理科数学2010-2019高考真题分类训练专题九 解析几何第二十八讲 抛物线

合集下载

理科数学2010-2019高考真题分类训练专题九 解析几何第二十九讲 曲线与方程

理科数学2010-2019高考真题分类训练专题九  解析几何第二十九讲  曲线与方程

3, 2
抛物线 E: x2 = 2 y 的焦点 F 是 C 的一个顶点.
(Ⅰ)求椭圆 C 的方程;
(Ⅱ)设 P 是 E 上的动点,且位于第一象限,E 在点 P 处的切线 l 与 C 交与不同的两点
A,B,线段 AB 的中点为 D,直线 OD 与过 P 且垂直于 x 轴的直线交于点 M. (i)求证:点 M 在定直线上;
江苏 17)如图,在平面直角坐标系
xOy 中,椭圆 C:
x2 a2
+
y2 b2
= 1(a
b
0) 的焦
点为 F(1 –1、0),F(2 1,0).过 F2 作 x 轴的垂线 l,在 x 轴的上方,l 与圆 F2: (x −1)2 + y2 = 4a2
交于点 A,与椭圆 C 交于点 D.连结 AF1 并延长交圆 F2 于点 B,连结 BF2 交椭圆 C 于点 E,
其中,所有正确结论的序号是
(A)① (B)② (C)①② (D)①②③
2.(2019 浙江 15)已知椭圆 x2 + y2 = 1的左焦点为 F ,点 P 在椭圆上且在 x 轴的上方, 95
若线段 PF 的中点在以原点 O 为圆心, OF 为半径的圆上,则直线 PF 的斜率是_______.
3.(2019
y
P x
O
13.(2013
四川)已知椭圆
C:x a
2 2
+
y2 b2
= 1(a b 0) 的两个焦点分别为 F1(−1,0) ,F(2 1,0),
且椭圆 C 经过点 P( 4,1). 33
(Ⅰ)求椭圆 C 的离心率
(Ⅱ)设过点 A(0,2)的直线 l 与椭圆 C 交于 M,N 两点,点 Q 是 MN 上的点,且

十年真题(2010_2019)高考数学真题分类汇编专题12平面解析几何解答题理(含解析)

十年真题(2010_2019)高考数学真题分类汇编专题12平面解析几何解答题理(含解析)

专题12平面解析几何解答题历年考题细目表题型年份考点试题位置解答题2019 抛物线2019年新课标1理科19解答题2018 椭圆2018年新课标1理科19解答题2017 椭圆2017年新课标1理科20解答题2016 圆的方程2016年新课标1理科20解答题2015 抛物线2015年新课标1理科20解答题2014 椭圆2014年新课标1理科20解答题2013 圆的方程2013年新课标1理科20解答题2012 抛物线2012年新课标1理科20解答题2011 抛物线2011年新课标1理科20解答题2011 圆的方程2011年新课标1理科22解答题2010 椭圆2010年新课标1理科20历年高考真题汇编1.【2019年新课标1理科19】已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若3,求|AB|.【解答】解:(1)设直线l的方程为y(x﹣t),将其代入抛物线y2=3x得:x2﹣(t+3)x t2=0,设A(x1,y1),B(x2,y2),则x1+x22t,①,x1x2=t2②,由抛物线的定义可得:|AF|+|BF|=x1+x2+p=2t4,解得t,直线l的方程为y x.(2)若3,则y1=﹣3y2,∴(x1﹣t)=﹣3(x2﹣t),化简得x1=﹣3x2+4t,③由①②③解得t=1,x1=3,x2,∴|AB|.2.【2018年新课标1理科19】设椭圆C:y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M 的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.【解答】解:(1)c1,∴F(1,0),∵l与x轴垂直,∴x=1,由,解得或,∴A(1.),或(1,),∴直线AM的方程为y x,y x,证明:(2)当l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,OM为AB的垂直平分线,∴∠OMA=∠OMB,当l与x轴不重合也不垂直时,设l的方程为y=k(x﹣1),k≠0,A(x1,y1),B(x2,y2),则x1,x2,直线MA,MB的斜率之和为k MA,k MB之和为k MA+k MB,由y1=kx1﹣k,y2=kx2﹣k得k MA+k MB,将y=k(x﹣1)代入y2=1可得(2k2+1)x2﹣4k2x+2k2﹣2=0,∴x1+x2,x1x2,∴2kx1x2﹣3k(x1+x2)+4k(4k3﹣4k﹣12k3+8k3+4k)=0从而k MA+k MB=0,故MA,MB的倾斜角互补,∴∠OMA=∠OMB,综上∠OMA=∠OMB.3.【2017年新课标1理科20】已知椭圆C:1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2﹣4=0,,x1x2,则1,又t≠1,∴t=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).4.【2016年新课标1理科20】设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b,则点E的轨迹方程为1(y≠0);(Ⅱ)椭圆C1:1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2,y1y2,则|MN|•|y1﹣y2|••12•,A到PQ的距离为d,|PQ|=22,则四边形MPNQ面积为S|PQ|•|MN|••12•=24•24,当m=0时,S取得最小值12,又0,可得S<24•8,即有四边形MPNQ面积的取值范围是[12,8).5.【2015年新课标1理科20】在直角坐标系xOy中,曲线C:y与直线l:y=kx+a(a>0)交于M,N 两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【解答】解:(I)联立,不妨取M,N,由曲线C:y可得:y′,∴曲线C在M点处的切线斜率为,其切线方程为:y﹣a,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.6.【2014年新课标1理科20】已知点A(0,﹣2),椭圆E:1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以a=2,b2=a2﹣c2=1,故E的方程.….(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y x﹣2或y x﹣2.…7.【2013年新课标1理科20】已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|由于对称性可知:当时,也有|AB|.综上可知:|AB|或.8.【2012年新课标1理科20】设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n 距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD,∴,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.9.【2011年新课标1理科20】在平面直角坐标系xOy中,已知点A(0,﹣1),B点在直线y=﹣3上,M点满足∥,•,M点的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.【解答】解:(Ⅰ)设M(x,y),由已知得B(x,﹣3),A(0,﹣1).所(﹣x,﹣1﹣y),(0,﹣3﹣y),(x,﹣2).再由题意可知()•0,即(﹣x,﹣4﹣2y)•(x,﹣2)=0.所以曲线C的方程式为y2.(Ⅱ)设P(x0,y0)为曲线C:y2上一点,因为y′x,所以l的斜率为x0,因此直线l的方程为y﹣y0x0(x﹣x0),即x0x﹣2y+2y0﹣x02=0.则o点到l的距离d.又y02,所以d2,所以x02=0时取等号,所以O点到l距离的最小值为2.10.【2011年新课标1理科22】如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2﹣14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF(12﹣2)=5.故C,B,D,E四点所在圆的半径为511.【2010年新课标1理科20】设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB||x1﹣x2|,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.考题分析与复习建议本专题考查的知识点为:直线方程、圆的方程,直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线,曲线与方程等.历年考题主要以解答题题型出现,重点考查的知识点为:直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等,预测明年本考点题目会比较稳定,备考方向以知识点直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等为重点较佳.最新高考模拟试题1.已知椭圆22122:1(0)x yC a ba b+=>>的离心率为63,椭圆22222:1(0)33x yC a ba b+=>>经过点33⎝⎭.(1)求椭圆1C的标准方程;(2)设点M是椭圆1C上的任意一点,射线MO与椭圆2C交于点N,过点M的直线l与椭圆1C有且只有一个公共点,直线l与椭圆2C交于,A B两个相异点,证明:NAB△面积为定值.【答案】(1)22113y x +=; (2)见解析. 【解析】(1)解:因为1C所以22619b a=-,解得223a b =.①将点,22⎛⎫ ⎪ ⎪⎝⎭代入2222133x y a b +=,整理得2211144a b +=.② 联立①②,得21a =,213b =, 故椭圆1C 的标准方程为22113y x +=. (2)证明:①当直线l 的斜率不存在时,点M 为()1,0或()1,0-,由对称性不妨取()1,0M ,由(1)知椭圆2C 的方程为2213x y +=,所以有()N .将1x =代入椭圆2C的方程得y =,所以)111223NAB S MN AB ∆=⋅=3=. ②当直线l 的斜率存在时,设其方程为y kx m =+, 将y kx m =+代入椭圆1C 的方程 得()222136310kxkmx m +++-=,由题意得()()()2226413310km k m∆=-+-=,整理得22313m k =+.将y kx m =+代入椭圆2C 的方程, 得()222136330kxkmx m +++-=.设()11,A x y ,()22,B x y ,则122613km x x k +=-+,21223313m x x k-=+, 所以AB ===. 设()00,M x y ,()33,N x y ,ON MO λ=u u u v u u u u v,则可得30x x λ=-,30y y λ=-.因为220022333113x y x y ⎧+=⎪⎨+=⎪⎩,所以2200222003113x y x y λ⎧+=⎪⎛⎫⎨+= ⎪⎪⎝⎭⎩,解得λ=λ=,所以ON =u u u v u u u v,从而)1NM OM =.又因为点O 到直线l的距离为d =所以点N到直线l 的距离为)11m d ⋅=所以))111122NABS d AB ∆=⋅==,综上,NAB ∆32.如图,在平面直角坐标系xOy 中,椭圆C :22221x y a b+=(a >b >0)经过点(0,),点F 是椭圆的右焦点,点F 到左顶点的距离和到右准线的距离相等.过点F 的直线l 交椭圆于M ,N 两点.(1)求椭圆C 的标准方程;(2)当MF =2FN 时,求直线l 的方程;(3)若直线l 上存在点P 满足PM·PN=PF 2,且点P 在椭圆外,证明:点P 在定直线上.【答案】(1)22143x y +=;(25250x y ±-=;(3)见解析. 【解析】(1)设椭圆的截距为2c ,由题意,b 3由点F 到左顶点的距离和到右准线的距离相等,得a+c =2a c c-,又a 2=b 2+c 2,联立解得a =2,c =1.∴椭圆C 的标准方程为22143x y +=;(2)当直线l 与x 轴重合时,M (﹣2,0),N (2,0),此时MF =3NF ,不合题意; 当直线l 与x 轴不重合时,设直线l 的方程为x =my+1,M (x 1,y 1),N (x 2,y 2),联立22my 1x y 143x =+⎧⎪⎨+=⎪⎩,得(3m 2+4)y 2+6my ﹣9=0.△=36m 2+36(m 2+4)>0.122634m y y m +=-+ ①,1229y y 3m 4=-+②,由MF =2FN ,得y 1=﹣2y 2③, 联立①③得,1222126,3434m my y m m =-=++, 代入②得,()22227293434m m m-=-++,解得5m 5=±5250x y ±=;(3)当直线l 的斜率为0时,则M (2,0),N (﹣2,0),设P (x 0,y 0), 则PM•PN=|(x 0﹣2)(x 0+2)|,∵点P 在椭圆外,∴x 0﹣2,x 0+2同号,又()()()()2220000PF x 1,x 2x 2x 1=-∴-+=-,解得052x =. 当直线l 的斜率不为0时,由(2)知,1212226m 9y y ,y y 3m 43m 4+=-=-++,10200PM y ,PN y ,PF =-=-=.∵点P 在椭圆外,∴y 1﹣y 0,y 2﹣y 0同号, ∴PM•PN=(1+m 2)(y 1﹣y 0)(y 2﹣y 0)=()()221201201my yy y y y ⎡⎤+-++⎣⎦()()2222002269113434m m y m y m m ⎛⎫=++-=+ ⎪++⎝⎭,整理得032y m =,代入直线方程得052x =.∴点P 在定直线52x =上. 3.已知抛物线C :24y x =的焦点为F ,直线l 与抛物线C 交于A ,B 两点,O 是坐标原点. (1)若直线l 过点F 且8AB =,求直线l 的方程;(2)已知点(2,0)E -,若直线l 不与坐标轴垂直,且AEO BEO ∠=∠,证明:直线l 过定点. 【答案】(1)1y x =-或1y x =-+;(2)(2,0). 【解析】解:(1)法一:焦点(1,0)F ,当直线l 斜率不存在时,方程为1x =,与抛物线的交点坐标分别为(1,2),(1,2)-, 此时4AB =,不符合题意,故直线的斜率存在.设直线l 方程为(1)=-y k x 与24y x =联立得()2222220k x k x k -+-=,当0k =时,方程只有一根,不符合题意,故0k ≠.()212222k x x k++=,抛物线的准线方程为1x =-,由抛物线的定义得()()12||||||11AB AF BF x x =+=+++()222228k k+=+=,解得1k =±,所以l 方程为1y x =-或1y x =-+.法二:焦点(1,0)F ,显然直线l 不垂直于x 轴,设直线l 方程为1x my =+,与24y x =联立得2440y my --=,设11(,)A x y ,22(,)B x y ,124y y m +=,124y y =.||AB ==()241m ==+,由8AB =,解得1m =±, 所以l 方程为1y x =-或1y x =-+. (2)设11(,)A x y ,22(,)B x y ,设直线l 方程为(0)x my b m =+≠与24y x =联立得:2440y my b --=,可得124y y m +=,124y y b =-. 由AEO BEO ∠=∠得EAEB k k =,即121222y y x x =-++. 整理得121122220y x y x y y +++=,即121122()2()20y my b y my b y y +++++=, 整理得12122(2)()0my y b y y +++=, 即84(2)0bm b m -++=,即2b =. 故直线l 方程为2x my =+过定点(2,0).4.已知椭圆22221(0)x y a b a b +=>>,()2,0A 是长轴的一个端点,弦BC 过椭圆的中心O ,点C 在第一象限,且0AC BC ⋅=u u u r u u u r,||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r .(1)求椭圆的标准方程;(2)设P 、Q 为椭圆上不重合的两点且异于A 、B ,若PCQ ∠的平分线总是垂直于x 轴,问是否存在实数λ,使得PQ AB =λu u u r u u u r?若不存在,请说明理由;若存在,求λ取得最大值时的PQ 的长.【答案】(1) 223144x y +=【解析】(1)∵0AC BC ⋅=u u u r u u u r,∴90ACB ∠=︒,∵||2||OC OB AB BC -=+u u u r u u u r u u u r u u u r.即||2||BC AC =u u u r u u u r ,∴AOC △是等腰直角三角形, ∵()2,0A ,∴()1,1C ,而点C 在椭圆上,∴22111a b +=,2a =,∴243b =, ∴所求椭圆方程为223144x y +=.(2)对于椭圆上两点P ,Q , ∵PCQ ∠的平分线总是垂直于x 轴, ∴PC 与CQ 所在直线关于1x =对称,PC k k =,则CQ k k =-,∵()1,1C ,∴PC 的直线方程为()11y k x =-+,①QC 的直线方程为()11y k x =--+,②将①代入223144x y +=,得()()22213613610k x k k x k k +--+--=,③∵()1,1C 在椭圆上,∴1x =是方程③的一个根,∴2236113P k k x k --=+,以k -替换k ,得到2236131Q k k x k +-=+.∴()213P Q PQ P Qk x x kk x x +-==-, ∵90ACB ∠=o ,()2,0A ,()1,1C ,弦BC 过椭圆的中心O , ∴()2,0A ,()1,1B --,∴13AB k =, ∴PQ AB k k =,∴PQ AB ∥,∴存在实数λ,使得PQ AB =λu u u r u u u r,||PQ =u u ur 3=≤,当2219k k =时,即k =时取等号,max ||3PQ =u u u r ,又||AB =u u u r,maxλ==,∴λ取得最大值时的PQ5.已知抛物线216y x =,过抛物线焦点F 的直线l 分别交抛物线与圆22(4)16x y -+=于,,,A C D B (自上而下顺次)四点.(1)求证:||||AC BD ⋅为定值; (2)求||||AB AF ⋅的最小值. 【答案】(1)见证明;(2)108 【解析】(1)有题意可知,(4,0)F可设直线l 的方程为4x my =+,1122(,),(,)A x y B x y联立直线和抛物线方程2164y x x my ⎧=⎨=+⎩,消x 可得216640y my --=,所以1216y y m +=,1264y y =-, 由抛物线的定义可知,112||4,||42pAF x x BF x =+=+=+, 又||||4,||||4AC AF BD BF =-=-,所以2221212264||||(||4)(||4)16161616y y AC BD AF BF x x ⋅=--==⋅==,所以||||AC BD ⋅为定值16.(2)由(1)可知,12||||||8AB AF BF x x =+=++,1||4AF x =+,212111212||||(8)(4)12432AB AF x x x x x x x x ⋅=+++=++++,由1216x x =,可得2116x x =, 所以211164||||1248AB AF x x x ⋅=+++(其中1>0x ), 令264()1248f x x x x =+++,222642(2)(4)()212x x f x x x x-+'=+-=, 当(0,2)x ∈时,()0f x '<,函数单调递减,当(2,)x ∈+∞时,()0f x '>,函数单调递增, 所以()(2)108f x f ≥=. 所以||||AB AF ⋅的最小值为108.6.已知O 为坐标原点,点()()2,02,0A B -,,()01AC AD CB CD λλ===<<u u u r u u u r,过点B 作AC的平行线交AD 于点E .设点E 的轨迹为τ. (Ⅰ)求曲线τ的方程;(Ⅱ)已知直线l 与圆22:1O x y +=相切于点M ,且与曲线τ相交于P ,Q 两点,PQ 的中点为N ,求三角形MON 面积的最大值.【答案】(Ⅰ)()22105x y y +=≠;. 【解析】(Ⅰ)因为,AD AC EB AC =∥, 故EBD ACD ADC ∠=∠=∠, 所以EB ED =,故EA EB EA ED AD +=+==由题设得()()2,02,04A B AB -=,,,由椭圆定义可得点E 的轨迹方程为:()22105x y y +=≠.(Ⅱ)由题意,直线l 的斜率存在且不为0, 设直线l 的方程为y kx m =+, 因为直线l 与圆O 相切,1=,∴221m k =+,由221,5,x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 得()2221510550k x kmx m +++-=. 设()()1122,,,P x y Q x y ,由韦达定理知:()1212122210221515km mx x y y k x x m k k+=-+=++=++,. 所以PQ 中点N 的坐标为225,1515kmm k k ⎛⎫-⎪++⎝⎭,所以弦PQ 的垂直平分线方程为22151515m km y x k k k ⎛⎫-=-+ ⎪++⎝⎭,即 24015kmx ky k ++=+.所以MN =将m =MN =2441155||||k MN k k k ====++…(当且仅当k =m =取等号).所以三角形MON的面积为111=2255S OM MN =⨯⨯⨯⨯≤, 综上所述,三角形MON. 7.已知椭圆2222:1(0)x y C a b a b +=>>F 是椭圆C 的一个焦点.点(02)M ,,直线MF 的斜率为3. (1)求椭圆C 的方程;(2)若过点M 的直线l 与椭圆C 交于A B ,两点,线段AB 的中点为N ,且AB MN =.求l 的方程.【答案】(1)22182x y +=;(2)22y x =±+【解析】(1)由题意,可得2cac⎧=⎪⎪⎨⎪=⎪⎩,解得a c ⎧=⎪⎨=⎪⎩,则222=2b a c =-, 故椭圆C 的方程为22182x y +=.(2)当l 的斜率不存在时,=2AB MN AB MN ≠=,,,不合题意,故l 的斜率存在. 设l 的方程为2y kx =+,联立221822x y y kx ⎧+=⎪⎨⎪=+⎩,得22(14)1680k x kx +++=, 设1122(()A x y B x y ,),,,则12122216k 8,14k 14k x x x x +=-=++, ()222(16)3214128320k k k ∆=-+=->即214k >,设00()N x y ,,则12028214x x kx k +==-+,120||||,0AB MN x =-=-Q0x =,即228||1414k k k=++ 整理得21124k =>.故2k =±,l 的方程为22y x =±+. 8.已知椭圆2222:1(0)x y C a b a b+=>>过点(,右焦点F 是抛物线28y x =的焦点.(1)求椭圆C 的方程;(2)已知动直线l 过右焦点F ,且与椭圆C 分别交于M ,N 两点.试问x 轴上是否存在定点Q ,使得13516QM QN ⋅=-u u u u r u u u r 恒成立?若存在求出点Q 的坐标:若不存在,说明理由.【答案】(1) 2211612x y += (2)见解析【解析】(1)因为椭圆C过点,所以221231a b+=, 又抛物线的焦点为()2,0,所以2c =. 所以2212314a a +=-,解得23a =(舍去)或216a =. 所以椭圆C 的方程为2211612x y +=.(2)假设在x 轴上存在定点(,0)Q m ,使得13516QM QN ⋅=-u u u u r u u u r. ①当直线l 的斜率不存在时,则(2,3)M ,(2,3)N -,(2,3)QM m =-u u u u r ,(2,3)QN m =--u u u r,由2135(2)916QM QN m ⋅=--=-u u u u r u u u r ,解得54m =或114m =;②当直线l 的斜率为0时,则(4,0)M -,(4,0)N ,(4,0)QM m =--u u u u r ,(4,0)QN m =-u u u r,由21351616QM QN m ⋅=-=-u u u u r u u u r ,解得114m =-或114m =.由①②可得114m =,即点Q 的坐标为11,04⎛⎫⎪⎝⎭.下面证明当114m =时,13516QM QN ⋅=-u u u u r u u u r 恒成立.当直线l 的斜率不存在或斜率为0时,由①②知结论成立.当直线l 的斜率存在且不为0时,设其方程为(2)(0)y k x k =-≠,()11,M x y ,()22,N x y .直线与椭圆联立得()()222234161630kxk x k +-+-=,直线经过椭圆内一点,一定与椭圆有两个交点,且21221643k x x k +=+,()212216343k x x k -=+. ()()()222121212122224y y k x k x k x x k x x k =-•-=-++,所以()1122121212111111121,,44416QM QN x y x y x x x x y y ⎛⎫⎛⎫•=-•-=-+++ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r()()()()222222221212221631112111161211241244164344316k k k x x k x x k k k k k k -⎛⎫⎛⎫=+-++++=+-+++= ⎪ ⎪++⎝⎭⎝⎭13516-恒成立 综上所述,在x 轴上存在点11,04Q ⎛⎫⎪⎝⎭,使得13516QM QN ⋅=-u u u u r u u u r 恒成立.9.关于椭圆的切线由下列结论:若11(,)P x y 是椭圆22221(0)x y a b a b+=>>上的一点,则过点P 的椭圆的切线方程为11221x x y y a b +=.已知椭圆22:143x y C +=.(1)利用上述结论,求过椭圆C 上的点(1,)(0)P n n >的切线方程;(2)若M 是直线4x =上任一点,过点M 作椭圆C 的两条切线MA ,MB (A ,B 为切点),设椭圆的右焦点为F ,求证:MF AB ⊥.【答案】(1)240x y +-=(2)见证明 【解析】(1)由题意,将1x =代入椭圆方程22:143x y C +=,得32y =,所以3(1,)2P ,所以过椭圆C 上的点3(1,)2P 的切线方程为32143yx +=,即240x y +-=.(2)设(4,)M t ,11(,)A x y ,22(,)B x y ,则过A ,B 两点的椭圆C 的切线MA ,MB 的方程分别为11143x x y y +=,22143x x y y+=, 因为(4,)M t 在两条切线上,114143x y t ⨯∴+=,224143x y t⨯+=, 所以A ,B 两点均在直线4143x yt +=上,即直线AB 的方程为13tyx +=, 当0t ≠时,3AB k t=-,又(1,0)F ,0413MF t t k -==-,313AB MF tk k t ⋅=-⨯=-,所以MF AB ⊥, 若0t =,点(4,0)M 在x 轴上,A ,B 两点关于x 轴对称,显然MF AB ⊥.10.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12F F ,,离心率为12,P 为椭圆上一动点(异于左右顶点),若12AF F △(1)求椭圆C 的方程;(2)若直线l 过点1F 交椭圆C 于,A B 两点,问在x 轴上是否存在一点Q ,使得QA QB ⋅u u u r u u u r为定值?若存在,求点Q 的坐标;若不存在,请说明理由.【答案】(1)22143x y +=(2)见解析【解析】(1)由题意,当P 在上或下顶点时,12PF F ∆的面积取值最大值,即最大值为bc = 又12c a =,且222a c b =+,解得24a =,23b =, 故椭圆C 的方程为22143x y +=.(2)易知()11,0F -,设直线l 的方程为1x my =-,()()()11220,,,,,0A x y B x y Q x , 联立方程组221431x y x my ⎧+=⎪⎨⎪=-⎩,整理得22(34)690m y my +--=, 则122634my y m +=+,122934y y m =-+, ()()()()10120200212,,y QA QB x x y x x y x x x x y y ⋅=-⋅-=--+u u u r u u u r()212001212x x x x x x y y =+-++,∵111x my =-,221x my =-,∴()()()2212121212215111134m x x my my m y y m y y m =--=+-+=-+, ()()()212122226112234m x x my my m y y m +=-+-=+-=-+, ∴222000222156912343434m m QA QB x x x m m m ⋅=-+-+-+++u u u r u u u r22002281253434m x x m m +=+-++()222000231248534x m x x m -++-=+, 要使QA QB ⋅u u u r u u u r 为定值,则2200031248534x x x -+-=,解得0118x =-, 所以在x 轴上存在点11,08Q ⎛⎫-⎪⎝⎭,使得QA QB ⋅u u u r u u u r 为定值. 11.已知点()1,0F ,直线:1l x =-,P 为平面上的动点,过点P 作直线的垂线,垂足为Q ,且QP QF FP FQ ⋅=⋅u u u r u u u r u u u r u u u r .(1)求动点P 的轨迹C 的方程;(2)设直线y kx b =+与轨迹C 交于两点,()11,A x y 、()22,B x y ,且12y y a -= (0a >,且a 为常数),过弦AB 的中点M 作平行于x 轴的直线交轨迹C 于点D ,连接AD 、BD .试判断ABD ∆的面积是否为定值,若是,求出该定值,若不是,请说明理由 【答案】(1) 24y x = (2)见解析 【解析】(1)设(,)P x y ,则(1,)Q y -,QP QF FP FQ •=•u u u r u u u r u u u r u u u r Q ,(1,0)(2,)(1,)(2,)x y x y y ∴+•-=-•-,即22(1)2(1)x x y +=--+,即24y x =, 所以动点P 的轨迹的方程24y x =.(2)联立方程组2,4,y kx b y x =+⎧⎨=⎩消去x ,得2440ky y b -+=, 依题意,0k ≠,且124y y k+=,124b y y k =,由12y y a -=得()2212124y y y y a +-=, 即221616ba k k-=, 整理得:221616kb a k -=,所以2216(1)a k kb =-,①因为AB 的中点222,bk M k k -⎛⎫⎪⎝⎭,所以点212,D k k ⎛⎫⎪⎝⎭,依题意, 122111||22BD bkS DM y y a k ∆∆-=-=, 由方程2440ky y b -+=中的判别式16160kb ∆=->,得10kb ->,所以2112ABD bkS a k∆-=••, 由①知22116a k kb -=,所以23121632MBDa a S a ∆=••=,又a 为常数,故ABD S ∆的面积为定值. 12.已知点P 在抛物线()220C x py p =:>上,且点P 的横坐标为2,以P 为圆心,PO 为半径的圆(O 为原点),与抛物线C 的准线交于M ,N 两点,且2MN =. (1)求抛物线C 的方程;(2)若抛物线的准线与y 轴的交点为H .过抛物线焦点F 的直线l 与抛物线C 交于A ,B ,且AB HB ⊥,求AF BF -的值. 【答案】(1) 24x y = (2)4 【解析】(1)将点P 横坐标2P x =代入22x py =中,求得2P y p=, ∴P (2,2p),2244OP p =+,点P 到准线的距离为22p d p =+, ∴222||||2MN OP d ⎛⎫=+ ⎪⎝⎭, ∴22222212p p p ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,解得24p =,∴2p =,∴抛物线C 的方程为:24x y =;(2)抛物线24x y =的焦点为F (0,1),准线方程为1y =-,()01H -,; 设()()1122A x y B x y ,,,, 直线AB 的方程为1y kx =+,代入抛物线方程可得2440x kx --=,∴121244x x k x x +==-,,…① 由AB HB ⊥,可得1AB HB k k ⋅=-, 又111AB AF y k k x -==,221HB y k x +=, ∴1212111y y x x -+⋅=-, ∴()()1212110y y x x -++=,即2212121111044x x x x ⎛⎫⎛⎫-++= ⎪⎪⎝⎭⎝⎭, ∴()22221212121110164x x x x x x +--+=,…② 把①代入②得,221216x x -=,则()22121211||||1116444AF BF y y x x -=+--=-=⨯=. 13.已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:()PFd P FQ=. (1)当8(1)3P --,时,求()d P ; (2)证明:存在常数a ,使得2()d P PF a =+.(3)123,,P P P 为抛物线准线上三点,且1223PP P P =,判断13()()d P d P +与22()d P 的关系. 【答案】(1)83;(2)证明见解析;(3)()()()1322d P d P d P +>. 【解析】(1)因为8443(1)233PFk y x ==⇒=-. 联立方程24(1)1344Q y x x y x ⎧=-⎪⇒=⎨⎪=⎩, 则1083()534PF d P QF ⎧=⎪⎪⇒=⎨⎪=⎪⎩. (2)当()1,0P -,易得2()2a d P PF =-=, 不妨设()1,P P y -,0P y >, 直线:1PF x my =+,则2P my =-,联立214x my y x=+⎧⎨=⎩,2440y my --=,224(4)16221Q m m y m m ++==++,()222212()||212221P P Q y m d P PF m y y m m m m +-=-+=+++ 2212122m m m +-+=-+=.(3)设()()()1122331,,1,,1,P y P y P y ---,则()()()13224d P d P d P +-⎡⎤⎣⎦1322PF P F P F =+-===因为()221316y y ⎡⎤-++⎣⎦1228y y =-,又因()()()()2222213131313444480y y y y y y y y ++-+=+->,所以()()()1322d P d P d P +>.14.已知抛物线2:2(0)C x py p =>的焦点F 到准线距离为2. (1)若点(1,1)E ,且点P 在抛物线C 上,求||||PE PF +的最小值;(2)若过点(0,)N b 的直线l 与圆22:(2)4M x y +-=相切,且与抛物线C 有两个不同交点,A B ,求AOB ∆的面积.【答案】(1)2(2) 2ABC S b ∆=【解析】解:(1)根据题意可知2p = 所以抛物线方程为24x y =则抛物线C 焦点为(0,1)F ,准线为1y =-; 记点,P E 到抛物线C 准线的距离分别为12,d d ,故12||||||2PE PF PE d d +=+≥=,等号成立当且仅当PE 垂直于准线, 故||||PE PF +的最小值为2 (2)设()11,A x y ,()22,B x y由题意知,直线l 斜率存在,设直线l 的方程为:y kx b =+ 将y kx b =+与24x y =联立得2440x kx b --=,由韦达定理得12124,4x x k x x b +==-, 由()0,2M 到直线l的距离为12d ==得:2244b b k -=,又||AB ==点O 到直线l 的距离为2d =所以2|ABC S b b ∆=== 15.已知曲线C 上的任意一点到直线l :x=-12的距离与到点F (102,)的距离相等. (1)求曲线C 的方程;(2)若过P (1,0)的直线与曲线C 相交于A ,B 两点,Q (-1,0)为定点,设直线AQ 的斜率为k 1,直线BQ 的斜率为k 2,直线AB 的斜率为k ,证明:22212112k k k +-为定值. 【答案】(1)y 2=2x ;(2)见解析 【解析】(1)由条件可知,此曲线是焦点为F 的抛物线,p 122=,p=1. ∴抛物线的方程为y 2=2x ;(2)根据已知,设直线AB 的方程为y=k (x -1)(k ≠0), 由()2y k x 1y 2x⎧=-⎨=⎩,可得ky 2-2y -2k=0.设A (211y y 2,),B (222y y 2,),则122y y k +=,y 1y 2=-2.∵1112211y 2y k y y 212==++,2222222y 2y k y y 212==++. ∴22221222221212(y 2)(y 2)11k k 4y 4y +++=+=22222212212212(y 2)y (y 2)y 4y y +++31 =()42422222122112122212y y y y 8y y 4y y 4y y ++++=()2221212128y y 32(y y )2y y 4162+++-+= =22482k 42k+=+.∴222121124k k k +-=.。

