2014全国高中物理竞赛初赛试题与标准答案(全Word版)
第24届全国中学生物理竞赛复赛试题及详解(WORD版)

第24届全国中学⽣物理竞赛复赛试题及详解(WORD版)第24届全国中学⽣物理竞赛复赛试卷(本题共七⼤题,满分160分)⼀、(20分)如图所⽰,⼀块长为m L 00.1=的光滑平板PQ 固定在轻质弹簧上端,弹簧的下端与地⾯固定连接。
平板被限制在两条竖直光滑的平⾏导轨之间(图中未画出竖直导轨),从⽽只能地竖直⽅向运动。
平板与弹簧构成的振动系统的振动周期s T 00.2=。
⼀⼩球B 放在光滑的⽔平台⾯上,台⾯的右侧边缘正好在平板P 端的正上⽅,到P 端的距离为m h 80.9=。
平板静⽌在其平衡位置。
⽔球B 与平板PQ 的质量相等。
现给⼩球⼀⽔平向右的速度0µ,使它从⽔平台⾯抛出。
已知⼩球B 与平板发⽣弹性碰撞,碰撞时间极短,且碰撞过程中重⼒可以忽略不计。
要使⼩球与平板PQ 发⽣⼀次碰撞⽽且只发⽣⼀次碰撞,0µ的值应在什么范围内?取2/8.9s m g =⼆、(25分)图中所⽰为⽤三⾓形刚性细杆AB 、BC 、CD 连成的平⾯连杆结构图。
AB 和CD 杆可分别绕过A 、D 的垂直于纸⾯的固定轴转动,A 、D 两点位于同⼀⽔平线上。
BC 杆的两端分别与AB 杆和CD 杆相连,可绕连接处转动(类似铰链)。
当AB 杆绕A 轴以恒定的⾓速度ω转到图中所⽰的位置时,AB 杆处于竖直位置。
BC 杆与CD 杆都与⽔平⽅向成45°⾓,已知AB 杆的长度为l ,BC 杆和CD 杆的长度由图给定。
求此时C 点加速度c a 的⼤⼩和⽅向(⽤与CD 杆之间的夹⾓表⽰)三、(20分)如图所⽰,⼀容器左侧装有活门1K ,右侧装有活塞B ,⼀厚度可以忽略的隔板M 将容器隔成a 、b 两室,M 上装有活门2K 。
容器、隔板、活塞及活门都是绝热的。
隔板和活塞可⽤销钉固定,拔掉销钉即可在容器内左右平移,移动时不受摩擦作⽤且不漏⽓。
整个容器置于压强为P 0、温度为T 0的⼤⽓中。
初始时将活塞B ⽤销钉固定在图⽰的位置,隔板M 固定在容器PQ 处,使a 、b 两室体积都等于V 0;1K 、2K 关闭。
29届全国中学生物理竞赛复赛(高清试题图片Word答案)

1234567第29届全国中学生物理竞赛复赛试卷参考答案一、由于湖面足够宽阔而物块体积很小,所以湖面的绝对高度在物块运动过程中始终保持不变,因此,可选湖面为坐标原点并以竖直向下方向为正方向建立x坐标系,以下简称系. 设物块下底面的坐标为,在物块未完全浸没入湖水时,x其所受到的浮力为g式中为重力加速度.物块的重力为设物块的加速度为,根据牛顿第二定律有将(1)和(2)式代入(3)式得将系坐标原点向下移动而建立新坐标系,简称系. 新旧坐标的关系为把(5)式代入(4)式得式表示物块的运动是简谐振动. 若,则,对应于物块的平衡位置. 由式可知,当物块处于平衡位置时,物块下底面在系中的坐标为0物块运动方程在系中可写为利用参考圆可将其振动速度表示为式中为振动的圆频率在(8)和(9)式中和分别是振幅和初相位,由初始条件决定. 在物块刚被释放Ax=0时,即时刻有,由(5)式得由(8)至(12)式可求得(13) 将(10)、(13)和(14)式分别代人(8)和(9)式得由(15)式可知,物块再次返回到初始位置时恰好完成一个振动周期;但物块的运动始终由(15)表示是有条件的,那就是在运动过程中物块始终没有完全浸没在湖水中. 若物块从某时刻起全部浸没在湖水中,则湖水作用于物块的浮力变成恒力,物块此后的运动将不再是简谐振动,物块再次返回到初始位置所需的时间也就不再全由振动的周期决定. 为此,必须研究物块可能完全浸没在湖水中的情况. 显然,在系中看,物块下底面坐标为时,物块刚好被完全浸没;由(5)式x b 知在系中这一临界坐标值为(17) 即物块刚好完全浸没在湖水中时,其下底面在平衡位置以下处. 注意到在Xb振动过程中,物块下底面离平衡位置的最大距离等于振动的振蝠,下面分两种A情况讨论:I.. 由(13)和(17)两式得在这种情况下,物块在运动过程中至多刚好全部浸没在湖水中. 因而,物块从初始位置起,经一个振动周期,再次返回至初始位置. 由(10)式得振动周期物块从初始位置出发往返一次所需的时间II.. 由(13)和(17)两式得A X b (21) 在这种情况下,物块在运动过程中会从某时刻起全部浸没在湖水表面之下. 设从t初始位置起,经过时间物块刚好全部浸入湖水中,这时. 由(15)和(17)11b式得(22) cos11取合理值,有 (23) arccos11由上式和(16)式可求得这时物块的速度为2 (24) V(t)1-11此后,物块在液体内作匀减速运动,以表示加速度的大小,由牛顿定律a有 (25) 设物块从刚好完全浸入湖水到速度为零时所用的时间为,有t2(26) 12由(24)-(26)得2(27)112()物块从初始位置出发往返一次所需的时间为22(28) 2()2arccos111II12()评分标准:本题17分.(6)式2分,(10)(15)(16)(17)(18)式各1分,(20)式3分,(21)式1分,(23)式3分,(27)式2分,(28)式1分.10二、 1. i.通过计算卫星在脱离点的动能和万有引力势能可知,卫星的机械能为负值. 由开普勒第一定律可推知,此卫星的运动轨道为椭圆(或圆),地心为椭圆的一个焦点(或圆的圆心),如图所示.由于卫星在脱离点的速度垂直于地心和脱离点的连线,因此脱离点必为卫星椭圆轨道的远地点(或近地点);设近地点(或远地点)离地心的距离为,r R 0.80R 卫星在此点的速度为.由开普勒第v a 二定律可知2式中为地球自转的角速度e令表示卫星的质量,根据机械能守m恒定律有1G(2)由2r20.80R(1)和(2)式解得可见该点为近地点,而脱离处为远地点. 【(3)式结果亦可由关系式:直接求得】同步卫星的轨道半径满足2R由(3)和(4)式并代入数据得4可见近地点到地心的距离大于地球半径,因此卫星不会撞击地球. ii.由开普勒第二定律可知卫星的面积速度为常量,从远地点可求出该常量为s2设和分别为卫星椭圆轨道的半长轴和半短轴,由椭圆的几何关系有 ab 110.280.80R (7) 220.800.2822 (8) 2T卫星运动的周期为(9) s代人相关数值可求出(10)9.5h 卫星刚脱离太空电梯时恰好处于远地点,根据开普勒第二定律可知此时刻卫星具有最小角速度,其后的一周期内其角速度都应不比该值小,所以卫星始终不比太空电梯转动得慢;换言之,太空电梯不可能追上卫星.设想自卫星与太空电梯脱离后经过,卫星到达近地点,而此时太空电梯已转过此(约14小时)1.5T点,这说明在此前卫星尚未追上太空电梯.由此推断在卫星脱落后的0-12小时内二者不可能相遇;而在卫星脱落后12-24小时内卫星将完成两个多周期的运动,同时太空电梯完成一个运动周期,所以在12-24小时内二者必相遇,从而可以实现卫星回收. 2.根据题意,卫星轨道与地球赤道相切点和卫星在太空电梯上的脱离点分别为其轨道的近地点和远地点.在脱离处的总能量为1GMmGMm2(11)m(R)x2xxe此式可化为32GM xx(12) 123e e e这是关于的四次方程,用数值方法求解可得R x4(13)4.7 3.010kmxe表示卫星与赤道相切点v【亦可用开普勒第二定律和能量守恒定律求得.令R xe即近地点的速率,则有2eex和 121GMm1GMm22(R)ex2R2R ex由上两式联立可得到方程532GM2GM xxx02323eee其中除外其余各量均已知, 因此这是关于的五次方程. 同样可以用数值方法解得.】RRR xxx卫星从脱离太空电梯到与地球赤道相切经过了半个周期的时间,为了求出卫星运行的周期,设椭圆的半长轴为,半短轴为,有xe (14) 222ex (15)因为面积速度可表示为12(16) sx2所以卫星的运动周期为(17) s代入相关数值可得 h(18) 6.8卫星与地球赤道第一次相切时已在太空中运行了半个周期,在这段时间内,如果地球不转动,卫星沿地球自转方向运行180度,落到西经处与赤道相切. 但由于地球自转,在这(180110)期间地球同时转过了角度,地球自转角速度,因此卫星与地球赤道T/2360/24h15/h相切点位于赤道的经度为西经(19)1801101212即卫星着地点在赤道上约西经121度处. 评分标准:本题23分.第1问16分,第i小问8分,(1)、(2)式各2分,(4)式2分,(5)式和结论共2分.第ii小问8分,(9)、(10)式各2分,说出在0-12小时时间段内卫星不可能与太空电梯相遇并给出正确理由共2分,说出在12-24小时时间段内卫星必与太空电梯相遇并给出正确理由共2分.5%第2问7分,(11)式1分,(13)式2分,(18)式1分,(19)式3分. (数值结果允许有的相对误差)三、 13解法一如图1所示,建直角坐标,轴与挡板垂直,轴与挡板重合. 碰撞前体系质心的速xy Oxy,方向沿x轴正方向,以表示系统的质心,以和表示碰撞后质心的速度分量,vPvv度为Py0Px表示墙作用于小球的冲量的大小. 根据质心运动定理有 JC (1)(2)由(1)和(2)式得(3)Px3m (4)可在质心参考系中考察系统对质心的角动量. 在球 O C x 与挡板碰撞过程中,质心的坐标为(5)(6)l P3CP球碰挡板前,三小球相对于质心静止,对质心的角C C 动量为零;球碰挡板后,质心相对质心参考系仍是C静止的,三小球相对质心参考系的运动是绕质心的转动,若转动角速度为,则三小球对质心的角动量P图(7)式中、和分别是、和三球到质ABClllAPBPCP心的距离,由图1可知(8)cos sin(9)sin(10)CP9由(7)、(8)、(9)和(10)各式得(11)3在碰撞过程中,质心有加速度,质心参考系是非惯性参考系,在质心参考系中考察动力学问题时,必须引入惯性力. 