应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答)
合集下载
应用多元统计分析课后习题答案高惠璇

29
第三章 多元正态总体参数的检验
3-2 设X~Nn(μ,σ2In), A,B为n阶对称阵.
若AB =0 ,证明X′AX与X′BX相互独立.
证明的思路:记rk(A)=r. 因A为n阶对称阵,存在正交阵Γ,使得
Γ ′AΓ=diag(λ1,…,λr 0,..,0) 令Y=Γ′X,则Y~Nn(Γ′μ,σ2In),
(2x12
x22
2x1x2
22x1
14x2
65)
1 2 1 2
1
2
exp
1
212
2 2
(1
2
)
[
2 2
(
x1
1 ) 2
21 2(x1
1)(x2
2
)
2 1
(
x2
2
)
2
]
比较上下式相应的系数,可得:
1 2
2 2
1 2
2
1
2 1
1
1 2 1
2 1
1
2
1/
21
2 2
2
2
2 1
21 22 21 21
f (x; , ) a
a0 (2 ) p/ 2 |
(x )1
|1/ 2 ,当0 a
(x )
1
ba02
时,
其中 b2 2 ln[a(2 ) p/2 | |1/ 2 ] 2 ln[aa0 ] 0, 20
第二章 多元正态分布及参数的估计
因 0,的特征值记为1 2 p 0, i对应
3-1 设X~Nn(μ,σ2In), A为对称幂等 阵,且rk(A)=r(r≤n),证明
证明 因A为对称幂等阵,而对称幂等阵的
第三章 多元正态总体参数的检验
3-2 设X~Nn(μ,σ2In), A,B为n阶对称阵.
若AB =0 ,证明X′AX与X′BX相互独立.
证明的思路:记rk(A)=r. 因A为n阶对称阵,存在正交阵Γ,使得
Γ ′AΓ=diag(λ1,…,λr 0,..,0) 令Y=Γ′X,则Y~Nn(Γ′μ,σ2In),
(2x12
x22
2x1x2
22x1
14x2
65)
1 2 1 2
1
2
exp
1
212
2 2
(1
2
)
[
2 2
(
x1
1 ) 2
21 2(x1
1)(x2
2
)
2 1
(
x2
2
)
2
]
比较上下式相应的系数,可得:
1 2
2 2
1 2
2
1
2 1
1
1 2 1
2 1
1
2
1/
21
2 2
2
2
2 1
21 22 21 21
f (x; , ) a
a0 (2 ) p/ 2 |
(x )1
|1/ 2 ,当0 a
(x )
1
ba02
时,
其中 b2 2 ln[a(2 ) p/2 | |1/ 2 ] 2 ln[aa0 ] 0, 20
第二章 多元正态分布及参数的估计
因 0,的特征值记为1 2 p 0, i对应
3-1 设X~Nn(μ,σ2In), A为对称幂等 阵,且rk(A)=r(r≤n),证明
证明 因A为对称幂等阵,而对称幂等阵的
应用多元统计分析课后习题答案高惠璇共174页文档

(2)证明(X1 , X2 ) 不是二元正态分布.
证明(1):任给x,当x≤-1时
P { X 2 x } P { X 1 x } ( x )
当x≥1时, P{X2x}
P{X2 1}P{1X2 1}P{1X2 x}
P{X11}P{1X11}P{1X1x}
它的任意线性组合必为一元正态. 但Y= X1-X2 不是正态分布,故(X1 , X2 ) 不是二元正态分布.
19
第二章 多元正态分布及参数的估计
2-17 设X~Np(μ ,Σ ),Σ >0,X的密度函数记为 f(x;μ ,Σ ).(1)任给a>0,试证明概率密度等高面
5
第二章 多元正态分布及参数的估计
2-3 设X(1)和X(2) 均为p维随机向量,已知
XX X((1 2))~N2p ((1 2)), 1 2 1 2,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
(1) 试证明X(1) +X(2)和X(1) -X(2) 相互独立. (2) 试求X(1) +X(2) 和X(1) -X(2) 的分布.
故X1 +X2 和X1 - X2相互独立.
3
第二章 多元正态分布及参数的估计
或者记
Y Y Y 1 2 X X 1 1 X X2 2 1 1 1 1 X X 1 2 CX
则 Y ~ N 2 (C ,C C )
e e dx 2
2
2 1e 2 1 e dx 1 2(x1 28x1 1)6
1 2(x2x17)2 2
1(
1 e2
x14)2
2
X1~N(4,1).
类似地有
应用多元统计分析课后习题答案高惠璇第四章部分习题解答

