勾股定理单元 易错题综合模拟测评学能测试试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm ,在容器内壁离容器底部3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为( )
A .20cm
B .18cm
C .25cm
D .40cm
2.如图:在△ABC 中,∠B=45°,D 是AB 边上一点,连接CD ,过A 作AF ⊥CD 交CD 于G ,交BC 于点F .已知AC=CD ,CG=3,DG=1,则下列结论正确的是( )
①∠ACD=2∠FAB ②27ACD S ∆= ③272CF
=- ④ AC=AF A .①②③ B .①②③④ C .②③④ D .①③④
3.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =
; ②∠A=∠BHE ;
③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )
A .①②③
B .①②④
C .②③④
D .①②③④ 4.如图,将一个等腰直角三角形按图示方式依次翻折,若D
E a =,则下列说法正确的是( )
①DC '平分BDE ∠;②BC 长为
()
22a +;③BCD 是等腰三角形;④CED 的周长等于BC 的长.
A .①②③
B .②④
C .②③④
D .③④
5.如图,所有的四边形都是正方形,所有的三角形都是直角三角形。

若正方形A 、B 、C 、D 的边长是3、5、2、3,则最大正方形E 的面积是
A .13
B .225+
C .47
D .13
6.如图,在△ABC 中,∠C =90°,AD 是△ABC 的一条角平分线.若AC =6,AB =10,则点D 到AB 边的距离为( )
A .2
B .2.5
C .3
D .4
7.如图,在Rt ABC 中,90BAC ︒∠=,以Rt ABC 的三边为边分别向外作等边三角形'A BC ,'AB C △,'ABC △,若'A BC ,'AB C △的面积分别是10和4,则'ABC △的面积是( )
A .4
B .6
C .8
D .9
8.如图所示,有一个高18cm ,底面周长为24cm 的圆柱形玻璃容器,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )
A .16cm
B .18cm
C .20cm
D .24cm
9.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰三角形
10.如图,在ABC ∆中,D 、E 分别是BC 、AC 的中点.已知90ACB ∠=︒,4BE =,7AD =,则AB 的长为( )
A .10
B .53
C .213
D .215
二、填空题
11.如图,在矩形 ABCD 中,AB =10,BC =5,若点 M 、N 分别是线段 AC 、AB 上的两个动点,则 BM+MN 的最小值为_____________________.
12.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =,42AC =,则DA 的长为______.
13.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为_______________.
14.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________.
15.《算法统宗》中有一道“荡秋干”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A 离地1尺,将它往前推送10尺(水平距离)时,点A 对应的点B 就和某人一样高,若此人的身高为5尺,秋干的绳索始终拉得很直,试问绳素有多长?”根据上述条件,秋干绳索长为________尺.
16.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___
17.如图,在等边△ABC 中,AB =6,AN =2,∠BAC 的平分线交BC 于点D ,M 是AD 上的动点,则BM +MN 的最小值是_____.
18.如图,在□ABCD 中,AC 与BD 交于点O ,且AB =3,BC =5.
①线段OA 的取值范围是______________;
②若BD -AC =1,则AC •BD = _________.
19.如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为
MN,连接CN.若△CDN的面积与△CMN的面积比为1:3,则
2
2
MN
BM
的值为
______________.
20.如图,Rt△ABC中,∠C=90°,AB=5,BC=4,斜边AB的垂直平分线DE交边BC于点D,连接AD,线段CD的长为_________.
三、解答题
21.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.
(1)此时梯子顶端离地面多少米?
(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?
22.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求证:四边形ABCD是邻和四边形.
(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A、B、C三点的位置如图,请在网格图中标出所有的格点
.......D.,使得以A、B、C、D为顶点的四边形为邻和四边形.
(3)如图3,△ABC中,∠ABC=90°,AB=2,BC=3D,使四边形ABCD是
邻和四边形,求邻和四边形ABCD的面积.
23.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.
(1)若∠AED=20°,则∠DEC=度;
(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;
(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:
EH2+CH2=2AE2.
24.在等腰Rt△ABC中,AB=AC,∠BAC=90°
(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF
①求证:△AED≌△AFD;
②当BE=3,CE=7时,求DE的长;
(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.
25.如图,△ABC中AC=BC,点D,E在AB边上,连接CD,CE.