理科数学2010-2019高考真题分类训练专题九解析几何第二十六讲椭圆答案

理科数学2010-2019高考真题分类训练专题九解析几何第二十六讲椭圆答案

专题九 解析几何第二十六讲 椭圆答案部分1. 解析2x =,则22AF x =,所以23BF AB x ==.由椭圆定义122BF BF a +=,即42x a =.又1224AF AF a x +==,22AF x =,所以12AF x =. 因此点A 为椭圆的上顶点,设其坐标为()0,b .由222AF BF =可得点B 的坐标为3,22b ⎛⎫- ⎪⎝⎭.因为点B 在椭圆()222210x y a b a b+=>>上,所以291144a +=.解得23a =.又1c =,所以22b =.所以椭圆方程为22132x y +=.故选B. 2.解析(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在轴上的椭圆,不含左右顶点.3. 解析 由题意,c e a ====所以22244a b a -=,即2234a b =.故选B .4. 解析 设(,)M m n ,,0m n >,椭圆C :22:13620x y C +=的6a =,b =,2c =,23c e a ==,由于M 为C 上一点且在第一象限,可得12||||MF MF >, 12MF F △为等腰三角形,可能1||2MF c =或2||2MF c =,即有2683m +=,即3m =,n = 2683m -=,即30m =-<,舍去.可得M .2010-2018年1.D 【解析】由题意可得椭圆的焦点在x 轴上,如图所示,OyxPF 2F 1A设12||2=F F c ,所以12∆PF F 为等腰三角形,且12=120∠oF F P ,∴212||||2PF F F c ==,∵2||OF c =,∴点P 坐标为(2cos 60,2sin 60)c c c +oo,即点(2)P c .∵点P 在过点A∴26c a =+14c a =.∴14e =,故选D .2.C 【解析】由题意25=a,=a .由椭圆的定义可知,P 到该椭圆的两个焦点的距离之和为2=a ,故选C .3.B 【解析】由题意可知29a =,24b =,∴2225c a b =-=,∴离心率3c e a ==,选B4.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,3c e a ==,故选A .5.A 【解析】设(0,)E m ,则直线AE 的方程为1x y a b -+=,由题意可知(,)mc M c m a--,(0,)2m和(,0)B a 三点共线,则22mc m m m a c a--=--,化简得3a c =,则C 的离心率13c e a ==.故选A . 6.A 【解析】由题意知2211m n -=+,即222m n =+,222221222221111()2m n n n e e m n n n -+++=⋅=⋅+4242422111122n n n n n n ++==+>++,所以121e e >.故选A .7.D【解析】由题意可设,sin )Q αα,圆的圆心坐标为(0,6)C ,圆心到Q 的距离为||CQ ===,当且仅当2sin 3α=-时取等号,所以max max ||||PQ CQ r +==≤,所以Q P ,两点间的最大距离是.8.D 【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b += ① 2222221x y a b+= ② ①-②得1212121222()()()()0x x x x y y y y a b+-+-+=, ∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D.9.C 【解析】∆21F PF 是底角为30o 的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==10.5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =u u u r u u u r ,得1212212(1)x x y y -=⎧⎨-=-⎩,即122x x =-,1232y y =-.因为点A ,B 在椭圆上,所以222222224(3)44x x m x y m⎧+-=⎪⎪⎨⎪+=⎪⎩,得21344y m =+,所以2222221591(32)(5)444244x m y m m m =--=-+-=--+≤,所以当5m =时,点B 横坐标的绝对值最大,最大值为2.1112;【解析】设椭圆的右焦点为(,0)F c ,双曲线N 的渐近线与椭圆M 在第一象限内的交点为A,由题意可知(2c A ,由点A 在椭圆M 上得,22223144c c a b+=,∴22222234b c a c a b +=,222b ac =-,∴22222222()34()a c c a c a a c -+=-,∴4224480a a c c -+=,∴428+40e e -=椭椭,∴24e =±椭,∴1e =椭(舍去)或1e 椭,∴椭圆M1,∵双曲线的渐近线过点(,)22c A,渐近线方程为y =,故双曲线的离心率2e ==双.12【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭,由90BFC ∠=︒可得0BF CF ⋅=u u u r u u u r,2b BF c ⎛⎫=+- ⎪ ⎪⎝⎭u u u r,2b CF c ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,则22231044c a b -+=,由222b a c =-可得223142c a =,则c e a ==. 13.22325()24-+=x y 【解析】 由题意圆过(4,0),(0,2),(0,2)-三个点,设圆心为(,0)a ,其中0a >,由4-=a 32a =,所以圆的方程为22325()24-+=x y .14.2【解析】设11(,)A x y ,22(,)B x y ,分别代入椭圆方程相减得 1212121222()()()()0x x x x y y y y a b-+-++=,根据题意有12122,2x x y y +=+=, 且121212y y x x -=--,所以22221()02a b +⨯-=,得222a b =,整理222a c =,所以2e =. 15.12【解析】设MN 交椭圆于点P ,连接1F P 和2F P ,利用中位线定理可得AN BN +=122222412F P F P a a +=⨯==.16.3【解析】由题意可得2(,)b A c a,2(,)b B c a -,由题意可知点D 为1F B 的中点,所以点D 的坐标为2(0,)2b a-,由B F AD 1⊥,所以11AD F B k k ⋅=-,22ac =,解得e = 17.22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b -- 将点B 坐标带入椭圆方程得22221()53()13b c b --+=,又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩∴椭圆方程为22312x y +=.18.13-【解析】由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==a c e ,故答案为13-. 19.5【解析】由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.故5c e a ==.即椭圆的离心率为5. 20.(0,1)±【解析】设点A 的坐标为(,)m n ,B 点的坐标为(,)c d.12(F F ,可得1()F A m n =u u u r,2()F B c d =u u u u r ,∵125F A F B =u u u r u u u u r ,∴,55m nc d +==,又点,A B 在椭圆上, ∴2213m n +=,225()135n +=,解得0,1m n ==±, ∴点A 的坐标是(0,1)±.21.【解析】(1)由已知得(1,0)F ,l 的方程为1=x .由已知可得,点A的坐标为(1,2或(1,2-. 所以AM的方程为2y x =-2y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则1<x2x MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由11=-y kx k ,22=-y kx k 得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,2122421+=+k k x x ,21222221-=+x k k x .则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.22.【解析】(1)设11(,)A x y ,22(,)B x y ,则2211143x y +=,2222143x y +=. 两式相减,并由1212y y k x x -=-得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=, 于是34k m=-.①由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22xFA===-u u u r.同理2||22xFB=-u u u r.所以121||||4()32FA FB x x+=-+=u u u r u u u r.故2||||||FP FA FB=+u u u r u u u r u u u r,即||FAu u u r,||FPu u u r,||FBu u u r成等差数列.设该数列的公差为d,则1212||||||||||2d FB FA x x=-=-=u u u r u u u r将34m=代入①得1k=-.所以l的方程为74y x=-+,代入C的方程,并整理得2171404x x-+=.故122x x+=,12128x x=,代入②解得||28d=.所以该数列的公差为28或28-.23.【解析】设椭圆的焦距为2c,由已知知2259ca=,又由222a b c=+,可得23a b=.由已知可得,FB a=,AB=,由FB AB⋅=可得6ab=,从而3a=,2b=.所以,椭圆的方程为22194x y+=.(2)设点P的坐标为11(,)x y,点Q的坐标为22(,)x y.由已知有120y y>>,故12sinPQ AOQ y y∠=-.又因为2sinyAQOAB=∠,而4OABπ∠=,故2AQ=.由AQAOQPQ=∠,可得1259y y=.由方程组22194y kxx y=⎧⎪⎨+=⎪⎩,,消去x,可得1y=易知直线AB 的方程为20x y +-=,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由1259y y =,可得5(1)k += 两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.24.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点1P ,所以点2P 在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.(2)设直线2P A 与直线2P B 的斜率分别为1k ,2k ,如果l 与x 轴垂直,设l :x t =,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为 (t,(t,).则121k k +-=-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设11(,)A x y ,22(,)B x y ,则122841kmx x k +=-+,21224441m x x k -=+. 而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)25.【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-u u u r ,0(0.)NM y =u u u u r.由NP =u u u r u u u r得 0x x =,02y y =. 因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-u u u r ,(1,)PF m n =---u u u r ,33OQ PF m tn ⋅=+-u u u r u u u r, (,)OP m n =u u u r ,(3,)PQ m t n =---u u u r,由1OP PQ ⋅=u u u r u u u r 得2231m m tn n --+-=,又由(1)知222m n +=, 故330m tn +-=.所以0OQ PF ⋅=u u u r u u u r ,即OQ PF ⊥u u u r u u u r.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F . 26.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b =因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>.当01x =时,2l 与1l 相交于1F ,与题设不符. 当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为. 27.【解析】(Ⅰ)设F 的坐标为(,0)c -.依题意,12c a =,2pa =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=. 所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =. (Ⅱ)设直线AP 的方程为1(0)x my m =+≠,与直线l 的方程1x =-联立,可得点2(1,)P m --,故2(1,)Q m-.将1x my =+与22413y x +=联立,消去x , 整理得22(34)60m y my ++=,解得0y =,或2634my m -=+.由点B 异于点A ,可得点222346(,)3434m mB m m -+-++. 由2(1,)Q m-,可得直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+, 故2223(,0)32m D m -+.所以2222236||13232m m AD m m -=-=++. 又因为APD △22162232||2m m m ⨯⨯=+,整理得23|20m m -+=,解得||m =,所以m =. 所以,直线AP的方程为330x +-=,或330x -=. 28.【解析】(I)由题意知c e a ==,22c =,所以1a b ==,因此椭圆E 的方程为2212x y +=.(Ⅱ)设()()1122,,,A x y B x y ,联立方程2211,2x y y k x ⎧+=⎪⎪⎨⎪=-⎪⎩得()22114210k x x +--=, 由题意知0∆>,且()12122111221x x x x k +==-+,所以121=-=AB x .由题意可知圆M 的半径r为1233r AB ==由题设知124k k =,所以21k =因此直线OC的方程为1y =.联立方程2211,2,4x y y x k ⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++,因此OC =.由题意可知1sin21SOT rOC r OCr∠==++,而1OC r=2=令2112t k =+, 则()11,0,1t t>∈,因此1OC r==≥,当且仅当112t =,即2t =时等号成立,此时1k =,所以1sin 22SOT ∠≤,因此26SOT π∠≤, 所以SOT ∠最大值为3π. 综上所述:SOT ∠的最大值为3π,取得最大值时直线l的斜率为12k =±.29.【解析】(Ⅰ)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (Ⅱ)由(Ⅰ)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.30.【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,故12229M x x kb x k +==-+,299M M by kx b k =+=+. 于是直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-.所以直线OM 的斜率与l 的斜率的乘积为定值. (Ⅱ)四边形OAPB 能为平行四边形. 因为直线l 过点(,)3mm , 所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . 由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981P k m x k =+,即P x =. 将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+. 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x =.=2(3)23(9)mk k k -⨯+.解得14k =24k =. 因为0,3i i k k >≠,1i =,2,所以当l的斜率为44+OAPB 为平行四边形.31.【解析】(Ⅰ)由题意得2221,,.b caa b c =⎧⎪⎪=⎨⎪⎪=+⎩解得2a =2.故椭圆C 的方程为2212x y +=. 设M (N x ,0).因为0m ≠,所以11n -<<.直线PA 的方程为11n y x m--=, 所以M x =1m n -,即(,0)1mM n-. (Ⅱ)因为点B 与点A 关于x 轴对称,所以(,)B m n -, 设(,0)N N x ,则N x =1mn+.“存在点(0,)Q Q y 使得OQM ∠=ONQ ∠等价”,“存在点(0,)Q Q y 使得OM OQ=OQ ON”即Q y 满足2Q M N y x x =.因为1M m x n =-,1N mx n=+,2212m n +=, 所以22221Q MN m y x x n ===-.所以Q y或Q y =.故在y 轴上存在点Q ,使得OQM ∠=ONQ ∠. 点Q的坐标为或(0,.32.【解析】(1)由题设条件知,点M 的坐标为21(,)33a b ,又OM k =2b a =,进而得,2a c b ===,故5c e a ==. (2)由题设条件和(I )的计算结果可得,直线AB1yb+=,点N 的坐标为1,)22b -,设点N 关于直线AB 的对称点S 的坐标为17(,)2x ,则线段NS 的中点T的坐标为117,)244x b +-+.又点T 在直线AB 上,且1NS AB k k ⋅=-,从而有1117441712x b b b +-++=⎨+⎪=⎪⎪⎪⎩,解得3b =,所以b = 故椭圆E 的方程为221459x y +=.33.【解析】(Ⅰ)由题意知42=a ,则2=a ,又2c a =,222a cb -=, 可得1=b ,所以椭圆C 的方程为1422=+y x . (Ⅱ)由(I )知椭圆E 的方程为141622=+y x . (i )设λ=||||),,(00OP OQ y x P ,由题意知),(00y x Q λλ--, 因为142020=+y x ,又14)(16)(2020=-+-y x λλ,即1)4(42020=+y x λ, 所以2=λ,即2||||=OP OQ . (ii )设),(),,(2211y x B y x A ,将m kx y +=代入椭圆E 的方程, 可得01648)41(222=-+++m kmx x k , 由0>∆,可得 22164k m +<,则有222122141164,418k m x x k km x x +-=+-=+, 所以22221414164||km k x x +-+=-. 因为直线m kx y +=与y 轴交点的坐标为),0(m ,所以OAB ∆的面积||||2121x x m S -=22241||4162k m m k +-+=222241)416(2km m k +-+=222241)414(2k m k m ++-= 令t km =+2241,将m kx y +=代入椭圆C 的方程, 可得 0448)41(222=-+++m kmx x k , 由0∆≥,可得 2241k m +≤,由①②可知 10≤<t ,因此t t t t S 42)4(22+-=-=,故 S ≤当且仅当1=t 时,即2241k m +=时取得最大值32,由(i )知,ABQ ∆面积为S 3, 所以ABQ ∆面积的最大值为36.34.【解析】2(c,0)=3F c c (I )设,由条件知,222=2, 1.2c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (Ⅱ)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12241PQ x k =-=+从而O PQ d OPQ =∆又点到直线的距离所以的面积1=2OPQ S d PQ ∆⋅=244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即 OPQ ι∆所以,当的面积最大时,的方程为2222y x y x =-=--或.35.【解析】(Ⅰ)设直线l 的方程为()0y kx m k =+<,由22221x y a b⎪⎨+=⎪⎩,消去y 得,()22222222220b a k x a kmx a m a b +++-=,由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为22222222,a km b m b a k b a k ⎛⎫- ⎪++⎝⎭,由点P 在第一象限, 故点P的坐标为22⎛⎫⎝; (Ⅱ)由于直线1l 过原点O ,且与l 垂直,故直线1l 的方程为0x ky +=,所以点P 到直线1l的距离d =,整理得22d =,因为22222b a k ab k +≥,2222a b ≤=-,当且仅当2bk a=时等号成立, 所以点P 到直线1l 的距离的最大值为b a -.36.【解析】(Ⅰ)根据c 22(,),23b M c b ac a=将222b a c =-代入223b ac =,解得1,22c ca a==-(舍去) 故C 的离心率为12. (Ⅱ)由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D是线段1MF 的中点,故24b a=,即24b a = ① 由15MN F N =得112DF F N =。