4
第四章 回归分析
令
L(a0 , 2 ) 2 2 L(a0 , ) 2 [( y1 a0 ) ( y2 a0 ) 3( y3 3a0 ) 0 a0 2
可得
令 ln L(a ˆ0 , 2 ) 3 1 2 ˆ [( y a ) ] 0 1 0 2 2 2 2 2 2( ) drf 可得 ˆ 2 1 2 ˆ0 ) 2 ( y2 a ˆ0 ) 2 ( y3 3a ˆ0 ) 2 ˆ0 ( y1 a
1
经验证:① B-A是对称幂等阵; ② rank(B-A)=tr(B-A)=2-1=1;
25 80 35 1 256 112 330 49
8
第四章 回归分析
③ A(B-A)=O3×3 .由第三章§3.1的结论6知
Y AY与Y ( B A)Y相互独立;也就是 ˆ ˆ 与 ˆ 相互独立.
ˆi y ˆ ) ( yi y )( y i 1
n n n i 1 i 1 2
R
2
2 2 ˆ ˆ ( y y ) ( y y ) i i
2 ˆi y ) ( y i 1
n n n i 1 i 1
2
2 2 ˆ ˆ ( y y ) ( y y ) i i
(因 1n C张成的空间 , 这里有H1n 1n )
n n i 1 i 1
(2) 因 ( yi y )( y ˆi y ˆ ) ( yi y ˆi y ˆ i y )( y ˆi y )
ˆ i )( y ˆi y ) ( y ˆi y )2 ( yi y
应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答)

注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
8
第二章 多元正态分布及参数的估计
2-11 已知X=(X1,X2)′的密度函数为
f
( x1 ,
x2 )
1
2
exp
1 2
(2 x12
x22
2 x1 x2
22 x1
14 x2
65)
试求X的均值和协方差阵.
解一:求边缘分布及Cov(X1,X2)=σ12
2 1
I I
p p
Ip I
p
1 1
2 2
1 2
2 1
I I
p p
Ip I
p
2(1 O
2
)
O
2(1
2
)
由定理2.3.1可知X(1) +X(2)和X(1) -X(2) 相
互独立.
7
第二章 多元正态分布及参数的估计
(2) 因
Y
X X
(1) (1)
X X
(2) (2)
~
N2 p
(1) (1)
(2) (2)
,
2(1 O
2)
O 2(1
2
)
所以 X (1) X (2) ~ N p ( (1) (2) ,2(1 2 )); X (1) X (2) ~ N p ( (1) (2) ,2(1 2 )).
若(X1 , X2 ) 是二元正态分布,则由性质4可知,
应用多元统计分析课后习题答案高惠璇部分习题解答(00004)市公开课金奖市赛课一等奖课件

