西盟佤族自治县民族中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西盟佤族自治县民族中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 若y x ,满足约束条件⎪⎪⎩

⎪⎨⎧≥≤-+≥+-0
033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )
A .1-
B .
C .3-
D .3
2. 定义在R 上的奇函数f (x )满足f (x+3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2015)=( ) A .2
B .﹣2
C
.﹣
D

3. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V
≈L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,
那么,近似公式V
≈L 2h 相当于将圆锥体积公式中的π近似取为( )
A

B

C

D

4. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 5. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )
A .只有一条,不在平面α内
B .只有一条,在平面α内
C .有两条,不一定都在平面α内
D .有无数条,不一定都在平面α内
6. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为
真命题的是( )
A .p q ∧
B .()()p q ⌝∧⌝
C .()p q ∧⌝
D .()p q ⌝∧ 7. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数
1
2
z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.
8. 已知实数x ,y 满足有不等式组,且z=2x+y 的最大值是最小值的2倍,则实数a 的值是( )
A .2
B .
C .
D .
9. 已知向量
,,其中
.则“
”是“
”成立的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分又不必要条件
10.设a 是函数
x 的零点,若x 0>a ,则f (x 0)的值满足( )
A .f (x 0)=0
B .f (x 0)<0
C .f (x 0)>0
D .f (x 0)的符号不确定
11.对于区间[a ,b]上有意义的两个函数f (x )与g (x ),如果对于区间[a ,b]中的任意数x 均有|f (x )﹣g
(x )|≤1,则称函数f (x )与g (x )在区间[a ,b]上是密切函数,[a ,b]称为密切区间.若m (x )=x 2
﹣3x+4
与n (x )=2x ﹣3在某个区间上是“密切函数”,则它的一个密切区间可能是( )
A .[3,4]
B .[2,4]
C .[1,4]
D .[2,3]
12.已知数列{}n a 的首项为11a =,且满足111
22
n n n a a +=
+,则此数列的第4项是( ) A .1 B .12 C. 34 D .5
8
二、填空题
13.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是 .
14.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则的值为 .
15.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}2
2sin
cos []1x x +=的实数解为6π-;
③若3n n a ⎡⎤
=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23
1
22n n -;
④当0100x ≤≤时,函数{}2
2
()sin []sin
1f x x x =+-的零点个数为m ,函数{}()[]13
x
g x x x =⋅-
-的 零点个数为n ,则100m n +=.
其中的真命题有_____________.(写出所有真命题的编号)
【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。

16.已知向量,满足42
=,2||=,4)3()(=-⋅+,则与的夹角为 .
【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题. 17.设抛物线2
4y x =的焦点为F ,,A B 两点在抛物线上,且A ,B ,F 三点共线,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若3
2
PF =
,则M 点的横坐标为 . 18.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________.
三、解答题
19.在ABC ∆中已知2a b c =+,2
sin sin sin A B C =,试判断ABC ∆的形状.
20.(本小题满分12分)
设0
3πα⎛
⎫∈ ⎪⎝
⎭,αα+
(1)求cos 6πα⎛
⎫+ ⎪⎝
⎭的值;
(2)求cos 212πα⎛
⎫+ ⎪⎝
⎭的值.
21.(本小题满分13分)
如图,已知椭圆C :22221(0)x y a b a b
+=>>
C 的左顶点T 为圆心作圆T :
222(2)x y r ++=(0r >),设圆T 与椭圆C 交于点M 、N .[_]
(1)求椭圆C 的方程;
(2)求TM TN ⋅的最小值,并求此时圆T 的方程;
(3)设点P 是椭圆C 上异于M 、N 的任意一点,且直线MP ,NP 分别与x 轴交于点R S 、(O 为坐标 原点),求证:OR OS ⋅为定值.
【命题意图】本题考查椭圆的方程,直线与椭圆的位置关系,几何问题构建代数方法解决等基础知识,意在考查学生转化与化归能力,综合分析问题解决问题的能力,推理能力和运算能力.
22.已知向量=(x,y),=(1,0),且(+)•(﹣)=0.
(1)求点Q(x,y)的轨迹C的方程;
(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,﹣1),当|AM|=|AN|时,求实数m的取值范围.
23.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个) 2 3 4 5
加工的时间y(小时) 2.5 3 4 4.5
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程=x+,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间?
参考公式:回归直线=bx+a,其中b==,a=﹣b.
24.设数列的前项和为,且满足,数列满足,且
(1)求数列和的通项公式
(2)设,数列的前项和为,求证:
(3)设数列满足(),若数列是递增数列,求实数的取值范围。

