全国高中物理竞赛初赛试题及标准答案
第二十九届全国高中物理竞赛初赛试题及标准答案
第29届全国中学生物理竞赛预赛试卷本卷共16题,满分200分.一、选择题.本题共5小题,每小题6分.在每小题给出的4个选项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.下列说法中正确的是A.水在0℃时密度最大.B.一个绝热容器中盛有气体,假设把气体中分子速率很大的如大于v A的分子全部取走,则气体的温度会下降,此后气体中不再存在速率大于v A的分子.C.杜瓦瓶的器壁是由两层玻璃制成的,两层玻璃之间抽成真空,抽成真空的主要作用是既可降低热传导,又可降低热辐射.D.图示为一绝热容器,中间有一隔板,隔板左边盛有温度为T的理想气体,右边为真空.现抽掉隔板,则气体的最终温度仍为T.2.如图,一半径为R电荷量为Q的带电金属球,球心位置O固定,P为球外一点.几位同学在讨论P点的场强时,有下列一些说法,其中哪些说法是正确的?A.若P点无限靠近球表面,因为球表面带电,根据库仑定律可推知,P点的场强趋于无穷大.B.因为在球内场强处处为0,若P点无限靠近球表面,则P点的场强趋于0C.若Q不变,P点的位置也不变,而令R变小,则P点的场强不变.D.若保持Q不变,而令R变大,同时始终保持P点极靠近球表面处,则P点的场强不变.3.图中L为一薄凸透镜,ab为一发光圆面,二者共轴,S为与L平行放置的屏,已知这时ab可在屏上成清晰的像.现将透镜切除一半,只保留主轴以上的一半透镜,这时ab在S上的像A.尺寸不变,亮度不变.B.尺寸不变,亮度降低.C.只剩半个圆,亮度不变.D.只剩半个圆,亮度降低.4.一轻质弹簧,一端固定在墙上,另一端连一小物块,小物块放在摩擦系数为μ的水平面上,弹簧处在自然状态,小物块位于O处.现用手将小物块向右移到a处,然后从静止释放小物块,发现小物块开始向左移动.A.小物块可能停在O点.B.小物块停止以后所受的摩擦力必不为0C.小物块无论停在O点的左边还是右边,停前所受的摩擦力的方向和停后所受摩擦力的方向两者既可能相同,也可能相反.D.小物块在通过O点后向右运动直到最远处的过程中,速度的大小总是减小;小物块在由右边最远处回到O点的过程中,速度的大小总是增大.5.如图所示,一内壁光滑的圆锥面,轴线OO’是竖直的,顶点O在下方,锥角为2α,若有两个相同的小珠(均视为质点)在圆锥的内壁上沿不同的圆轨道运动,则有:A.它们的动能相同.B.它们运动的周期相同.C.锥壁对它们的支撑力相同.D.它们的动能与势能之比相同,设o点为势能零点.二、填空题和作图题.把答案填在题中的横线上或把图画在题中指定的地方.只要给出结果,不需写出求得结果的过程.6.(6分)铀238(92 U )是放射性元素,若衰变时依次放出α,β,β,α,α,α,α,α,β,β,α,β,β,α粒子,最终形成稳定的核Pb YX ,则其中 X = , Y = .7.(10分)在寒冷地区,为了防止汽车挡风玻璃窗结霜,可用通电电阻加热.图示为10根阻值皆为3Ω的电阻条,和一个内阻力0.5Ω的直流电源,现在要使整个电路中电阻条上消耗的功率最大,i .应选用根电阻条.ii .在图中画出电路连线.8.(10分)已知:光子有质量,但无静止质量,在重力场中也有重力势能.若从地面上某处将一束频率为ν的光射向其正上方相距为d 的空间站,d 远小于地球半径,令空间站接收到动光的频率为ν’,则差ν’-ν= ,已知地球表面附近的重力加速度为g .9.(10分)图中所示两物块叠放在一起,下面物块位于光滑水平桌面上,其质量为m ,上面物块的质量为M ,两物块之间的静摩擦系数为μ.现从静止出发对下面物块施以随时间t 变化的水平推力F =γt ,γ为一常量,则从力开始作用到两物块刚发生相对运动所经过的时间等于 ,此时物块的速度等于 .10.