吉林省高中等比数列专题(有答案)百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.设数列{}n a 的前n 项和为n S ,且(
)*
2n n S a n n N =+∈,则3
a
=( )
A .7-
B .3-
C .3
D .7
2.已知等比数列{}n a 的前n 项和为,n S 且63
9S S =,则42a
a 的值为( )
A
B .2
C
.D .4
3.已知各项不为0的等差数列{}n a 满足2
6780a a a -+=,数列{}n b 是等比数列,且
77b a =,则3810b b b =( )
A .1
B .8
C .4
D .2
4.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?此问题中1斗为10升,则牛主人应偿还多少升粟?( ) A .
503
B .
507
C .
100
7
D .
200
7
5.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2n
D .1+(n -1)×2n
6.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( )
A .有最大项,有最小项
B .有最大项,无最小项
C .无最大项,有最小项
D .无最大项,无最小项
7.设n S 为等比数列{}n a 的前n 项和,若11
0,,22
n n a a S >=<,则等比数列{}n a 的公比的取值范围是( )
A .30,4⎛⎤ ⎥⎝⎦
B .20,3⎛⎤ ⎥⎝⎦
C .30,4⎛⎫ ⎪⎝⎭
D .20,3⎛⎫ ⎪⎝⎭
8.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-
B .3-
C .3
D .8
9.记n S 为正项等比数列{}n a 的前n 项和,若2415S S ==,,则7S =( ). A .710S =
B .723
S =
C .7623
S =
D .7127
3
S =
10.在数列{}n a 中,12a =,对任意的,m n N *
∈,m n m n a a a +=⋅,若
1262n a a a ++⋅⋅⋅+=,则n =( )
A .3
B .4
C .5
D .611.题目文件丢失!
12.公差不为0的等差数列{}n a 中,2
3711220a a a -+=,数列{}n b 是等比数列,且
77b a =,则68b b =( )
A .2
B .4
C .8
D .16
13.已知{}n a 是各项均为正数的等比数列,121a a +=,344a a +=,则
5678a a a a +++=( )
A .80
B .20
C .32
D .
255
3
14.正项等比数列{}n a 满足:241a a =,313S =,则其公比是( ) A .
14 B .1 C .
12
D .
13
15.已知等比数列{}n a 中,17a =,435a a a =,则7a =( ) A .
19
B .
17
C .
13
D .7
16.设数列{}n a ,下列判断一定正确的是( )
A .若对任意正整数n ,都有24n
n a =成立,则{}n a 为等比数列
B .若对任意正整数n ,都有12n n n a a a ++=⋅成立,则{}n a 为等比数列
C .若对任意正整数m ,n ,都有2m n
m n a a +⋅=成立,则{}n a 为等比数列
D .若对任意正整数n ,都有312
11
n n n n a a a a +++=⋅⋅成立,则{}n a 为等比数列
17.正项等比数列{}n a 的公比是1
3
,且241a a =,则其前3项的和3S =( ) A .14
B .13
C .12
D .11
18.数列{}n a 满足1192110
21119n n n n a n --⎧≤≤=⎨≤≤⎩
,,,则该数列从第5项到第15项的和为( )
A .2016
B .1528
C .1504
D .992
19.已知数列{}n a 是等比数列,n S 为其前n 项和,若364,12S S ==,则12S =( ) A .50
B .60
C .70
D .80
20.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( )
A .681a a >
B .01q <<
C .n S 的最大值为7S
D .n T 的最大值为7T
二、多选题
21.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )
A .101a <<
B
.11b <<
C .22n n S T <
D .22n n S T ≥
22.设()f x 是定义在R 上恒不为零的函数,对任意实数x 、y ,都有
()()()f x y f x f y +=,若112
a =
,()()*
n a f n n N =∈,数列{}n a 的前n 项和n S 组成数列{}n S ,则有( ) A .数列{}n S 递增,且1n S < B .数列{}n S 递减,最小值为
12
C .数列{}n S 递增,最小值为
12
D .数列{}n S 递减,最大值为1
23.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2
{}n a 是等比数列 B .若4123,27,a a ==则89a =± C .若123,a a a <<则数列{}n a 是递增数列 D .若数列{}n a 的前n 和13,n n S r -=+则r =-1
24.关于递增等比数列{}n a ,下列说法不正确的是( ) A .10a >
B .1q >
C .
