (1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.(第22题)ABC MNO ·A BP北东(第21题)(第27题)方案一A 方案二A CD17(08年江苏苏州23题)(本题6分)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4. 求证:(1)△ABC ≌△ADC ; (2)BO=DO .18(08年江苏苏州27题)(本题9分)如图,在△ABC 中,∠BAC=90°,BM 平分∠ABC 交AC 于M ,以A 为圆心,AM 为半径作OA 交BM 于N ,AN 的延长线交BC 于D ,直线AB 交OA 于P 、K 两点.作MT ⊥BC 于T (1)求证AK=MT ; (2)求证:AD ⊥BC ; (3)当AK=BD 时, 求证:B N A C B PB M=.19(08年江苏宿迁21题)(本题满分8分)如图,在平行四边形ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F . (1)求证:CF AB =;(2)当BC 与AF 满足什么数量关系时, 四边形ABFC 是矩形,并说明理由.20(08年江苏宿迁23题)(本题满分10分) 如图,⊙O 的直径AB 是4,过B 点的直线MN 是⊙O 的切线,D 、C 是⊙O 上的两点,连接AD 、BD 、CD 和BC .(1)求证:CDB CBN ∠=∠;(2)若DC 是ADB ∠的平分线,且︒=∠15DAB ,求DC 的长.NMBAFEDCBA第21题21(08年江苏泰州23题)如图,⊿ABC 内接于⊙O ,AD 是⊿ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,⊿ABE 与⊿ADC 相似吗?请证明你的结论。
2008年江苏省常州市中考数学试题及参考答案
2008年江苏省常州市中考数学试题1.全卷共28题,满分120分,考试时间120分钟.考生在答题过程中,不得使用任何型号的计算器,若试题计算结果没有要求取近似值,则计算结果取精确值(保留根号和π).一、填空题(本大题每个空格1分,共18分,把答案填在题中横线上) 1.-3的相反数是_______,-12的绝对值是________,2-1=______. 2.点A(-2,1)关于y 轴对称的点的坐标为___________,关于原点对称的点的坐标为________. 3.如图,在△ABC 中BE 平分∠ABC,DE ∥BC,∠ABE=35°,则∠DEB=______°,∠ADE=_______°.4.已知一组数据为5,6,8,6,8,8,8,则这组数据的众数是_________,平均数是_________.3cm,扇形的弧长为πcm,则该扇形的面积是______cm 2,扇形的圆心角为______°.(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______. 22y x x c =-++的部分图象如图所示,则c=______,当x______时,y 随x 的增大而减小.8.若将棱长为2的正方体切成8个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍; 若将棱长为3的正方体切成27个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍; 若将棱长为n(n>1,且为整数)的正方体切成n 3个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍.二.选择题(在每小题给出的四个选项中,只有一项最符合题目要求,把符合要求的选项的代号填在题后的【 】内,每小题2分,共18分)9.下列实数中,无理数是 【 】 A.4B.2π C.13D.125x +在实数范围内有意义,则x 的取值范围是【 】A.x>-5B.x<-5 ≠≥-51k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是 【 】A.-1B.312.在体育课上,九年级2名学生各练习10次立定跳远,要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生立定跳远成绩的 【 】13.顺次连接菱形各边中点所得的四边形一定是 【 】14.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是 【 】_4A. B. C. D.15.如图,在△ABC中,若DE∥BC,ADDB=12,DE=4cm,则BC的长为【】A.8cmB.12cmC.11cmD.10cm16.如图,若⊙的直径AB与弦AC的夹角为30°,切线CD与AB的延长线交于点D,且⊙O的半径为2,则CD的长为【】A.23B.43C.2D. 417.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法: 【】(1)他们都骑行了20km;(2)乙在途中停留了0.5h;(3)甲、乙两人同时到达目的地;(4)相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有三、解答题(本大题共2小题,共18分,解答时应写出演算步骤)18.(本小题满分10分)化简:(1)611822⎛⎫-- ⎪⎝⎭(2)211111a aa a+---+19.(本小题满分8分)解方程(组)(1)245x yx y+=⎧⎨-=⎩(2)2133xx x-=--四.解答题(本大题共2小题,共12分,解答时应写出文字说明或演算步骤)20.(本小题满分6分)为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量 , 所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):分组频数频率~ 3~9~15~18 n~9~m合计M N根据以上图表,回答下列问题:(1)M=_______,m=_______,N=_______,n=__________;(2)补全频数分布直方图.21.(本小题满分6分)小敏和小李都想去看我市举行的乒乓球比赛,但俩人只有一张门票.小敏建议通过摸球来决定谁去欣赏,他的方法是:把1个白球和2个红球放在一只不透明的袋子中(这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录下颜色后放袋中并搅匀,再从中任意摸出1个球.如果两次都摸出相同颜色的球,则小敏自己去看比赛,否则小李去看比赛.问小敏的这个方法对双方公平吗?请说明理由.五.解答题(本大题共2小题,共14分,解答时应写出证明过程)22.(本小题满分7分)已知:如图,AB=AD,AC=AE,∠BAD=∠CAE.求证:AC=DE.23.已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.五.画图与探究(本大题共2小题,共14分)24.(本小题满分6分)已知:如图,在8×12的矩形网格中,每个小正方形的边长都为1,四边形ABCD的顶点都在格点上.(1)在所给网格中按下列要求画图:①在网格中建立平面直角坐标系(坐标原点为O),使四边形ABCD各个顶点的坐标分别为 A(-5,0)、B(-4,0)、C(-1,3),D(-5,1);②将四边形ABCD沿坐标横轴翻折180°,得到四边形A’B’C’D’,再将四边形 A’B’C’D’绕原点O旋转180°,得到四边形A”B”C”D”;(2)写出C”、D”的坐标;(3)请判断四边形A”B”C”D”与四边形ABCD成何种对称?若成中心对称,请写出对称中心;若成轴对称,请写出对称轴.25.如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意图...,并写出它们的周长.五.解答题(本大题共3小题,共26分,解答时应写出文字说明、证明过程或演算步骤)26.(本小题满分8分)如图,港口B位于港口O正西方向120海里外,小岛C位于港口O北偏西60°的方向.一艘科学考察船从港口O出发,沿北偏东30°的OA方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C用1小时装补给物资后,立即按原来的速度给考察船送去.(1)快艇从港口B到小岛C需要多少时间?(2) 快艇从小岛C 出发后最少需要多少时间才能和考察船相遇?27.(本小题满分7分)2008年5月12日四川汶川地区发生8.0级特大地震.举国上下通过各种方式表达爱心.某企业决定用p 万元援助灾区n 所学校,用于搭建帐篷和添置教学设备.根据各校不同的受灾情况,该企业捐款的分配方案是:所有学校得到的捐款数都相等,到第n 所学校的捐款恰好分完,捐款的分配方法如下表所示.(其中p,n,a 分配顺序 分配数额(单位:万元) 帐篷费用教学设备费用第1所学校 5 剩余款的1a 第2所学校 10 剩余款的1a第3所学校15 剩余款的1a…… … 第(n-1)所学校 5(n-1) 剩余款的1a第n 所学校5n根据以上信息,解答下列问题: (1)写出p 与n 的关系式;(2)当p=125时,该企业能援助多少所学校?(3)根据震区灾情,该企业计划再次提供不超过20a 万元的捐款,按照原来的分配方案援助其它学校.若a 由 (2)确定,则再次提供的捐款最多又可以援助多少所学校?28.如图,抛物线24y x x =+与x 轴分别相交于点B 、O,它的顶点为A,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l,设P 是直线l 上一动点. (3) 求点A 的坐标; (4) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标; (5)设以点A 、B 、O 、P 为顶点的四边形的面积为S,点P 的横坐标为x,当462682S +≤≤+,求x 的取值范围.2008年江苏省常州市中考数学试题参考答案一.1.3 1/2 1/2 2.(2,1)(2,-1) 3.35 70 4.87 5.3π/2 6 0 6.y=6/x -2 7.3 >1 3,n二:9.B l 0.D l l.B l2.A l3.D l4.C l 5.B l6.A l7.B三、l 8.(1)-1 (2)a 19.(1)x=3,Y=-2.(2)x=1.20.(1)M=60,m=6,N=1,n=0.30 (2)画图略21.不公平22.略23.提示△EB≌△DCE.∠EAD=45°24.解:(1)①略②略(2)C“(1,3),D”(5,1). (3)成轴对称,对称轴是纵轴(或Y轴).25.一共可以拼出4种不同的等腰梯形.示意图为:26.解:(1)快艇从港口B到小岛C的时间为1(2)设快艇从小岛C出发后最少要经过x小时才能和考察船在OA上D处相遇,则CD=60x.OD=20(x+2).如图,过点C作CH⊥OA,垂足为B,8x2+5x-13=0.解得xl=1:x2=-13/8最少要经过l小时才能和考察船相遇.27.解:(1)因为所有学校得到的捐款数都为5n万元,所以P=n×5n=5n2(n为正整数).(2)当P=125时,可得5n2=125,所以n2=25,所以n=±5.因为n是正整数,所以n=5.所以该企业的捐款可以援助5所学校.(3)由(2)知,第一所学校获得捐款25万元,所以a=6.所以20×6=120.根据题意,得5n2≤120,所以n2≤24,因为n是正整数,所以n最大为4.所以再次提供的捐款最多又可以援助4所学校.28.解:(1)因为Y=x2+4x=(x+2)2-4,所以A(-2,-4).(2)四边形ABP1O为菱形时,P1(-2,4);四边形ABOP2为等腰梯形时,P2(2/5,-4/5);四边形ABP3O为直角梯形时,P3(-4/5,8/5);四边形ABOP4为直角梯形时,P4(6/5,-12/5). (3)AB所在直线的函数关系式是y=-2x-8,所以直线l的函数关系式为Y=-2x.设点P坐标为(x,-2x).①当点P在第二象限时,x<0,△POB的面积=-4x.所以S=-4x+8(x<0).因为4+62≤S≤6+82,所以x的取值范围是2241-≤x≤2232-②当点P在第四象限时,x>0,过点A、P分别作x轴的垂线,垂足为A’、P'.则四边形POA’A的面积4x+4.S=4x+8(x>0).4+62≤S≤6+82,茗的取值范围是2223-≤x≤2124-.。
江苏十三市08中考试卷
徐州巿2008年初中毕业、升学考试数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B铅笔填涂在答题卡上.2.作答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确的)1.4的平方根是A.2±B.2C.-2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A.11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元3.函数11yx=+中自变量x的取值范围是A. x≥-1B. x≤-1C.x≠-1D.x=-14.下列运算中,正确的是A.x3+x3=x6B. x3·x9=x27C.(x2)3=x5D. x÷x2=x-15.如果点(3,-4)在反比例函数kyx=的图象上,那么下列各点中,在此图象上的是A.(3,4)B.(-2,-6)C.(-2,6)D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能..折成无盖..小方盒的是A BC D7.⊙O 1和⊙O 2的半径分别为5和2,O 1O 2=3,则⊙O 1和⊙O 2的位置关系是A.内含B. 内切C.相交D.外切 8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形 9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B. 13 C. 12 D. 14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ卷相应的位置上................) 11.因式分解:2x 2-8=______▲________12.徐州巿部分医保定点医院2008年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元. 13.若12,x x 为方程210x x +-=的两个实数根,则12x x +=___▲___. 14.边长为a 的正三角形的面积等于______▲______.15.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若,若∠C =18°,则∠CDA =______▲_______.16.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于____▲_____cm.第Ⅱ卷(第10题图)(第15题图)(第16题图)三、解答题(每小题5分,共20分)17.计算:2008011(1)()3π--+-+18.已知21,23.x x x =--求的值19.解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m ) 2 1.4143 1.732四、解答题(本题有A 、B 两类题,A 类题4分,B 类题6分,你可以根据自己的学习情况,在两类题中任意选做一题......,如果两类题都做,则以A 类题计分) 21.(A 类)已知如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C.(B 类)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少? 23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各DCBAB(第20题图)(第21题图)题:(1) 该月小王手机话费共有多少元?