但作用于质点系的惯性力的合力通过质心,对质心的力矩等于零,不影响质点系对质心的角动量,故在质心参考系中,相对质心角动量的变化仍取决于作用于球C的冲量的冲量矩,即有(12)3【也可以始终在惯性参考系中考察问题,即把桌面上与体系质心重合的那一点作为角动量的参考点,则对该参考点(12)式也成立】由(11)和(12)式得 14 sin球相对于质心参考系的速度分量分别为(参考图1)CP球相对固定参考系速度的x分量为 C (16)由(3)、(6)、(13)和(16)各式得 J (17)Cx02根据题意有 (18)由(17)和(18)式得 2 (19)由(13)和(19)式得(20) l 球若先于球与挡板发生碰撞,则在球与挡板碰撞后,整ABC 个系统至少应绕质心转过角,即杆至少转到沿y 方向,如图2所示. 系统绕质心转过所需时间(21) 在此时间内质心沿x 方向向右移动的距离 B (22)若 (23)则球先于球与挡板碰撞. 由(5)、(6)、(14)、(16)、(18)、BA (21)、(22)和(23)式得 图2 3 (24)即(25) 评分标准: 本题25分.(1)、(2)、(11)、(12)、(19)、(20)式各3分,(21)式1分,(22)、(23)式各2分.(24)或(25)式2分. 15解法二 如图1所示,建直角坐标系,轴与挡板垂直,x Oxy y v 、、、、和 分vvvvvv 以轴与挡板重合,vy AyByCyAxBxCxAyBy 别表示球与挡板刚碰撞后、和三球速度的分量,ABCC vv B A O 根据题意有 AxBxx (1) v Cy 以表示挡板作用于球的冲量的大小,其方向沿轴x J C 的负方向,根据质点组的动量定理有 C(2)(3)图1 AyByCy以坐标原点为参考点,根据质点组的角动量定理有(4)因为连结小球的杆都是刚性的,故小球沿连结杆的速度分量相等,故有(5)(6)(7)(7)式中为杆与连线的夹角. 由几何关系有(8)(9)解以上各式得(10)(11)(12)(13)16(14)0By(15)cosCy0按题意,自球与挡板碰撞结束到球(也可能球)碰撞挡板墙前,整个系统不受外力作用,ABC系统的质心作匀速直线运动. 若以质心为参考系,则相对质心参考系,质心是静止不动的,、A和三球构成的刚性系统相对质心的运动是绕质心的转动. 为了求出转动角速度,可考察球BCB相对质心的速度.由(11)到(15)各式,在球与挡板碰撞刚结束时系统质心的速度2(16) 2vv AxBxCx sin Px03m 3AyByCy (17) 0 Py3m 这时系统质心的坐标为(18) cosP1 (19)sin P3不难看出,此时质心正好在球的正下方,至球的距离为,而球相对质心的速度 y PBBBP 12(20) sin BPxBxPx03 (21) 0BPy 可见此时球的速度正好垂直,故整个系统对质心转动的角速度 B BP (22) ylP 若使球先于球与挡板发生碰撞,则在球与挡板ABC y 碰撞后,整个系统至少应绕质心转过角,即杆至少ABπ/2转到沿y 方向,如图2所示. 系统绕质心转过所需时间 π/2 A 1π 2 (23)x O 在此时间内质心沿x 方向向右移动的距离 P B(24)Px 若 C (25) PP 17 图2则球先于球与挡板碰撞. 由以上有关各式得(26)即(27) 评分标准: 本题25分. (2)、(3)、(4)、(5)、(6)、(7)式各2分,(10)、(22)式各3分,(23)式1分,(24)、(25)式各2分,(26)或(27)式2分. 四、 参考解答: 1.虚线小方框内2n 个平行板电容器每两个并联后再串联,其电路的等效C 电容满足下式 t11n (1) C2Ct1即 2C (2) t1n 式中 S(3)虚线大方框中无限网络的等效电容满足下式 C t2(4)即 C (5)t22整个电容网络的等效电容为 CC2Ct1t2 (6)等效电容器带的电量(即与电池正极连接的电容器极板上电量之和)(7)当电容器a两极板的距离变为2d后,2n个平行板电容器联成的网络的等效满足下式电容C t1(8)由此得(9)t1整个电容网络的等效电容为(10)整个电容网络的等效电容器带的电荷量为(11)在电容器a两极板的距离由d变为2d后,等效电容器所带电荷量的改变为(12)电容器储能变化为(13)在此过程中,电池所做的功为(14)(3外力所做的功为(15)设金属薄板插入到电容器a后,a的左极板所带电荷量为,金属薄板左侧带电荷量为,右侧带电荷量为,a的右极板带电荷量为,与并联的电容器左右两极板带电荷量分别为和.由于电容器a和与其并联的电容器两极板电压相同,所以有(16)SSC由(2)式和上式得(17)d上式表示电容器a左极板和与其并联的电容器左极板所带电荷量的总和,也是虚线大方框中无限网络的等效电容所带电荷量(即与电池正极连接的电容器的C t2极板上电荷量之和). 整个电容网络两端的电压等于电池的电动势,即 19(18)(1)c2CC t2将(2)、(5)和(17)式代入(18)式得电容器a左极板带电荷量(5)(2)(19)(313)2kd(313)d评分标准:本题21分. 第1问13分,(2)式1分,(5)式2分,(6)、(7)、(10)、(11)、(12)式各1分,(13)式2分,(14)式1分,(15)式2分. 第2问8分,(16)、(17)、(18)、(19)式各2分. 五、参考解答: c a 如图1所示,当长直金属杆在ab位置以速度水平v向右滑动到时,因切割磁力线,在金属杆中产生由b指向a的感应电动势的大小为ll 1 2 (1)式中为金属杆在ab位置时与大圆环两接触点间的长LII 1 2 度,由几何关系有2222R(2)111100在金属杆由ab位置滑动到cd位置过程中,金属杆与大 b d 圆环接触的两点之间的长度可视为不变,近似为.2RL1图 1 将(2)式代入(1)式得,在金属杆由ab滑动到cd过程中感应电动势大小始终为(3)1以、和分别表示金属杆、杆左和右圆弧中的电流,方向如图1所示,以表示a、b两IIIU21ab端的电压,由欧姆定律有(4)ab110 (5)ab220式中,和分别为金属杆左、右圆弧的弧长.根据提示,和中的电流在圆心处产生的磁感llll1212应强度的大小分别为Il11 (6)1m2R1Il22(7)2m2R1方向竖直向上,方向竖直向下.BB12由(4)、(5)、(6)和(7)式可知整个大圆环电流在圆心处产生的磁感应强度为 20(8)无论长直金属杆滑动到大圆环上何处,上述结论都成立,于是在圆心处只有金属杆的电流I所产生磁场. 在金属杆由ab滑动到cd的过程中,金属杆都处在圆心附近,故金属杆可近似视为无限长直导线,由提示,金属杆在ab位置时,杆中电流产生的磁感应强度大小为 2I (9)3mR1100方向竖直向下.对应图1的等效电路如图2,杆中的电流 a(10)IIIRR 1 2 右左右左左右其中为金属杆与大圆环两接触点间这段金属杆的电阻,R R R左ab 和分别为金属杆左右两侧圆弧的电阻,由于长直金属杆非R右常靠近圆心,故 b (11)图 2 ab111右左利用(3)、(9)、(10)和(11)式可得v800kBm (12)3由于小圆环半径,小圆环圆面上各点的磁场可近似视为均匀的,且都等于长直金属杆在圆心处产生的磁场. 当金属杆位于ab处时,穿过小圆环圆面的磁感应通量为(13)当长直金属杆滑到cd位置时,杆中电流产生的磁感应强度的大小仍由(13)式表示,但方向相反,故穿过小圆环圆面的磁感应通量为(14)在长直金属杆以速度从ab移动到cd的时间间隔内,穿过小圆环圆面的磁感应通量的v改变为(15)由法拉第电磁感应定律可得,在小圆环中产生的感应电动势为大小为(16)在长直金属杆从ab移动cd过程中,在小圆环导线中产生的感应电流为(17)于是,利用(12)和(17)式,在时间间隔内通过小环导线横截面的电荷量为(18)i评分标准:本题25分. (3)式3分,(4)、(5)式各1分,(8)、(10)式各3分,(12)式3分, (15)式4分,(16)、(17)式各2分,(18)式3分. 六、参考解答: nn设重新关闭阀门后容器A中气体的摩尔数为,B中气体的摩尔数为,12则气体总摩尔数为(1) 12把两容器中的气体作为整体考虑,设重新关闭阀门后容器A中气体温度为,B中气体温度为,重新关闭阀门之后与打开阀门之前气体内能的变化可表12示为(2)由于容器是刚性绝热的,按热力学第一定律有(3) pV令表示容器A的体积, 初始时A中气体的压强为,关闭阀门后A中气体压强为,由理想气体状态方程可知 1pV (4)(5)由以上各式可解得由于进入容器B中的气体与仍留在容器A中的气体之间没有热量交换,因而在阀门打开到重新关闭的过程中留在容器A中的那部分气体经历了一个绝热Vp过程,设这部分气体初始时体积为(压强为时),则有10(6) 11011 22利用状态方程可得(7)由(1)至(7)式得,阀门重新关闭后容器B中气体质量与气体总质量之比RC(8)Rn评分标准:本题15分. (1)式1分,(2)式3分,(3)式2分,(4)、(5)式各1分,(6)式3分,(7)式1分,(8)式3分. 七、答案与评分标准: 1. 19.2 (4分,填19.0至19.4的,都给4分) 10.2 (4分,填10.0至10.4的,都给4分) 2. 20.3 (4分,填20.1至20.5的,都给4分) 4.2 (4分,填4.0至4.4的,都给4分) 八、参考解答:在相对于正离子静止的参考系S中,导线中的正离子不动,导电电子以速向下匀速运动;在相对于导电电子静止的参考系中,导线中导电电子不动,v度0向上匀速运动.下面分四步进行分析. v正离子以速度第一步,在参考系中,考虑导线2对导线1中正离子施加电场力的大小和方向.若S系中一些正离子所占据的长度为,则在系中这些正离子所占据的长l,由相对论中的长度收缩公式有度变为(1),由于离子设在参考系S和中,每单位长度导线中正离子电荷量分别为和的电荷量与惯性参考系的选取无关,故(2)由(1)和(2)式得(3)设在S系中一些导电电子所占据的长度为,在系中这些导电电子所占据l,则由相对论中的长度收缩公式有的长度为(4)同理,由于电子电荷量的值与惯性参考系的选取无关,便有(5)分别为在参考系S和中单位长度导线中导电电子的电荷量. 