(1)如图1,如果∠ACB=90°,把线段CD逆时针旋转90°,得到线段CF,连接BF,
①求证:△ACD≌△BCF;
②若∠DCE=45°,求证:DE2=AD2+BE2;
(2)如图2,如果∠ACB=60°,∠DCE=30°,用等式表示AD,DE,BE三条线段的数量关系,说明理由.
26.定义:在△ABC中,若BC=a,AC=b,AB=c,若a,b,c满足ac+a2=b2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:
(1)命题“直角三角形都是类勾股三角形”是命题(填“真”或“假”);
(2)如图1,若等腰三角形ABC是“类勾股三角形”,其中AB=BC,AC>AB,请求∠A的度数;
(3)如图2,在△ABC中,∠B=2∠A,且∠C>∠A.
①当∠A=32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由;
②请证明△ABC为“类勾股三角形”.
27.(1)如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且点D在BC边上滑动(点D不与点B,C重合),连接EC,
①则线段BC,DC,EC之间满足的等量关系式为;
②求证:BD2+CD2=2AD2;
(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.
28.已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且∠EAP=60°.
(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是.
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
29.菱形ABCD 中,∠BAD =60°,BD 是对角线,点E 、F 分别是边AB 、AD 上两个点,且满足AE =DF ,连接BF 与DE 相交于点G .
(1)如图1,求∠BGD 的度数;
(2)如图2,作CH ⊥BG 于H 点,求证:2GH =GB +DG ;
(3)在满足(2)的条件下,且点H 在菱形内部,若GB =6,CH =43,求菱形ABCD 的面积.
30.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD
()1如图1,若2BD =,4DC =,求AD 的长;
()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F . ①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法
想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.
想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.
请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)
②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为最短路径,由勾股定理求出A ′D 即圆柱底面周长的一半,由此即可解题.
【详解】
解:如图,将圆柱展开,EG 为上底面圆周长的一半,
作A 关于E 的对称点A ',连接A B '交EG 于F ,
则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长,
即 25cm AF BF A B '+==,
延长BG ,过A '作A D BG '⊥于D ,
3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=,
Rt A DB '∴△中,由勾股定理得:2222251520cm A D A B BD ''=--=, ∴该圆柱底面周长为:20240cm ⨯=,
故选D .
【点睛】
本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
2.B
解析:B
【分析】
过点C 作CH AB ⊥于点H ,根据等腰三角形的性质得到1802ACD CDA ∠=︒-∠,根据AF CD ⊥得到90FAB CDA ∠=︒-∠,可以证得①是正确的,利用勾股定理求出AG 的长,算出三角形ACD 的面积证明②是正确的,再根据角度之间的关系证明
AFC ACF ∠=∠,得到④是正确的,最后利用勾股定理求出CF 的长,得到③是正确的.
【详解】
解:如图,过点C 作CH AB ⊥于点H ,
∵AC CD =,
∴CAD CDA ∠=∠,1802ACD CDA ∠=︒-∠,
∵AF CD ⊥,
∴90AGD ∠=︒,
∴90FAB CDA ∠=︒-∠,
∴2ACD FAB ∠=∠,故①正确;
∵3CG =,1DG =,
∴314CD CG DG =+=+=,
∴4AC CD ==,
在Rt ACG 中,221697AG AC CG =
--=, ∴1272
ACD S AG CD =⋅= ∵90CHB ∠=︒,45B ∠=︒,
∴45HCB ∠=︒,
∵AC CD =,CH AD ⊥, ∴12
ACH HCD ACD ∠=∠=∠, ∵45AFC B FAB FAB ∠=∠+∠=︒+∠,
45ACF ACH HCB ACH ∠=∠+∠=∠+︒,
12
ACH ACD FAB ∠=∠=∠, ∴AFC ACF ∠=∠,
∴4AC AF ==,故④正确;
∴4GF AF AG =-=-
在Rt CGF
中,
2CF ===,故③正确.
故选:B .
【点睛】
本题考查几何的综合证明,解题的关键是掌握等腰三角形的性质和判定,勾股定理和三角形的外角和定理. 3.A
解析:A
【分析】
先判断△DBE
是等腰直角三角形,根据勾股定理可推导得出BE ,故①正确;根据∠BHE 和∠C 都是∠HBE 的余角,可得∠BHE=∠C ,再由∠A=∠C ,可得②正确;证明
△BEH ≌△DEC ,从而可得BH=CD ,再由AB=CD ,可得③正确;利用已知条件不能得到④,据此即可得到选项.