理科数学2010-2019高考真题分类训练专题九解析几何第二十五讲直线与圆答案

理科数学2010-2019高考真题分类训练专题九解析几何第二十五讲直线与圆答案

专题九 解析几何 第二十五讲 直线与圆答案部分 2019年1.解析 由直线l 的参数方程消去t ,可得其普通方程为4320x y -+=. 则点(1,0)到直线l 的距离是d ==2. 解析 解法一:由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-,解得000)x x =>. 所以曲线4(0)y x x x=+>上,点P 到直线0x y +=的距离最小,4=. 解法二:由题意可设点P 的坐标为4,x x x ⎛⎫+⎪⎝⎭()0x >,则点P 到直线0x y +=的距离222242x d ⎛⎫+ ⎪==⨯⨯=…,当且仅当x =所以点P 到直线0x y +=的距离的最小值为4. 3.解析 解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==.所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,联结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H. 以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--. 所以P (−13,9),22(134)(93)15PB =-+++=. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,联结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟. 在线段AD 上取点M (3,154),因为22221533454OM ⎛⎫=++= ⎪⎝⎭,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由22(4)(93)15(4)AQ a a =-+-=>,得a =4321+,所以Q (4321+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4321+,9)时,d 最小,此时P ,Q 两点间的距离4321(13)17321PQ =+--=+.因此,d 最小时,P ,Q 两点间的距离为17321+(百米). 4.解析:解法一:如图,由圆心与切点的连线与切线垂直,得1122m +=-,解得2m =-. 所以圆心为(0,-2),则半径22(20)(12)5r =--+-+=. 解法二:由22034(1)41m r m ⨯-+==+++,得2m =-,所以55r ==2010-2018年1.A 【解析】圆心(2,0)到直线的距离d == 所以点P到直线的距离1d ∈.根据直线的方程可知A ,B 两点的坐标分别为(2,0)A -,(0,2)B -,所以||AB = 所以ABP ∆的面积111||2S AB d ==.因为1d ∈,所以[2,6]S ∈,即ABP ∆面积的取值范围是[2,6].故选A . 2.12【解析】直线的普通方程为20x y +-=,圆的标准方程为22(1)1x y -+=, 圆心为(1,0)C ,半径为1,点C 到直线20x y +-=的距离2d ==以||AB ==11222ABC S ∆==. 3.C【解析】由题意可得d ====(其中cos ϕ=,sin ϕ=),∵1sin()1θϕ--≤≤,d1=+∴当0m =时,d 取得最大值3,故选C .4.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,c e a ==,故选A .5.A 【解析】如图建立直角坐标系,x则(0,1)A ,(0,0)B ,(2,1)D ,(,)P x y 所以圆的方程为224(2)5x y -+=, 所以(,1)AP x y =-u u u r ,(0,1)AB =-u u u r ,(2,0)AD =u u u r,由AP AB AD λμ=+u u u r u u u r u u u r ,得21x y μλ=⎧⎨-=-⎩,所以λμ+=12x y -+,设12x z y =-+,即102xy z -+-=, 点(,)P x y 在圆上,所以圆心到直线102xy z -+-=的距离小于半径,,解得13z ≤≤,所以z 的最大值为3, 即λμ+的最大值为3,选A .6.D 【解析】(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2)y k x +=-,即230kx y k ---=,则1d==,|55|k +=43k =-或34-.7.A 【解析】 设所求直线的方程为20x y c ++=(1)≠c,则=,所以c =250x y ++=或250x y +-=.8.C 【解析】设过,,A B C 三点的圆的方程为220x y Dx Ey F ++++=,则3100422007500D E F D E F D E F +++=⎧⎪+++=⎨⎪-++=⎩,解得2,4,20D E F =-==-, 所求圆的方程为2224200x y x y +-+-=,令0x =,得24200y y +-=, 设1(0,)M y ,2(0,)N y ,则124y y +=-,1220y y ⋅=-,所以12||||MN y y =-==9.C 【解析】圆C 标准方程为22(2)(1)4x y -+-=,圆心为(2,1)C ,半径为2r =,因此2110a +⨯-=,1a =-,即(4,1)A --,6AB ===.选C .10.A 【解析】当点M 的坐标为(1,1)时,圆上存在点(1,0)N ,使得45OMN ∠=o,所以01x =符合题意,排除B 、D ;当点M的坐标为时,OM =,过点M 作圆O 的一条切线MN ',连接ON ',则在Rt OMN '∆中,sin 2OMN '∠=<,则45OMN '∠<o ,故此时在圆O 上不存在点N ,使得°45OMN ∠=,即0x =合题意,排除C ,故选A .11.D 【解析】直线l 过点(0,3),斜率为1,所以直线l 的方程为30x y -+=. 12.B 【解析】因为圆C 的圆心为(3,4),半径为1,||5OC =,所以以原点为圆心、以m为半径与圆C 有公共点的最大圆的半径为6,所以m 的最大值为6,故选B . 13.C 【解析】由题意得12(0,0),(3,4)C C,121,r r ==1212||15C C r r =+==,所以9m =.14.D 【解析】设直线l 的倾斜角为θ,由题意可知min max 0,263ππθθ==⨯=.15.B 【解析】圆的标准方程为22(1)(1)2x y a ++-=-,则圆心(1,1)C -,半径r 满足22r a =-,则圆心C 到直线20x y ++=的距离d == 所以2422r a =+=-,故4a =-16.B 【解析】易知直线0x my +=过定点(0,0)A ,直线30mx y m --+=过定点(1,3)B ,且两条直线相互垂直,故点P 在以AB 为直径的圆上运动,故||||||cos ||sin PA PB AB PAB AB PAB +=∠+∠)4PAB π=∠+∈.故选B .17.A 【解析】由题意可知以线段AB 为直径的圆C 过原点O ,要使圆C 的面积最小,只需圆C 的半径或直径最小.又圆C 与直线240x y +-=相切,所以由平面几何知识,知圆的直径的最小值为点O 到直线240x y +-=的距离,此时2r =得r =,圆C 的面积的最小值为245S r ππ==. 18.A 【解析】根据平面几何知识,直线AB 一定与点(3,1),(1,0)的连线垂直,这两点连线的斜率为12,故直线AB 的斜率一定是2-,只有选项A 中直线的斜率为2-. 19.A 【解析】圆C 1,C 2的圆心分别为C 1,C 2,由题意知|PM |≥|PC 1|-1,|PN |≥|PC 2|-3,∴|PM |+|PN |≥|PC 1|+|PC 2|-4,故所求值为|PC 1|+|PC 2|-4的最小值. 又C 1关于轴对称的点为C 3(2,-3),所以|PC 1|+|PC 2|-4的最小值为|C 3C 2|-444=, 故选A .20.C 【解析】圆心(1,2),圆心到直线的距离d =,半径r =,所以最后弦长为4=.21.B 【解析】(1)当y ax b =+过()1,0A -与BC 的中点D 时,符合要求,此13b =, (2)当y ax b =+位于②位置时1,0b A a ⎛⎫-⎪⎝⎭,11,11b a b D a a -+⎛⎫⎪++⎝⎭,令1112A BD S ∆=得212b a b =-,∵0a >,∴12b < (3) 当y ax b =+位于③位置时21,11b b a A a a --⎛⎫⎪--⎝⎭,21,11b a b D a a -+⎛⎫⎪++⎝⎭, 令2212A CD S ∆=,即()111112112b b b a a --⎛⎫--= ⎪+-⎝⎭,化简得22241a b b -=-+,∵0a >, ∴22410b b -+<,解得1122b -<<+综上:112b -<<,选B 22.B 【解析】点M(a ,b )在圆221x y +=外,∴221a b +>.圆(0,0)O 到直线1ax by +=距离1d =<=圆的半径,故直线与圆相交.所以选B .23.C【解析】设直线斜率为k ,则直线方程为2(2)y k x -=-,即220kx y k -+-=,圆心(1,0)==12k =-.因为直线与直线10ax y -+=垂直,所以112k a =-=-, 即2a =,选C . 24.A 【解析】∵圆心到直线的距离等于1r =,排除B 、C ;相切于第一象限排除D ,选A.直接法可设所求的直线方程为:()0y x k k =-+>,再利用圆心到直线的距离等于1r =,求得k =25.C 【解析】抛物线24y x =的焦点坐标为(1,0),准线方程为1x =-,设11(,)A x y ,22(,)B x y ,则因为|AF |=3|BF |,所以1213(1)x x +=+,所以1232x x =+,因为1||y =32||y ,1x =92x ,所以1x =3,2x =13,当1x =3时,2112y =,所以此时1y ==±1y =1(3,(,3A B ,此时AB k =此时直线方程为1)y x =-。

2010-2019高考数学理科真题分类汇编专题九 解析几何第二十六讲 椭圆含答案

2010-2019高考数学理科真题分类汇编专题九  解析几何第二十六讲  椭圆含答案

专题九 解析几何第二十六讲 椭圆2019年1.(2019全国I 理10)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 2.(2019全国II 理21(1))已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;3.(2019北京理4)已知椭圆()222210x y a b a b +=>>的离心率为12,则(A )22.2a b =(B )2 2.34a b=(C )2a b=(D )34a b=4.(2019全国III 理15)设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.2010-2018年一、选择题1.(2018全国卷Ⅱ)已知1F ,2F 是椭圆22221(0)+=>>:x y C a b a b的左,右焦点,A 是C 的左顶点,点P 在过A 12△PF F 为等腰三角形,12120∠=︒F F P ,则C 的离心率为A .23B .12C .13D .142.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( )A .B .C .D .3.(2017浙江)椭圆22194x y +=的离心率是A .B C .23D .59 4.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3 B .3 C .3 D .135.(2016年全国III)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .346.(2016年浙江)已知椭圆1C :2221x y m +=(1m >)与双曲线2C :2221x y n-=(0n >)的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则A .m n >且121e e >B .m n >且121e e <C .m n <且121e e >D .m n <且121e e <7.(2014福建)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .268.(2013新课标1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为 A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=19.(2012新课标)设1F 、2F 是椭圆E :)0(12222>>=+b a by a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆ 是底角为o30的等腰三角形,则E 的离心率为 A 、21 B 、32 C 、43 D 、54二、填空题10.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =,则当m =___时,点B 横坐标的绝对值最大.11.(2018北京)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.12.(2016江苏省)如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b+=>>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是 .13.(2015新课标1)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 的正半轴上,则该圆的标准方程为_________.14.(2014江西)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .15.(2014辽宁)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.(2014江西)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.17.(2014安徽)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为_____.18.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于19.(2012江西)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.20.(2011浙江)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =;则点A 的坐标是 .三、解答题21.(2018全国卷Ⅰ)设椭圆:C 2212+=x y 的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.22.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)M m (0)m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:||FA ,||FP ,||FB 成等差数列,并求该数列的公差.23.(2018天津)设椭圆22221x x a b+=(0a b >>)的左焦点为F ,上顶点为B .已知椭圆的离A 的坐标为(,0)b ,且FB AB ⋅= (1)求椭圆的方程;(2)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求k 的值. 24.(2017新课标Ⅰ)已知椭圆C :22221(0)x y a b a b+=>>,四点1(1,1)P ,2(0,1)P ,3(2P =-,4(1,2P =中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.25.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .26.(2017江苏)如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.27.(2017天津)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △AP 的方程.28.(2017山东)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l:1y k x =E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k,且12k k ,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求S O T ∠的最大值,并求取得最大值时直线l 的斜率.x29.(2016年北京)已知椭圆C :22221(0)x y ab a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.30.(2015新课标2)已知椭圆C :2229x y m +=(0m >),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边行?若能,求此时l 的斜率;若不能,说明理由.31.(2015北京)已知椭圆C :()222210x y a ba b+=>>的离心率为,点()01P ,和点()A m n ,()0m ≠都在椭圆C 上,直线PA 交x 轴于点M . (Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.32.(2015安徽)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM(Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程. 33.(2015山东)平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,左、右焦点分别是1F 、2F .以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222144x y a b+=,P 为椭圆C 上任意一点,过点P 的直线=+y kx m交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .( i )求||||OQ OP 的值; (ii )求△ABQ 面积的最大值.34. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.35.(2014浙江)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.36.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .37.(2014安徽)设1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,过点1F的直线交椭圆E 于,A B 两点,11||3||AF BF = (Ⅰ)若2||4,AB ABF =∆的周长为16,求2||AF ; (Ⅱ)若23cos 5AF B ∠=,求椭圆E 的离心率.38.(2014山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>,直线y x =被椭圆C 截得的线段长为5. (I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点. (ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.39.(2014湖南)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.40.(2014四川)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标. 41.(2013安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点P .12短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△B D M 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.43. (2013天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x(Ⅰ) 求椭圆的方程;第20题图(Ⅱ) 设A , B 分别为椭圆的左、右顶点, 过点F 且斜率为k 的直线与椭圆交于C ,D两点. 若··8AC DB AD CB +=, 求k 的值.44.(2013山东)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F ,离心率为2,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l . (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.45.(2012北京)已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M ,N . (Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMNk 的值. 46.(2013安徽)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a , b 的值.47.(2012广东)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点到(0,2)Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.48.(2011陕西)设椭圆C: ()222210x y a b a b +=>>过点(0,4),离心率为35(Ⅰ)求C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 49.(2011山东)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE交椭圆C 于点G ,交直线3x =-于点(3,)D m -. (Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG 的外接圆方程;若不能,请说明理由.50.(2010新课标)设1F ,2F 分别是椭圆E :2x +22y b=1(01b <<)的左、右焦点,过1F的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求AB ;(Ⅱ)若直线l 的斜率为1,求b 的值.51.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =. (Ⅰ)求椭圆C 的离心率; (Ⅱ)如果|AB |=154,求椭圆C 的方程.专题九 解析几何第二十六讲 椭圆答案部分1. 解析 2x =,则22AF x =,所以23BF AB x ==.由椭圆定义122BF BF a +=,即42x a =.又1224AF AF a x +==,22AF x =,所以12AF x =. 因此点A 为椭圆的上顶点,设其坐标为()0,b .由222AF BF =可得点B 的坐标为3,22b ⎛⎫-⎪⎝⎭. 因为点B 在椭圆()222210x y a b a b+=>>上,所以291144a +=. 解得23a =.又1c =,所以22b =.所以椭圆方程为22132x y +=.故选B. 2.解析(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.3. 解析 由题意,c e a ====所以22244a b a -=,即2234a b =.故选B .4. 解析 设(,)M m n ,,0m n >,椭圆C :22:13620x y C +=的6a =,b =2c =,23c e a ==,由于M 为C 上一点且在第一象限,可得12||||MF MF >, 12MF F △为等腰三角形,可能1||2MF c =或2||2MF c =,即有2683m +=,即3m =,n = 2683m -=,即30m =-<,舍去.可得M .2010-2018年1.D 【解析】由题意可得椭圆的焦点在x 轴上,如图所示,OyxPF 2F 1A设12||2=F F c ,所以12∆PF F 为等腰三角形,且12=120∠F F P ,∴212||||2PF F F c ==,∵2||OF c =,∴点P 坐标为(2cos 60,2sin 60)c c c +,即点(2)P c .∵点P 在过点A,且斜率为6的直线上,∴26c a =+,解得14c a =.∴14e =,故选D .2.C 【解析】由题意25=a,=a P 到该椭圆的两个焦点的距离之和为2=a ,故选C .3.B 【解析】由题意可知29a =,24b =,∴2225c a b =-=,∴离心率3c e a ==,选B4.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,c e a ==,故选A .5.A 【解析】设(0,)E m ,则直线AE 的方程为1x y a b -+=,由题意可知(,)mc M c m a--,(0,)2m和(,0)B a 三点共线,则22mc m m m a c a--=--,化简得3a c =,则C 的离心率13c e a ==.故选A . 6.A 【解析】由题意知2211m n -=+,即222m n =+,222221222221111()2m n n n e e m n n n -+++=⋅=⋅+4242422111122n n n n n n ++==+>++,所以121e e >.故选A .7.D【解析】由题意可设,sin )Q αα,圆的圆心坐标为(0,6)C ,圆心到Q 的距离为||CQ ===,当且仅当2sin 3α=-时取等号,所以max max ||||PQ CQ r +==≤,所以Q P ,两点间的最大距离是8.D 【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b += ① 2222221x y a b+= ② ①-②得1212121222()()()()0x x x x y y y y a b +-+-+=,∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D. 9.C 【解析】∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==10.5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =,得1212212(1)x x y y -=⎧⎨-=-⎩,即122x x =-,1232y y =-.因为点A ,B 在椭圆上,所以222222224(3)44x x m x y m⎧+-=⎪⎪⎨⎪+=⎪⎩,得21344y m =+,所以2222221591(32)(5)444244x m y m m m =--=-+-=--+≤,所以当5m =时,点B 横坐标的绝对值最大,最大值为2.1112-;【解析】设椭圆的右焦点为(,0)F c ,双曲线N 的渐近线与椭圆M 在第一象限内的交点为A,由题意可知(2c A ,由点A 在椭圆M 上得,22223144c c a b+=,∴22222234b c a c a b +=,222b ac =-,∴22222222()34()a c c a c a a c -+=-,∴4224480a a c c -+=,∴428+40e e -=椭椭,∴24e =±椭,∴1e =椭(舍去)或1e 椭,∴椭圆M1,∵双曲线的渐近线过点(,)22cA,渐近线方程为y =,故双曲线的离心率2e ==双.12由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭,由90BFC ∠=︒可得0BF CF ⋅=,2b BF c ⎛⎫=- ⎪⎪⎝⎭,2b CF c ⎛⎫=- ⎪ ⎪⎝⎭,则22231044c a b -+=,由222b a c =-可得223142ca =,则c e a ==. 13.22325()24-+=x y 【解析】 由题意圆过(4,0),(0,2),(0,2)-三个点,设圆心为(,0)a,其中0a >,由4-=a 32a =,所以圆的方程为22325()24-+=x y .14.2【解析】设11(,)A x y ,22(,)B x y ,分别代入椭圆方程相减得 1212121222()()()()0x x x x y y y y a b -+-++=,根据题意有12122,2x x y y +=+=,且121212y y x x -=--,所以22221()02a b +⨯-=,得222a b =,整理222a c =,所以2e =. 15.12【解析】设MN 交椭圆于点P ,连接1F P 和2F P ,利用中位线定理可得AN BN +=122222412F P F P a a +=⨯==.162(,)b A c a,2(,)b B c a -,由题意可知点D 为1F B 的中点,所以点D 的坐标为2(0,)2b a-,由B F AD 1⊥,所以11AD F B k k ⋅=-22ac =,解得3e =. 17.22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b -- 将点B 坐标带入椭圆方程得22221()53()13b c b--+=, 又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩∴椭圆方程为22312x y +=.18.13-【解析】由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==a c e ,故答案为13-.19由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.故c e a ==.20.(0,1)±【解析】设点A 的坐标为(,)m n ,B 点的坐标为(,)c d.12(F F ,可得1()F A m n =,2()F B c d =,∵125F A F B =,∴,55m nc d +==,又点,A B 在椭圆上, ∴2213m n +=,22(5()135m n ++=,解得0,1m n ==±, ∴点A 的坐标是(0,1)±.21.【解析】(1)由已知得(1,0)F ,l 的方程为1=x .由已知可得,点A的坐标为或(1,. 所以AM的方程为2y x =-2y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则1<x2x MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由11=-y kx k ,22=-y kx k 得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,2122421+=+k k x x ,21222221-=+x k k x . 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+.从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.22.【解析】(1)设11(,)A x y ,22(,)B x y ,则2211143x y +=,2222143x y +=. 两式相减,并由1212y y k x x -=-得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=, 于是34k m=-.①由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =.于是1||(22xFA x ===-.同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=. 故2||||||FP FA FB=+,即||FA ,||FP ,||FB 成等差数列. 设该数列的公差为d ,则1212||||||||||2d FB FA x x =-=-= 将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故122x x +=,12128x x =,代入②解得||d =.或 23.【解析】设椭圆的焦距为2c ,由已知知2259c a =,又由222a b c =+,可得23a b =.由已知可得,FB a =,AB =,由FB AB ⋅=,可得6ab =,从而3a =,2b =.所以,椭圆的方程为22194x y +=.(2)设点P 的坐标为11(,)x y ,点Q 的坐标为22(,)x y . 由已知有120y y >>,故12sin PQ AOQ y y ∠=-. 又因为2sin y AQ OAB =∠,而4OAB π∠=,故2AQ =.由AQ AOQ PQ=∠,可得1259y y =. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y = 易知直线AB 的方程为20x y +-=,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由1259y y =,可得5(1)k += 两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.24.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点1P ,所以点2P 在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.(2)设直线2P A 与直线2P B 的斜率分别为1k ,2k ,如果l 与x 轴垂直,设l :x t =,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为 (t,(t,).则121k k +==-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设11(,)A x y ,22(,)B x y ,则122841kmx x k +=-+,21224441m x x k -=+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=. 即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)25.【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-,0(0.)NM y =.由2NP NM =得 0x x =,0y y =. 因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-,(1,)PF m n =---,33OQ PF m tn ⋅=+-,(,)OP m n =,(3,)PQ m t n =---,由1OP PQ ⋅=得2231m m tn n --+-=,又由(1)知222m n +=, 故330m tn +-=.所以0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F . 26.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b =因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符.当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --, 从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=.又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为. 27.【解析】(Ⅰ)设F 的坐标为(,0)c -.依题意,12c a =,2pa =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=. 所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =. (Ⅱ)设直线AP 的方程为1(0)x my m =+≠,与直线l 的方程1x =-联立,可得点2(1,)P m --,故2(1,)Q m-.将1x my =+与22413y x +=联立,消去x , 整理得22(34)60m y my ++=,解得0y =,或2634my m -=+.由点B 异于点A ,可得点222346(,)3434m mB m m -+-++. 由2(1,)Q m-,可得直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+, 故2223(,0)32m D m -+.所以2222236||13232m m AD m m -=-=++. 又因为APD △的面积为2,故22162232||2m m m ⨯⨯=+,整理得23|20m m -+=,解得||m =,所以m =. 所以,直线AP的方程为330x +-=,或330x -=. 28.【解析】(I)由题意知c e a ==,22c =,所以1a b ==,因此椭圆E 的方程为2212x y +=.(Ⅱ)设()()1122,,,A x y B x y ,联立方程2211,2x y y k x ⎧+=⎪⎪⎨⎪=⎪⎩得()22114210k x x +--=, 由题意知0∆>,且()12122111221x x x x k +=-+,所以121=-=AB x .由题意可知圆M 的半径r为1233r AB ==由题设知12k k =,所以214k k =因此直线OC的方程为1y =.联立方程2211,2,x y y ⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++,因此OC ==由题意可知1sin21SOT rOC r OCr∠==++,而1OC r=2 令2112t k =+, 则()11,0,1t t>∈,因此1OC r==≥,当且仅当112t =,即2t =时等号成立,此时1k =,所以1sin 22SOT ∠≤,因此26SOT π∠≤, 所以SOT ∠最大值为3π. 综上所述:SOT ∠的最大值为3π,取得最大值时直线l的斜率为12k =±.29.【解析】(Ⅰ)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab ac 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (Ⅱ)由(Ⅰ)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y .令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.30.【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,故12229M x x kb x k +==-+,299M M by kx b k =+=+. 于是直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 所以直线OM 的斜率与l 的斜率的乘积为定值. (Ⅱ)四边形OAPB 能为平行四边形. 因为直线l 过点(,)3mm , 所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . 由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981P k m x k =+,即P x =. 将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x =.=2(3)23(9)mk k k -⨯+.解得14k =24k =.因为0,3i i k k >≠,1i =,2,所以当l的斜率为44四边形OAPB 为平行四边形.31.【解析】(Ⅰ)由题意得2221,,2.b caa b c =⎧⎪⎪=⎨⎪⎪=+⎩解得2a =2.故椭圆C 的方程为2212x y +=. 设M (N x ,0).因为0m ≠,所以11n -<<.直线PA 的方程为11n y x m--=, 所以M x =1m n -,即(,0)1mM n-.(Ⅱ)因为点B 与点A 关于x 轴对称,所以(,)B m n -, 设(,0)N N x ,则N x =1mn+. “存在点(0,)Q Q y 使得OQM ∠=ONQ ∠等价”,“存在点(0,)Q Q y 使得OM OQ=OQ ON”即Q y 满足2Q M N y x x =.因为1M m x n =-,1N mx n=+,2212m n +=, 所以22221Q MN m y x x n===-. 所以Q y或Q y =.故在y 轴上存在点Q ,使得OQM ∠=ONQ ∠. 点Q的坐标为或(0,.32.【解析】(1)由题设条件知,点M 的坐标为21(,)33a b,又OM k =,从而2b a =,进而得,2a c b ===,故5c e a ==.(2)由题设条件和(I)的计算结果可得,直线AB1yb+=,点N的坐标为1,)2b-,设点N关于直线AB的对称点S的坐标为17(,)2x,则线段NS的中点T的坐标为117,)4244xb+-+.又点T在直线AB上,且1NS ABk k⋅=-,从而有11744171xb bbb+-++=⎨+⎪=⎪⎪⎪⎩,解得3b=,所以b=故椭圆E的方程为221459x y+=.33.【解析】(Ⅰ)由题意知42=a,则2=a,又ca=,222a c b-=,可得1=b,所以椭圆C的方程为1422=+yx.(Ⅱ)由(I)知椭圆E的方程为141622=+yx.(i)设λ=||||),,(0OPOQyxP,由题意知),(yxQλλ--,因为14220=+yx,又14)(16)(220=-+-yxλλ,即1)4(4220=+yxλ,所以2=λ,即2||||=OPOQ.(ii)设),(),,(2211yxByxA,将mkxy+=代入椭圆E的方程,可得01648)41(222=-+++mkmxxk,由0>∆,可得22164km+<,则有222122141164,418k m x x k km x x +-=+-=+,所以22221414164||k m k x x +-+=-.因为直线m kx y +=与y 轴交点的坐标为),0(m ,所以OAB ∆的面积||||2121x x m S -=22241||4162km m k +-+= 222241)416(2k m m k +-+=222241)414(2k m k m ++-= 令t k m =+2241,将m kx y +=代入椭圆C 的方程, 可得 0448)41(222=-+++m kmx x k , 由0∆≥,可得 2241k m +≤,由①②可知 10≤<t ,因此t t t t S 42)4(22+-=-=,故 S ≤当且仅当1=t 时,即2241k m +=时取得最大值32,由(i )知,ABQ ∆面积为S 3, 所以ABQ ∆面积的最大值为36.34.【解析】2(c,0)=3F c c (I )设,由条件知,222=2, 1.2c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (Ⅱ)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,2238=16(43)0,441k k k x k ±∆->>=+当即时,12PQ x=-=从而O PQ d OPQ=∆又点到直线的距离所以的面积1=2OPQS d PQ∆⋅=244,0,.44OPQtt t St tt∆=>==++则44,20.t t kt+≥==∆>因为当且仅当,即OPQι∆所以,当的面积最大时,的方程为22y x y x=-=-或.35.【解析】(Ⅰ)设直线l的方程为()0y kx m k=+<,由22221y kx mx ya b=+⎧⎪⎨+=⎪⎩,消去y得,()22222222220b a k x a kmx a m a b+++-=,由于直线l与椭圆C只有一个公共点P,故0∆=,即22220b m a k-+=,解得点P的坐标为22222222,a kmb mb a k b a k⎛⎫-⎪++⎝⎭,由点P在第一象限,故点P的坐标为22⎛⎫⎝;(Ⅱ)由于直线1l过原点O,且与l垂直,故直线1l的方程为0x ky+=,所以点P到直线1l的距离d=,整理得22d=,因为22222ba k abk+≥,2222a b ≤=-,当且仅当2bk a=时等号成立, 所以点P 到直线1l 的距离的最大值为b a -.36.【解析】(Ⅰ)根据c =22(,),23b M c b ac a=将222b a c =-代入223b ac =,解得1,22c ca a==-(舍去) 故C 的离心率为12. (Ⅱ)由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D是线段1MF 的中点,故24b a=,即24b a = ① 由15MN F N =得112DF F N =。