(16分)图中K 是密封在真空玻璃管内的金属电极,它受光照射后能释放出电子;W 是可以透光的窗口,光线通过它可照射到电极K 上;C 是密封在真空玻璃管内圆筒形的收集电极,它能收集K 所发出的光电子.R 是接在电池组E (电压足够高)两端的滑动变阻器,电极K 通过导线与串联电池组的中心端O 连接;G 是用于测量光电流的电流计.已知当某一特定频率的单色光通过窗口照射电极K 时,能产生光电子.当滑动变阻器的滑动接头处在某一点P 时,可以测到光电流,当滑动头向右移动时,G 的示数增大,使滑动头继续缓慢向右不断移动时,电流计G 的示数变化情况是: .当滑动变阻器的滑动接头从P 点缓慢向左不断移动时,电流计G 的示数变化情况是: .若测得用频率为ν1的单色光照射电极K 时的遏止电压为V 1,频率为ν2的单色光照射电极时的遏止电压为V 2,已知电子的电荷量为e ,则普朗克常量h = ,金属电极K 的逸出功W 0= .三、计算题.计算题的解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后结果的不能得分.有数值计算的,答案中必须明确写出数值和单位.11.(18分)如图所示,一根跨越一固定的水平光滑细杆的柔软、不可伸长的轻绳,两端各系一个质量相等的小球A 和B ,球A 刚好接触地面,球B 被拉到与细杆同样高度的水平位置,当球B 到细杆的距离为L 时,绳刚好拉直.在绳被拉直时释放球B ,使球B 从静止开始向下摆动.求球A 刚要离开地面时球B 与其初始位置的高度差.12.(20分)一段横截面积S =1.0mm 2的铜导线接入直流电路中,当流经该导线的电流I =1.0A 时,该段铜导线中自由电子定向运动的平均速度u 为多大?已知,每个铜原子有一个“自由电子”,每个电子的电荷量e = 1.6 ×10-19C ;铜的密度ρ=8.9g /cm 3,铜的摩尔质量μ=64g /mol .阿伏枷德罗常量N 0=6.02×1023mol -1.13.(20分)电荷量分别为q 和Q 的两个带异号电荷的小球A 和B (均可视为点电荷),质量分别为m 和M .初始时刻,B 的速度为0,A 在B 的右方,且与B 相距L 0,A 具有向右的初速度v 0,并还受到一向右的作用力f 使其保持匀速运动,某一时刻,两球之间可以达到一最大距离.i .求此最大距离.ii .求从开始到两球间距离达到最大的过程中f 所做的功.14.(20分)由双原子分子构成的气体,当温度升高时,一部分双原子分子会分解成两个单原子分子,温度越高,被分解的双原子分子的比例越大,于是整个气体可视为由单原子分子构成的气体与由双原子分子构成的气体的混合气体.这种混合气体的每一种成分气体都可视作理想气体.在体积V =0.045m 3的坚固的容器中,盛有一定质量的碘蒸气,现于不同温度下测得容器中蒸气的压强如下:试求温度分别为1073K 和1473K 时该碘蒸气中单原子分子碘蒸气的质量与碘的总质量之比值.已知碘蒸气的总质量与一个摩尔的双原子碘分子的质量相同,普适气体常量R =8.31J ·mol -1·K -115.(20分)图中L 是一根通电长直导线,导线中的电流为I .一电阻为R 、每边长为2a的导线方框,其中两条边与L 平行,可绕过其中心并与长直导线平行的轴线OO ’转动,轴线与长直导线相距b ,b >a ,初始时刻,导线框与直导线共面.现使线框以恒定的角速度ω转动,求线框中的感应电流的大小.不计导线框的自感.已知电流I 的长直导线在距导线r 处的磁感应强度大小为k rI ,其中k 为常量.16.(20分)一质量为m =3000kg 的人造卫星在离地面的高度为H =180 km 的高空绕地球作圆周运动,那里的重力加速度g =9.3m ·s -2.由于受到空气阻力的作用,在一年时间内,人造卫星的高度要下降△H=0.50km .已知物体在密度为ρ的流体中以速度v 运动时受到的阻力F 可表示为F =21ρACv 2,式中A 是物体的最大横截面积,C 是拖曳系数,与物体的形状有关.当卫星在高空中运行时,可以认为卫星的拖曳系数C =l ,取卫星的最大横截面积A =6.0m 2.已知地球的半径为R 0=6400km .试由以上数据估算卫星所在处的大气密度.。
