金属学与热处理-1.2 金属的晶体结构
金属学及热处理要点总结
第一章金属的晶体结构决定材料性能的三个因素:化学成分、内部结构、组织状态金属:具有正的电阻温度系数的物质。
金属与非金属的主要区别是金属具有正的电阻温度系数和良好的导电能力。
金属键:处以聚集状态的金属原子,全部或大部分贡献出他们的价电子成为自由电子,为整个原子集体所共有,这些自由电子与所有自由电子一起在所有原子核周围按量子力学规律运动着,贡献出价电子的原子则变为正离子,沉浸在电子云中,依靠运动于其间的公有化的自由电子的静电作用结合起来,这种结合方式叫做金属键。
双原子模型:晶体:原子在三维空间做有规则周期性重复排列的物质叫做晶体。
晶体的特性:1、各向异性2、具有一定的熔点。
空间点阵:为了清晰地描述原子在三维空间排列的规律性,常将构成晶体的实际质点忽略,而将其抽象为纯粹的几何点,称为阵点或节点,这些阵点可以是原子或分子的中心,也可以是彼此等同的原子团或分子团的中心,各个阵点的周围环境都相同。
做许多平行的直线将这些阵点连接起来形成一个三维空间格架,叫做空间点阵。
晶胞:从点阵中选取的一个能够完全反映晶格特征的最小几何单元。
晶格常数:晶胞的棱边长度称为晶格常数,在X、Y、Z轴上分别以a、b、c表示。
致密度:表示晶胞中原子排列的紧密程度,可用原子所占体积与晶胞体积之比K表示。
三种典型的晶体结构:体心立方晶格、面心立方晶格、密排六方晶格。
体心立方晶格:α-Fe、Cr、W、V、Nb、Mo 配位数8 致密度0.68 滑移系:{110}*<111> 共12 个堆垛顺序ABAB 面心立方晶格:γ-Fe、Cu、Ni、Al、Au、Ag 配位数12 致密度0.74 滑移系:{111}*<110> 共12 个堆垛顺序ABCABC 密排六方晶格:Zn、Mg、Be、Cd 配位数12 致密度0.74 滑移系:{0001}*<1121> 堆垛顺序ABAB晶向族指数包含的晶向指数:一、写出<u v w>的排列二、给其中每个晶向加一个负号,分三次加三、给其中每个晶向加两个负号,分三次加四、给每个晶向加三个负号晶面族指数包含的晶面指数:(如果h k l 中有一个是零就写出排列各加一个负号,如果有两个零就只写出排列就行。
金属学及热处理习题参考答案(1-9章)
第一章金属及合金的晶体结构一、名词解释:1 •晶体:原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质。
2•非晶体:指原子呈不规则排列的固态物质。
3 •晶格:一个能反映原子排列规律的空间格架。
4•晶胞:构成晶格的最基本单元。
5. 单晶体:只有一个晶粒组成的晶体。
6•多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体(晶粒)通过晶界结合在一起的聚合体。
7•晶界:晶粒和晶粒之间的界面。
8. 合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。
9. 组元:组成合金最基本的、独立的物质称为组元。
10. 相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。
11. 组织:用肉眼观察到或借助于放大镜、显微镜观察到的相的形态及分布的图象统称为组织。
12. 固溶体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相、填空题:1 .晶体与非晶体的根本区别在于原子(分子、离子或原子集团)是否在三维空间做有规则的周期性重复排列。
2•常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。
3•实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。
4•根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。
5•置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。
6 •合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。
7. 同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光—泽,正的电阻温度系数。
8. 金属晶体中最主要的面缺陷是晶界和亚晶界。
9. 位错两种基本类型是刃型位错和螺型位错,多余半原子面是刃型位错所特有的10. 在立方晶系中,{120}晶面族包括(120)、(120)、(102)、(102)、(210)、(210)> (201)、(201)、(012)、(012)、(021)、(021)、等晶面。
金属学与热处理第一章 金属的晶体结构
晶体结构特征:
点阵参数: a1=a2=a3=a,
α 1=α 2=α 3=1200
平面轴X1、X2、X3和Z轴的夹角=90 ——四轴坐标系
O
Z轴的单位长度=c,用a、c两个量来度量
点阵参数:α=β=90º, γ=120º; a1=a2=a3≠c, 理想状态:c/a=1.633
第一章 金属的晶体结构
本章教学目的
建立金属晶体结构的理想模型 揭示金属的实际晶体结构
§1-1 金属
一. 金属的特性和概念
1. 特性
金属通常表现出的特性:良好的导电性、导 热性、塑性、金属光泽、不透明。
2. 概念
(1) 传统意义上的概念。 (2) 严格意义上的概念:具有正的电阻温度系 数的物质,即电阻随温度的升高而增加的物质。
晶向─晶体点阵中,由阵点组成的任一直线,代 表晶体空间内的一个方向,称为晶向。 晶面─晶体点阵中,由阵点所组成的任一平面, 代表晶体的原子平面,称为晶面。
1.晶向指数的标定
晶向指数─用数字符号定量地表示晶向,这种数字符 号称为晶向指数。 以晶胞为基础建立三维坐标体系: z C′ O′ A′ c
γ O β α
晶体有各向异性, 非晶体则各向同性。
各向异性:不同方向上的性能有差异。
3.晶体与非晶体的相互转化性
玻璃
长时间保温
金属 极快速凝固
“晶态玻璃”
“金属玻璃”
非晶新材料的发展:光、电、磁、耐蚀 性、高强度等方面的高性能等。
二.晶体学简介
1.晶体结构模型的建立
(1) 假设:原子为固定不动的刚性小球,每个原子 具有相同的环境。
O′
z B′
C′
金属学与热处理基础知识总结
学习好资料欢迎下载金属学与热处理总结一、金属的晶体结构重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。