2( 2 )2
[(
y1
aˆ0
)2
]
0
可得
ˆ
2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量分子为
L(aˆ0
, ˆ 0 2
)
(2
)
3 2
(ˆ 0 2
)
3 2
exp[
3 2
].
第5页
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )
第18页 18
第四章 回归分析
第19页 19
第四章 回归分析
等号成立 C(ˆ ) 0 (CC)1C • C(ˆ ) 0 ˆ.
第20页 20
第四章 回归分析
第21页 21
第四章 回归分析
第22页 22
第四章 回归分析
见附录P394定理7.2(7.5)式
第23页 23
第四章 回归分析
证实:(1)预计向量为 Yˆ Cˆ C(CC)1CY HY
yˆ
1 n
n i 1
yˆi
1 n
1n
Yˆ
1 n
1n
HY
1 n
(H1n )Y
1 n
1n
Y
y.
(因1n C张成的空间,这里有H1n 1n )
(2) 因 n ( yi y)( yˆi yˆ ) n ( yi yˆi yˆi y)( yˆi y)
0
ln
L
2
n
2
2
1
2( 2 )2
(Y
[(
y1
aˆ0
)2
]
0
可得
ˆ
2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量分子为
L(aˆ0
, ˆ 0 2
)
(2
)
3 2
(ˆ 0 2
)
3 2
exp[
3 2
].
第5页
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )
第18页 18
第四章 回归分析
第19页 19
第四章 回归分析
等号成立 C(ˆ ) 0 (CC)1C • C(ˆ ) 0 ˆ.
第20页 20
第四章 回归分析
第21页 21
第四章 回归分析
第22页 22
第四章 回归分析
见附录P394定理7.2(7.5)式
第23页 23
第四章 回归分析
证实:(1)预计向量为 Yˆ Cˆ C(CC)1CY HY
yˆ
1 n
n i 1
yˆi
1 n
1n
Yˆ
1 n
1n
HY
1 n
(H1n )Y
1 n
1n
Y
y.
(因1n C张成的空间,这里有H1n 1n )
(2) 因 n ( yi y)( yˆi yˆ ) n ( yi yˆi yˆi y)( yˆi y)
0
ln
L
2
n
2
2
1
2( 2 )2
(Y
应用多元统计分析课后习题答案高惠璇(第二章部分习题解答

2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
8
第二章 多元正态分布及参数的估计
2-11 已知X=(X1,X2)′的密度函数为
f
( x1 ,
x2 )
1
2
exp
1 2
(2 x12
x22
2 x1 x2
22 x1
14 x2
65)
试求X的均值和协方差阵.
解一:求边缘分布及Cov(X1,X2)=σ12
应用多元统计分析
第二章部分习题解答
第二章 多元正态分布及参数的估计
2-1 设3维随机向量X~N3(μ,2I3),已知
002,
A
0.5 0.5
1 0
00.5.5, d 12.
试求Y=AX+d的分布.
解:利用性质2,即得二维随机向量Y~N2(y,y),
其中:
2
第二章 多元正态分布及参数的估计
2-2 设X=(X1,X2)′~N2(μ,Σ),其中
应用多元统计分析课后习题答案高惠璇第四章部分习题解答市公开课获奖课件省名师示范课获奖课件

0
2
)
3 2
(ˆ
2
)
3 2
ˆ 2 ˆ 0 2
3
2
V
3 2
下列来讨论与V等价旳统计量分布:
ˆ 2
1 3
( y1
aˆ)2
( y2
2aˆ
bˆ)2
( y3
aˆ
2bˆ)2
1 3
( y1
yˆ1 ) 2
( y2
yˆ2 )2
( y3
yˆ3 )2
1 3
(Y
Xˆ )(Y
Xˆ )
1Y 3
(I3
X
(
X
X
)1
Q(β)=(Y-Cβ) '(Y-Cβ) . 试证明β^=(C'C)-1C'Y是在下列四种意义下达最小:
(1) trQ(β^)≤trQ(β) (2) Q(β^)≤Q(β) (3) |Q(β^)|≤|Q(β)|
(4) ch1(Q(β^))≤ch1(Q(β)),其中ch1(A)表达A
旳最大特征值. 以上β是(m+1)×p旳任意矩阵.
[(
y1
aˆ0
)2
]
0
可得
ˆ
2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量旳分子为
L(aˆ0
,ˆ
2 0
)
(2
)
3 2
(ˆ 0 2
)
3 2
exp[
3 2
].
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )
应用多元统计分析课后习题答案详解北大高惠璇(第三章部分习题解答).ppt