(2) 扇形统计图中,表示短信费的扇形的圆心角为多少度? (3) 请将表格补充完整; (4) 请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0) ①画出△ABC 关于x 轴对称的△A 1B 1C 1,②画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2,③△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;短信费长途话费基本话费月功能费50403020100项目金额/元④△A 1B 1C 1与△A 2B 2C 2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2007年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c 为常数)设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x ≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题: ①填空:a=______,b=______,c=_______.②写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.③函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.26.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断①OA=OC②AB=CD③∠BAD=∠DCB④AD∥BC请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题...,画图并给出证明;②构造一个假命题...,举反例加以说明.七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板....DEF...绕点..E.旋转..,并使边DE与边AB交于点P,边EF与边BC于点Q【探究一】在旋转过程中,(1)如图2,当CE1EA=时,EP与EQ满足怎样的数量关系?并给出证明.(2) 如图3,当CE2EA=时EP 与EQ 满足怎样的数量关系?,并说明理由. (3) 根据你对(1)、(2)的探究结果,试写出当CEEA=m 时,EP 与EQ 满足的数量关系式为_________,其中m 的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中: (1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围.F C(E)B A(D)Q PDEFCBAQPDEFCBA(图1) (图2) (图3)徐州巿2008年初中毕业、升学考试数 学 试 题 参 考 答 案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(2)(2)x x -+ 12. 3750元 13.-1 14.215.126° 16.7cm17.解:原式=1+1-3+2=118.解:223(3)(1)x x x x --=-+,将1x =+代入到上式,则可得223111)2)1x x --=-+==-19.解:12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩222221552x x x x x x >->-⎧⎧⇒⇒-<≤⎨⎨+≥-≤⎩⎩20.解:如图所示,过点A 、D 分别作BC 的垂线AE 、DF 分别交BC 于点E 、F , 所以△ABE 、△CDF 均为Rt △,又因为CD =14,∠DCF =30°,所以DF =7=AE ,且FC =312.1所以BC =7+6+12.1=25.1m. 21.证明:(A )连结AC ,因为AB =AC ,所以∠BAC =∠BCA ,同理AD =CD 得∠DAC =∠DCA所以∠A =∠BAC +∠DAC =∠BCA +∠DCA =∠C(B )如(A )只须反过来即可.22.解方程的思想.A 车150km/h ,B 车125km/h. 23.解:(1)125元的总话费 (2)72° (3)BE FDCBA(4) 解:如下图所示,24.(4)对称中心是(0,0) 25.解:(1) a=7, b=1.4, c=2.1 (2)1 2.10.3y x =- (3)有交点为31(,9)7其意义为当317x <时是方案调价前合算,当317x >时方案调价后合算. 26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形. 27.解:(1)223y x x =--+ (2) (0,3),(-3,0),(1,0) (3)略短信费长途话费基本话费月功能费50403020100项目金额/元。
常州市中考数学试卷及答案(Word解析版)
江苏省常州市中考数学试卷一.选择题(本大题共有8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一项是正确的)1.(2分)(•常州)在下列实数中,无理数是()A.2B.3.14 C.D.考点:无理数.分析:根据无理数,有理数的定义对各选项分析判断后利用排除法求解.解答:解:A、2是有理数,故本选项错误;B、3.14是有理数,故本选项错误;C 、﹣是有理数,故本选项错误;D 、是无理数,故本选项正确.故选D.点评:主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)(•常州)如图所示圆柱的左视图是()A.B.C.D.考点:简单几何体的三视图分析:找到从左面看所得到的图形即可.解答:解:此圆柱的左视图是一个矩形,故选C.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.(2分)(•常州)下列函数中,图象经过点(1,﹣1)的反比例函数关系式是()A.B.C.D.考点:反比例函数图象上点的坐标特征分析:设将点(1,﹣1)代入所设的反比例函数关系式y=(k≠0)即可求得k的值.解答:解:设经过点(1,﹣1)的反比例函数关系式是y=(k≠0),则﹣1=,解得,k=﹣1,所以,所求的函数关系式是y=﹣或.故选A.点评:本题主要考查反比例函数图象上点的坐标特征.所有反比例函数图象上点的坐标都满足该函数解析式.4.(2分)(•常州)下列计算中,正确的是()A.(a3b)2=a6b2B.a•a4=a4C.a6÷a2=a3D.3a+2b=5ab考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据积的乘方,等于把每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减对各选项分析判断后利用排除法求解.解答:解:A、(a3b)2=a6b2,故本选项正确;B、a•a4=a5,故本选项错误;C、a6÷a2=a6﹣2=a4,故本选项错误;D、3a与2b不是同类项,不能合并,故本选项错误.故选A.点评:本题考查了同底数幂的除法,同底数幂的乘法,积的乘方的性质,理清指数的变化是解题的关键.5.(2分)(•常州)已知:甲乙两组数据的平均数都是5,甲组数据的方差,乙组数据的方差,下列结论中正确的是()A.甲组数据比乙组数据的波动大B.乙组数据的比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲组数据与乙组数据的波动不能比较考点:方差.分析:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,结合选项进行判断即可.解答:解:由题意得,方差<,A、甲组数据没有乙组数据的波动大,故本选项错误;B、乙组数据的比甲组数据的波动大,说法正确,故本选项正确;C、甲组数据没有乙组数据的波动大,故本选项错误;D、甲组数据没有乙组数据的波动大,故本选项错误;故选B.点本题考查了方差的意义,解答本题的关键是理解方差的意义,方差表示的是数据波评:动性的大小,方差越大,波动性越大.6.(2分)(•常州)已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是()A.相离B.相切C.相交D.无法判断考点:直线与圆的位置关系.分析:根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解答:解:∵⊙O的半径为6,圆心O到直线l的距离为5,∵6>5,即:d<r,∴直线L与⊙O的位置关系是相交.故选;C.点评:本题主要考查对直线与圆的位置关系的性质的理解和掌握,能熟练地运用性质进行判断是解此题的关键.7.(2分)(•常州)二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x ﹣3 ﹣2 ﹣1 0 1 2 3 4 5y 12 5 0 ﹣3 ﹣4 ﹣3 0 5 12给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.0考点:二次函数的最值;抛物线与x轴的交点.分析:根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解.解答:解;由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为﹣4;故(1)小题错误;根据表格数据,当﹣1<x<3时,y<0,所以,﹣<x<2时,y<0正确,故(2)小题正确;二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(﹣1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个.故选B.点评:本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.8.(2分)(•常州)有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()A.a+b B.2a+b C.3a+b D.a+2b考点:完全平方公式的几何背景.分析:根据3张边长为a的正方形纸片的面积是3a2,4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是5b2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式即可得出答案.解答:解;3张边长为a的正方形纸片的面积是3a2,4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是5b2,∵a2+4ab+4b2=(a+2b)2,∴拼成的正方形的边长最长可以为(a+2b),故选D.点评:此题考查了完全平方公式的几何背景,关键是根据题意得出a2+4ab+4b2=(a+2b)2,用到的知识点是完全平方公式.二.填空题(本大题共有9小题,第9小题4分,其余8小题每小题4分,共20分,)9.(4分)(•常州)计算﹣(﹣3)=3,|﹣3|=3,(﹣3)﹣1=﹣,(﹣3)2=9.考点:有理数的乘方;相反数;绝对值;有理数的减法.分析:根据相反数的定义,绝对值的性质,负整数指数幂,有理数的乘方的意义分别进行计算即可得解.解答:解:﹣(﹣3)=3,|﹣3|=3,(﹣3)﹣1=﹣,(﹣3)2=9.故答案为:3;3;﹣;9.点评:本题考查了相反数的定义,绝对值的性质,负整数指数幂,以及有理数的乘方的意义,是基础题.10.(2分)(•常州)已知点P(3,2),则点P关于y轴的对称点P1的坐标是(﹣3,2),点P关于原点O的对称点P2的坐标是(﹣3,﹣2).考点:关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称的点的横坐标互为相反数,纵坐标相同;关于原点对称的点的横坐标与纵坐标都互为相反数解答.解答:解:点P(3,2)关于y轴的对称点P1的坐标是(﹣3,2),点P关于原点O的对称点P2的坐标是(﹣3,﹣2).故答案为:(﹣3,2);(﹣3,﹣2).点评:本题考查了关于原点对称点点的坐标,关于y轴对称的点的坐标,熟记对称点的坐标特征是解题的关键.11.(2分)(•常州)已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),则k=2,b=﹣2.考点:待定系数法求一次函数解析式.分析:把点A、B的坐标代入函数解析式,利用待定系数法求一次函数解析式解答即可.解答:解:∵一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B (1,0),∴,解得.故答案为:2,﹣2.点评:本题主要考查了待定系数法求一次函数解析式,待定系数法是求函数解析式常用的方法之一,要熟练掌握并灵活运用.12.(2分)(•常州)已知扇形的半径为6cm,圆心角为150°,则此扇形的弧长是5πcm,扇形的面积是15πcm2(结果保留π).考点:扇形面积的计算;弧长的计算.分析:根据扇形的弧长公式l=和扇形的面积=,分别进行计算即可.解答:解:∵扇形的半径为6cm,圆心角为150°,∴此扇形的弧长是:l==5π(cm),根据扇形的面积公式,得S扇==15π(cm2).故答案为:5π,15π.点评:此题主要考查了扇形弧长公式以及扇形面积公式的应用,熟练记忆运算公式进行计算是解题关键.13.(2分)(•常州)函数y=中自变量x的取值范围是x≥3;若分式的值为0,则x=.考点:分式的值为零的条件;函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解;根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣3≥0,解得x≥3;2x﹣3=0且x+1≠0,解得x=且x≠﹣1,所以,x=.故答案为:x≥3;.点评:本题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.(2分)(•常州)我市某一周的每一天的最高气温统计如下表:最高气温(℃)25 26 27 28天数 1 1 2 3则这组数据的中位数是27,众数是28.考点:众数;中位数.分析:根据中位数、众数的定义,结合表格信息即可得出答案.解答:解:将表格数据从大到小排列为:25,26,27,27,28,28,28,中位数为:27;众数为:28.故答案为:27、28.点评:本题考查了众数、中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.15.(2分)(•常州)已知x=﹣1是关于x的方程2x2+ax﹣a2=0的一个根,则a=﹣2或1.考点:一元二次方程的解.分析:方程的解就是能使方程左右两边相等的未知数的值,把x=﹣1代入方程,即可得到一个关于a的方程,即可求得a的值.解答:解:根据题意得:2﹣a﹣a2=0 解得a=﹣2或1点评:本题主要考查了方程的解得定义,是需要掌握的基本内容.16.(2分)(•常州)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=2.考点:圆周角定理;含30度角的直角三角形;勾股定理;圆心角、弧、弦的关系.分析:根据直径所对的圆周角是直角可得∠BAD=∠BCD=90°,然后求出∠CAD=30°,利用同弧所对的圆周角相等求出∠CBD=∠CAD=30°,根据圆内接四边形对角互补求出∠BDC=60°再根据等弦所对的圆周角相等求出∠ADB=∠ADC,从而求出∠ADB=30°,解直角三角形求出BD,再根据直角三角形30°角所对的直角边等于斜边的一半解答即可.解答:解:∵BD为⊙O的直径,∴∠BAD=∠BCD=90°,∵∠BAC=120°,∴∠CAD=120°﹣90°=30°,∴∠CBD=∠CAD=30°,又∵∠BAC=120°,∴∠BDC=180°﹣∠BAC=180°﹣120°=60°,∵AB=AC,∴∠ADB=∠ADC,∴∠ADB=∠BDC=×60°=30°,∵AD=6,∴在Rt△ABD中,BD=AD÷cos60°=6÷=4,在Rt△BCD中,DC=BD=×4=2.故答案为:2.点评:本题考查了圆周角定理,直角三角形30°角所对的直角边等于斜边的一半,以及圆的相关性质,熟记各性质是解题的关键.17.(2分)(•常州)在平面直角坐标系xOy中,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上,连接OA、OB,若OA⊥OB,OB=OA,则k=﹣.考点:反比例函数综合题.分析:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,设点A的坐标为(a,),点B的坐标为(b,),判断出△OBF∽△AOE,利用对应边成比例可求出k的值.