【详解】
解:∵∠DBC=45°,DE ⊥BC 于E ,
∴在Rt △DBE 中,BE 2+DE 2=BD 2,BE=DE ,
∴BE ,故①正确;
∵DE ⊥BC ,BF ⊥DC ,∴∠BHE 和∠C 都是∠HBE 的余角,
∴∠BHE=∠C ,
又∵在▱ABCD 中,∠A=∠C ,
∴∠A=∠BHE ,故②正确;
在△BEH 和△DEC 中,
BHE C HEB CED BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩
, ∴△BEH ≌△DEC ,
∴BH=CD ,
∵四边形ABCD 为平行四边形,
∴AB=CD ,
∴AB=BH ,故③正确;
利用已知条件不能得到△BCF ≌△DCE ,故④错误,
故选A.
【点睛】
本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键.
4.B
解析:B
根据折叠前后得到对应线段相等,对应角相等判断①③④式正误即可,根据等腰直角三角形性质求BC 和DE 的关系.
【详解】
解:根据折叠的性质知,△C ED CED '≅∆,且都是等腰直角三角形,
∴90BDE ∠<︒,45C DE ∠'=︒, ∴12
C DE BDE ∠'≠∠ ∴DC '不能平分BDE ∠①错误;
45DC E DCE ∴∠'=∠=︒,C E CE DE AD a '====,
CD DC ='=,
AC a ∴=,2)BC a ==,
∴②正确;
2ABC DBC ∠=∠,
22.5DBC ∴∠=︒,
45DCB ∠=︒,
112.5BDC ∴∠=︒,
BCD ∴∆不是等腰三角形,
故③错误;
CED ∴∆的周长(2CE DE CD a a a BC =++=+==,
故④正确.
故选:B .
【点睛】
本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②等腰直角三角形,三角形外角与内角的关系,等角对等边等知识点.
5.C
解析:C
【分析】
根据勾股定理即可得到正方形A 的面积加上B 的面积加上C 的面积和D 的面积是E 的面积.即可求解.
【详解】
四个正方形的面积的和是正方形E 的面积:即222233=92549=47+5+2++++;故答案为C .
【点睛】
理解正方形A ,B ,C ,D 的面积的和是E 的面积是解决本题的关键.
6.C
解析:C
作DE ⊥AB 于E ,由勾股定理计算出可求BC=8,再利用角平分线的性质得到DE=DC ,设DE=DC=x ,利用等等面积法列方程、解方程即可解答.
【详解】
解:作DE ⊥AB 于E ,如图,
在Rt △ABC 中,BC 22106-8,
∵AD 是△ABC 的一条角平分线,DC ⊥AC ,DE ⊥AB ,
∴DE =DC ,
设DE =DC =x ,
S △ABD =12DE •AB =12
AC •BD , 即10x =6(8﹣x ),解得x =3,
即点D 到AB 边的距离为3.
故答案为C .
【点睛】
本题考查了角平分线的性质和勾股定理的相关知识,理解角的平分线上的点到角的两边的距离相等是解答本题的关键..
7.B
解析:B
【分析】
设AB=c ,AC=b ,BC=a ,用a 、b 、c 分别表示'A BC ,'AB C △,'ABC △的面积,再利用Rt ABC 得b 2+c 2=a 2,求得c 值代入即可求得的面积'ABC △的面积.
【详解】
设AB=c ,AC=b ,BC=a ,
由题意得'A BC 的面积=
13102a a ⋅=, 'AB C △的面积=
1342b ⋅= ∴24033a = 21633
b =在Rt △ABC 中,∠BAC=90°,b 2+
c 2=a 2,
∴c 2=a 2-b 24016338333
=
∴'ABC △的面积=2133224c c c ⋅⋅==38364
⨯= 故此题选B
【点睛】 此题考察勾股定理的运用,用直角三角形的三边分别表示三个等边三角形的面积,运用勾股定理的等式求得第三个三角形的面积
8.C
解析:C
【分析】
首先画出圆柱的侧面展开图,进而得到SC=12cm ,FC=18-2=16cm ,再利用勾股定理计算出SF 长即可.