def
2 ln n( X 0 )01( X 0 )
因
X
H 0下
~
N
p (0,
1 n
0 ),
H 0下
n( X 0 ) ~ N p (0, 0 )
所以由§3“一﹑2.的结论1”可知
2 ln ~ 2 ( p).
20
第三章 多元正态总体参数的检验
3-6 (均值向量各分量间结构关系的检验) 设总体
若r=0时,则A=0,则两个二次型也是独 立的.
以下设0<r<n.因A为n阶对称阵,存在正 交阵Γ,使得
7
第三章 多元正态总体参数的检验
其中λi≠0为A的特征值(i=1,…,r).于是
令
r
由AB=O可得DrH11=O , DrH12=O . 因Dr为满秩阵,故有H11=Or×r,H12=Or×(n-r) .
由定义314可知15性质5在非退化的线性变换下t分别表示正态总体x的样本均值向量和离差阵则由性质1有1735对单个p维正态总体n均值向量的检验问题试用似然比原理导出检验h已知的似然比统计量及分布
第三章习题解答
第三章 多元正态总体参数的假设检验
3-1 设X~Nn(μ,σ2In), A为对称幂等 阵,且rk(A)=r(r≤n),证明
~
N pr
(0, 22 ),
记
X
n p
xij
X (1) | X (2) , nr n( pr)
则
W
X X
X (1)X (1) X (2)X (1)
X X
(1) X (2) X
(2) (2)
WW1211
W12 W22
,
即
W11 X (1)X (1), W22 X (2)X (2)
应用多元统计分析课后习题解答详解北大高惠璇(第二章部分习题解答)

2 2
X 2 ~ N (3,2).
10
第二章 多元正态分布及参数的估计
12 Cov( X1, X 2 ) E[( X1 E( X1))( X 2 E( X 2 )]
E[( X1 4)( X 2 3)]
(x1 4)(x2 3) f (x1, x2 )dx1dx2
令uu21
x1 x2
X
X X
(1) (2)
~
N2 p
(1) (2)
,
1 2
2 1
,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
(1) 试证明X(1) +X(2)和X(1) -X(2) 相互独立.
(2) 试求X(1) +X(2) 和X(1) -X(2) 的分布.
解 :(1) 令
Y
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
4
第二章 多元正态分布及参数的估计
(2) 因
Y
X1 X1
应用多元统计分析章节后习题答案详解北大高惠璇习题解答市公开课金奖市赛课一等奖课件

第10页 10
第八章 因子分析
8-3 验证下列矩阵关系式(A为p×m阵)
(1) (I AD1A)1 AD1A I (I AD1A)1;
(2) ( AA D)1 D1 D1A(I AD1A)1 A1D1;
(3) A( AA D)1 (Im AD1A)1 AD1.
解:利用分块矩阵求逆公式求下列分块矩阵逆:
(3) 主成份分析是将主成份表示为原变量线性 组合,而因子分析是将原始变量表示为公因子和 特殊因子线性组合,用假设公因子来“解释”相 关阵内部依赖关系.
这两种分析办法又有一定联系.当预计办法采 用主成份法,因子载荷阵A与主成份系数相差一 个倍数;因子得分与主成份得分也仅相差一个常 数.这种情况下可把因子分析当作主成份分析推 广和发展.
并计算误差平方和Q(2).
解 : m 2的因子模型的主成分解为:
0.8757 0.1802
A(
1l1,
2
l2
)
0.8312
0.4048,
0.7111 0.6950
第7页
7
第八章 因子分析
D
0.2007 0 0
0 0.1452
0
0.0100131
则m 2的正交因子模型为
X1 0.8757F1 0.1802F2 1 X 2 0.8312F1 0.4048F2 2 X 3 0.7111F1 0.6950F2 3
p
m
p
S ilili ilili ilili
i 1
i 1
i m 1
其中1 2 p 0 为S特性值,li为相应原则
特性向量。
第14页 14
第八章 因子分析
设A,D是因子模型主成份预计,即
应用多元统计分析课后习题答案详解北大高惠璇部分习题解答