基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。
晶体的特征、晶体中的空间点阵。
晶格类型晶胞中的原子数原子半径配位数致密度体心立方243a868%面心立方442a1274%密排六方621 a1274%晶格类型fcc(A1)bcc(A2)hcp(A3)间隙类型正四面体正八面体四面体扁八面体四面体正八面体间隙个数8412612623a a原子半径 r A4a4232 a a53a2 3a6 2a2 1a间隙半径 r B22444442晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。
金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。
位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。
位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。
刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。
晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。
二、纯金属的结晶重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。
基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。
金属学与热处理原理中的相变与晶体结构
金属学与热处理原理中的相变与晶体结构相变与晶体结构在金属学与热处理原理中扮演着重要的角色。
相变是指物质由一种物态转变为另一种物态,而晶体结构则是指金属内部原子的排列方式。
本文将就金属学与热处理原理中的相变和晶体结构进行探讨。
一、相变相变是金属学中的基本概念之一,它涉及物质从固体到液体、气体或者反过来的转变过程。
相变的形式可以是升温导致的熔化,也可以是降温导致的凝固。
相变过程中,物质的性质和状态都会发生变化。
在金属学中,常见的相变包括固相转液相(熔化)、液相转固相(凝固)、固相转固相(铁、钢等的相变)等。
相变过程中,物质的内部结构发生变化,原子或者离子的排列方式发生重排,从而决定了物质的性质。
例如,熔化过程中,原子的排列状态由规则的晶体结构转变为无序的液体结构,导致物质的流动性增强。
相变的条件主要包括温度和压力。
不同的金属物质在不同的温度、压力下会发生相变,这些条件被称为相变点。
相变点是决定物质状态的关键因素,研究和把握相变点可以帮助我们理解和控制金属材料的性能。
二、晶体结构晶体结构是描述金属内部原子或者离子排列方式的一种表示方法。
在金属学中,晶体结构分为几种类型,常见的有面心立方结构、体心立方结构和六方最密堆积结构等。
面心立方结构(FCC)是一种常见的晶体结构,其特点是每个晶胞内有4个原子或者离子,并且这些原子或者离子位于每个面的中心以及每个棱的中心,从而形成一个面心立方结构。
面心立方结构的金属通常具有良好的塑性和高的热导性。
体心立方结构(BCC)是另一种常见的晶体结构,其特点是每个晶胞内有2个原子或者离子,并且这些原子或者离子位于晶胞的中心,从而形成一个体心立方结构。
体心立方结构的金属通常具有较高的强度。
六方最密堆积结构(HCP)是一种特殊的晶体结构,其特点是每个晶胞内有6个原子或者离子,并且这些原子或者离子以一定的方式堆积在一起,形成了六方最密堆积结构。
六方最密堆积结构的金属通常具有一些特殊的力学和热学性质。
金属学与热处理-1.2-金属的晶体结构课件.ppt
B
A
C
C层
B
A
A
ABABABAB ABCABCABC
B层 ACACACAC ACBACBACB
25
26
ABCA ABA
27
面心立方晶格密排面的堆垛方式 28
密排六方晶格密排面的堆垛方式
29
典型金属晶体中原子间的间隙
四面体空隙(tetrahedral interstice),由4个球体所构成, 球心连线构成一个正四面体; 八面体空隙(octahedral interstice),由6个球体构成,球 心连线形成一个正八面体。
r 3a 4
r 2a 4
ra 2
14
配位数与致密度
➢配位数和致密度定量地表示原子排列的紧密程度。 ➢配位数(coordination number,CN):晶体结构中 任一原子周围最近且等距离的原子数。 ➢致密度(K):晶胞中原子所占的体积分数,
K nv V
式中,n为晶胞原子数,v原子体积,V晶胞体积。
22
晶体中原子的堆垛方式
面心立方和密排六方结构的致密度均为0.74, 是纯金属中最密集的结构。 面心立方与密排六方虽然晶体结构不同,但配 位数与致密度却相同,为搞清其原因,必须研究 晶体中原子的堆垛方式。 面心立方与密排六方的最密排面原子排列情况 完全相同,但堆垛方式不一样。
23
24
A
A
C
B A
(11 1)
59
练习4:下图标注了立方晶体的4个晶面,在每个晶 面上给出了3个晶面指数,选择正确的答案。
60
ACF
FN
ABD’E’
A’F’
AFI
BC
ADE’F’
O’M
金属学与热处理原理崔忠圻第三版课后题全部答案
10.
11. 多晶型转变:大部分金属只有一种晶体结构,但也有少数金属如 Fe、Mn、Ti、Co 等具有两种或几种的晶体结 构,当外界条件(如温度、压强)改变时,金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变。
-8.1% 12. 晶带:平行于或相交于同一直线的一组晶面叫做一个晶带。
晶带轴:晶带中平行于或相交于的那条直线叫做晶带轴。 13.(1-211)(-3211)(-1-122) 14.组元:组成合金的最基本的、独立的物质称为组元,一般来说,组元是组成合金的元素,也可以是稳定的化合物;
随着晶胚 r 增大,系统的自由能下降,这样的晶胚可以自发地长成稳定的晶核,当 r= rk =时,这种晶胚既可能消失,
也可能长大称为稳定的晶核,因此把 rk 称为临界形核半径;
⑾活性质点:在非均匀形核中,固态杂质和晶核(晶体)界面满足点阵匹配原理(结构相似、尺寸相当),就可能
能量起伏;
⑦均匀形核:液相中各个区域出现新相晶核的几率是相同的,这种形核方式称为均匀形核;