1
1n
n a a +< D .当10a >时,
1q >
25.对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,5a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列
D .3a ,6a ,9a 成等比数列
26.数列{}n a 对任意的正整数n 均有2
12n n n a a a ++=,若22a =,48a =,则10S 的可能值
为( ) A .1023
B .341
C .1024
D .342
27.设{}n a 是各项均为正数的数列,以n a ,1n a +为直角边长的直角三角形面积记为
n S ()n *∈N ,则{}n S 为等比数列的充分条件是( )
A .{}n a 是等比数列
B .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅或 2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列
C .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅和 2a ,4a ,⋅⋅⋅,2n a ,⋅⋅⋅均是等比数列
D .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅和 2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅均是等比数列,且公比相同 28.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( ) A .01q <<
B .681a a >
C .n S 的最大值为7S
D .n T 的最大值为6T
29.数列{}n a 是首项为1的正项数列,123n n a a +=+,n S 是数列{}n a 的前n 项和,则下列结论正确的是( ) A .313a = B .数列{}3n a +是等比数列
C .43n a n =-
D .1
22n n S n +=--
30.已知数列{}n a 满足11a =,()*123n
n n
a a n N a +=
∈+,则下列结论正确的有( ) A .13n a ⎧⎫
+⎨⎬⎩⎭
为等比数列
B .{}n a 的通项公式为1123
n n a +=-
C .{}n a 为递增数列
D .1n a ⎧⎫⎨
⎬⎩⎭
的前n 项和2
234n n T n +=-- 31.在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若 1418a a +=, 2312a a +=,则下列说法正确的是( )
A .2q
B .数列{}2n S +是等比数列
C .8
510S =
D .数列{}lg n a 是公差为2的等差数列
32.已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设n n b c a =,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8
B .9
C .10
D .11
33.已知等差数列{}n a 的首项为1,公差4d =,前n 项和为n S ,则下列结论成立的有( ) A .数列n S n ⎧⎫
⎨
⎬⎩⎭
的前10项和为100 B .若1,a 3,a m a 成等比数列,则21m =
C .若
11
16
25n
i i i a a =+>∑,则n 的最小值为6 D .若210m n a a a a +=+,则
116m n
+的最小值为25
12
34.等差数列{}n a 的公差为d ,前n 项和为n S ,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( ) A .7a
B .8a
C .15S
D .16S
35.对于数列{}n a ,若存在数列{}n b 满足1
n n n
b a a =-
(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;
B .若31n a n =-,则其“倒差数列”有最大值;
C .若31n a n =-,则其“倒差数列”有最小值;
D .若112n
n a ⎛⎫=-- ⎪⎝⎭,则其“倒差数列”有最大值.
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.A 【分析】
先求出1a ,再当2n ≥时,由(
)*
2n n S a n n N
=+∈得1
121n n S
a n --=+-,两式相减后化
简得,121n n a a -=-,则112(1)n n a a --=-,从而得数列{}1n a -为等比数列,进而求出
n a ,可求得3a 的值
【详解】
解:当1n =时,1121S a =+,得11a =-, 当2n ≥时,由(
)*
2n n S a n n N
=+∈得1
121n n S
a n --=+-,两式相减得
1221n n n a a a -=-+,即121n n a a -=-,
所以112(1)n n a a --=-,
所以数列{}1n a -是以2-为首项,2为公比的等比数列,
所以1122n n a --=-⨯,所以1
221n n a -=-⨯+,
所以23
2217a =-⨯+=-,
故选:A 2.D 【分析】
设等比数列{}n a 的公比为q ,由题得()4561238a a a a a a ++=++,进而得2q
,故
24
2
4a q a ==. 【详解】
解:设等比数列{}n a 的公比为q ,因为
6
3
9S S =,所以639S S =, 所以6338S S S -=,即()4561238a a a a a a ++=++, 由于()3
456123a a a q a a a ++=++,
所以3
8q =,故2q
,
所以24
2
4a q a ==. 故选:D. 3.B 【分析】
根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】
因为各项不为0的等差数列{}n a 满足2
6780a a a -+=,
所以2
7720a a -=,解得72a =或70a =(舍);
又数列{}n b 是等比数列,且772b a ==,
所以3
3810371178b b b b b b b ===.