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线答案

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线答案

专题九 解析几何第二十七讲 双曲线答案部分2019年1. 解析 双曲线22:142x y C -=的右焦点为(6,0)F ,渐近线方程为:2y x =±,不妨设点P 在第一象限,可得2tan POF ∠=,63(,)P ,所以PFO △的面积为: 13326224⨯⨯=.故选A . 2. 解析 因为双曲线2221(0)y x b b-=>经过点(3,4),所以221631b-=,解得22b =,即2b =. 又1a =,所以该双曲线的渐近线方程是2y x =±.3.解析 如图所示,因为1F A AB=uuu r uu u r,所以A 为1F B 的中点. 又O 为12F F 的中点,所以212AO BF P,212AO BF =. 因为120F B F B ⋅=uuu r uuu r,所以1290F BF ∠=︒, 且O 为12F F 的中点,所以12212OB F F OF c ===. 由212AO BF P得2121BOF AOF BF F ∠=∠=∠,所以2OB BF =, 因此2OPF △为等边三角形,260BOF ∠=︒,即渐近线的斜率为3,也即3ba=, 所以2212b e a=+=.4.A 解析:解法一:由题意,把2c x =代入222x y a +=,得2224c PQ a =-,再由PQ OF =,得2224ca c -=,即222a c =,所以222c a=,解得2c e a ==.故选A .解法二:如图所示,由PQ OF =可知PQ 为以OF 为直径圆的另一条直径,所以,22c c P ⎛⎫± ⎪⎝⎭,代入222x y a +=得222a c =, 所以222c a=,解得2c e a ==.故选A .解法三:由PQ OF =可知PQ 为以OF 为直径圆的另一条直径,则12222OP a OF ===,2c e a ==故选A .5.解析 根据渐进线方程为0x y ±=的双曲线,可得a b =,所以2c a =,则该双曲线的离心率为2ce a==C . 6.解析 因为抛物线24y x =的焦点为F ,准线为l ,所以()1,0F ,准线l 的方程为1x =-.因为与双曲线()222210,0x y a b a b=>>的两条渐近线分别交于点A 和点B ,且4AB OF =(为原点),所以2b AB a =,1OF =,所以24b a=,即2b a =, 所以225c a b a +=,所以双曲线的离心率为5ca==.故选D .2010-2018年1.B 【解析】由题可知双曲线的焦点在x 轴上,因为222314c a b =+=+=,所以2c =,故焦点坐标为(2,0)-,(2,0).故选B .2.B 【解析】因为双曲线2213-=x y的渐近线方程为=±y x ,所以60∠=o MON .不妨设过点F的直线与直线=y x 交于点M ,由∆OMN 为直角三角形,不妨设90∠=o OMN ,则60∠=o MFO ,又直线MN 过点(2,0)F ,所以直线MN的方程为2)=-y x ,由2)3⎧=-⎪⎨=⎪⎩y x y x,得32⎧=⎪⎪⎨⎪=⎪⎩x y,所以3(2M ,所以||==OM所以|||3==MN OM .故选B . 3.A 【解析】解法一由题意知,==ce a,所以=c,所以==b ,所以=b a=±=by x a,故选A .解法二由===c e a,得=ba,所以该双曲线的渐近线方程为=±=by x a.故选A . 4.C 【解析】不妨设一条渐近线的方程为by x a=, 则2F 到by x a =的距离d b ==, 在2Rt F PO ∆中,2||F O c =,所以||PO a =,所以1||PF =,又1||F O c =,所以在1F PO ∆与2Rt F PO ∆中,根据余弦定理得12cos cos aPOF POF c∠==-∠=-,即2223)0a c +-=,得223a c =.所以ce a==.故选C . 5.C 【解析】通解 因为直线AB 经过双曲线的右焦点,所以不妨取2(,)b A c a,2(,)b B c a -,取双曲线的一条渐近线为直线0bx ay -=,由点到直线的距离公式可得221bc b d c -==,222bc b d c +==, 因为126d d +=,所以226bc b bc b c c-++=,所以26b =,得3b =. 因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a+=,所以2294a a +=,解得23a =, 所以双曲线的方程为22139x y -=,故选C . 优解 由126d d +=,得双曲线的右焦点到渐近线的距离为3,所以3b =.因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a+=,所以2294a a +=,解得23a =, 所以双曲线的方程为22139x y -=,故选C . 6.A 【解析】双曲线C 的渐近线方程为0bx ay ±=,圆心(2,0)到渐近线的距离为2bd c==,圆心(2,0)到弦的距离也为d ==所以2b c =222c a b =+,所以得2c a =,所以离心率2ce a==,选A .7.B 【解析】由题意可得:b a =3c =,又222a b c +=,解得24a =,25b =,则C 的方程为2145x y 2-=.选B .8.B 【解析】设(,0)F c -,双曲线的渐近线方程为b y x a =±,由44PF k c c-==-,由题意有4bc a=,又c a =222c a b =+,得b =,a =.选B .9.D 【解析】不妨设A 在第一象限,(,)A x y ,所以2242x y by x ⎧+=⎪⎨=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩, 故四边形ABCD的面积为2324424bxy b b===+, 解得212b =.故所求的双曲线方程为2224=11x y -,选D . 10.A 【解析】由题意得22()(3)0m n m n +->,解得223m n m -<<,又由该双曲线两焦点间的距离为4,得M 2234m n m n ++-=,即21m =,所以13n -<<.11.A 【解析】设1(,0)F c -,将x c =-代入双曲线方程,得22221c y a b -=,化简得2by a=±,因为211sin 3MF F ∠=,所以222212112||tan ||222b MF b c a a MF F F F c ac ac -∠=====,12222c a e a c e -=-=210e --=,所以e =A . 12.D 【解析】由双曲线的标准方程2213y x -=得,右焦点(2,0)F ,两条渐近线方程为y =,直线AB :2x =,所以不妨设取(2,A,(2,B -,则||AB =,选D .13.B 【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B .14.D【解析】由题意1e ==2e ==∵()()b b m m b a a a m a a m +--=++,由于0m >,0a >,0b >, 所以当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22()()b b m a a m+<+,所以12e e <;当a b <时,1ba>,1b m a m +>+,而b b m a a m +>+,22()()b b m a a m +>+, 所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >.15.C 【解析】由题意,选项,A B 的焦点在x 轴,故排除,A B ,C 项的渐近线方程为2204y x -=,即2y x =±,故选C . 16.A 【解析】由题意知22a =,21b =,所以23c =,不妨设1(F,2F ,所以100(,)=-u u u u r MF x y,200,)=-u u u u rMF x y ,又∵00(,)M x y 在双曲线上,所以220012x y -=,即220022x y =+,222120003310MF MF x y y u u u r u u u r ⋅=-+=-<,所以0<<y ,故选A . 17.A 【解析】 由题意22(,0),(,),(,)b b A a B c C c a a-,由双曲线的对称性知D 在x 轴上,设(,0)D x ,由BD AC ⊥得2201b b a a c x a c-⋅=---,解得42()bc x a c a -=-,所以42()b c x a a c a c a -=<=+-,所以42222b c a b a <-=221b a⇒<01b a ⇒<<,而双曲线的渐近性斜率为ba±,所以双曲线的渐近线的斜率取值范围是(1,0)(0,1)-U ,选A .18.A 【解析】双曲线方程为22133x y m -=,焦点F到一条渐近线的距离为b =A .19.A 【解析】∵09k <<,∴90,250k k ->->,本题两条曲线都是双曲线,又25(9)(25)9k k +-=-+,∴两双曲线的焦距相等,选A .20.A 【解析】 依题意得22225b ac c a bìï=ïïï=íïïï=+ïî,所以25a =,220b =,双曲线的方程为 221520x y -=.21.B 【解析】由双曲线的定义得12||||||2PF PF a -=,又12||||3PF PF b +=,所以22221212(||||)(||||)94PF PF PF PF b a +--=-,即124||||9PF PF ab =,因此22949b a ab -=,即299()40b b aa --=,则(31b a +)(34ba-)=0,解得41(33b b a a ==-舍去),则双曲线的离心率53e ==. 22.C【解析】由题知,c a =54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C . 23.D 【解析】双曲线1C 的离心率是11cos e θ=,双曲线2C 的离心率是21cos e θ==,故选D . 24.A 【解析】设双曲线的焦点在x 轴上,则由作图易知双曲线的渐近线的离心率ba必须满b a <,所以21()33b a <≤,241()43b a<+≤,2<,又双曲线的离心率为c e a==23e <≤. 25.C 【解析】∵双曲线22215x y a -=的右焦点为(3,0),∴2a +5=9,∴2a =4,∴a =2∵c =3,∴32c e a ==,故选C . 26.A 【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又C 的渐近线为b y x a =±,点P(2,1)在C 的渐近线上,12ba∴=g ,即2a b =. 又222c a b =+,a ∴==,C 的方程为220x -25y =1.27.C 【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C . 28.A 【解析】圆22:(3)4C x y -+=,3,c =而32bc =,则22,5b a ==,应选A . 29.C 【解析】由双曲线方程可知渐近线方程为3y x a=±,故可知2a =.30.B 【解析】双曲线22221(0,0)x y a b a b -=>>的渐近线为by x a=±,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得22p-=-,即4p =, 又∵42p a +=,∴2a =,将(-2,-1)代入by x a=得1b =,∴c =2c =31.B 【解析】由双曲线E 的中心为原点,(3,0)P 是E 的焦点可设双曲线的方程为2222221(9)x y a b a b -=+=,设1122(,),(,)A x y B x y ,即 2222112222221,1x y x y a b a b -=-= 则22121222121212015115312y y x x b b x x a y y a -+-+=⋅=⋅==-+-+,则22225,5,44b b a a ===,故E 的方程式为22145x y -=.应选B . 32.D 【解析】设双曲线的方程为22221(0,0)x y a b a b -=>>,其渐近线为x aby ±=,∵点(4,2)-在渐近线上,所以12b a =,由2e ==. 33.C 【解析】由题意,F (-1,0),设点P 00(,)x y ,则有2200143x y +=, 解得22003(1)4x y =-,因为00(1,)FP x y =+u u u r ,00(,)OP x y =u u u r,所以2000(1)OP FP x x y ⋅=++u u u r u u u r =00(1)OP FP x x ⋅=++u u u r u u u r 203(1)4x -=20034x x ++, 此二次函数对应的抛物线的对称轴为02x =-,因为022x -≤≤,所以当02x =时,OP FP ⋅u u u r u u u r 取得最大值222364++=,选C . 34.12y x =±【解析】由题意2a =,1b =,∴12b y x x a =±=±. 35.2【解析】不妨设双曲线的一条渐近线方程为b y x a =b ==,所以222234b c a c =-=,得2c a =,所以双曲线的离心率2ce a==. 36.232a x c ==,渐近线的方程为y x =,设3(,22P,则3(,22Q -,1(2,0)F -,2(2,0)F , 所以四边形12F PF Q的面积为1211||||422F F PQ =⨯=. 37.3【解析】如图所示,AH MN ⊥,AM AN b ==,MAN ∠=60°, x所以30HAN ∠=o,又MN 所在直线的方程为by x a=, (,0)A a 到MN的距离AH =,在Rt HAN ∆中,有cos HA HAN NA ==,即2=因为222c a b =+,得2a c =,所以3c e a ==. 38.2y x =±【解析】设11(,)A x y ,22(,)B x y ,由抛物线的定义有1212||||22p p AF BF y y y y p +=+++=++,而||2p OF =, 所以1242py y p ++=⨯,即12y y p +=,由2222212x y a b x py⎧-=⎪⎨⎪=⎩得2222220a y pb y a b -+=,所以21222pb y y a +=, 所以222pb p a=,即a =,所以渐近性方程为2y x =±. 39.2【解析】221,a b m ==,所以1c a ==,解得2m =. 40.2【解析】不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线图象如图 ∵OABC 为正方形,2=OA∴==c OB ,π4∠=AOB ∵直线OA 是渐近线,方程为=b y x a ,∴tan 1=∠=bAOB a又∵2228+==a b c ∴2=a41.2【解析】由题意||2BC c =,所以||3AB c =,于是点3(,)2cc 在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==,应填2. 42.3【解析】因为双曲线()22210x y a a -=>的一条渐近线为y =,所以1a=故3a =. 43.2(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以c 的最大值为直线10x y -+=与渐近线0x y -== 44.32【解析】22122:1(0,0)x y C a b a b -=>>的渐近线为b y x a =±,则2222(,)pb pb A a a ,2222(,)pb pb B a a -,22:2(0)C x py p =>的焦点(0,)2p F , 则22222AFpb pa a k pb b a-==,即2254b a =,2222294c a b a a +==,32c e a ==. 45.y x =±【解析】抛物线的准线2p y =-,与双曲线的方程联立得2222(1)4p x a b =+,根据已知得2222(1)4p a c b+= ①,由||AF c =得2224p a c += ②,由①②得22a b =,即a b =,所以所求双曲线的渐近线方程为y x =±.46by x a=±可解得交点为(,)33am bm A b a b a --,(,)33am bm B b a b a -++,而13AB k =,由||||PA PB =,可得AB 的中点3333(,)22am am bm bmb a b a b a b a -+-+-+与点)0,(m P 连线的斜率为-3,可得224b a =,所以2e =. 47.221312x y -= 2y x =±【解析】设与2214y x -=具有相同渐近线的双曲线C 的方程为224y x k -=,将点()2,2代入C 的方程中,得3k =-.∴双曲线的方程为221312x y -=,渐近线方程为2y x =±.48.45【解析】。

2019年高考数学试题分类汇编解析几何附答案详解

2019年高考数学试题分类汇编解析几何附答案详解

2019年高考数学试题分类汇编解析几何一、选择题.1、(2019年高考全国I 卷理科10)双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40° B .2cos40°C .1sin50︒D .1cos50︒答案:C解析:由题可知,130tan ︒=-a b 即,50tan ︒=a b 则有︒︒=50cos 50sin 2222a b ,即︒︒=-50cos 50sin 22222a a c 所以︒︒=-50cos 50sin 1222e ,︒=50cos 12e ,故选D 2、(2019年高考全国I 卷理科10,文科12)已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=答案:B解析:设x B F =||2,则x B F B F AF AB B F 3||3||||||||2221==+== 由椭圆定义得x a B F B F 42||||21==+,故,23||,2||12aB F a B F ==a AF a AF a AF =-==||2||,||212在21F AF ∆和21F BF ∆中,由余弦定理得a c a a c a F AF 1224cos 22221=⨯⨯-+=∠ a a c a a c a F BF 2222212221249441cos -=⨯⨯-+=∠ 21F AF ∠、21F BF ∠互补得a a a 122=-,解得32=a ,22=b ,方程为12322=+y x 。

故选B 3、(2019年高考全国II 卷理科8,文科9)若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p=A .2B .3C .4D .8 答案:D解析:易知抛物线的焦点为)0,2(p,故椭圆焦点在x 轴上 由p p p b a c 23222=-=-=,则p p 2)2(2=,解得p=8。

2010-2019高考数学(理科)真题分类汇编-专题9 解析几何-第二十六讲 椭圆

2010-2019高考数学(理科)真题分类汇编-专题9  解析几何-第二十六讲  椭圆

+
y2 20
= 1 的两个焦点,M

C
上一点且在第
一象限.若△MF1F2 为等腰三角形,则 M 的坐标为___________.
2010-2018 年
一、选择题
1.(2018
全国卷Ⅱ)已知
F1
,F2
是椭圆
C:x a
2 2
+
y2 b2
= 1 (a
b 0) 的左,右焦点,A 是 C

左顶点,点 P 在过 A 且斜率为
uuur | FB | 成等差数列,并求该数列的公差.
23.(2018 天津)设椭圆
x2 a2
+
x2 b2
=1(a
b
0 )的左焦点为 F
,上顶点为 B
.已知椭圆的离
心率为 5 ,点 A 的坐标为 (b, 0) ,且 FB AB = 6 2 . 3
(1)求椭圆的方程;
(2)设直线 l : y = kx(k 0) 与椭圆在第一象限的交点为 P ,且 l 与直线 AB 交于点 Q .
A、B 两点.若 AB 的中点坐标为(1,-1),则 E 的方程为
A.4x52 +3y62 =1
B.3x62 +2y72 =1
C.2x72 +1y82 =1
D.1x82 +y92=1
9.(2012
新课标)设 F1 、 F2 是椭圆 E

x2 a2
+
y2 b2
= 1(a
b 0) 的左、右焦点, P
为直线
x
=
3a 2
上一点,
F2 PF1
是底角为 30o 的等腰三角形,则 E 的离心率为
A、 1 2

十年真题(2010_2019)高考数学真题分类汇编专题10平面解析几何选择填空题文(含解析)

十年真题(2010_2019)高考数学真题分类汇编专题10平面解析几何选择填空题文(含解析)

∪[4,+∞) 【解答】解:假设椭圆的焦点在 x 轴上,则 0<m<3 时,
C.(0,1]∪[4,+∞) D.(0, ]
设椭圆的方程为:
(a>b>0),设 A(﹣a,0),B(a,0),M(x,y),y>0,
则 a2﹣x2

∠MAB=α,∠MBA=β,∠AMB=γ,tanα
,tanβ

则 tanγ = tan[π ﹣ ( α+β ) ] = ﹣ tan ( α+β )

∴e

故选:D. 2.【2019 年新课标 1 文科 12】已知椭圆 C 的焦点为 F1(﹣1,0),F2(1,0),过 F2 的直线与 C 交于 A,B 两点.若|AF2|=2|F2B|,|AB|=|BF1|,则 C 的方程为( )
A. y2=1
B.
1
C.
1
D.
1
【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|, 又|AB|=|BF1|,∴|BF1|=3|BF2|,
∴△APF 的面积 S 丨 AP 丨×丨 PF 丨 ,
3
同理当 y<0 时,则△APF 的面积 S , 故选:D.
5.【2017 年新课标 1 文科 12】设 A,B 是椭圆 C:
1 长轴的两个端点,若 C 上存在点 M 满足∠AMB
=120°,则 m 的取值范围是(

A.(0,1]∪[9,+∞) B.(0, ]∪[9,+∞)
1 的右焦点,P 是 C 上一点,且 PF 与 x 轴垂直,
点 A 的坐标是(1,3),则△APF 的面积为(

A.
B.
C.
D.
【解答】解:由双曲线 C:x2

十年真题(2010_2019)高考数学真题分类汇编专题11平面解析几何选择填空题理(含解析)

十年真题(2010_2019)高考数学真题分类汇编专题11平面解析几何选择填空题理(含解析)