西盟佤族自治县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】D
【解析】
考点:简单线性规划.
2.【答案】B
【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,
所以f(2015)=f(3×672﹣1)=f(﹣1);
又因为函数f(x)是定义R上的奇函数,当0<x≤1时,f(x)=2x,
所以f(﹣1)=﹣f(1)=﹣2,
即f(2015)=﹣2.
故选:B.
【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f (3×672﹣1)=f(﹣1).
3.【答案】B
【解析】解:设圆锥底面圆的半径为r,高为h,则L=2πr,
∴=(2πr)2h,
∴π=.
故选:B.
4.【答案】B
【解析】
考点:空间直线与平面的位置关系.
【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.
5.【答案】B
【解析】解:假设过点P且平行于l的直线有两条m与n
∴m∥l且n∥l
由平行公理4得m∥n
这与两条直线m与n相交与点P相矛盾
又因为点P在平面内
所以点P且平行于l的直线有一条且在平面内
所以假设错误.
故选B.
【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.
6.【答案】D
【解析】
考点:命题的真假.
7.【答案】B
【解析】
8.【答案】B
【解析】解:由约束条件作出可行域如图,
联立,得A(a,a),
联立,得B(1,1),
化目标函数z=2x+y为y=﹣2x+z,
由图可知z max=2×1+1=3,z min=2a+a=3a,
由6a=3,得a=.
故选:B.
【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题.
9.【答案】A
【解析】【知识点】平面向量坐标运算
【试题解析】若,则成立;
反过来,若,则或
所以“”是“”成立的充分而不必要条件。

故答案为:A
10.【答案】C
【解析】解:作出y=2x和y=log x的函数图象,如图:
由图象可知当x0>a时,2>log x0,
∴f(x0)=2﹣log x0>0.
故选:C.
11.【答案】D
【解析】解:∵m(x)=x2﹣3x+4与n(x)=2x﹣3,
∴m(x)﹣n(x)=(x2﹣3x+4)﹣(2x﹣3)=x2﹣5x+7.
令﹣1≤x2﹣5x+7≤1,
则有,
∴2≤x≤3.
故答案为D.
【点评】本题考查了新定义函数和解一元二次不等式组,本题的计算量不大,新定义也比较容易理解,属于基础题.
12.【答案】B
【解析】
二、填空题
13.【答案】

【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高 由于此三角形的高为,故圆锥的高为
此圆锥的体积为=
故答案为
【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.
14.【答案】

【解析】解:已知数列1,a 1,a 2,9是等差数列,∴a 1+a 2 =1+9=10.
数列1,b 1,b 2,b 3,9是等比数列,∴ =1×9,再由题意可得b 2=1×q 2>0 (q 为等比数列的公比),
∴b 2=3,则=

故答案为

【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题.
15.【答案】①③
【解析】对于①,由高斯函数的定义,显然1[]x x x -<≤,①是真命题;对于②,由{}2
2sin
cos []1x x +=得,
{}22sin 1cos []x x =-,即{}22sin sin []x x =.当12x << 时,011x <-<,0sin(1)sin1x <-<,此时
{}22sin sin []x x =化为22sin (1)sin 1x -=,
方程无解;当23x ≤< 时,021x ≤-<,0sin(2)sin1x ≤-<,
此时{}2
2sin
sin []x x =化为sin(2)sin 2x -=,所以22x -=或22x π-+=,即4x =或x π=,所以原方
程无解.故②是假命题;对于③,∵3n n a ⎡⎤
=⎢⎥⎣⎦(n N *∈),∴1103a ⎡⎤==⎢⎥⎣⎦,2203a ⎡⎤==⎢⎥⎣⎦,3313a ⎡⎤
==⎢⎥⎣⎦

4413a ⎡⎤==⎢⎥⎣⎦,…,31311[]133n n a n n --⎡⎤==-=-⎢⎥⎣⎦,33[]3n n a n n ⎡⎤===⎢⎥⎣⎦,所以数列{}n a 的前3n 项之和为3[12(1)]n n +++-+=231
22
n n -,故③是真命题;对于④,由
16.【答案】3
2π 【



17.【答案】2
【解析】由题意,得2p =,(1,0)F ,准线为1x =-,设11(,)A x y 、22(,)B x y ,直线AB 的方程为(1)y k x =-,
代入抛物线方程消去y ,得2
2
2
2
(24)0k x k x k -++=,所以2122
24k x x k ++=,121x x =.又设00(,)P x y ,
则01212112()[(1)(1)]22y y y k x k x k =+=-+-=,所以021x k =,所以212
(,)P k k

因为0213
||112
PF x k =+=+=,解得22k =,所以M 点的横坐标为2.
18.【答案】
【解析】当n =1时,a 1=S 1=k 1+2k 2,当n ≥2时,a n =S n -S n -1=(k 1+k 2·2n )-(k 1+k 2·2n -1)=k 2·2n -1, ∴k 1+2k 2=k 2·20,即k 1+k 2=0,① 又a 2,a 3,a 4-2成等差数列. ∴2a 3=a 2+a 4-2, 即8k 2=2k 2+8k 2-2.② 由①②联立得k 1=-1,k 2=1, ∴a n =2n -1. 答案:2n -1
三、解答题
19.【答案】ABC ∆为等边三角形. 【解析】
试题分析:由2
sin sin sin A B C =,根据正弦定理得出2
a bc =,在结合2a
b
c =+,可推理得到a b c ==,即可可判定三角形的形状.
考点:正弦定理;三角形形状的判定.
20.【答案】(1;(2.
【解析】
试题分析:(1αα+⇒
sin 6πα⎛⎫+ ⎪⎝⎭,又03πα⎛
⎫∈ ⎪⎝⎭,⇒662πππα⎛⎫+∈ ⎪⎝⎭,
⇒cos 6πα⎛⎫+= ⎪⎝