解答:解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,设点A的坐标为(a,),点B的坐标为(b,),∵∠AOE+∠BOF=90°,∠OBF+∠BOF=90°,∴∠AOE=∠OBF,又∵∠BFO=∠OEA=90°,∴△OBF∽△AOE,∴==,即==,则=﹣b①,a=②,①×②可得:﹣2k=1,解得:k=﹣.故答案为:﹣.点评:本题考查了反比例函数的综合题,涉及了相似三角形的判定与性质,反比例函数图象上点的坐标的特点,解答本题要求同学们能将点的坐标转化为线段的长度.三、解答题(本大题共2小题,共18分)18.(8分)(•常州)化简(1)(2).考点:分式的加减法;实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:(1)分别进行二次根式的化简、零指数幂的运算,代入特殊角的三角函数值即可得出答案.(2)先通分,然后再进行分子的加减运算,最后化简即可.解答:解:(1)原式=2﹣1+2×=2.(2)原式=﹣==.点评:本题考查了分式的加减运算、特殊角的三角函数值及零指数幂的运算,属于基础题,掌握各部分的运算法则是关键.19.(10分)(•常州)解方程组和分式方程:(1)(2).考点:解分式方程;解二元一次方程组.分析:(1)利用代入消元法解方程组;(2)最简公分母为2(x﹣2),去分母,转化为整式方程求解,结果要检验.解答:解:(1),由①得x=﹣2y ③把③代入②,得3×(﹣2y)+4y=6,解得y=﹣3,把y=﹣3代入③,得x=6,所以,原方程组的解为;(2)去分母,得14=5(x﹣2),解得x=4.8,检验:当x=4.8时,2(x﹣2)≠0,所以,原方程的解为x=4.8.点评:本题考查了解分式方程,解二元一次方程组.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.四、解答题(本大题共2小题,共15分请在答题卡指定区域内作答,解答或写出文字说明及演算步骤)20.(7分)(•常州)为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2).(1)请根据所给信息在图(1)中将表示“乒乓球”项目的图形补充完整;(2)扇形统计图(2)中表示”足球”项目扇形的圆心角度数为72°.考点:条形统计图;扇形统计图.分析:(1)首先根据打篮球的人数是20人,占40%,求出总人数,再用总人数减去篮球、足球和其它人数得出乒乓球的人数,用各个爱好的人数除以总人数,即可得出所占的百分百,从而补全统计图;(2)用360°乘以足球所占的百分百,即可得出扇形的圆心角的度数.解答:解:(1)总人数是:20÷40%=50(人),则打乒乓球的人数是:50﹣20﹣10﹣15=5(人).足球的人数所占的比例是:×100%=20%,打乒乓球的人数所占的比例是:×100%=10%;其它的人数所占的比例是:×100%=30%.补图如下:(2)根据题意得:360°×=72°,则扇形统计图(2)中表示”足球”项目扇形的圆心角度数为72°;故答案为:72°.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)(•常州)一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.考点:列表法与树状图法.专题:图表型.分析:(1)根据概率的意义列式即可;(2)画出树状图,然后根据概率公式列式计算即可得解.解答:解:(1)∵共有3个球,2个白球,∴随机摸出一个球是白球的概率为;(2)根据题意画出树状图如下:一共有6种等可能的情况,两次摸出的球都是白球的情况有2种,所以,P(两次摸出的球都是白球)==.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.五.解答题(本大题共2小时,共13分,请在答题卡指定区域内作答,解答应写出证明过程)22.(6分)(•常州)如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.考点:全等三角形的判定与性质.专题:证明题.分析:根据中点定义求出AC=BC,然后利用“SSS”证明△ACD和△BCE全等,再根据全等三角形对应角相等证明即可.解答:证明:∵C是AB的中点,∴AC=BC,在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B.点评:本题考查了全等三角形的判定与性质,比较简单,主要利用了三边对应相等,两三角形全等,以及全等三角形对应角相等的性质.23.(7分)(•常州)如图,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC 的两个外角,AD平分∠FAC,CD平分∠ECA.求证:四边形ABCD是菱形.考点:菱形的判定.专题:证明题.分析:根据平行四边形的判定方法得出四边形ABCD是平行四边形,再利用菱形的判定得出.解答:证明:∵∠B=60°,AB=AC,∴△ABC为等边三角形,∴AB=BC,∴∠ACB=60°,∠FAC=∠ACE=120°,∴∠BAD=∠BCD=120°,∴∠B=∠D=60°,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形.点评:此题主要考查了平行四边形的判定以及菱形的判定和角平分线的性质等内容,注意菱形与平行四边形的区别,得出AB=BC是解决问题的关键.六.解答题(本大题共2小题,请在答题卡指定区域内作答,共13分)24.(6分)(•常州)在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:∠ABC=30°,∠A′BC=90°,OA+OB+OC=.考点:作图-旋转变换.专题:作图题.分析:解直角三角形求出∠ABC=30°,然后过点B作BC的垂线,在截取A′B=AB,再以点A′为圆心,以AO为半径画弧,以点B为圆心,以BO为半径画弧,两弧相交于点O′,连接A′O′、BO′,即可得到△A′O′B;根据旋转角与∠ABC的度数,相加即可得到∠A′BC;根据直角三角形30°角所对的直角边等于斜边的一半求出AB=2AC,即A′B的长,再根据旋转的性质求出△BOO′是等边三角形,根据等边三角形的三条边都相等可得BO=OO′,等边三角形三个角都是60°求出∠BOO′=∠BO′O=60°,然后求出C、O、A′、O′四点共线,再利用勾股定理列式求出A′C,从而得到OA+OB+OC=A′C.解答:解:∵∠C=90°,AC=1,BC=,∴tan∠ABC===,∴∠ABC=30°,∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C===,∴OA+OB+OC=A′O′+OO′+OC=A′C=.故答案为:30°;90°;.点评:本题考查了利用旋转变换作图,旋转变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,等边三角形的判定与性质,综合性较强,最后一问求出C、O、A′、O′四点共线是解题的关键.25.(7分)(•常州)某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁.饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克).(1)列出满足题意的关于x的不等式组,并求出x的取值范围;(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?考点:一次函数的应用;一元一次不等式组的应用.分析:(1)表示出生产乙种饮料(650﹣x)千克,然后根据所需A种果汁和B种果汁的数量列出一元一次不等式组,求解即可得到x的取值范围;(2)根据销售总金额等于两种饮料的销售额的和列式整理,再根据一次函数的增减性求出最大销售额.解答:解:(1)设该厂生产甲种饮料x千克,则生产乙种饮料(650﹣x)千克,根据题意得,,由①得,x≤425,由②得,x≥200,所以,x的取值范围是200≤x≤425;(2)设这批饮料销售总金额为y元,根据题意得,y=3x+4(650﹣x)=3x+2600﹣4x=﹣x+2600,即y=﹣x+2600,∵k=﹣1<0,∴当x=200时,这批饮料销售总金额最大,为﹣200+2600=2400元.点评:本题考查了一次函数的应用,列一元一次不等式组解实际问题,根据A、B果汁的数量列出不等式组是解题的关键,(2)主要利用了一次函数的增减性.七.解答题(本大题共2小题,共25分,解答应写出文字说明,证明过程或演算步骤)26.(6分)(•常州)用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则S=a+b﹣1(史称“皮克公式”).小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:根据图中提供的信息填表:格点多边形各边上格点边多边形内部格点多边形的面积的格点的个数的格点个数多边形1 8 1多边形2 7 3…………一般格点多边形 a b S则S与a、b之间的关系为S=a+2(b﹣1)(用含a、b的代数式表示).考点:规律型:图形的变化类.分析:根据8=8+2(1﹣1),11=7+2(3﹣1)得到S=a+2(b﹣1).解答:解:填表如下:格点多边形各边上的格点的个数格点边多边形内部的格点个数格点多边形的面积多边形1 8 1 8多边形2 7 3 11…………一般格点多边形 a b S则S与a、b之间的关系为S=a+2(b﹣1)(用含a、b的代数式表示).点评:考查了作图﹣应用与设计作图.此题需要根据图中表格和自己所算得的数据,总结出规律.寻找规律是一件比较困难的活动,需要仔细观察和大量的验算.27.(9分)(•常州)在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为45°或135°;(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.考点:圆的综合题.专题:综合题.分析:(1)根据点A和点B坐标易得△OAB为等腰直角三角形,则∠OBA=45°,由于OC∥AB,所以当C点在y轴左侧时,有∠BOC=∠OBA=45°;当C点在y轴右侧时,有∠BOC=180°﹣∠OBA=135°;(2)由△OAB为等腰直角三角形得AB=OA=6,根据三角形面积公式得到当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,此时C点到AB的距离的最大值为CE的长然后利用等腰直角三角形的性质计算出OE,然后计算△ABC的面积;(3)①过C点作CF⊥x轴于F,易证Rt△OCF∽Rt△AOD,则=,即=,解得CF=,再利用勾股定理计算出OF=,则可得到C点坐标;②由于OC=3,OF=,所以∠COF=30°,则可得到∴BOC=60°,∠AOD=60°,然后根据“SAS”判断△BOC≌△AOD,所以∠BCO=∠ADC=90°,再根据切线的判定定理可确定直线BC为⊙O的切线.解答:解:(1)∵点A(6,0),点B(0,6),∴OA=OB=6,∴△OAB为等腰直角三角形,∴∠OBA=45°,∵OC∥AB,∴当C点在y轴左侧时,∠BOC=∠OBA=45°;当C点在y轴右侧时,∠BOC=180°﹣∠OBA=135°;(2)∵△OAB为等腰直角三角形,∴AB=OA=6,∴当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,如图,此时C点到AB的距离的最大值为CE的长,∵△OAB为等腰直角三角形,∴AB=OA=6,∴OE=AB=3,∴CE=OC+CE=3+3,△ABC的面积=CE•AB=×(3+3)×6=9+18.∴当点C在⊙O上运动到第三象限的角平分线与圆的交点位置时,△ABC的面积最大,最大值为9+18.(3)①如图,过C点作CF⊥x轴于F,∵OC∥AD,∴∠ADO=∠COD=90°,∴∠DOA+∠DAO=90°而∠DOA+∠COF=90°,∴∠COF=∠DAO,∴Rt△OCF∽Rt△AOD,∴=,即=,解得CF=,在Rt△OCF中,OF==,∴C点坐标为(﹣,);②直线BC是⊙O的切线.理由如下:在Rt△OCF中,OC=3,OF=,∴∠COF=30°,∴∠OAD=30°,∴∠BOC=60°,∠AOD=60°,∵在△BOC和△AOD中,∴△BOC≌△AOD(SAS),∴∠BCO=∠ADC=90°,∴OC⊥BC,∴直线BC为⊙O的切线.点评:本题考查了圆的综合题:掌握切线的判定定理、平行线的性质和等腰直角三角形的判定与性质;熟练运用勾股定理和相似比进行几何计算.28.(10分)(•常州)在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C,点B的坐标为(a,0),(其中a>0),直线l过动点M(0,m)(0<m<2),且与x轴平行,并与直线AC、BC分别相交于点D、E,P点在y轴上(P 点异于C点)满足PE=CE,直线PD与x轴交于点Q,连接PA.(1)写出A、C两点的坐标;(2)当0<m<1时,若△PAQ是以P为顶点的倍边三角形(注:若△HNK满足HN=2HK,则称△HNK为以H为顶点的倍边三角形),求出m的值;(3)当1<m<2时,是否存在实数m,使CD•AQ=PQ•DE?若能,求出m的值(用含a 的代数式表示);若不能,请说明理由.考点:一次函数综合题分析:(1)利用一次函数图象上点的坐标特征求解;(2)如答图1所示,解题关键是求出点P、点Q的坐标,然后利用PA=2PQ,列方程求解;(3)如答图2所示,利用相似三角形,将已知的比例式转化为:,据此列方程求出m的值.解答:解:(1)在直线解析式y=2x+2中,令y=0,得x=﹣1;x=0,得y=2,∴A(﹣1,0),C(0,2);(2)当0<m<1时,依题意画出图形,如答图1所示.∵PE=CE,∴直线l是线段PC的垂直平分线,∴MC=MP,又C(0,2),M(0,m),∴P(0,2m﹣2);直线l与y=2x+2交于点D,令y=m,则x=,∴D(,m),设直线DP的解析式为y=kx+b,则有,解得:k=﹣2,b=2m﹣2,∴直线DP的解析式为:y=﹣2x+2m﹣2.令y=0,得x=m﹣1,∴Q(m﹣1,0).已知△PAQ是以P为顶点的倍边三角形,由图可知,PA=2PQ,∴,即,整理得:(m﹣1)2=,解得:m=(>1,不合题意,舍去)或m=,∴m=.(3)当1<m<2时,假设存在实数m,使CD•AQ=PQ•DE.依题意画出图形,如答图2所示.由(2)可知,OQ=m﹣1,OP=2m﹣2,由勾股定理得:PQ=(m﹣1);∵A(﹣1,0),Q(m﹣1,0),B(a,0),∴AQ=m,AB=a+1;∵OA=1,OC=2,由勾股定理得:CA=.∵直线l∥x轴,∴△CDE∽△CAB,∴;又∵CD•AQ=PQ•DE,∴,∴,即,解得:m=.∵1<m<2,∴当0<a≤1时,m≥2,m不存在;当a>1时,m=.∴当1<m<2时,若a>1,则存在实数m=,使CD•AQ=PQ•DE;若0<a≤1,则m不存在.点评:本题是代数几何综合题,考查了坐标平面内一次函数的图象与性质、待定系数法、相似三角形、勾股定理、解方程等知识点.题目综合性较强,有一定的难度.第(3)问中,注意比例式的转化,这样可以简化计算.。
7-2008年江苏卷参考答案数学
(441000 嚣笋囊荔~矍 基÷垂 罗建:
2008薹奏垂羹矿羹翥垂;|蓁|萋藕萋!
一,卜嘲彬
ji C‘黧董霎一i;二..--%;剖;(--3j;!一(--5,):; ll:鼍乏掣?藿一i—i;x 3荔6◇2一~3,篓鏊C;
7i B耋磊苌幺耋;鹭凳;一毫:二(2x’7lO--r;
!一霪l“i—i}。!蠹:;;124忙善。“2;浠商扩仞
16.证明:(1)在△ABD
中,因为E、F分别是
AB、BD的中点,所以 , EF//AD.又ADC平 面ACD,EF正平面
(第16题)
ACD,所以直线EF//平面ACD. (2)在△ABD中,因为ADj_BD。EF//AD,所
以EF上BD.在△tK2D中,因为CD—CB,F为 BD的中点,所以CF上BD.因为EF c平面 EFC,CF c平面EFC,EF与CF交于点F,所
r
一1
得极小值,这个极小值就是函数Y在l 0,÷I上
的最小值.当0一睾时,AO=/30一—生一
U
了【
。05百
型#(km).因此,当污水处理厂建在矩形区域内
^.f
且到A、B两点的距离均为型掣km时,铺设的排
。
污管道的总长度最短.