专题11平面解析几何选择填空题历年考题细目表题型年份考点试题位置单选题2019 椭圆2019年新课标1理科10单选题2018 抛物线2018年新课标1理科08单选题2018 双曲线2018年新课标1理科11单选题2017 抛物线2017年新课标1理科10单选题2016 双曲线2016年新课标1理科05单选题2016 抛物线2016年新课标1理科10单选题2015 双曲线2015年新课标1理科05单选题2014 双曲线2014年新课标1理科04单选题2014 抛物线2014年新课标1理科10单选题2013 双曲线2013年新课标1理科04单选题2013 椭圆2013年新课标1理科10单选题2012 椭圆2012年新课标1理科04单选题2012 双曲线2012年新课标1理科08单选题2011 双曲线2011年新课标1理科07单选题2010 双曲线2010年新课标1理科12填空题2019 双曲线2019年新课标1理科16填空题2017 双曲线2017年新课标1理科15填空题2015 圆的方程2015年新课标1理科14填空题2011 椭圆2011年新课标1理科14填空题2010 圆的方程2010年新课标1理科15历年高考真题汇编1.【2019年新课标1理科10】已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B 两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.y2=1 B. 1C. 1 D. 1【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|,∴|AF2|=a,|BF1|a,在Rt△AF2O中,cos∠AF2O,在△BF1F2中,由余弦定理可得cos∠BF2F1,根据cos∠AF2O+cos∠BF2F1=0,可得0,解得a2=3,∴a.b2=a2﹣c2=3﹣1=2.所以椭圆C的方程为:1.故选:B.2.【2018年新课标1理科08】设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•()A.5 B.6 C.7 D.8【解答】解:抛物线C:y2=4x的焦点为F(1,0),过点(﹣2,0)且斜率为的直线为:3y=2x+4,联立直线与抛物线C:y2=4x,消去x可得:y2﹣6y+8=0,解得y1=2,y2=4,不妨M(1,2),N(4,4),,.则•(0,2)•(3,4)=8.故选:D.3.【2018年新课标1理科11】已知双曲线C:y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2D.4【解答】解:双曲线C:y2=1的渐近线方程为:y,渐近线的夹角为:60°,不妨设过F(2,0)的直线为:y,则:解得M(,),解得:N(),则|MN|3.故选:B.4.【2017年新课标1理科10】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|•|y1﹣y2|8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为θ,根据焦点弦长公式可得|AB||DE|∴|AB|+|DE|,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A.5.【2016年新课标1理科05】已知方程1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.6.【2016年新课标1理科10】以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|,|ON|,x A,|OD|=|OA|,5,解得:p=4.C的焦点到准线的距离为:4.故选:B.7.【2015年新课标1理科05】已知M(x0,y0)是双曲线C:1上的一点,F1,F2是C的左、右两个焦点,若0,则y0的取值范围是()A.B.C.D.【解答】解:由题意,(x0,﹣y0)•(x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以y0.故选:A.8.【2014年新课标1理科04】已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3 C.m D.3m【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为0,∴点F到C的一条渐近线的距离为.故选:A.9.【2014年新课标1理科10】已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若4,则|QF|=()A.B.3 C.D.2【解答】解:设Q到l的距离为d,则|QF|=d,∵4,∴|PQ|=3d,∴不妨设直线PF的斜率为2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.10.【2013年新课标1理科04】已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y B.y C.y=±x D.y【解答】解:由双曲线C:(a>0,b>0),则离心率e,即4b2=a2,故渐近线方程为y=±x x,故选:D.11.【2013年新课标1理科10】已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,.∴,化为a2=2b2,又c=3,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.12.【2012年新课标1理科04】设F1、F2是椭圆E:1(a>b>0)的左、右焦点,P为直线x 上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x上一点∴∴故选:C.13.【2012年新课标1理科08】等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4 D.8【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得4,∴a=2,2a=4.故选:C.14.【2011年新课标1理科07】设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为()A.B.C.2 D.3【解答】解:不妨设双曲线C:,焦点F(﹣c,0),对称轴y=0,由题设知,,∴,b2=2a2,c2﹣a2=2a2,c2=3a2,∴e.故选:B.15.【2010年新课标1理科12】已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得,从而k 1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选:B.16.【2019年新课标1理科16】已知双曲线C:1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若,•0,则C的离心率为.【解答】解:如图,∵,且•0,∴OA⊥F1B,则F1B:y,联立,解得B(,),则,,∴4c2,整理得:b2=3a2,∴c2﹣a2=3a2,即4a2=c2,∴,e.故答案为:2.17.【2017年新课标1理科15】已知双曲线C:1(a>0,b>0)的右顶点为A,以A为圆心,b 为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【解答】解:双曲线C:1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:b cos30°,可得:,即,可得离心率为:e.故答案为:.18.【2015年新课标1理科14】一个圆经过椭圆1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.【解答】解:一个圆经过椭圆1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a,圆的半径为:,所求圆的方程为:(x)2+y2.故答案为:(x)2+y2.19.【2011年新课标1理科14】在平面直角坐标系xOy,椭圆C的中心为原点,焦点F1F2在x轴上,离心率为.过F1的直线交于A,B两点,且△ABF2的周长为16,那么C的方程为.【解答】解:根据题意,△ABF2的周长为16,即BF2+AF2+BF1+AF1=16;根据椭圆的性质,有4a=16,即a=4;椭圆的离心率为,即,则a c,将a c,代入可得,c=2,则b2=a2﹣c2=8;则椭圆的方程为1;故答案为:1.20.【2010年新课标1理科15】过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则(4﹣a )2+(1﹣b )2=r 2,(2﹣a )2+(1﹣b )2=r 2,1,解得a =3,b =0,r,故所求圆的方程为(x ﹣3)2+y 2=2.故答案为:(x ﹣3)2+y 2=2.考题分析与复习建议本专题考查的知识点为:直线方程、圆的方程,直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线,曲线与方程等.历年考题主要以选择填空题型出现,重点考查的知识点为:直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等,预测明年本考点题目会比较稳定,备考方向以知识点直线与圆、圆与圆的位置关系,椭圆、双曲线、抛物线及其性质,直线与圆锥曲线等为重点较佳. 最新高考模拟试题1.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若3AF FB =u u u r u u u r,则该双曲线的离心率为( )A 5B 6C 23D 3【答案】A 【解析】由题意得直线l 的方程为bx y c a=+,不妨取1a =,则x by c =+,且221b c =-. 将x by c =+代入2221y x b-=,得()4234120b y b cy b -++=.设()11,A x y ,()22,B x y ,则312421b c y y b +=--,41241b y y b =-.由3AF FB u u u r u u u r =,得123y y =-,所以324422422131b c y b by b ⎧-=-⎪⎪-⎨⎪-=⎪-⎩,得22431b c b =-,解得214b =,所以2c ===2c e a ==,故选A 。

2010-2019“十年高考”数学真题分类汇总 直线与圆 (可下载)

2010-2019“十年高考”数学真题分类汇总 直线与圆 (可下载)

2010-2019“十年高考”数学真题分类汇总解析几何——直线与圆(附详细答案解析)1.(2019北京文8)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β。

图中阴影区域的面积的最大值为(A )4β+4cos β(B )4β+4sin β(C )2β+2cos β(D )2β+2sin β【答案】(B).【解析】由题意和题图可知,当P 为优弧 AB 的中点时,阴影部分的面积取最大值,设圆心为O ,2AOB β∠=,()1222BOP AOP ββ∠=∠=π-=π-.此时阴影部分面积BOP AOP AOB S S S S ∆∆++=扇形()⎥⎦⎤⎢⎣⎡-⨯⨯⨯⨯+⨯⨯=βπβsin 2221222212ββsin 44+=.故选B.2.(2019北京文11)设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【答案】()2214x y -+=.【解析】24y x =的焦点为()1,0,准线为1x =-,故符合条件的圆为()2214x y -+=.3.(2019江苏18)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.'因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==.所以12154cos 5BD PB PBD ===∠.因此道路PB的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,联结AD,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当︒<∠90OBP 时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当︒≥∠90OBP 时,对线段PB 上任意一点F ,OB OF ≥,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=;当∠OBP >90°时,在1PPB △中,115PB PB >=.由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ==此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3.因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (−4,−3),直线AB 的斜率为34.因为PB ⊥AB ,所以直线PB 的斜率为43-,∴直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==.因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,联结AD ,由(1)知D (−4,9),又A (4,3),所以线段AD :36(44)4y x x =-+- .在线段AD 上取点M (3,154),因为5OM =,所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9);当∠OBP >90°时,在1PPB △中,115PB PB >=.由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+因此,d 最小时,P ,Q 两点间的距离为17+4.(2019浙江12)已知圆C 的圆心坐标是(0,)m ,半径长是r 。

理科数学2010-2019高考真题分类训练专题九解析几何第二十八讲抛物线

理科数学2010-2019高考真题分类训练专题九解析几何第二十八讲抛物线

专题九 解析几何第二十八讲 抛物线2019年1.(2019全国II 理8)若抛物线y 2=2p (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .82.(2019北京理18(1))已知抛物线2:2C x py =-经过点(2,-1).求抛物线C 的方程及其准线方程;3.(2019全国I 理19)已知抛物线C :y 2=3的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与轴的交点为P . (1)若4AF BF +=,求l 的方程;(2)若3AP PB =uu u r uu r,求AB .4. (2019全国III 理21)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.2010-2018年一、选择题1.(2018全国卷Ⅰ)设抛物线C :24=y x 的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则⋅u u u u r u u u r FM FN =A .5B .6C .7D .82.(2017新课标Ⅰ)已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则||||AB DE +的最小值为A .16B .14C .12D .103.(2016年四川)设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为A .3 B .23C .22D .1 4.(2016年全国I)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E两点.已知||AB =42,||DE =25,则C 的焦点到准线的距离为 A .2 B .4 C .6 D .85.(2015浙江)如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是A .11BF AF -- B .2211BF AF -- C .11BF AF ++ D .2211BF AF ++6.(2015四川)设直线l 与抛物线24y x =相交于,A B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24,7.(2014新课标1)已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =u u u r u u u r,则||QF =A .72 B .52C .3D .2 8.(2014新课标2)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30°的直线交C于,A B 两点,O 为坐标原点,则△OAB 的面积为( )A B C .6332 D .949.(2014辽宁)已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4310.(2013新课标1)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =POF ∆的面积为( )A .2B .C .D .411.(2013江西)已知点()2,0A ,抛物线2:4C x y =的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则||:||FM MN =A .B .12C .1D .1312.(2012新课标)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A 、B 两点,34||=AB ,则C 的实轴长为 A 、2B 、22C 、4D 、813.(2012山东)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为A .2x y =B .2x y =C .28x y =D .216x y = 14.(2011新课标)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为A .18B .24C .36D .48 二、填空题15.(2018全国卷Ⅲ)已知点(1,1)M -和抛物线C :24y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=o,则k =______.16.(2017新课标Ⅱ)已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则||FN = .17.(2015陕西)若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p =18.(2014湖南)如图4,正方形ABCD DEFG 和正方形的边长分别为,()a b a b <,原点O 为AD 的中点,抛物线22(0)y px p =>经过,bC F a=两点,则 .19.(2013北京)若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 . 20.(2012陕西)右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.21.(2010浙江)设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B在抛物线上,则B 到该抛物线准线的距离为_____________. 三、解答题22.(2018北京)已知抛物线C :22y px =经过点(1,2)P .过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=u u u u r u u u r ,QN QO μ=u u u r u u u r ,求证:11λμ+为定值.23.(2018全国卷Ⅱ)设抛物线24=:C y x 的焦点为F ,过F 且斜率为(0)>k k 的直线l与C 交于A ,B 两点,||8=AB .(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.24.(2018浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :24y x =上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆2214y x +=(0x <)上的动点,求PAB ∆面积的取值范围. 25.(2017新课标Ⅲ)已知抛物线C :22y x =,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点(4,2)P -,求直线l 与圆M 的方程.26.(2017浙江)如图,已知抛物线2x y =.点11(,)24A -,39(,)24B ,抛物线上的点(,)P x y 13()22x -<<,过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围;(Ⅱ)求||||PA PQ ⋅的最大值.27.(2017北京)已知抛物线C :22y px =过点(1,1)P .过点1(0,)2作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.28.(2016年全国III)已知抛物线C :22y x =的焦点为F ,平行于轴的两条直线1l ,2l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(Ⅱ)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.29.(2015新课标1)在直角坐标系xoy 中,曲线C :24x y =与直线y kx a =+(0)a >交与M ,N 两点,(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 30.(2014山东)已知抛物线)>0(2:2p px y C =的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有FA FD =,当点A 的横坐标为3时,ADF ∆为正三角形。

理科数学2010-2019高考真题分类训练专题九解析几何第二十八讲抛物线答案

理科数学2010-2019高考真题分类训练专题九解析几何第二十八讲抛物线答案

专题九 解析几何第二十八讲 抛物线答案部分2019年1.D 解析 由题意可得:232p p p ⎛⎫-= ⎪⎝⎭,解得8p =.故选D . 2.解析(I )由抛物线2:2C x py =-经过点()2,1-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =. 3.解析 设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x ⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-.所以l 的方程为3728y x =-. (2)由3AP PB =uu u r uu r可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||AB =.4.解析(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- ,整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=.所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E到直线AB的距离,则12d d ==因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t=±时,S =因此,四边形ADBE的面积为3或.2010-2018年1.D 【解析】通解 过点(2,0)-且斜率为23的直线的方程为2(2)3=+y x ,由22(2)34⎧=+⎪⎨⎪=⎩y x y x,得2540-+=x x ,解得1=x 或4=x ,所以12=⎧⎨=⎩x y ,或44=⎧⎨=⎩x y ,不妨设(1,2)M ,(4,4)N ,易知(1,0)F ,所以(0,2)=u u u u r FM ,(3,4)=u u u rFN ,所以8⋅=u u u u r u u u rFM FN .故选D .优解 过点(2,0)-且斜率为23的直线的方程为2(2)3=+y x ,由22(2)34⎧=+⎪⎨⎪=⎩y x y x,得2540-+=x x ,设11(,)M x y ,22(,)N x y ,则10>y ,20>y ,根据根与系数的关系,得125+=x x ,124=x x .易知(1,0)F ,所以11(1,)=-u u u u r FM x y ,22(1,)=-u u u rFN x y ,所以12121212(1)(1)()1⋅=--+=-+++u u u u r u u u rFM FN x x y y x x x x 45188=-++=.故选D .2.A 【解析】由已知1l 垂直于x 轴是不符合题意,所以1l 的斜率存在设为1k ,2l 的斜率为2k ,由题意有121k k ⋅=-,设11(,)A x y ,22(,)B x y ,33(,)D x y ,44(,)E x y 此时直线1l 方程为1(1)y k x =-,取方程214(1)y x y k x ⎧=⎨=-⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=-212124k k +=同理得 22342224k x x k ++= 由抛物线定义可知1234||||2AB DE x x x x p +=++++22122222121224244448816k k k k k k ++=++=++=≥当且仅当121k k =-=(或1-)时,取得等号.3.C 【解析】设()()22,2,,P pt pt M x y (不妨设0t >),则22,22p FP pt pt ⎛⎫=- ⎪⎝⎭u u u r ,∵13FM FP =u u u u r u u u r ,∴22,2362,3p p p x t pt y ⎧-=-⎪⎪⎨⎪=⎪⎩,∴22,332,3p p x t pt y ⎧=+⎪⎪⎨⎪=⎪⎩∴22112122OM t k t t t ==≤=++∴max ()2OM k =,故选C . 4.B 【解析】由题意,不妨设抛物线方程为22(0)y px p =>,由||AB =,||DE =4(A p,(2pD -,设O 为坐标原点,由||||OA OD =,得2216854p p +=+,得4p =,所以选B . 5.A 【解析】如图,11--===∆∆AF BF x x AC BC S S A B ACF BCF ,故选A . 6.D 【解析】当直线l 的斜率不存在时,这样的直线l 恰好有2条,即5x r =±,所以05r <<;所以当直线l 的斜率存在时,这样的直线l 有2条即可.设11(,)A x y ,22(,)B x y ,00(,)M x y ,则12012022x x x y y y +=⎧⎨+=⎩.又21122244y x y x ⎧=⎨=⎩,两式相减得121212()()4()y y y y x x +-=-,121212042AB y y k x x y y y -===-+.设圆心为(5,0)C ,则005CM y k x =-,因为直线l 与圆相切,所以000215y y x ⋅=--, 解得03x =,于是2204y r =-,2r >,又2004y x <,即2412r -<,所以04r <<,又05r <<,2r >所以24r <<,选D .7.C 【解析】过点Q 作QQ l '⊥交l 于点Q ',因为4PF FQ =u u u r u u u r,所以||:||3:4PQ PF =,又焦点F 到准线l 的距离为4,所以||||3QF QQ '==.故选C .8.D 【解析】易知抛物线中32p =,焦点3(,0)4F ,直线AB 的斜率k =故直线AB 的方程为3)4y x =-,代人抛物线方程23y x =,整理得22190216x x -+=. 设1122(,),(,)A x y B x y ,则12212x x +=,由物线的定义可得弦长 12||12AB x x p =++=,结合图象可得O 到直线AB 的距离3sin 3028p d ==o , 所以OAB ∆的面积19||24S AB d =⋅=. 9.D 【解析】∵(2,3)A -在抛物线22y px =的准线上,∴22p-=-.∴4p =, ∴28y x =,设直线AB 的方程为(3)2x k y =--①,将①与28y x =联立, 得2824160y ky k -++=②,则△=2(8)4(2416)0k k --+=, 即22320k k --=,解得2k =或12k =-(舍去), 将2k =代入①②解得8,8x y ==,即(8,8)B , 又(2,0)F ,∴43BF k =,故选D .10.C 【解析】∵OF =,由抛物线的定义可得P 点的坐标(±,∴POF ∆的面积为1122P OF y ==.11.C 【解析】依题意可得AF 所在直线方程为12xy +=代入24x y =得y =,又||:||(1):(1)1:FM MN y y =-+=12.C 【解析】设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=13.D 【解析】因为双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2,所以2.cb a=⇒=又渐近线方程为0,bx ay ±=所以双曲线1C 的渐近线0.y ±=而抛物22:2(0)C x py p =>的焦点坐标为(0,),2p||28p p =⇒=.故选D . 14.C 【解析】设抛物线的方程为22y px =,易知||212AB p ==,即6p =,∵点P 在准线上,∴P 到AB 的距离为6p =,所以ABP ∆面积为36,故选C . 15.2【解析】解法一 由题意知抛物线的焦点为(1,0),则过C 的焦点且斜率为k 的直线方程为(1)y k x =-(0)k ≠,由2(1)4y k x y x=-⎧⎨=⎩,消去y 得22(1)4k x x -=, 即2222(24)0k x k x k -++=,设11(,)A x y ,22(,)B x y ,则212224k x x k ++=,121x x =.由2(1)4y k x y x=-⎧⎨=⎩,消去x 得214(1)y y k =+, 即2440y y k --=,则124y y k+=,124y y =-, 由90AMB ∠=o,得1122(1,1)(1,1)MA MB x y x y ⋅=+-⋅+-u u u r u u u r1212121241()10x x x x y y y y =++++-++=,将212224k x x k ++=,121x x =与124y y k+=,124y y =-代入,得2k =. 解法二 设抛物线的焦点为F ,11(,)A x y ,22(,)B x y ,则21122244y x y x ⎧=⎨=⎩,所以2212124()y y x x -=-,则1212124y y k x x y y -==-+,取AB 的中点00(,)M x y ',分别过点A ,B 做准线1x =-的垂线,垂足分别为A ',B ',又90MB ∠=o,点M 在准线1x =-上,所以111||||(||||)(||||)222MM AB AF BF AA BB '''==+=+. 又M '为AB 的中点,所以MM '平行于x 轴,且01y =,所以122y y +=, 所以2k =.16.6【解析】如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点F',作MB l ⊥与点B ,NA l ⊥与点A ,由抛物线的解析式可得准线方程为2x =-,则2,4AN FF'==,在直角梯形ANFF'中,中位线'32AN FF BM +==,由抛物线的定义有:3MF MB ==,结合题意,有3MN MF ==, 故336FN FM NM =+=+=.17.22y px =的准线方程为2p x =-,又0p >,所以2px =-必经过双曲线221x y -=的左焦点(,所以2p-=,p = 18.1BC CD =,结合抛物线的定义得点D 为抛物线的焦点,所以||AD p a ==,(,0)2p D ,(,)2pF b b +,将点F 的坐标代入抛物线的方程得222()22p b p b a ab =+=+,变形得22()10b b a a--=,解得1b a =+1b a =,所以1b a=19.2,1x =-【解析】1,22p p ==;准线12px =-=-.20.62【解析】建立直角坐标系,使拱桥的顶点O 的坐标为(0,0),设抛物线的方程为22x py =-,l 与抛物线的交点为A 、B ,根据题意知(2,2)A --,(2,2)B - 则有()222-⨯=-a ,∴21-=a∴抛物线的解析式为221x y -= 水位下降1米,则3y =-,此时有6=x 或6-=x∴此时水面宽为62米.21.4【解析】利用抛物线的定义结合题设条件可得出p 的值为2,B 点坐标为(142,)所以点B22.【解析】(1)因为抛物线22y px =经过点(1,2)P ,所以42p =,解得2p =,所以抛物线的方程为24y x =. 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为1y kx =+(0k ≠).由241y x y kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得0k <或01k <<. 又PA ,PB 与y 轴相交,故直线l 不过点(1,2)-.从而3k ≠-. 所以直线l 斜率的取值范围是(,3)(3,0)(0,1)-∞--U U . (2)设11(,)A x y ,22(,)B x y . 由(1)知12224k x x k -+=-,1221x x k=. 直线PA 的方程为1122(1)1y y x x --=--. 令0x =,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-.由=QM QO λuuu r uuu r ,=QN QO μuuu r uuu r得=1M y λ-,1N y μ=-.所以1212121212112()1111111(1)(1)1M N x x x x x x y y k x k x k x x λμ---++=+=+=⋅-----2222241=211k k k k k -+=⋅-. 所以11λμ+为定值.23.【解析】(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B ,由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=. 由题设知22448k k +=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--, 即5y x =-+.设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.24.【解析】(1)设00(,)P x y ,211(,)4y A y ,222(,)4y B y .因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程221014()422y x y y ++=⋅即2210100280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴.(2)由(1)可知1202120028y y y y y x y +=⎧⎨=-⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB ∆的面积32212001||||4)2PABS PM y y y x ∆=⋅-=-. 因为220014y x +=0(0)x <,所以2200004444[4,5]y x x x -=--+∈. 因此,PAB ∆面积的取值范围是4. 25.【解析】(1)设()A x ,y 11,()B x ,y 22,l :2x ym =+由222x my y x=+⎧⎨=⎩可得y my --=2240,则y y =-124 又y x 211=2,y x 222=2,故()y y x x 21212=4=4因此OA 的斜率与OB 的斜率之积为y y x x ⋅1212-4==-14,所以OA OB ⊥. 故坐标原点O 在圆M 上.(2)由(1)可得y y m 12+=2,()x x m y y m +21212+=++4=24故圆心M 的坐标为()m m 2+2,,圆M 的半径r =由于圆M 过点(4,2)P -,因此0AP BP =u u u r u u u rg ,故()()()()121244++2+2=0x x y y -- 即()()x x x x y y y y -++++=121212124+2200由(1)可得y y 12=-4,x x 12=4. 所以2m m --=210,解得m =1或m =-12. 当1m =时,直线l 的方程为20x y --=,圆心M 的坐标为(3,1),圆M的半径为M 的方程为()()x y -+-=223110当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91(,)42-,圆M 的半径为4,圆M 的方程为229185()()4216x y -++=. 26.【解析】(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+, 因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-。

