(完整word版)相交线与平行线拔高训练(典型难题)

合集下载

难点突破“相交线与平行线(提高)”压轴题50道(含详细解析)

难点突破“相交线与平行线(提高)”压轴题50道(含详细解析)

难点突破“相交线与平行线(提高)”压轴题50道(含详细解析)1.如图,//AD BC ,D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H .点F 是边AB 上一点.使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ∠=︒,则BEG ∠的度数为( )A .30︒B .40︒C .50︒D .60︒2.如图,已知//AB CD ,CE 、BE 的交点为E ,现作如下操作: 第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E , 第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E , 第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,⋯, 第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E . 若1n E ∠=度,那BEC ∠等于 度3.如图,//AB CD ,CF 平分DCG ∠,GE 平分CGB ∠交FC 的延长线于点E ,若34E ∠=︒,则B ∠的度数为 .4.如图,直线//a b ,A 是直线a 上一点,D 、E 分别是直线b 上的点,C 是AE 上一点,80ACD ∠=︒,//EG CD 交AD 于G ,F 是GE 上一点使FGC FCG ∠=∠,作CB 平分ACF ∠,则BCG ∠= .5.如图,已知//AB CD ,直线EF 分别交AB 、CD 于点A 、C ,CH 平分ACD ∠,点G 为CD 上一点,连接HA 、HG ,HC 平分AHG ∠,若42AHG ∠=︒,180HGD EAB ∠+∠=︒,则ACD ∠的度数是 ︒.6.如图,直线//MN PQ ,点A 在直线MN 与PQ 之间,点B 在直线MN 上,连结AB .ABM ∠的平分线BC 交PQ 于点C ,连结AC ,过点A 作AD PQ ⊥交PQ 于点D ,作A F A B⊥交PQ于点F ,AE 平分DAF ∠交PQ 于点E ,若45CAE ∠=︒,52ACB DAE ∠=∠,则ACD ∠的度数是 .7.探究:如图①,////AB CD EF ,试说明BCF B F ∠=∠+∠.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由. 解://AB CD ,(已知) 1B ∴∠=∠.( )同理可证,2F ∠=∠.12BCF ∠=∠+∠, BCF B F ∴∠=∠+∠.( )应用:如图②,//AB CD ,点F 在AB 、CD 之间,FE 与AB 交于点M ,FG 与CD 交于点N .若115EFG ∠=︒,55EMB ∠=︒,则DNG ∠的大小为 度.拓展:如图③,直线CD 在直线AB 、EF 之间,且////AB CD EF ,点G 、H 分别在直线AB 、EF 上,点Q 是直线CD 上的一个动点,且不在直线GH 上,连结QG 、QH .若70GQH ∠=︒,则AGQ EHQ ∠+∠= 度.8.综合与探究如图,已知//AM BN ,60A ∠=︒,点P 是射线AM 上一动点(与点A 不重合).BC ,BD 别平分ABP ∠和PBN ∠,分别交射线AM 于点C ,D . (1)求ABN ∠、CBD ∠的度数;根据下列求解过程填空. 解://AM BN ,180ABN A ∴∠+∠=︒60A ∠=︒, ABN ∴∠= , 120ABP PBN ∴∠+∠=︒,BC 平分ABP ∠,BD 平分PBN ∠, 2ABP CBP ∴∠=∠、PBN ∠= ,( )22120CBP DBP ∴∠+∠=︒, CBD CBP DBP ∴∠=∠+∠= .(2)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P 运动到使ACB ABD ∠=∠时,直接写出ABC ∠的度数.9.已知直线12//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点,如图①,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有312∠+∠=∠这一相等关系?试说明理由;如图②,当动点P 在线段CD 之外且在CD 的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由.10.课上教师呈现一个问题:已知:如图1,//AB CD ,EF AB ⊥于点O ,FG 交CD 于点P ,当130∠=︒时,求EFG ∠的度数.甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如图:甲同学辅助线的做法和分析思路如下: 辅助线:过点F 作//MN CD . 分析思路:①欲求EFG ∠的度数,由图可知只需转化为求2∠和3∠的度数之和; ②由辅助线作图可知,21∠=∠,从而由已知1∠的度数可得2∠的度数; ③由//AB CD ,//MN CD 推出//AB MN ,由此可推出34∠=∠; ④由已知EF AB ⊥,可得490∠=︒,所以可得3∠的度数; ⑤从而可求EFG ∠的度数.(1)请你根据乙同学所画的图形,描述辅助线的做法,并写出相应的分析思路. 辅助线: 分析思路:(2)请你根据丙同学所画的图形,求EFG ∠的度数. 11.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,若30EAF ∠=︒,40EDG ∠=︒,则AED ∠= ︒;(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则AED ∠、EAF ∠、EDG ∠之间满足怎样的关系,请说明你的结论;(3)如图3,DI 平分EDC ∠,交AE 于点K ,交AI 于点I ,且:1:2EAI BAI ∠∠=,22AED ∠=︒,20I ∠=︒,求EKD ∠的度数.12.已知,直线//AB DC ,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB 、CD 之间,当60BAP ∠=︒,20DCP ∠=︒时,求APC ∠. (2)如图2,点P 在直线AB 、CD 之间,BAP ∠与DCP ∠的角平分线相交于点K ,写出AKC ∠与APC ∠之间的数量关系,并说明理由.(3)如图3,点P 落在CD 外,BAP ∠与DCP ∠的角平分线相交于点K ,AKC ∠与APC ∠有何数量关系?并说明理由.13.如图,已知:EF AC ⊥,垂足为点F ,DM AC ⊥,垂足为点M ,DM 的延长线交AB 于点B ,且1C ∠=∠,点N 在AD 上,且23∠=∠,试说明//AB MN .14.(1)如图①,90CEF ∠=︒,点B 在射线EF 上,//AB CD ,若130ABE ∠=︒,求C ∠的度数;(2)如图②,把“90CEF ∠=︒”改为“120CEF ∠=︒”,点B 在射线EF 上,//AB CD .猜想ABE ∠与C ∠的数量关系,并说明理由.15.如图1,已知//AB CD ,30B ∠=︒,120D ∠=︒; (1)若60E ∠=︒,则F ∠= ;(2)请探索E ∠与F ∠之间满足的数量关系?说明理由;(3)如图2,已知EP 平分BEF ∠,FG 平分EFD ∠,反向延长FG 交EP 于点P ,求P ∠的度数.16.已知直线12//l l ,直线3l 和直线1l 、2l 交于点C 和D ,点P 是直线3l 上一动点(1)如图1,当点P 在线段CD 上运动时,PAC ∠,APB ∠,PBD ∠之间存在什么数量关系?请你猜想结论并说明理由.(2)当点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出PAC ∠,APB ∠,PBD ∠之间的数量关系,不必写理由.17.(1)如图(1),已知任意三角形ABC ,过点C 作//DE AB ,求证:DCA A ∠=∠; (2)如图(1),求证:三角形ABC 的三个内角(即A ∠、B ∠、)ACB ∠之和等于180︒; (3)如图(2),求证:AGF AEF F ∠=∠+∠;(4)如图(3),//AB CD ,119CDE ∠=︒,GF 交DEB ∠的平分线EF 于点F ,150AGF ∠=︒,求F ∠.18.如图,已知直线12//l l ,且3l 和1l ,2l 分别交于A ,B 两点,4l 和1l ,2l 相交于C ,D 两点,点P 在直线AB 上,(1)当点P 在A ,B 两点间运动时,问1∠,2∠,3∠之间的关系是否发生变化?并说明理由;(2)如果点P 在A ,B 两点外侧运动时,试探究ACP ∠,BDP ∠,CPD ∠之间的关系,并说明理由.19.已知直线//AB CD ,(1)如图1,点E 在直线BD 上的左侧,直接写出ABE ∠,CDE ∠和BED ∠之间的数量关系是 .(2)如图2,点E 在直线BD 的左侧,BF ,DF 分别平分ABE ∠,CDE ∠,直接写出BFD ∠和BED ∠的数量关系是 .(3)如图3,点E 在直线BD 的右侧BF ,DF 仍平分ABE ∠,CDE ∠,那么BFD ∠和BED ∠有怎样的数量关系?请说明理由.20.(1)如图1,//a b ,则12∠+∠=(2)如图2,//AB CD ,则123∠+∠+∠= ,并说明理由 (3)如图3,//a b ,则1234∠+∠+∠+∠=(4)如图4,//a b ,根据以上结论,试探究1234n ∠+∠+∠+∠+⋯+∠= (直接写出你的结论,无需说明理由)21.问题情境:(1)如图1,//AB CD ,130PAB ∠=︒,120PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答 问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,BCP β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//)PE AD ,请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系.22.如图,AD 是ABC ∆的角平分线,点E 在BC 上.点G 在CA 的延长线上,EG 交AB 于点F ,AFG G ∠=∠,求证://GE AD .23.如图1,//AB CD ,直线EF 交AB 于点E ,交CD 于点F ,点G 在CD 上,点P 在直线EF 左侧、且在直线AB 和CD 之间,连接PE 、PG . (1)求证:EPG AEP PGC ∠=∠+∠;(2)连接EG ,若EG 平分PEF ∠,110AEP PGE ∠+∠=︒,12PGC EFC ∠=∠,求AEP ∠的度数;(3)如图2,若EF 平分PEB ∠,PGC ∠的平分线所在的直线与EF 相交于点H ,则EPG ∠与EHG ∠之间的数量关系为 .24.已知E 、D 分别在AOB ∠的边OA 、OB 上,C 为平面内一点,DE 、DF 分别是CDO ∠、CDB ∠的平分线.(1)如图1,若点C 在OA 上,且//FD AO ,求证:DE AO ⊥;(2)如图2,若点C 在AOB ∠的内部,且DEO DEC ∠=∠,请猜想DCE ∠、AEC ∠、CDB ∠之间的数量关系,并证明;(3)若点C 在AOB ∠的外部,且DEO DEC ∠=∠,请根据图3、图4分别写出DCE ∠、AEC ∠、CDB ∠之间的数量关系(不需证明).25.如图 1 ,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上, 过点B 作BG AD ⊥,垂足为点G . (1) 求证:90MAG PBG ∠+∠=︒;(2) 若点C 在线段AD 上 (不 与A 、D 、G 重合) ,连接BC ,MAG ∠和PBC ∠的平分线交于点H ,请在图 2 中补全图形, 猜想并证明CBG ∠与AHB ∠的数量关系;(3) 若直线AD 的位置如图 3 所示, (2) 中的结论是否成立?若成立, 请证明;若不成立, 请直接写出CBG ∠与AHB ∠的数量关系 .26.已知:如图,点C 在AOB ∠的一边OA 上,过点C 的直线//DE OB ,CF 平分ACD ∠,CG CF ⊥于点C .(1)若40O ∠=︒,求ECF ∠的度数; (2)求证:CG 平分OCD ∠.27.完成下面的证明.已知:如图,//BC DE ,BE 、DF 分别是ABC ∠、ADE ∠的平分线. 求证:12∠=∠. 证明://BC DE ,(ABC ADE ∴∠=∠ ).BE 、DF 分别是ABC ∠、ADE ∠的平分线.132ABC ∴∠=∠,142ADE ∠=∠.34∴∠=∠.∴ // ( ).12(∴∠=∠ ).28.将一副三角板中的两根直角顶点C 叠放在一起(如图①),其中30A ∠=︒,60B ∠=︒,45D E ∠=∠=︒.(1)若150BCD ∠=︒,求ACE ∠的度数;(2)试猜想BCD ∠与ACE ∠的数量关系,请说明理由;(3)若按住三角板ABC 不动,绕顶点C 转动三角板DCE ,试探究BCD ∠等于多少度时,//CD AB ,并简要说明理由.29.如图,已知AD BC ⊥,EF BC ⊥,12∠=∠.求证://DG BA .30.如图,已知12180∠+∠=︒,3B ∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.31.如图,已知//AB CD ,点E 在AC 的右侧,BAE ∠,DCE ∠的平分线相交于点F .探索AEC ∠与AFC ∠之间的等量关系,并证明你的结论.32.已知:如图,12∠=∠,34∠=∠,56∠=∠.求证://ED FB .33.操作探究:如图,对折长方形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开:再一次折叠纸片,使点A 落在EF 上(设落地为)N ,并使折痕经过点B ,得到折痕BM ,连接BN 、MN ,请你猜想MBN ∠的度数是多少,并证明你的结论.34.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是/a ︒秒,灯B 转动的速度是/b ︒秒,且a 、b 满足2|3|(4)0a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且45BAN ∠=︒(1)求a 、b 的值;(2)若灯B 射线先转动20秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.35.已知:射线//OP AE(1)如图1,AOP ∠的角平分线交射线AE 与点B ,若58BOP ∠=︒,求A ∠的度数.(2)如图2,若点C 在射线AE 上,OB 平分AOC ∠交AE 于点B ,OD 平分COP ∠交AE 于点D ,39ADO ∠=︒,求ABO AOB ∠-∠的度数.(3)如图3,若A m ∠=,依次作出AOP ∠的角平分线OB ,BOP ∠的角平分线1OB ,1B OP∠的角平分线2OB ,1n B OP -∠的角平分线n OB ,其中点B ,1B ,2B ,⋯,1n B -,n B 都在射线AE 上,试求n AB O ∠的度数.36.请把下列证明过程补充完整.已知:如图,B ,C ,E 三点在同一直线上,A ,F ,E 三点在同一直线上,12E ∠=∠=∠,34∠=∠.求证://AB CD证明:2E ∠=∠(已知)∴ //(BC )3∴∠=∠ ( )34∠=∠(已知)4∴∠=∠ ( )12∠=∠(已知)12CAF CAF ∴∠+∠=∠+∠即BAF ∠=∠4∴∠=∠ (等量代换)∴ ( )37.如图所示,已知//AB CD ,分别探索下列四个图形中P ∠与A ∠,C ∠的关系.要求:(1)、(3)直接写出结论,(2)、(4)写出结论并说明理由.结论:(1) ;(2) ;(3) ;(4) .证明:(2)(4)38.如图,已知直线12//l l ,直线3l 和直线1l 、2l 交于点C 和D 、A 、B 两点分别在1l 和2l 上,直线3l 上有一动点P(1)如果P 点在C 、D 之间运动时,猜测PAC ∠,APB ∠,PBD ∠之间有什么关系,证明你的结论(2)若点P 在DC 的延长线上运动时,PAC ∠,APB ∠,PBD ∠之间的关系为(3)在(2)的条件下,PAC ∠和PBD ∠的角平分线相交于点Q ,探索APB ∠和AQB ∠的关系,并证明.39.已知如图,90COD ∠=︒,直线AB 与OC 交于点B ,与OD 交于点A ,射线OE 与射线AF 交于点G .(1)若OE 平分BOA ∠,AF 平分BAD ∠,42OBA ∠=︒,则OGA ∠= ;(2)若13GOA BOA ∠=∠,13GAD BAD ∠=∠,42OBA ∠=︒,则OGA ∠= ; (3)将(2)中的“42OBA ∠=︒”改为“OBA α∠=”,其它条件不变,求OGA ∠的度数.(用含α的代数式表示)(4)若OE 将BOA ∠分成1:2两部分,AF 平分BAD ∠,(3090)ABO αα∠=︒<<︒,求OGA ∠的度数.(用含α的代数式表示)40.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即//PQ MN,且∠∠=.BAM BAN:2:1(1)填空:BAN∠=︒;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠与BCD∠=︒,则在转动过程中,请探究BAC∠的数量∠交PQ于点D,且120ACDACD关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.41.如图,BG平分CBDCBD∠=︒,EF BG交AC于点F,100∠,E为BC的延长线上一点,//∠=︒,求EFC∠的度数.A2542.如图①,将一副直角三角板放在同一条直线AB上,其中30∠=OCD∠=︒,45ONM(1)将图①中的三角板OMN绕点O按逆时针方向旋转,使30∠=︒,如图②,MN与BON∠的度数;CD相交于点E,求CEN(2)将图①中的三角尺OMN 绕点O 按每秒15︒的速度沿逆时针方向旋转一周,在旋转的过程中,在第 秒时,边MN 恰好与边CD 平行;在第 秒时,直线MN 恰好与直线CD 垂直.(直接写出结果) 43.我们知道同一平面内的两条直线有相交和平行两种位置关系.(1)观察与思考:如图1,若//AB CD ,点P 在AB 、CD 内部,BPD ∠、B ∠、D ∠之间的数量关系为 ,不必说明理由;(2)猜想与证明:如图2,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,利用(1)中的结论(可以直接套用)求BPD ∠、B ∠、D ∠、BQD ∠之间有何数量关系?并证明你的结论;(3)拓展与应用:如图3,设BF 交AC 于点M ,AE 交DF 于点N ,已知140AMB ∠=︒,105ANF ∠=︒.利用(2)中的结论直接写出B E F ∠+∠+∠的度数为 度,A ∠比F ∠大 度.44.已知:直线//a b ,点A ,B 分别是a ,b 上的点,APB 是a ,b 之间的一条折弦,且90APB ∠<︒,Q 是a ,b 之间且在折线APB 左侧的一点,如图.(1)若133∠=︒,74APB ∠=︒,则2∠= 度.(2)若Q ∠的一边与PA 平行,另一边与PB 平行,请探究Q ∠,1∠,2间满足的数量关系并说明理由.(3)若Q ∠的一边与PA 垂直,另一边与PB 平行,请直接写出Q ∠,1∠,2之间满足的数量关系.45.直线MN 与直线PQ 相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动.(1)如图1,若80AOB ∠=︒,已知AE 、BE 分别是BAO ∠和ABO ∠的角平分线,点A 、B 在运动的过程中,AEB ∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出AEB ∠的大小.(2)如图2,若80AOB ∠=︒,已知AB 不平行CD ,AD 、BC 分别是BAP ∠和ABM ∠的角平分线,AD 、BC 的延长线交于点F ,点A 、B 在运动的过程中,F ∠= ;DE 、CE 又分别是ADC ∠和BCD ∠的角平分线,点A 、B 在运动的过程中,CED ∠的大小也不发生变化,其大小为:CED ∠= .(3)如图3,若90AOB ∠=︒,延长BA 至G ,已知BAO ∠、OAG ∠的角平分线与BOQ ∠的角平分线及其延长线相交于E 、F ,则EAF ∠= ;(4)如图3,若AF ,AE 分别是GAO ∠,BAO ∠的角平分线,90AOB ∠=︒,在AEF ∆中,如果有一个角是另一个角的4倍,则ABO ∠的度数= .46.在学习“相交线与平行线”一章时,课本中有一道关于潜望镜的拓广探索题,老师倡议班上同学分组开展相关的实践活动.小钰所在组上网查阅资料,制作了相关PPT 介绍给同学(图1、图2);小宁所在组制作了如图所示的潜望镜模型并且观察成功(图3).大家结合实践活动更好地理解了潜望镜的工作原理.(1)图4中,AB,CD代表镜子摆放的位置,动手制作模型时,应该保证AB与CD平行,入射光线与反射光线满足12∠=∠,34∠=∠,这样离开潜望镜的光线MN就与进入潜望镜的光线EF平行,即//MN EF.请完成对此结论的以下填空及后续证明过程(后续证明无需标注理由).//AB CD(已知),2∴∠=∠().12∠=∠,34∠=∠(已知),1234(∴∠=∠=∠=∠).(2)在之后的实践活动总结中,老师进一步布置了一个任务:利用图5中的原理可以制作一个新的装置进行观察,那么在图5中方框位置观察到的物体“影像”的示意图为.A.B.C.D.47.已知,////AB CD EF,且CB平分ABF∠,CF平分BEF∠,请说明BC CF⊥的理由.解://AB E(已知)∴∠+∠=.CB平分ABF∠(已知)1 12ABF∴∠=∠同理,142BEF ∠=∠114()2ABF BEF ∴∠+∠=∠+∠= . 又//AB CD (已知)12∴∠=∠同理,34∠=∠1423∴∠+∠=∠+∠2390∴∠+∠=︒(等量代换)即90BCF ∠=︒BC CF ∴⊥ .48.如图,已知40ABC ∠=︒,射线DE 与AB 相交于点O ,且//DE BC .解答以下问题:(注EDF ∠为小于180︒的角)(1)画EDF ∠,使DF ∠的另一边//DF AB .请在如图①和图②中画出符合题意的图形,并求EDF ∠的度数.(2)如果EDF ∠的顶点D 在ABC ∠的内部,边//DE BC ,另一边//DF AB .请在如图③和图④中画出相应的图形,并使用量角器分别测量出ABC ∠与EDF ∠的度数后,直接写出ABC ∠与EDF ∠的关系,不必说明理由 .(3)如果EDF ∠的顶点D 在ABC ∠的内部,边DF BC ⊥,请在如图⑤中画出相应的图形,并使用量角器分别测量出ABC ∠与EDF ∠的度数后,直接写出ABC ∠与EDF ∠的关系,不必说明理由.49.如图(1),四边形ABCD 中,//AD BC ,点E 是线段CD 上一点,(1)说明:AEB DAE CBE ∠=∠+∠;(2)如图(2),当AE 平分DAC ∠,ABC BAC ∠=∠. ①说明:90ABE AEB ∠+∠=︒;。