18.解:(1)显然b≠0.否则,二次函数,(z)=工2+ 2z+b的图像与两坐标轴只有两个交点(o,o), (一2,0),这与题设不符.由b≠0知,二次函数
数 剜渤列..上综口上J可细知弱, j 押i碰只为能鬣为々 4.i
(;2#)i假设设盟对于于呆某食个正正整整数数 篱∞ n,j在存季在一一羹个差公为差蠹为霪d’ ‘
的 箭n,项等等差差数数列列黧6, ||, jj“ 譬+篓d7’'. J=. ?j· ?;,囊“帮+(i行 耋一 ~
2005-2011年江苏省常州市中考数学试卷及答案(7套)
2008年苏州市初中毕业暨升学考试试卷数 学本试卷由填空题、选择题和解答题三大题组成.共29小题.满分130分。
考试时间120分钟.注意事项:1.答题前,考生务话将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相对应的位置上,并认真核对条形码上的准考号、姓名是否与本人的相符合;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净 后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、填空题:本大题其l 2小题。
每小题3分,共36分.把答案直接填在答题卡相对应的位置上.1.5-的相反数是 .2.计算2008(1)-= .3.某校初一年级在下午3:00开展“阳光体育”活动.下午3:00这一时刻,时钟上分针与时针所夹的角等于 度4.函数y =x 的取值范围是 .5.分解因式:34x y -= .6.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于 .7.小明在7次百米跑练习中成绩如下:这7次成绩的中位数是 秒. 8.为迎接2008年北京奥运会,小甜同学设计了两种乒乓球,一种印有奥运五环图案,另一种印有奥运福娃图案.若将8个印有奥运五环图案和12个印有奥运福娃图案的乒乓球放入一个空袋中,且每个球的大小相同,搅匀后在口袋中随机摸出一个球.则摸到印有奥运五环图案的球的概率是 .9.关于x 的一元二次方程220x x m -+=有两个实数根,则m 的取值范围是 .10.将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于 (结果保留根号).11.6月1日起,某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤。
08年常州中考语文试卷及答案.doc
08年常州中考语文试卷及答案-圣火传递,汶川地震,震h n着世界,也猛烈撞击着青年人的灵魂。
中国以国家之大、f 员之广,在发展和ju 起的过程中,总是会不断出现一些重要的guǎi点。
这些重大事件的曲折起伏,大多牵涉民族感情、国家尊严或外交关系,使年轻人迅速选择自己的立场,确立自身的观点,从而在更长远的g 局意义上,形成一代中国人对世界的看法和姿态。
(摘自《参考消息汶川,世界和你在一起》2008年5月27日)2.默写。
(6分,答案不能重复)(1)我寄愁心与明月,。
,柳暗花明又一村。
(2)雨,是古典诗词中出现频率最高的意象之一。
请写出古诗词中借雨抒情的2个句子:(3)写出与高度决定视野,角度改变观念的哲理意蕴基本吻合的2句古诗(扣住1句即可):A.高衙内一心霸占林冲的妻子,高俅助子为孽,用陆谦奸计,引诱林冲携宝刀进入白虎堂,然后以擅闯军机重地、图谋行刺为由,将林冲发配沧州。
B.武松回乡探兄,途中路过阳谷县景阳冈,连喝了十八碗三碗不过冈,独自一人上山,借酒劲,仅凭双拳和断棒打死猛虎,一时轰动了整个县城。
阳谷知县欣赏他,留他做了步兵都头。
C.宋江和林冲率梁山众英雄在忠义堂排定座次,智多星吴用、神行太保花荣、立地太岁阮小二、小李广戴宗等一百零八条好汉,依据所长,各就其位。
D.梁山泊好汉连战连捷,被活捉的高俅答应请朝廷前来招安。
宿太尉奏明情况,皇帝大怒,将几个奸臣痛骂一顿。
经过一番周折,宋江率军迎战辽军,走上了为朝廷出力的道路。
(二)运用(共10分)4.下面是某位同学的作文片段,请根据文后要求,用规定的符号在原文上直接修改。
(4分)①为了开好运动会,学校组织了有意义的一次除草活动。
②中午,我早早地来到学校,和同学们尽情地玩耍起来。
③没想到:学校分给我们班是那块长着许多带刺植物的地方。
④男生用铁锹将根铲断,我们女生便将它们拖到垃圾堆。
⑤一不小心,手臂被小毛刺扎了一下,疼得我差点叫出声来。
⑥看到同学们个个精疲力竭,疲惫不堪,我便忍痛苦干起来。
江苏省13市中考补考试题之2008年数学试题(二)
江苏省13市中考补考试题之2008年数学试题(二)2008年江苏省淮安市中考数学试题迎你参加中考,祝你取得好成绩!请先阅读以下几点注意事项:1.本卷分第Ⅰ卷(机器阅卷)和第Ⅱ卷(人工阅卷)两部分.共150分.考试时间120分钟. 2.做第Ⅰ卷时,请将每小题选出的答案用2B 铅笔填涂在答题卡对应题目的标号上,如需改动,用橡皮擦干净后,再选涂其他答案,答案写在试题卷上无效.3.做第Ⅱ卷时,请先将密封线内的项目填写清楚,然后用蓝色或黑色的钢笔、签字笔、圆珠笔直接在试卷上作答,写在试题卷外无效.4.考试结束后,将第Ⅰ卷,第Ⅱ卷和答题卡一并交回.第Ⅰ卷 (选择题 共30分)一、选择题(本大题共lO 小题.每小题3分,共30分.下列各题的四个选项中,只有一个是符合题意的)1.-3的相反数是A .-3B .-13C .13D .32.第29届北京奥运会火炬接力活动历时130天,传递行程约为137000km .用科学记数法表示137000km 是A .1.37×105kmB .13.7×104kmC .1.37×104kmD .1.37×103km3.若分式23x -有意义.则x 应满足的条件是 A .x≠O B .x≥3 C .x ≠3 D .x≤34.如图,直线AB 、CD 相交于点O .OE 平分∠AOD,若∠BOC=80°,则∠AOE 的度数是 A .40° B .50° C .80° D . 100°5.下列各式中,正确的是A . <3B ..<5 D .<16 6.下列计算正确的是A .a 2+a 2=a 4B .a 5·a 2=a 7C .()325a a = D .2a 2-a 2=27.如图,在Rt△ABC 中,∠C=90°,AC=1,BC=2.以边BC 所在直线为轴,把△A BC 旋转一周,得到的几何体的侧面积是A .πB .2πC .D .8.如图所示的几何体的俯视图是9.下列调查方式中.不合适的是A.了解2008年5月18日晚中央也视台“爱的奉献”抗震救灾文艺晚会的收视率,采用抽查的方式B.了解某渔场中青鱼的平均重量,采用抽查的方式C.了解某型号联想电脑的使用寿命,采用普查的方式D.了解一批汽车的刹车性能,采用普查的方式10.一盘蚊香长lOOcm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间t(h)之间的函数关系的是第Ⅱ卷 (非选择题共120分)二、填空题(本大题共6小题.每小题3分,共18分.把正确答案直接填在题中的横线上) 11.分解因式:a2-4=______________12.已知⊙O1与⊙O2的半径分别为2cm和3cm,当⊙O1与⊙O2外切时,圆心距O1O2=______ 13.如图,请填写一个适当的条件:___________,使得DE∥AB.14.小华在解一元二次方程x2-4x=0时.只得出一个根是x=4,则被他漏掉的一个根是x=____.15.小明上学期六门科目的期末考试成绩(单位:分)分别是:120,115,x,60,85,80.若平均分是93分,则x=_________.16.如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C1,……,依次下去.则点B 6的坐标是________________.三、解答题(本大题共12小题,共102分.解答应写出必要的计算过程、推演步骤或文字说明)17(本小题6分)1112sin 452o-⎛⎫-+ ⎪⎝⎭18.(本小题6分)先化简,再求值:()()()2,x y x y x y x ⎡⎤-+-+÷⎣⎦其中x=-1,y=12.19.(本小题6分)解不等式3x-2<7,将解集在数轴上表示出来,并写出它的正整数解.20.(本小题8分)一只不透明的袋子中装有6个小球,分别标有l 、2、3;、4、5、6这6个号码,这些球除号码外都相同.(1)直接写出事件“从袋中任意摸出一个球,号码为3的整数倍”的概率P 1;(2)用画树状图或列表格等方法,求事件“从袋中同时摸出两个球,号码之和为6”的慨率P 2.21.(本小题8分)某县教育部门对该县参加奥运知识竞赛的7500名初中学生的初试成绩(成绩均为整数)进行一次抽样调查,所得数据如下表:(1)抽取样本的容量为___________;(2)根据表中数据,补全图中频数分布直方图;(3)样本的中位数所在的分数段范围为 ;(4)若规定初试成绩在90分以上(不包括90分)的学生进入决赛,则全县进入决赛的学生约为 人.22.(本小题8分)某民营企业为支援四川地震灾区,特生产A、B两种型号的帐篷.若A型帐篷每顶需篷布60平方米,钢管48米;B型帐篷每顶需篷布125平方米,钢管80米.该企业在生产这批帐篷时恰好(不计损耗)用了篷布9900平方米,钢管6720米.问:该企业生产了A、B两种型号的帐篷各多少顶?23.(本小题8分)如图所示的网格中有A、B、C三点.(1)请你以网格线所在直线为坐标轴建立平面直角坐标系,使A、B两点的坐标分别为A(2,-4)、 B(4,-2),则C点的坐标是_____________;(2)连结AB、BC、CA,先以坐标原点O为位似中心,按比例尺1:2在y轴的左侧画出△''',再写出点C对应点C'的坐标ABC缩小后的△A B C24.(本小题9分)已知;如图.矩形ABCD的对角线AC与BD相交于点O,点O关于直线AD的对称点是E,连结AE、DE.(1)试判断四边形AODE的形状,不必说明理由;(2)请你连结EB、EC.并证明EB=EC.25.(本小题9分)某项工程需要沙石料2×lO6立方米,阳光公司承担了该工程运送沙石料的任务.(1)在这项任务中平均每天的工作量v(立方米/天)与完成任务所需要的时间t(天)之间具有怎样的函数关系?写出这个函数关系式.(2)阳光公司计划投入A型卡车200辆,每天一共可以运送沙石料2×104立方米,则完成全部运送任务需要多少天?如果工作了25天后,由于工程进度的需要,公司准备再投入A 型卡车120辆,在保持每辆车每天工作量不变的前提下,问:是否能提前28天完成任务? 26.(本小题10分)如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若DE=3.求:(1) ⊙O的半径;(2)弦AC的长;(3)阴影部分的面积.27.(本小题lO分)我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图l是由△A复制出△A1,又由△A l复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A 开始的,由复制形成的多边形中的任意两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.(1)图l中标出的是一种可能的复制结果.它用到_____次平移._______次旋转.小明发现△B∽△A,其相似比为_________.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是________;(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;(4)图3是正五边形EFGHI.其中心是O.连结O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.28.(本小题14分)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的顶点为P,与x轴交点为 A、B,与y轴交点为C.连结BP并延长交y轴于点D.(1)写出点P的坐标;(2)连结AP,如果△APB为等腰直角三角形,求a的值及点C、D的坐标;(3)在(2)的条件下,连结BC、AC、AD,点E(0,b)在线段CD(端点C、D除外)上,将△BCD 绕点E逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD重叠部分的面积为S,根据不同情况,分别用含b的代数式表示S.选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b为何值时,重叠部分的面积最大?写出最大值.盐城市二○○八年高中阶段教育招生统一考试数学试题一、选择题:本大题共10小题,每小题3分,计30分.1.-3的立方是A.-27 B.-9 C.9 D.272.下列运算正确的是A.a2·a3 = a 6B.(a 2)3 = a 6C.a 2+ a 3 = a 5D.a 2÷a 3 = a 3.2008年北京奥运圣火在全球传递的里程约为137000km,用科学记数法可表示为A.1.37×103km B.137×103km C.1.37×105km D.137×105km 4.下列四个几何体中,主视图、左视图、俯视图完全相同的是A.圆锥B.球C.圆柱D.三棱柱5.实数a在数轴上对应的点如图所示,则a、-a、1的大小关系正确的是A.-a<a<1 B.a<-a<1C.1<-a<a D.a<1<-a01第5题图6.用计算器求2008的算术平方根时,下列四个键中,必须按的键是 A .B .C .D .7.已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图2.则旋转的牌是8.如图,A 、B 、C 、D 为⊙O 的四等分点,动点P 从圆心O 出发,沿O — C — D — O 路线作匀速运动.设运动时间为t (s ),∠APB=y (°),则下列图象中表示y 与t 之间函数关系最恰当的是9.在Rt △ABC 中,∠C=90°,AC=12,BC=5,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是A .25πB .65πC .90πD .130π10.甲、乙、丙三名射击运动员在某场测试中各射击20次,3人的测试成绩如下表则甲、乙、丙3名运动员测试成绩最稳定的是 A .甲B .乙C .丙D .3人成绩稳定情况相同二、填空题:本大题共8小题,每小题3分,计24分. 11.方程213x =-的根为 ▲ . 12.梯形的中位线长为3,高为2,则该梯形的面积为 ▲ .13.将一张等边三角形纸片沿着一边上的高剪开,可以拼成不同形状的四边形.试写出其中一种四边形的名称 ▲ .14.抛掷一枚均匀的硬币2次,2次抛掷的结果都是正面朝上的概率为 ▲ . 15.如图,D 、E 两点分别在△ABC 的边AB 、AC 上,DE 与BC 不平行,当满足 ▲图1图2A B C D第8题图OPDCBAA B C D条件(写出一个即可)时,△ADE ∽△ACB .16.如图,⊙O 的半径OA=10cm ,弦AB=16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为 ▲ cm .17.如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +2b)、宽为(a +b)的大长方形,则需要C 类卡片 ▲ 张.18.如图,⊙O 的半径为3cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB=OA ,动点P 从点A 出发,以πcm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为 ▲ s 时,BP 与⊙O 相切. 三、解答题:本大题共6小题,计48分. 19.(本题满分6分)计算:202(2)2)----. 20.(本题满分8分)先化简,再求值:)252(23--+÷--x x x x ,其中x =-4. 21.(本题满分8分)为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36°.根据上面提供的信息,回答下列问题:(1)写出样本容量、m 的值及抽取部分学生体育成绩的中位数;(2)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.22.(本题满分8分)如图,在12×12的正方形网格中,△TAB 的顶点坐标分别为T (1,1)、A (2,3)、B (4,2).(1)以点T (1,1)为位似中心,按比例尺(TA′∶TA )3∶1在位似中心的同侧将△TAB 放大为△TA′B′,放大后点A 、B 的对应点分别为A′、B′.画出△TA′B′,第18题图ab bbaaC B A 第17题图第15题图第16题图 A B C DEO P B A体育成绩统计图26分27分28分29分30分α并写出点A′、B′的坐标;(2)在(1)中,若C (a ,b )为线段AB 上任一点,写出变化后点C 的对应点C′的坐标.23.(本题满分8分)某工厂接受一批支援四川省汶川灾区抗震救灾帐蓬的生产任务.