故选:B. 4.D 【分析】
设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,利用等比数列的前n 项和公式即可求解. 【详解】
5斗50=升,设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,
由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则(
)3
11212
a --=50,
解得a 1=507
,所以牛主人应偿还粟的量为2
3120027a a ==
故选:D
5.D 【分析】
利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】
设等比数列{a n }的公比为q ,易知q ≠1,
所以由题设得()
()
3136
1617
11631a q S q a q S q ⎧-⎪==-⎪
⎨-⎪
=
=⎪-⎩
, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.
设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,
两式作差得-T n =1+2+22
+…+2n -1
-n ×2n
=
1212
n
---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】
本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 6.B 【分析】
首先求得数列的通项公式,再运用等差数列的求和公式求得n T ,根据二次函数的性质的指数函数的性质可得选项. 【详解】
设等比数列{}n a 为q ,则等比数列的公比41
4141
328a q a -=
==,所以12
q =, 则其通项公式为:1
1
6113222n n n n a a q ---⎛⎫
=⋅=⨯= ⎪
⎝⎭
,
所以()
()
561154
2
2
12
622
2
22
n
n +n n n n n T a a
a ---==⨯==,
令()11t n n =-,所以当5n =或6时,t 有最大值,无最小值,所以n T 有最大项,无最小项. 故选:B.
. 7.A 【分析】
设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1
102n q -⨯>,
1
(1)
221n q q
-<-,即可求出参数q 的取值范围;
【详解】
解:设等比数列{}n a 的公比为q ,依题意可得1q ≠.
11
0,2
n a a >=
,2n S <, ∴1
102n q -⨯>,1
(1)221n q q
-<-, 10q ∴>>. 144q ∴-,解得3
4
q
. 综上可得:{}n a 的公比的取值范围是:30,4
⎛⎤ ⎥⎝
⎦
.
故选:A . 【点睛】
等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 8.A 【分析】
根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】
设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2
326a a a =,
即2
(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)
661(2)2422
S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 9.D 【分析】
利用等比数列前n 项和公式列出方程组,求出首项和公比,由此能求出这个数列的前7项和. 【详解】
n S 为正项等比数列{}n a 的前n 项和,21S =,45S =,
∴21410(1)
11(1)
51q a q q
a q q ⎧
⎪>⎪
⎪-⎪=⎨
-⎪⎪-⎪=-⎪⎩,解得113a =,2q ,
771
(12)
1273123
S -∴==
-.
故选:D . 10.C 【分析】
令1m =,可得112+=⋅=n n n a a a a ,可得数列{}n a 为等比数列,利用等比数列前n 项和公式,求解即可. 【详解】
因为对任意的,m n N *
∈,都有m n m n a a a +=⋅,
所以令1m =,则112+=⋅=n n n a a a a , 因为10a ≠,所以0n a ≠,即
1
2n n
a a +=, 所以数列{}n a 是以2为首项,2为公比的等比数列,
所以2(12)6212n -=-,解得n =5,
故选:C
11.无
12.D 【分析】
根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2
687b b b ==16.
【详解】
等差数列{}n a 中,31172a a a +=,故原式等价于2
7a -740a =解得70a =或74,a =
各项不为0的等差数列{}n a ,故得到774a b ==,
数列{}n b 是等比数列,故2
687b b b ==16.
故选:D. 13.A 【分析】
由条件求出公比q ,再利用前4项和和公比求5678a a a a +++的值. 【详解】
根据题意,由于{}n a 是各项均为正数的等比数列,
121a a +=,()234124a a q a a +==+,∴24q =,0q >,2q
则()()4
56781234161480a a a a q a a a a +++=+++=+=.
故选:A 14.D 【分析】
根据241a a =,由2
243a a a =,解得31a =,再根据313S =求解.
【详解】
因为正项等比数列{}n a 满足241a a =,
由于2
243a a a =,
所以2
31a =,31a =,211a q =.