相交线和平行线拔高经典题训练

相交线和平行线拔高经典题训练

相交线和平行线 经典题训练1.已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.2.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.3.已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.4、已知,∠CGD=∠CAB ,∠1=∠2,EF ⊥BC ,试说明:AD ⊥BC .5、如图∠EFC+∠BDC=180°,∠AED=∠ACB ,则∠DEF=∠B ,为什么?6、已知:如图,AB ∥CD ,BD 平分∠ABC ,CE 平分∠DCF ,∠ACE=90°. (1)请问BD 和CE 是否平行?请你说明理由.(2)AC 和BD 的位置关系怎样?请说明判断的理由.7.如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠3 试说明:AD 平分∠BAC8、已知:如图,∠+∠=∠=∠BAP APD 18012,。

求证:∠=∠E FA B 1 EF2C P D9.(1)如图(a ),如果∠B+∠E+∠D=360°,那么AB 、CD 有怎样的关系?为什么?解:过点E 作EF ∥AB ①,如图(b ), 则∠ABE+∠BEF=180°,( _________ )因为∠ABE+∠BED+∠EDC=360°( _________ ) 所以∠FED+∠EDC= _________ ° (等式的性质) 所以 FE ∥CD ②( _________ )由①、②得AB ∥CD ( _________ ). (2)如图(c ),当∠1、∠2、∠3满足条件 _________ 时,有AB ∥CD . (3)如图(d ),当∠B 、∠E 、∠F 、∠D 满足条件 _________ 时,有AB ∥CD(给出理由).10、推理填空:如图,DF ∥AB ,DE ∥AC ,试说明∠FDE=∠A11、如图,把长方形纸片ABCD 沿EF 折叠,若∠EFG=50º, (1)找出图中也是50º的角;(2)说明∠FGM=2∠EFG=100º的理由.FED CB ABA CD EF G MN12。

最新七级数学相交线与平行线拔高练习

最新七级数学相交线与平行线拔高练习

七级数学相交线与平行线拔高练习
七年级数学相交线与平行线拔高练习
一、单选题(共8道,每道15分)
1.如图,下列说法错误的是()
A.∠1和∠3是同位角
B.∠2和∠3是内错角
C.∠A和∠B是同旁内角
D.∠2和∠B是同位角
2.下列图中∠1和∠2是同位角的是()
A.⑴、⑵、⑶
B.⑵、⑶、⑷
C.⑶、⑷、⑸
D.⑴、⑵、⑸
3.如图2,下列条件中不能判断直线l1∥l2的是()
A.∠1=∠3
B.∠2=∠3
C.∠4=∠5
D.∠2+∠4=180°
4.如图,已知直线a、b被直线c所截,a∥b,∠1=130°,则∠2=()
A.130°
B.50°
C.40°
D.60°
5.如图3,直线l1∥l2,则∠α=()
A.100°
B.110°
C.120°
D.130°
6.如图所示,点在的延长线上,下列条件中能判断的是()
A.
B.
C.
D.
7.将一直角三角板与两边平行的纸条如图4放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()
A.1
B.2
C.3
D.4
8.如图5,AD⊥BC,EF⊥BC,∠1=∠C,下列结论正确的是()①DG//AC;
②AD//EF;③∠1=∠2;④∠2=∠4.
A.①②
B.①②③
C.①②④
D.①②③④。