高中物理竞赛试题卷子及答案
高中物理竞赛试题卷子及答案一、选择题(每题3分,共30分)1. 一个物体在水平面上以恒定速度运动,下列哪个因素不影响其运动状态?A. 物体的质量B. 物体所受的摩擦力C. 物体的初速度D. 物体的加速度2. 根据牛顿第二定律,下列哪个表述是错误的?A. 力是改变物体运动状态的原因B. 力的大小与物体的质量成正比C. 力的方向与加速度方向相同D. 力的作用效果与物体的质量无关3. 光在真空中的传播速度是多少?A. 2.99×10^8 m/sB. 3.00×10^8 m/sC. 3.01×10^8 m/sD. 2.98×10^8 m/s4. 以下哪个现象不属于电磁波的应用?A. 无线电广播B. 微波炉加热食物C. 光纤通信D. 声纳探测5. 根据能量守恒定律,下列哪个过程是不可能发生的?A. 完全非弹性碰撞B. 完全弹性碰撞C. 机械能转化为内能D. 内能完全转化为机械能6. 一个物体从静止开始自由下落,其下落的位移与时间的关系是?A. 位移与时间成正比B. 位移与时间的平方成正比C. 位移与时间的立方成正比D. 位移与时间的四次方成正比7. 电流通过导体时产生的热量与哪些因素有关?A. 电流的强度B. 导体的电阻C. 通电时间D. 所有上述因素8. 以下哪个是描述物体转动的物理量?A. 速度B. 加速度C. 角速度D. 位移9. 根据热力学第一定律,下列哪个表述是错误的?A. 能量不能被创造或消灭B. 能量可以从一种形式转化为另一种形式C. 能量的总量在封闭系统中保持不变D. 能量的转化和转移具有方向性10. 以下哪个现象是量子效应的体现?A. 光电效应B. 牛顿的万有引力定律C. 热力学第二定律D. 欧姆定律答案:1. D2. B3. B4. D5. D6. B7. D8. C9. D 10. A二、填空题(每题2分,共20分)11. 根据牛顿第三定律,作用力和反作用力_______、_______、_______。
高一物理竞赛初赛试题(含答案)
物理竞赛试题班级 姓名一、选择题1.如图所示,两根直木棍AB 和CD 相互平行,斜靠在竖直墙壁上固定不动,水泥圆筒从木棍的上部匀速滑下.若保持两木棍倾角不变,将两者间的距离稍增大后固定不动,且仍能将水泥圆筒放在两木棍的上部,则( )A .每根木棍对圆筒的支持力变大,摩擦力不变B .每根木棍对圆筒的支持力变大,摩擦力变大C .圆筒将静止在木棍上D .圆筒将沿木棍减速下滑答案:AC2.半圆柱体P 放在粗糙的水平地面上,其右端有一竖直放置的光滑档板MN 。
在半圆柱体P 和MN 之间放有一个光滑均匀的小圆柱体Q ,整个装置处于静止,如图所示是这个装置的截面图。
现使MN 保持竖直并且缓慢地向右平移,在Q 滑落到地面之前,发现P 始终保持静止。
则在此过程中,下列说法正确的是 ( )A .MN 对Q 的弹力逐渐减小B .地面对P 的支持力逐渐增大C .Q 所受的合力逐渐增大D .地面对P 的摩擦力逐渐增大 答案:D 3.杂技表演的安全网如图甲所示,网绳的结构为正方形格子,O 、a 、b 、c 、d ……等为网绳的结点,安全网水平张紧后,若质量为m恰好落在O 点上,该处下凹至最低点时,网绳dOe,bOg 均为120° 张角,如图乙所示,此时O 点受到向下的冲击力大小为2F ,则这时O 点周围每根网绳承受的张力大小为( )A .FB .2FC .mg F +2D .22mgF +答案:A4.如图所示,两个倾角相同的滑杆上分别套A 、B 两个圆环,两个圆环上分别用细线悬吊着两个物体C 、D ,当它们都沿滑杆向下滑动时,A 的悬线与杆垂直,B 的悬线竖直向下。