理科数学2010-2019高考真题分类训练专题九解析几何第二十九讲曲线与方程答案

理科数学2010-2019高考真题分类训练专题九解析几何第二十九讲曲线与方程答案

专题九 解析几何第二十九讲 曲线与方程答案部分1. 由221x y x y +=+可得221y x y x -=-.配方得2230241x x y ⎛⎫-≥ ⎪ ⎪⎝⎭-=,解得234x ≤.所以x 可取的整数值为-1,0,1,则曲线经过()()()()()()1,0,1,1,0,1,0,1,1,0,1,1,----这6个整点,结论①正确;当>0时,由221x y xy +=+得222212x y x y xy ++-=≤(当=y 时取等号),所以222x y +≤,所以222x y +≤,即曲线C 上y 轴右边的点到原点的距离不超过2,结论②正确;根据对称性可得:曲线C 上任意一点到原点的距离都不超过2;故②正确.如图所示,()()()()0,1,1,0,1,1,0,1A B C D -13111122ABCD S =⨯⨯+⨯=, 根据对称性可知23ABCD S S >=心形. 即心形区域的面积大于3,故③错误. 正确结论为①②. 故选C .2.解析 设椭圆的右焦点为F ',连接PF ', 线段PF 的中点A 在以原点O 为圆心,2为半径的圆, 连接AO ,可得24PF AO '==,设P 的坐标为(m,n ),可得2343m -=,可得32m =-,152n =,由(2,0)F -,可得直线PF 的斜率为15215322=-+.3.解析 (1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥轴,所以DF 2222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥轴,所以点A 的横坐标为1. 将=1代入圆F 2的方程(-1) 2+y 2=16,解得y =±4. 因为点A 在轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2+2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-,因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-. 由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图所示,联结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥轴,所以EF 1⊥轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --. 4. 解析(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- ,整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.5.解析(I )由抛物线2:2C x py =-经过点()2,1-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =. (II )抛物线C 的焦点为()0,1-,设直线l 的方程为()10y kx k =-≠.由241x y y kx ⎧=-⎨=-⎩,得2440x kx +-=. 设()()1122,,,,Mx y N x y 则124x x=-.直线OM 的方程为11y y x x =,令1y =-,得点A 的横坐标为11A x x y =- 同理可得点B 的横坐标22B x x y =-. 设点()0,Dn ,则()()2212122212121144x x x x DA DB n n y yx x ⋅=++=++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭uu u r uu u r()()221216141n n x x =++=-++. 令0,DA DB ⋅=uu u r uu u r 即()2410n -++=,得1n =或3n =-.综上,以AB 为直径的圆经过y 轴上的定点()()0,10,-3和.6.解析(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-.由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uk y k =+.从而直线PG 的斜率为322212(32)2uk uk k u k ku k-+=-+-+. 所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =22||2PG k =+, 所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =+1k,则由>0得t ≥2,当且仅当=1时取等号.因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即=1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169.7.解析 (I )由题意得12p=,即p =2.所以,抛物线的准线方程为=−1.(Ⅱ)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得 ()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在轴上,故220c t y t-+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A c t t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-. 令22m t =-,则m >0,122122213434S m S m m m m =-=-=+++++…当m =12S S取得最小值1+,此时G (2,0).8.解析 (Ⅰ)设椭圆的半焦距为c ,依题意,24,5c b a ==,又222a b c =+,可得a =,2,b =1c =.所以,椭圆的方程为22154x y +=. (Ⅱ)由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222154y kx x y =+⎧⎪⎨+=⎪⎩,整理得()2245200k x kx ++=,可得22045P kx k =-+,代入2y kx =+得2281045P k y k -=+,进而直线OP 的斜率24510P p y k x k-=-.在2y kx =+中,令0y =,得2M x k =-.由题意得()0,1N -,所以直线MN 的斜率为2k -.由OP MN ⊥,得2451102k k k-⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而k =±所以,直线PB的斜率为5或5-. 2010-2018年1.【解析】(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)44364(48)20x x y y y x =--+-=-=∆. 因为00,0x y >,所以001x y ==. 因此,点P的坐标为. ②因为三角形OAB,所以1 2AB OP ⋅=AB . 设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为2.综上,直线l的方程为y =+2.【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-u u u r ,0(0.)NM y =u u u u r.由NP =u u u r u u u r得 0x x =,02y y =. 因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-u u u r ,(1,)PF m n =---u u u r ,33OQ PF m tn ⋅=+-u u u r u u u r, (,)OP m n =u u u r ,(3,)PQ m t n =---u u u r,由1OP PQ ⋅=u u u r u u u r 得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以0OQ PF ⋅=u u u r u u u r ,即OQ PF ⊥u u u r u u u r.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .3.【解析】(Ⅰ) 由离心率是23,有224=b a ,又抛物线y x 2=2的焦点坐标为)21,0(F ,所以21=b ,于是1=a ,所以椭圆C 的方程为1=4+22y x .(Ⅱ) (i )设P 点坐标为2,),(0)2m Pm m >(, 由y x 2=2得x y =′,所以E 在点P 处的切线l 的斜率为m , 因此切线l 的方程为2=2m mx -y ,设),(),,(2211y x B y x A ,),(00y x D ,将2=2m mx -y 代入1=4+22y x ,得0=1+4)4+12322-m x m -x m (.于是23214+14=+m m x x ,232104+12=2+=m m x x x , 又2200222(14)m m y mx m -=-=+, 于是 直线OD 的方程为x m-y 41=. 联立方程x m -y 41=与m x =,得M 的坐标为1(,)4M m -. 所以点M 在定直线41=y -上.(ii )在切线l 的方程为2=2m mx -y 中,令0x =,得22m y =-,即点G 的坐标为2(0,)2m G -,又2(,)2m P m ,1(0,)2F , 所以4)1+(=×21=S 21m m GF m ;再由32222(,)412(41)m m D m m -++,得 )1+4(8)1+2(=1+4+2×41+2×21=S 2222322m m m m m m m于是有 222221)1+2()1+)(1+4(2=S S m m m . 令1+2=2m t ,得222111+2=)1+)(21(2=S S t -t t t t - 当21=1t 时,即2=t 时,21S S 取得最大值49.此时21=2m ,22=m ,所以P 点的坐标为)41,22P(. 所以21S S 的最大值为49,取得最大值时点P的坐标为1()24P . 4.【解析】(Ⅰ)设(,0)F c ,由113||||||c OF OA FA +=,即113()cc a a a c +=-, 可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=. (Ⅱ)解:设直线l 的斜率为k (0≠k ),则直线l 的方程为)2(-=x k y .设),(B B y x B ,由方程组⎪⎩⎪⎨⎧-==+)2(13422x k y y x ,消去y , 整理得0121616)34(2222=-+-+k x k x k .解得2=x ,或346822+-=k k x ,由题意得346822+-=k k x B ,从而34122+-=k ky B . 由(Ⅰ)知,)0,1(F ,设),0(H y H ,有),1(H y FH -=,)3412,3449(222++-=k kk k BF . 由HF BF ⊥,得0=⋅,所以034123449222=+++-k ky k k H,解得k k y H 12492-=.因此直线MH 的方程为kk x k y 124912-+-=.设),(M M y x M ,由方程组⎪⎩⎪⎨⎧-=-+-=)2(124912x k y k k x k y 消去y ,解得)1(1292022++=k k x M . 在MAO ∆中,||||MO MA MAO MOA ≤⇔∠≤∠,即2222)2(M M M M y x y x +≤+-,化简得1≥M x ,即1)1(1292022≥++k k ,解得46-≤k 或46≥k . 所以,直线l 的斜率的取值范围为),46[]46,(+∞--∞Y . 5.【解析】(I )设11(,)M x y ,则由题意知10y >.当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,, 由已知及椭圆的对称性知,直线AM 的倾斜角为4π. 因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=. 解得0y =或127y =,所以1127y =. 所以AMN △的面积为21112121442227749AMN S AM ∆==⨯⨯⨯=. (Ⅱ)由题意知3,0,(t k A >>,则直线AM的方程为(y k x =+,联立(2213x y t y k x ⎧+=⎪⎨⎪=+⎩并整理得,()222223230tk x x t k t +++-=解得x t=-或23t tk t x-=-,所以2223611t tk t tAM k t k-=+-+=+⋅由题意MA NA⊥,所以AN的方程为1()y x tk=-+,同理可得26(1)||k t kAN+=由2AM AN=,得22233ktk k t=++,即3(2)3(21)k t k k-=-当32k=时上式成立,因此23632k ktk-=-.因为3t>,即236332k kk->-,整理得()()23122k kk+-<-即322kk-<-,解得322k<<.6.【解析】(Ⅰ)设点(,0)D t(||2)t≤,00(,),(,)N x y M x y,依题意,2MD DN=u u u u r u u u r,且||||1DN ON==u u u r u u u r,所以00(,)2(,)t x y x t y--=-,且22002200()11x t yx y⎧-+=⎪⎨+=⎪⎩即0222t x x ty y-=-⎧⎨=-⎩,且(2)0t t x-=.由于当点D不动时,点N也不动,所以t不恒等于0,于是2t x=,故00,42x yx y==-,代入22001x y+=,可得221164x y+=,即所求的曲线C的方程为221164x y+=.(Ⅱ)(1)当直线l的斜率不存在时,直线l为4x=或4x=-,都有14482OPQS∆=⨯⨯=.(2)当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22416y kx m x y =+⎧⎨+=⎩,消去y ,可得222(14)84160k x kmx m +++-=. 因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩ 可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ的距离为d =和|||P Q PQ x x -,可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-.② 将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--. 因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQ S k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.7.【解析】(1)由题意,得c a =且23a c c +=,解得a =1c =,则1b =,所以椭圆的标准方程为2212x y +=.(2)当AB ⊥x轴时,AB =C 3P =,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为()1y k x =-,()11,x y A ,()22,x y B ,将AB 的方程代入椭圆方程,得()()2222124210k x k x k +-+-=,则1,2x=C 的坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭,且)22112k ABk+===+.若0k=,则线段AB的垂直平分线为y轴,与左准线平行,不合题意.从而0k≠,故直线CP的方程为222121212k ky xk k k⎛⎫+=--⎪++⎝⎭,则P点的坐标为()22522,12kk k⎛⎫+⎪-⎪+⎝⎭,从而(()2223112kPCk k+=+.因为2PC AB=,所以(())222223111212k kkk k++=++,解得1k=±.此时直线AB方程为1y x=-或1y x=-+.8.【解析】(1)由已知,点在椭圆E上.因此,22222211,,a ba b cca⎧+=⎪⎪⎪-=⎨⎪⎪=⎪⎩解得2a=,b=.所以椭圆的方程为22142x y+=.(2)当直线l与x轴平行时,设直线l与椭圆相交于C、D两点.如果存在定点Q满足条件,则||||1||||QC PCQD PD==,即||||QC QD=.所以Q点在y轴上,可设Q点的坐标为0(0,)y.当直线l与x轴垂直时,设直线l与椭圆相交于M、N两点.则M,(0,N,由||||||||QM PMQN PN==,解得1y=或2y=.所以,若存在不同于点P的定点Q满足条件,则Q点的坐标只可能为(0,2)Q.下面证明:对任意的直线l,均有||||||||QA PAQB PB=.当直线l的斜率不存在时,由上可知,结论成立.当直线l的斜率存在时,可设直线l的方程为1y kx=+,A、B的坐标分别为1122(,),(,)x y x y .联立221,421x y y kx ⎧+=⎪⎨⎪=+⎩得22(21)420k x kx ++-=. 其判别式22168(21)0k k ∆=++>, 所以,12122242,2121k x x x x k k +=-=-++. 因此121212112x x k x x x x ++==. 易知,点B 关于y 轴对称的点的坐标为22(,)B x y '-.又121122122111,QA QB y y k k k k k x x x x x '--==-==-+=--, 所以QA QB k k '=,即,,Q A B '三点共线. 所以12||||||||||||||||x QA QA PA QB QB x PB ==='. 故存在与P 不同的定点(0,2)Q ,使得||||||||QA PA QB PB =恒成立. 9.【解析】(Ⅰ)由题意得2221,,2.b caa b c =⎧⎪⎪=⎨⎪⎪=+⎩解得2a =2.故椭圆C 的方程为2212x y +=. 设M (N x ,0).因为0m ≠,所以11n -<<. 直线PA 的方程为11n y x m--=,所以M x =1m n -,即(,0)1m M n-. (Ⅱ)因为点B 与点A 关于x 轴对称,所以(,)B m n -, 设(,0)N N x ,则N x =1mn+. “存在点(0,)Q Q y 使得OQM ∠=ONQ ∠等价”,“存在点(0,)Q Q y 使得OM OQ=OQ ON”即Q y 满足2Q M N y x x =.因为1M m x n =-,1N mx n=+,2212m n +=, 所以22221Q MN m y x x n ===-.所以Q y或Q y =.故在y 轴上存在点Q ,使得OQM ∠=ONQ ∠. 点Q的坐标为或(0,.10.【解析】(Ⅰ)由题意知0m ≠,可设直线AB 的方程为1y x b m=-+. 由22112y x b m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y ,得222112()102b x x b m m +-+-=.因为直线1y x b m=-+与椭圆2212x y +=有两个不同的交点, 所以224Δ220b m =-++>,① 设M 为AB 的中点,则2222(,)22mb m bM m m ++, 代入直线方程12y mx =+解得2222m b m +=-.②由①②得3m <-或3m >.(Ⅱ)令1((0,22t m =∈-U ,则2||2AB t =+,且O 到直线AB的距离21t d +=设ΔAOB 的面积为()S t ,所以1()||22S t AB d =⋅=, 当且仅当212t =时,等号成立. 故ΔAOB面积的最大值为2. 11.【解析】(Ⅰ)可知c =c a =,3a ∴=,2224b a c =-=,椭圆C 的标准方程为22194x y +=; (Ⅱ)设两切线为12,l l ,①当1l x ⊥轴或1//l x 轴时,对应2//l x 轴或2l x ⊥轴,可知(3,2)P ±±②当1l 与x 轴不垂直且不平行时,03x ≠±,设1l 的斜率为k ,则0k ≠,2l 的斜率为1k-,1l 的方程为00()y y k x x -=-,联立22194x y +=,得2220000(94)18()9()360k x y kx kx y kx ++-+--=,因为直线与椭圆相切,所以0∆=,得222200009()(94)[()4]0y kx k k y kx --+--=,2200364[()4]0k y kx ∴-+--=, 2220000(9)240x k x y k y ∴--+-=所以k 是方程2220000(9)240x x x y x y --+-=的一个根,同理1k-是方程2220000(9)240x x x y x y --+-=的另一个根,1()k k ∴⋅-=202049y x --,得220013x y +=,其中03x ≠±, 所以点P 的轨迹方程为2213x y +=(3x ≠±),因为(3,2)P ±±满足上式,综上知:点P 的轨迹方程为2213x y +=. 12.【解析】(Ⅰ)设圆的半径为r ,P 点上下两段分别为,m n ,24r =,由射影定理得2r mn =,三角形的面积s ==≥=当2m n ==时,s取得最大,此时P∵222cc b a a==+,P 在双曲线上 ∴222321c b a ===,,,∴双曲线的方程为22-12y x = (Ⅱ)由(Ⅰ)知2C的焦点为,由此设2C 的方程为22221113x y b b +=+,其中10b >,由P 在2C 上,得213b =,∴2C 的方程为22163x y +=, 显然,l 不是直线0y =,设l的方程为x my =+1122(,),(,)A x y B x y ,由22163x my x y ⎧=⎪⎨+=⎪⎩得22(2)-30m y ++=,∴121222-3,22y y y y m m+==++①11220(PA PB x y x y =•=u u u r21212(1))m y y m y y =++++由①②得220m +=,解得12,22m m ==因此直线l的方程02x y -=或02x y -= 13.【解析】(Ⅰ)由椭圆定义知,2a =|PF 1|+|PF 2|=,所以a =c =1.所以椭圆C的离心率2c e a ===. (Ⅱ)由(Ⅰ)知,椭圆C 的方程为22x +y 2=1.设点Q 的坐标为(,y ).(ⅰ)当直线l 与轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,此时点Q的坐标为0,2⎛ ⎝⎭. (ⅱ)当直线l 与轴不垂直时,设直线l 的方程为y =+2. 因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(1x ,1x +2),(2x ,2x +2), 则|AM |2=(1+2)21x ,|AN |2=(1+2)22x . 又|AQ |2=2+(y -2)2=(1+2)2x . 由222211||||||AQ AM AN =+,得 22222212211111k x k x k x =+(+)(+)(+), 即212122222212122211x x x x x x x x x (+)-=+=.① 将y =+2代入22x +y 2=1中,得(22+1)2+8+6=0.②由Δ=(8)2-4×(22+1)×6>0,得2>32. 由②可知,12x x +=2821k k -+,12x x =2621k +, 代入①中并化简,得2218103x k =-.③因为点Q 在直线y =+2上, 所以2y k x-=,代入③中并化简,得10(y -2)2-32=18. 由③及2>32,可知0<2<32,即∈2⎛⎫- ⎪ ⎪⎝⎭∪0,2⎛ ⎝⎭.又0,2⎛ ⎝⎭满足10(y -2)2-32=18,故∈⎛ ⎝⎭. 由题意,Q (,y )在椭圆C 内,所以-1≤y ≤1.又由10(y -2)2=18+32有(y -2)2∈99,54⎡⎫⎪⎢⎣⎭且-1≤y ≤1,则y∈1,22⎛ ⎝⎦. 所以,点Q 的轨迹方程为10(y -2)2-32=18,其中∈22⎛-⎝⎭,y∈1,225⎛- ⎝⎦. 14.【解析】(Ⅰ)解法1 :设M 的坐标为(,)x y ,由已知得23x +=,易知圆2C 上的点位于直线2x =-的右侧.于是20x +>,所以5x =+.化简得曲线1C 的方程为220y x =.解法2 :由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =.(Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4),y y k x -=+0即kx-y+y +4k=0.于是3.=整理得 2200721890.k y k y ++-= ①设过P 所作的两条切线,PA PC 的斜率分别为12,k k ,则12,k k 是方程①的两个实根,故001218.724y y k k +=-=- ② 由101240,20,k x y y k y x -++=⎧⎨=⎩得21012020(4)0.k y y y k -++= ③ 设四点A,B,C,D 的纵坐标分别为1234,,,y y y y ,则12,y y 是方程③的两个实根,所以0112120(4).y k y y k +⋅=④ 同理可得 0234220(4).y k y y k +⋅=⑤ 于是由②,④,⑤三式得 010*******400(4)(4)y k y k y y y y k k ++= 2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦= 22001212400[16]6400y y k k k k -+==. 所以,当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为定值6400.15.【解析】(Ⅰ)解:设12(,0),(,0)(0)F c F c c ->,由题意,可得212||||,PF F F =2.c = 整理得22()10,1cc c a a a +-==-得(舍),或1.2c a =所以1.2e =(Ⅱ)解:由(Ⅰ)知2,,a c b ==可得椭圆方程为2223412,x y c +=直线PF 2方程为).y x c =-A ,B两点的坐标满足方程组2223412,).x y c y x c ⎧+=⎪⎨=-⎪⎩消去y 并整理,得2580.x cx -= 解得1280,.5x x c ==得方程组的解21128,0,5,.x c x y y ⎧=⎪=⎧⎪⎪⎨⎨=⎪⎪⎩=⎪⎩不妨设8(),(0,)5A c B 设点M的坐标为8(,),(,),(,)5x y AM x c y BM x y =-=u u u u r u u u u r 则,由),.3y x c c x y =-=-得于是38(,),15555AM y x y x =--u u u u r().BM x =u u u u r 由2,AM BM ⋅=-u u u u r u u u u r即38()()215555y x x y x -⋅+-=-,化简得218150.x --=将22105,0.316x y c x y c x +==-=>得 所以0.x >因此,点M的轨迹方程是218150(0).x x --=>16.【解析】(1)联立2x y =与2+=x y 得2,1=-=B A x x ,则AB 中点)25,21(Q ,设线段PQ 的中点M 坐标为),(y x ,则225,221t y s x +=+=,即252,212-=-=y t x s ,又点P 在曲线C 上,∴2)212(252-=-x y 化简可得21128y x x =-+,又点P 是L 上的任一点,且不与点A 和点B 重合,则22121<-<-x ,即4541<<-x ,∴中点M的轨迹方程为21128y x x =-+(4541<<-x ). (2)曲线22251:24025G x ax y y a -+-++=, 即圆E :2549)2()(22=-+-y a x ,其圆心坐标为)2,(a E ,半径57=r , 设圆G 与直线l :20x y -+=相切于点(,)T T T x y ,75=,即5a =±. 过点(,2)N a 与直线l 垂直的直线l '的方程是21()y x a -=-⨯-,即20x y +-=. 由2020x y x y a -+=⎧⎨+--=⎩,解得2T a x =,22T a y =+.当5a =-时,1210T x -<<-<. ∵1,2-分别是D 上的点的最小和最大横坐标,∴切点T D ∈,故min 5a =-.。