因为313S =, 所以1q ≠. 由()()31231111a q S a q q q
-=
=++-
得2
2
131q q q =++, 即2
1210q q --=, 解得13q =,或1
4
q =-(舍去). 故选:D 15.B 【分析】
根据等比中项的性质可求得4a 的值,再由2
174a a a =可求得7a 的值. 【详解】
在等比数列{}n a 中,对任意的n *∈N ,0n a ≠,
由等比中项的性质可得2
4354a a a a ==,解得41a =, 17a =,2
1741a a a ==,因此,71
7
a =
. 故选:B. 16.C 【分析】
根据等比数列的定义和判定方法逐一判断.
【详解】
对于A ,若24n
n
a =,则2n
n a =±,+1
+12n n a =±,则1
2n n
a a +=±,即后一项与前一项的比不一定是常数,故A 错误;
对于B ,当0n a =时,满足12n n n a a a ++=⋅,但数列{}n a 不为等比数列,故B 错误; 对于C ,由2
m n
m n a a +⋅=可得0n a ≠,则+1
+12
m n m n a a +⋅=,所以1+1
222
n n m n m n a a +++==,故{}n a 为公比为2的等比数列,故C 正确;
对于D ,由312
11
n n n n a a a a +++=⋅⋅可知0n a ≠,则312n n n n a a a a +++⋅=⋅,如1,2,6,12满
足312n n n n a a a a +++⋅=⋅,但不是等比数列,故D 错误. 故选:C. 【点睛】
方法点睛:证明或判断等比数列的方法, (1)定义法:对于数列{}n a ,若
()1
0,0n n n
a q q a a +=≠≠,则数列{}n a 为等比数列; (2)等比中项法:对于数列{}n a ,若()2
210n n n n a a a a ++=≠,则数列{}n a 为等比数列;
(3)通项公式法:若n n a cq =(,c q 均是不为0的常数),则数列{}n a 为等比数列; (4)特殊值法:若是选择题、填空题可以用特殊值法判断,特别注意0n a =的判断. 17.B 【分析】
根据等比中项的性质求出3a ,从而求出1a ,最后根据公式求出3S ; 【详解】
解:因为正项等比数列{}n a 满足241a a =,由于2243a a a =,所以2
31a =. 所以31a =,2
11a q ∴=,因为1
3
q =
,所以19a =. 因此()3131131a q S q
-==-.
故选:B 18.C 【分析】
利用等比数列的求和公式进行分项求和,最后再求总和即可 【详解】
因为1192110
21119n n n n a n --⎧≤≤=⎨≤≤⎩,,
,
所以,410
4
9104561022222212
a a a -+++=+
+==--,
49
8
4
4
8
941112152222222212
a a a -+++=+
+=+
+==--,
该数列从第5项到第15项的和为
10494465422222(2121)2(64322)16941504-+-=⨯-+-=⨯+-=⨯=
故选:C 【点睛】
解题关键在于利用等比数列的求和公式进行求解,属于基础题 19.B 【分析】
由等比数列前n 项和的性质即可求得12S . 【详解】 解:
数列{}n a 是等比数列,
3S ∴,63S S -,96S S -,129S S -也成等比数列,
即4,8,96S S -,129S S -也成等比数列, 易知公比2q
,
9616S S ∴-=,12932S S -=,
121299663332168460S S S S S S S S =-+-+-+=+++=.
故选:B. 20.B 【分析】
根据11a >,66771
1,01
a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】
若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾, 若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与671
01
a a -<-矛盾, 所以01q <<,故B 正确; 因为
671
01
a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以1
11n n a q a S q q
=
---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B
关键点点睛:本题的关键是通过穷举法确定01q <<.