;(2)由(1)可得21cos 22cos 1364
ππαα⎛⎫⎛⎫+=+-= ⎪ ⎪⎝



⇒sin 23πα⎛⎫+= ⎪


⇒cos 2cos 2cos 2cos sin 2sin 12343434πππππππαααα⎡⎤⎛⎫
⎛⎫⎛⎫⎛
⎫+
=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝
⎭⎝⎭⎝⎭⎝⎭⎣⎦

试题解析:(1αα=∴
sin 6πα⎛
⎫+= ⎪⎝⎭………………………………3分
∵03πα⎛
⎫∈ ⎪⎝⎭,,∴662πππα⎛⎫+∈ ⎪⎝⎭
,,∴cos 6πα⎛⎫+= ⎪⎝⎭………………………………6分
(2)由(1)可得2
21
cos 22cos 121364ππαα⎛⎫⎛
⎫+=+-=⨯-= ⎪ ⎪⎝⎭⎝⎭⎝
⎭.………………………………8分
∵03πα⎛⎫∈ ⎪⎝⎭,,∴233ππαπ⎛⎫
+∈ ⎪⎝⎭

,∴sin 23πα⎛⎫+= ⎪⎝⎭.……………………………………10分 ∴cos 2cos 2cos 2cos sin 2sin 12343434πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛
⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝
⎭⎝⎭⎝⎭⎣⎦
.………………………………………………………………………………12分 考点:三角恒等变换. 21.【答案】
【解析】(1)依题意,得2a =,c e a =
= 1,322=-==∴c a b c ;
故椭圆C 的方程为2
214
x y += . (3分)
(3)设),(00y x P 由题意知:01x x ≠,01y y ≠±. 直线MP 的方程为),(01
01
00x x x x y y y y ---=-
令0=y 得101001y y y x y x x R --=
,同理:1
01
001y y y x y x x S ++=,
∴2
1
2
02
1
2
02
02
1y y y x y x x x S R --=
⋅. (10分)
又点P M ,在椭圆上,故
)1(4),1(42
12
12
020y x y x -=-=,
∴4)(4)1(4)1(42
1
2
02
1202
1
2
02
1
202021=--=
----=
y y y y y y y y y y x x S R ,
4R S R S OR OS x x x x ∴⋅=⋅==,
即OR OS ⋅为定值4.
(13分)
22.【答案】
【解析】解:(1)由题意向量=(x,y),=(1,0),且(+)•(﹣)=0,
∴,
化简得,
∴Q点的轨迹C的方程为.…
(2)由得(3k2+1)x2+6mkx+3(m2﹣1)=0,
由于直线与椭圆有两个不同的交点,∴△>0,即m2<3k2+1.①…
(i)当k≠0时,设弦MN的中点为P(x P,y P),x M、x N分别为点M、N的横坐标,则,
从而,,…
又|AM|=|AN|,∴AP⊥MN.
则,即2m=3k2+1,②
将②代入①得2m>m2,解得0<m<2,由②得,解得,
故所求的m的取值范围是(,2).…
(ii)当k=0时,|AM|=|AN|,∴AP⊥MN,m2<3k2+1,
解得﹣1<m<1.…
综上,当k≠0时,m的取值范围是(,2),
当k=0时,m的取值范围是(﹣1,1).…
【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查小时分析解决问题的能力,属于中档题.23.【答案】
【解析】解:(1)作出散点图如下:
…(3分)
(2)=(2+3+4+5)=3.5,=(2.5+3+4+4.5)=3.5,…(5分)
=54,x i y i=52.5
∴b==0.7,a=3.5﹣0.7×3.5=1.05,
∴所求线性回归方程为:y=0.7x+1.05…(10分)
(3)当x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时).
∴加工10个零件大约需要8.05个小时…(12分)
【点评】本题考查线性回归方程的求法和应用,考查学生的计算能力,属于中档题.
24.【答案】
【解析】
解:∵S n=2-a n,即a n+S n=2,∴a n+1+S n+1=2.
两式相减:a n+1-a n+S n+1-S n=0.
即a n+1-a n+a n+1=0,故有2a n+1=a n,∵a n≠0,

∵b n+1=b n+a n(n=1,2,3,…),
得b2-b1=1,,,,.将这n-1个等式相加,得
又∵b1=1,.
(2)证明:.

①-②得
=8-(n=1,2,3,…).
∴T n<8.
(3)由(1)知
由数列是递增数列,∴对恒成立,

恒成立,
即恒成立,
当为奇数时,即恒成立,∴,
当为偶数时,即恒成立,∴,
综上实数的取值范围为。

相关文档
最新文档