相交线与平行线难题汇编含答案

相交线与平行线难题汇编含答案
∴∠DOC=∠DCO,
∴OD=CD=3.
∵ 到 的距离是2.4,
∴ 到 的距离是2.4,
∴ 的面积= .
故选A.
【点睛】
本题考查了等腰三角形的判定、角平分线的定义、平行线的性质、以及角平分线的性质,利用角平分线的性质得出 到 的距离是2.4是解题的关键.
6.如图 ∥ ,∠ = , 平分∠ ,则∠ 的度数为()
A. B. C. D.
【答案】B
【解析】
∵AD∥BC,
∴∠ADB=∠DBC,
∵DB平分∠ADE,
∴∠ADB=∠ADE,
∵∠B=30°,
∴∠ADB=∠BDE=30°,
则∠DEC=∠B+∠BDE=60°.
故选B.
【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.
B、两直线平行,内错角相等,正确;
C、等腰三角形的两个底角相等,正确;
D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;
故选:D.
【点睛】
本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.
16.若∠A与∠B是对顶角且互补,则它们两边所在的直线( )
∵∠1=90°+∠4,
∴130°=90°+∠4,
∴∠4=40°,
∴∠2=∠4=40°,
故选B.
【点睛】
本题考查平行线的性质,本知识
2.如图,已知 ,若 , , ,下列结论:① ;② ;③ ;④ 与 互补;⑤ ,其中正确的有()
A.2个B.3个C.4个D.5个
∴∠ACD=38°,
∴∠2=∠BCD=60°﹣38°=22°,

(完整版)平行线与相交线提高训练

(完整版)平行线与相交线提高训练

平行线与相交线提高训练1如图,直线a // b,那么/ x的度数是________________ .2.如图,AB// CD,/ DCE的角平分线CG的反向延长线和/ ABE的角平分线BF交于点F,/ E -/ F =3.如图,已知/ 1 + / 2= 180°,/ 3=/ B,求证: DE // BC.C/ 3 =/ 4,/ 5=/ 6.求证:ED // FB.5.已知:如图,B、C、E三点在同一直线上,A、F、E三点在同一直线上, / 1 = / 2 = / E, / 3=/ 4.求证:AB // CD .6.已知,如图, AE // BD ,/ 1 = 3/ 2,/ 2 = 26°,求一(3)如图3,若Z A = m ,依次作出Z AOP 的角平分线 OB , Z BOP 的角平分线 OB 1 ,Z B 1OP 的角平分 线OB 2,Z B n - 1OP 的角平分线 OB n ,其中点 B , B 1, B 2,…,B n -1, B n 都在射线AE 上,试求Z AB n O 的度数.,求/ 1 + / 2的度数(提示:要作辅助线哟!/ AOP 的角平分线交射线 AE 与点B ,若/ BOP = 58°,求/ A 的度数.(2)如图 2, 若点C 在射线AE 上,OB 平分/ AOC 交AE 于点B , OD 平分/ COP 交AE 于点D ,/ADO = 39° ,求/ ABO -Z AOB 的度数./ B = 105 (1)如图 1,9. 数学思考:(1)如图1,已知AB // CD ,探究下面图形中/ APC 和/ PAB 、/ PCD 的关系,并证明你的 结论推广延伸:(2)①如图2,已知AA i / BA 1,请你猜想/ A 1,/ B 1,/ B 2,/ A 2、/ A 3的关系,并证明你的猜想;②如图3,已知AA 1 / BA n ,直接写出/ A 1,/ B 1,/ B 2,/ A 2、…/ B n -1、/ A n 的关系拓展应用:(3)①如图4所示,若AB // EF ,用含a, 3, 丫的式子表示X ,应为 _________________A.180° + a + 3- YB.180 °_ a _ Y +3 C .供丫― a D . a + 3+ 丫②如图 5, AB / CD ,且/ AFE = 40°,/ FGH = 90°,/ HMN = 30°,/ CNP = 50°,请你根据上述结论直接写出/ GHM 的度数是(2) 如图2,点P 在直线AB 、CD 之间,/ BAP 与/ DCP 的角平分线相交于点之间的数量关系,并说明理由.(3) 如图3,点P 落在CD 夕卜,/ BAP 与/ DCP 的角平分线相交于点 K , / AKC 与/ APC 有何数量关 系?并说明理由.10. 已知,直线 AB / DC ,点P 为平面上一点,连接 AP 与 CP .(1) 如图1,点P 在直线AB 、CD 之间,当/BAP = 60°,/ DCP = 20° 时,求/ APC .K ,写出/ AKC 与/ APC11. 如图,已知 AM II BN ,/ A = 80。

完整word版相交线与平行线精选综合提高试题1

完整word版相交线与平行线精选综合提高试题1

一、教学内容:相交线与平行线综合提高1.了解对顶角的概念,掌握其性质,并会用它们进行推理和计算.2.了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义.3.知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线.4.知道两直线平行同位角相等,并进一步探索平行线的特征.5.知道过直线外一点有且仅有一条直线平行于已知直线.会用三角尺和直尺过已知直线外一点画这条直线的平行线.6.掌握平行线的三个判定方法,并会用它们进行直线平行的推理.二、知识要点:1.两条直线的位置关系(1)在同一平面内,两条直线的位置关系有两种:相交与平行.(2 )平行线:在同一平面内,不相交的两条直线叫平行线.2.几种特殊关系的角(1 )余角和补角:如果两个角的和是直角,称这两个角互为余角.如果两个角的和是平角,称这两个角互为补角.(2 )对顶角:①定义:一个角的两边分别是另一个角两边的反向延长线,这两个角叫对顶角.②性质:对顶角相等.(3)同位角、内错角、同旁内角两条直线分别与第三条直线相交,构成八个角.①在两条直线之间并且在第三条直线的两旁的两个角叫做内错角.②在两条直线的同一侧并且在第三条直线同旁的两个角叫做同位角.③在两条直线之间并且在第三条直线同旁的两个角叫做同旁内角.3.主要的结论(1)垂线①过一点有且只有一条直线与已知直线垂直.②直线外一点与直线上各点连结的所有线段中,垂线段最短.简称:垂线段最短.(2)平行线的特征及判定平行线的判定平行线的特征同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补经过直线外一点,有且只有一条直与平行线综合提高:②特殊型(垂直,如图②)CEA BC DF4.几个概念(1 )垂线段:过直线外一点,作已知直线的垂线,这点和垂足之间的线段.(2)点到直线的距离:从直线外一点到这条直线的垂线段的长度.5.几个基本图形(1 )相交线型.①一般型(如图①)(2 )三线八角.①一般型(如图①):②特殊型(平行,如图②)E rF①三、重点难点:重点有两个:一方面要掌握关于相交线和平行线的一些基本事实,另一方面学会借助三角尺上的直角或量角器画已知直线的垂线,用移动三角尺的方法画平行线•难点是是利用对顶角的性质、平行线的特征、两直线平行的条件等进行推理和计算.四、考点分析:考查(1)对顶角的性质;(2)平行线的识别方法;(3)平行线的特征,其中依据平行线的识别与特征解决一类与平行线有关的几何问题是历届中考命题的重要考点.常见题型有填空题、选择题和解答题,单纯考查一个知识点的题目并不难,属于中低档题,将平行线的特征与其他知识综合起来考查的题目难度较大,属高档题.【典型例题】例1.如图所示,已知FC // AB // DE,/a:/ D :/ B = 2 : 3 : 4,求/a、/ D、/ B 的度数.C 分析:由条件/a:/ D :/ B = 2 : 3:4 .可以分别设出/a、/ D、/ B,再根据题目给出的条件建B①立方程求解.解:设/a= 2x,/ D = 3x,/ B= 4x.•/ FC// AB // DE,.•. / 2+/ B= 180°,/ 1 + / D = 180 ° ,••• / 2= 180° —4x,/ 1= 180°—3x,又••• / 1+/a+/ 2= 180°,•••180°—3x+2x+ 180 ° —4x= 180°,••• 5x= 180° , x= 36°,.•./a= 2x= 72°,/ D = 3x= 108°,/ B = 4x = 144° .评析:解答这类计算题不仅要熟悉图形的性质,还要善于进行等量转化,把待求的角逐步和已知条件建立起联系来,当待求结论要经过复杂过程才能求得时,一定要思路清晰、叙述表达严密.例2.如图所示,直线a // b,则/ A =分析:已知条件a// b能转化为三线八角,过内错关系转化),可求/ A.由AD // a, a // b,可知AD// b,由两直线平行内错角相等得:/ =28°,/ DAE =50°, •/ EAB = 50°—28°= 22°.解:22°评析:用平行线三线八角把已知角转化成以A为顶点的角即可. 内角互补,两直线平行;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行.例4.试说明:两条平行线被第三条直线所截,一对内错角的平分线互相平行. 分析:先根据题意画出图形,标注字母,找出已知条件和问题,再进行说明.解:已知:如图所示,明GM // HN .••• GM、HN 分别平分/ BGF、/ EHC (已知),•/ 1=/ BGF , / 2 = / EHC (角平分线定义).•/ AB // CD ,•••/ BGF = / EHC (两直线平行,内错角相等).•••/ 1=/ 2.•••GM // HN (内错角相等,两直线平行).评析:(1)上题把内错角平分线改为同位角平分线,原结论也成立,请同学们自己试着解一解. 此题为文字题,首先应根据题意画出图形,再根据已知条件和结论结合图形写出解题过程.例5.如图所示,已知CE // DF,说明/ ACE = / A +/ ABF .例3.已知:如图所示,DF // AC , / 1 = / 2 .试说明分析:要说明DE // AB,可以证明/ 1 = / A,而由DF // AC ,有/ 2 = / A,又因为/ 1 = / 2,故有/ 从而结论成立.•/ DF // AC (已知),2=/ A (两直线平行,同位角相等).1 = /2 (已知),1 = / A (等式性质),••• DE // AB (同位角相等,两直线平行).评析:说明两直线平行的方法有:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁分析:结论中/ ACE , / A与/ ABF在三个顶点处,条件CE // DF不能直接运用,结论形式启示我们用割补法,即构造一个角等于/ A + / ABF,因此想到在点A处补上一个/ GAB =/ ABF,只要GA // DF即可,同时可得GA // CE,/ GAC = / ACE,结论便成立.解:过A作AG // DF ,•••/ GAB = / ABF (两直线平行,内错角相等)又••• AG // DF , CE/ DF (已知)••• AG // CE (平行于同一直线的两条直线互相平行)•/ GAC = / ACE (两直线平行,内错角相等)作AD // a,那么已知的两个角可转换到顶点 A (都用DAB =/ ABE1 = / A,解:•••/•••/•••/abAabHN分别平分/ BGF、/ EHC.说DE //EF又•••/ GAC =/ BAC +/ GAB (已知)•••/ ACE =/ BAC +/ ABF (等量代换). 评析:(1)割补法是一种常用方法.(2)此题还可以过点 C 作一条直线与 AB 平行,把/ ACE 分成两个角后,分别说明这两个角与/ A 、/ ABF 相等. C. 图中没有内错角和同旁内角,但有三对同位角 D. 图中没有同位角和内错角,但有三对同旁内角例6.解放战争时期,有一天江南某游击队在村庄 A 点出发向正东行进,此时有一支残匪在游击队的东北方向B 点处(如图所示,残匪沿北偏东 60°角方向,向C 村进发•游击队步行到 A 处,A 正在B 的正南 方向上,突然接到上级命令,决定改变行进方向,沿北偏东 30°方向赶往 残匪行进方向BC 至少是多少角度时,才能保证 C 村村民不受伤害? C 村.问游击队进发方向 A'C 与 C 东 2. 一条公路两次转弯后又回到原来的方向(即 么,/ C 应是( )A. 140 °B. 40AB // CD ,如图),如果第一次转弯时的/B = 140。