二、多选题
21.ABC 【分析】
利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】
因为数列{}n a 为递增数列, 所以123a a a <<,
所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,
所以2
1122b b b <=
,即1b < 又2
2234b b b <=,即21
2
2b b =
<, 所以11b >
,即11b <<,故B 正确;
{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++
= 22(121)
2[13(21)]22
n n n n +-++⋅⋅⋅+-=
=,
因为12n n n b b +⋅=,则1
122n n n b b +++⋅=,所以22n n b b +=,
则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+
=1101101122(222)(222)()(21)n n n
b b b b --++⋅⋅⋅++++⋅⋅⋅+=+-
1)1)n n
>-=-,
当n =1
时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时
假设当n=k
时,21)2k k ->
21)k k ->, 则当n=k +1
1121)21)21)2k k k k k ++-=
+-=->
2221(1)k k k >++=+
所以对于任意*n N ∈
,都有21)2k k ->,即22n n T S >,故C 正确
【点睛】
本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题. 22.AC 【分析】
计算()f n 的值,得出数列{}n a 的通项公式,从而可得数列{}n S 的通项公式,根据其通项公式进行判断即可 【详解】 解:因为112a =
,所以1(1)2
f =, 所以2
21
(2)(1)4
a f f ===
, 31
(3)(1)(2)8
a f f f ===,
……
所以1
()2
n n a n N +=∈,
所以11(1)
122111212
n n n S -==-<-, 所以数列{}n S 递增,当1n =时,n S 有最小值1112
S a ==, 故选:AC 【点睛】
关键点点睛:此题考查函数与数列的综合应用,解题的关键是由已知条件赋值归纳出数列
{}n a 的通项公式,进而可得数列{}n S 的通项公式,考查计算能力和转化思想,属于中档
题 23.AC 【分析】
根据等比数列定义判断A;根据等比数列通项公式判断B,C;根据等比数列求和公式求项判断D. 【详解】
设等比数列{}n a 公比为,(0)q q ≠
则2221
12(
)n n n n
a a q a a ++==,即数列2{}n a 是等比数列;即A 正确;
因为等比数列{}n a 中4812,,a a a 同号,而40,a > 所以80a >,即B 错误;
若123,a a a <<则12
11101a a a q a q q >⎧<<∴⎨>⎩或1001a q <⎧⎨<<⎩
,即数列{}n a 是递增数列,C 正确;
若数列{}n a 的前n 和13,n n S r -=+则111221313231,2,6a S r r a S S a S S -==+=+=-==-= 所以32211
323(1),3
a a q r r a a =
==∴=+=-,即D 错误 故选:AC 【点睛】
等比数列的判定方法
(1)定义法:若1
(n n
a q q a +=为非零常数),则{}n a 是等比数列; (2)等比中项法:在数列{}n a 中,0n a ≠且2
12n n a a a a ++=,则数列{}n a 是等比数列;
(3)通项公式法:若数列通项公式可写成(,n
n a cq c q =均是不为0的常数),则{}n a 是等比
数列;
(4)前n 项和公式法:若数列{}n a 的前n 项和(0,1,n
n S kq k q q k =-≠≠为非零常数),则
{}n a 是等比数列.
24.ABC 【分析】
由题意,设数列{}n a 的公比为q ,利用等比数列{}n a 单调递增,则
111(1)0n n n a a a q q -+-=->,分两种情况讨论首项和公比,即可判断选项.
【详解】
由题意,设数列{}n a 的公比为q ,
因为1
1n n a a q -=,
可得1
11(1)0n n n a a a q
q -+-=->,
当10a >时,1q >,此时1
01n
n a a +<<, 当10a <时,1
01,1n
n a q a +<<>, 故不正确的是ABC. 故选:ABC. 【点睛】
本题主要考查了等比数列的单调性.属于较易题. 25.AD 【分析】
根据等比数列的定义判断.
设{}n a 的公比是q ,则1
1n n a a q -=,
A .
23513
a a
q a a ==,1a ,3a ,5a 成等比数列,正确; B ,32a q a =,36
3a q a =,在1q ≠时,两者不相等,错误; C .2
42a q a =,484a q a =,在21q ≠时,两者不相等,错误; D .3
6936
a a q a a ==,3a ,6a ,9a 成等比数列,正确. 故选:AD . 【点睛】
结论点睛:本题考查等比数列的通项公式.