⑧形核功:形成临界晶核时,体积自由能的下降只补偿了表面能的 2/3,还有 1/3 的表面能没有得到补偿,需要
对形核作功,故称
△Gk=1/3Skσ为形核功;
⑨临界形核半径:当 r<rk 时,随着晶胚 r 增大,系统自由能增加,这种晶胚不能成为稳定的晶核,当 r>rk 时,
电子浓度决定的,故电子浓度影响着固溶度:公式
上式 Va、Vb 分别为溶剂和溶质的原子价,X 为溶剂 B 的摩尔分数。一定的金属晶体结构的单位体积中能容纳的 价电子数有一定限度,超过这个限度会引起结构不稳定甚至变化,故此固溶体的电子浓度有一极限值。(fcc 为 1.36,bcc 为 1.48)元素的原子价越高,则其固溶度越小。 4 晶体结构因素:溶剂与溶质的晶体结构类型是否相同,是其能否形成无限固溶体的必要条件。如果组元的 晶体结构不同,只能形成有限固溶体。即使组元晶体结构相同但是不能形成无限固溶体,其溶解度也将大于晶 格类型不同的组元间的溶解度。 以上 4 个要素都有利时所形成的固溶体固溶度可能较大,甚至无限固溶体。但上述四个要素只是形成固溶体的必要 条件。此外,温度越高,固溶度越大。 15. 固溶强化:在固溶体中,随着溶质浓度的增加,固溶体的强度、硬度提高,而塑韧性有所下降的现象称为固溶 强化。 由于间隙原子造成的晶格畸变比置换固溶体要大得多,所以间隙固溶体的强化效果要好。 16. 间隙相:过渡族金属能与原子甚小的非金属形成化合物,当非金属原子半径与金属原子半径比值小于 0.59 时, 形成的化合物具有比较简单的晶体结构,称为间隙相; 间隙相与间隙固溶体之间有着本质的区别,间隙相是一种化合物,它具有与其组元完全不同的晶体结构,而间隙 固溶体则保持溶剂组元的晶格类型; 间隙相的非金属原子半径与金属半径比小于 0.59 且具有较简单的结构,而间隙化合物的非金属原子与金属原子 半径比大于 0.59 且结构比较复杂。此外,间隙相一般比间隙化合物硬度更高,更稳定。 17. Ag、Al 都具有面心立方晶体结构,如果 Ag、Al 在固态下形成无限固溶体,则必须是置换固溶体,影响置换 固溶体的四个因素:原子半径、电负性、电子浓度、晶体结构。Ag、Al 的原子半径相差不大、电负性相差不大,晶 体结构都为面心立方晶体,这三个因素都比较有利,但是面心立方结构单位体积能容纳的价电子数有一定限度,超 过这个限度就会引起结构的不稳定甚至改变,故而有电子浓度有一定的限度。AL 的化合价位+3(很大),只需溶入 相对较少的 AL 就能达到极限电子浓度,即溶解度有一定限度,不能形成无限固溶体。 18. P107 19. 晶体结构:固溶体保持着溶剂组元的晶格类型,此外固溶体结构还会发生如下变(①晶格畸变;②偏聚与有序; ③有序固溶体); 金属化合物晶结构不同于任一组元,是合金组元间发生相互作用形成的新相; 机械性能:固溶体相对来说塑韧性较好,硬度低;金属化合物硬而脆。 20. 点缺陷都会造成晶格畸变,对金属的性能产生影响,如使屈服强度升高、电阻增大、体积膨胀等等;此外,点 缺陷的存在将加速扩散,因而凡是与扩散有关的相变、化学热处理、高温下的塑性变形和断裂等等,都与空位和间 隙原子的存在和运动有关系。 21. 刃形位错:设有一简单立方晶体,某一原子面在晶体内部中断,这个原子平面中断处的边缘就是一个刃形位错, 犹如用一把锋利的钢刀将晶体上半部分切开,沿切口硬插入一额外半原子面一样,将刃口处的原子列称为刃形位错 线。 螺形位错:一个晶体的某一部分相对于其它部分发生滑移,原子平面沿着一根轴线盘旋上升,每绕轴线一周,原 子面上升(下降)一个晶面间距。在中央轴线(即位错线)附近的原子是按螺旋型排列的,这种位错称为螺形位错。 各种间隙原子核尺寸较大的置换原子,它们的应力场是压应力,因此在正刃形位错的上半部分的应力相同,二者
金属学与热处理原理思维导图
第一章金属与合金的晶体结构⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧越多,结合能越低密排列的原因:原子数固态金属中原子趋于紧衡距离使得能量最低则排列的原因:保持平固态金属中原子趋于规双原子作用模型的解释结合力与结合能延展性不透明具有金属光泽正的电阻温度系数导热性导电性解释固态金属的特性定义金属键金属原子的结构特点金属原子间的结合3.1.12.1.11.1.11.1⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧各向异性熔点晶体与非晶体的区别金属玻璃的定义晶体的定义晶体与非晶体1.2.1⎪⎪⎪⎩⎪⎪⎪⎨⎧年名词解释晶胞(晶粒年名词解释)晶格(空间点阵定义晶体结构定义晶体结构与空间点阵04012.2.1⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧密排六方面心体心间隙密排六方面心体心晶体中的原子堆垛和间隙晶体中的原子堆垛方式配位数:、、、、、密排六方:典型代表:配位数:、、、、面心立方:典型代表配位数:、、、、、体心立方:典型代表:构三种典型的金属晶体结12Cd Co Ti Be Mg Zn 12Ag Al Ni Cu Fe -8W Mo Nb V Cr -3.2.1γαFe ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧相互结合而成的综合体大小数量及分布的相,同,形成具有不同形状组织:由于形成条件不相互分开的组成部分成分性能均一并以界面相:合金中结构相同,组元的定义合金的定义合金相结构3.1⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧电阻温度系数下降电阻率升高物理性能韧性塑性机械性能固溶强化固溶体的性能有序固溶体力)合力大于同种原子结合短程有序(异种原子结大于异种原子结合力)偏聚(同种原子结合力偏聚与有序晶格畸变固溶体结构特点有序固溶体无序固溶体的相对分布分类按溶质原子与溶剂原子无限共熔体有限固溶体按固溶度分溶剂晶格类型溶质原子大小的因素影响间隙固溶体溶解度过渡族元素为溶剂溶质氢、氧、碳、氮、硼为定义名词解释)间隙固溶体(晶体结构电子浓度电负性原子尺寸的因素影响置换固溶体溶解度定义置换固溶体占位置分按溶质原子在晶格中所分类名词解释)、定义(固溶体9506041.3.1⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧)时具有体心立方结构(电子浓度为相,称为)时具有体心立方结构(电子浓度为决定于电子浓度电子化合物部分具有半导体性质高脆性高硬度成分不变服从原子价规律正常价化合物定义金属化合物142123142123.2.12.3.1 