根据要求,帐篷的一个横截面框架由等腰三角形和矩形组成(如图所示).已知等腰△ABE 的底角∠AEB=θ,且tanθ=34,矩形BCDE 的边CD=2BC ,这个横截面框架(包括BE )所用的钢管总长为15m .求帐篷的篷顶A 到底部CD 的距离.(结果精确到0.1m )24.(本题满分10分)一只不透明的袋子中装有4个小球,分别标有数字2、3、4、x ,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近.试估计出现“和为7”的概率; (2)根据(1),若x 是不等于2、3、4的自然数,试求x 的值. 四、解答题:本大题共4小题,计48分. 25.(本题满分12分)在购买某场足球赛门票时,设购买门票数为x (张),总费用为y (元).现有两种购买A B C DE 第23题图方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示. 解答下列问题:(1)方案一中,y 与x 的函数关系式为 ▲ ;方案二中,当0≤x ≤100时,y 与x 的函数关系式为 ▲ ,当x >100时,y 与x 的函数关系式为 ▲ ;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.26.(本题满分12分)阅读理解:对于任意正实数a 、b ,∵2≥0,∴a b -≥0,∴a b +≥a =b 时,等号成立.结论:在a b +≥a 、b 均为正实数)中,若ab 为定值p ,则a+b≥只有当a =b 时,a+b有最小值.根据上述内容,回答下列问题: 若m >0,只有当m = ▲ 时,1m m+有最小值 ▲ . 思考验证:如图1,AB 为半圆O 的直径,C 为半圆上任意一点(与点A 、B 不重合),过点C 作CD ⊥AB ,垂足为D ,AD =a ,DB =b .试根据图形验证a b +≥探索应用:如图2,已知A(-3,0),B(0,-4),P 为双曲线xy 12=(x >0)上的任意一点,过点P 作PC ⊥x 轴于点C ,PD ⊥y 轴于点D .求四边形ABCD 面积的最小值,并说明此时四边形ABCD 的形状.第26题图127.(本题满分12分)如图,直线3y x b =+经过点B(2),且与x 轴交于点A .将抛物线213y x =沿x 轴作左右平移,记平移后的抛物线为C ,其顶点为P .(1)求∠BAO 的度数;(2)抛物线C 与y 轴交于点E ,与直线AB 交于两点,其中一个交点为F .当线段EF ∥x 轴时,求平移后的抛物线C 对应的函数关系式; (3)在抛物线213y x =平移过程中,将△PAB 沿直线AB 翻折得到△DAB ,点D 能否落在抛物线C 上?如能,求出此时抛物线C 顶点P 的坐标;如不能,说明理由.28.(本题满分12分)如图甲,在△ABC 中,∠ACB 为锐角.点D 为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF . 解答下列问题:(1)如果AB=AC ,∠BAC=90º.①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF 、BD 之间的位置关系为 ▲ ,数量关系为 ▲ .第27题图备用图第26题图2②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成立,为什么? (2)如果AB ≠AC ,∠BAC ≠90º,点D 在线段BC 上运动.试探究:当△ABC 满足一个什么条件时,CF ⊥BC (点C 、F 重合除外)?画出相应图形,并说明理由.(画图不写作法)(3)若AC=BC=3,在(2)的条件下,设正方形ADEF 的边DE 与线段CF相交于点P ,求线段CP 长的最大值.2008年扬州市中考数学试卷(考试时间:120分钟 满分:150分)说明:1.答卷前,考生务必将本人的姓名、准考证号、科目填涂在答题卡相应的位置上,同时在试卷的密封线内也务必将本人的准考证号、考试证号、姓名、学校填写好,在第2页的右下角填写好座位号。
常州市中考数学试题分类解析专题 图形的变换
2001-2012年江苏常州中考数学试题分类解析汇编(12专题)专题4:图形的变换锦元数学工作室编辑一、选择题1. (江苏省常州市2005年2分)如果某物体的三视图是如图所示的三个图形,那么该物体的形状是【】A、正方体B、长方体C、三棱柱D、圆锥【答案】C。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。
所给答案中只有三棱柱的俯视图为三角形,故选C。
2. (江苏省常州市2005年2分)下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是【】A、③④②①B、②④③①C、③④①②D、③①②④【答案】C。
【考点】平行投影【分析】根据影子变化规律可知道时间的先后顺序:从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长。
所以正确的是③④①②。
故选C。
3. (江苏省常州市2005年2分)若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是【】A、2B、3C、4D、5【答案】B。
【考点】几何体的表面积,正方形的性质,勾股定理。
【分析】根据图示逐层算出露出的面积加以比较即解:∵要求塔形露在外面的面积超过7(不包括下底面),最下面的立方体棱长为1,∴最下面的立方体露出的面积为:4×(1×1)+0.5=4.5。
假如上面一层没有立方体的话,第二层露出的面积为225=2.522⋅⋅,这两层加起来的面积为:7。
不符合题意。
假如上面一层有立方体的话,第二层露出的面积为2222422244+⋅,这两层加起来的面积为:6.75。
假如再上面一层没有立方体的话,第三层露出的面积为115=1.2522⋅⋅,这三层加起来的面积为:8。
符合题意。
∴立方体的个数至少是3。
故选B。
4. (江苏省常州市2006年2分)图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图,P、Q、M、N表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在【】A.P区域 B.Q区域 C.M区域 D.N区域【答案】B。
2008年江苏省中考数学压轴题精选(含答案)
2008年江苏省中考数学压轴题精选精析1(08江苏常州28题)(答案暂缺)如图,抛物线24y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l ,设P 是直线l 上一动点.(1) 求点A 的坐标;(2) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标; (3) 设以点A 、B 、O 、P 为顶点的四边形的面积为S,点P 的横坐标为x,当462682S +≤≤+时,求x 的取值范围.2(08江苏淮安28题)(答案暂缺)28.(本小题14分)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的顶点为P ,与x 轴交点为 A 、B ,与y 轴交点为C .连结BP 并延长交y 轴于点D. (1)写出点P 的坐标;(2)连结AP ,如果△APB 为等腰直角三角形,求a 的值及点C 、D 的坐标;(3)在(2)的条件下,连结BC 、AC 、AD ,点E(0,b)在线段CD(端点C 、D 除外)上,将△BCD 绕点E 逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S ,根据不同情况,分别用含b 的代数式表示S .选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b 为何值时,重叠部分的面积最大?写出最大值.(第28题)ly x-1-2-4-3-1-2-4-312435123(第24题图)3(08江苏连云港24题)(本小题满分14分)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的AOB △,COD △处,直角边OB OD ,在x 轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至PEF △处时,设PE PF ,与OC 分别交于点M N ,,与x 轴分别交于点G H ,.(1)求直线AC 所对应的函数关系式;(2)当点P 是线段AC (端点除外)上的动点时,试探究:①点M 到x 轴的距离h 与线段BH 的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S 是否存在最大值?若存在,求出这个最大值及S 取最大值时点P 的坐标;若不存在,请说明理由.(08江苏连云港24题解析)解:(1)由直角三角形纸板的两直角边的长为1和2,知A C ,两点的坐标分别为(12)(21),,,. 设直线AC 所对应的函数关系式为y kx b =+. ·············································· 2分有221k b k b +=⎧⎨+=⎩,.解得13k b =-⎧⎨=⎩,.所以,直线AC 所对应的函数关系式为3y x =-+. ········································ 4分 (2)①点M 到x 轴距离h 与线段BH 的长总相等. 因为点C 的坐标为(21),,所以,直线OC 所对应的函数关系式为12y x =. 又因为点P 在直线AC 上, 所以可设点P 的坐标为(3)a a -,.过点M 作x 轴的垂线,设垂足为点K ,则有MK h =. 因为点M 在直线OC 上,所以有(2)M h h ,. ·············· 6分 因为纸板为平行移动,故有EF OB ∥,即EF GH ∥. 又EF PF ⊥,所以PH GH ⊥.法一:故Rt Rt Rt MKG PHG PFE △∽△∽△,(第24题答图)从而有12GK GH EF MK PH PF ===. 得1122GK MK h ==,11(3)22GH PH a ==-.所以13222OG OK GK h h h =-=-=.又有13(3)(1)22OG OH GH a a a =-=--=-. ··········································· 8分所以33(1)22h a =-,得1h a =-,而1BH OH OB a =-=-,从而总有h BH =.·················································································· 10分法二:故Rt Rt PHG PFE △∽△,可得12GH EF PH PF =-.故11(3)22GH PH a ==-.所以13(3)(1)22OG OH GH a a a =-=--=-.故G 点坐标为3(1)02a ⎛⎫-⎪⎝⎭,. 设直线PG 所对应的函数关系式为y cx d =+,则有330(1)2a ca d c a d -=+⎧⎪⎨=-+⎪⎩,.解得233c d a =⎧⎨=-⎩ 所以,直线PG 所对的函数关系式为2(33)y x a =+-. ·································· 8分 将点M 的坐标代入,可得4(33)h h a =+-.解得1h a =-.而1BH OH OB a --=-,从而总有h BH =. ············································ 10分 ②由①知,点M 的坐标为(221)a a --,,点N 的坐标为12a a ⎛⎫ ⎪⎝⎭,.ONH ONG S S S =-△△1111133(1)222222a NH OH OG h a a a -=⨯-⨯=⨯⨯-⨯⨯- 22133133224228a a a ⎛⎫=-+-=--+ ⎪⎝⎭.······················································· 12分 当32a =时,S 有最大值,最大值为38. S 取最大值时点P 的坐标为3322⎛⎫⎪⎝⎭,. ·························································· 14分4(08江苏南京28题)(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究:信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?(08江苏南京28题解析)28.(本题10分) 解:(1)900; ························································································· 1分 (2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇. ·················· 2分 (3)由图象可知,慢车12h 行驶的路程为900km ,所以慢车的速度为90075(km /h)12=;·························································· 3分 当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶的速度之和为900225(km /h)4=,所以快车的速度为150km/h . ··········································· 4分 (4)根据题意,快车行驶900km 到达乙地,所以快车行驶9006(h)150=到达乙地,此时两车之间的距离为675450(km)⨯=,所以点C 的坐标为(6450),.设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+,把(40),,(6450),代入得044506.k b k b =+⎧⎨=+⎩,解得225900.k b =⎧⎨=-⎩,所以,线段BC 所表示的y 与x 之间的函数关系式为225900y x =-. ··············· 6分 自变量x 的取值范围是46x ≤≤. ····························································· 7分 (5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h . 把 4.5x =代入225900y x =-,得112.5y =.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km ,所以两列快车出发的间隔时间是112.51500.75(h)÷=,即第二列快车比第一列快车晚出发0.75h . ··············· 10分(第28题)y5.(08江苏南通28题)(14分)已知双曲线k y x=与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线ky x=上的动点.过点B 作BD ∥y 轴交x 轴于点D .过N (0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C . (1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.(08江苏南通28题解析)解:(1)∵D (-8,0),∴B 点的横坐标为-8,代入14y x =中,得y =-2. ∴B 点坐标为(-8,-2).而A 、B 两点关于原点对称,∴A (8,2).从而8216k =⨯=.……………………………………………………………………3分(2)∵N (0,-n ),B 是CD 的中点,A 、B 、M 、E 四点均在双曲线上,∴mn k =,B (-2m ,-2n),C (-2m ,-n ),E (-m ,-n ). ……………4分 S 矩形DCNO 22mn k ==,S △DBO =1122mn k =,S △OEN =1122mn k =, ………………7分∴S 四边形OBCE = S 矩形DCNO -S △DBO - S △OEN =k .∴4k =. …………………………8分由直线14y x =及双曲线4y x=,得A (4,1),B (-4,-1), ∴C (-4,-2),M (2,2).………………………………………………………9分 设直线CM 的解析式是y ax b =+,由C 、M 两点在这条直线上,得 42,2 2.a b a b -+=-⎧⎨+=⎩ 解得23a b ==. ∴直线CM 的解析式是2233y x =+.………………………………………………11分 (3)如图,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1、M 1.(第28题)设A 点的横坐标为a ,则B 点的横坐标为-a .