则下列说法中正确的是 ( ) A .A 环与滑杆无摩擦力 B .B 环与滑杆无摩擦力C .A 环做的是匀速运动D .B 环做的是匀加速运动 答案:A5、在光滑水平面上,有一个物体同时受到两个水平力F 1与F 2的作用,在第1s 内物体保持静止状态。
若力F 1、F 2随时间的变化如图所示。
全国物理竞赛初赛试题
选择题一个物体在光滑的水平面上做匀速直线运动,突然受到一个与运动方向相同的恒力作用,则物体之后将:A. 继续做匀速直线运动B. 做匀加速直线运动(正确答案)C. 做匀速圆周运动D. 做匀减速直线运动下列关于电场和磁场的说法中,正确的是:A. 电场线和磁感线都是闭合曲线B. 静电场的电场线从正电荷出发,终止于负电荷(正确答案)C. 磁场对放入其中的静止电荷有力的作用D. 电场和磁场都是客观存在的特殊物质形态,可以通过实验直接观测一束单色光从空气射入水中,下列说法正确的是:A. 光的频率变小B. 光的波长变长C. 光的传播速度变小(正确答案)D. 光的颜色发生变化在原子核物理中,下列说法正确的是:A. 原子核由质子和中子组成,质子和中子都是不可再分的最小粒子B. β衰变是原子核内的一个中子转变为一个质子和一个电子的过程(正确答案)C. γ射线是原子核外电子跃迁时释放的能量D. 裂变反应和聚变反应都是释放能量的过程,但裂变反应需要外部提供能量关于热力学定律,下列说法正确的是:A. 热量不能自发地从低温物体传向高温物体B. 一定质量的某种理想气体在等压膨胀过程中,内能增加(正确答案)C. 第二类永动机违反了能量守恒定律D. 绝对零度是可以达到的在电磁感应现象中,下列说法正确的是:A. 感应电流的磁场总是阻碍引起感应电流的磁通量的变化(正确答案)B. 感应电流的磁场总是与原磁场方向相反C. 导体在磁场中运动时,一定会产生感应电流D. 感应电动势的大小与线圈的匝数无关关于光的本性,下列说法正确的是:A. 光的干涉和衍射现象说明光具有波动性(正确答案)B. 光电效应现象说明光具有波动性C. 康普顿效应说明光只具有粒子性D. 光的波粒二象性是指光既是一种电磁波,又是一种实物粒子下列关于简谐振动的说法中,正确的是:A. 振动物体在平衡位置时,速度和加速度都达到最大B. 振动物体在最大位移处时,速度和加速度都为零C. 振动物体在向平衡位置运动的过程中,加速度逐渐减小(正确答案)D. 振动物体的周期与振幅有关在电路理论中,下列说法正确的是:A. 在串联电路中,各电阻上的电压之和等于总电压(正确答案)B. 在并联电路中,各电阻上的电流之和等于总电流通过任一电阻的电流C. 电阻的阻值与其两端的电压成正比,与通过它的电流成反比D. 无论串联还是并联,电路中任一电阻改变都会影响其他电阻上的电压或电流。
高中物理竞赛试卷
高中物理竞赛试卷一、选择题(每题5分,共40分)1. 一个小球从高处自由落下,忽略空气阻力,它在下落过程中()。
A. 速度越来越慢B. 速度越来越快,加速度不变C. 速度不变,加速度越来越大D. 速度和加速度都不变答案:B。
解析:根据自由落体运动的公式v = gt,g是重力加速度,是个定值,t不断增大,所以速度v越来越快,加速度不变。
2. 两个电荷之间的库仑力大小与()有关。
A. 电荷的电量和它们之间的距离B. 电荷的电量和它们的形状C. 电荷的形状和它们之间的距离D. 只和电荷的电量有关答案:A。