第二章:纯金属的结晶⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧过程的描述规律:形核长大金属结晶的围观过程结晶潜热)过冷现象(过冷度定义结晶过程的宏观现象金属结晶的现象2.1.2.2.11.1.21.2⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧关系最大相起伏与过冷度的相起伏的定义义近程有序远程有序的定结构条件与过冷度的推导热力学条件:自由能差金属结晶的条件3.22.2⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧过热度的影响固体杂质形貌的影响固体杂质结构的影响过冷度的影响形核率的推导临界晶核半径和形核功非均匀形核原子扩散形核功形核率与均匀形核进行比较的推导形核功与过冷度关系式能量起伏的概念推导定义形核功推导临界晶核半径变化的关系图分析晶核半径与自由能形核时的能量变化均匀形核晶核的形成.2.12.4.2.3.2.11.4.24.2⎪⎪⎪⎩⎪⎪⎪⎨⎧方式进行凝固总是以非均匀形核工业生产中液体金属的在一定的温度下进行的扩散迁移过程,需要晶核的形成过程是原子然现象皆是液体本身存在的自也需要能量起伏,二者形核既需要结构起伏,比成正比,与过冷度成反临界形核半径与表面能过冷的液体中进行液态金属的结晶必须在金属的结晶形核要点.5.4.3.2.1⎩⎨⎧≤≥)粗糙界面()光滑界面(固液界面的微观结构2.25.11.5.2αα⎪⎩⎪⎨⎧⎩⎨⎧制粗糙界面:垂直长大机螺型位错长大机制二位晶核长大机制光滑界面晶体长大机制2.5.2⎩⎨⎧负温度梯度正温度梯度温度梯度固液界面前沿液体中的3.5.2⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎩⎨⎧粗糙界面为树枝状生长能长成规则形状的晶体值大时负温度梯度下仍晶大温度梯度下形成树枝的几何外形小温度梯度下长成规则值小时光滑界面在负的温度梯度下粗糙界面:平面长大形表面具有规则的几何外光滑界面:以密排面为在正的温度梯度下晶体生长的界面形状αα.2.14.5.2⎪⎩⎪⎨⎧⎩⎨⎧度快粗糙界面:垂直长大速螺位错长大二位晶核长大光滑界面(速度慢)长大速度5.5.2⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧界面状态值较高的金属保持光滑枝状金属亚金属的界面呈树负的温度梯度平面长大等温面的平直界面,呈于粗糙界面的形态为平行互成一定角度呈锯齿状光滑界面的一些小晶面正温度梯度界面的微观结构有关界面前沿的温度梯度和晶体生长的界面形态与所需过冷度很大。
金属学与热处理重点整理
金属学与热处理重点整理第1章1.1金属原子的结构特点:最外层的电子数很少,一般为1~2个,不超过3个。
金属键的特点:没有饱和性和方向性结合力:当原子靠近到一定程度时,原子间会产生较强的作用力。
结合力=吸引力+排斥力结合能=吸引能+排斥能(课本图1.2)吸引力:正离子与负离子(电子云)间静电引力,长程力排斥力:正离子间,电子间的作用力,短程力固态金属原子趋于规则排列的原因:当大量金属原子结合成固体时,为使固态金属具有最低的能量,以保持其稳定状态,原子间也必须保持一定的平衡距离。
1.2晶体:基元在三维空间呈规律性排列。
晶体结构:晶体中原子的具体排列情况,也就是晶体中的这些质点在三维空间有规律的周期性的重复排列方式。
晶格:将阵点用直线连接起来形成空间格子。
晶胞:保持点阵几何特征的基本单元三种典型的金属晶体结构(要会画晶项指数,晶面指数)共带面:平行或相交于同一直线的一组晶面组成一个晶带,这一组晶面叫做共带面晶带轴:同一晶带中所有晶面的交线互相平行,其中通过坐标原点的那条直线。
多晶型转变或同素异构转变:当外部的温度和压强改变时,有些金属会由一种晶体结构向另一种晶体结构转变。
1.3合金:两种或两种以上金属元素,或金属元素与非金属元素,经熔炼、烧结或其它方法组合而成并具有金属特性的物质。
组元:组成合金最基本的独立的物质,通常组元就是组成合金的元素。
相:是合金中具有同一聚集状态、相同晶体结构,成分和性能均一,并以界面相互分开的组成部分。
固溶体:合金的组元通过溶解形成一种成分及性能均匀的、且结构与组元之一相同的固相,称为固溶体。
与固溶体结构相同的组元为溶剂,另一组元为溶质。
固溶体的分类:按溶质原子在溶剂晶格中的位置分为:置换固溶体与间隙固溶体。
按溶质原子在固体中的溶解度:分为有限固溶体和无限固溶体。
按溶质原子在固溶体内分布规则:分为有序固溶体和无序固溶体。
固溶强化:在固体溶液中,随着溶质浓度的增加,固溶体的强度、硬度提高,塑性韧性下降。
《金属学和热处理》崔忠圻[第二版]课后答案解析[完整版]
第一章金属的晶体结构之阿布丰王创作1-1 作图暗示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6]等晶向。
答:1-2 立方晶系的{1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。
答:{1 1 1}晶面共包含(1 1 1)、(-1 1 1)、(1 -1 1)、(1 1 -1)四个晶面,在一个立方晶系中画出上述四个晶面。
1-3 某晶体的原子位于正方晶格的节点上,其晶格常数为a=b≠c,c=2/3a。
今有一晶面在X、Y、Z坐标轴上的结局分别为5个原子间距、2个原子间距和3个原子间距,求该晶面的晶面指数。
答:由题述可得:X方向的截距为5a,Y方向的截距为2a,Z方向截距为3c=3×2a/3=2a。
取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)1-4 体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。
答:H(1 0 0)==a/2H(1 1 0)==√2a/2H(1 1 1)==√3a/6面间距最大的晶面为(1 1 0)1-5 面心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的面间距大小,并指出面间距最大的晶面。
答:H(1 0 0)==a/2H(1 1 0)==√2a/4H(1 1 1)==√3a/3面间距最大的晶面为(1 1 1)注意:体心立方晶格和面心立方晶格晶面间距的计算方法是:1、体心立方晶格晶面间距:当指数和为奇数是H=,当指数和为偶数时H=2、H=,当指数全为奇数是H=。