式中,和在参照系中,导线2单位长度带的电荷量为(6)它在导线1处产生的电场强度的大小为(7)q电场强度方向水平向左.导线1中电荷量为的正离子受到的电场力的大小为(8)电场力方向水平向左第二步,在参考系中,考虑导线2对导线1中正离子施加磁场力的大小和向上运动的正离子形成的电流为 v方向.在参考系中,以速度(9)导线2中的电流在导线1处产生磁场的磁感应强度大小为(10)磁感应强度方向垂直纸面向外.导线1中电荷量为的正离子所受到的磁场力的大小为 2v(11)方向水平向右,与正离子所受到的电场力的方向相反. 第三步,在参考系S中,考虑导线2对导线1中正离子施加电场力和磁场力的大小和方向.由题设条件,导线2所带的正电荷与负电荷的和为零,即(12)因而,导线2对导线1中正离子施加电场力为零(13)注意到在S系中,导线1中正离子不动(14)导线2对导线1中正离子施加磁场力为零(15)式中,是在S系中导线2的电流在导线1处产生的磁感应强度的大小.于是,B在S系中,导线2对导线1中正离子施加电场力和磁场力的合力为零. 第四步,已说明在S系中导线2对导线1中正离子施加电场力和磁场力的合力为零,如果导线1中正离子还受到其他力的作用,所有其它力的合力必为零(因为正离子静止).在系中,导线2对导线1中正离子施加的电场力和磁场力的合力的大小为因为相对系,上述可能存在的其它力的合力仍应为零,而正离子仍处在勻速运动状态,所以(16)式应等于零,故(17)由(8)、(11)和(17)式得 k2e (18)km 评分标准:本题18分. (1)至(18)式各1分. 26。
(物理)2014年普通高等学校招生全国统一考试(全国新课标卷)Ⅰ及参考答案

A.波速为0.5m/s B.波的传播方向向右 C.0~2s时间内,P运动的路程为8cm
D.0~2s时间内,P向y轴正方向运动 E.当t=7s时,P恰好回到平衡位置. (2)(9分)一个半圆柱形玻璃砖,其横截面是半径 为R的半圆,AB为半圆的直径, O为圆心,如图所示。玻璃的折射率为n=。 (ⅰ)一束平行光垂射向玻璃砖的下表面,若光线到
A.所有元素都有可能发生衰变 B.放射性元素的半衰期与外界的温度无关 C.放射性元素与别的元素形成化合物时仍具有放射性 D.α、β和γ三种射线中,射线的穿透能力最强 E.一个原子核在一次衰变中可同时放出α、β和γ三种 射线 (2)(9分)如图,质量分别为mA、mB的两个弹性小 球A、B静止在地 面上方,B球距离地面的高度h=0.8m,A球在B球的正 上方,先将B 球释放,经过一段时间后再将A球释放。当A球下落t=0.3s时,刚 好与B球在地面上方的P点处相碰。碰撞时间极短。碰后瞬间A球 的速度恰好为零。已知mB=3mA,重力加速度大小g=10m/s2,忽略空 气 阻力及碰撞中的动能损失。求 (ⅰ)B球第一次到达地面时的速度; (ⅱ)P点距离地面的高度。
2014年普通高等学校招生全国统一考试(全国新
课标卷)Ⅰ
理综物理部分
使用地区:陕西、山西、河南、河北、湖南、湖北、江西
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分110分, 考试时间60分钟.
第Ⅰ卷(选择题 共48分) 一、选择题(本题共8小题,每小题6分,在每小题给出的四个选项中, 第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。 全部选对得6分,选对但不全得3分,有选错的得0分) 14.在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感 应电流的是
2014年全国高考理综物理试题及答案新课标I

2014年普通高等学校招生全国统一考试(新课标I卷)理科综合能力测试(物理部分)二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中.第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表相连,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化14.【答案】:D【解析】:穿过线圈磁通量不变,不产生感应电流时,电流表指针不会偏转,A错的;在通电线圈中通电后,穿过旁边放置的线圈磁通量不变,不能产生感应电流,B错的;当插入磁铁时,能产生感应电流,但当跑到另一房间观察时,穿过线圈磁通量不变,不能产生感应电流,C错的;在通电与断电瞬间,磁通量生了变化,有感应电流,D对的。
15.关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()A.安培力的方向可以不垂直于直导线B.安培力的方向总是垂直于磁场的方向C.安培力的大小与通电直导线和磁场方向的夹角无关D.将直导线从中点折成直角,安培力的大小一定变为原来的一半15.【答案】:B【解析】:由左手定则安培力方向一定垂直于导线和磁场方向,A错的B对的;F=BIL sin θ,安培力大小与磁场和电流夹角有关,C错误的;从中点折成直角后,导线的有效长度不等于导线长度一半,D错的16.如图,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出)。
一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O。
全国中学生物理竞赛复赛试题及答案(全Word版)

第31届全国中学生物理竞赛复赛理论考试试题说明:所有答案 (包括填空)必须写在答题纸上,写在试题纸上无效。
一、(12分)2013年6月20日,“神舟十号”女航天员王亚平在“天宫一号”目标飞行器里成功进行了我国首次太空授课. 授课中的一个实验展示了失重状态下液滴的表面张力引起的效应. 视频中可发现漂浮的液滴处于周期性的“脉动”中(平时在地球表面附近,重力的存在会导致液滴下降太快,以至于很难观察到液滴的这种“脉动”现象). 假设液滴处于完全失重状态,液滴的上述“脉动”可视为液滴形状的周期性的微小变化(振动),如图所示. (1)该液滴处于平衡状态时的形状是__________;(2)决定该液滴振动频率f 的主要物理量是________________________________________; (3)按后面括号中提示的方法导出液滴振动频率与上述物理量的关系式.(提示:例如,若认为,,a b c 是决定该液滴振动频率的相互独立的主要物理量,可将液滴振动频率f 与,,a b c 的关系式表示为αβγ∝f a b c ,其中指数,,αβγ是相应的待定常数.)二、(16分) 一种测量理想气体的摩尔热容比/p V C C γ≡的方法(Clement-Desormes 方法)如图所示:大瓶G 内装满某种理想气体,瓶盖上通有一个灌气(放气)开关H ,另接出一根U 形管作为压强计M .瓶内外的压强差通过U 形管右、左两管液面的高度差来确定. 初始时,瓶内外的温度相等,瓶内气体的压强比外面的大气压强稍高,记录此时U 形管液面的高度差i h .然后打开H ,放出少量气体,当瓶内外压强相等时,即刻关闭H . 等待瓶内外温度又相等时,记录此时U 形管液面的高度差f h .试由这两次记录的实验数据i h 和f h ,导出瓶内气体的摩尔热容比γ的表达式.(提示:放气过程时间很短,可视为无热量交换;且U 形管很细,可忽略由高差变化引起的瓶内气体在状态变化前后的体积变化)三、(20分)如图所示,一质量为m 、底边AB 长为b 、等腰边长为a 、质量均匀分布的等腰三角形平板,可绕过光滑铰链支点A 和B 的水平轴x 自由转动;图中原点O 位于AB 的中点,y 轴垂直于板面斜向上,z 轴在板面上从原点O 指向三角形顶点C . 今在平板上任一给定点000M (,0,)x z 加一垂直于板面的拉力Q .(1)若平衡时平板与竖直方向成的角度为ϕ,求拉力Q 以及铰链支点对三角形板的作用力N A 和N B ;(2)若在三角形平板上缓慢改变拉力Q 的作用点M 的位置,使平衡时平板与竖直方向成的角度仍保持为ϕ,则改变的作用点M 形成的轨迹满足什么条件时,可使铰链支点A 或B 对板作用力的垂直平板的分量在M 变动中保持不变?四、(24分)如图所示,半径为R 、质量为m 0的光滑均匀圆环,套在光滑竖直细轴OO '上,可沿OO '轴滑动或绕OO '轴旋转.圆环上串着两个质量均为m 的小球. 开始时让圆环以某一角速度绕OO '轴转动,两小球自圆环顶端同时从静止开始释放.(1)设开始时圆环绕OO '轴转动的角速度为ω0,在两小球从环顶下滑过程中,应满足什么条件,圆环才有可能沿OO '轴上滑?(2)若小球下滑至30θ=︒(θ是过小球的圆环半径与OO '轴的夹角)时,圆环就开始沿OO '轴上滑,求开始时圆环绕OO '轴转动的角速度ω0、在30θ=︒时圆环绕OO '轴转动的角速度ω和小球相对于圆环滑动的速率v .五、(20分)如图所示,现有一圆盘状发光体,其半径为5cm ,放置在一焦距为10cm 、半径为15cm 的凸透镜前,圆盘与凸透镜的距离为20cm ,透镜后放置一半径大小可调的圆形光阑和一个接收圆盘像的光屏.图中所有光学元件相对于光轴对称放置.请在几何光学近轴范围内考虑下列问题,并忽略像差和衍射效应.(1)未放置圆形光阑时, 给出圆盘像的位置、大小、形状;(2)若将圆形光阑放置于凸透镜后方6cm 处. 当圆形光阑的半径逐渐减小时,圆盘的像会有什么变化?是否存在某一光阑半径a r ,会使得此时圆盘像的半径变为(1)中圆盘像的半径的一半?若存在,请给出a r 的数值.(3)若将圆形光阑移至凸透镜后方18cm 处,回答(2)中的问题; (4)圆形光阑放置在哪些位置时,圆盘像的大小将与圆形光阑的半径有关? (5)若将图中的圆形光阑移至凸透镜前方6cm 处,回答(2)中的问题.六、(22分)如图所示,一电容器由固定在共同导电底座上的N +1片对顶双扇形薄金属板和固定在可旋转的导电对称轴上的N 片对顶双扇形薄金属板组成,所有顶点共轴,轴线与所有板面垂直,两组板面各自在垂直于轴线的平面上的投影重合,板面扇形半径均为R ,圆心角均为0θ(02πθπ≤<);固定金属板和可旋转的金属板相间排列,两相邻金属板之间距离均为s .