相交线与平行线难题汇编附答案

相交线与平行线难题汇编附答案

相交线与平行线难题汇编附答案一、选择题1.如图,直线 a ∥b ∥c ,直角三角板的直角顶点落在直线 b 上,若∠1=30°,则∠2 等于( )A .40°B .60°C .50°D .70° 【答案】B【解析】【分析】根据两直线平行内错角相等得1324==∠∠,∠∠,再根据直角三角板的性质得341290+=+=︒∠∠∠∠,即可求出∠2的度数.【详解】∵a ∥b ∥c∴1324==∠∠,∠∠∵直角三角板的直角顶点落在直线 b 上∴341290+=+=︒∠∠∠∠∵∠1=30°∴290160=︒-=︒∠∠故答案为:B .【点睛】本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.2.如图,不能判断12//l l 的条件是( )A .13∠=∠B .24180∠+∠=︒C .45∠=∠D .23∠∠=【答案】D【解析】【分析】根据题意,结合图形对选项一一分析,排除错误答案.【详解】A 、∠1=∠3正确,内错角相等两直线平行;B 、∠2+∠4=180°正确,同旁内角互补两直线平行;C 、∠4=∠5正确,同位角相等两直线平行;D 、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行. 故选:D .【点睛】此题考查同位角、内错角、同旁内角,解题关键在于掌握各性质定义.3.如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A .50°B .70°C .80°D .110°【答案】C【解析】【分析】 根据平行线的性质可得∠BAD=∠1,再根据AD 是∠BAC 的平分线,进而可得∠BAC 的度数,再根据补角定义可得答案.【详解】因为a ∥b ,所以∠1=∠BAD=50°,因为AD 是∠BAC 的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.4.如图,下列能判定AB ∥CD 的条件有几个( )(1)12∠=∠ (2)34∠=∠(3)5B ∠=∠ (4)180B BCD ∠+∠=︒.A .4B .3C .2D .1【答案】B【解析】【分析】 根据平行线的判定逐一判定即可.【详解】因为12∠=∠,所有AD ∥BC ,故(1)错误.因为34∠=∠,所以AB ∥CD ,故(2)正确.因为5B ∠=∠,所以AB ∥CD ,故(3)正确.因为180B BCD ∠+∠=︒,所以AB ∥CD ,故(4)正确.所以共有3个正确条件.故选B【点睛】本题考查的是平行线的判定,找准两个角是哪两条直线被哪条直线所截形成的同位角、同旁内角、内错角是关键.5.如图,点D 在AC 上,点F 、G 分别在AC 、BC 的延长线上,CE 平分∠ACB 交BD 于点O ,且∠EOD+∠OBF =180°,∠F =∠G ,则图中与∠ECB 相等的角有( )A .6个B .5个C .4个D .3个【答案】B【解析】【分析】 由对顶角关系可得∠EOD=∠COB ,则由∠COB+∠OBF=180°可知EC ∥BF ,再结合CE 是角平分线即可判断.【详解】解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC ∥BF ,结合CE 是角平分线可得∠ECB=∠ACE=∠CBF ,再由EC ∥BF 可得∠ACE=∠F=∠G ,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC ,共有5个与∠ECB 相等的角,故选择B.【点睛】本题综合考查了平行线的判定及性质.6.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.7【答案】A【解析】试题分析:如图,根据垂线段最短可知:PC<3,∴CP的长可能是2,故选A.考点:垂线段最短.7.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24°B.34°C.56°D.124°【答案】C【解析】【分析】【详解】试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选C.考点:平行线的性质.8.如图AD∥BC,∠B=30,DB平分∠ADE,则∠DEC的度数为()A .30B .60C .90D .120 【答案】B【解析】∵AD ∥BC ,∴∠ADB=∠DBC ,∵DB 平分∠ADE ,∴∠ADB=∠ADE ,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠DEC=∠B+∠BDE=60°.故选B .【点睛】此题主要考查了平行线的性质,正确得出∠ADB 的度数是解题关键.9.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC ∥DE ,故①正确;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC ∥DE ,AC ⊥BC ,∴DE ⊥BC ,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB ,故③正确,④错误;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B ,故⑤正确;即正确的个数是4个,故选:C .【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.10.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A .75°B .90°C .105°D .120°【答案】C【解析】【分析】 延长CE 交AB 于点F ,根据两直线平行,内错角相等可得∠AFE =∠C ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE 交AB 于点F ,∵AB ∥CD ,∴∠AFE =∠C =60°,在△AEF 中,由三角形的外角性质得,∠AEC =∠A +∠AFE =45°+60°=105°.故选:C .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.11.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.12.如图,AB CD ∥,BF 平分ABE ∠,且BF DE ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE交AB的延长线于G,AB CD,//∴∠=∠,D GBF DE,//∴∠=∠,G ABF∴∠=∠,D ABF∠,BF平分ABE∠=∠.∴∠=∠=∠,即2ABE DABE ABF D22故选:A.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.∠=∠,那么13.如图,现将一块含有60︒角的三角板的顶点放在直尺的一边上,若12∠的度数为()1A.50︒B.60︒C.70︒D.80︒【答案】B【解析】【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【详解】∵AB∥CD,∴∠3=∠2,∠1=∠2,∴∠1=∠3,∴2∠3+60°=180°,∴∠3=60°,∴∠1=60°,故选:B .【点睛】此题考查平行线的性质,三角板的知识,熟记性质是解题的关键.14.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.15.若∠A 与∠B 是对顶角且互补,则它们两边所在的直线( )A .互相垂直B .互相平行C .既不垂直也不平行D .不能确定【答案】A【解析】∵∠A 与∠B 是对顶角,∴∠A=∠B ,又∵∠A 与∠B 互补,∴∠A+∠B=180°,可求∠A=90°.故选A .16.如图,//AB CD ,点E 在CD 上,点F 在AB 上,如果:6:7CEF BEF ∠∠=,50ABE ∠=︒,那么AFE ∠的度数为( )A .110︒B .120︒C .130︒D .140︒【答案】B【解析】【分析】 由//AB CD 可得∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒,即∠CEB=130°,由:6:7CEF BEF ∠∠=可得=67CEF BEF ∠∠,设=67CEF BEF ∠∠=k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由//AB CD 可得AFE ∠=∠DEF 即可解答.【详解】解:∵//AB CD∴∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒∴∠CEB=130°∵:6:7CEF BEF ∠∠= ∴=67CEF BEF ∠∠ 设=67CEF BEF ∠∠=k ,则∠CEF=6k,∠FEB=7k,∴6k+7k=130°∴∠FEB=7k=70°∴∠DEF=∠FEB+∠BED=120°AB CD∵//=∠DEF=120°∴AFE故答案为B.【点睛】本题考查的是平行线的性质以及比例的应用,.熟练掌握平行线的性质是解答本题的关键.17.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.下列说法中不正确的是()①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A.①B.②C.③D.④【答案】B【解析】【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确;故选B .19.如图,下列判断:①若12A C ∠=∠∠=∠,,则B D ∠=∠;②若12B D ∠=∠∠=∠,,则A C ∠=∠:③若,A C B D ∠=∠∠=∠,则12∠=∠.其中,正确的个数是( ).A .0B .1C .2D .3【答案】D【解析】【分析】 ①根据12A C ∠=∠∠=∠,证明四边形DEBF 是平行四边形即可判断;②根据12B D ∠=∠∠=∠,证明DC ∥AB 即可判断;③根据,A C B D ∠=∠∠=∠证明DC ∥AB 即可判断.【详解】解:如图,标出∠3,①∵A C ∠=∠,∴DC ∥AB (内错角相等,两直线平行),∵2,3∠∠是对顶角,∴23∠∠=,∴13∠=∠(等量替换),∴DE ∥FB (同位角相等,两直线平行),∴四边形DEBF 是平行四边形(两组对边分别平行),∴B D ∠=∠,故①正确;②∵2,3∠∠是对顶角,∴23∠∠=,∴13∠=∠(等量替换),∴DE ∥FB (同位角相等,两直线平行),∴∠B+∠DEB=180°,又∵B D ∠=∠,∴∠D+∠DEB=180°,∴DC ∥AB (同旁内角互补,两直线平行),∴A C ∠=∠(两直线平行,内错角相等);故②正确;③∵A C ∠=∠,∴DC ∥AB (内错角相等,两直线平行),∴B CFB ∠=∠(两直线平行,内错角相等),又∵B D ∠=∠,∴D CFB ∠=∠,∴DE ∥FB (同位角相等,两直线平行),∴13∠=∠(两直线平行,同位角相等),∵2,3∠∠是对顶角,∴23∠∠=,∴12∠=∠(等量替换),故③正确.故D 为答案.【点睛】本题主要考查了直线平行的判定(同位角相等、内错角相等、同旁内角互补,两直线平行)、直线平行的性质、等量替换的相关知识点,掌握直线平行的判定和性质是解题的关键.20.如图,下列推理错误的是( )A .因为∠1=∠2,所以c ∥dB .因为∠3=∠4,所以c ∥dC .因为∠1=∠3,所以a ∥bD .因为∠1=∠4,所以a ∥b【答案】C【解析】分析:由平行线的判定方法得出A 、B 、C 正确,D 错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c ∥d ,故正确; 根据同位角相等,两直线平行,可知因为∠3=∠4,所以c ∥d ,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.。

七下第七章相交线与平行线(难题)训练(有答案)

七下第七章相交线与平行线(难题)训练(有答案)

七下第七章相交线与平行线(难题)训练一、选择题1.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)相等的两个角是对顶角;(3)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离;其中正确的有()A. 0个B. 1个C. 2个D. 3个2.两条直线被第三条直线所截,形成一对同旁内角∠1,∠2,且∠1=750,那么∠2为()A. 750B. 1050C. 750或1050D. 大小不能确定3.如图,现将一块含有60°三角板的直角顶点放在直尺的一边上,若∠1=50°,那么∠2的度数为()A. 20°B. 10°C. 30°D. 50°4.下面的说法正确的个数为()①若∠α=∠β,则∠α和∠β是一对对顶角;②若∠α与∠β互为补角,则∠α+∠β=180o;③一个角的补角比这个角的余角大90o;④同旁内角相等,两直线平行.A. 1B. 2C. 3D. 45.如图,在七边形ABCDEFG中,AB//DE,BC//EF,则下列关系式中错误的是()A. ∠C=∠B+∠DB. ∠C=∠E+∠DC. ∠A+∠E+∠G=180°+∠FD. ∠C+∠E=∠F+180°6.下列说法正确的有()个①平面内,不相交的直线就是平行线;②平行于同一条直线的两条直线平行;③过一点有且只有一条直线与已知直线垂直;第2页,共13页④如图,以点B 为顶点,射线BC 为一边,利用尺规做∠EBC ,使得∠EBC =∠A ,则EB 与AD 一定平行。