1-6 试从面心立方晶格中绘出体心正方晶胞,并求出它的晶格常数。
答:1-7 证明理想密排六方晶胞中的轴比c/a=1.633。
证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,将各原子中心相连接形成一个正四面体,如图所示:此时c/a=2OD/BC在正四面体中:AC=AB=BC=CD ,OC=2/3CE所以:OD2=CD2-OC2=BC2- OC2OC=2/3CE,OC2=4/9CE2,CE2=BC2-BE2=3/4BC2可得到OC2=1/3 BC2,OD2= BC2- OC2=2/3 BC2OD/BC=√6/3所以c/a=2OD/BC=2√6/3≈1-8 试证明面心立方晶格的八面体间隙半径r=0.414R,四面体间隙半径r=0.225R;体心立方晶格的八面体间隙半径:<1 0 0>晶向的r=0.154R,<1 1 0>晶向的r=0.633R,四面体间隙半径r=0.291R。
金属学与热处理原理崔忠圻第三版课后题全部答案
互相排斥;但与下半部分应力相反,二者互相吸引。所以这些点缺陷大多易于被吸收而跑到正刃形位错的下半部分 或者负刃形位错的上半部分聚集起来。对于尺寸较小的置换原子,则易于聚集于刃形位错的另一半受压应力的地方。 正因为如此,刃形位错往往总是携带者大量的溶质原子,形成所谓的“柯氏气团”。这样一来,就会使位错的晶格畸 变降低,同时使位错难以运动,造成金属的强化。 22. 晶体的面缺陷包括晶体的外表面(表面或自由界面)和内界面两类,其中内界面又有晶界、亚晶界、孪晶界、 堆垛层错和相界等。
第二章 纯金属的结晶
1.①过冷现象:金属结晶时实际来自晶温度低于理论结晶温度的现象叫做过冷现象;
②过冷度:金属的实际结晶温度 Tn 与理论结晶温度 Tm 之差称为过冷度;
③近程有序:在金属液体的微小范围内,存在着紧密接触规则排列的原子集团,称为近程有序;
④远程有序:在晶体中大范围的原子是紧密接触规则排列的,称为远程有序;
第一章 金属与合金的晶体结构
1. 金属键:贡献出价电子的原子,则变成正离子,沉浸在电子云中,它们依靠运动于其间的公有化的自由电 子的静电作用而结合起来,这种结合叫做金属键,它没有饱和性和方向性。
根据金属键的本质,金属具有以下特性: 1 导电性:在外加电场的作用下,金属中的自由电子能够沿着电场方向定向运动,形成电流,从而有良 好的导电性; 2 导热性:自由电子的运动和正离子的振动使金属具有良好的导热性; 3 正电阻温度系数:当温度升高时,正离子或原子本身振动的振幅加大,可阻碍电子的通过,使电阻升 高,即表现为正电阻温度系数; 4 金属光泽:自由电子很容易吸收可见光的能量,而被激发到较高的能级,当它跳回到原有能级时,就 把吸收的可见光能量重新辐射出来,从而金属不透明,具有金属光泽; 5 延展性:金属键没有饱和性和方向性,故金属的两部分发生相对位移时,金属正离子始终被包围在电 子云中,即仍继续保持着金属键合,这样,金属就能经受变形而不断裂,具有延展性。 2. 由双原子作用模型图,R0 相当于原子的平衡位置,任 何对平衡位置的偏离,都会收到一个力(吸引力或排斥力) 的作用,促使其回到平衡位置。(此外原子间的最大结合力不 是出现在平衡位置,而是在 R1 位置,这个结合力与金属的理 论抗拉强度相对应。)在吸引力的作用下把远处的原子移近所 做的功能使原子的势能更低(为负值),当原子移至平衡位置 R0 时,其结合能达到最低值,此时原子的势能最低、最稳定。 任何对 R0 的偏移,都会使原子的势能增加,从而使原子处于 不稳定状态,原子就有力图回到低能状态,即回到平衡距离 的倾向。将上述双原子作用模型加以推广,不难理解,当大 量金属原子结合成固体时,为使固态金属具有最低的能量, 以保持其稳定状态,原子之间也必须保持一定的平衡距离, 这边是固态金属中原子趋于规则排列的重要原因。如果试图 从固态金属中把某个原子从平衡位置拿走,就必须对它做功, 以克服周围原子对它的作用力。这个要被拿走的原子周围邻 近的原子数越多,原子间的结合能就越低,能量越低的状态 是最稳定的状态,而任何系统都有自发从高能状态向低能状 态转化的趋势。因此,常见金属的原子总是自发地趋于紧密的排列。 4. 晶体结构:晶体结构是指晶体中的质点(原子、离子、分子或原子集团)的具体排列情况,也就是晶体中的这 些质点在三维空间有规律的周期性的重复排列方式; 晶格:为了方便起见,常人为地将阵点用直线连接起来形成空间格子,称之为晶格。 晶胞:为了简便起见,可以从晶格中选取一个能够完全反映晶格特征的最小几何单元来分析阵点的排列的规律 性,这个最小的几何单元成为晶胞。 8.-2.52% 9.(112)(211)(121)(-112)(1-12)(-11-2)(2-11)(21-1)(-211)(-121)(1-21)(12-1)12 个晶面
崔忠圻《金属学与热处理原理》(第3版)笔记和课后习题(含考研真题)详解
崔忠圻《金属学与热处理原理》(第3版)复习笔记第1章金属与合金的晶体结构1.1 复习笔记一、金属原子间的结合1.金属原子的结构特点(1)金属原子的最外层电子金属原子的最外层的电子数很少,一般为一两个,不超过3个。
①正电性元素金属原子的外层电子很容易脱离原子核的束缚而变成自由电子,此时的原子变为正离子,故金属元素又称正电性元素。
②负电性元素非金属元素的外层电子数较多,易于获得电子变为负离子,故非金属元素又称负电性元素。
(2)元素的化学特性决定于最外层的电子(价电子)数,而与内壳层的结构无关。
(3)过渡族金属的特性①过渡族金属化合价可变;②过渡族金属的原子彼此相互结合时,最外层电子和次外层电子均参与结合;③过渡族金属的原子间结合力特别强,熔点高、强度高;④价电子决定其主要性能。
2.金属键(1)电子云(电子气)处于聚集状态的金属原子,全部或大部分将它们的价电子贡献出来为整个原子集体所共有,称为电子云或电子气。
(2)金属键贡献出价电子的金属原子变成正离子沉浸在电子云中,它们依靠运动于其间的公有化的自由电子的静电作用而结合起来,这种结合方式称为金属键。
它没有饱和性和方向性。
(3)金属键模型金属键模型如图1-1-1所示。
在固态金属中,绝大部分原子处于正离子状态,少数原子处于中性原子状态。
图1-1-1 金属键模型3.结合力与结合能(资料来源https:///BoVJDuXm)(1)结合力的特性如图1-1-2(a)所示,则:①两原子的结合力为吸引力和排斥力的代数和;②吸引力为长程力,排斥力是短程力;③当两原子间距较大时,吸引力大于排斥力,两原子自动靠近。