解:检验三个尺寸(变量)是否符合这一规律的问题
可提成假设检验问题.因为
1 : 2 : 3 6 : 4 :1 C 0
其中
C
1 0
0 1
6 4
23
,
注意:
第24页/共46页
1 3
6 , 且 2 4
1
3 1
12
63 43
00.
24
第三章 多元正态总体参数的检验
或
C
2 1
3 0
0 6
~
Nr (0, 11),
X (2) ( )
~
N pr (0, 22 ),
记
X
n p
xij
X (1) | X (2) , nr n( pr)
则
W
X
X
X (1)X (1) X (2)X (1)
X X
(1) X (2) X
(2) (2)
WW1211
W12 W22
,
即 W11 X (1)X (1), W22 X (2)X (2)
样本,样本均值为X,样本离差阵为A.记μ=(μ1,…,μp)′.为检验
H0:μ1=μ2=…=μp ,H1:μ1,μ2,…,μp至少有一对不相等.令
C 11
1 0
0 1
0 0
,
1 0 0 1( p1)p
则上面的假设等价于H0:Cμ=0p-1,H1:Cμ≠ 0p-1
试求检验H0 的似然比统计量和分布.
Tx2 n(n 1)(X ) Ax1( X )
~ T 2 ( p, n 1).
令 Y(i) CX (i) d (i 1,..., n)
其中C是pp非退化常数矩阵,d是p1常向量。
可提成假设检验问题.因为
1 : 2 : 3 6 : 4 :1 C 0
其中
C
1 0
0 1
6 4
23
,
注意:
第24页/共46页
1 3
6 , 且 2 4
1
3 1
12
63 43
00.
24
第三章 多元正态总体参数的检验
或
C
2 1
3 0
0 6
~
Nr (0, 11),
X (2) ( )
~
N pr (0, 22 ),
记
X
n p
xij
X (1) | X (2) , nr n( pr)
则
W
X
X
X (1)X (1) X (2)X (1)
X X
(1) X (2) X
(2) (2)
WW1211
W12 W22
,
即 W11 X (1)X (1), W22 X (2)X (2)
样本,样本均值为X,样本离差阵为A.记μ=(μ1,…,μp)′.为检验
H0:μ1=μ2=…=μp ,H1:μ1,μ2,…,μp至少有一对不相等.令
C 11
1 0
0 1
0 0
,
1 0 0 1( p1)p
则上面的假设等价于H0:Cμ=0p-1,H1:Cμ≠ 0p-1
试求检验H0 的似然比统计量和分布.
Tx2 n(n 1)(X ) Ax1( X )
~ T 2 ( p, n 1).
令 Y(i) CX (i) d (i 1,..., n)
其中C是pp非退化常数矩阵,d是p1常向量。
应用多元统计分析课后习题答案详解北大高惠璇部分习题解答省名师优质课赛课获奖课件市赛课一等奖课件

4.7067
取a 1 A1( (1) (2) )
d
1 65 1381
3323 ,
则aAa
1,
且a满足 : Ba Aa ( d 2 ).
12
第五章 鉴别分析
判别效率(a) aBa 4.7067.
aAa
Fisher线性判别函数为u( X ) aX
1 89765
(32
X1
33X
2 判别准则为 判X G1 , 当W ( X ) 0,
判X G2 , 当W ( X ) 0, 试求错判概率P(2 |1)和P(1| 2).
解 : 记a 1 ( (1) (2) ),W ( X ) ( X )a是X的
线性函数,当X
G1时,W
(
X
)
~
N1
(1,
2 1
), 且
20
第五章 鉴别分析
20 20
时,
u
(
X
(1)
)
1 89765
(32,33)
20 20
4.3390
因u( X (1) ) 4.3390 u* , 判X (1) G2.
当X (1)
15 20
时,
u
(
X
(2)
)
1 89765
(32,33)1250
3.8050
因u( X (2) ) 3.8050 u* 判X (2) G1.
其中W ( X ) a( X *)
( X * )1( (1) (2) ) ,
* 1 ( (1) (2) ).
2 10
第五章 鉴别分析
5-4 设有两个正态总体G1和G2,已知(m=2)
(1)
1105, (2)
应用多元统计分析课后习题答案高惠璇第七章习题解答