A. 1B. 2C. 3D. 4二、填空题7. 如图,ABCD 为一长条形纸带,AB//CD ,将ABCD 沿EF 折叠,A 、D 两点分别与、对应.若∠1=50∘,则∠2=____.8. 如果∠A 与∠B 的两边分别平行,∠A 比∠B 的3倍少36°,则∠A 的度数是________. 9. 如下图,直线AB//CD//EF ,如果∠BAD +∠ADF =218°那么∠DFE =______度.10. 如图,AD//BC ,BO 、CO 分别平分∠ABC 、∠DCB ,若∠A +∠D =n°,则∠BOC =______度.11. 如图,CB//OA ,OB//AC ,OE 、OC 分别平分∠BOF 和∠AOF ,若∠ACO =∠OEB =α,则∠BCO 的度数为_____(用含α的代数式表示).12. 如图,长方形纸片ABCD 沿EF 折叠后,ED 交BC 于点G ,点D 、C 分别落在点D ′、C ′位置上,若∠EFG =55°,∠BGE=度.13. 如下图a 是长方形纸带,∠DEF =25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是________.14.小明将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起,当∠ACE<180°且点E在直线AC的上方时,他发现若∠ACE=____,则三角板BCE有一条边与斜边AD平行.(写出所有可能情况)三、解答题15.如图,,若,,射线OM上有一动点P.(1)当点P在A,B两点之间运动时,与、之间有何数量关系?请说明理由.(2)如果点P在A、B两点外侧运动时点P与点A、B、O三点不重合,请你直接写出与、之间的数量关系.16.已知:如图,AB//CD,∠ABE=∠DCF,请说明∠E=∠F的理由.17.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.18.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ//MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=____°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.第4页,共13页答案和解析1.B解:(1)同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;(2)不符合对顶角的定义,错误;(3)强调了在平面内,正确;(4)直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度,错误.2.D解:因为两条直线的位置关系不明确,所以无法判断∠1和∠2大小关系,3.A解:如图,∵∠1=50°,∴∠1=∠3+∠4,∠4=30°∴∠3=20°∴∠2=∠3=20°.4.B解:①错误,不符合对顶角的定义.②正确,满足补角的定义.③正确,一个角的补角减去这个角的余角等于(180°−α)−(90°−α)=90°.④错误,同旁内角互补,两直线平行.5.D解:如图:过点C作AB的平行线CH,交EF于H,延长EF交AB于I,则AB//DE//KH,所以∠B=∠BCK,∠D=∠DCK,则∠C=∠BCK+∠DCK=∠B+∠D,故A正确;又EF//BC,所以∠E=∠FHC=∠BCK=∠B,则∠C=∠E+∠D,故B正确;因为∠A+∠G+∠AIF+GFI=360°,又∠E=AIF,所以∠A+∠G+∠E=360°−∠GFI=180°+∠F,故C正确.6.B解:①平面内,不相交的直线就是平行线,错误,也可能重合;②平行于同一条直线的两条直线平行,正确;③过一点有且只有一条直线与已知直线垂直,正确;④如图,以点B为顶点,射线BC为一边,利用尺规做∠EBC,使得∠EBC=∠A,则EB 与AD一定平行,错误,如图,∠EBC=∠A,不一定EB与AD平行;第6页,共13页7.65°解:∵∠1=50°,,由折叠可得:∠AEF=65°,又∵AB//CD,∴∠2=∠AEF=65°,8.18°或126°解:∵∠A与∠B的两边分别平行,∴∠A与∠B相等或互补.分两种情况:①当∠A+∠B=180°时,∠A=3∠B−36°,解得:∠A=126°;②当∠A=∠B,∠A=3∠B−36°,解得:∠A=18°.所以∠A=18°或126°.9.38解:如图,延长AC,∵AB//CD,∴∠A+∠ADH=180°,∵∠A+∠ADF=218°,∴∠HDF=218°−180°=38°,∵CD//EF,∴∠F=∠HDF=38°.10.n2解:∵AD//BC,∴∠AOB=∠OBC,∠DOC=∠OCB,∠A+∠ABC=180°,∠D+∠DCB=180°,∴∠AOB+∠DOC=∠OBC+∠OCB,ABC+∠DCB=360°−(∠A+∠D)=360°−n°,又∵BO,CO分别平分∠ABC,∠DCB,∴∠OBC=12∠ABC,∠OCB=12∠DCB,∴∠BOC=180°−(∠AOB+∠DOC) =180°−(∠OBC+∠OCB)=180°−12(∠ABC+∠DCB)=180°−12(360°−n°)=(n2)°.11.α3解:∵CB//OA,∴∠AOE=∠OEB=α,∠AOC=∠BCO,∵OB//AC,∴∠BOC=∠ACO=α,又∠BOC=∠BOE+∠EOC,∠AOE=∠AOC+∠EOC,∴∠BOE=∠AOC,∵OE、OC分别平分∠BOF和∠AOF,∴∠EOF=∠BOE,∠FOC=∠AOC,∴∠EOF=∠BOE=∠FOC=∠AOC,∵∠BOC=∠EOF+∠BOE+∠FOC=α,∴∠BOE=α3,∴∠AOC=α3,∴∠BCO=α3.12.110解:∵AD//BC,∴∠DEF=∠EFB=55°,由对称性知∠GEF=∠DEF,第8页,共13页∴∠GEF=55°,∴∠GED=110°,∴∠EGB=∠GED=110°.13.105°解:∵AD//BC,∠DEF=25°,∴∠BFE=∠DEF=25°,∴∠EFC=155°(图a),∴∠BFC=155°−25°=130°(图b),∴∠CFE=130°−25°=105°(图c).14.30°或120°或165°解:有三种情形:①如图1中,当AD//BC时.∵AD//BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.②如图2中,当AD//CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图3中,当AD//BE时,延长BC交AD于M∵AD//BE,∴∠AMC=∠B=45°,∴∠ACM=180°−60°−45°=75°,∴∠ACE=75°+90°=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.15.解:(1)∠CPD=∠α+∠β,理由如下:如图3,过P作PE//AD交CD于E,∵AD//BC,∴AD//PE//BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(2)当P在BA延长线时,∠CPD=∠β−∠α;理由:如图4,过P作PE//AD交CD于E,∵AD//BC,∴AD//PE//BC,∴∠α=∠DPE,∠β=∠CPE,第10页,共13页∴∠CPD=∠CPE−∠DPE=∠β−∠α;当P在AB延长线时,∠CPD=∠α−∠β.理由:如图5,过P作PE//AD交CD于E,∵AD//BC,∴AD//PE//BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE−∠CPE=∠α−∠β.16.解:∵AB//CD(已知),∴∠ABC=∠BCD(两直线平行内错角相等),∵∠ABE=∠DCF(已知),∴∠EBC=∠FCB,∴BE//CF(内错角相等,两直线平行),∴∠E=∠F(两直线平行内错角相等).17.证明:∵DG⊥BC,AC⊥BC,∴DG//AC,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴EF//DC,∴∠AEF=∠ADC;∵EF⊥AB,∴∠AEF=90°,∴∠ADC=90°,∴DC⊥AB.18.解:(1)60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ//MN,∴∠PBD=∠BDA,∵AC//BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD,∴2t=1×(30+t),解得:t=30;②当90<t<150时,如图2,∵PQ//MN,∴∠PBD+∠BDA=180°,∵AC//BD,∴∠CAN=∠BDA,∴∠PBD+∠CAN=180°,∴1×(30+t)+(2t−180)=180,解得:t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,第12页,共13页∵∠CAN=180°−2t,∴∠BAC=60°−(180°−2t)2t−120°,又∵∠ABC=120°−t,∴∠BCA=180°−∠ABC−∠BAC=180°−t,而∠ACD=120°,∴∠BCD=120°−∠BCA=120°−(180°−t)=t−60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,=60°,∴∠BAN=180°×13故答案为60;(2)(3)见答案.。