在两原子靠近过程中,排斥力急剧增长;④两原子距离为d0时,吸引力与排斥力相等,原子间结合力为零,d0即相当于原子的平衡位置;⑤任何对平衡位置的偏离,都将会受到一个力的作用,促使其回到平衡位置;⑥原子间的最大结合力出现在d c位置处;⑦在点d0附近,结合力与距离的关系接近直线关系。
金属学与热处理-期末复习重点
第一章金属的晶体结构第一节金属1度系数为负值。
第二节金属的晶体结构1、晶体的特征:1、具有一定的熔点2、各向异性非晶体为各向同性23、为了清楚地表明原子在空间排列的规律性,常常将构成晶体的原子抽象为纯粹的几何点,称之为点阵。
这些点阵有规则地周期性重复排列所形成的三维空间阵列称为空间点阵。
常人4567、常见的三种晶体结构主要是指体心立方、面心立方和密排六方结构,其中体心立方结构(BCC)每个晶胞含有2原子,其原子配位数为8,致密度是68%面心立方结构(FCC)每个晶胞含有4原子,其原子配位数为12;致密度是74%密排六方结构(HCP)每个晶胞含有6原子,其原子配位数为12,致密度是74% 。
8、密排面的堆垛顺序是AB AB AB……,构成密排六方结构ABCABCABC……,构成面心立方结构9、通常以[uvw]表示晶向指数的普遍形式原子排列相同但空间位向不同的所有晶向成为晶向族,<uvw>表示晶面指数的一般表示形式为(hkl)晶面族用大括号{hkl}表示10、在立方结构的晶体中,当一晶向[uvw]位于或平行于某一晶面(hkl)时,必须满足以下关系:hu+kv+lw=0当某一晶向与某一晶面垂直时,则其晶向指数和晶面指数必须完全相等,即u=b、v=k、w=l。
12、由于多晶体中的晶粒位向是任意的,晶粒的各向异性被互相抵消,因此在一般情况下整个晶体不显示各向异性,称之为伪等向性。
一般金属都是多晶体第三节实际金属的晶体结构1、晶体中的线缺陷就是各种类型的位错,它是在晶体中某处有一列或若干列原子发生了有规律的错排现象。
2、刃型位错的重要特征:1、刃型位错有一额外半原子面;2、位错线是一个具有一定宽度的管道3、位错线与晶体的滑移方向相垂直,位错线运动的方向垂直于位错线螺型位错的重要特征:1、螺型位错没有额外半原子面;2、螺型位错线是一个具有一定宽度的管道,其中只有切应变,而无正应变3、位错线与晶体的滑移方向平行,位错线运动的方向与位错线垂直4、位错线与柏氏矢量垂直就是刃型位错,位错线与柏氏矢量平行,就是螺型位错。
第1章_金属的晶体结构
立方晶格的配位数为8。配位数越大, 原子排列紧密程度就越大。
面心立方晶胞原子排列
FCC –Page2/4
❖ 面心立方晶胞特征:
(1)晶格常数 a=b=c, α=β=γ=90° (2)晶胞原子数 (个)
➢
FCC –Page3/4
(3)原子半径
r原子
2a 4
or
a 2r原子 2
(4)致密度 0.74 (74%) (5)配位数 12
FCC –Page4/4
❖ 金属的晶格常数一般为:
1×10-10 m~7×10-10 m。
❖ 不同元素组成的金属晶体因晶格形式及晶格常数不同, 其物理、化学和力学性能也不同。
❖ 金属的晶体结构可用X射线(X-ray)结构分析技术进行测定。
1.2 金属的晶体结构 –3 三种典型的晶体结构
❖ 体心立方晶格(胞) Body-Centered Cubic (B.C.C.晶格) ❖ 面心立方晶格(胞) Face-Centered Cubic (F.C.C.晶格) ❖ 密排六方晶格(胞) Hexagonal Close-Packed (H.C.P.晶格)
ቤተ መጻሕፍቲ ባይዱ
1.1 金属简介
❖ 学习目标: ➢ 根据金属键的本质,解释固态金属的一些特性—导
电性、正的电阻温度系数、传热性及延展性等) ➢ 利用双原子作用模型,分析两个原子间的相互作用
(P3的图1-2)
1.2 金属的晶体结构 –1 晶体的特性
金属学和热处理知识大全
金属的晶体结构(物质是由原子组成的)根据原子在物质内部的排列方式不同,可将物质分为晶体和非晶体两大类。
凡内部原子呈规则排列的物质称为晶体。
所有固态金属都是晶体。
凡内部原子呈不规则排列的物质称为非晶体。
如:玻璃,松香,沥青等。
电子显微镜观察到晶体内部原子各种规则排列,称为金属的晶体结构。
晶体内部原子的排列方式称为晶体结构。
金属原子是通过正离子与自由电子的相互作用而结合的,称为金属键。
常见纯金属的晶体结构有:体心立方晶格、面心立方晶格、密排六方晶格。
什么是晶格?晶格:用假想的直线将原子中心连接起来所形成的三维空间格架。
直线的交点(原子中心)称结点。
晶胞:能够完整地反映晶格特征的最小几何单元。
体心立方晶胞Body Centered Cubic Lattice(BCC)体心立方晶胞中的原子数为1/8x8+1=2个,致密度为0.68。
体心立方:Cr铬、W钨、V钒、Cb铌、Ta钽、Mo钼、钢铁(α-Fe、δ-Fe)。
面心立方晶胞Face Centered Cubic Lattice(FCC)面心立方晶胞中的原子数为1/8x8+1/2x6=4个,致密度为0.74。
面心立方:Al铝、Cu铜、Au金、Pb铅、Ni镍、Pt铂、Ag银、钢铁(γ-Fe)。
密排六方晶胞Hexagonal Close Packed Lattice(HCP)密排六方晶胞中的原子数为1/6x12+1/2x2+3=6个,致密度为0.74。
密排六方:Zn锌、Mg镁、Zr锆、Ca钙、Co钴、Mn锰、Ti钛。
冲击韧度是指材料在外加冲击载荷作用下断裂时消耗能量大小的特性。
体心立方晶格的冲击韧性值会急剧降低,具有脆韧转变温度。
实际使用的金属是由许多晶粒组成的,又叫多晶体。
每一晶粒相当于一个单晶体,晶粒内的原子的排列是相同的,但不同晶粒的原子排列的位向是不同的。
晶粒之间的界面称为晶界。
高温的液态金属冷却转变为固态金属的过程,是一个结晶过程态,即原子由不规则态(液态)过渡到规则状态(固态)的过程。
金属学重点