于是 111A M MA a mp MP M O m-===. 同理MB m aq MQ m+==,……………………………13分 ∴2a m m ap q m m-+-=-=-.……………………14分6.(08江苏苏州28题)(答案暂缺)28.(本题9分) 课堂上,老师将图①中△AOB 绕O 点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化当△AOB 旋转90°时,得到△A 1OB 1.已知A(4,2)、B(3,0).(1)△A 1OB 1的面积是 ;A 1点的坐标为( , ;B 1点的坐标为( , );(2)课后,小玲和小惠对该问题继续进行探究,将图②中△AOB 绕AO 的中点C(2,1)逆时针旋转90°得到△A′O′B′,设O′B′交OA 于D ,O′A′交x 轴于E .此时A′、O′和B′的坐标分别为(1,3)、(3,-1)和(3,2),且O′B′ 经过B 点.在刚才的旋转过程中,小玲和小惠发现旋转中的三角形与△AOB 重叠部分的面积不断变小,旋转到90°时重叠部分的面积(即四边形CEBD 的面积)最小,求四边形CFBD 的面积;(3)在(2)的条件一下,△AOB 外接圆的半径等于 .7.(08江苏宿迁27题)(本题满分12分)如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为)0,5(,顶点D 在⊙O 上运动.(1)当点D 运动到与点A 、O 在同一条直线上时,试证明直线CD 与⊙O 相切; (2)当直线CD 与⊙O 相切时,求CD 所在直线对应的函数关系式;(3)设点D 的横坐标为x ,正方形ABCD 的面积为S ,求S 与x 之间的函数关系式,并求出S 的最大值与最小值.(第28题)第27题(08江苏宿迁27题解析)解:(1) ∵四边形ABCD 为正方形 ∴CD AD ⊥ ∵A 、O 、D 在同一条直线上 ∴︒=∠90ODC ∴直线CD 与⊙O 相切; (2)直线CD 与⊙O 相切分两种情况:①如图1, 设1D 点在第二象限时,过1D 作x E D ⊥11轴于点1E ,设此时的正方形的边长为a ,则2225)1(=+-a a ,解得4=a 或3-=a (舍去).由BOA Rt ∆∽11OE D Rt ∆ 得OBOD BA E D OA OE 1111==∴54,53111==E D OE ∴)54,53(1-D ,故直线OD 的函数关系式为x y 34-=;②如图2, 设2D 点在第四象限时,过2D 作x E D ⊥22轴于点2E ,设此时的正方形的边长为b ,则2225)1(=++b b ,解得3=b 或4-=b (舍去).由BOA Rt ∆∽22OE D Rt ∆ 得OBOD BA E D OA OE 2222== ∴53,54222==E D OE ∴)53,54(2-D ,故直线OD 的函数关系式为x y 43-=. (3)设),(0y x D ,则201x y -±=,由)0,5(B 得x x x DB 1026)1()5(22-=-+-=∴x x BD S 513)1026(21212-=-==∵11≤≤-x第27题图1第27题图2∴851318513=-==+=最小值最大值,S S .8.(08江苏泰州29题)已知二次函数)0(21≠++=a c bx ax y 的图象经过三点(1,0),(-3,0),(0,23-)。
2008年全国各地中考数学试卷及详细答案
常州市二00六年初中毕业、升学统一考试数 学注意事项:1、全卷共8页,满分120分,考试时间120分钟。
2、答卷前将密封线内的项目填写清楚,并将座位号填写在试卷规定的位置上。
3、用蓝色或黑色钢笔、圆珠笔将答案直接填写在试卷上。
4、考生在答题过程中,可以使用CZ1206、HY82型函数计算器,若试题计算结果没有要求取近似值,则计算结果取精确值(保留根号和π)。
一、填空题(本大题每个空格1分,共18分,把答案填写在题中横线上) 1.3的相反数是 ,5-的绝对值是 ,9的平方根是 。
2.在函数1-=xy 中,自变量x 的取值范围是 ;若分式12--x x 的值为零,则=x 。
3.若α∠的补角是120°,则α∠= °,=αcos 。
4.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是 环,中位数 环,方差是 环2。
5.已知扇形的圆心角为120°,半径为2cm ,则扇形的弧长是 cm ,扇形的面积是 2cm 。
6.已知反比例函数()0≠=k xky 的图像经过点(1,2-),则这个函数的表达式是 。
当0 x 时,y 的值随自变量x 值的增大而 (填“增大”或“减小”)7、如图,在△ABC 中,D 、E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,DF 平分CE 于点G ,1=CF ,则 =BC ,△ADE 与△ABC 的周长之比为 ,△CFG 与△BFD 的面积之比为 。
8.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米。
二、选择题(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后【 】内,每小题2分,共18分) 9.下列计算正确的是 【 】 A .123=-x x B .2x x x =∙ C .2222x x x =+ D .()423a a -=-第7题B第8题10.如图,已知⊙O 的半径为5mm ,弦mm AB 8=,则圆心O 到AB 的距离是 【 】A .1 mmB .2 mmC .3 mmD .4 mm 11.小刘同学用10元钱买两种不同的贺卡共8张,单价分别是1元与2元,设1元的贺卡为x 张,2元的贺卡为y 张,那么x 、y 所适合的一个方程组是 【 】A .⎪⎩⎪⎨⎧=+=+8102y x y xB .⎪⎩⎪⎨⎧=+=+1028102y x y x C .⎩⎨⎧=+=+8210y x y x D .⎩⎨⎧=+=+1028y x y x 12.刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的【 】 A .众数 B .方差 C .平均数 D .频数 13、图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在【 】A .P 区域B .Q 区域C .M 区域D .N 区域14、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 【 】224113第14题ABCD15.锐角三角形的三个内角是∠A 、∠B 、∠C ,如果B A ∠+∠=∠α,C B ∠+∠=∠β,A C ∠+∠=∠γ,那么α∠、β∠、γ∠这三个角中 【 】A .没有锐角B .有1个锐角C .有2个锐角D .有3个锐角 16、如果0,0,0 b a b a +,那么下列关系式中正确的是 【 】 A .a b b a -- B .b b a a -- C .a b a b -- D .a b b a --17.已知:如图1,点G 是BC 的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边线运动,运动路径为:H F E D C G →→→→→,相应的△ABP 的面积)(2cm y 关于运动时间)(s t 的函数图像如图2,若cm AB 6=,则下列四个结论中正确的个数有第10题第13题图2图1【 】图1F C①图1中的BC 长是8cm ②图2中的M 点表示第4秒时y 的值为242cm ③图1中的CD 长是4cm ④图2中的N 点表示第12秒时y 的值为182cm A .1个 B .2个 C .3个 D .4个三、解答题(本大题共2小题,共20分,解答应写出演算步骤) 18.(本小题满分10分)计算或化简:(1)03260tan 33⎪⎭⎫⎝⎛-+︒+ (2)2422---m m m19.(本小题满分10分)解方程或解不等式组: (1)x x 211=- (2)⎩⎨⎧-≥+≤-1)1(212x x x四、解答题(本大题共2小题,共12分,解答应写出证明过程) 20.(本小题满分5分)已知:如图,在四边形ABCD 中,AC 与BD 相交与点O ,AB ∥CD ,CO AO =, 求证:四边形ABCD 是平行四边形。
2008江苏省南通市初中毕业、升学考试数学试卷及参考答案
2008年南通市初中毕业、升学考试数 学(满分150分,考试时间120分钟)一、填空题:本大题共14小题,每小题3分,共42分.不需写出解答过程,请 把最后结果填在题中横线上.1. 计算:0-7 =. 2. = .3. 已知∠A =40°,则∠A 的余角等于 度. 4. 计算:3(2)a = .5. 一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积是 cm 2.6. 一组数据2,4,x ,2,3,4的众数是2,则x =. 7. 函数y 中自变量x 的取值范围是 . 8. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小 正方形中任取一个涂上阴影,能构成这个正方体的表面展开图 的概率是 .9. 一次函数(26)5y m x =-+中,y随x 增大而减小,则m 的取值 范围是 .10.如图,DE ∥BC 交AB 、AC于D 、E 两点,CF 为BC 的延长线,若∠ADE =50°,∠ACF =110°,则∠A = 度.11.将点A (0)绕着原点顺时针方向旋转45°角得到点B , 则点B 的坐标是 .12.苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克 元.(第8题)AB C FED(第10题)(第5题)13.已知:如图,△OAD ≌△OBC ,且∠O =70°,∠C =25°,则∠AEB = 度.14.已知三角形三个顶点坐标,求三角形面积通常有以下三种方法:方法1:直接法.计算三角形一边的长,并求出该边上的高. 方法2:补形法.将三角形面积转化成若干个特殊的四边形和 三角形的面积的和与差.方法3:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形. 现给出三点坐标:A (-1,4),B (2,2),C (4,-1),请你选择一种方法计算△ABC 的面积,你的答案是S △ABC = .二、选择题:本大题共4小题,每小题4分,共16分.在每小题给出的四个选 项中,恰有一项....是符合题目要求的,请将正确选项的代号填入题后括号内.15.下列命题正确的是 【 】A .对角线相等且互相平分的四边形是菱形B .对角线相等且互相垂直的四边形是菱形C .对角线相等且互相平分的四边形是矩形D .对角线相等的四边形是等腰梯形16.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 【 】A .203210x y x y +-=⎧⎨--=⎩,B .2103210x y x y --=⎧⎨--=⎩,C .2103250x y x y --=⎧⎨+-=⎩,D .20210x y x y +-=⎧⎨--=⎩,17.已知△ABC 和△A′B′C′是位似图形.△A′B′C′的面积为6cm 2,周长是△ABC 的一半.AB =8cm ,则AB 边上高等于 【 】 A .3 cm B .6 cm C .9cm D .12cm 18.设1x 、2x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且10x <,2130x x -<,则 【 】 A .1,2m n >⎧⎨>⎩B .1,2m n >⎧⎨<⎩C .1,2m n <⎧⎨>⎩D .1,2m n <⎧⎨<⎩O A B CD E (第13题) (第16题)三、解答题:本大题共10小题,共92分.解答时应写出文字说明、证明过程或演算步骤.(19~20题,第19题10分,第20题6分,共16分)19.(1)计算(2)分解因式2(2)(4)4x x x +++-.20.解分式方程225103x x x x-=+-.(21~22题,第21题7分,第22题8分,共15分)21.如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?A BP 北 东 (第21题)22.已知:如图,M 是AB 的中点,过点M 的弦MN 交AB 于点C ,设⊙O 的半径为4cm ,MN =.(1)求圆心O 到弦MN 的距离; (2)求∠ACM 的度数.(23~24题,第23题7分,第24题8分,共15分)23.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元. (1)求A 市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A 市三年共投资“改水工程”多少万元?24.已知点A (-2,-c )向右平移8个单位得到点A ',A 与A '两点均在抛物线2y ax bx c =++上,且这条抛物线与y 轴的交点的纵坐标为-6,求这条抛物线的顶点坐标.(第22题)ABC MNO ·(25~26题,第25题10分,第26题12分,共22分)25.随着我国人民生活水平和质量的提高,百岁寿星日益增多.某市是中国的长寿之乡,截至2008根据表格中的数据得到条形图如下:解答下列问题:(1)请把统计图中地区二和地区四中缺失的数据、图形补充完整;(2)填空:该市五个地区100周岁以上老人中,男性人数的极差是 人,女性人数的中位数是 人;(3)预计2015年该市100周岁以上的老人将比2008年2月的统计数增加100人,请你估算2015年地区一增加100周岁以上的男性老人多少人?(第25题)26.如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E .(1)求证:AB ·AF =CB ·CD ;(2)已知AB =15 cm ,BC =9 cm ,P 是射线DE 上的动点.设DP =x cm (0x ),四边形BCDP 的面积为y cm 2.①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小,并求出此时y 的值.A B C D FP · (第26题)27.在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.方案一方案二(第27题)28.已知双曲线k y x=与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线ky x=上的动点.过点B 作BD ∥y 轴交x 轴于点D .过N (0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C . (1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.2008年南通市初中毕业、升学考试数学试题参考答案与评分标准说明:本评分标准每题只提供一种解法,如有其他解法,请参照本标准的精神给分.一、填空题:本大题共14小题,每小题3分,共42分.1.-7 2.12 3.50 4.38a 5.6 6.2 7.x ≥2 8.479.m <3 10.60 11.(4,-4) 12.4 13. 120 14.52二、选择题:本大题共4小题,每小题4分,共16分. 15.C 16.D 17.B 18.C三、解答题:本大题共10小题,共92分.19.(1)解:原式=÷……………………………………………………4分=2.………………………………………………………………5分(第28题)(2)解:原式=(2)(4)(2)(2)x x x x ++++- …………………………………………………7分=(2)(22)x x ++ ………………………………………………………………9分 =2(2)(1)x x ++.………………………………………………………………10分 20.解:方程两边同乘以x (x+3)(x -1),得5(x -1)-(x+3)=0.…………………………2分解这个方程,得2x =.……………………………………………………………………4分 检验:把2x =代入最简公分母,得2×5×1=10≠0.∴原方程的解是2x =.……………………………………………………………………6分21.解: 过P 作PC ⊥AB 于C 点,根据题意,得AB =18×2060=6,∠P AB =90°-60°=30°, ∠PBC =90°-45°=45°,∠PCB =90°, ∴PC =BC . ……………………………2分 在Rt △P AC 中, tan30°=6PC PCAB BC PC=++, …………4分6PC PC=+,解得PC=3. 6分∵3>6,∴海轮不改变方向继续前进无触礁危险.……………………………7分22.解:(1)连结OM .∵点M 是AB 的中点,∴OM ⊥AB . …………………………………1分过点O 作OD ⊥MN 于点D ,由垂径定理,得12MD MN ==. ………………………3分在Rt △ODM 中,OM =4,MD =∴OD 2. 