【详解】
将圆柱的侧面展开,蜘蛛到达目的地的最近距离为线段SF 的长,
由勾股定理,SF 2=SC 2+FC 2=122+(18-1-1)2=400,
SF=20 cm ,
故选C.
【点睛】
本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
9.B
解析:B
【分析】
依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形.
【详解】
如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5,
∴AC 2+BC 2=AB 2,
∴△ABC 是直角三角形,且∠ACB =90°,
故选B .
【点睛】
本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.
10.C
解析:C
【分析】
设EC=x ,DC=y ,则直角△BCE 中,x 2+4y 2=BE 2=16,在直角△ADC 中,4x 2+y 2=AD 2=49,由方程组可求得x 2+y 2,在直角△ABC 中,2244AB
x y 【详解】
解:设EC=x ,DC=y ,∠ACB=90°,
∵D 、E 分别是BC 、AC 的中点,
∴AC=2EC=2x ,BC=2DC=2y ,
∴在直角△BCE 中,CE 2+BC 2=x 2+4y 2=BE 2=16
在直角△ADC 中,AC 2+CD 2=4x 2+y 2=AD 2=49,
∴2255164965x y ,即2213x y +=,
在直角△ABC 中,2244413213AB
x y .
故选:C .
【点睛】 本题考查了勾股定理的灵活运用,考查了中点的定义,本题中根据直角△BCE 和直角△ADC 求得22x y +的值是解题的关键.
二、填空题
11.8
【解析】
如图作点B 关于AC 的对称点B ′,连接B ′A 交DC 于点E ,则BM+MN 的最小值等于
的最小值 作交于,则为所求; 设,,
由,,
h+5=8,即BM+MN的最小值是8.
点睛:本题主要是利用轴对称求最短路线,题中应用了勾股定理与用不同方式表示三角形的面积从而求出某条边上的高,利用轴对称得出M点与N点的位置是解题的关键.12.6或2.
【分析】
由于已知没有图形,当Rt△ABC固定后,根据“以BC为斜边作等腰直角△BCD”可知分两种情况讨论:
①当D点在BC上方时,如图1,把△ABD绕点D逆时针旋转90°得到△DCE,证明A、C、E三点共线,在等腰Rt△ADE中,利用勾股定理可求AD长;
②当D点在BC下方时,如图2,把△BAD绕点D顺时针旋转90°得到△CED,证明过程类似于①求解.
【详解】
解:分两种情况讨论:
①当D点在BC上方时,如图1所示,
把△ABD绕点D逆时针旋转90°,得到△DCE,
则∠ABD=∠ECD,2,AD=DE,且∠ADE=90°
在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,
∴∠ABD+∠ACD=360°-180°=180°,
∴∠ACD+∠ECD=180°,
∴A、C、E三点共线.
∴222
在等腰Rt△ADE中,AD2+DE2=AE2,
即2AD2=(2)2,解得AD=6
②当D点在BC下方时,如图2所示,
把△BAD绕点D顺时针旋转90°得到△CED,
则CE=AB=22,∠BAD=∠CED,AD=AE且∠ADE=90°,
所以∠EAD=∠AED=45°,
∴∠BAD=90°+45°=135°,即∠CED=135°,
∴∠CED+∠AED=180°,即A、E、C三点共线.
∴AE=AC-CE=42-22=22
在等腰Rt△ADE中,2AD2=AE2=8,解得AD=2.
故答案为:6或2.
【点睛】
本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.13.32或42
【分析】
根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案
【详解】
当△ABC是钝角三角形时,
∵∠D=90°,AC=13,AD=12,
∴2222
-=-=,
13125
CD AC AD
∵∠D=90°,AB=15,AD=12,
∴222215129BD AB AD =-=-=,
∴BC=BD-CD=9-5=4,
∴△ABC 的周长=4+15+13=32;
当△ABC 是锐角三角形时,
∵∠ADC=90°,AC=13,AD=12,
∴222213125CD AC AD =-=-=,
∵∠ADB=90°,AB=15,AD=12, ∴222215129BD AB AD =-=-=,
∴BC=BD-CD=9+5=14,
∴△ABC 的周长=14+15+13=42;
综上,△ABC 的周长是32或42,
故答案为:32或42.