《金属学与热处理》上课重点第一章.金属的晶体结构①【阵点】为了清楚的表明原子在空间排列的规律性,常常将构晶体的原子(活原子群)忽略,而将其抽象为纯粹的几何点,称之为阵点②【晶格】将阵点用直线连接起来形成空间格子,称之为晶格③【晶胞】从晶格中选取一个能够完全反映晶格特征的最小几何单元,来分析晶体中原子排列的规律性,这个最小的几何单元称之为晶胞④三种典型晶体结构参数,以及其原子半径、晶胞的推导晶体结构晶胞数配位数致密度面心立方晶体结构体心立方晶体结构密排六方晶体结构4261280.740.680.7412体心立方:设晶胞的点阵常数为a,则立方体对角线长度为√3 ,等于4个原子半径,所以体心立方晶胞中的原子半径r=√3 / 4;致密度:面心立方:每个角上的原子为8 个晶胞所有,每个晶胞实际占有该原子的1/8,其面对角线长度为√2,等于4 个原子半径,所以体心立方晶胞中的原子半径r=√2/ 4;致密度:密排六方:对于典型密排六方金属,其原子半径为1/2,致密度:⑤三种常见金属结构的滑移系(要求可以画出阴影)⑥晶面、晶向、晶面族、晶向族的概念【晶面、晶向、晶面族、晶向族】有一系列原子组成的平面称为晶面,任意两个原子之间的连线所指方向称为晶向;原子排列情况相同但空间位向不同的所有晶向称之为晶向族;原子排列完全相同但在空间位向不同(即不平行)的晶面,这些晶面总称为晶面族晶向指数求法:从坐标轴原点引一有向直线平行于待定晶向→在直线上取一点,求出其X、Z 三轴坐标→将三个坐标值按比例化为最小简单数→加[uvw];Ps:a.一个晶向族代表一系列性质地位相同的晶向;b.原子排序相同但空间位向不同的所有晶向称为晶向族;以<uvw>表示;晶面指数求法:定原点→求截距→取倒数→化最小整数→加(uvw)Ps:a.晶面指数代表一组互相平行的晶面,即所有相互平行的晶面都具有相同的晶面指数;b.在同一种晶体结构中,有些晶面虽然在空间的位向不同,但其原子排列情况完全相同,这些晶面均属于一个晶面族,以{hkl}表示;若某一晶向[uvw]与某一晶面(hkl)互相垂直时,则晶向指数和晶面指数必须完全相等,即u=h,v=k,w=l;若相互平行,则必须满足:hu+vk+lw=0.⑦什么是晶体?晶体的三种缺陷及其分类?【晶体】晶体(crystal)是有明确衍射图案的固体,其原子或分子在空间按一定规律周期重复地排列【单晶体】内部晶格位向完全一致的晶体(亦称理想晶体)(1)点缺陷:在某一温度,总有一些原子具有足够高的能量,以克服周围原子对他的约束,脱离原来的平衡位置迁移导别处,于是在原位置上出现了空结点,这就是空位;例如:空位、间隙以及置换原子(2)线缺陷:它是在晶体中某处有一列或若干列原子发生有规律的错排现象,使长度达几百至几万个原子间距、宽约几个原子间距范围内的原子离开其平衡位置,发声有规律的错动;例如:刃型位错(位错线与柏氏矢量垂直)、螺型位错(位错线与柏氏矢量平行)(3)面缺陷:晶体的面缺陷包括晶体的外表面和内表面两种,内表面包括:晶界、亚晶界、孪晶界、堆垛晶界和相界。
金属学与热处理了解材料的晶体结构与性能关系
金属学与热处理了解材料的晶体结构与性能关系金属学是研究金属及其合金的科学,它涉及到材料的晶体结构与性能之间的关系。
晶体结构是金属材料内部的有序排列,决定了材料的力学、热学和电学性能。
而热处理是通过改变材料的组织结构,进而改善材料的性能。
本文将探讨金属学与热处理之间的关系,以及材料晶体结构与性能之间的联系。
一、晶体结构对金属性能的影响1. 晶体结构与塑性变形:金属的晶体结构决定了其塑性变形的能力。
晶体中的金属原子通过晶格点有序排列,因而能够容易地发生滑移和形变。
不同晶体结构的金属表现出不同的塑形行为,如面心立方(FCC)结构的金属通常具有较好的塑性。
2. 晶体结构与硬度:晶体结构中的缺陷和晶界对金属的硬度有重要影响。
在晶界处,原子排列有序性较差,因此晶界往往是材料中的弱点。
此外,晶体结构中夹杂物和位错等缺陷也会对金属的硬度产生影响。
3. 晶体结构与导电性:金属的电导率与其晶体结构密切相关。
晶体结构中的自由电子能够自由移动,因此金属通常具有良好的导电性。
特定晶体结构的金属具有更高的电导率,如体心立方(BCC)结构的铁。
二、热处理对晶体结构与性能的影响1. 固溶处理:固溶处理是一种常见的热处理方法,通过加热和冷却过程改变金属材料的组织结构。
固溶处理通常用于提高金属的延展性和抗腐蚀性能。
2. 相变:相变是另一种常见的热处理方法,通过改变材料的相成分和相结构来改变材料的性能。
例如,钢经过淬火和回火热处理可以获得高硬度和耐磨性。
3. 冷加工处理:金属材料经过冷加工处理,如冷轧、冷拉、冷挤压等,能够产生大量的位错,从而改变了材料的晶界结构和塑性变形行为。
冷加工通常用于提高金属的强度和硬度。
三、晶体结构与性能之间的关系1. 晶粒尺寸与力学性能:晶粒尺寸对材料的力学性能有重要影响。
细小的晶粒可以增加材料的强度,而大尺寸的晶粒有利于材料的塑性变形。
因此,在热处理过程中控制晶粒尺寸对材料的性能具有重要意义。
2. 晶界与材料性能:晶界是相邻晶粒之间的界面,对材料的性能有显著影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
47
六方晶系指数
c
(1 1 0)
(100)
b a
[100]
[110]
48
三指数系统
(h k l)
→
四指数系统
three-index system four-index system
(h k i l) i=(h+k)
[u v w]
[u v t w] t=-(u+v)
U 2u v
a 2
a 2
1 n 1 12 4 4
八面体间隙半径
a 2a rB 2 4
33
八面体间隙--HCP
34
四面体间隙--BCC
5 a 4
3 a 2
四面体间隙的数目
a
1 n 4 6 12 2
四面体间隙半径
5a 3a rB 4 4
35
四面体间隙--FCC
(hkl),即为待标晶面的晶面指数。
图 晶面指数的标定
44
练习1、求截距为、1、晶面的指数 截距值取倒数为0、1、0,加圆括弧得 (010) 练习2、求截距为2、3、 晶面的指数 取倒数为1/2、1/3 、 0, 化为最小整 数加圆括弧得(320)
练习3、画出(112)晶面
取三指数的倒数1、1、1/2, 即为X、Y、 Z三坐标轴上的截距
布拉菲点阵 晶系
简单三斜 六方 Hexagonal a1=a2=a3≠c,α=β=90º, γ=120º 菱方 Rhombohedral a=b=c, α=β=γ≠90º 四方(正方)Tetragonal a=b≠c, α=β=γ=90º
布拉菲点阵
简单六方
单斜 Monoclinic a≠b≠c, α=γ=90º≠β
2a
2a
立方晶系中重要晶向的原子的排列及其线密度
linear indices
BCC
atomic arrangement
a
FCC
atomic arrangement
a
linear density
1 2 21 a a
linear density
2 1 21 a a
<100>
<110>
2a