此电容器的电容C 值与可旋转金属板的转角θ有关.已知静电力常量为k . (1)开始时两组金属板在垂直于轴线的平面上的投影重合,忽略边缘效应,求可旋转金属板的转角为θ(00θθθ-≤≤)时电容器的电容()C θ;(2)当电容器电容接近最大时,与电动势为E 的电源接通充电(充电过程中保持可旋转金属板的转角不变),稳定后断开电源,求此时电容器极板所带电荷量和驱动可旋转金属板的力矩; (3)假设02πθ=,考虑边缘效应后,第(1)问中的()C θ可视为在其最大值和最小值之间光滑变化的函数max min max min 11()()()cos222C C C C C θθ=++- 式中,max C 可由第(1)问的结果估算,而min C 是因边缘效应计入的,它与max C 的比值λ是已知的.若转轴以角速度m ω匀速转动,且m t θω=,在极板间加一交流电压0cos V V t ω=.试计算电容器在交流电压作用下能量在一个变化周期内的平均值,并给出该平均值取最大值时所对应的m ω.七、(26分)Z-箍缩作为惯性约束核聚变的一种可能方式,近年来受到特别重视,其原理如图所示.图中,长20 mm 、直径为5m μ的钨丝组成的两个共轴的圆柱面阵列,瞬间通以超强电流,钨丝阵列在安培力的作用下以极大的加速度向内运动, 即所谓自箍缩效应;钨丝的巨大动量转移到处于阵列中心的直径为毫米量级的氘氚靶球上,可以使靶球压缩后达到高温高密度状态,实现核聚变.设内圈有N 根钨丝(可视为长直导线)均匀地分布在半径为r 的圆周上,通有总电流7210A =⨯内I ;外圈有M 根钨丝,均匀地分布在半径为R 的圆周上,每根钨丝所通过的电流同内圈钨丝.已知通有电流i 的长直导线在距其r 处产生的磁感应强度大小为m ik r,式中比例常量772210T m/A 210N /A m k --=⨯⋅=⨯.(1)若不考虑外圈钨丝,计算内圈某一根通电钨丝中间长为L ∆的一小段钨丝所受到的安培力;(2)若不考虑外圈钨丝,内圈钨丝阵列熔化后形成了圆柱面,且箍缩为半径0.25cm r =的圆柱面时,求柱面上单位面积所受到的安培力,这相当于多少个大气压?(3)证明沿柱轴方向通有均匀电流的长圆柱面,圆柱面内磁场为零,即通有均匀电流外圈钨丝的存在不改变前述两小题的结果;(4)当1N >>时, 则通有均匀电流的内圈钨丝在外圈钨丝处的磁感应强度大小为m Ik R内,若要求外圈钨丝柱面每单位面积所受到的安培力大于内圈钨丝柱面每单位面积所受到的安培力,求外圈钨丝圆柱面的半径R 应满足的条件;(5)由安培环路定理可得沿柱轴方向通有均匀电流的长圆柱面外的磁场等于该圆柱面上所有电流移至圆柱轴后产生的磁场,请用其他方法证明此结论. (计算中可不考虑图中支架的影响)八、(20分)天文观测表明,远处的星系均离我们而去.著名的哈勃定律指出,星系离开我们的速度大小v =HD ,其中D 为星系与我们之间的距离,该距离通常以百万秒差距(Mpc )为单位;H 为哈勃常数,最新的测量结果为H =67.80km/(s ⋅Mpc).当星系离开我们远去时,它发出的光谱线的波长会变长(称为红移).红移量z 被定义为λλλ'-=z ,其中λ'是我们观测到的星系中某恒星发出的谱线的波长,而λ是实验室中测得的同种原子发出的相应的谱线的波长,该红移可用多普勒效应解释.绝大部分星系的红移量z 远小于1,即星系退行的速度远小于光速.在一次天文观测中发现从天鹰座的一个星系中射来的氢原子光谱中有两条谱线,它们的频率ν'分别为4.549⨯1014Hz 和6.141⨯1014Hz .由于这两条谱线处于可见光频率区间,可假设它们属于氢原子的巴尔末系,即为由n > 2的能级向k =2的能级跃迁而产生的光谱.(已知氢原子的基态能量013.60 eV =-E ,真空中光速82.99810m/s =⨯c ,普朗克常量346.62610J s -=⨯⋅h ,电子电荷量19 1.60210C -=⨯e )(1)该星系发出的光谱线对应于实验室中测出的氢原子的哪两条谱线?它们在实验室中的波长分别是多少?(2)求该星系发出的光谱线的红移量z 和该星系远离我们的速度大小v ; (3)求该星系与我们的距离D .第31届全国中学生物理竞赛复赛理论考试试题解答2014年9月20日一、(12分) (1)球形(2)液滴的半径r 、密度ρ和表面张力系数σ(或液滴的质量m 和表面张力系数σ) (3)解法一假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ①式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 按照这一约定,①式在同一单位制中可写成 {}[]{}{}{}{}[][][]αβγαβγρσρσ=f f k r r由于取同一单位制,上述等式可分解为相互独立的数值等式和单位等式,因而 [][][][]αβγρσ=f r ② 力学的基本物理量有三个:质量m 、长度l 和时间t ,按照前述约定,在该单位制中有 {}[]=m m m ,{}[]=l l l ,{}[]=t t t 于是[][]-=f t 1 ③ [][]=r l ④ [][][]ρ-=m l 3 ⑤ [][][]σ-=m t 2 ⑥ 将③④⑤⑥式代入②式得[][]([][])([][])αβγ---=t l m l m t 132 即[][][][]αββγγ--+-=t l m t 132 ⑦ 由于在力学中[]m 、[]l 和[]t 三者之间的相互独立性,有30αβ-=, ⑧ 0βγ+=, ⑨ 21γ= ⑩ 解为311,,222αβγ=-=-= ⑪将⑪式代入①式得=f ⑫ 解法二假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ①式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 在同一单位制中,①式两边的物理量的单位的乘积必须相等[][][][]αβγρσ=f r ②力学的基本物理量有三个:质量M 、长度L 和时间T ,对应的国际单位分别为千克(kg )、米(m )、秒(s ). 在国际单位制中,振动频率f 的单位[]f 为s -1,半径r 的单位[]r 为m ,密度ρ的单位[]ρ为3kg m -⋅,表面张力系数σ的单位[]σ为1212N m =kg (m s )m kg s ----⋅⋅⋅⋅=⋅,即有[]s -=f 1 ③ []m =r ④ []kg m ρ-=⋅3 ⑤ []kg s σ-=⋅2 ⑥ 若要使①式成立,必须满足()()s m kg m kg s (kg)m s βγαβγαβγ---+--=⋅⋅=⋅⋅13232 ⑦由于在力学中质量M 、长度L 和时间T 的单位三者之间的相互独立性,有 30αβ-=, ⑧ 0βγ+=, ⑨ 21γ= ⑩ 解为311,,222αβγ=-=-= ⑪将⑪式代入①式得f = ⑫评分标准:本题12分. 第(1)问2分,答案正确2分;第(2)问3分,答案正确3分;第(3)问7分,⑦式2分,⑪式3分,⑫式2分(答案为f 、f =f 的,也给这2分).二、(16分)解法一:瓶内理想气体经历如下两个气体过程:000000(,,,)(,,,)(,,,)−−−−−−−→−−−−−→i i f f f p V T N p V T N p V T N 放气(绝热膨胀)等容升温其中,000000(,,,),(,,,,,,)i i f f f p V T N p V T N p V T N )和(分别是瓶内气体在初态、中间态与末态的压强、体积、温度和摩尔数.根据理想气体方程pV NkT =,考虑到由于气体初、末态的体积和温度相等,有f f iip N p N =①另一方面,设V '是初态气体在保持其摩尔数不变的条件下绝热膨胀到压强为0p 时的体积,即000(,,,)(,,,)i i i p V T N p V T N '−−−−→绝热膨胀此绝热过程满足1/00i V p V p γ⎛⎫= ⎪'⎝⎭②由状态方程有0i p V N kT '=和00f p V N kT =,所以 0f iN V N V ='③联立①②③式得1/0fi i p p p p γ⎛⎫= ⎪⎝⎭④ 此即lnln i i fp p p p γ= ⑤由力学平衡条件有0i i p p gh ρ=+ ⑥0f f p p gh ρ=+ ⑦式中,00p gh ρ=为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由⑤⑥⑦式得00ln(1)ln(1)ln(1)if i h h h hh h γ+=+-+⑧利用近似关系式:1, ln(1)x x x +≈ 当,以及 00/1, /1i f h h h h ,有000///i ii f i fh h h h h h h h h γ==--⑨评分标准:本题16分.①②③⑤⑥⑦⑧⑨式各2分.解法二:若仅考虑留在容器内的气体:它首先经历了一个绝热膨胀过程ab ,再通过等容升温过程bc 达到末态100000(,,)(,,)(,,)−−−−−→−−−−−→i f p V T p V T p V T 绝热膨胀ab 等容升温bc其中,100000(,,),(,,,,)i f p V T p V T p V T )和(分别是留在瓶内的气体在初态、中间态和末态的压强、体积与温度.留在瓶内的气体先后满足绝热方程和等容过程方程1100ab: γγγγ----=i p T p T①00bc://=f p T p T② 由①②式得1/0fi i p p p p γ⎛⎫= ⎪⎝⎭③ 此即lnln i i fp p p p γ=④由力学平衡条件有0i i p p gh ρ=+⑤0f f p p gh ρ=+ ⑥式中,00p gh ρ=为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由④⑤⑥式得00ln(1)ln(1)ln(1)if i h h h hh h γ+=+-+⑦利用近似关系式:1, ln(1)x x x +≈ 当,以及 00/1, /1i f h h h h ,有000///i ii f i fh h h h h h h h h γ==--⑧评分标准:本题16分.