故圆心O 到弦MN 的距离为2 cm . …………………………5分 (2)cos ∠OMD =MD OM =,…………………………………6分 ∴∠OMD =30°,∴∠ACM =60°.……………………………8分23.解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.…………………………………………………………………………2分解之,得0.4x =或 2.4x =-(不合题意,舍去).………………………………………4分所以,A 市投资“改水工程”年平均增长率为40%. …………………………………5分(第22题)A BCMN O· D (第21题)A P60︒45︒北东(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元. ………………………………………………7分24.解:由抛物线2y ax bx c =++与y 轴交点的纵坐标为-6,得c =-6.……………………1分∴A (-2,6),点A 向右平移8个单位得到点A '(6,6). …………………………3分 ∵A 与A '两点均在抛物线上,∴426636666a b a b --=⎧⎨+-=⎩,. 解这个方程组,得14a b =⎧⎨=-⎩,.……………………………………6分 故抛物线的解析式是2246(2)10y x x x =--=--.∴抛物线的顶点坐标为(2,-10). ……………………………………………………8分25.解:(1)……………………4分(2)22,50; ……………………………………………………………………………………8分 (3)[21÷(21+30+38+42+20+39+50+73+70+37)]×100=5,预计地区一增加100周岁以上男性老人5人. …………………………………………10分26.(1)证明:∵AD CD =,DE AC ⊥,∴DE 垂直平分AC ,∴AF CF =,∠DF A =∠DFC =90°,∠DAF =∠DCF .……………………………1分 ∵∠DAB =∠DAF +∠CAB =90°,∠CAB +∠B =90°,∴∠DCF =∠DAF =∠B .2分 在Rt △DCF 和Rt △ABC 中,∠DFC =∠ACB =90°,∠DCF =∠B ,∴△DCF ∽△ABC . ……………………………………………………………………3分∴CD CF AB CB =,即CD AFAB CB=.∴AB ·AF =CB ·CD . ………………………………4分 (2)解:①∵AB =15,BC =9,∠ACB =90°,∴12AC ,∴6CF AF ==.……………………………5分(第25题)∴1963272y x x =+⨯=+()(0x >). ………………………………………………7分 ②∵BC =9(定值),∴△PBC 的周长最小,就是PB +PC 最小.由(1)知,点C 关于直线DE 的对称点是点A ,∴PB +PC =PB +P A ,故只要求PB +P A 最小.显然当P 、A 、B 三点共线时PB +P A 最小.此时DP =DE ,PB +P A =AB . ………8分 由(1),A D F F A E∠=∠,90DFA ACB ∠=∠=︒,得△DAF ∽△ABC . EF ∥BC ,得11522AE BE AB ===,EF =92. ∴AF ∶BC =AD ∶AB ,即6∶9=AD ∶15.∴AD =10.……………………………10分 Rt △ADF 中,AD =10,AF =6,∴DF =8. ∴925822DE DF FE =+=+=. ………………………………………………………11分 ∴当252x =时,△PBC 的周长最小,此时1292y =.………………………………12分 27.解:(1)理由如下:∵扇形的弧长=16×π2=8π,圆锥底面周长=2πr ,∴圆的半径为4cm .………2分由于所给正方形纸片的对角线长为,而制作这样的圆锥实际需要正方形纸片的对角线长为16420+++cm ,20+>∴方案一不可行. ………………………………………………………………………5分(2)方案二可行.求解过程如下:设圆锥底面圆的半径为r cm ,圆锥的母线长为R cm ,则(1r R +=, ① 2π2π4R r =. ② …………………………7分由①②,可得R ==,r == ………………9分cm . ………10分28.解:(1)∵D (-8,0),∴B 点的横坐标为-8,代入14y x =中,得y =-2. ∴B 点坐标为(-8,-2).而A 、B 两点关于原点对称,∴A (8,2).从而8216k =⨯=.……………………………………………………………………3分(2)∵N (0,-n ),B 是CD 的中点,A 、B 、M 、E 四点均在双曲线上,∴mn k =,B (-2m ,-2n ),C (-2m ,-n ),E (-m ,-n ). ……………4分 S 矩形DCNO 22mn k ==,S △DBO =1122mn k =,S △OEN =1122mn k =, ………………7分 ∴S 四边形OBCE = S 矩形DCNO -S △DBO - S △OEN =k .∴4k =. …………………………8分 由直线14y x =及双曲线4y x=,得A (4,1),B (-4,-1), ∴C (-4,-2),M (2,2).………………………………………………………9分 设直线CM 的解析式是y ax b =+,由C 、M 两点在这条直线上,得42,2 2.a b a b -+=-⎧⎨+=⎩ 解得23a b ==. ∴直线CM 的解析式是2233y x =+.………………………………………………11分 (3)如图,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1、M 1.设A 点的横坐标为a ,则B 点的横坐标为-a .于是 111A M MA a m p MP M O m -===. 同理MB m a q MQ m+==,……………………………13分 ∴2a m m a p q m m-+-=-=-.……………………14分。
2008年苏州中考试题常州市兰陵中学
2008年苏州中考试题本试卷分第I卷(客观题)和第II卷(主观题)两部分。
共4大题,33小题,考试。
考试试卷约50分钟,满分50分。
答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米的黑色签字笔填写在答题卡的相应位置上,并认真核对条形码上的准考证号、姓名是否与本人相符合。
答客观题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,在选涂其它答案;答主观题用0.5毫米黑色签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效。
不得用其它答题。
考生答题必须答在答题卡上,答在试卷和草稿纸上一律无效。
第I卷(客观题,共30分)一.单项选择(以下个体都有四个选项,其中只有一个是正确的,选出正确答案。
每小题1分,共20分。
)1.2007年11月6日,中国国家航天局公布“▲”卫星传回的第一幅月面图像,这标志着我国首次月球探测工程取得圆满成功。
A.嫦娥一号 B.风云一号 C.风云二号 D.风云三号2.从2008年3月1日起,我国个人所得税起正点从1600元上调至▲元。
这体现了重点照顾中低收入者的政策意图。
A.1700 B.11800 C.1900 D.20003. 2007年12月3日至15日,联合国▲大会在印度尼西亚巴厘岛举行。
A.金融财政 B.军费计划 C.气候变化 D.能源危机4.2008年2月28日,《中国法治建设》白皮书发表。
该白皮书强调把坚持▲与坚持宪法和法律至上、维护宪法和法律的权威统一起来。
A.四项基本原则 B.党的领导 C.对外开放 D.构建和谐社会5.2008年3月24日,北京奥运会奥林匹克圣火在希腊古奥林匹克遗址成功采集。
3月31日,在天安门广场,胡锦涛总书记亲手点燃圣火盆,并宣布北京2008年奥运会▲。
A.火炬接力开始 B.会旗传递开始C.会徽启用开始 D.吉祥物6.未成年人身权利中最重要、起码的权利是▲A.生命健康权 B.安全权 C.财产继承权 D.肖像权7.“不以规矩、难成方圆”,做任何事都要有规矩。
2008年江苏省常州市初中毕业升学统一考试、物理试题
二00八年江苏省常州市初中毕业、升学统一考试物理试题说明:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分.第I 卷1至2页,第Ⅱ卷3至8页.考试结束,将本试卷和答题卡一并交回.2.考试时间为100分钟,试卷满分为100分.考试时不得使用计算器.第I卷(选择题共40分)注意事项:1.答第I卷前,考生务必在答题卡上将自己的姓名、考试证号用钢笔或圆珠笔填写清楚,并用2B铅笔将与考试证号、考试科目相对应的方框涂黑.2.每小题选出答案后,用2B铅笔把答题卡上相应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答在试卷上无效.一、选择:(每小题2分,共40分)每小题只有一个选项符合题意.1.体育课掷铅球活动后,同学们对“铅球”的制作材料进行讨论,有同学认为“铅球”是铁制的,并从实验室借来磁铁吸一下.“吸一下”这一过程属于科学探究中的A.提问B.猜想C.实验D.得出结论2.2008年5月26日7时50分15秒,美国“凤凰号”火星探测器进人火星大气层向火星北极地区降落,打开降落伞后,“凤凰号”竖直下落的速度在15s内从1450km/h降至400km/h,此过程中,降落伞和探测器受到的火星大气阻力F1和火星引力F2之间的关系是A. F1 >F2B. F1 =F2C. F1<F2D.无法判断3.为纪念某些作出杰出贡献的物理学家,往往用他们的名字命名一些物理量的单位.对下列物理量及单位的理解,正确的是A.用手平托重为1N的苹果水平移动lm,手对苹果做的功是1JB.质量为lkg的物体,在地球表面所受重力的大小约为9.8NC.重为1N的苹果放在面积为1m,的水平桌面上,苹果对桌面的压强是1PaD.某人的心跳每分钟72次,其频率是72 Hz4.下列现象中,能说明分子在做无规则运动的是A.春天:春江水暖鸭先知B.夏天:满架蔷薇一院香C.秋天:数树深红出浅黄D.冬天:纷纷暮雪下辕门5.在“探究凸透镜成像规律”的过程中,小明同学观察到了如图所示的实验现象.下列光学仪器的工作原理与该现象所反映的规律相同的是A.放大镜B.照相机C.投影仪D.汽车的后视镜6.常州市城市生活垃圾焚烧发电厂将于2008年9月28日并网发电.该工程总投资5亿元,每天可焚烧垃圾7.5X105kg,发电1. 6 X 105kW·h,利用垃圾焚烧所产生的炉渣可制砖6万块.对于该工程的意义,下列说法错误的是A.解决城市生活垃圾的处理难题,变废为宝B.高温消灭垃圾中的细菌、病毒,有利环保C.减少需要填埋的垃圾质量和体积,节约土地D.居民投放垃圾不用分类,轻松便捷7.在如图所示的电路中,两只电流表的规格相同,电流表有两个量程(0~0. 6A以及0~3A).闭合开关S,电阻R1与R2均有电流流过,两只电流表的指针偏转角度相同,则R1与R2的比值为A. 1∶5B.5∶1C.1∶4D.4∶18.我国民间有句谚语:“水缸穿裙子,天就要下雨.”其中,“水缸穿裙子”是指盛水的水缸外表面出现了一层密密麻麻的小水珠.小水珠是由A.水缸中的水蒸发形成的B.空气中的水蒸气液化形成的C.水缸中的水汽化形成的D.空气中的水蒸气凝华形成的9.2007年夏季,高邮湖面上发生龙卷风,把大量的湖水“吸”人空中.龙卷风实质上是高速旋转的气流,它能“吸”起物体的原因是A.龙卷风内部的压强远小于外部的压强C.龙卷风内部的压强远大于外部的压强B.龙卷风使物体受到的重力增大D.龙卷风使物体受到的重力减小常物第1页(共8页)10.位于市中心的商业大楼建有观光电梯,乘客在随电梯竖直上升的过程中,可透过玻璃欣赏到楼外美丽的城市景色.分析这一过程,下列说法正确的是A.以地面为参照物,乘客是静止的B.以电梯为参照物,乘客是静止的C.以地面为参照物,电梯是静止的D.以乘客为参照物,地面是静止的11.北京奥运会广泛应用了节能减排技术,成为节约能源、减少二氧化碳排放量的成功典范.下列措施中,不属于节能减排的是A.国家体育场装有l00kW太阳能光伏发电系统B.奥运村内车辆应减速慢行C.奥运村生活热水全部来自6000m2的太阳能集热器D.奥运村内建筑物顶部装有风力发电机12.小明同学在“制作、研究电磁铁”的过程中,使用两个相同的大铁钉绕制成电磁铁进行实验,如图所示,下列说法正确的是A.电磁铁能吸引的大头针越多,表明它的磁性越强B. B线圈的匝数多,通过B线圈的电流小于通过A线圈的电流C.要使电磁铁磁性增强,应将滑动变阻器的滑片尸向右移动D.若将两电磁铁上部靠近,会相互吸引13.下列物品中,由硬度最大的物质组成的是A.橡皮泥B.铅笔芯C.塑料尺D.钢锯条14.下列现象中,属于增大压强的是①载重量大的汽车装有许多车轮②压路机上碾子的质量很大③短道速滑运动员的冰鞋上装有冰刀④房屋建在承受面积更大的地基上A.①②B.②③C.③④D.①④15.如图所示,电源电压保持不变,开关S闭合后,当滑动变阻器R:的滑片P向左移动时,电流表和电压表示数的变化情况是A.电流表的示数变小,电压表的示数变大B.电流表的示数变小,电压表的示数变小C.电流表的示数变大,电压表的示数变大D.电流表的示数变大,电压表的示数变小16.下列措施中,能增大摩擦力的是A.自行车车轴处装有滚珠轴承B.足球鞋底装有鞋钉C.在汽油机的连杆和曲轴连接处加注机油D.溜冰鞋底装有滚轮17.2007年,法国科学家阿尔贝‘费尔和德国科学家彼得·格林贝格尔因发现某些材料的巨磁电阻效应(微弱的磁场变化可以导致电阻大小的急剧变化)而共同获得诺贝尔物理学奖.根据这一发现,可以制成的产品是A.能够“读”出微弱的磁场变化并转换成清晰的电流变化的灵敏磁头B.通过微弱电流就能产生强大磁场的电磁铁C.当家庭电路过载或短路时能自动熔断的熔丝D.能储存、释放大量电能的大容量蓄电池18.2008年4月19日,俄“联盟”号飞船返回舱着陆时出现严重错误,返回舱进入地球大气层后,朝地面飞行的前端不是隔热罩,而是舱门和天线,导致舱门被烧焦,天线遭焚毁,宇航员的生命受到严重威胁.在这一过程中,返回舱能量转化的方式是A.重力势能→动能→内能 B.动能→重力势能→内能C.内能→重力势能→动能 D.内能→动能→重力势能19.中考体育跳绳项目测试中,小明同学在lmin内跳了120次,则他跳绳时的功率大约是A. 0. 5 WB. 5 WC. 50WD. 500 W20.有两个电路元件A和B,流过元件的电流与其两端电压的关系如图(甲)所示.把它们串联在电路中,如图(乙)所示.闭合开关S,这时电流表的示数为0. 4A,则电源电压和元件B的电功率分别是A. 2.0V 0.8 WB. 2.5V 1.0WC. 4.5V 1.0 WD. 4.5V 1.8W常物第2页(共8页)常州市二00八年初中毕业、升学统一考试物理试题第Ⅱ卷(非选择题共60分)注意事项:1.用蓝色或黑色的钢笔或圆珠笔直接答在试卷上(作图和设计电路图可用铅笔).2.答卷前将密封线内的项目填写清楚,并将座位号填写在试卷规定的位置上.二、填空与作图:(第21-23小题每空格1分,第24小题每空格2分,第25小题6分,第26、27小题各2分.共27分)21.2008年南方雪灾,给人民群众的生活、生产带来很多困难.(1)冰雪道路上,车辆应减速行驶,其原因是:汽车具有,当路面有冰雪时,轮胎与地面间的摩擦会变(大/小),汽车在紧急刹车后滑行的距离将比路面没有冰雪时(长/短).(2)看到抢险队员在冰雪覆盖的道路上洒大量的盐,小亮同学产生疑问:含盐浓度不同的冰,熔化特点有无区别?为此,小亮同学用纯水、淡盐水、浓盐水制得质量均为lkg的纯冰、淡盐冰、浓盐冰,在相同加热条件下测量三者的温度变化,并得到三条温度变化曲线(纯冰对应曲线①、淡盐冰对应曲线②、浓盐冰对应曲线③).根据曲线图可知,含盐浓度越高的冰,比热容越(大/小),熔化前升温越(快/慢),并能在更(高/低)的温度熔化.22. 2008年5月12日,四川波川发生8.0级地震.救援队员利用各种器材展开抢险救灾工作.(1)利用如图所示的钢丝钳,救援队员把钢筋剪断,钢丝钳是(省力/费力)杠杆.(2)使用撬棒,救援队员把滚落在公路上的石块撬起,如图所示,若救援队员在撬棒D点沿DM方向用力撬起石块1,撬棒的支点是点;若救援队员在撬棒D点沿DN方向用力撬起石块1,撬棒的支点是点.(3)利用生命探测仪,救援队员可以找到被埋在废墟中的幸存者.生命探测仪有多种:“热红外生命探测仪”利用红外热成像原理,通过探测受困者与周围温度的差异,形成人体图像,在黑夜,该仪器使用效果(较好/较差);“可视生命探测仪”利用光纤把细小的摄像探头深人废墟的缝隙中,光信号在光纤内经多次(反射/折射)传送回来,救援队员在显示屏上就可以把废墟深处的情况看得清清楚楚.常物第3页(共8页)23.为探究声音的反射与吸收特点,小明同学进行实验研究.(1)在玻璃圆筒内垫上一层棉花,棉花上放一块机械表,耳朵靠近玻璃圆筒口正上方l0cm处,能清晰地听见表声,表声是通过传播的.(2)当耳朵水平移动离开玻璃圆筒口一段距离后,如图(甲)所示位置,恰好听不见表声.