解析:库仑定律表明库仑力 F = kq1q2/r²,其中k是静电力常量,q1、q2是两个电荷的电量,r是它们之间的距离,所以与电量和距离有关。
3. 一个物体在光滑水平面上受到一个水平力的作用开始做匀加速直线运动,力突然撤去后()。
A. 物体立刻停止运动B. 物体继续做匀加速直线运动C. 物体做匀速直线运动D. 物体做减速直线运动直到停止答案:C。
解析:当力撤去后,物体在光滑水平面上不受力,根据牛顿第一定律,物体将保持原来的运动状态,也就是做匀速直线运动。
4. 关于电磁感应现象,下列说法正确的是()。
A. 只有闭合电路中的一部分导体在磁场中做切割磁感线运动时才能产生感应电流B. 只要导体在磁场中运动就会产生感应电流C. 只要有磁场就会产生感应电流D. 感应电流的方向只与磁场方向有关答案:A。
解析:电磁感应产生感应电流的条件是闭合电路中的一部分导体在磁场中做切割磁感线运动,B选项中导体如果平行于磁感线运动就不会产生感应电流,C选项只有磁场没有切割磁感线运动不会产生电流,D选项感应电流方向与磁场方向和导体运动方向都有关。
5. 以下关于机械能守恒的说法正确的是()。
A. 物体做匀速直线运动,机械能一定守恒B. 物体所受合外力为零,机械能一定守恒C. 只有重力和弹力做功时,机械能守恒D. 除重力和弹力外的力做功不为零,机械能一定不守恒答案:C。
物理竞赛高中试题及答案
物理竞赛高中试题及答案一、选择题(每题4分,共40分)1. 光在真空中的传播速度是()。
A. 3×10^8 m/sB. 2×10^8 m/sC. 3×10^5 m/sD. 2×10^5 m/s答案:A2. 根据牛顿第二定律,一个物体的加速度与作用力成正比,与物体的质量成反比。
如果一个物体的质量增加一倍,而作用力保持不变,那么它的加速度将()。
A. 增加一倍B. 减少一半C. 保持不变D. 增加两倍答案:B3. 一个物体从静止开始自由下落,不计空气阻力,其下落过程中的加速度是()。
A. 9.8 m/s²B. 10 m/s²C. 9.8 km/h²D. 10 km/h²答案:A4. 以下哪个选项是正确的能量守恒定律的表述?()A. 能量不能被创造或销毁,但可以改变形式。
B. 能量可以被创造或销毁,但不能改变形式。
C. 能量不能被创造或销毁,也不能改变形式。
D. 能量可以被创造或销毁,也可以改变形式。
答案:A5. 一个电子在电场中受到的电场力是()。
A. 与电子的电荷成正比B. 与电子的电荷成反比C. 与电场强度成正比D. 与电场强度成反比答案:A6. 根据热力学第一定律,在一个封闭系统中,能量()。
A. 可以被创造或销毁B. 可以被转移但不能被创造或销毁C. 既不能被创造也不能被销毁D. 可以被创造但不能被销毁答案:C7. 一个物体在水平面上以恒定速度运动,其动能()。
A. 保持不变B. 增加C. 减少D. 先增加后减少答案:A8. 光的折射定律表明,入射角和折射角之间的关系是()。
A. 入射角越大,折射角越大B. 入射角越大,折射角越小C. 入射角和折射角成正比D. 入射角和折射角成反比答案:A9. 根据电磁学理论,一个闭合电路中的感应电动势与()。
A. 磁通量的变化率成正比B. 磁通量的变化率成反比C. 磁通量的大小成正比D. 磁通量的大小成反比答案:A10. 一个物体在竖直方向上受到的重力是50 N,若要使其保持静止状态,需要施加的力是()。
全国高中物理竞赛题目附答案-全国高中物理竞赛
全国高中物理竞赛题目附答案-全国高中物理竞赛第一题问题:在一个实验室中,研究人员用一根长30厘米的细绳拧成了一个均匀的扁圆环,并使绳中没有节点。
现用一个透明的粗绳绑在扁圆环的一部分上,被实验者拉紧,如图所示。
当实验者放手,绳可以自由滑动,且没有外部摩擦阻力。