数列{}n a 是等比数列,则由数列{}n a 根据一定的规律生成的子数列仍然是等比数列: 如奇数项1357,,,,a a a a 或偶数项246,,,
a a a 仍是等比数列,
实质上只要123,,,,,n k k k k 是正整数且成等差数列,则123,,,,,
n k k k k a a a a 仍是等比
数列. 26.AB 【分析】
首先可得数列{}n a 为等比数列,从而求出公比q 、1a ,再根据等比数列求和公式计算可得; 【详解】
解:因为数列{}n a 对任意的正整数n 均有2
12n n n a a a ++=,所以数列{}n a 为等比数列,因为
22a =,48a =,所以2
4
2
4a q a =
=,所以2q =±, 当2q
时11a =,所以10
1012102312
S -==-
当2q =-时11a =-,所以()(
)()
10
1011234112S -⨯--==--
故选:AB 【点睛】
本题考查等比数列的通项公式及求和公式的应用,属于基础题. 27.AD 【分析】
根据{}n S 为等比数列等价于
2
n n
a a +为常数,从而可得正确的选项.
{}n S 为等比数列等价于
1n n S S +为常数,也就是等价于12
+1n n n n a a a a ++即2n n
a a +为常数.
对于A ,因为{}n a 是等比数列,故
22
n n
a q a +=(q 为{}n a 的公比)为常数,故A 满足; 对于B ,取21221,2n
n n a n a -=-=,此时满足2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列,
1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅不是等比数列,
21
21
n n a a +-不是常数,故B 错. 对于C ,取2123,2n n
n n a a -==,此时满足2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列,
1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅是等比数列,21213n n a a +-=,2222n n
a
a +=,两者不相等,故C 错. 对于D ,根据条件可得2
n n
a a +为常数.
故选:AD. 【点睛】
本题考查等比数列的判断,此类问题应根据定义来处理,本题属于基础题. 28.AD 【分析】
分类讨论67,a a 大于1的情况,得出符合题意的一项. 【详解】
①671,1a a >>, 与题设
671
01
a a -<-矛盾. ②671,1,a a ><符合题意. ③671,1,a a <<与题设
671
01
a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.
得671,1,01a a q ><<<,则n T 的最大值为6T .
∴B ,C ,错误.
故选:AD. 【点睛】
考查等比数列的性质及概念. 补充:等比数列的通项公式:()1
*
1n n a a q n N -=∈.
29.AB 【分析】
由已知构造出数列{}3n a +是等比数列,可求出数列{}n a 的通项公式以及前n 项和,结合选项逐一判断即可. 【详解】
123n n a a +=+,∴()1323n n a a ++=+,∴数列{}3n a +是等比数列
又∵11a =,∴()11332n n a a -+=+,∴1
23n n a +=-,∴313a =,
∴()
2412323412n n n
S n n +-=-=---.
故选:AB. 30.ABD 【分析】
由()*123n
n n
a a n N a +=
∈+两边取倒数,可求出{}n a 的通项公式,再逐一对四个选项进行判断,即可得答案. 【详解】
因为112323n n
n n a a a a ++==+,所以11132(3)n n a a ++=+,又11
340a +=≠, 所以13n a ⎧⎫+⎨⎬⎩⎭
是以4为首项,2位公比的等比数列,1
1342n n a -+=⨯即1123n n a +=-,故选项A 、B 正确. 由{}n a 的通项公式为1123
n n a +=-知,{}n a 为递减数列,选项C 不正确.
因为
1231n n
a +=-,所以 1n a ⎧⎫
⎨⎬⎩⎭
的前n 项和23112(23)(23)(23)2(222)3n n n T n +=-+-+
+-=++
+-
22(12)2312
234n n n n +-⨯-=⨯-=--.选项D 正确,
故选:ABD 【点睛】
本题考查由递推公式判断数列为等比数列,等比数列的通项公式及前n 项和,分组求和法,属于中档题. 31.ABC 【分析】
由1418a a +=,23
12a a +=,31118a a q +=,21112a q a q +=,公比q 为整数,解得
1a ,q ,可得n a ,n S ,进而判断出结论.
【详解】
∵1418a a +=,23
12a a +=且公比q 为整数,
∴31118a a q +=,2
1112a q a q +=,
∴12a =,2q
或1
2
q =
(舍去)故A 正确, ()12122212
n n n S +-=
=--,∴8510S =,故C 正确;
∴1
22n n S ++=,故数列{}2n S +是等比数列,故B 正确;
而lg lg 2lg 2n
n a n ==,故数列{}lg n a 是公差为lg 2的等差数列,故D 错误.