【点睛】
此题考查勾股定理的实际应用,能依据题意正确画出图形分类讨论是解题的关键.
14.232
【分析】
先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.
【详解】
在Rt ABC 中,90,30,2C A BC ∠=∠==,
∴AB=2BC=4,
∴22224223AC AB BC =-=-=
当AC 为腰时,则该三角形的腰长为23; 当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3,
设DE=x ,则AD=2x ,
∵222AE DE AD +=,
∴222(3)(2)x x +=
∴x=1(负值舍去),
∴腰长AD=2x=2,
故答案为:23或2
【点睛】
此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.
15.5
【分析】
设绳索x 尺,过点B 向地面及AO 作垂线BE 、BC ,构成直角三角形OBE ,利用勾股定理求出x 的值
【详解】
如图, 过点B 作BC ⊥OA 于点C ,作BD 垂直于地面,延长OA 交地面于点D 由题意知AD=1,BE=5,BC=10
设绳索x 尺,则OA=OB=x
∴OC=x+1-5=x-4
在Rt △OBC 中,OB 2=OC 2+BC 2
∴222
(4)10x x =-+
得x=14.5(尺)
故填14.5 ,
【点睛】
此题考察勾股定理的实际运用,理解题意作辅助线构建直角三角形是解题关键.
16.5或13
【分析】
根据已知可得题意中的图是一个勾股图,可得S P+S Q=S K为从而易求S K.
【详解】
解:如下图所示,
若A=S P=4.B=S Q=9,C=S K,
根据勾股定理,可得
A+B=C,
∴C=13.
若A=S P=4.C=S Q=9,B=S K,
根据勾股定理,可得
A+B=C,
∴B=9-4=5.
∴S K为5或13.
故答案为:5或13.
【点睛】
本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.
17.7
【解析】
【分析】
通过作辅助线转化BM,MN的值,从而找出其最小值求解.
【详解】
解:连接CN,与AD交于点M.则CN就是BM+MN的最小值.取BN中点E,连接DE,如图所示:
∵等边△ABC的边长为6,AN=2,
∴BN=AC﹣AN=6﹣2=4,
∴BE=EN=AN=2,
又∵AD是BC边上的中线,
∴DE 是△BCN 的中位线,
∴CN =2DE ,CN ∥DE ,
又∵N 为AE 的中点,
∴M 为AD 的中点,
∴MN 是△ADE 的中位线,
∴DE =2MN ,
∴CN =2DE =4MN ,
∴CM =34
CN .
在直角△CDM 中,CD =12BC =3,DM =12AD =2

∴CM =
∴CN =43=. ∵BM +MN =CN ,
∴BM +MN 的最小值为.
故答案是:
【点睛】
考查等边三角形的性质和轴对称及勾股定理等知识的综合应用.
18.①1<OA <4. ②
672. 【解析】
(1)由三角形边的性质
5-3<2OA <5+3,
1<OA <4.
(2)过A 作AF BC ,F ⊥于过D 作DE BC ⊥于E,可知,ABF 全等DCE , 由题意知,22BD DE =+()2BC CE +=2DE +()24CE +, ()()22
2225AC DE BC CE DE CE ∴=+-=+-,
2AC ∴+ 2BD
=2DE +()()22245CE DE CE +++-=2(22)5018DE CE ++=+50=68, BD -AC =1,两边平方2AC ∴+ 2BD -2AC •BD =1, ∴AC •BD =672.
19.12
【解析】
如图,过点N 作NG ⊥BC 于点G ,连接CN ,根据轴对称的性质有:
MA=MC ,NA=NC ,∠AMN=∠CMN.
因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠ANM=∠CMN.
所以∠AMN=∠ANM,所以AM=AN.
所以AM=AN=CM=CN.
因为△CDN 的面积与△CMN 的面积比为1:3,所以DN:CM=1:3.
设DN=x ,则CG=x ,AM=AN=CM=CN=3x ,
由勾股定理可得()22322x x x -=, 所以MN 2=()()2222312x x x x +-=,BM 2=()()22232x x x -=.
所以22
2212MN x BM x
==12. 枚本题应填12.