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线答案

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线答案

专题九 解析几何第二十七讲 双曲线答案部分2019年1. 解析 双曲线22:142x y C -=的右焦点为(6,0)F ,渐近线方程为:2y x =±,不妨设点P 在第一象限,可得2tan POF ∠=,63(,)P ,所以PFO △的面积为: 13326224⨯⨯=.故选A . 2. 解析 因为双曲线2221(0)y x b b-=>经过点(3,4),所以221631b-=,解得22b =,即2b =. 又1a =,所以该双曲线的渐近线方程是2y x =±.3.解析 如图所示,因为1F A AB=uuu r uu u r,所以A 为1F B 的中点. 又O 为12F F 的中点,所以212AO BF P,212AO BF =. 因为120F B F B ⋅=uuu r uuu r,所以1290F BF ∠=︒, 且O 为12F F 的中点,所以12212OB F F OF c ===. 由212AO BF P得2121BOF AOF BF F ∠=∠=∠,所以2OB BF =, 因此2OPF △为等边三角形,260BOF ∠=︒,即渐近线的斜率为3,也即3ba=, 所以2212b e a=+=.4.A 解析:解法一:由题意,把2c x =代入222x y a +=,得2224c PQ a =-,再由PQ OF =,得2224ca c -=,即222a c =,所以222c a=,解得2c e a ==.故选A .解法二:如图所示,由PQ OF =可知PQ 为以OF 为直径圆的另一条直径,所以,22c c P ⎛⎫± ⎪⎝⎭,代入222x y a +=得222a c =, 所以222c a=,解得2c e a ==.故选A .解法三:由PQ OF =可知PQ 为以OF 为直径圆的另一条直径,则12222OP a OF c ===,2c e a ==故选A .5.解析 根据渐进线方程为0x y ±=的双曲线,可得a b =,所以2c a =,则该双曲线的离心率为2ce a==C . 6.解析 因为抛物线24y x =的焦点为F ,准线为l ,所以()1,0F ,准线l 的方程为1x =-.因为l 与双曲线()222210,0x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且4AB OF =(为原点),所以2b AB a =,1OF =,所以24b a=,即2b a =, 所以225c a b a =+=,所以双曲线的离心率为5ca==.故选D .2010-2018年1.B 【解析】由题可知双曲线的焦点在x 轴上,因为222314c a b =+=+=,所以2c =,故焦点坐标为(2,0)-,(2,0).故选B .2.B 【解析】因为双曲线2213-=x y的渐近线方程为=y x ,所以60∠=o MON .不妨设过点F的直线与直线=y x 交于点M ,由∆OMN 为直角三角形,不妨设90∠=o OMN ,则60∠=o MFO ,又直线MN 过点(2,0)F ,所以直线MN的方程为2)=-y x ,由2)3⎧=-⎪⎨=⎪⎩y x y x,得32⎧=⎪⎪⎨⎪=⎪⎩x y3(2M ,所以||==OM所以|||3==MN OM .故选B . 3.A 【解析】解法一由题意知,==ce a,所以=c,所以==b ,所以=b a=±=by x a,故选A .解法二由===c e a,得=ba,所以该双曲线的渐近线方程为=±=by x a.故选A . 4.C 【解析】不妨设一条渐近线的方程为by x a=, 则2F 到by x a =的距离d b ==, 在2Rt F PO ∆中,2||F O c =,所以||PO a =,所以1||PF =,又1||F O c =,所以在1F PO ∆与2Rt F PO ∆中,根据余弦定理得12cos cos aPOF POF c∠==-∠=-,即2223)0a c +-=,得223a c =.所以ce a==.故选C . 5.C 【解析】通解 因为直线AB 经过双曲线的右焦点,所以不妨取2(,)b A c a,2(,)b B c a -,取双曲线的一条渐近线为直线0bx ay -=,由点到直线的距离公式可得221bc b d c -==,222bc b d c +==, 因为126d d +=,所以226bc b bc b c c-++=,所以26b =,得3b =. 因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a+=,所以2294a a +=,解得23a =, 所以双曲线的方程为22139x y -=,故选C . 优解 由126d d +=,得双曲线的右焦点到渐近线的距离为3,所以3b =.因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a+=,所以2294a a +=,解得23a =, 所以双曲线的方程为22139x y -=,故选C . 6.A 【解析】双曲线C 的渐近线方程为0bx ay ±=,圆心(2,0)到渐近线的距离为2bd c==,圆心(2,0)到弦的距离也为d ==所以2b c =222c a b =+,所以得2c a =,所以离心率2ce a==,选A .7.B 【解析】由题意可得:b a =3c =,又222a b c +=,解得24a =,25b =,则C 的方程为2145x y 2-=.选B .8.B 【解析】设(,0)F c -,双曲线的渐近线方程为b y x a =±,由44PF k c c-==-,由题意有4bc a=,又c a =222c a b =+,得b =,a =.选B .9.D 【解析】不妨设A 在第一象限,(,)A x y ,所以2242x y by x ⎧+=⎪⎨=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩, 故四边形ABCD的面积为2324424bxy b b===+, 解得212b =.故所求的双曲线方程为2224=11x y -,选D . 10.A 【解析】由题意得22()(3)0m n m n +->,解得223m n m -<<,又由该双曲线两焦点间的距离为4,得M 2234m n m n ++-=,即21m =,所以13n -<<.11.A 【解析】设1(,0)F c -,将x c =-代入双曲线方程,得22221c y a b -=,化简得2by a=±,因为211sin 3MF F ∠=,所以222212112||tan ||222b MF b c a a MF F F F c ac ac -∠=====,12222c a e a c e -=-=210e --=,所以e =A . 12.D 【解析】由双曲线的标准方程2213y x -=得,右焦点(2,0)F ,两条渐近线方程为y =,直线AB :2x =,所以不妨设取(2,A,(2,B -,则||AB =,选D .13.B 【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B .14.D【解析】由题意1e ==2e ==∵()()b b m m b a a a m a a m +--=++,由于0m >,0a >,0b >, 所以当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22()()b b m a a m+<+,所以12e e <;当a b <时,1ba>,1b m a m +>+,而b b m a a m +>+,22()()b b m a a m +>+, 所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >.15.C 【解析】由题意,选项,A B 的焦点在x 轴,故排除,A B ,C 项的渐近线方程为2204y x -=,即2y x =±,故选C . 16.A 【解析】由题意知22a =,21b =,所以23c =,不妨设1(F,2F ,所以100(,)=-u u u u r MF x y,200,)=-u u u u rMF x y ,又∵00(,)M x y 在双曲线上,所以220012x y -=,即220022x y =+,222120003310MF MF x y y u u u r u u u r ⋅=-+=-<,所以0<<y ,故选A . 17.A 【解析】 由题意22(,0),(,),(,)b b A a B c C c a a-,由双曲线的对称性知D 在x 轴上,设(,0)D x ,由BD AC ⊥得2201b b a a c x a c-⋅=---,解得42()bc x a c a -=-,所以42()b c x a a c a c a -=<=+-,所以42222b c a b a <-=221b a⇒<01b a ⇒<<,而双曲线的渐近性斜率为ba±,所以双曲线的渐近线的斜率取值范围是(1,0)(0,1)-U ,选A .18.A 【解析】双曲线方程为22133x y m -=,焦点F到一条渐近线的距离为b =A .19.A 【解析】∵09k <<,∴90,250k k ->->,本题两条曲线都是双曲线,又25(9)(25)9k k +-=-+,∴两双曲线的焦距相等,选A .20.A 【解析】 依题意得22225b ac c a bìï=ïïï=íïïï=+ïî,所以25a =,220b =,双曲线的方程为 221520x y -=.21.B 【解析】由双曲线的定义得12||||||2PF PF a -=,又12||||3PF PF b +=,所以22221212(||||)(||||)94PF PF PF PF b a +--=-,即124||||9PF PF ab =,因此22949b a ab -=,即299()40b b aa --=,则(31b a +)(34ba-)=0,解得41(33b b a a ==-舍去),则双曲线的离心率53e ==. 22.C【解析】由题知,c a =54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C . 23.D 【解析】双曲线1C 的离心率是11cos e θ=,双曲线2C 的离心率是21cos e θ==,故选D . 24.A 【解析】设双曲线的焦点在x 轴上,则由作图易知双曲线的渐近线的离心率ba必须满b a <,所以21()33b a <≤,241()43b a<+≤,2<,又双曲线的离心率为c e a==23e <≤. 25.C 【解析】∵双曲线22215x y a -=的右焦点为(3,0),∴2a +5=9,∴2a =4,∴a =2∵c =3,∴32c e a ==,故选C . 26.A 【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又C 的渐近线为b y x a =±,点P(2,1)在C 的渐近线上,12ba∴=g ,即2a b =. 又222c a b =+,a ∴==C 的方程为220x -25y =1.27.C 【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C . 28.A 【解析】圆22:(3)4C x y -+=,3,c =而32bc =,则22,5b a ==,应选A . 29.C 【解析】由双曲线方程可知渐近线方程为3y x a=±,故可知2a =.30.B 【解析】双曲线22221(0,0)x y a b a b -=>>的渐近线为by x a=±,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得22p-=-,即4p =, 又∵42p a +=,∴2a =,将(-2,-1)代入by x a=得1b =,∴c =2c =31.B 【解析】由双曲线E 的中心为原点,(3,0)P 是E 的焦点可设双曲线的方程为2222221(9)x y a b a b -=+=,设1122(,),(,)A x y B x y ,即 2222112222221,1x y x y a b a b -=-= 则22121222121212015115312y y x x b b x x a y y a -+-+=⋅=⋅==-+-+,则22225,5,44b b a a ===,故E 的方程式为22145x y -=.应选B . 32.D 【解析】设双曲线的方程为22221(0,0)x y a b a b -=>>,其渐近线为x aby ±=,∵点(4,2)-在渐近线上,所以12b a =,由2e ==. 33.C 【解析】由题意,F (-1,0),设点P 00(,)x y ,则有2200143x y +=, 解得22003(1)4x y =-,因为00(1,)FP x y =+u u u r ,00(,)OP x y =u u u r,所以2000(1)OP FP x x y ⋅=++u u u r u u u r =00(1)OP FP x x ⋅=++u u u r u u u r 203(1)4x -=20034x x ++, 此二次函数对应的抛物线的对称轴为02x =-,因为022x -≤≤,所以当02x =时,OP FP ⋅u u u r u u u r 取得最大值222364++=,选C . 34.12y x =±【解析】由题意2a =,1b =,∴12b y x x a =±=±. 35.2【解析】不妨设双曲线的一条渐近线方程为b y x a =b ==,所以222234b c a c =-=,得2c a =,所以双曲线的离心率2ce a==. 36.232a x c ==,渐近线的方程为y x =,设3(,22P,则3(,22Q -,1(2,0)F -,2(2,0)F , 所以四边形12F PF Q的面积为1211||||422F F PQ =⨯=. 37.3【解析】如图所示,AH MN ⊥,AM AN b ==,MAN ∠=60°, x所以30HAN ∠=o,又MN 所在直线的方程为by x a=, (,0)A a 到MN的距离AH =,在Rt HAN ∆中,有cos HA HAN NA ==,即2=因为222c a b =+,得2a c =,所以3c e a ==. 38.2y x =±【解析】设11(,)A x y ,22(,)B x y ,由抛物线的定义有1212||||22p p AF BF y y y y p +=+++=++,而||2p OF =, 所以1242py y p ++=⨯,即12y y p +=,由2222212x y a b x py⎧-=⎪⎨⎪=⎩得2222220a y pb y a b -+=,所以21222pb y y a +=, 所以222pb p a=,即a =,所以渐近性方程为2y x =±. 39.2【解析】221,a b m ==,所以1c a ==,解得2m =. 40.2【解析】不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线图象如图 ∵OABC 为正方形,2=OA∴==c OB ,π4∠=AOB ∵直线OA 是渐近线,方程为=b y x a ,∴tan 1=∠=bAOB a又∵2228+==a b c ∴2=a41.2【解析】由题意||2BC c =,所以||3AB c =,于是点3(,)2cc 在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==,应填2. 42.3【解析】因为双曲线()22210x y a a -=>的一条渐近线为y =,所以1a=故3a =. 432(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以c 的最大值为直线10x y -+=与渐近线0x y -== 44.32【解析】22122:1(0,0)x y C a b a b -=>>的渐近线为b y x a =±,则2222(,)pb pb A a a ,2222(,)pb pb B a a -,22:2(0)C x py p =>的焦点(0,)2p F , 则22222AFpb pa a k pb b a-==,即2254b a =,2222294c a b a a +==,32c e a ==. 45.y x =±【解析】抛物线的准线2p y =-,与双曲线的方程联立得2222(1)4p x a b =+,根据已知得2222(1)4p a c b+= ①,由||AF c =得2224p a c += ②,由①②得22a b =,即a b =,所以所求双曲线的渐近线方程为y x =±.46by x a=±可解得交点为(,)33am bm A b a b a --,(,)33am bm B b a b a -++,而13AB k =,由||||PA PB =,可得AB 的中点3333(,)22am am bm bmb a b a b a b a -+-+-+与点)0,(m P 连线的斜率为-3,可得224b a =,所以2e =. 47.221312x y -= 2y x =±【解析】设与2214y x -=具有相同渐近线的双曲线C 的方程为224y x k -=,将点()2,2代入C 的方程中,得3k =-.∴双曲线的方程为221312x y -=,渐近线方程为2y x =±.48.45【解析】。

文科数学2010-2019高考真题分类训练专题九,解析几何第二十六讲,双曲线—后

文科数学2010-2019高考真题分类训练专题九,解析几何第二十六讲,双曲线—后

文科数学2010-2019高考真题分类训练专题九,解析几何第二十六讲,双曲线—后附解析答案专题九解析几何第二十六讲双曲线2019年1.(2019全国III文10)已知F是双曲线C:的一个焦点,点P在C上,O为坐标原点,若,则的面积为A.B.C.D.2.(2019江苏7)在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的渐近线方程是.3.(2019浙江2)渐近线方程为x±y=0的双曲线的离心率是A.B.1C.D.24.(2019全国1文10)双曲线C:的一条渐近线的倾斜角为130°,则C的离心率为A.2sin40°B.2cos40°C.D.5.(2019全国II文12)设F为双曲线C:(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A.B.C.2D.6.(2019北京文5)已知双曲线(a0)的离心率是,则a=(A)(B)4(C)2(D)7.(2019天津文6)已知抛物线的焦点为,准线为.若与双曲线的两条渐近线分别交于点A和点B,且(为原点),则双曲线的离心率为(A)(B)(C)2(D)2010-2018年一、选择题1.(2018浙江)双曲线的焦点坐标是A.,B.,C.,D.,2.(2018全国卷Ⅱ)双曲线的离心率为,则其渐近线方程为A.B.C.D.3.(2018全国卷Ⅲ)已知双曲线的离心率为,则点到的渐近线的距离为A.B.C.D.4.(2018天津)已知双曲线的离心率为2,过右焦点且垂直于轴的直线与双曲线交于,两点.设,到双曲线同一条渐近线的距离分别为和,且,则双曲线的方程为A.B.C.D.5.(2017新课标Ⅰ)已知是双曲线:的右焦点,是上一点,且与轴垂直,点的坐标是.则的面积为A.B.C.D.6.(2017新课标Ⅱ)若,则双曲线的离心率的取值范围是A.B.C.D.7.(2017天津)已知双曲线的右焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线的方程为A.B.C.D.8.(2016天津)已知双曲线的焦距为,且双曲线的一条渐近线与直线垂直,则双曲线的方程为A.B.C.D.9.(2015湖南)若双曲线的一条渐近线经过点,则此双曲线的离心率为A.B.C.D.10.(2015四川)过双曲线的右焦点且与轴垂直的直线,交该双曲线的两条渐近线于两点,则=A.B.2C.6D.411.(2015重庆)设双曲线的右焦点是,左、右顶点分别是,过做的垂线与双曲线交于两点,若,则双曲线的渐近线的斜率为A.B.C.D.12.(2014新课标1)已知是双曲线:的一个焦点,则点到的一条渐近线的距离为A.B.3C.D.13.(2014广东)若实数k满足,则曲线与曲线的A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等14.(2014天津)已知双曲线的一条渐近线平行于直线:,双曲线的一个焦点在直线上,则双曲线的方程为A.B.C.D.15.(2014重庆)设分别为双曲线的左、右焦点,双曲线上存在一点使得则该双曲线的离心率为A.B.C.D.316.(2013新课标1)已知双曲线:()的离心率为,则的渐近线方程为A.B.C.D.17.(2013湖北)已知,则双曲线与的A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等18.(2013重庆)设双曲线的中心为点,若有且只有一对相较于点、所成的角为的直线和,使,其中、和、分别是这对直线与双曲线的交点,则该双曲线的离心率的取值范围是A.B.C.D.19.(2012福建)已知双曲线的右焦点为,则该双曲线的离心率等于A.B.C.D.20.(2012湖南)已知双曲线C:=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为A.=1B.=1C.=1D.=121.(2011安徽)双曲线的实轴长是A.B.C.D.22.(2011山东)已知双曲线的两条渐近线均和圆:相切,且双曲线的右焦点为圆的圆心,则该双曲线的方程为A.B.C.D.23.(2011湖南)设双曲线的渐近线方程为,则的值为A.4B.3C.2D.124.(2011天津)已知双曲线的左顶点与抛物线的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1),则双曲线的焦距为A.B.C.D.25.(2010新课标)已知双曲线的中心为原点,是的焦点,过F的直线与相交于A,B两点,且AB的中点为,则的方程式为A.B.C.D.26.(2010新课标)中心在原点,焦点在轴上的双曲线的一条渐近线经过点,则它的离心率为A.B.C.D.27.(2010福建)若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为A.2B.3C.6D.8二、填空题28.(2018北京)若双曲线的离心率为,则=_________.29.(2018江苏)在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是.30.(2017新课标Ⅲ)双曲线的一条渐近线方程为,则=.31.(2017山东)在平面直角坐标系中,双曲线的右支与焦点为的抛物线交于,两点,若,则该双曲线的渐近线方程为.32.(2017江苏)在平面直角坐标系中,双曲线的右准线与它的两条渐近线分别交于点,,其焦点是,,则四边形的面积是.33.(2016年北京)已知双曲线的一条渐近线为,一个焦点为,则=_______;=_____________.34.(2016年山东)已知双曲线E:–=1(a0,b0).矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是_______.35.(2015新课标1)已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为.36.(2015山东)过双曲线的右焦点作一条与其渐近线平行的直线,交于点,若点的横坐标为,则的离心率为.37.(2015新课标1)已知是双曲线:的右焦点,是左支上一点,,当周长最小时,该三角形的面积为.38.(2014山东)已知双曲线的焦距为,右顶点为A,抛物线的焦点为F,若双曲线截抛物线的准线所得线段长为,且,则双曲线的渐近线方程为.39.(2014浙江)设直线与双曲线的两条渐近线分别交于点,,若点满足,则该双曲线的离心率是____.40.(2014北京)设双曲线经过点,且与具有相同渐近线,则的方程为________;渐近线方程为________.41.(2014湖南)设F1,F2是双曲线C:的两个焦点.若在C上存在一点P,使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为_________.42.(2013辽宁)已知为双曲线的左焦点,为上的点,若的长等于虚轴长的2倍,点在线段,则的周长为.43.(2012辽宁)已知双曲线,点为其两个焦点,点为双曲线上一点,若,则的值为.44.(2012天津)已知双曲线与双曲线有相同的渐近线,且的右焦点为,则.45.(2012江苏)在平面直角坐标系中,若双曲线的离心率为,则的值为.46.(2011山东)已知双曲线和椭圆有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为.47.(2011北京)已知双曲线的一条渐近线的方程为,则=.三、解答题48.(2014江西)如图,已知双曲线:()的右焦点,点分别在的两条渐近线上,轴,∥(为坐标原点).(1)求双曲线的方程;(2)过上一点的直线与直线相交于点,与直线相交于点,证明:当点在上移动时,恒为定值,并求此定值.49.(2011广东)设圆C与两圆中的一个内切,另一个外切.(1)求C的圆心轨迹L的方程;(2)已知点M,且P为L上动点,求的最大值及此时点P的坐标.专题九解析几何第二十六讲双曲线答案部分2019年1.解析如图所示,不妨设为双曲线的右焦点,为第一象限点.由双曲线方程可得,,,则,则以为圆心,以3为半径的圆的方程为.联立,解得.则.故选B.2.解析因为双曲线经过点,所以,解得,即.又,所以该双曲线的渐近线方程是.3.解析:根据渐进线方程为的双曲线,可得,所以,则该双曲线的离心率为,故选C.4.由双曲线的对称性可得另一条渐近线的倾斜角为,所以,.故选D.5.解析:解析:解法一:由题意,把代入,得,再由,得,即,所以,解得.故选A.解法二:如图所示,由可知为以为直径圆的另一条直径,所以,代入得,所以,解得.故选A.解法三:由可知为以为直径圆的另一条直径,则,.故选A.6.解析由题意知,,,解得.故选D.7.解析因为抛物线的焦点为,准线为,所以,准线的方程为.因为与双曲线的两条渐近线分别交于点和点,且(为原点),所以,,所以,即,所以,所以双曲线的离心率为.故选D.2010-2018年1.B【解析】由题可知双曲线的焦点在轴上,因为,所以,故焦点坐标为,.故选B.2.A【解析】解法一由题意知,,所以,所以,所以,所以该双曲线的渐近线方程为,故选A.解法二由,得,所以该双曲线的渐近线方程为.故选A.3.D【解析】解法一由离心率,得,又,得,所以双曲线的渐近线方程为,由点到直线的距离公式,得点到的渐近线的距离为.故选D.解法二离心率的双曲线是等轴双曲线,其渐近线的方程是,由点到直线的距离公式,得点到的渐近线的距离为.故选D.4.A【解析】通解因为直线经过双曲线的右焦点,所以不妨取,,取双曲线的一条渐近线为直线,由点到直线的距离公式可得,,因为,所以,所以,得.因为双曲线的离心率为2,所以,所以,所以,解得,所以双曲线的方程为,故选A.优解由,得双曲线的右焦点到渐近线的距离为3,所以.因为双曲线的离心率为2,所以,所以,所以,解得,所以双曲线的方程为,故选A.5.D【解析】由得,所以,将代入,得,所以,又的坐标是,所以点到的距离为1,故的面积为,选D.6.C【解析】由题意,∵,,∴,选C.7.D【解析】由题意,,解得,,选D.8.A【解析】由题意得,,由,解得,所以双曲线的方程为,选A.9.D【解析】由已知可得双曲线的渐近线方程为,点在渐近线上,∴,又,∴,∴.10.D 【解析】双曲线的右焦点为,渐近线方程为,将代入得,所以.11.C 【解析】由题意,得,将代入双曲线方程,解得.不妨设,,则,根据题意,有,整理得,所以双曲线的渐近线的斜率为.12.A【解析】双曲线方程为,焦点到一条渐近线的距离为,选A.13.A【解析】∵,∴,本题两条曲线都是双曲线,又,∴两双曲线的焦距相等,选A.14.A【解析】依题意得,所以,,双曲线的方程为.15.B【解析】由双曲线的定义得,又,所以,即,因此,即,则()()=0,解得舍去),则双曲线的离心率.16.C【解析】由题知,,即==,∴=,∴=,∴的渐近线方程为,故选C.17.D【解析】双曲线的离心率是,双曲线的离心率是,故选D.18.A【解析】设双曲线的焦点在轴上,则由作图易知双曲线的渐近线的离心率必须满足,所以,,既有,又双曲线的离心率为,所以.19.C【解析】∵双曲线的右焦点为(3,0),∴+5=9,∴=4,∴=2∵=3,∴,故选C.20.A【解析】设双曲线C:-=1的半焦距为,则.又C的渐近线为,点P(2,1)在C的渐近线上,,即.又,,C的方程为-=1.21.C【解析】可变形为,则,,.故选C.22.A【解析】圆,而,则,应选A.23.C【解析】由双曲线方程可知渐近线方程为,故可知.24.B【解析】双曲线的渐近线为,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得,即,又∵,∴,将(-2,-1)代入得,∴,即.25.B【解析】由双曲线的中心为原点,是的焦点可设双曲线的方程为,设,即则,则,故的方程式为.应选B.26.D【解析】设双曲线的方程为,其渐近线为,∵点在渐近线上,所以,由.27.C【解析】由题意,F(-1,0),设点P,则有,解得,因为,,所以==,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最大值,选C.28.4【解析】由题意得,得,又,所以,故答案为4.29.2【解析】不妨设双曲线的一条渐近线方程为,所以,所以,得,所以双曲线的离心率.30.5【解析】由双曲线的标准方程可得渐近线方程为:,结合题意可得:.31.【解析】设,,由抛物线的定义有,而,所以,即,由得,所以,所以,即,所以渐近性方程为.32.【解析】由题意,右准线的方程为,渐近线的方程为,设,则,,,所以四边形的面积为.33.【解析】依题意有,因为,解得.34.【解析】依题意,不妨设作出图像如下图所示则故离心率35.【解析】因为双曲线的渐近线方程为,故可设双曲线的方程为,又双曲线过点,所以,所以,故双曲线的方程为.36.【解析】设直线方程为,由,得,由,,解得(舍去).37.【解析】由题意,双曲线:的右焦点为,实半轴长,左焦点为,因为在的左支上,所以的周长=,当且仅当三点共线且在中间时取等号,此时直线的方程为,与双曲线的方程联立得的坐标为,此时,的面积为.38.【解析】抛物线的准线,与双曲线的方程联立得,根据已知得①,由得②,由①②得,即,所以所求双曲线的渐近线方程为.39.【解析】联立直线方程与双曲线渐近线方程可解得交点为,,而,由,可得的中点与点连线的斜率为3,可得,所以.40.【解析】设与具有相同渐近线的双曲线C的方程为,将点代入C的方程中,得.∴双曲线的方程为,渐近线方程为.41.【解析】由已知可得,,,由双曲线的定义,可得,则.42.44【解析】由题意得,,,两式相加,利用双曲线的定义得,所以的周长为.43.【解析】由双曲线的方程可知44.1,2【解析】双曲线的渐近线为,而的渐近线为,所以有,,又双曲线的右焦点为,所以,又,即,所以.45.2【解析】由题意得>0,∴=,=由=得,解得=2.46.【解析】由题意可知双曲线的焦点,,即,又因双曲线的离心率为,所以,故,所以双曲线的方程为.47.2【解析】由得渐近线的方程为,即,由一条渐近线的方程为得.48.【解析】(1)设,因为,所以直线OB方程为,直线BF的方程为,解得又直线OA的方程为,则又因为ABOB,所以,解得,故双曲线C的方程为(2)由(1)知,则直线的方程为,即因为直线AF的方程为,所以直线与AF的交点直线与直线的交点为则因为是C上一点,则,代入上式得,所求定值为49.【解析】(1)设C的圆心的坐标为,由题设条件知化简得L的方程为(2)过M,F的直线方程为,将其代入L 的方程得解得因T1在线段MF外,T2在线段MF内,故,若P不在直线MF上,在中有故只在T1点取得最大值2.。

理科数学2010-2019高考真题分类训练专题九 解析几何第二十八讲 抛物线

理科数学2010-2019高考真题分类训练专题九  解析几何第二十八讲  抛物线
专题九 解析几何
第二十八讲 抛物线 2019 年
1.(2019 全国 II 理 8)若抛物线 y2=2px(p>0)的焦点是椭圆 x2 + y2 = 1 的一个焦点,则 p=
3p p
A.2
B.3
C.4
D.8
2.(2019 北京理 18(1))已知抛物线 C : x2 = −2 py 经过点(2,-1).求抛物线 C 的方程及其准
A. 1 2
B. 2 3
C. 3 4
D. 4 3
10.(2013 新课标 1)O 为坐标原点, F 为抛物线 C : y2 = 4 2x 的焦点, P 为 C 上一点,
若 | PF |= 4 2 ,则 POF 的面积为( )
A. 2
B. 2 2
C. 2 3
D. 4
11.(2013 江西)已知点 A(2, 0) ,抛物线 C : x2 = 4 y 的焦点为 F ,射线 FA 与抛物线 C 相
p=
18.(2014 湖南)如图 4,正方形 ABCD和正方形DEFG 的边长分别为 a, b(a b) ,原点
O 为 AD 的中点,抛物线 y2 = 2 px( p 0) 经过 C, F两点,则 b =

a
19.(2013 北京)若抛物线 y2 = 2 px 的焦点坐标为 (1, 0) ,则 p = ,准线方程为 .
两点.已知| AB | = 4 2 ,| DE | = 2 5 ,则 C 的焦点到准线的距离为
A.2
B.4
C.6
D.8
5.(2015 浙江)如图,设抛物线 y2 = 4x 的焦点为 F ,不经过焦点的直线上有三个不同的
点 A, B,C ,其中点 A, B 在抛物线上,点 C 在 y 轴上,则 BCF 与 ACF 的面积之比是