(完整版)北师大数学七年级下册第二章相交线与平行线拔高题

(完整版)北师大数学七年级下册第二章相交线与平行线拔高题

北师大数学七年级下第二章拔高题一.选择题(共7小题)1.如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠D B.∠ABE+∠D=90°C.∠ABE+3∠D=180°D.∠ABE=2∠D2.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为()A.55°B.60°C.65°D.70°3.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°5.下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短6.如图,已知AB∥DE,∠ABC=80°,∠CDE=150°,则∠BCD=()A.30°B.40°C.50°D.60°7.如图,图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为()A.120°B.108°C.126°D.114°二.填空题(共8小题)8.将一块60°的直角三角板DEF放置在45°的直角三角板ABC上,移动三角板DEF使两条直角边DE、DF恰分别经过B、C两点,若EF∥BC,则∠ABD=°.9.如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为.10.如图,已知DE∥BC,2∠D=3∠DBC,∠1=∠2.则∠DEB=度.11.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.12.如图,BE∥CF,则∠A+∠B+∠C+∠D=度.第9题第10题第11题第12题13.如图,若OP∥QR∥ST,则∠1,∠2,∠3的数量关系是:.14.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是.15.如图,∠AOB的一边OA为平面镜,∠AOB=37°,在OB上有一点E,从E点射出一束光线经OA上一点D反射,此时∠ODE=∠ADC,且反射光线DC恰好与OB平行,则∠DEB的度数是.第13题第14题第15题三.解答题(共11小题)16.如图,AB∥CD,直线EF与AB,CD交于点G,H,GM⊥GE,∠BGM=20°,HN 平分∠CHE,求∠NHD的度数.17.如图,直线AB∥CD,并且被直线MN所截,MN分别交AB和CD于点E、F,点Q在PM 上,且∠AEP=∠CFQ.求证:∠EPM=∠FQM.18.如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF 分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.19.【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF=度,∠FOH=度.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)20.如图,AB∥CD,∠ABD和∠BDC的平分线交于点E,BE交CD于点F.(1)求证:∠1+∠2=90°;(2)如果∠EDF=36°,那么∠BFC等于多少度?21.如图,AB∥CD,点E在线段AB上,连接EC、ED、AD,且ED平分∠CEB,AD⊥EF,若∠ADC=42°,∠A﹣∠B=8°,求∠BDE的度数.22.(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.23.已知AB∥CD,点E为平面内一点,BE⊥CE于E.(1)如图1,请直接写出∠ABE和∠DCE之间的数量关系;(2)如图2,过点E作EF⊥CD,垂足为F,求证:∠CEF=∠ABE;(3)如图3,在(2)的条件下,作EG平分∠CEF,交DF于点G,作ED平分∠BEF,交CD 于D,连接BD,若∠DBE+∠ABD=180°,且∠BDE=3∠GEF,求∠BEG的度数.24.(1)如图①,若AB∥CD,求∠B+∠D+∠E1的度数?(2)如图②,若AB∥CD,求∠B+∠D+∠E1+∠E2的度数?(3)如图③,若AB∥CD,求∠B+∠D+∠E1+∠E2+∠E3的度数?(4)如图④,若AB∥CD,猜想∠B+∠D+∠E1+∠E2+⋯+∠E n的度数?25.如图,已知直线l1∥l2,点A、B分别在l1与l2上.直线l3和直线l1、l2交于点C和D,在直线CD上有一点P.(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?26.如图,已知∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,F是BC延长线上一点,且∠DBC =∠F,求证:EC∥DF.一.选择题(共7小题)1.如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠D B.∠ABE+∠D=90°C.∠ABE+3∠D=180°D.∠ABE=2∠D【解答】证明:如图,延长DE交AB的延长线于G,∵AB∥CD,∴∠D=∠G,∵BF∥DE,∴∠G=∠ABF,∴∠D=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF=2∠D,即∠ABE=2∠D.故选:D.2.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为()A.55°B.60°C.65°D.70°【解答】解:∵EF∥MN,∠1=40°,∴∠1=∠3=40°,∵∠A=30°,∴∠2=∠A+∠3=70°,故选:D.3.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°【解答】解:由翻折的性质可知:∠AEF=∠FEA′,∵AB∥CD,∴∠AEF=∠1,∵∠1=2∠2,设∠2=x,则∠AEF=∠1=∠FEA′=2x,∴5x=180°,∴x=36°,∴∠AEF=2x=72°,故选:C.4.在下列图形中,由∠1=∠2一定能得到AB∥CD的是()A.B.C.D.【解答】解:如下图,∵∠1=∠2,∴AB∥CD,故选:A.5.下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短【解答】解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短,正确.故选:A.6.如图,已知AB∥DE,∠ABC=80°,∠CDE=150°,则∠BCD=()A.30°B.40°C.50°D.60°【解答】解:反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=80°,∴∠CMD=180°﹣∠BMD=100°;又∵∠CDE=∠CMD+∠BCD,∴∠BCD=∠CDE﹣∠CMD=150°﹣100°=50°.故选:C.7.如图,图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为()A.120°B.108°C.126°D.114°【解答】解:如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE﹣∠CFE=x﹣18°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x﹣18°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x﹣18°=180°,解得x=66°,∵A′D′∥B′C′,∴∠A′EF=180°﹣∠B′FE=180°﹣66°=114°,∴∠AEF=114°.故选:D.二.填空题(共8小题)8.将一块60°的直角三角板DEF放置在45°的直角三角板ABC上,移动三角板DEF使两条直角边DE、DF恰分别经过B、C两点,若EF∥BC,则∠ABD=15°.【解答】解:∵将一块60°的直角三角板DEF放置在45°的直角三角板ABC上,∴∠E=30°,∠ABC=45°,∵EF∥BC,∴∠DBC=∠E=30°,∴∠ABD=45°﹣30°=15°,故答案为:159.如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为56°.【解答】解:∵AD∥BC,∴∠1=∠FEC=62°,由翻折可得:∠FEG=∠FEC=62°,∴∠BEG=180°﹣62°﹣62°=56°,故答案为:56°10.如图,已知DE∥BC,2∠D=3∠DBC,∠1=∠2.则∠DEB=36度.【解答】解:∵DE∥BC,∴∠E=∠1,∵∠1=∠2,∴∠1=∠2=∠B,设∠1=∠2=∠B=x,∵2∠D=3∠DBC,∴∠D=3x,∴5x=180°,∴x=36°故答案为36.11.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为22°.【解答】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案为:22°12.如图,BE∥CF,则∠A+∠B+∠C+∠D=180度.【解答】解:如图所示,由图知∠A+∠B=∠BPD,∵BE∥CF,∴∠CQD=∠BPD=∠A+∠B,又∵∠CQD+∠C+∠D=180°,∴∠A+∠B+∠C+∠D=180°,故答案为:180.13.如图,若OP∥QR∥ST,则∠1,∠2,∠3的数量关系是:∠2+∠3﹣∠1=180°.【解答】解:如图,延长TS,∵OP∥QR∥ST,∴∠2=∠4,∵∠3与∠ESR互补,∴∠ESR=180°﹣∠3,∵∠4是△FSR的外角,∴∠FSR+∠1=∠4,即180°﹣∠3+∠1=∠2,∴∠2+∠3﹣∠1=180°.故答案为:∠2+∠3﹣∠1=180°.14.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是∠α﹣∠β=90°.【解答】解:过C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠1=∠β,∠α=180°﹣∠2,∴∠α﹣∠β=180°﹣∠2﹣∠1=180°﹣∠BCD=90°,故答案为∠α﹣∠β=90°.15.如图,∠AOB的一边OA为平面镜,∠AOB=37°,在OB上有一点E,从E点射出一束光线经OA上一点D反射,此时∠ODE=∠ADC,且反射光线DC恰好与OB平行,则∠DEB的度数是74°.【解答】解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°,∴∠2=90°﹣37°=53°;∴在△DEF中,∠DEB=180°﹣2∠2=74°.故答案为:74°.三.解答题(共11小题)16.如图,AB∥CD,直线EF与AB,CD交于点G,H,GM⊥GE,∠BGM=20°,HN平分∠CHE,求∠NHD的度数.【解答】解:∵GM⊥GE∴∠EGM=90°∵∠BGM=20°∴∠EGB=∠EGM﹣∠BGM=70°∴∠AGH=∠EGB=70°∵AB∥CD∴∠AGH+∠CHG=180°∴∠CHG=110°∵HN平分∠CHE∴∠NHC=∠CHG=×110°=55°∴∠NHD=180°﹣∠CHN=180°﹣55°=125°17.如图,直线AB∥CD,并且被直线MN所截,MN分别交AB和CD于点E、F,点Q在PM上,且∠AEP=∠CFQ.求证:∠EPM=∠FQM.【解答】解:∵AB∥CD∴∠AEM=∠CFM,∵∠AEP=∠CFQ,∴∠MEP=∠MFQ,∴EP∥FQ,∴∠EPM=∠FQM.18.如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.【解答】解:(1)∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°﹣40°=140°,∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF,∴∠ECF=∠ACD=70°;(2)不变.数量关系为:∠APC=2∠AFC.∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP,∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC;(3)∵AB∥CD,∴∠AEC=∠ECD,当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF,∴∠PCD=∠ACD=70°,∴∠APC=∠PCD=70°.19.【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF=30度,∠FOH=125度.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)【解答】解:【探究】(1)∵∠AFH=60°,OF平分∠AFH,∴∠OFH=30°,又∵EG∥FH,∴∠EOF=∠OFH=30°;∵∠CHF=50°,OH平分∠CHF,∴∠FHO=25°,∴△FOH中,∠FOH=180°﹣∠OFH﹣∠OHF=125°;故答案为:30,125;(2)∵FO平分∠AFH,HO平分∠CHF,∴∠OFH=∠AFH,∠OHF=∠CHF.∵∠AFH+∠CHF=100°,∴∠OFH+∠OHF=(∠AFH+∠CHF)=×100°=50°.∵EG∥FH,∴∠EOF=∠OFH,∠GOH=∠OHF.∴∠EOF+∠GOH=∠OFH+∠OHF=50°.∵∠EOF+∠GOH+∠FOH=180°,∴∠FOH=180°﹣(∠EOF+∠GOH)=180°﹣50°=130°.【拓展】∵∠AFH和∠CHI的平分线交于点O,∴∠OFH=∠AFH,∠OHI=∠CHI,∴∠FOH=∠OHI﹣∠OFH=(∠CHI﹣∠AFH)=(180°﹣∠CHF﹣∠AFH)=(180°﹣α)=90°﹣α.20.如图,AB∥CD,∠ABD和∠BDC的平分线交于点E,BE交CD于点F.(1)求证:∠1+∠2=90°;(2)如果∠EDF=36°,那么∠BFC等于多少度?【解答】解:(1)∵AB∥CD,∴∠ABD+∠BDC=180°,∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC,∴∠1+∠2=(∠ABD+∠BDC)=90°,(2)∵DE平分∠BDC,∴∠2=∠EDF=36°,又∵∠1+∠2=90°,∴∠1=54°,又∵AB∥CD,∴∠BFC=180°﹣∠1=180°﹣54°=126°.21.如图,AB∥CD,点E在线段AB上,连接EC、ED、AD,且ED平分∠CEB,AD⊥EF,若∠ADC=42°,∠A﹣∠B=8°,求∠BDE的度数.【解答】解:∵AB∥CD,∴∠ADC=∠A=42°,∵∠A﹣∠B=8°,∴∠B=34°,∵AD⊥EF,∴∠AFE=90°,∴∠AEF=48°,∴∠BEC=132°,∵DE平分∠BEC,∴∠BED=∠BEC=66°,∴∠BDE=180°﹣66°﹣34°=80°.22.(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.【解答】解:(1)证明:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠3=∠1,∠4=∠2,∴∠3+∠4=∠1+∠2,即∠BED=∠1+∠2;(2)∠1+∠EGH=∠2+∠BEG,理由如下:如图,分别过点E、G作EF∥AB,GH∥AB,∵AB∥CD,∴AB∥EF∥GH∥CD,∴∠1=∠3,∠4=∠5,∠6=∠2,∴∠1+∠5+∠6=∠3+∠4+∠2,即∠1+∠EGH=∠2+∠BEG;(3)由题可得,向左的角度数之和与向右的角度数之和相等,∴∠1、∠3、∠5与∠2、∠4、∠6之间的关系为:∠1+∠3+∠5=∠2+∠4+∠6.23.已知AB∥CD,点E为平面内一点,BE⊥CE于E.(1)如图1,请直接写出∠ABE和∠DCE之间的数量关系;(2)如图2,过点E作EF⊥CD,垂足为F,求证:∠CEF=∠ABE;(3)如图3,在(2)的条件下,作EG平分∠CEF,交DF于点G,作ED平分∠BEF,交CD 于D,连接BD,若∠DBE+∠ABD=180°,且∠BDE=3∠GEF,求∠BEG的度数.【解答】解:(1)结论:∠ECD=90°+∠ABE.理由:如图1中,从BE交DC的延长线于H.∵AB∥CH,∴∠ABE=∠H,∵BE⊥CE,∴∠CEH=90°,∴∠ECD=∠H+∠CEH=90°+∠H,∴∠ECD=90°+∠ABE.(2)如图2中,作EM∥CD,∵EM∥CD,CD∥AB,∴AB∥CD∥EM,∴∠BEM=∠ABE,∠F+∠FEM=180°,∵EF⊥CD,∴∠F=90°,∴∠FEM=90°,∴∠CEF与∠CEM互余,∵BE⊥CE,∴∠BEC=90°,∴∠BEM与∠CEM互余,∴∠CEF=∠BEM,∴∠CEF=∠ABE.(3)如图3中,设∠GEF=α,∠EDF=β.∴∠BDE=3∠GEF=3α,∵EG平分∠CEF,∴∠CEF=2∠FEG=2α,∴∠ABE=∠CEF=2α,∵AB∥CD∥EM,∴∠MED=∠EDF=β,∠KBD=∠BDF=3α+β,∠ABD+∠BDF=180°,∴∠BED=∠BEM+∠MED=2α+β,∵ED平分∠BEF,∴∠BED=∠FED=2α+β,∴∠DEC=β,∵∠BEC=90°,∴2α+2β=90°,∵∠DBE+∠ABD=180°,∠ABD+∠BDF=180°,∴∠DBE=∠BDF=∠BDE+∠EDF=3α+β,∵∠ABK=180°,∴∠ABE+∠B=DBE+∠KBD=180°,即2α+(3α+β)+(3α+β)=180°,∴6α+(2α+2β)=180°,∴α=15°,∴∠BEG=∠BEC+∠CEG=90°+15°=105°.24.(1)如图①,若AB∥CD,求∠B+∠D+∠E1的度数?(2)如图②,若AB∥CD,求∠B+∠D+∠E1+∠E2的度数?(3)如图③,若AB∥CD,求∠B+∠D+∠E1+∠E2+∠E3的度数?(4)如图④,若AB∥CD,猜想∠B+∠D+∠E1+∠E2+⋯+∠E n的度数?①,过E1作E1F∥AB,则E1F∥CD,【解答】解:(1)如图∴∠B+∠1=180°①,∠D+∠1=180°②,①+②得∠B+∠1+∠D+∠2=360°,即∠B+∠D+∠E1=360°;过E1,E2作E1F∥AB,E2G∥AB,则E1F∥E2G∥CD,(2)如图②,分别∴∠1+∠B=∠2+∠3=∠4+∠D=180°,∴∠B+∠D+∠E1+∠E2=∠1+∠B+∠2+∠3+∠4+∠D=540°=3×180°;过E1,E2,E3作E1F1∥E2F2∥E3F3∥AB,则E1F1∥E2F2∥E3F3∥CD,(3)如图③,分别∴∠B+∠BE1E2=180°,∠E2E1F1+∠E1E2F2=180°,∠E3E2F2+∠E2E3F3=180°,∠DE3F3+∠D=180°,∴∠B+∠D+∠E1+∠E2+∠E3=720°;(4)由(1)(2)(3)知,拐点的个数n与角的和之间的关系是(n+1)?180°,∴∠B+∠D+∠E1+∠E2+⋯+∠E n=(n+1)?180°.25.如图,已知直线l1∥l2,点A、B分别在l1与l2上.直线l3和直线l1、l2交于点C和D,在直线CD上有一点P.(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?P点在C、D之间运动时,则有∠APB=∠PAC+∠PBD.理由如下:【解答】解:(1)如图,当过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1,∴∠PAC=∠1,∠PBD=∠2,∴∠APB=∠1+∠2=∠PAC+∠PBD;(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),则有两种情形:①如图,当点P在在l2下方时,有结论:∠APB=∠PAC﹣∠PBD.理由是:过点P作PE∥l1,则∠APE=∠PAC,又∵l1∥l2,∴PE∥l2,∴∠BPE=∠PBD,∵∠APE=∠APB+∠BPE,∴∠PAC=∠APB+∠PBD,∴∠APB=∠PAC﹣∠PBD;②如图,当点P在l1上方时,有结论:∠APB=∠PBD﹣∠PAC.理由是:过点P作PE∥l2,则∠BPE=∠PBD,又∵l1∥l2,∴PE∥l1,∴∠APE=∠PAC,∵∠BPE=∠APE+∠APB,∴∠PBD=∠PAC+∠APB,∴∠APB=∠PBD﹣∠PAC.26.如图,已知∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,F是BC延长线上一点,且∠DBC =∠F,求证:EC∥DF.【解答】证明:∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ABC,∠ECB=∠ACB,∴∠DBC=∠ECB.∵∠DBC=∠F,∴∠ECB=∠F,∴EC∥DF.。

平行线和相交线拔高题

平行线和相交线拔高题

平行线和相交线拔高题1、若两个角的两边分别平行,而其中一个角比另一个角的 3 倍少 40°,那么这两个角的度数是( )A .20°或 55°B .20°或 160°C .20°、20°或 55°、125°D .20°、125°或 20°、70°2、如图,BC ∥DE ,点A 在BC 上方,AF 平分∠BAD ,过点B 的直线GH ,使∠GBC 与∠GBA 互补,GH 分别交AF 于F ,交DE 的反向延长线于H ,若∠GFA+∠GHE=165°,则∠BAD= .3、如图,图①是一个四边形纸条ABCD ,其中AB ∥CD ,E ,F 分别为边AB ,CD 上的两个点,将纸条ABCD 沿EF 折叠得到图②,再将图②沿DF 折叠得到图③,若在图③中,∠FEM=26°,则∠EFC 的度数为A .52°B .64°C .102°D .128°4、如图,三角形ABC 中,∠C =90°,AC=3 cm ,CB=4 cm ,AB=5 cm ,将三角形ABC 沿直线CB 向右平移1 cm 得到三角形DEF ,DF 交AB 于点G ,则下列结论:①S 四边形ACFG =S 四边形BEDG ; ②FG=49cm ; ③43DE BG ;④点C 到直线DE 的距离为3 cm. , 其中正确的结论有( )个A .1B .2C . 3D . 4图①图②图③5、如图,AB ∥CD ,则∠1,∠2,∠3,∠4 的关系是( )A .∠1-∠2+∠3+∠4=180°B .∠1+∠2+∠4=∠3C .∠3+∠2=∠4+∠1D .∠1+∠2+∠3-∠4=180°6、如图,AE 平分∠BAD 交BC 边于点E ,AE ⊥DE ,∠EAD+∠EDC=90°,M ,N 分别是BA ,CD 延长线上的点,∠EAM 和∠EDN 的平分线相交于点F ,则∠F= °.7、如图,AB//DE ,∠ABC 的角平分线BP 和∠CDE 的角平分线DK 的反向延长线交于点P 且∠P −2∠C =57∘,则∠C 等于 。

(完整word版)相交线与平行线常考题目及答案(绝对经典)

(完整word版)相交线与平行线常考题目及答案(绝对经典)