= 0$。 • 因此,$E(X^2) = 0$。
04
习题4解答
题目
• 题目:在多元线性回归中,如果 一个自变量与其他自变量高度相 关,那么这个自变量是否应该被 包括在回归模型中?为什么?
解答
01
解答:在多元线性回归中,如果一个自变量与其他自变量 高度相关,那么这个自变量是否应该被包括在回归模型中 ,需要视具体情况而定。
解答
• 当$x < 0$时,$P(X \leq x) = \frac{1}{2}e^{x}$,所以$p(x) = \frac{1}{2}e^{x}$。
解答
• 接下来,我们计算期望值
• 当$x \geq 0$时,$E(X) = \int{0}^{\infty}xp(x)dx = \int{0}^{\infty}\frac{1}{2}xe^{-xdx} = \frac{1}{2}e^{-x}|_{0}^{\infty} = 0$。
• 因此,$E(X) = 0$。
01
03 02
解答
• 当$x \geq 0$时,$P(X^2 \leq x) = P(X \leq \sqrt{x}) = \frac{1}{2}e^{-\sqrt{x}}$,所以 $p_1(x) = \frac{1}{2}\sqrt{x}e^{\sqrt{x}}$。
答案
证明过程如上所述,结论 正确。
证明过程如上所述,结论 正确。
证明过程如上所述,结论 正确。
答案1
答案2
答案3
03
习题3解答
题目
题目:设随机变量$X$的 分布函数为$F(x) = begin{cases}
0 & x notin mathbf{R}
frac{1}{2}e^{-|x|} & x in mathbf{R}
04
习题4解答
题目
• 题目:在多元线性回归中,如果 一个自变量与其他自变量高度相 关,那么这个自变量是否应该被 包括在回归模型中?为什么?
解答
01
解答:在多元线性回归中,如果一个自变量与其他自变量 高度相关,那么这个自变量是否应该被包括在回归模型中 ,需要视具体情况而定。
解答
• 当$x < 0$时,$P(X \leq x) = \frac{1}{2}e^{x}$,所以$p(x) = \frac{1}{2}e^{x}$。
解答
• 接下来,我们计算期望值
• 当$x \geq 0$时,$E(X) = \int{0}^{\infty}xp(x)dx = \int{0}^{\infty}\frac{1}{2}xe^{-xdx} = \frac{1}{2}e^{-x}|_{0}^{\infty} = 0$。
• 因此,$E(X) = 0$。
01
03 02
解答
• 当$x \geq 0$时,$P(X^2 \leq x) = P(X \leq \sqrt{x}) = \frac{1}{2}e^{-\sqrt{x}}$,所以 $p_1(x) = \frac{1}{2}\sqrt{x}e^{\sqrt{x}}$。
答案
证明过程如上所述,结论 正确。
证明过程如上所述,结论 正确。
证明过程如上所述,结论 正确。
答案1
答案2
答案3
03
习题3解答
题目
题目:设随机变量$X$的 分布函数为$F(x) = begin{cases}
0 & x notin mathbf{R}
frac{1}{2}e^{-|x|} & x in mathbf{R}
应用多元统计分析课后习题答案详解北大高惠璇 习题解答