实验者拉绳的作用力为10牛,拉绳的方向竖直向上。
已知绳的线密度为ρ,绳的横截面积为A。
试分析并计算此时扁圆环上存在的应力分布情况。
答案:设扁圆环上任意一点的切线方向为x轴方向,半径方向为y轴方向。
由牛顿第一定律可知,扁圆环上各点的切线方向的合力为零。
此时,切线方向上的应力等于拉绳的作用力,即:σ = F/A,其中,σ为应力,F为拉绳的作用力,A为绳的横截面积。
第二题问题:一个弹簧的伸长量跟受力的大小有关。
现有一个弹簧,质量忽略不计,劲度系数为k。
已知一个物体以速度v撞击弹簧,撞击后弹簧发生最大压缩,此时物体速度为零。
试分析并计算弹簧的最大压缩量。
答案:由动量守恒定律可知,物体撞击弹簧后,合外力为零,故动量守恒。
物体的初动量为mv,撞击后为0。
弹簧的质心相对物体的速度为v,则根据动量守恒定律:mv + Mv = 0,其中,m为物体的质量,v为物体的速度,M为弹簧的质量,V为弹簧质心相对物体的速度。
由此可得:v = -(mv) / M,将此结果代入动能定理可得:kx² / 2 = (1/2)mv²,其中,x为弹簧的最大压缩量。
将上式中的v代入,整理得:kx² = Mv²,x = √(Mv² / k)。
第三题问题:一根长度为L的均质细棒,质量为M,直角弯曲成一个半径为R的圆环,如图所示。
试分析并计算细棒上各点受到的压力分布情况。
答案:设细棒上任意一点的切线方向为x轴方向,圆环上的圆周方向为y轴方向。
由牛顿第一定律可知,细棒上各点的切线方向的合力为零。
此时,切线方向上的压力等于使细棒弯曲的力,即由压力造成的。
2024年第41届全国中学生物理竞赛预赛试卷+答案解析
2024年第41届全国中学生物理竞赛预赛试卷一、单选题:本大题共3小题,共36分。
1.n mol理想气体经过一个缓慢的过程,从状态P沿抛物线到达状态Q,其体积绝对温度图如图所示。
已知此过程中当时,温度达到最大值其中和分别是状态P的压强和体积,R是普适气体常量。
若状态P和Q的温度和都等于,则该过程的压强图为()A. B.C. D.2.一个动能为的电子从很远处向一个固定的质子飞去。
电子接近质子时被俘获,同时放出一个光子,电子和质子形成一个处于基态的静止氢原子。
已知氢原子的基态能量为,光在真空中的速度为,电子电量的大小和普朗克常量分别为和。
所放出的光子的波长最接近的值是()A.79nmB.91nmC.107nmD.620nm3.某人心跳为60次每分钟,每次心跳心脏泵出60mL血液,泵出血液的血压为100mmHg。
已知。
该人的心脏向外泵血输出的机械功率最接近的值为()A. B. C. D.二、多选题:本大题共2小题,共24分。
4.一边长为a的正方形处于水平面上,其四个顶点各固定一个正电子。
一个电子在该正方形的中心点O的正上方、P两点的距离远小于处自静止释放。
不考虑空气阻力、重力、电磁辐射、量子效应和其他任何扰动。
该电子()A.会运动到无穷远处B.与正电子构成的系统的能量守恒C.会在过O点的竖直线上做周期运动D.会在正方形上方振荡5.如图,两竖直墙面的间距为l,一个质量为m、边长为d的正方形木块被一轻直弹簧顶在左侧墙面上,弹簧右端固定在右侧墙面上,且弹簧与墙面垂直。
已知木块与墙面之间的静摩擦因数为,弹簧原长为l,劲度系数为k,重力加速度大小为g。
下列说法正确的是()A.如果,则木块不处于平衡状态B.如果,则墙面对木块的正压力为C.如果,则木块受到的静摩擦力大小为D.为使木块在此位置保持平衡状态,k最小为三、填空题:本大题共5小题,共100分。
6.时间、长度、质量、电荷的单位通常和单位制有关。
量子论的提出者普朗克发现利用真空中的光速c、万有引力常量G、普朗克常量h、真空介电常量可以组合出与单位制无关的质量单位、长度单位、时间单位、电荷单位,这些量分别称为普朗克质量、普朗克长度、普朗克时间、普朗克电量。