①②式各3分,④⑤⑥⑦⑧式各2分.三、(20分)(1)平板受到重力C P 、拉力0M Q 、铰链对三角形板的作用力N A 和N B ,各力及其作用点的坐标分别为:C (0,sin ,cos )ϕϕ=--mg mg P ,(0,0,)h ;0M (0,,0)Q =Q , 00(,0,)x z ;A A A A (,,)x y z N N N =N , (,0,0)2b;B B B B (,,)x y z N N N =N ,(,0,0)2b- 式中h =是平板质心到x 轴的距离.平板所受力和(对O 点的)力矩的平衡方程为A B x 0=+=∑xx FN N①A B sin 0ϕ=++-=∑yyyF Q N N mg② A B cos 0ϕ=+-=∑zzzF N N mg③ 0sin 0xM mgh Q z ϕ=-⋅=∑④ B A 022=-=∑y zz b bM N N⑤0A B 022zyy b bMQ x N N =⋅+-=∑⑥联立以上各式解得sin mgh Q z ϕ=, A B x x N N =-,000sin 21()2Ay mg h b x N b z z ϕ⎡⎤=-+⎢⎥⎣⎦,000sin 21()2By mg h b x N b z z ϕ⎡⎤=--⎢⎥⎣⎦A B 1cos 2z zN N mg ϕ==即0M 0sin (0,,0)mgh z ϕ=Q ,⑦0A A 002sin 1(,1(),cos )22x x mg h b N mg b z z ϕϕ⎡⎤=-+⎢⎥⎣⎦N ,⑧0B A 002sin 1(,1(),cos )22x x mg h b N mg b z z ϕϕ⎡⎤=---⎢⎥⎣⎦N⑨(2)如果希望在M(,0,)x z 点的位置从点000M (,0,)x z 缓慢改变的过程中,可以使铰链支点对板的作用力By N 保持不变,则需 sin 21()2By mg h b x N b z z ϕ⎡⎤=--=⎢⎥⎣⎦常量 ⑩M 点移动的起始位置为0M ,由⑩式得00022-=-b x b x z z z z⑪ 或00022b x b x z z z ⎛⎫-=- ⎪⎝⎭ ⑫这是过A(,0,0)2b点的直线. (*)因此,当力M Q 的作用点M 的位置沿通过A 点任一条射线(不包含A 点)在平板上缓慢改变时,铰链支点B 对板的作用力By N 保持不变. 同理,当力M Q 的作用点M 沿通过B 点任一条射线在平板上缓慢改变时,铰链支点A 对板的作用力Ay N 保持不变.评分标准:本题20分.第(1)问14分,①式1分,②③④⑤⑥式各2分,⑦⑧⑨式各1分;第(2)问6分,⑩⑫式各1分,(*) 2分,结论正确2分.四、(24分)(1)考虑小球沿径向的合加速度. 如图,设小球下滑至θ 角位置时,小球相对于圆环的速率为v ,圆环绕轴转动的角速度为ω .此时与速率v 对应的指向中心C 的小球加速度大小为21a R =v ①同时,对应于圆环角速度ω,指向OO '轴的小球加速度大小为2(sin )sin R a R ωωθθ= ②该加速度的指向中心C 的分量为22(sin )sin R a a R ωωθθ== ③该加速度的沿环面且与半径垂直的分量为23(sin )cos cot R a a Rωωθθθ== ④由①③式和加速度合成法则得小球下滑至θ 角位置时,其指向中心C 的合加速度大小为2212(sin )v ωθ=+=+R R a a a R R⑤在小球下滑至θ 角位置时,将圆环对小球的正压力分解成指向环心的方向的分量N 、垂直于环面的方向的分量T . 值得指出的是:由于不存在摩擦,圆环对小球的正压力沿环的切向的分量为零. 在运动过程中小球受到的作用力是N 、T 和mg . 这些力可分成相互垂直的三个方向上的分量:在径向的分量不改变小球速度的大小,亦不改变小球对转轴的角动量;沿环切向的分量即sin θmg 要改变小球速度的大小;在垂直于环面方向的分量即T 要改变小球对转轴的角动量,其反作用力将改变环对转轴的角动量,但与大圆环沿'OO 轴的竖直运动无关. 在指向环心的方向,由牛顿第二定律有22(sin )cos R R N mg ma mRωθθ++==v ⑥ 合外力矩为零,系统角动量守恒,有202(sin )L L m R θω=+ ⑦式中L 0和L 分别为圆环以角速度ω0和ω转动时的角动量.如图,考虑右半圆环相对于轴的角动量,在θ角位置处取角度增量∆θ, 圆心角∆θ所对圆弧l ∆的质量为m l λ∆=∆(02m Rλπ≡),其角动量为 2sin L m r l rR Rr z R S ωλωθλωλω∆=∆=∆=∆=∆ ⑧式中r 是圆环上θ 角位置到竖直轴OO '的距离,S ∆为两虚线间窄条的面积.⑧式说明,圆弧l ∆的角动量与S ∆成正比. 整个圆环(两个半圆环)的角动量为2200122222m R L L R m R R πωωπ=∆=⨯=∑ ⑨[或:由转动惯量的定义可知圆环绕竖直轴OO '的转动惯量J 等于其绕过垂直于圆环平面的对称轴的转动惯量的一半,即2012J m R = ⑧则角动量L 为2012L J m R ωω== ⑨ ]同理有200012L m R ω= ⑩力N 及其反作用力不做功;而T 及其反作用力的作用点无相对移动,做功之和为零;系统机械能守恒. 故22012(1cos )2[(sin )]2k k E E mgR m R θωθ-+⨯-=⨯+v ⑪式中0k E 和k E 分别为圆环以角速度0ω和ω转动时的动能.圆弧l ∆的动能为222111()sin 222k E m r l rR R S ωλωθλω∆=∆=∆=∆整个圆环(两个半圆环)的动能为22220011222224k k m R E E R m R R πωωπ=∆=⋅⋅⋅⋅=∑ ⑫ [或:圆环的转动动能为22201124k E J m R ωω== ⑫ ]同理有2200014k E m R ω= ⑬根据牛顿第三定律,圆环受到小球的竖直向上作用力大小为2cos N θ,当02cos N m g θ≥ ⑭时,圆环才能沿轴上滑.由⑥⑦⑨⑩⑪⑫ ⑬式可知,⑭式可写成2220000220cos 6cos 4cos 102(4sin )ωθθθθ⎡⎤-+--≤⎢⎥+⎣⎦m R m m m m gm m ⑮式中,g 是重力加速度的大小.(2)此时由题给条件可知当=30θ︒时,⑮式中等号成立,即有20020912()m m m m m ⎤⎛-+=- ⎥+⎝⎣⎦或00(m m ω=+ ⑯由⑦⑨⑩⑯式和题给条件得0000200+4sin +m m m m m m ωωωθ=== ⑰ 由⑪⑫⑬⑯⑰式和题给条件得v ⑱评分标准:本题24分.第(1)问18分,①②③④⑤式各1分,⑥⑦式各2分,⑨⑩式各1分,⑪式2分,⑫⑬式各1分,⑭式2分,⑮式1分;第(2)问6分,⑯⑰⑱式各2分.五、(20分)(1)设圆盘像到薄凸透镜的距离为v . 由题意知:20cm u =, 10cm f =,代入透镜成像公式111u f+=v ① 得像距为20cm =v ② 其横向放大率为1uβ=-=-v③ 可知圆盘像在凸透镜右边20cm ,半径为5cm ,为圆盘状,圆盘与其像大小一样. (2)如下图所示,连接A 、B 两点,连线AB 与光轴交点为C 点,由两个相似三角形AOC ∆与BB'C ∆的关系可求得C 点距离透镜为15cm. 1分若将圆形光阑放置于凸透镜后方6cm 处,此时圆形光阑在C 点左侧. 1分 当圆形光阑半径逐渐减小时,均应有光线能通过圆形光阑在B 点成像,因而圆盘像的形状及大小不变,而亮度变暗. 2分此时不存在圆形光阑半径a r 使得圆盘像大小的半径变为(1)中圆盘像大小的半径的一半.1分(3)若将圆形光阑移至凸透镜后方18cm 处,此时圆形光阑在C 点(距离透镜为15cm )的右侧. 由下图所示,此时有:CB'=BB'=5cm, R'B'=2cm, 利用两个相似三角形CRR'∆与CBB'∆的关系,得 CR'52RR'=BB'=5cm 3cm CB'5r -=⨯⨯= ④ 可见当圆盘半径3cm r =(光阑边缘与AB 相交)时,圆盘刚好能成完整像,但其亮度变暗. 4分若进一步减少光阑半径,圆盘像就会减小.当透镜上任何一点发出的光都无法透过光阑照在原先像的一半高度处时,圆盘像的半径就会减小为一半,如下图所示.此时光阑边缘与AE相交,AE 与光轴的交点为D ,由几何关系算得D 与像的轴上距离为207cm. 此时有 620D R '=c m , D E '=c m , E E '=2.5c m ,77利用两个相似三角形DRR'∆与DEE'∆的关系,得D R '20/72R R '=E E '= 2.5c m 0.75c m D E '20/7a r -=⨯⨯= ⑤ 可见当圆形光阑半径a r =0.75cm ,圆盘像大小的半径的确变为(1)中圆盘像大小的半径的一半. 3分(4)只要圆形光阑放在C 点(距离透镜为15cm )和光屏之间,圆盘像的大小便与圆形光阑半径有关. 2分(5)若将图中的圆形光阑移至凸透镜前方6cm 处,则当圆形光阑半径逐渐减小时,圆盘像的形状及大小不变,亮度变暗; 2分同时不存在圆形光阑半径使得圆盘像大小的半径变为(1)中圆盘像大小的半径的一半. 1分评分标准:第(1)问3分,正确给出圆盘像的位置、大小、形状,各1分;第(2)问5分,4个给分点分别为1、1、2、1分; 第(3)问7分,2个给分点分别为2、3分; 第(4)问2分,1个给分点为2分;第(5)问3分,2个给分点分别为2、1分.