高考数学真题专题九 解析几何第二十八讲 抛物线答案

高考数学真题专题九  解析几何第二十八讲  抛物线答案

x 1x 2⎪⎩ 1 1 1 1k 2k ⎨ 专题九 解析几何第二十八讲抛物线答案部分1. D 【解析】通解 过点(-2, 0) 且斜率为 2的直线的方程为 y =2(x + 2) ,3 ⎧ y = 2 (x + 2)3 ⎧ x = 1 ⎧ x = 4由⎪ 3,得 x 2- 5x + 4 = 0 ,解得 x = 1 或 x = 4 ,所以 ⎨ y = 2 ,或⎨ y = 4 , ⎪⎩ y 2 = 4x⎩ ⎩不妨设 M (1, 2) , N (4, 4) , 易知 F (1, 0) , 所以 FM = (0, 2) , FN = (3, 4) ,所以FM ⋅ FN = 8 .故选 D .22 ⎧ y = 2(x + 2) 优解 过点(-2, 0) 且斜率为 3 的直线的方程为 y = 3 (x + 2),由⎨ 3,得 ⎪⎩ y 2 = 4xx 2 - 5x + 4 = 0 ,设 M (x , y ) , N (x , y ),则 y > 0 , y > 0 ,根据根与系数的关112212系,得 x 1 + x 2 = 5 ,x 1x 2 = 4 .易知 F (1, 0) ,所以 FM = (x 1 -1, y 1 ) ,FN = (x 2 -1, y 2 ) , 所以 FM ⋅ FN = (x 1 -1)(x 2 -1) + y 1 y 2 = x 1x 2 - (x 1 + x 2 ) +1+ 4= 4 - 5 +1+ 8 = 8 .故选 D .2. A 【解析】由已知l 1 垂直于 x 轴是不符合题意,所以l 1 的斜率存在设为k 1 ,l 2 的斜率为k 2 ,由题意有k 1 ⋅ k 2 = -1 ,设 A (x 1, y 1) , B (x 2 , y 2 ) , D (x 3 , y 3 ) , E (x 4 , y 4 ) 此时直线l 1 方程为 y = k 1(x -1) ,⎧ y 2 = 4x取方程⎨ y = k (x -1),得k 2 x 2 - 2k 2 x - 4x + k 2= 0,-2k 2 - 4 2k 2+ 4∴ x 1 + x 2 = - 1 = 1同理得2 2 1 12k 2 + 4x 3 + x 4 = 22由抛物线定义可知| AB | + | DE |= x 1 + x 2 + x 3 + x 4 + 2 pk2 3 p 2 2k 2 + 4 2k 2 + 4 44= 1 + 2 + 4 =+ + 8≥2 8 = 16k 2 k 2 k 2 k 21 21 2当且仅当k 1 = -k 2 =1(或-1)时,取得等号.3. C 【解析】设 P(2 pt 2, 2 pt ) , M (x , y ) (不妨设t > 0 ),则 FP = ⎛ 2 pt 2 - p , 2 pt ⎫ , 2⎪ ⎝ ⎭⎧x - p = 2 p t 2 - p , ⎧x = 2 p t 2 + p ,1 ⎪23 6 ⎪ 3 3∵ FM = FP ,∴ ⎨ ⎪ y = ⎩ 2 pt , 3 ,∴ ⎨⎪ y = ⎩2 pt , 32t 1 1 2 ∴ k OM ==2t 2+1≤=t + 1 122t2∴ (k OM )max =2 ,故选C .24. B 【解析】由题意,不妨设抛物线方程为y 2= 2 px ( p > 0) ,由| AB |= 4 ,| DE |= 2 5 ,可取 A ( 4 , 2 2 ) , D (- p, 5) ,设O 为坐标原点,p 2由| OA |=| OD |,得 16p 22+ 8 = + 5 ,得 p = 4 ,所以选 B .45. A 【解析】如图,S ∆BCF = BC = x BBF -1 = ,故选 A . S ∆ACF AC x A AF -16.D 【解析】当直线l 的斜率不存在时,这样的直线l 恰好有 2 条,即 x = 5 ± r ,所以0 < r < 5 ;所以当直线l 的斜率存在时,这样的直线l 有 2 条即可.⎧ x + x = 2x⎧ y 2 = 4x 设 A (x , y ) , B (x , y ) , M (x , y ) ,则⎨ 1 2 0 .又⎨ 1 1 , 1 1 2 2 00 y + y = 2 y y 2= 4x ⎩ 1 2 0 ⎩ 2 2两式相减得(y + y )(y - y ) = 4(x - x ) , k = y 1 - y 2 =4 = 2 .121212AB x - xy + y y 121 2 0设圆心为C (5, 0) ,则k CM= y 0 x - 5,因为直线l 与圆相切,所以 2 ⋅ y 0 y x - 5 = -1 ,解得 x = 3 ,于是 y 2= r 2 - 4 , r > 2 ,又 y 2 < 4x ,即r 2- 4 <12 ,0 0 016 k 2k 2 1 2 ⎪3 2 3 5 F ( , 0) 3 4所以0 < r < 4 ,又0 < r < 5 , r > 2 所以2 < r < 4 ,选 D .7. C 【解析】过点Q 作QQ ' ⊥ l 交l 于点Q ' ,因为 PF = 4FQ ,所以| PQ |:| PF |= 3: 4 ,又焦点 F 到准线l 的距离为 4,所以| QF |=| QQ ' |= 3 .故选C .8. D 【解析】易知抛物线中 p = 3,焦点3,直线AB 的斜率k = ,故直线 AB 的 243方程为 y =3 (x - 3) ,代人抛物线方程 y 2 = 3x ,整理得 x 2 - 21 x + 9= 0 . 3 4 2 1621设 A (x 1, y 1), B (x 2 , y 2 ) ,则 x 1 + x 2 = ,由物线的定义可得弦长 2| AB |= x + x + p =12 ,结合图象可得O 到直线AB 的距离d = psin 30 = , 1 22 8所以∆OAB 的面积 S = 1 | AB | ⋅d = 9.2 49.D 【解析】∵ A (-2,3) 在抛物线 y 2 = 2 p x 的准线上,∴ - p= -2 .∴ p = 4 ,2∴ y 2 = 8x ,设直线 AB 的方程为 x = k ( y - 3) - 2 ①,将①与 y 2= 8x 联立,得 y 2 -8ky + 24k +16 = 0②,则△= (-8k )2 - 4(24k +16) = 0 , 即2k 2- 3k - 2 = 0 ,解得k = 2 或 k =- 1(舍去),2将 k = 2 代入①②解得 x = 8, y = 8 ,即 B (8,8) ,又 F (2, 0) ,∴ k BF = 3,故选D .10. C 【解析】∵ OF =,由抛物线的定义可得 P 点的坐标(3 2, ±2 6 ),∴ ∆POF 的面积为 1OF 2y = 1 ⨯ P 22 ⨯ 2 = 2 .11. C 【解析】依题意可得 AF 所在直线方程为x + y = 1代入 x 2 = 4y 得 y = 3 - 5, 22 又| FM |:| MN |= (1- y ) : (1+ y ) =1: .12. C 【解析】设C : x2- y 2 = a 2 (a > 0) 交 y 2 = 16x 的准线l : x = -4于 A (-4, 2 3) B (-4, -2 3)得: a 2= (-4)2-(2 3)2= 4 ⇔ a = 2 ⇔ 2a = 46(0, ),⎨ y 2= 4x1 2 ⎨ y 2 = 4x4( y 2 2x 2 - y 2= > > 13. D 【解析】因为双曲线C 1 : a 2 b 21(a 0,bc0) 的离心率为 2,所以 = 2 ⇒ b = a3a .又渐近线方程为bx ± ay = 0, 所以双曲线C 1 的渐近线方程为 3x ± y = 0. 而抛物C 2 : x 2= 2 py ( p > 0) 的焦点坐标为 p2所以有| p | 2 = 2 ⇒ p = 8 .故选 D . ( 3)2 +1214. C 【解析】设抛物线的方程为 y2= 2 px ,易知| AB |= 2 p =12 ,即 p = 6 ,∵点 P 在准线上,∴ P 到 AB 的距离为 p = 6 ,所以∆ABP 面积为 36,故选 C . 15.2【解析】解法一 由题意知抛物线的焦点为(1, 0) ,则过C 的焦点且斜率为k 的直线方程为 y = k (x -1) (k ≠ 0) ,由⎧ y = k (x -1),消去 y 得k 2 (x -1)2 = 4x ,⎩即 k 2 x 2 -(2k 2 + 4)x + k 2 = 0 ,设 A (x , y ) , B (x , y ) ,则 x 1 + x 2 =2k 2 + 4 k 211, x x = 1 .由⎧ y = k (x -1) ⎩ 22,消去 x 得 y2 = 1 +1) , k 即 y 2 - 4 y - 4 = 0 ,则 y + y = 4 , y y = -4 ,k 1 2k1 2由∠AMB = 90 ,得 MA ⋅ MB = (x 1 +1, y 1 -1) ⋅ (x 2 +1, y 2 -1)= 4x 1x 2 + x 1 + x 2 +1+ y 1 y 2 -(y 1 + y 2 ) +1= 0 ,将 x 1 + x 2 = 2k 2 + 4 k 2, x x = 1 与 y + y = 4 , y y = -4 代入,得k = 2 .1 2 1 2k 1 2⎧ y 2 = 4x解法二 设抛物线的焦点为 F , A (x , y ) , B (x , y ) ,则⎨ 11 , 1 12 2所以 y 2- y 2= 4(x - x ),则k =y 1 - y 2 =4 ,⎩ y 2= 4x 1212x - xy + y12 12取 AB 的中点 M '(x 0 , y 0 ) ,分别过点 A ,B 做准线 x = -1 的垂线,垂足分别为 A ' ,B ' ,又∠MB = 90,点 M 在准线x = -1 上,2 2 2 6 p 所以| MM ' |= 1 | AB |= 1 (| AF | + | BF |) = 1(| AA '| + | BB '|) .2 2 2又 M ' 为 AB 的中点,所以 MM '平行于 x 轴,且 y 0 = 1 ,所以 y 1 + y 2 = 2 , 所以k = 2 .16.6【解析】如图所示,不妨设点 M 位于第一象限,设抛物线的准线与 x 轴交于点 F' ,作 MB ⊥ l 与点 B , NA ⊥ l 与点 A ,由抛物线的解析式可得准线方程为 x = -2 ,则AN = 2, FF' = 4,在直角梯形 ANFF' 中,中位线 BM =AN + FF '= 3,由抛物线的2定义有: MF = MB = 3 ,结合题意,有 MN = MF = 3 ,故 FN = FM + NM = 3 + 3 = 6.17. 2 【解析】 y 2 = 2 px 的准线方程为 x =-p,又 p > 0 ,所以 x =-p必经过双曲线 x 2 - y 2= 1的左焦点(-2 22, 0) ,所以- = - , p = 2 .2 18.1+ 2 【解析】由正方形的定义可知 BC = CD ,结合抛物线的定义得点 D 为抛物线的焦点,所以| AD |= p = a ,D ( p, 0) ,F ( p+ b ,b ) ,将点 F 的坐标代入抛物线的方程22 得b 2= 2 p ( p+ b ) = a 2+ 2ab ,变形得b 2 - 2b -1 = 0 ,( )2 a a b b b 解得 = 1+ a 2 或 = 1- a 2 (舍去),所以 a= 1+ 2 .19.2, x = -1 【解析】 p = 1, p = 2 ;准线 x = - p= -1 .2 220. 2 【解析】建立直角坐标系,使拱桥的顶点O 的坐标为(0, 0) ,设抛物线的方程为x 2 = -2 py , l 与抛物线的交点为 A 、 B ,根据题意知 A (-2, -2) , B (2, -2)则有- 2 = a ⨯(- 2)2,∴ a = - 12A B y NM F'OF6 ⎩∴抛物线的解析式为 y = - 1x22水位下降 1 米,则 y = -3 ,此时有 x =或 x = -∴此时水面宽为2 米.3 21p 的值为,B 点坐标为( 2,1 ). 【解析】利用抛物线的定义结合题设条件可得出 443 所以点 B 到抛物线准线的距离为2 .422.【解析】(1)因为抛物线 y 2 = 2 px 经过点P (1, 2) ,所以4 = 2 p ,解得 p = 2 ,所以抛物线的方程为 y 2 =4x . 由题意可知直线l 的斜率存在且不为 0,设直线l 的方程为 y = kx +1( k ≠ 0 ).⎧ y 2 = 4x 由⎨ y = kx +1 得k 2 x 2+(2k - 4)x +1 = 0.依题意∆ = (2k - 4)2 - 4⨯ k 2 ⨯1 > 0,解得k < 0 或0 < k <1. 又 PA , PB 与 y 轴相交,故直线l 不过点(1, -2) .从而k ≠ -3 . 所以直线l 斜率的取值范围是(-∞, -3)(-3, 0) (0,1) .(2)设 A (x 1, y 1) , B (x 2 , y 2 ) .2k - 41 由(1)知 x 1 + x2 = -k 2, x 1x 2 =k 2.直线 PA 的方程为 y - 2 =y 1 - 2(x -1) . x 1 -1令 x = 0 ,得点 M 的纵坐标为 y = - y 1 + 2 + 2 = -kx 1 +1 + 2 .M x -1x -1同理得点 N 的纵坐标为 y 11= -kx 2 +1 + 2 .x 2 -1由QM =λQO , QN =μQO 得λ=1- y M , μ =1- y N .6 6 2 2N1 1 ⎩所以 + =λ μ 11- y M + 1 1- y N = x 1 -1 (k -1)x 1 + x 2 -1 (k -1)x 2 = 1 k -1 ⋅2x 1x 2 - (x 1 + x 2 ) x 1x 2= 1 k -12 ⋅ k 2 + 2k - 4k 2 1 k 2=2 .所以 1 + 1为定值.λ μ23.【解析】(1)由题意得 F (1, 0) , l 的方程为 y = k (x -1)(k > 0).设 A (x 1, y 1), B (x 2 , y 2 ) ,⎧ y = k (x -1), 2 2 2 2由⎨ y 2= 4x得k x -(2k + 4)x + k2k 2 + 4 = 0 . ∆ = 16k 2+16 > 0 ,故 x + x =.12k2所以| AB |=| AF | + | BF |= (x 1 +1) + (x 2 +1) =4k 2 + 4 .k 2由题设知 4k 2 + 4k2= 8 ,解得k = -1 (舍去), k = 1 .因此l 的方程为 y = x -1.(2)由(1)得 AB 的中点坐标为(3, 2) ,所以 AB 的垂直平分线方程为 y - 2 = -(x - 3) , 即 y = -x + 5 .设所求圆的圆心坐标为(x 0 , y 0 ) ,则 ⎧ y 0 = -x 0 + 5,⎪⎧x 0= 3,⎧x 0= 11, ⎨ 2( y - x +1)2解得⎨ y = 2 或⎨ y = -6. ⎪⎩(x 0 +1) =0 0 +16. ⎩ 0 ⎩ 0 2因此所求圆的方程为(x -3)2 +( y - 2)2 =16 或(x -11)2 +( y + 6)2 =144 .y 2 y 224.【解析】(1)设 P (x , y ) ,A ( 1 , y 1 ) ,B ( 2 , y 2 ) . 044因为 PA , PB 的中点在抛物线上,所以 y 1 , y 2 为方程2( y 2- 4x )0 0 3 2 ⎩12 1 y 2+ x ( y 1 + y 0 )2 = 4 ⋅ 4 0 即 y 2 - 2y y + 8x - y 2 = 0 的两个不同的实数根.2 2所以 y 1 + y 2 = 2 y 0 .因此, PM 垂直于 y 轴.⎧ y 1 + y 2 = 2 y 01 0 1 0 0(2)由(1)可知⎨ y y = 8x - y 2⎩ 1 2 0 0 所以| PM |= 1 ( y 2 + y 2 ) - x = 3 y 2- 3x ,| y - y |= 2 . 8 1 2 0 40 0 1 2 1 3因此, ∆PAB 的面积 S= | PM | ⋅ | y - y |= ( y 2 - 4x )2 .2 y 2∆PAB 2 1 2 4 0因为 x + 0 = 1 (x < 0) ,所以 y 2 - 4x = -4x 2 - 4x + 4∈[4,5].40 0 0 0 0因此, ∆PAB 面积的取值范围是[6 2,15 10]. 425.【解析】(1)设 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) , l : x = ym + 2⎧x = my + 2由⎨ y 2 = 2x 可得 y 2 - 2my - 4 = 0 ,则 y y = -4y 2y 2 ( y y )2又 x = 1, x = 2,故 x x =1 2=412221 24因此OA 的斜率与OB 的斜率之积为y 1 ⋅ y 2 = -4=-1,所以OA ⊥ OB . x 1 x 2 4故坐标原点O 在圆 M 上.(2)由(1)可得 y +y =2m , x +x =m ( y +y)+4=2m 2 + 4121212故圆心 M 的坐标为(m 2 +2,m ),圆 M 的半径 r =由于圆 M 过点 P (4, -2) ,因此 AP BP = 0 , 故( x 1 - 4)( x 2 - 4) + ( y 1 + 2)( y 2 + 2) = 0 即 x 1x 2 - 4 ( x 1 +x 2 ) + y 1 y 2 + 2( y 1 + y 2 ) + 20= 0 (m2+ 2)2+ m 2k 2+11 3 由(1)可得 y 1 y2 =-4 , x 1 x 2 =4 .所以2m 2- m -1 = 0 ,解得m = 1 或m =- 1.2当 m = 1时,直线 l 的方程为 x - y - 2 = 0 ,圆心 M 的坐标为(3,1) ,圆 M 的半径为,圆M 的方程为(x -3)2 +( y -1)2 = 10 当 m =- 1 时,直线l 的方程为2x + y - 4 = 0 ,圆心 M 的坐标为(9 , - 1) ,圆 M 的半2 42径为85 ,圆 M 的方程为(x - 9)2+ ( y + 1)2=85.44 2 1626. 【解析】(Ⅰ)设直线 AP 的斜率为k ,x 2 - 1k = 4 = x - 1,x + 1 2 2因为- < x < ,所以直线 AP 斜率的取值范围是(-1,1) 。

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线

专题九解析几何第二十七讲双曲线2019 年22一 ―一,__ x y .............................. . .一一1. (2019全国III 理10)双曲线C :刁 y =1的右焦点为F,点P 在C 的一条渐进线上,O 为坐标原点,若 PO= PF ,则4 PFO 的面积为2xOy 中,若双曲线x 2 与 1(b 0)经过点(3, 4),b则该双曲线的渐近线方程是2x 3. (2019全国I 理16)已知双曲线 C: — aF 2,过F 1的直线与C 的两条渐近线分别交于2y 今 1(a 0,b 0)的左、右焦点分别为 曰, buuu uuu uuu uuuA, B 两点.若 F 1A AB, F 1B F 2B 0,则C 的离心率为.x 2 y 24. (2019年全国II 理11)设F 为双曲线C :— 4 1(a 0,b 0)的右焦点,O 为坐标 a b原点,以OF 为直径的圆与圆x 2 y 2 a 2交于P, Q 两点.若PQ OF ,则C 的离心率 为 A.& B. 33C. 2D. 75渐近线方程为土 y=0的双曲线的离心率是 B. 1D. 225)已知抛物线y 4x 的焦点为F ,准线为l ,右l 与双曲线22x y — 1 (a 0,b 0)的两条渐近线分别交于点 A 和点B,且|AB| 4|OF|(O 为a bA.0 3 2B.C. 272D. 372原点),则双曲线的离心率为 A. .2 B 」3C.2D.、. 52. (2019江苏7)在平面直角坐标系 5.(2019 浙江 2)人2A.— 2 C. 26.( 2019天津理、选择题2(2018浙江)双曲线上y23A. ( 72,0),诉0)C. (0,衣),(0,扬2. (2018全国卷I )已知双曲线3.4.5.2010-2018 年1的焦点坐标是B . ( 2,0) , (2,0)D. (0, 2), (0,2)O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为A- I B. 3 (2018全国卷n )双曲线(2018全国卷出坐标原点.过离心率为C.为直角三角形,则|MN | = 0,bC.0)的离心率为痣,则其渐近线方程为F2是双曲线C :2 y b2F2作C的一条渐近线的垂线,垂足为C. ,3 1(aD. y a20,b 0)的左、右焦点,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题九 解析几何第二十八讲 抛物线2019年1.(2019全国II 理8)若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .82.(2019北京理18(1))已知抛物线2:2C x py =-经过点(2,-1).求抛物线C 的方程及其准线方程; 3.(2019全国I 理19)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若4AF BF +=,求l 的方程;(2)若3AP PB =uu u r uu r,求AB .4. (2019全国III 理21)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.2010-2018年一、选择题1.(2018全国卷Ⅰ)设抛物线C :24=y x 的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则⋅FM FN = A .5B .6C .7D .82.(2017新课标Ⅰ)已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则||||AB DE +的最小值为A .16B .14C .12D .103.(2016年四川)设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF上的点,且PM =2MF ,则直线OM 的斜率的最大值为A B .23C D .1 4.(2016年全国I)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知||AB =||DE =C 的焦点到准线的距离为A .2B .4C .6D .85.(2015浙江)如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是A .11BF AF -- B .2211BF AF -- C .11BF AF ++ D .2211BF AF ++6.(2015四川)设直线l 与抛物线24y x =相交于,A B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24,7.(2014新课标1)已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF = A .72 B .52C .3D .2 8.(2014新课标2)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30°的直线交C 于,A B 两点,O为坐标原点,则△OAB 的面积为( )A B C .6332 D .949.(2014辽宁)已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4310.(2013新课标1)O 为坐标原点,F 为抛物线2:C y =的焦点,P 为C 上一点,若||PF =则POF ∆的面积为( )A .2B .C .D .411.(2013江西)已知点()2,0A ,抛物线2:4C x y =的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则||:||FM MN =A .B .1:2C .1:D .1:312.(2012新课标)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A 、B 两点,34||=AB ,则C 的实轴长为 A 、2B 、22C 、4D 、813.(2012山东)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为A .2x y =B .2x y =C .28x y =D .216x y = 14.(2011新课标)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为A .18B .24C .36D .48 二、填空题15.(2018全国卷Ⅲ)已知点(1,1)M -和抛物线C :24y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k =______.16.(2017新课标Ⅱ)已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则||FN = .17.(2015陕西)若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p =18.(2014湖南)如图4,正方形ABCD DEFG 和正方形的边长分别为,()a b a b <,原点O 为AD 的中点,抛物线22(0)y px p =>经过,bC F a=两点,则.19.(2013北京)若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 .20.(2012陕西)右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.21.(2010浙江)设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________. 三、解答题22.(2018北京)已知抛物线C :22y px =经过点(1,2)P .过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.23.(2018全国卷Ⅱ)设抛物线24=:C y x 的焦点为F ,过F 且斜率为(0)>k k 的直线l 与C 交于A ,B 两点,||8=AB .(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.24.(2018浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :24y x =上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆2214y x +=(0x <)上的动点,求PAB ∆面积的取值范围. 25.(2017新课标Ⅲ)已知抛物线C :22y x =,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点(4,2)P -,求直线l 与圆M 的方程.26.(2017浙江)如图,已知抛物线2x y =.点11(,)24A -,39(,)24B ,抛物线上的点(,)P x y 13()22x -<<,过点B 作直线AP 的垂线,垂足为Q .x(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求||||PA PQ ⋅的最大值.27.(2017北京)已知抛物线C :22y px =过点(1,1)P .过点1(0,)2作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程;(Ⅱ)求证:A 为线段BM 的中点.28.(2016年全国III)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线1l ,2l 分别交C 于A ,B两点,交C 的准线于P ,Q 两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(Ⅱ)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.29.(2015新课标1)在直角坐标系xoy 中,曲线C :24x y =与直线y kx a =+(0)a >交与M ,N 两点,(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.30.(2014山东)已知抛物线)>0(2:2p px y C =的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有FA FD =,当点A 的横坐标为3时,ADF ∆为正三角形。

(Ⅰ)求C 的方程;(Ⅱ)若直线l l //1,且1l 和C 有且只有一个公共点E , (ⅰ)证明直线AE 过定点,并求出定点坐标;(ⅱ)ABE ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由。

31.(2014陕西)如图,曲线C 由上半椭圆22122:1(0,0)y x C a b y a b+=>>≥和部分抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B ,其中1C (Ⅰ)求,a b 的值;(Ⅱ)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l 的方程.32.(2013广东)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (Ⅰ)求抛物线C 的方程;(Ⅱ)当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ)当点P 在直线l 上移动时,求AF BF ⋅的最小值.33.(2012新课标)设抛物线C :)0(22>=p py x 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B 、D 点.(Ⅰ)若oBFD 90=∠,ABD ∆的面积为24,求p 的值及圆F 的方程;(Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m 、n 距离的比值.34.(2011新课标)在平面直角坐标系xoy 中, 已知点(0,1)A -,B 点在直线3y =-上,M 点满足//MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.。

相关文档
最新文档