点睛:矩形中的折叠问题,其本质是轴对称问题,根据轴对称的性质,找到对应的线段和角,也就找到了相等的线段和角,矩形中的折叠一般会伴随着等腰三角形(也就是基本图形“平行线+角平分线→等腰三角形”),所以常常会结合等腰三角形,勾股定理来列方程求解.
20.
78
. 【解析】 ∵∠C =90°,AB =5,BC =4,∴AC 2254-.
∵AB 的垂直平分线DE 交边BC 于点D ,∴BD =AD .
设CD =x ,则AD =BD =4-x ,在Rt △ACD 中,2223(4)x x +=- ,解得:78
x =.故答案为:78

三、解答题
21.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米
【解析】
试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;
(2)构建直角三角形,然后根据购股定理列方程求解即可.
试题解析:(1)如图,∵AB=25米,BE=7米,
梯子距离地面的高度AE=22
-=24米.
257
答:此时梯子顶端离地面24米;
(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,
∴22
-,
2520
-22
CD CE
∴DE=15﹣7=8(米),即下端滑行了8米.
答:梯子底端将向左滑动了8米.
22.(1)见解析;(2)见解析;(3)363
【分析】
(1)先由三角形的内角和为180°求得∠ACB的度数,从而根据等腰三角形的判定证得AB=AC=AD,按照邻和四边形的定义即可得出结论.
(2)以点A为圆心,AB长为半径画圆,与网格的交点,以及△ABC外侧与点B和点C组成等边三角形的网格点即为所求.
(3)先根据勾股定理求得AC的长,再分类计算即可:①当DA=DC=AC时;②当
CD=CB=BD时;③当DA=DC=DB或AB=AD=BD时.
【详解】
(1)∵∠ACB=180°﹣∠ABC﹣∠BAC=70°,
∴∠ACB=∠ABC,
∴AB=AC.
∵∠ACD=∠ADC,
∴AC=AD,
∴AB=AC=AD.
∴四边形ABCD是邻和四边形;
(2)如图,格点D、D'、D''即为所求作的点;
(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23, ∴AC =()22222234AB BC +=+=,
显然AB ,BC ,AC 互不相等.
分两种情况讨论:
①当DA =DC =AC=4时,如图所示:
∴△ADC 为等边三角形,
过D 作DG ⊥AC 于G ,则∠ADG =
160302⨯︒=︒, ∴122
AG AD ==, 22224223DG AD AG =-=-=,
∴S △ADC =1423432
⨯⨯=,S △ABC =12AB×BC =23, ∴S 四边形ABCD =S △ADC +S △ABC =63;
②当CD =CB =BD =23时,如图所示:
∴△BDC 为等边三角形,
过D 作DE ⊥BC 于E ,则∠BDE =
160302⨯︒=︒,
∴12
BE BD ==
3DE ==
=,
∴S △BDC =132
⨯= 过D 作DF ⊥AB 交AB 延长线于F ,
∵∠FBD=∠FBC -∠DBC =90︒-60︒=30︒,
∴DF=
12
S △ADB =122
⨯=,
∴S 四边形ABCD =S △BDC +S △ADB =;
③当DA =DC =DB 或AB =AD =BD 时,邻和四边形ABCD 不存在.
∴邻和四边形ABCD 的面积是或
【点睛】
本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.
23.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析
【分析】
(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;
(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;
(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH EF ,CH =
CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.
【详解】
解:(1)∵AB =AC ,AE =AB ,
∴AB =AC =AE ,
∴∠ABE =∠AEB ,∠ACE =∠AEC ,
∵∠AED =20°,
∴∠ABE =∠AED =20°,
∴∠BAE =140°,且∠BAC =90°
∴∠CAE =50°,
∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,
∴∠AEC =∠ACE =65°,
∴∠DEC =∠AEC ﹣∠AED =45°,
故答案为:45;
(2)猜想:∠AEC﹣∠AED=45°,
理由如下:∵∠AED=∠ABE=α,
∴∠BAE=180°﹣2α,
∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,
∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,
∴∠AEC=45°+α,
∴∠AEC﹣∠AED=45°;
(3)如图,过点C作CG⊥AH于G,
∵∠AEC﹣∠AED=45°,
∴∠FEH=45°,
∵AH⊥BE,
∴∠FHE=∠FEH=45°,
∴EF=FH,且∠EFH=90°,
∴EH2EF,
∵∠FHE=45°,CG⊥FH,
∴∠GCH=∠FHE=45°,
∴GC=GH,
∴CH2CG,
∵∠BAC=∠CGA=90°,
∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,
∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,
∴△AFB≌△CGA(AAS)
∴AF=CG,
∴CH2AF,
∵在Rt△AEF中,AE2=AF2+EF2,
2AF)2+2EF)2=2AE2,
∴EH2+CH2=2AE2.