(3)在玻璃圆筒口正上方10 cm处安放一块平面镜,调整平面镜的角度直到眼睛能从镜面里看到表,如图(乙)所示,则∠AOB是该光路的(人射角/反射角).此时耳朵又能清晰地听见表声了,说明声音(能/不能)像光一样反射.(4)用海绵板代替平面镜,听见的声音明显减弱,说明海绵板吸收声音的能力(强/弱)于玻璃板.24.2008年1月1日,常州市快速公交一号线正式开通运行.快速公交一号线全程24km,北起新北公交中心站,南至武进公交中心站,全程运行时间为40min,快速公交车行驶的平均速度是km/h.25.为保证湖滨桥以及过桥车辆的安全,工作人员在桥的人口处安装了“超载检测报警系统”.检测时,当车辆重量小于1×105N时,绿灯亮、红灯灭,表示可以通行;当车辆重量大于等于1×105N时,红灯亮、绿灯灭,表示禁止通行.系统中的电路元件如图(甲)所示,其中压敏电阻R x二在检测时承受车辆的全部重量,它的阻值随所受压力F变化的图像如图(乙)所示;R0为定值电阻;电磁继电器线圈的阻值为10Ω,当流过线圈的电流大于等于30mA时,通电线圈的作用效果大于弹簧的作用效果,衔铁被吸下,动触点P和静触点M断开并和静触点N接通;电池组的电压为6V;绿灯、红灯的正常工作电压均为220V.(1)请在图(甲)中用笔画线代替导线完成电路连接.(2)定值电阻Ro的阻值为Ω26.如图所示,平面镜前有一点光源S,S 27.如图所示,长方体木块静止在水平地面发出的一束光线被平面镜反射后经上,请画出木块受到所有力的示意图.过A点,请作出该光线的光路图.常物第4页(共8页)三、解答与探究:(第28小题4分,第29小题4分,第30小题6分,第31小题9分,第32小题10分,共33分)计算题解答时要有必要的文字说明、公式和运算过程,直接写出结果的不能得分.28.小文同学在“测定滑轮组机械效率”的实验中,用如图所示的装置匀速吊起钩码,并记录了如下实验数据:根据实验数据,小文同学计算机械效率的过程如下:有用功W有用=(G1+G2)h=(4十0.4)×0.1J=0.44J总功W总=FS= 1. 6×0.3J=0. 48J机械效率:答:当匀速吊起4N重的钩码时,该滑轮组的机械效率约为91.7%.小文同学的计算过程是否正确?如有错误,请在下方空白处写出错误之处并对滑轮组的机械效率作出正确解答.29.为办好2009年江苏省运动会,我市正在兴建大型体育场.施工人员用挖掘机开挖地基.挖掘机每次可将0.8m3体积的泥土举高3m再水平移动5m倒人卡车货箱,此过程中挖掘机对泥土做了多少功?(泥土密度为1. 5 X 103 kg/m3,g取l0N/kg)常物第5页(共8页)30.为增加学生的国防知识,阳湖中学九(2)班同学到东海舰队参观某型号潜水艇.潜水艇的艇壳是用高强度的特种钢板制造,最大下潜深度可达350m.潜水艇的总体积为1. 5×103m3,艇内两侧有水舱,潜水艇截面如图所示.通过向水舱中充水或从水舱中向外排水来改变潜水艇的自重,从而使其下沉或上浮.(海水密度为1. 03×103 kg/m3, g取10N/kg)(1)水舱未充海水时,潜水艇总重量为9.27×106 N,此时,漂浮在海面的潜水艇排开海水的体积是多少?(2)为使潜水艇完全潜人海水中,至少应向水舱充人海水的重量是多少?(3)潜水艇的艇壳用高强度的特种钢板制造的原因是什么?常物第6页(共8页)31.“5·12”坟川大地震发生后,常州常发集团向灾区人民捐赠一批柴油发电机.这种柴油发电机的工作原理为:以风冷四冲程直喷式柴油机为动力系统,带动发电机发电,该柴油发电机说明书的部分内容如表所示.现在用一台该型号的柴油发电机给灾民临时安置区供电,如图所示.发电机到安置区的距离是400m,输电线路中的火线和零线均为GBCZ60型单股铜导线,该型导线单位长度的电阻为2.5×10-4Ω/m.安置区家用电器的总功率为44kW,当这些家用电器都正常工作时,求:(1)输电线路中的电流多大?(2)输电线路损失的电功率多大?(3)发电机实际输出电压多大?(4)该柴油发电机工作过程中,每小时消耗18kg柴油,柴油完全燃烧产生的内能转化为发电机输出电能的效率是多少?(柴油热值是3.3 X 107J/kg)常物第7页(共8页)32.近年来太湖水污染形势严峻,直接影响到太湖流域人民的生产和生活.太湖水污染主要来自于农业生产中流失的化肥、城市生活污水中的含磷洗涤剂、工业废水中的金属离子等,这些污染物在水中形成大量自由移动的离子,使污染水的导电性能增强,所以导电性能的强弱是反映水污染程度的重要指标之一阳湖中学物理研究性学习小组的同学采集了三种流人太湖的典型水样:①稻田水;②生活污水;③工业废水,决定对这三种水样的导电性能进行对比检测.他们从实验室借来了如图所示的器材.(1)为了比较水样的导电性能,每次倒人烧杯的水样必须保持相等.(2)请你用笔画线代替导线,把图中的器材连接起来.(3)实验前,开关应(断开/闭合),滑片P应放在变阻器的(A/B)端.(4)为了减小实验误差,电流表和电压表量程选择的方法是(5)利用上面的电路,小组同学讨论认为可用多种方法比较三种水样导电性能的强弱,请你写出一种方法.(6)根据你所采用的方法,请设计相应的记录实验数据的表格.。
2008年江苏省常州市中考英语试题及答案
2008年江苏省常州市中考英语试题第I卷(四部分,共64分)一、听力(共24小题;每小题l分,满分24分)A.根据你所听到的句子选出相应的答语。
每句读一遍。
1. A. Giraffes. B. Pandas. C. Squirrels.2. A. My pleasure. B. Never mind. C. No problem.3. A. Just so-so. B. Thank you. C. I don't think so.4. A. Good luck to you. B. Congratulations. C. I'm sorry to hear that.B.听下面l 0段对话。
每段对话后有l个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一题。
每段对话读一遍。
5. What does Jane most probably do?A. An actress.B. A director.C. A pop singer.6. What is the probable relationship between the speakers?A. Classmates.B. Teacher and student.C. Teacher and parent.7. What colour will the robot change into when the man is sad?A. Green.B. Blue.C. Orange.8. How does the woman feel?A. Tired.B. Stressed.C. Sad.9. Who needs help with English?A. Jim.B. Amy.C. Sandy.10. What time is it now?A. 4: 40.B. 5: 00.C. 5: 20.11. Where is the man's watch?A. On the bedside table.B. On the desk.C. In the bag.12. Why are the speakers in such a hurry?A. Because they are late for school.B. Because they want to catch the train.C. Because they want to do exercise.13. What does the woman advise the man to take?A. Some money.B. Something expensive.C. Flowers or sweets.14. Where does the dialogue most probably take place?A. At a bus stop.B. At a theatre.C. At a bank.C.听下面3段对话或独自。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常州市2008年初中毕业、升学统一考试
数 学 试 卷
注意事项:1.全卷共8页,28题,满分120分,考试时间120分钟.
2.用蓝色或黑色钢笔、圆珠笔直接答在试卷上.
3.答卷前将密封线内的项目填写清楚,并将座位号填写在试卷规定的位置上.
4.考生在答题过程中,不得使用任何型号的计算器,若试题计算结果没有要求取近似值,则计算结果取精确值(保留根号和π). 1. -3的相反数是_______,-
12
的绝对值是________,2-1
=______. 2. 点A(-2,1)关于y 轴对称的点的坐标为___________,关于原点对称的点的
坐标为________.
3. 如图,在△ABC 中BE 平分∠ABC,DE ∥BC,∠ABE=35°,则∠DEB=______°,
∠ADE=_______°.
4. 已知一组数据为5,6,8,6,8,8,8,则这组数据的众数是_________,平均数
是_________.
5. 已知扇形的半径为3cm,扇形的弧长为πcm,则该扇形的面积是______cm 2
,
扇形的圆心角为______°. 6. 过反比例函数(0)k
y k x
=
>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是
______;若点A(-3,m)在这个反比例函数的图象上,则m=______. 7. 已知函数2
2y x x c =-++的部分图象如图所示,则c=______,当
x______时,y 随x 的增大而减小. 8. 若将棱长为2的正方体切成8个棱长为1的小正方体,则所有小正方体
的表面积的和是原正方体表面积的_______倍; 若将棱长为3的正方体切成27个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍; 若将棱长为
n(n>1,且为整数)的正方体切成n 3
个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍. 9. 下列实数中,无理数是
【 】
B.
2
π
C.
13
D.
12
10.
,则x 的取值范围是
【 】
一、填空题(本大题每个空格1分,共18分,把答案填在题中横线上)
二.选择题(在每小题给出的四个选项中,只有一项最符合题目要求,把符合要求的选项的代号填在题后的【 】内,每小题2分,共18
分)
(第3题)
A.x>-5
B.x<-5
C.x≠-5
D.x≥-5
11.若反比例函数
1
k
y
x
-
=的图象在其每个象限内,y随x的增大而减小,则k的值可以是
【】
A.-1
B.3
C.0
D.-3
12.在体育课上,九年级2名学生各练习10次立定跳远,要判断哪一名学生的成绩比较稳定,通
常需要比较这两名学生立定跳远成绩的【】
A.方差
B.平均数
C.频率分布
D.众数
13.顺次连接菱形各边中点所得的四边形一定是【】
A.等腰梯形
B.正方形
C.平行四边形
D.矩形
14.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同
学补画,其中正确的是【】
A. B. C. D.
15.如图,在△ABC中,若D E∥BC,
AD
DB
=
1
2
,DE=4cm,则BC的长为【】
A.8cm
B.12cm
C.11cm
D.10cm
16.如图,若⊙的直径AB与弦AC的夹角为30°,切线CD与AB的延长线交于点D,且⊙O的
半径为2,则CD的长为【】
A.
B. C.2 D. 4
(第15题)(第16题)(第17题)
17.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离
s(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:【】
(1)他们都骑行了20km;
(2)乙在途中停留了0.5h;
(3)甲、乙两人同时到达目的地;
(4)相遇后,甲的速度小于乙的速度.
根据图象信息,以上说法正确的有
A.1个
B.2个
C.3个
D.4个
C
18.(本小题满分10分)化简:
1
2
⎛⎫
⎪
⎝⎭
(2)
2
11
1
11
a a
a a
+-
-
-+
19.(本小题满分8分)解方程(组)
(1)
24
5
x y
x y
+=
⎧
⎨
-=
⎩
(2)
21
33
x
x x
-
=
--
20.(本小题满分6分)
为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量, 所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):
cm)
(第20题)
根据以上图表,回答下列问题:
(1)M=_______,m=_______,N=_______,n=__________;
(2)补全频数分布直方图.
三、解答题(本大题共2小题,共18分,解答时应写出演算步骤)
四
.解答题(本大题共2小题,共12分,解答时应写出文字说明或演算步
骤)
21.(本小题满分6分)
小敏和小李都想去看我市举行的乒乓球比赛,但俩人只有一张门票.小敏建议通过摸球来决定谁去欣赏,他的方法是:把1个白球和2个红球放在一只不透明的袋子中(这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录下颜色后放袋中并搅匀,再从中任意摸出1个球.如果两次都摸出相同颜色的球,则小敏自己去看比赛,否则小李去看比赛.问小敏的这个方法对双方公平吗?请说明理由.
22.(本小题满分7分)
已知:如图,AB=AD,AC=AE,∠BAD=∠CAE. 求证:AC=DE.
五.解答题(本大题共2小题,共14分,解答时应写出证明过程)
(第22题)
23. 已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,E F ⊥ED. 求证:AE 平分∠BAD.
24. (本小题满分6分)
已知:如图,在8×12的矩形网格中,每个小正方形的边长都为1,四边形ABCD 的顶点都在格点上.
(1) 在所给网格中按下列要求画图
:
①在网格中建立平面直角坐标系(坐标原点为O),使四边形ABCD 各个顶点的坐标分别为 A(-5,0)、B(-4,0)、C(-1,3),D(-5,1);
②将四边形ABCD 沿坐标横轴翻折180°,得到四边形A’B’C’D’,再将四边形 A ’B’C’D’绕原点O 旋转180°,得到四边形A”B”C”D”; (2)写出C ”、D”的坐标;
(3)请判断四边形A ”B”C”D”与四边形ABCD 成何种对称?若成中心对称,请写出对称中心;若成轴对称,请写出对称轴.
C
D B
A
(第24题)
五.画图与探究(本大题共2小题,共14分)
(第23题)
25. 如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.
打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意图...,并写出它们的周长.
26. (本小题满分8分)
如图,港口B 位于港口O 正西方向120海里外,小岛C 位于港口O 北偏西60°的方向.一艘科学考察船从港口O 出发,沿北偏东30°的OA 方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B 出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C 用1小时装补给物资后,立即按原来的速度给考察船送去.
(1) 快艇从港口B 到小岛C 需要多少时间?
(2) 快艇从小岛C
五.解答题(本大题共3小题,共26分,解答时应写出文字说明、证明过程或演算步骤)
27.(本小题满分7分)
2008年5月12日四川汶川地区发生8.0级特大地震.举国上下通过各种方式表达爱心.某企业决定用p万元援助灾区n所学校,用于搭建帐篷和添置教学设备.根据各校不同的受灾情况,该企业捐款的分配方案是:所有学校得到的捐款数都相等,到第n所学校的捐款恰好分完,捐款
根据以上信息,解答下列问题:
(1)写出p与n的关系式;
(2)当p=125时,该企业能援助多少所学校?
(3)根据震区灾情,该企业计划再次提供不超过20a万元的捐款,按照原来的分配方案援助其它学校.若a由(2)确定,则再次提供的捐款最多又可以援助多少所学校?
28. 如图,抛物线24y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB,把AB 所的直
线沿y 轴向上平移,使它经过原点O,得到直线l ,设P 是直线l 上一动点. (1) 求点A 的坐标;
(2) 以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出
这些特殊四边形的顶点P 的坐标;
(3) 设以点A 、B 、O 、P 为顶点的四边形的面积为S,点P 的横坐标为x,
当
46S +≤≤+,求x 的取值范围.
(第28题)
常数第11页( 共11页)。