相交线与平行线一.选择题(共3小题)1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有()A.3个 B.2个 C.1个 D.0个3.如图所示,同位角共有()A.6对 B.8对 C.10对D.12对二.填空题(共4小题)4.一块长方体橡皮被刀切了3次,最多能被分成块.5.如图,P点坐标为(3,3),l1⊥l2,l1、l2分别交x轴和y轴于A点和B点,则四边形OAPB的面积为.6.如图,直线l1∥l2,∠1=20°,则∠2+∠3=.7.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是.评卷人得分三.解答题(共43小题)8.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB和线段EF上的点.(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB 上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.9.我们知道,两条直线相交,有且只有一个交点,三条直线相交,最多只有三个交点,那么,四条直线相交,最多有多少个交点?一般地,n条直线最多有多少个交点?说明理由.10.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数.(2)若∠EOC:∠EOD=4:5,求∠BOD的度数.11.如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?12.如图1,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C 的右侧,DE平分∠ADC,BE平分∠ABC,直线DE、BE交于点E,∠CBN=100°.(1)若∠ADQ=130°,求∠BED的度数;(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示).13.如图,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=26°(1)求∠2的度数(2)若∠3=19°,试判断直线n和m的位置关系,并说明理由.14.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.15.如图,已知AB∥PN∥CD.(1)试探索∠ABC,∠BCP和∠CPN之间的数量关系,并说明理由;(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度数.16.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.17.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.18.如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF之间的关系.(3)如图3,已知∠BEQ=∠BEP,∠DFQ=∠DFP,则∠P与∠Q有什么关系,说明理由.(4)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为.(直接写结论)19.如图所示,L1,L2,L3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.20.如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.21.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°.①则∠EOF=.(用含x的代数式表示)②求∠AOC的度数.22.如图,直线AB、CD相交于点O,已知∠AOC=75°,OE把∠BOD分成两个角,且∠BOE:∠EOD=2:3.(1)求∠EOB的度数;(2)若OF平分∠AOE,问:OA是∠COF的角平分线吗?试说明理由.23.如图,直线AB、CD相交于点O,∠AOC=72°,射线OE在∠BOD的内部,∠DOE=2∠BOE.(1)求∠BOE和∠AOE的度数;(2)若射线OF与OE互相垂直,请直接写出∠DOF的度数.24.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH ﹣∠BOD=90°,求证:OE∥GH.25.如图,直线AB.CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.26.几何推理,看图填空:(1)∵∠3=∠4(已知)∴∥()(2)∵∠DBE=∠CAB(已知)∴∥()(3)∵∠ADF+ =180°(已知)∴AD∥BF()27.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数.(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度数.28.将一副三角板拼成如图所示的图形,∠DCE的平分线CF交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.29.看图填空,并在括号内注明说理依据.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以∥().又因为AC⊥AE(已知),所以∠EAC=90°.()所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=°.所以∠EAB=∠FBG().所以∥(同位角相等,两直线平行).30.已知如图所示,∠B=∠C,点B、A、E在同一条直线上,∠EAC=∠B+∠C,且AD平分∠EAC,试说明AD∥BC的理由.31.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为,∠BOE的邻补角为;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.32.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.33.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()34.已知:如图,AB∥CD,FG∥HD,∠B=100°,FE为∠CEB的平分线,求∠EDH的度数.35.已知:如图,AB∥CD,FE⊥AB于G,∠EMD=134°,求∠GEM的度数.36.如图,∠B和∠D的两边分别平行.(1)在图1 中,∠B和∠D的数量关系是,在图2中,∠B和∠D 的数量关系是;(2)用一句话归纳的命题为:;并请选择图1或图2中一种情况说明理由;(3)应用:若两个角的两边分别互相平行,其中一个角是另一个角的2倍,求这两个角的度数.37.已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA.(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°.①求证:∠ABC=∠ADC;②求∠CED的度数.38.如图,已知a∥b,ABCDE是夹在直线a,b之间的一条折线,试研究∠1、∠2、∠3、∠4、∠5的大小之间有怎样的等量关系?请说明理由.39.如图,AB∥DC,增加折线条数,相应角的个数也会增多,∠B,∠E,∠F,∠G,∠D之间又会有何关系?40.已知直线AB∥CD,(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD和∠BED的数量关系是.11(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.41.(1)如图,直线a,b,c两两相交,∠3=2∠1,∠2=155°,求∠4的度数.(2)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,求∠AOF的度数.42.如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把解答过程补充完整.解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°.()∴∠CDA=∠DAB.(等量代换)又∠1=∠2,从而∠CDA﹣∠1=∠DAB﹣.(等式的性质)即∠3=.∴DF∥AE.().43.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.试卷第12页,总15页(1)说明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC会满足怎样的关系,证明你的结论.(3)若将折线继续折下去,折三次,折四次…折n次,又会得到怎样的结论?请写出你的结论.44.如图,已知∠1=60°,∠2=60°,∠MAE=45°,∠FEG=15°,EG平分∠AEC,∠NCE=75°.求证:(1)AB∥EF.(2)AB∥ND.45.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线.求证:DF∥AB.46.已知,直线AB∥CD,E为AB、CD间的一点,连结EA、EC.(1)如图①,若∠A=30°,∠C=40°,则∠AEC=.(2)如图②,若∠A=100°,∠C=120°,则∠AEC=.(3)如图③,请直接写出∠A,∠C与∠AEC之间关系是.47.如图,已知AB∥CD,EF⊥AB于点G,若∠1=30°,试求∠F的度数.1348.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如图两幅图都是由同一副三角板拼凑得到的:(1)请你计算出图1中的∠ABC的度数.(2)图2中AE∥BC,请你计算出∠AFD的度数.49.如图,将一张矩形纸片ABCD沿EF对折,延长DE交BF于点G,若∠EFG=50°,求∠1,∠2的度数.50.如图所示,在长方体中.(1)图中和AB平行的线段有哪些?(2)图中和AB垂直的直线有哪些?试卷第14页,总15页15参考答案及解析一.选择题(共3小题)1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【分析】如果一条直线垂直于两平行线中的一条,那么它与另一条一定也垂直.再根据“垂直于同一条直线的两直线平行”,可知L1与L8的位置关系是平行.【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选A【点评】灵活运用“垂直于同一条直线的两直线平行”是解决此类问题的关键.2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有()A.3个 B.2个 C.1个 D.0个【分析】由OE⊥AB,OF⊥CD可知:∠AOE=∠DOF=90°,而∠1、∠AOF都与∠EOF互余,可知∠1=∠AOF,因而可以转化为求∠1和∠AOF的余角共有多少个.【解答】解:∵OE⊥AB,OF⊥CD,∴∠AOE=∠DOF=90°,即∠AOF+∠EOF=∠EOF+∠1,∴∠1=∠AOF,∴∠COA+∠1=∠1+∠EOF=∠1+∠BOD=90°.∴与∠1互为余角的有∠COA、∠EOF、∠BOD三个.1本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

相交线与平行线练习题(经典)

相交线与平行线练习题(经典)

相交线与平行线能力提高训练题宇文皓月注:本试卷难度偏高,题目经典,考试出现频率很高,是我从九套试卷中选出的一些具有代表性的试题,花了很大精力才整理出来的,希望珍惜本套试卷,珍惜好题,认真完成.如果你能把这些题理解透彻,你将会对几何问题有进一步的认识,数学能力将会大大提. 一.选择题(每题3分):1.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( )A .50°B .30°C .20°D .15°2. 如图,12//l l ,∠1=120°,∠2=100°,则∠3= ( ) A .20° B.40°C.50° D .60°3.如图,已知∠1=∠2,∠3=80O,则∠4=( )A.80OB. 70OC. 60OD. 50O4,如图,Rt ABC △中, 90ACB ∠=°,DE 过点C ,且DE AB ∥,若55ACD ∠=°,则∠B 的度数是()A .35°B .45°C .55° D.65°123l 1l 2123第1第2第3题图 第4题图5()A6等于()A .20°B.35° C.45° D.55°7.平行直线被第三条直线所截,同位角的平分线 ( )A.互相重合B.互相平行C.互相垂直D.相交8 ) A .30°B.45°C .60°D.759.已知一个学生从点A 向北偏东60º方向走40米,到达点B ,再从B 沿北偏西30º方向走30米,到达点C ,此时,恰好在点A 的正南方向,则下列说法正确的是()A. 点A 到BC 的距离为30米B.点B 在点C 的南偏东30º方向40米处C.点A 在点B 的南偏西60º方向30米处D.以上都分歧错误 10.如图,下列判断正确的是()A.∠2与∠5是对顶角B.∠2与∠4是同位角C.∠3与∠6是同A BC D1 A EDCB F第5第6位角 D.∠5与∠3是内错角 二.填空题(每题3分):11.如图,1502110AB CD ∠=∠=∥,°,°,则3∠=.12.如图,已知//AE BD ,∠1=130o,∠2=30o,则∠C =.13.在直线AB 上任取一点O ,过点O 作射线OC .OD ,使OC ⊥OD ,当∠AOC =30o 时,∠BOD 的度数是.14. 如图,已知DE ∥AB ,DF ∥AC ,∠EDF=85°,∠BDF=63°,∠A的度数=____ .15. 如图,已知AB ∥CD ∥EF ,则∠x 、∠y 、∠z 三者之间的关系是______ .16.如图所示,已知直线AB CD ∥,125C ∠=°,45A ∠=°,则E∠的度数为.17.如图,EF ∥AD ,∠1 =∠2,∠BAC = 70°,∠AGD.18.如图,在六个角中,其中内错角有_______对,同位角有________对.同旁内角有______对.19.如图,若OP ∥QR ∥ST ,则下列等式中正确的是_____________ ○1,∠1+∠2-∠3=90º○2,∠1-∠2+∠3=90º○3,∠1+∠2+∠3=180º○4,∠2+∠3-∠1=180º第18题图 第19题图A BDC1 23第11题图FEDCBA第16题图EAB D45° 125°第17题图第12题图第14题图第15题图d ecb a 341220.四条直线相交于同一点的图形中有对对顶角. 三.解答题(60分):21.(5分)已知:如图,AB ∥CD ,EF 分别交于AB 、CD 于点E 、F ,EG 平分∠AEF ,FH 平分∠EFD.求证:EG ∥FH.22.(6分)证明:已知,如图,AB ∥CD ,EG 平分∠BEF ,FG 平分∠EFD.求证:∠EGF=90°23.(7分)如图,CD AB //,AE 平分BAD ∠,CD 与AE 相交于F ,E CFE ∠=∠。

相交线与平行线难题汇编及解析

相交线与平行线难题汇编及解析

相交线与平行线难题汇编及解析一、选择题1.下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.【答案】D【解析】【分析】运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.【详解】A、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A选项错误;B、过直线外一点有且只有一条直线与已知直线平行,故B选项错误;C、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C 选项错误;D、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D选项正确.故选:D.【点睛】本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.2.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A.64°B.68°C.58°D.60°【答案】A【解析】【分析】首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB ∥CD ,∴∠1=∠AEG .∵EG 平分∠AEF ,∴∠AEF=2∠AEG ,∴∠AEF=2∠1=64°,∵AB ∥CD ,∴∠2=64°.故选:A .【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.3.如图,将一张矩形纸片折叠,若170∠=︒,则2∠的度数是( )A .65︒B .55︒C .70︒D .40︒【答案】B【解析】【分析】根据平行线的性质求出∠3=170∠=︒,得到∠2+∠4=110°,由折叠得到∠2=∠4即可得到∠2的度数.【详解】∵a ∥b ,∴∠3=170∠=︒,∴∠2+∠4=110°,由折叠得∠2=∠4,∴∠2=55︒,故选:B.【点睛】此题考查平行线的性质,折叠的性质.4.如图,点D 在AC 上,点F 、G 分别在AC 、BC 的延长线上,CE 平分∠ACB 交BD 于点O ,且∠EOD+∠OBF =180°,∠F =∠G ,则图中与∠ECB 相等的角有( )A.6个B.5个C.4个D.3个【答案】B【解析】【分析】由对顶角关系可得∠EOD=∠COB,则由∠COB+∠OBF=180°可知EC∥BF,再结合CE是角平分线即可判断.【详解】解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC∥BF,结合CE是角平分线可得∠ECB=∠ACE=∠CBF,再由EC∥BF可得∠ACE=∠F=∠G,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC,共有5个与∠ECB相等的角,故选择B.【点睛】本题综合考查了平行线的判定及性质.5.如图AD∥BC,∠B=30o,DB平分∠ADE,则∠DEC的度数为()A.30o B.60o C.90o D.120o【答案】B【解析】∵AD∥BC,∴∠ADB=∠DBC,∵DB平分∠ADE,∴∠ADB=∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠DEC=∠B+∠BDE=60°.故选B.【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.6.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.7.如图所示,b∥c,a⊥b,∠1=130°,则∠2=().A.30°B.40°C.50°D.60°【答案】B【解析】【分析】证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.【详解】如图,反向延长射线a交c于点M,∵b∥c,a⊥b,∴a⊥c,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选B .【点睛】本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识8.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.9.如图,下列能判定AB CD ∥的条件有( )个.(1)180B BCD ∠+∠=︒; (2)12∠=∠;(3)34∠=∠; (4)5B ∠=∠.A .1B .2C .3D .4 【答案】C【解析】【分析】根据平行线的判定定理依次判断即可.【详解】∵180B BCD ∠+∠=︒,∴AB ∥CD ,故(1)正确;∵12∠=∠,∴AD ∥BC ,故(2)不符合题意;∵34∠=∠,∴AB ∥CD ,故(3)正确;∵5B ∠=∠,∴AB ∥CD ,故(4)正确;故选:C.【点睛】此题考查平行线的判定定理,熟记定理及两个角之间的位置关系是解题的关键.10.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.11.如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,100BED ∠=︒,则BFD ∠的度数为( )A .100°B .130°C .140°D .160°【答案】B【解析】【分析】 连接BD ,因为AB ∥CD ,所以∠ABD +∠CDB =180°;又由三角形内角和为180°,所以∠ABE +∠E +∠CDE =180°+180°=360°,所以∠ABE +∠CDE =360°−100°=260°;又因为BF 、DF 平分∠ABE 和∠CDE ,所以∠FBE +∠FDE =130°,又因为四边形的内角和为360°,进而可得答案.【详解】连接BD ,∵AB ∥CD ,∴∠ABD +∠CDB =180°,∴∠ABE +∠E +∠CDE =180°+180°=360°,∴∠ABE +∠CDE =360°−100°=260°,又∵BF 、DF 平分∠ABE 和∠CDE ,∴∠FBE +∠FDE =130°,∴∠BFD =360°−100°−130°=130°,故选B .【点睛】此题考查了平行线的性质:两直线平行,同旁内角互补.还考查了三角形内角和定理与四边形的内角和定理.解题的关键是作出BD 这条辅助线.12.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠ 223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.13.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A .1个B .2个C .3个D .4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B .14.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.15.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.16.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒【答案】A【解析】【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.【详解】解:5∠标记为如下图所示,∵1,5∠∠是对顶角,∴15∠=∠(对顶角相等),又∵1110,270︒︒∠=∠=,∴1251107800︒︒+∠=∠=+︒,∴a ∥b (同旁内角互补,两直线平行),∴34∠=∠(两直线平行,内错角相等),∴4360∠=∠=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..17.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.18.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【答案】D【解析】【分析】 由平行线的性质可求得∠C ,在△CDE 中利用三角形外的性质可求得∠3.【详解】解:∵AB ∥CD ,∴∠C =∠1=45°,∵∠3是△CDE 的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D .【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a ∥b ,b ∥c ⇒a ∥c .19.如图,DE ∥BC ,BE 平分∠ABC ,若∠1=70°,则∠CBE 的度数为( )A .20°B .35°C .55°D .70°【答案】B【解析】【分析】 根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE ∥BC ,∴∠1=∠ABC=70°,∵BE 平分∠ABC , ∴1352CBE ABC ∠=∠=︒, 故选:B .【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.20.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )A .35°B .37.5°C .45°D .40°【答案】B【解析】【分析】根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.【详解】解:∵//AD BC ,30C ∠=︒∴18030015ADC ∠=︒-︒=︒∵:1:3ADB BDC ∠∠= ∴115037.513ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒故选:B .【点睛】本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.。