全国高中物理竞赛试题
全国高中物理竞赛试题一、选择题1. 关于牛顿第二定律,下列说法正确的是:A. 物体加速度与作用力成正比,与物体质量成反比。
B. 物体所受合力等于物体质量与加速度的乘积。
C. 物体在任何情况下都受到一个恒定的重力。
D. 牛顿第二定律只适用于宏观低速物体。
2. 一个质量为0.5kg的物体,受到一个水平向右的力F=10N,若摩擦力为2N,求物体的加速度。
A. 4 m/s²B. 6 m/s²C. 8 m/s²D. 10 m/s²3. 一个弹簧振子的周期为2秒,振幅为0.1m,求弹簧振子的频率和振幅。
A. 频率:1Hz,振幅:0.1mB. 频率:0.5Hz,振幅:0.1mC. 频率:1Hz,振幅:0.2mD. 频率:0.5Hz,振幅:0.2m4. 关于光的折射定律,下列说法正确的是:A. 入射光线、折射光线和法线都在同一平面上。
B. 入射角和折射角随光的波长变化而变化。
C. 折射率与光的频率成反比。
D. 折射定律只适用于单色光。
5. 一个电路由一个电阻R=10Ω和一个电感L=0.1H串联,通过一个频率为50Hz的交流电源,电源电压为220V。
若电感的感抗XL=2Ω,求电路的总阻抗。
A. 12ΩB. 10ΩC. 8ΩD. 6Ω二、填空题6. 一个质量为2kg的物体,受到一个力F=20N,求物体的加速度________ m/s²。
7. 一个电路中,电阻R1=5Ω,电阻R2=10Ω,并联后接在一个电压为12V的电源上,求通过R1的电流________ A,通过R2的电流________ A。
8. 一束光从空气进入水中,入射角为30°,水的折射率为1.33,求折射角________°。
9. 一个简单的单摆,摆长L=1m,摆幅θ=5°,重力加速度g=9.8m/s²,求单摆的周期________ s。
三、计算题10. 一个质量为0.3kg的物体,以初速度10m/s沿水平面运动,受到一个与其运动方向相反的阻力,阻力大小为物体速度的两倍,求物体在水平面上运动4秒后的速度。
高二物理竞赛(初赛)试题与答案
高二物理竞赛(初赛)一 单选题(每小题3分,共30分)1 一重物,在大风中从某一高度由静止落下,若大风对物体产生一个水平恒力,则物体将做(A )平抛运动,(B )匀变速直线运动,(C )自由落体运动,(D )斜抛运动。
( )2 体积是0.05 m 3的救生圈重100 N ,体重为400 N 的人使用这个救生圈在水中时(A )人和救生圈漂浮在水面上,(B )人和救生圈悬浮在水中,(C )人和救生圈下沉到水底,(D )因为不知道人的体积和密度无法判断。
( )3 如图所示,Q 1.Q 2为两个被固定的正负点电荷,在它们的连线的延长线上的a 点,电场强度恰好为零,现把另一正电荷q 从b 点移到c 点,该电荷的电势能将(A )不断增大,(B )不断减少,(C )先增大后减少,(D )先减少后增大。
( ) 4 光滑绝缘水平桌面上有一矩形线圈abcd ,其ab 边进入一个有明显边界的匀强磁场前作匀速运动,如图,当线圈全部进入磁场区域时,其动能恰好等于ab 边进入磁场前时的一半,则该线圈(A )cd 边刚好离开磁场时恰好停止运动,(B )停止运动时,一部分在磁场中,一部分在磁场外,(C )cd 边离开磁场后,仍能继续运动,(D )上述三种判断都有可能。
( )5 在X 轴上有两个频率相同,振动方向相同且振幅大小相同的波源,坐标分别为(-1,0)和(6,0),由两波源产生的两列简谐横波向各个方向传播,其波长均为2 m ,则在Y 轴上(从-∞,∞)始终不振动的介质质点的个数为(A )0个,(B )5个,(C )7个,(D )无数多个。