【点睛】
本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.
24.(1)①见解析;②DE =
297
;(2)DE 的值为 【分析】 (1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;
(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.
【详解】
(1)①如图1中,
∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,
∴△BAE ≌△CAF ,
∴AE =AF ,∠BAE =∠CAF ,
∵∠BAC =90°,∠EAD =45°,
∴∠CAD +∠BAE =∠CAD +∠CAF =45°,
∴∠DAE =∠DAF ,
∵DA =DA ,AE =AF ,
∴△AED ≌△AFD (SAS );
②如图1中,设DE =x ,则CD =7﹣x .
∵AB =AC ,∠BAC =90°,
∴∠B =∠ACB =45°,
∵∠ABE =∠ACF =45°,
∴∠DCF =90°,
∵△AED ≌△AFD (SAS ),
∴DE =DF =x ,
∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,
∴x 2=(7﹣x )2+32,
∴x =297
, ∴DE =
297; (2)∵BD =3,BC =9,
∴分两种情况如下:
①当点E 在线段BC 上时,如图2中,连接BE .
∵∠BAC =∠EAD =90°,
∴∠EAB =∠DAC ,
∵AE =AD ,AB =AC ,
∴△EAB ≌△DAC (SAS ),
∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,
∴∠EBD=90°,
∴DE2=BE2+BD2=62+32=45,
∴DE=35;
②当点D在CB的延长线上时,如图3中,连接BE.
同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,
∴DE2=EB2+BD2=144+9=153,
∴DE=317,
综上所述,DE的值为35或317.
【点睛】
本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.
25.(1)①详见解析;②详见解析;(2)DE2=EB2+AD2+EB·AD,证明详见解析
【分析】
(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明
△ACD≌△BCF;
②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;
(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.
【详解】
解:(1)①证明:由旋转可得CF=CD,∠DCF=90°
∵∠ACD=90°
∴∠ACD=∠BCF
又∵AC=BC
∴△ACD≌△BCF
②证明:连接EF,
由①知△ACD≌△BCF
∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD
∴∠EBF=90°
∴EF2=BE2+BF2,
∴EF2=BE2+AD2
又∵∠ACB=∠DCF=90°,∠CDE=45°
∴∠FCE=∠DCE=45°
又∵CD=CF,CE=CE
∴△DCE≌△FCE
∴EF=DE
∴DE2= AD2+BE2
⑵DE2=EB2+AD2+EB·AD
理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,
∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD
∵AC=BC,∠ACB=60°
∴∠CAB=∠CBA =60°
∴∠ABE=120°,∠EBF=60°,∠BFG=30°
∴BG=1
2
BF,
3
∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,
∴∠ECF=∠FCB+∠BCE=30°
∵CD=CF,CE=CE
∴△ECF≌△ECD
∴EF=ED
在Rt△EFG中,EF2=FG2+EG2
又∵EG=EB+BG
∴EG=EB+1
2 BF,
∴EF2=(EB+1
2
BF)2+
3
)2
∴DE2=(EB+1
2
AD)2+
3
)2
∴DE2=EB2+AD2+EB·AD
【点睛】
本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.