六、(22分)(1)整个电容器相当于2N 个相同的电容器并联,可旋转金属板的转角为θ时1()2()C NC θθ=①式中1()C θ为两相邻正、负极板之间的电容1()()4A C ksθθπ=②这里,()A θ是两相邻正负极板之间相互重迭的面积,有2000200200200012(2), 212(), 02()12(), 0212(2), 2R R A R R θπθθθπθθθπθθθθθπθθππθθθ⎧⨯--≤≤-⎪⎪⎪⨯+-≤≤⎪=⎨⎪⨯-≤≤-⎪⎪⎪⨯--<<⎩当当当当③由②③式得2000200120020001(2), 41(), 04()1(), 041(2), 4R ks R ksC R ks R ksθπθθθππθθθπθπθθθθπθπθππθθθπ⎧--≤≤-⎪⎪⎪+-≤≤⎪=⎨⎪-≤≤-⎪⎪⎪--<<⎩当当当当④由①④式得20002002002000(2), 2(), 02()(), 02(2), 2N R ks N R ks C N R ks N R ksθπθθθππθθθπθπθθθθπθπθππθθθπ⎧--≤≤-⎪⎪⎪+-≤≤⎪=⎨⎪-≤≤-⎪⎪⎪--<<⎩当当当当⑤(2)当电容器两极板加上直流电势差E 后,电容器所带电荷为()()θθ=Q C E⑥当0θ=时,电容器电容达到最大值max C ,由⑤式得20max2NR C ksθπ=⑦充电稳定后电容器所带电荷也达到最大值max Q ,由⑥式得20max2NR Q E ksθπ= ⑧断开电源,在转角θ取0θ=附近的任意值时,由⑤⑧式得,电容器内所储存的能量为2222max 0000() 2()4()θθθθπθθπθθ==-≤≤--Q NR E U C ks 当⑨设可旋转金属板所受力矩为()T θ(它是由若干作用在可旋转金属板上外力i F 产生的,不失普遍性,可认为i F 的方向垂直于转轴,其作用点到旋转轴的距离为i r ,其值i F 的正负与可旋转金属板所受力矩的正负一致),当金属板旋转θ∆(即从θ变为θθ+∆)后,电容器内所储存的能量增加U ∆,则由功能原理有()()()θθθθ∆=∆=∆=∆∑∑i i i i T Fr F l U⑩式中,由⑨⑩式得22200020()() 4()θθθθθπθθπθθ∆==-≤≤-∆-NR E U T ks 当⑪当电容器电容最大时,充电后转动可旋转金属板的力矩为2204θθπ=∆⎛⎫== ⎪∆⎝⎭U NR E T ks ⑫(3)当0cos V V t ω=,则其电容器所储存能量为 []222max min max min 02max min max min 020max min max min max min max min 2012111()()cos2cos 222111()()cos2(1cos2)422()()cos2()cos2()cos2cos28{(8m m m m U CV C C C C t V t C C C C t V t V C C C C t C C t C C t t V ωωωωωωωω=⎡⎤=++-⎢⎥⎣⎦⎡⎤=++-+⎢⎥⎣⎦=++++-+-=max min max min max min max min )()cos2()cos21()[cos2()cos2()]}2m m m C C C C t C C t C C t t ωωωωωω++++-+-++-⑬由于边缘效应引起的附加电容远小于max C ,因而可用⑦式估算max C .如果m ωω≠,利用⑦式和题设条件以及周期平均值公式cos2=0 cos2=0, cos2()=0, cos2()=0m m m t t t t ωωωωωω+-,⑭可得电容器所储存能量的周期平均值为2221max min 001(1)()832NR U C C V V ksλ+=+=⑮如果m ωω=,⑭式中第4式右端不是零,而是1.利用⑦式和题设条件以及周期平均值公式的前3式得电容器所储存能量的周期平均值为222222max min 0max min 0max min 00111(3)()()(3)8161664NR U C C V C C V C C V V ks λ+=++-=+= ⑯由于边缘效应引起的附加电容与忽略边缘效应的电容是并联的,因而max C 应比用⑦式估计max C 大;这一效应同样使得min 0C >;可假设实际的max min ()C C -近似等于用⑦式估计max C .如果m ωω≠,利用⑦式和题设条件以及周期平均值公式cos2=0 cos2=0, cos2()=0, cos2()=0m m m t t t t +-,⑰可得电容器所储存能量的周期平均值为2221max min 001(12)()832NR U C C V V ksλ+=+=⑱[如果m ωω=,⑭中第4式右端不是零,而是1.利用⑦式和题设条件以及周期平均值公式⑭的前3式得电容器所储存能量的周期平均值为 222222max min 0max min 0max min 00111(34)()()(3)8161664NR U C C V C C V C C V V ksλ+=++-=+= ⑲]212 U U U >因为,则最大值为,所对应的m ω为m ωω=⑳评分标准:本题22分.第(1)问6分,①②式各1分,③⑤式各2分;第(2)问9分,⑥⑦⑧⑨⑩式各1分(⑩式中没有求和号的,也同样给分;没有力的符号,也给分),⑪⑫式各2分;第(3)问7分,⑬⑭式各2分,⑮⑯⑳式各1分.七、(26分)(1)通有电流i 的钨丝(长直导线)在距其r 处产生的磁感应强度的大小为m iB k r=① 由右手螺旋定则可知,相应的磁感线是在垂直于钨丝的平面上以钨丝为对称轴的圆,磁感应强度的方向沿圆弧在该点的切向,它与电流i 的方向成右手螺旋.两根相距为d 的载流钨丝(如图(a ))间的安培力是相互吸引力,大小为2m k Li F B Li d∆=∆=② 考虑某根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力.由系统的对称性可知,每根钨丝受到的合力方向都指向轴心;我们只要将其他钨丝对它的吸引力在径向的分量叠加即可.如图,设两根载流钨丝到轴心连线间的夹角为ϕ,则它们间的距离为2sin2d r ϕ=③由②③式可知,两根载流钨丝之间的安培力在径向的分量为22sin 2sin(/2)22m m r k Li k Li F r rϕϕ∆∆== ④它与ϕ无关,也就是说虽然处于圆周不同位置的载流钨丝对某根载流钨丝的安培力大小和方向均不同,但在径向方向上的分量大小却是一样的;而垂直于径向方向的力相互抵消.因此,某根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力为222(1)(1)22-∆-∆==m m N k L I N k Li F r rN 内⑤其方向指向轴心. (2)由系统的对称性可知,所考虑的圆柱面上各处单位面积所受的安培力的合力大小相等,方向与柱轴垂直,且指向柱轴.所考虑的圆柱面,可视为由很多钨丝排布而成,N 很大,但总电流不变.圆柱面上ϕ∆角对应的柱面面积为s r L ϕ=∆∆⑥圆柱面上单位面积所受的安培力的合力为22(1)24m N N k Li N F P s r Lϕππ-∆∆==∆ ⑦由于1N ,有22(1)-=N N i I 内⑧ 由⑦⑧式得224π=m k I P r 内⑨ 代入题给数据得1221.0210N/m P =⨯ ⑩ 一个大气压约为5210N/m ,所以710atm P ≈⑪即相当于一千万大气压.(3)考虑均匀通电的长直圆柱面内任意一点A 的磁场强度. 根据对称性可知,其磁场如果不为零,方向一定在过A 点且平行于通电圆柱的横截面. 在A 点所在的通电圆柱的横截面(纸面上的圆)内,过A 点作两条相互间夹角为微小角度θ∆的直线,在圆上截取两段微小圆弧L 1和L 2,如图(b )所示. 由几何关系以及钨丝在圆周上排布的均匀性,通过L 1和L 2段的电流之比/I I 12等于它们到A 点的距离之比/l l 12:111222==I L l I L l ⑫ 式中,因此有1212=m m I I k k l l ⑬ 即通过两段微小圆弧在A 点产生的磁场大小相同,方向相反,相互抵消.整个圆周可以分为许多“对”这样的圆弧段,因此通电的外圈钨丝圆柱面在其内部产生的磁场为零,所以通电外圈钨丝的存在,不改变前述两小题的结果.(4)由题中给出的已知规律,内圈电流在外圈钨丝所在处的磁场为=m IB k R内 ⑭方向在外圈钨丝阵列与其横截面的交点构成的圆周的切线方向,由右手螺旋法则确定.外圈钨丝的任一根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力为222(1)(2)+ 22-∆∆+=∆=m m m M k L I I k I k L I I I F L RM M R RM外外内外内外外 ⑮式中第一个等号右边的第一项可直接由⑤式类比而得到,第二项由⑭式和安培力公式得到.因此圆柱面上单位面积所受的安培力的合力为22(2)24ϕπϕπ+∆==∆∆外外内外外m F k I I I M P R L R ⑯ 若要求2222244ππ+>外内外内()m m k I I I k I R r ⑰ 只需满足<R r ⑱(5)考虑均匀通电的长直圆柱面外任意一点C 的磁场强度. 根据对称性可知,长直圆柱面上的均匀电流在该点的磁场方向一定在过C 点且平行于通电圆柱的横截面(纸面上的圆),与圆的径向垂直,满足右手螺旋法则. 在C 点所在的通电圆柱的横截面内,过C 点作两条相互间夹角为微小角度θ∆的直线,在圆上截取两段微小圆弧3L 和4L ,如图(c )所示. 由几何关系以及电流在圆周上排布的均匀性,穿过3L 和4L 段的电流之比34/I I 等于它们到C 点。
2014年普通高等学校招生全国统一考试(山东卷)理综物理及答案(Word版)-推荐下载

维修时将两轻绳各剪去一小段,但仍保持等长且悬挂点不变。木板静止时,F1 表示
木板所受合力的大小,F2 表示单根轻绳对木板拉力的大小,则维修后
A.F1 不变,F2 变大 B.F1 不变,F2 变小
C.F1 变大,F2 变大 D.F1 变小,F2 变小
v
15.一质点在外力作用下做直线运动,其速度 v 随时间 t 变化的图像如图。在图中
s 2qE
A.
2 mh
s qE
B.
2 mh
s 2qE
C.
4 mh
s qE
D.