1 2 2 0.7 a 2a 1 2 1 1.16 2 a 3a
V 2v u
W w
或
u 1 3 (2U V ) v 1 3 (2V U ) w W t (u v)
49
50
晶带与晶带定理
所有相交于某一晶向直线或平行于此直线的晶面构成一 个 “晶带”(crystal zone);此直线称为晶带轴(crystal zone axis),所有的这些晶面都称为共带面。 晶带轴[u v w]与该晶带的 晶面(h k l)的关系 hu+kv+lw=0 —晶带定律
简单立方
体心立方
面心立方
11
1.2.3 典型的金属晶体结构 为什么金属原子趋向于紧密排列? 为什么金属具有高度对称性的晶体结构? 面心立方(A1, FCC)
体心立方(A2, BCC)
密排六方(A3, HCP)
12
晶胞内的原子数 点阵常数与原子半径
Nc N=Ni 2 8
简单单斜 底心单斜
简单菱方
简单四方 体心四方 简单立方 体心立方 面心立方
7
正交 a≠b≠c,α=β=γ=90º
简单正交 底心正交 体心正交 面心正交
立方 Cubic a=b=c, α=β=γ=90º
简单三斜
简单单斜
底心单斜
8
简单正交
体心正交
底心正交
面心正交
9
简单六方
简单菱方
简单四方
体心四方
10
2a
1 2 1 1.4 2 a 2a 1 2 2 0.58 a 3a
<111>
3a
3a
53
1.2.6 多晶型性
当外部的温度和压强改变时,有些金属会由一种
面心立方和密排六方结构的致密度均为0.74,
是纯金属中最密集的结构。
面心立方与密排六方虽然晶体结构不同,但配
位数与致密度却相同,为搞清其原因,必须研究
晶体中原子的堆垛方式。 面心立方与密排六方的最密排面原子排列情况 完全相同,但堆垛方式不一样。
24
25
A C B A C B
A
B
A C C层
1.2 金属的晶体结构
现代使用的材料绝大部分是晶态(Crystalline)材料。晶态 材料包括单晶材料、多晶材料、微晶材料和液晶材料等。我们日 常使用的各种金属材料大部分是多晶材料。 天然晶体具有规则外形和宏观对称性
● 严格的晶体定义:晶体是内部质点在三维空间呈周期性重复
排列的固体,或说是具有格子构造的固体。
c
c
β α b a γ
β α a γ
b
5
选取晶胞的原则
Ⅰ) 选取的平行六面体应与宏观晶体具有同样的对称性; Ⅱ)平行六面体内的棱和角相等的数目应最多;
Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多;
Ⅳ)在满足上条件,晶胞应具有最小的体积。
6
晶系与布拉菲点阵
晶系
三斜Triclinic a≠b≠c ,α≠β≠γ
40
例1、已知某过原点晶向上一点的坐标为1、1.5、2,
求该直线的晶向指数。 将三坐标值化为最小整数加方括弧得[234]。 例2、已知晶向指数
[234]
为[110], 画出该晶
向。
找出1、1、0坐标点, 连接原点与该点的 直线即所求晶向。
[110]
41
晶向指数的说明:
指数意义:代表相互平行、方向一致的所有晶向。
负值:标于数字上方,表示同一晶向的相反方向。
晶向族:晶体中原子排列情况相同但空间位向不同
的一组晶向,用<uvw>表示。数字相同,但排列顺
序不同或正负号不同的晶向属于同一晶向族。
42
立方晶系常见的晶向族
100 : [100]、 [010]、 ]、 00]、 1 0]、 1] [001 [1 [0 [00 110 : [110]、 ]、 ]、 10]、 01]、 11]、 [101 [011 [1 [1 [0 aaaaaa11 0]、 0 1]、 11]、 1 0]、 1]、 1] [ [1 [0 [1 [10 [01 111: [111、 11]、 11]、 1]、 ] [1 [1 [11 aaaaaa111]、 11]、 11]、 11] [ [1 [1 [1
Nf
配位数:是指晶体结构中任一原子周围最近邻且等 距离的原子数。 致密度:晶体结构中原子体积占总体积的百分比。
4 3 n R nv K 3 V V
K为致密度
n为晶胞中原子数
v是一个原子的体积
13
原子间隙
晶胞中原子数
体心立方 面心立方 密排六方
1 n 8 1 2 8
1 1 n 8 6 4 8 2
52
atomic atomic planar density arrangement arrangement
a a
{100}
4
1 4 1 a2 a2
a a
{110}
2a
a
1 4 1 1.4 4 2 a 2a 2
3 1 6 0.58 a2 3 2 a 2
a
2a 2a 2a
{111}
2a 2a
凡满足此关系的晶面都
属于以[u v w]为晶带轴的晶带。
51
1.2.5 晶体的各向异性
立方晶系中原子的排列及其面密度
plane indices
BCC
FCC
planar density
1 4 1 2 4 2 a2 a
1 1 4 2 4 2 1.4 a2 2a 2
1 1 3 3 6 2 2.3 a2 3 2 a 2
(1) 建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长 度单位分别是晶胞边长a,b,c,坐标原点在待标晶向上; (2) 选取该晶向上原点以外的任一点P(xa,yb,zc);
(3) 将x,y,z化成最小的简单整数u,v,w,
且u : v : w = x : y : z; (4) 将u,v,w三数置于方 括号2内就得到晶向指数[uvw]。
18
密排六方配位数为12
4 a 3 4 ( ) nv 3 2 0.74 K 3 V 3 2a
19
体心立方 晶格常数:a(a=b=c)
3 原子半径:r a 4
原子个数:2
配位数: 8
致密度:0.68
常见金属:-Fe、Cr、W、Mo、V、Nb等
20
面心立方 晶格常数:a
2a 原子半径:r
1 1 n 12 2 3 6 6 2
14
原子半径
体心立方 面心立方 密排六方
3a r 4Biblioteka 2a r 4a r 2
15
配位数与致密度
配位数和致密度定量地表示原子排列的紧密程度。
配位数(coordination number,CN):晶体结构中
任一原子周围最近且等距离的原子数。
4 原子个数:4
配位数: 12
致密度:0.74
常见金属: -Fe、Ni、Al、Cu、Pb、Au等
21
密排立方
22
晶格常数:底面边长 a 和高 c,
c/a=1.633
1 原子半径 :r a 2 原子个数:6 配位数: 12 致密度:0.74