17
第七章 主成分分析
7-10
18
第七章 主成分分析
77--1112
19
主成分向量为
Z ( X 1 ,X 2 ,X 3 ) 或 Z ( X 2 ,X 1 ,X 3 )
三个主成分的方差分别为4,4,2.
10
第七章 主成分分析
7-6
设3维总体X的协差阵为
2 2
2 2
0
2
0 2 2
试求总体主成分,并计算每个主成分解释的方差比例
解:
11
第七章 主成分分析
7-7 设4维随机向量X的协差阵是
2
12
பைடு நூலகம்
13 14
12 2
14 13
13 14 2
12
14
13
12 2
,
其中 1 21 31,421 4 21.3
试求X的主成分.
12
第七章 主成分分析
解:
13
第七章 主成分分析
7-8
14
第七章 主成分分析
15
第七章 主成分分析
7-9
16
第七章 主成分分析
应用多元统计分析
第七章习题解答
第七章 主成分分析
7-1 设X=(X1, X2)′的协方差阵 试从Σ和相关阵R出发求出总体主成分,
14
1040,
并加以比较.
解:
2
第七章 主成分分析
3
第七章 主成分分析
4
第七章 主成分分析
7-2 设X=(X1, X2)′~N2(0,Σ),协方差Σ=
其中ρ为X1和X2的相关系数(ρ>0). (1) 试从Σ出发求X
1
1
第七章 主成分分析
7-10
18
第七章 主成分分析
77--1112
19
主成分向量为
Z ( X 1 ,X 2 ,X 3 ) 或 Z ( X 2 ,X 1 ,X 3 )
三个主成分的方差分别为4,4,2.
10
第七章 主成分分析
7-6
设3维总体X的协差阵为
2 2
2 2
0
2
0 2 2
试求总体主成分,并计算每个主成分解释的方差比例
解:
11
第七章 主成分分析
7-7 设4维随机向量X的协差阵是
2
12
பைடு நூலகம்
13 14
12 2
14 13
13 14 2
12
14
13
12 2
,
其中 1 21 31,421 4 21.3
试求X的主成分.
12
第七章 主成分分析
解:
13
第七章 主成分分析
7-8
14
第七章 主成分分析
15
第七章 主成分分析
7-9
16
第七章 主成分分析
应用多元统计分析
第七章习题解答
第七章 主成分分析
7-1 设X=(X1, X2)′的协方差阵 试从Σ和相关阵R出发求出总体主成分,
14
1040,
并加以比较.
解:
2
第七章 主成分分析
3
第七章 主成分分析
4
第七章 主成分分析
7-2 设X=(X1, X2)′~N2(0,Σ),协方差Σ=
其中ρ为X1和X2的相关系数(ρ>0). (1) 试从Σ出发求X
1
1
应用多元统计分析课后习题答案高惠璇第二章部分习题解答

X X
(1) (1)
X X
(2) (2)
I I
p p
Ip I
p
X X
(1) (2)
CX
6
第二章 多元正态分布及参数的估计
则 Y ~ N2 p (C,CC)
因D(Y
)
CD(
X
)C
I I
p p
Ip I
p
1 2
2 1
I I
p p
Ip I
p
1 1
2 2
1 2
2 1
I I
p p
Ip I
p
2(1 O
的特征向量记特li (i 1,2, , p),则有-1的谱谱分解
1
p i 1
1
i
lili
(见附录§5 P390)
令yi (x )li (i 1,2, , p) ,则概率密度等高面为
(x
)1(x
)
(x
)
p i1
1
i
lili(
x
)
b2
p
i1
1
i
yi2
b2
21
第二章 多元正态分布及参数的估计
x22
2x1x2
22x1
14x2
65)
1 2 1 2
1
2
exp
1
212
2 2
(1
2
)
[
2 2
(
x1
1 ) 2
21 2(x1
1)(x2
2
)
2 1
(
x2
2
)
2
]
比较上下式相应的系数,可得:
1 2
2 2
最新应用多元统计分析课后习题答案详解北大高惠璇(第五章部分习题解答)