(word完整版)第1讲初一相交线与平行线常考题提高难题

(word完整版)第1讲初一相交线与平行线常考题提高难题

第1讲相交线与平行线提高题知识点:1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4,互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠3=90°,则∠2=∠3.5,互为补角的有关性质:①若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°.②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C.6,对顶角的性质:对顶角相等.7、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。

其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

垂直三要素:垂直关系,垂直记号,垂足垂直公理:过一点有且只有一条直线与已知直线垂直。

垂线段最短。

8、点到直线的距离:直线外一点到这条直线的垂线段的长度。

9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。

②内错角相等,两直线平行。

③同旁内角互补,两直线平行。

11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

12、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

相交线与平行线测试题及答案难

相交线与平行线测试题及答案难

相交线与平行线测试题及答案难一、选择题1. 在同一平面内,两条直线的位置关系是()。

A. 相交或平行B. 相交或重合C. 平行或重合D. 相交、平行或重合答案:D2. 如果两条直线都与第三条直线平行,那么这两条直线的关系是()。

A. 相交B. 平行C. 重合D. 不确定答案:B3. 两条直线相交成90度角,这两条直线是()。

A. 相交线B. 垂直线C. 平行线D. 异面直线答案:B二、填空题4. 如果两条直线都与第三条直线相交,且交角相等,则这两条直线()。

答案:平行5. 在平面几何中,如果两条直线不相交,则它们被称为()。

答案:平行线三、判断题6. 两条平行线被第三条直线所截,同位角相等。

()答案:正确7. 垂直于同一直线的两条直线一定平行。

()答案:错误四、解答题8. 已知直线AB与直线CD相交于点O,且∠AOB=90°,求证:AB⊥CD。

证明:因为∠AOB=90°,所以AB与CD相交成直角,根据垂直的定义,AB⊥C D。

9. 若直线m平行于直线n,直线n平行于直线p,求证:直线m平行于直线p。

证明:根据平行公理,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

因此,直线m平行于直线p。

五、综合题10. 在平面直角坐标系中,直线l1的方程为y=2x+3,直线l2的方程为y=-x+5,求证:l1与l2相交。

证明:首先,我们可以将两个方程联立求解。

\begin{cases}y = 2x + 3 \\y = -x + 5\end{cases}将第一个方程中的y代入第二个方程,得到:2x + 3 = -x + 5解得:x = 1将x=1代入任意一个方程求得y,例如第一个方程:y = 2(1) + 3 = 5因此,l1与l2的交点为(1,5),所以l1与l2相交。

11. 已知直线l1平行于直线l2,直线l2平行于直线l3,求证:直线l1平行于直线l3。

证明:根据平行公理,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

(完整word版)七年级数学下册相交线和平行线拔高训练

(完整word版)七年级数学下册相交线和平行线拔高训练

4.2 相交线和平行线 典型例题及强化训练课标要求①了解对顶角,知道对项角相等。

②了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义。

③知道过一点有且仅有一条直线垂直干已知直线,会用三角尺或量角器过一点画一条直线的垂线。

④知道两直线平行同位角相等,进一步探索平行线的性质⑤知道过直线外一点有且仅有一条直线平行于已知直线,会用角尺和直尺过已知直线外一点画这条直线的平行线。

⑥体会两条平行线之间距离的意义,会度量两条平行线之间的距离。

典型例题 1.判定与性质 例1 判断题:1)不相交的两条直线叫做平行线。

( ) 2)过一点有且只有一条直线与已知直线平行。

( ) 3)两直线平行,同旁内角相等。

( ) 4)两条直线被第三条直线所截,同位角相等。

( ) 答案:(1)错,应为“在同一平面内,不相交的两条直线叫做平行线”。

(2)错,应为“过直线外一点,有且只有一条直线与已知直线平行”。

(3)错,应为“两直线平行,同旁内角互补 ”。

(4)错,应为“两条平行线被第三条直线所截,同位角相等”。

例2 已知:如图,AB ∥CD ,求证:∠B+∠D=∠BED 。

分析:可以考虑把∠BED 变成两个角的和。

如图5,过E 点引一条直线EF ∥AB ,则有∠B=∠1,再设法证明∠D=∠2,需证EF ∥CD ,这可通过已知AB ∥CD 和EF ∥AB 得到。

证明:过点E 作EF ∥AB ,则∠B=∠1(两直线平行,内错角相等)。

∵AB ∥CD (已知), 又∵EF ∥AB (已作),∴EF ∥CD (平行于同一直线的两条直线互相平行)。

∴∠D=∠2(两直线平行,内错角相等)。

又∵∠BED=∠1+∠2,∴∠BED=∠B+∠D (等量代换)。

变式1已知:如图6,AB ∥CD ,求证:∠BED=360°-(∠B+∠D )。

分析:此题与例1的区别在于E 点的位置及结论。

我们通常所说的∠BED 都是指小于平角的角,如果把∠BED 看成是大于平角的角,可以认为此题的结论与例1的结论是一致的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线与平行线拔高训练【难题巧解点拨】
例1求证三角形的内角和为180度。

例2如图,AB、CD两相交直线与EF、MN两平行直线相交,试问一共可以得到同旁内角多少对?
例3
例3已知:∠B+∠D+∠F=360o.求证:AB∥EF.
例4如图,∠1+∠2=∠BCD,求证AB∥D E。

【典型热点考题】
例1如图2—15,∠1=∠2,∠2+∠3=180°,AB∥CD吗? AC∥BD吗?为什么?
AB
EDA

A
B C
例2平面上有10条直线,无任何三条交于一点,欲使它们出现31个交点.怎样安排才能办到?
例3已知直线a、b、c在同一平面内,a∥b,a与c相交于p,那么b与c也一定相交.请说明理由.
一、选择题
1.图2—17中,同旁内角共有
( )
A.4对 B.3对 C.2对 D.1对
2、光线a照射到平面镜CD上,然后在平面镜AB和CD之
间来回反射,光线的反射角等于入射角.若已知∠1=35°,
∠3=75°,则∠2= ()
A.50° B.55° C.66°D.65°
3、如图为中华人民共和国国旗上的一个五角星,同学们再熟悉不过了,那么它的每个角的度数为()
A
45 B 0
30 C 0
360
40
4、如图3,把长方形纸片沿EF折叠,使D,C分别落在D',C'的位置,若65
EFB=o
∠,则AED'
∠等于()
A.50oB.55oC.60oD.65o
5.两条直线被第三条直线所截,如果所成8个角中有一对内错角相等,那么 ( ) A.8角均相等
B.只有这一对内错角相等
C. 凡是内错角的两角都相等,凡是同位角的两角也相等 D .凡是内错角的两角都相等,凡是同位角的两角都不相等 6、如图,在ABC V 中,已知AB=AC ,点D 、E 分别在AC 、AB 上,且BD=BC ,AD=DE=EB ,那么A ∠的度数是( B )
A 、30°
B 、45°
C 、35°
D 、60°
7、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来
的方向上
平行前进,则这两次拐弯的角度可以是 ( ) A.第一次向右拐40°,第二次向左拐140° B.第一次向左拐40°,第二次向右拐40° C.第一次向左拐40°,第二次向左拐140° D.第一次向右拐40°,第二次向右拐40°
8、已知:如图,AB//CD ,则图中α、β、γ三个角之间的数量关系为( ). A 、α+β+γ=360︒ B 、α+β+γ=180︒ C 、α+β-γ=180︒ D 、α-β-γ=90︒
9、如图,把三角形纸片沿DE 折叠,当点A 落在四边形BCED 内部时, 则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个 规律,你发现的规律是( ). (A)∠A =∠1+∠2 (B)2∠A =∠1+∠2 (C)3∠A =2∠1+∠2 (D)3∠A=2(∠1十∠2) 二、填空题
1、用等腰直角三角板画45AOB =o
∠,并将三角板沿OB 方向平移到如图17所示的虚线处后绕点M 逆时针方向旋转22o
,则三角板的斜边与射线OA 的夹角α为______o
C
A
B
D E
O
B
A
22o
α

2、如图2—30,直线CD、EF相交于点A,则在∠1、∠2、∠3、∠4、∠B和∠C这6个角中.
(1)同位角有______;
(2)内错角有______;
(3)同旁内角有_____。

3、如图2—31,直线a、b被直线AB所截,且AB⊥BC,
(1)∠1和∠2是_______角;
(2)若∠1与∠2互补,则∠1-∠3=_______.
4、如图,图中有_________对同位角,_________对内错角,_________对同旁内角.
(千万别遗漏)
三、解答题
1、已知:如图2—33,∠ABC=∠ADC,BF、DE是∠ABC、∠ADC的角平分线,∠1=∠2.求证:DC∥AB.
2、在3×3的正方形ABCD 的方格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8+∠9之和是多少度? 解:
3、已知:如图,CD//EF ,∠1=65︒,∠2=35︒,求∠3与∠4的度数. 解:
4、如图,哪些条件能判定直线AB ∥
CD?
5、如图,已知DE 、BF 平分∠ADC 和∠ABC ,∠ABF =∠AED ,∠ADC =∠ABC ,由此可推得图中哪些线段平行?并写出理由.
6、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.
(1)如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °. (2)在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.
(3)由(1)、(2),请你猜想:当两平面镜a 、b 的夹角∠3= °时,可以使任何射到平面镜
a 上的光线m ,经过平面镜a 、
b 的两次反射后,入射光线m 与反射光线n 平行.你能说明理由
吗?
1
4
3
2 A D
C B
7、潜望镜中的两个镜子MN 和PQ 是互相平行的,如图所示,光线AB 经镜面反射后, ∠1=∠2,∠3=∠4,试说明,进入的光线AB 与射出的光线CD 平行吗?为什么?
8、如图:已知DEF ABC ∆∆与是一副三角板的拼图,在同一条线上D C E A ,,,. (1)、求证BC EF // ; (2)、求21∠∠与的度数
P O
B E
A
C Q
2 1 3
2
1n
m
b
a。

相关文档
最新文档