4 mh
a q
v0
h
d
sb
q v0 c E
19.如图,半径为 R 的均匀带正电的薄球壳,其上有一小孔 A。已知壳内的场强处处
为零;壳外空间的电场,与将球壳上的全部电荷集中于球心 O 时在壳外产生的电
场一样。一带正电的试探电荷(不计重力)从球心以初动能 Ek0 沿 OA 方向射出。
下列关于试探电荷的动能 Ek 与离开球心的距离 r 的关系,可能正确的是
Ek
Ek
Ek
Ek
Ek 0
Ek 0
Ek 0
Ek 0
A O
0R
A
r 0R
B
r 0R
C
r 0R
r
第14届全国中学生物理竞赛复赛试卷(附详细答案)

第十四届全国中学生物理竞赛复赛试卷全卷共六题,总分为140分。
一、(20分)如图复14 – 1所示,用两段直径均为d = 0.02米且相互平行的小圆棒A 和B 水平地支起一根长为L = 0.64米、质量均匀分布的木条。
设木条与二圆棒之间的静摩擦系数0 = 0.4,滑动摩擦系数μ= 0.2 。
现使A 棒固定不动,并对B 棒施以适当外力,使木棒B 向左缓慢移动。
试讨论分析木条的移动情况,并把它的运动情况表示出来。
设木条与圆棒B 之间最先开始滑动。
图复14 - 1二、(20分)正确使用高压锅(见图复14 – 2 - 1)的办法是:将已加上密封锅盖的高压锅加热,当锅内水沸腾时,加上一定重量的高压阀,此时可以认为锅内空气已全部排除,只有水的饱和蒸汽。
继续加热,水温将继续升高,到高压阀被蒸汽顶起时,锅内温度即达到预期温度。
某一高压锅的预期温度为120℃,如果某人在使用此锅时,未按上述程序,而在水温被加热至90℃时就加上高压阀(可以认为此时锅内水汽为饱和汽),问当继续加热到高压阀开始被顶起而冒汽时,锅内温度为多少?高压阀图复14 - 2 - 1图复14 - 2 - 2℃已知:大气压强0P = 1.013×510 帕;90℃时水的饱和汽压w P (90)= 7.010×410帕;120℃时水的饱和汽压w P (120)= 1.985×510 帕;在90℃到120℃之间水的饱和汽压w P 和温度t (℃)的函数关系w P (t )如图复14 – 2 – 2所示。
三、(20分)滑线变阻器常用来限流和分压,其原理电路分别如图复14 – 3 – 1和14 – 3 – 2所示。
已知电源两端电压为U (内阻不计),负载电阻为0R ,滑线变阻器的全电阻为R ,总匝数为N ,A 、C 两端的电阻为AB R 。
AB图复14 - 3 - 1图复14 - 3 - 21、在图复14 – 3 – 1中,当滑动端C 移动时,电流I 的最小改变量ΔI 为多少(设变阻器每匝阻值<<0R )?2、在图复14 – 3 – 1中,为使在整个调节范围内电流I 的最小改变量ΔI 不大于I 的0.1%,滑线变阻器的匝数N 不得小于多少匝?3、在图复14 – 3 – 2中,滑线变阻器的额定电流e I 不得小于多少?4、在图复14 – 3 – 2中,设0R >>R ,证明:负载端电压U 与AC R 有简单的正比关系。
2014年上海大同杯物理竞赛初赛试卷1(含答案)

上海市第二十八届初中物理竞赛(大同中学杯)初 赛 试 卷删减版1.本试卷中常数g=10N/kg 。
2.sin37°=0.6,cos37°=0.8第一部分:单项选择题1.影响声音传播速度的是( )A .声音的音调B .声音的响度C . 声音的音色D .传播声音的物质 2.“玉兔”月球车和地面指挥中心之间的信息传输利用的是( )A .电磁波B .超声波C .次声波D .激光 3.在图1所示的四种物态变化中,属于升华的是( )4.如图2所示,两端开口的C 形小管中充满水,A 、B 两端开口处均 用手指堵住。
若同时松开手指( )A .只有水从A 端流出B .只有水从B 端流出C .A 、B 两端同时有水流出D .A 、B 两端都没有水流出5.当物体的温度升高后,物体的( )A .热量增大B .比热容增大C .体积增大D .内能增大 6.在图3所示的现象中,可直接用光的直线传播原理解释的是( )7. 把重为0.5N 的物体放入盛有水的烧杯中,溢出水的重力为0.3N,则物体受到的浮力( ) A .可能为0.4N B .可能为0.2N C .一定为0.5N D .一定为0.3N 8.如图4所示,均匀圆柱体甲和盛有液体乙的圆柱形容器放置在水平地面上,甲、乙质量相等。
现沿水平方向切去部分甲并从容器中抽取部分乙后,甲对地面的压强小于乙对容器底部的压强。
若甲、乙剩余部分的体积分别是V 甲、V 乙,则( )A. V 甲可能等于V 乙B. V 甲可能大于V 乙C. V 甲一定大于V 乙D. V 甲一定小于V 乙 9. 日食、月食是我们在地球上通过肉眼能直接观测到的天文现象,如果定义月球的半径为1,图2图4 图3图1则地球的半径约为3.7,太阳的半径约为400,地、月距离约为220,地、日距离约为8.6×104 ,参考上述数据可以判断,我们在地球上看不到的现象是( )A .月环食B .月全食C .日环食D .日全食10. 用普通相机拍照时,要根据物距进行“调焦”,使用起来不太便捷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014 第 31 届全国中学生物理竞赛预赛试题及参考答案与评分标准一、选择题.本题共 5 小题,每小题 6 分,在每小题给出的 4个选项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内,全部选对的得 6 分,选对但不全的得 3 分,有选错或不答的得 0分.1.一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于A.α1/3B.α3C.αD. 3α2.按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为 lcm 3的较重的合金块,杆上有表示液体密度数值的刻度.当秤砣放在 Q 点处时秤杆恰好平衡,如图所示,当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度.下列说法中错误的是A.密度秤的零点刻度在Q 点B.秤杆上密度读数较大的刻度在较小的刻度的左边C.密度秤的刻度都在Q 点的右侧D.密度秤的刻度都在Q 点的左侧3.一列简谐横波在均匀的介质中沿z 轴正向传播,两质点P1和 P2的平衡位置在 x 轴上,它们相距 60cm,当 P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为 24 m/s,则该波的频率可能为A. 50Hz B . 60HzC. 400Hz D . 410Hz4.电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动方式,电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用钢、铝和硅制成的形状、大小和横截面积均相同的三种环;当电流突然接通时,它们所受到的推力分别为F1、F2和 F3.若环的重力可忽略,下列说法正确的是A. F1>F 2>F3B. F2 >F3 >F1C. F3 >F 2> F 1 D . F1=F2=F35.质量为 m A的 A 球,以某一速度沿光滑水平面向静止的 B 球运动,并与B 球发生弹性正碰.假设 B 球的质量m B可选取为不同的值,则A.当 m B=m A时,碰后 B 球的速度最大B.当 m B =m A时,碰后 B 球的动能最大C.在保持m B>m A的条件下, m B越小,碰后 B 球的速度越大D.在保持 m B<m A的条件下, m B越大,碰后 B 球的动量越大二、填空题.把答案填在题中的横线上,只要给出结果,不需写出求得结果的过程.6.( 10 分)用国家标准一级螺旋测微器(直标度尺最小分度为0.5mm,丝杆螺距为0.5mm,套管上分为 50 格刻度)测量小球直径.测微器的初读数如图(a)所示,其值为 _____mm,测量时如图 (b) 所示,其值为_____mm ,测得小球直径d=___________mm .7.( 10 分)为了缓解城市交通拥问题,杭州交通部门在禁止行人步行的十字路口增设“直行待区”(行人可从天桥或地下过道过马路),如图所示.当其他车道的车辆右拐时,直行道上的车辆可以提前进入“直行待行区”;当直行绿灯亮起时,可从“直行待行区”直行通过十字路口.假设某十字路口限速50km/h ,“直行待行区”的长度为12m,从提示进入“直行待行区”到直行绿灯亮起的时间为4s.如果某汽车司机看到上述提示时立即从停车线由静止开始匀加速直线运动,运动到“直行待行区”的前端虚线处正好直行绿灯亮起,汽车总质量为 1.5t ,汽车运动中受到的阻力恒为车重的0.1 倍,则该汽车的行驶加速度为_________;在这4s 内汽车发动机所做的功为 _____________ (取 g=10m/s2)8.( 10 分)如图所示,两个薄透镜L 1和 L2共轴放置,已知 L 1的焦距 f 1=f ,L 2的焦距 f 2=―f ,两透镜间的距离也是f,小物体位于物面 P 上,物距 u1=3f .(1)小物体经过这两个透镜成的像在L 2的 _____边,到 L2的距离为 ________,是 ______像(填“实”或“虚”)、 _______像(填“正”或“倒”),放大率为 ___________.(2)现把两个透镜位置调换,若还要使给定的原物体在原像处成像,两透镜作为整体应沿光轴向 ______边移动距离 _________.这个新的像是 ______(填“实”或“虚”)、______像(填“正”或“倒”),放大率为 __________ .9.(10 分 )图中所示的气缸壁是绝热的.缸内隔板 A 是导热的,它固定在缸壁上.活塞 B 是绝热的,它与缸壁的接触是光滑的,但不漏气. B 的上方为大气. A 与B之间以及 A 与缸底之间都盛有n mol 的同种理想气体,系统在开始时处于平衡状态.现通过电炉丝 E 对气体缓慢加热,在加热过程中,A、 B 之间的气体经历____过程. A 以下气体经历____过程;气体温度每上升1K, A、 B 之间的气体吸收的热量与 A 以下气体净吸收的热量之差等于_____.已知普适气体常量为R.10.( 10 分)字宙空间某区域有一磁感应强度大小为B=1.0 ×10-9 T 的均匀磁场,现有一电子绕磁力线做螺旋运动.