26.(1)假;(2)∠A=45°;(3)①不能,理由见解析,②见解析
【分析】
(1)先由直角三角形是类勾股三角形得出ab+a2=c2,再由勾股定理得a2+b2=c2,即可判断出此直角三角形是等腰直角三角形;
(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论;
(3)①分三种情况,利用等腰三角形的性质即可得出结论;
②先求出CD=CB=a,AD=CD=a,DB=AB-AD=c-a,DG=BG=1
2
(c-a),AG=
1
2
(a+c),两个
直角三角形中利用勾股定理建立方程即可得出结论.【详解】
解:(1)如图1,假设Rt△ABC是类勾股三角形,
∴ab+a2=c2,
在Rt△ABC中,∠C=90°,根据勾股定理得,a2+b2=c2,∴ab+b2=a2+b2,
∴ab=a2,
∴a=b,
∴△ABC是等腰直角三角形,
∴等腰直角三角形是类勾股三角形,
即:原命题是假命题,
故答案为:假;
(2)∵AB=BC,AC>AB,
∴a=c,b>c,
∵△ABC是类勾股三角形,
∴ac+a2=b2,
∴c2+a2=b2,
∴△ABC是等腰直角三角形,
∴∠A=45°,
(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,
∴∠ABC=64°,
根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,
∵把这个三角形分成两个等腰三角形,
∴(Ⅰ)、当∠BCD=∠BDC时,
∵∠ABC=64°,
∴∠BCD=∠BDC=58°,
∴∠ACD=∠ACB﹣∠BCD=84°﹣58°=26°,∠ADC=∠ABC+∠BCD=122°∴△ACD不是等腰三角形,此种情况不成立;
(Ⅱ)、当∠BCD=∠ABC=64°时,
∴∠BDC=52°,
∴∠ACD=20°,∠ADC=128°,
∴△ACD是等腰三角形,此种情况不成立;
(Ⅲ)、当∠BDC=∠ABC=64°时,
∴∠BCD=52°,
∴∠ACD=∠ACB﹣BCD=32°=∠BAC,
∴△ACD是等腰三角形,
即:分割线和顶角标注如图2所示,
Ⅱ、分∠ABC,同(Ⅰ)的方法,判断此种情况不成立;
Ⅲ、分∠BAC,同(Ⅱ)的方法,判断此种情况不成立;
②如图3,在AB边上取点D,连接CD,使∠ACD=∠A
图3
作CG⊥AB于G,
∴∠CDB=∠ACD+∠A=2∠A,∵∠B=2∠A,
∴∠CDB=∠B,
∴CD=CB=a,
∵∠ACD=∠A,
∴AD=CD=a,
∴DB=AB﹣AD=c﹣a,
∵CG⊥AB,
∴DG=BG=1
2
(c﹣a),
∴AG=AD+DG=a+1
2
(c﹣a)=
1
2
(a+c),
在Rt△ACG中,CG2=AC2﹣AG2=b2﹣[1
2
(c+a)]2,
在Rt△BCG中,CG2=BC2﹣BG2=a2﹣[1
2
(c﹣a)]2,
∴b2﹣[1
2
(a+c)]2=a2﹣[
1
2
(c﹣a)]2,
∴b2=ac+a2,
∴△ABC是“类勾股三角形”.
【点睛】
此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,新定义“类勾股三角形”,分类讨论的数学思想,解本题的关键是理解新定义.
27.(1)①BC=DC+EC,理由见解析;②证明见解析;(2)6.
【解析】
【分析】
(1)证明△BAD≌△CAE,根据全等三角形的性质解答;
(2)根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;
(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.
【详解】
(1)①解:BC=DC+EC,理由如下:
∵∠BAC=∠DAE=90°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
即∠BAD=∠CAE,
在△BAD和△CAE中,,
∴△BAD≌△CAE(SAS),
∴BD=EC,
∴BC=DC+BD=DC+EC,;
故答案为:BC=DC+EC;
②证明:∵Rt△ABC中,AB=AC,
∴∠B=∠ACB=45°,
由(1)得,△BAD≌△CAE,
∴BD=CE,∠ACE=∠B=45°,
∴∠DCE=∠ACB+∠ACE=90°,
∴CE2+CD2=ED2,
在Rt△ADE中,AD2+AE2=ED2,
又AD=AE,
∴BD2+CD2=2AD2;
(2)解:作AE⊥AD,使AE=AD,连接CE,DE,如图2所示:
∵∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
在△BAD与△CAE中,,
∴△BAD≌△CAE(SAS),
∴BD=CE=9,
∵∠ADC=45°,∠EDA=45°,
∴∠EDC=90°,
∴DE===6,
∵∠DAE=90°,
∴AD=AE=DE=6.
【点睛】
本題是四边形综合题目,考查的是全等三角形的判定和性质、等直角三角形的性质、勾股定理、直角三角形的判定等知识:本题综合性强,熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键.。

相关文档
最新文档