* ( 2) 2 2
X ( 2 ) * ( 2 ) X ( 2) * ( 2) P P 2 2 2 2 P U a P U b (1) ( 2 ) (1) ( 2 ) . . 1 2 2 1 (b) (a )
10
第五章 判别分析
10 20 18 12 20 7 ( 2) 15, 25, 1 12 32, 2 7 5 . 先验概率q1 q2 , 而L(2 | 1) 10, L(1 | 2) 75.试问样品 20及X 15 各应判归哪一类? X (1) 20 20 ( 2) (1) 按Fisher准则
(1) (1)
14
第五章 判别分析
18 12 (2)Bayes 准则(假设 1 2 12 32 ) 解 :由定理5.2.1, 只须计算 h1 ( X ) q2 L(1 | 2) f 2 ( X ), h2 ( X ) q1 L(2 | 1) f1 ( X ), 并比较大小, 判X属损失最小者.考虑 h1 ( X ) L(1 | 2) f 2 ( X ) 75 f 2 ( X ) h2 ( X ) L(2 | 1) f1 ( X ) 10 f1 ( X ) 1 ( 2) 1 ( 2) 7.5 exp{ ( X ) ( X ) 2 1 (1) 1 (1) ( X ) ( X )} 2
11
第五章 判别分析
或取B ( )( ) 10 20 100 100 15 25 10, 10 100 100 (组间) 类似于例5.3.1的解法, A-1B的特征根就等于
X ( 2 ) * ( 2 ) X ( 2) * ( 2) P P 2 2 2 2 P U a P U b (1) ( 2 ) (1) ( 2 ) . . 1 2 2 1 (b) (a )
10
第五章 判别分析
10 20 18 12 20 7 ( 2) 15, 25, 1 12 32, 2 7 5 . 先验概率q1 q2 , 而L(2 | 1) 10, L(1 | 2) 75.试问样品 20及X 15 各应判归哪一类? X (1) 20 20 ( 2) (1) 按Fisher准则
(1) (1)
14
第五章 判别分析
18 12 (2)Bayes 准则(假设 1 2 12 32 ) 解 :由定理5.2.1, 只须计算 h1 ( X ) q2 L(1 | 2) f 2 ( X ), h2 ( X ) q1 L(2 | 1) f1 ( X ), 并比较大小, 判X属损失最小者.考虑 h1 ( X ) L(1 | 2) f 2 ( X ) 75 f 2 ( X ) h2 ( X ) L(2 | 1) f1 ( X ) 10 f1 ( X ) 1 ( 2) 1 ( 2) 7.5 exp{ ( X ) ( X ) 2 1 (1) 1 (1) ( X ) ( X )} 2
11
第五章 判别分析
或取B ( )( ) 10 20 100 100 15 25 10, 10 100 100 (组间) 类似于例5.3.1的解法, A-1B的特征根就等于
应用多元统计分析课后习题答案详解北大高惠璇(第六章习题解答)

n
p
nr
nq
X (k)
np nr
X ( p)
nq nr
'
X (q)
25
第六章 聚类分析
Dr2k
np nr
2 ( X (k)
X
(
p
)
)'(
)
nq nr
2 ( X (k)
X
(q) )'(
)
n p nq nr2
(X
(k)
X
( p) )'( X
D(3) 1306 2 106 2
0 165 4
0
X (3)
CL4 CL3
③ 合并{CL3,CL4}=CL2,并类距离 D3=(165/4)1/2.
D(4) 1201 2
0
X (3) CL2
④ 所有样品合并为一类CL1,并类距离 D4=(121/2)1/2.
15
以下来验证d满足作为距离所要求的3个条件.
2
第六章 聚类分析
① ② ③
(2) 设d是距离,a >0为正常数.令d*=ad,显然有
① di*j cdij 0,且仅当X (i) X ( j)时di*j 0;
②
di*j
cdij
cd ji
d
* ji
, 对一切i,
j;
3
第六章 聚类分析
n
n
8
第六章 聚类分析
n
t 1
( xtj
xj )2
n t 1