该电子绕磁力线旋转一圈所需的时间间隔为_____s;若该电子沿磁场方向的运动速度为 1.0 ×10-2c(c 为真空中光速的大小),则它在沿磁场方向前进 1.0 ×10-3 光年的过程中,绕磁力线转了 _____圈. 已知电子电荷量为 1.60 ×10 -19C,电子质量为 9.11 ×10-31kg .三、计算题,计算题的解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后结果的不能得分.有数值计算的,答案中必须明确写出数值和单位.11.( 15 分)如图所示,一水平放置的厚度为t 折射率为 n 的平行玻璃砖,下表面镀银(成反射镜).一物点 A 位于玻璃砖的上方距玻璃砖的上表面为h 处.观察者在 A 点附近看到了A 点的像. A 点的像到 A 点的距离等于多少?不考虑光经玻璃砖上表面的反射.12.( 20 分)通常电容器两极板间有多层电介质,并有漏电现象.为了探究其规律性,采用如图所示的简单模型,电容器的两极板面积均为A.其间充有两层电介质l 和 2,第 1 层电介质的介电常数、电导率(即电阻率的倒数)和厚度分别为ε、σ和 d ,第 2 层电介质的111则为ε、σ和 d .现在两极板加一直流电压U,,电容器处于稳定状态.222(1)画出等效电路图;(2)计算两层电介质所损耗的功率;(3)计算两介质交界面处的净电荷量;提示:充满漏电电介质的电容器可视为一不漏电电介质的理想电容和一纯电阻的并联电路.13. (20 分 )如图所示,一绝缘容器内部为长方体空胶,其长和宽分别为 a 和 b,厚度为 d,其两侧等高处装有两根与大气相通的玻璃管(可用来测量液体两侧的压强差).容器内装满密度为ρ的导电液体,容器上下两端装有铂电极 A 和 C,这样就构成了一个液体电阻,该液体电阻置于一方向与容器的厚度方向平行的均匀恒定的磁感应强度为 B 的磁场中,并通过开关 K 接在一电动势为ε、内阻为 r 的电池的两端,闭合开关.若稳定时两侧玻璃管中液面的高度差为 h,求导电液体的电导率σ.重力加速度大小为 g.14.( 20 分) lmol 的理想气体经历一循环过程l— 2— 3—1,如 p— T 图示所示.过程l — 2 是等压过程,过程3— 1是通过 p — T图原点的直线上的一段,描述过程 2 — 3的方程2为 c1p + c2p =T ,式中 c1和 c2都是待定的常量, p 和 T 分别是气体的压强和绝对温度.已知,气体在状态 l 的压强、绝对温度分别为p1和 T1.气体在状态 2 的绝对温度以及在状态 3 的压强和绝对湿度分别为T 2以及 p3和 T3.气体常量 R 也是已知的.(1)求常量 c1和 c2的值;(2)将过程 l— 2— 3— 1 在 p—V 图示上表示出来;(3)求该气体在一次循环过程中对外做的总功.15. (20 分 )一个ω介子飞行时衰变成静止质量均为m 的三个π介子,这三个π介子的动量共面.已知:衰变前后介子运动的速度都远小于光在真空中的速度c;衰变后的三个π介子的动能分别为T 1、 T2和 T 3,且第一、二个π介子飞行方向之间的夹角为θl,第二、三个π介子飞行方向之间的夹角为θ(2如图所示);介子的动能等于介子的能量与其静止时的能量(即其静止质量与c2的乘积)之差.求ω介子在衰变前的辨阀的飞行方向(用其飞行方向与衰变后的第二个介子的飞行方向的夹角即图中的φ角表示)及其静止质量.16. (25 分 )一圈盘沿顺时针方向绕过圆盘中心O 并与盘面垂直的固定水平转轴以匀角速度ω =4.43rad/s转动.圆盘半径r=1.00m ,圆盘正上方有一水平天花板.设圆盘边缘各处始终有水滴被甩出.现发现天花板上只有一点处有水.取重力加速度大小g=9. 80m/s 2.求(1) 天花板相对于圆盘中心轴 O 点的高度;(2) 天花板上有水的那一点的位置坐标,参考答案与评分标准一、 1. (D) 2. (C) 3. (AD) 4. (A) 5. (BCD)二、6. 0.022~ 0.024mm (3 分 );3.772~ 3.774mm(3 分) ;3.748~ 3.752mm(4 分) ( 若有效位数错,无分 )7. 24分 )1.5m/s (5 分 ) ;4.5 ×10 J(58. (1) 右, f ,实,倒, 1 (每空 1 分 ) (2)左, 2f ,实,倒, 1 (每空 1 分 ) 9. 等压 (2 分) ;等容 (2 分); nR(6 分) 10. 3.6 ×10-2(5 分) ; 8.8 ×10 (5 分)7三、 11. (15 分) 由折射定律得: sin θ, ①i = sin θd―θ由几何关系得: x1=htan θi , ②, x 2 =htan θd , ③, H=2(x 1+x 2)tan(90④, H 为物A 到i ), 像 A /的距离,在小角度近似下有: tan θi ≈ sin θi , tan θd ≈ sin θd ,tan(900― θi1, ⑤,联) ≈sin θi 立以上各式得: H=2(h+ t) , ⑥n评分标准:①式 3 分,②③④式各 2 分,⑤⑥各 3 分12. (20 分 )(1) 等效电路如图所示(2) 等效电容 C 1 和 C 2 为: C 1=ε1A , C 2 =ε2A , ①d 1d 2等效电阻 R 1 和 R 2 为: R 1=d 1 , R 2= d 2, ② σ1 A σ2 A两层电介质所消粍的功率为: P= U 2 U 2 A σ1σ2, ③ =R 1+R 2 d 1σ2+d 2σ1 (3) 没两层介质各自上下界面之间的电压分别为U 1 和 U 2 ,上层介质界面上的电荷为:ε1A · UR 1 ε1σ2AU Q 1 =C U 1= d 1 R 1+R 2 = d 1σ2+d 2σ1 , ④,下层介质界面上的电荷为:Q 2= ε2σ1AU , ⑤d 1σ2+d 2σ1―ε两层介质交界面处的净电荷量为:Q=Q 1― Q 2=, ⑥d 1σ2+d 2σ1评分标准:第 (1) 问 4 分 (可不标字母、箭头 ),第 (2)问 9 分,①②③式各 3 分,第 (3)问 7 分,④⑤式各 2 分,⑥式 3 分13. (20 分 )沿着电流 I 的方向液柱长度为 a ,该液柱受到的安培力大小为:F 安 =BIa, ①液柱两侧面受到的由压强差产生的压力大小为:F P =ρghad , ②水平方向上二力平衡,有:F 安 = F P , ③,由欧姆定律得:ε=I(R+r) , ④,式中 R= a , ⑤σbd由以上各式解得: σ=ρgha, ⑥b(B ε―r ρghd)评分标准:①式 4 分,②③④⑤式各 3 分,⑥式 4 分14. (20 分 )(1) 设气体在状态i(i=1 、 2 和 3)下的压强、体积和绝对温度分别为p i 、 V i 和 T i ,由题设条件有: c 1 222 22, ①, 1 3 22 3=T 3, ②p + c p =T c p + c pT 2p 3―T 3p 2 T 2p 3―T 3p 1T 2 p 32―T 3p 22 T 2 p 32―T 3p 12由此解得: c 1= p 22 p 3― p 3 2p 2= p 12 p 3― p 32p 1 , ③, c 1 = p 2p 3 2― p 22p 3 =p 1p 3 3― p 12 p 3 , ④(2) 利用气体状态方程pV=RT ,以及 V 1=R T 1, V 2=R T 2,V 3=R T 3, ⑤p 1 p 2 p 3 可将过程 2― 3 的方程为: p V 2― V 3V 2p 3― V 3p 2 , ⑥p 2― p 3=V+p 2―p 3可见,在 p ― V 图上过程 2― 3 是以 (p 2, V 2 )和 (p 3 , V 3 ) 为状态端点的直线段,过程3―1 是通过原点直线上的一段,因而描述其过程的方程为:p , ⑦,式中c 3 是一常量,利用气=c 3T体状态方程 pV=RT ,可将过程 3— 1 的方程改写为: V=R31, ⑧, 这是以 (p 3,V 1 和 (p 1,c 3V 1) 为状态端点的等容降压过程 .综上所述,过程 1―2― 3― 1 在 p ― V 图上是一直角三角形,如图所示 .1 3― p 1 2― V 1(3) 气体在一次循环过程中对外做的总功为: W= ― 2(p)( V) , ⑨利用气体状态方程 pV=RT 和⑤式,上式即1p 3 ―1) , ⑩W=― R(T 2― T 1)(2 p 1评分标准: 第 (1) 问 8 分,①②③④式各 2 分;第(2) 问 10 分,⑤⑥式各 2 分,过程 1― 2― 3―1 在 p ― V 上的图示正确得 6 分;第 (3) 问2 分,⑩式 2 分.15. (20 分 )以第二个 π介子的飞行方向为 x 轴,以事件平面为 x ―y 平面,设衰变前ω介子和衰变后三个 π介子的动量大小分别为 P ω、 P 1 、P 2 和 P 3,衰变前后粒子在x 和 y 方向的动量分别守恒,有: P ωcos φ= P 1cos θ1+P 2+ P 3cos θ2 ,? ,― P ωsin φ= ― P 1sin θ1+ P 3sin θ2 ,?衰变前后粒子的总能量守恒,有: m ω2ω21 )+( mc 2 2 2 3 ) ,? ,c +T =(mc +T +T )+( mc +T式中左端和右端三个括号内的分别是衰变前ω 介子的总能量 (静能和动能之和 ) 和衰变后三个 π介子的总能量,动能可由动量和静质量表示:T ω= p ω2,? , T 1=p 12,? , T 2= p 22 ,? , T 3 =p 32,?2m ω 2m 2m 2m分别由⑤⑥⑦式得 p 1 = 2mT 1 ,? , p 2 = 2mT 2 ,? , p 3 = 2mT 3 ,?联立①②⑧⑨⑩式得:φ=arctanT 1sin θ1― T 3sin θ2, ⑴T 1cos θ1+ T 2+T 3cos θ22T 1T 3cos(θ1+θ2)+ T 1 T 2cos θ1+ T 2T 3 cos θ2] , ⑵P ω =2m(T 1+T 2+T 3)+4m由③④式得:2 2 ― 2m ω 212 3 1 2 3 1 3 1 21 2 12 3 2m ωc+T )+4m[ T(3mc +T +T +T )+2m(T +T T cos(θ+θ)+ T T cos θ+T Tcos θ2]=0 , ⑶3 12(T 1+T 2+T 3 )+31 2 P ω2, ⑷其解为 m ω= m+[ m+ 2(T 1+T 2+T 3)] ―2c 22 2c2 2c式中 p ω2 由⑵式给出。