故选:ABC . 【点睛】
本题主要考查了等比数列的通项公式和前n 项和公式以及综合运用,属于中档题. 32.AB 【分析】
由已知分别写出等差数列与等比数列的通项公式,求得数列{c n }的通项公式,利用数列的分组求和法可得数列{c n }的前n 项和T n ,验证得答案. 【详解】
由题意,a n =1+2(n ﹣1)=2n ﹣1,1
2
n n b -=,
n n b c a ==2•2n ﹣1﹣1=2n ﹣1,则数列{c n }为递增数列,
其前n 项和T n =(21﹣1)+(22﹣1)+(23﹣1)+…+(2n ﹣1) =(21
+22
+ (2)
)﹣n (
)21212
n n -=
-=-2
n +1
﹣2﹣n .
当n =9时,T n =1013<2019; 当n =10时,T n =2036>2019. ∴n 的取值可以是8,9. 故选:AB 【点睛】
本题考查了分组求和,考查了等差等比数列的通项公式、求和公式,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 33.AB 【分析】
由已知可得:43n a n =-,2
2n S n n =-,
=21n S n n -,则数列n S n ⎧⎫
⎨⎬⎩⎭
为等差数列通过公式即可求得前10项和;通过等比中项可验证B 选项;因为 11111=44341i i a a n n +⎛⎫
- ⎪-+⎝⎭
,通过裂项求和可求得
11
1
n
i i i a a =+∑;由等差的性质可知12m n +=利用基本不等式可验证选项D 错误. 【详解】
由已知可得:43n a n =-,2
2n S n n =-,
=21n S n n -,则数列n S n ⎧⎫
⎨⎬⎩⎭为等差数列,则前10项和为()10119=1002
+.所以A 正确;
1,a 3,a m a 成等比数列,则2
31=,m a a a ⋅81m a =,即=4381m a m =-=,解得21m =故B 正确;
因为11111=44341i i a a n n +⎛⎫
- ⎪-+⎝⎭
所以11
11111116
=1=45549413245
1n
i i i n n n a a n =+⎛⎫-+-++
-> ⎪
++⎝⎭-∑,解得6n >,故n 的最小值为7,故选项C 错误;等差的性质可知12m n +=,所以
()()1161116116125=1161724121212
12n m m n m n m n m n ⎛⎫⎛⎫+++=+++≥+⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当16=n m m n 时,即48=45n m =时取等号,因为*,m n ∈N ,所以48=45n m =不成立,故选项D 错误.
故选:AB. 【点睛】
本题考查等差数列的性质,考查裂项求和,等比中项,和基本不等式求最值,难度一般. 34.BC 【分析】
根据等差中项的性质和等差数列的求和公式可得出结果. 【详解】
由等差中项的性质可得381383a a a a ++=为定值,则8a 为定值,
()
11515815152
a a S a +=
=为定值,但()
()11616891682
a a S a a +=
=+不是定值.
故选:BC. 【点睛】
本题考查等差中项的基本性质和等差数列求和公式的应用,考查计算能力,属于基础题. 35.ACD 【分析】
根据新定义进行判断. 【详解】
A .若数列{}n a 是单增数列,则11111
111()(1)n n n n n n n n n n b b a a a a a a a a ------=--+=-+, 虽然有1n n a a ->,但当1
1
10n n a a -+<时,1n n b a -<,因此{}n b 不一定是单增数列,A 正确;
B .31n a n =-,则1
3131
n b n n =--
-,易知{}n b 是递增数列,无最大值,B 错;
C .31n a n =-,则13131
n b n n =--
-,易知{}n b 是递增数列,有最小值,最小值为1b ,C 正确; D .若112n n a ⎛⎫=-- ⎪⎝⎭,则111()121()2
n n n b =-----, 首先函数1y x x
=-在(0,)+∞上是增函数, 当n 为偶数时,11()(0,1)2
n n a =-∈,∴10n n n b a a =-<, 当n 为奇数时,1
1()2n n a =+1>,显然n a 是递减的,因此1n n n
b a a =-也是递减的, 即135b b b >>>
,∴{}n b 的奇数项中有最大值为13250236b =-=>, ∴156
b =是数列{}(*)n b n N ∈中的最大值.D 正确. 故选:ACD .
【点睛】
本题考查数列新定义,解题关键正确理解新定义,把问题转化为利用数列的单调性求最值.。