( )6 四个相同的灯泡如图连接在电路中,调节变阻器R 1和R 2,使四个灯泡都正常发光,设此时R 1和R 2消耗的功率分别为P 1和P 2,则有(A )P 1>2 P 2,(B) P 1=2 P 2,(C )2 P 2>P 1>P 2 , (D)P 1 < P 2。
高一物理竞赛初赛试题(含答案) .doc
物理竞赛试题班级_________ 姓名_____________一、选择题1. 如下图,两根直木棍AB和CD相互平行,斜靠在竖直墙壁上固定不动,水泥圆筒从木棍的上筛匀速滑下.假设保持两木根倾角不变.将两者间的距离稍增大后固定不动.且仍能将水泥跚筒放在西木棍的上部.那么()A. 每根木根对圆筒的支持力变大,摩擦力不变B. 每根木根对圆筒的支持力变大,糜擦力变大C. 圆筒将静止在木根上D.圆筒将沿木根减速下滑答案:AC2. 半圆柱体P放在粗槌的水平地面上,其右端有一联直放置的光滑档板MN。
在半圆柱体p和MNZ间放有一个光滑均匀的小贸柱体a整个装宣处丁•静止,如下图是这个装置的截面图•现使MN保持竖直并且缓慢地向右平移.在Q滑落到地面之前. 发现P始终保持部止.那么在此过程中,以下说法正确的选项是()A. MN对Q的弹力逐渐减小B.地面对P的支持力逐渐增大C. Q所受的合力逐渐增大 D.地面对P的摩擦力逐渐增大答案:D3. 杂技表演的平安网如图甲所示,网绳的结构为正方形格子,0、a. b、c、d……等为网绳的结点,平安网水平张紧后,假设质教为m的运发动从高处落下,并恰好落在0点上,该处下凹至最低贞时,网绳dOe, b0&均为120。
张角,如图乙所示,此时0 点受到向下的冲击力大小为2F,那么这时。
点周围何根网绳承受的张力大小为< )A. FB.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
答案:A•1.如下图,两个倾角相I可的滑杆上分别套A、B两个圆环,两个圆环上分别用细线悬吊着两个物体C、D,当它们都沿滑杆向下滑动时. A的悬线与杆垂直. B的恩线竖宜向下。
那么卜•列说法中正确的选项是()A. A环与滑杆无摩擦力B. B环与滑杆无糜擦力C. A环做的是匀速运动D. B环做的是匀加速运动答案:A5、在光滑水平面上,有一个物体同时受到两个水平力F】与入的作用,在第15内物体保持伸止状态&假设力尸】、七随时间的变化如下图。
第23届全国中学生高中物理竞赛初赛试题及参考解答
第二十三届全国中学生物理竞赛初赛试题及答案本卷共本题,满分200分一、(20分,每小题10分)1.如图所示,弹簧S1的上端固定在天花板上,下端连一小球A,球A与球B之间用线相连.球B与球C之间用弹簧S2相连.A、B、C的质量分别为m A、m B、m C,弹簧与线的质量均可不计.开始时它们都处在静止状态.现将A、B间的线突然剪断,求线刚剪断时A、B、C的加速度.2.两个相同的条形磁铁,放在平板AB上,磁铁的N、S极如图所示.开始时平板及磁铁皆处于水平位置,且静止不动.(i)现将AB突然竖直向下平移(磁铁与平板间始终相互接触),并使之停在A′B′处,结果发现两个条形磁铁碰在一起.(ii)如果将AB从原位置突然竖直向上平移,并使之停在A″B″位置处,结果发现两条形磁铁也碰在一起.试定性地解释上述现象.二、(20分,第1小题12分,第2小题8分)1.老爷爷的眼睛是老花眼.(i)一物体P放在明视距离处,老爷爷看不清楚.试在示意图1中画出此时P通过眼睛成像的光路示意图.(ii)戴了一副300度的老花镜后,老爷爷就能看清楚放在明视距离处的物体P,试在示意图2中画出P通过老花镜和眼睛成像的光路示意图.(iii)300度的老花镜的焦距f=____m.2.有两个凸透镜,它们的焦距分别为f1和f2,还有两个凹透镜,它们的焦距分别为f3和f4.已知,f1>f2>|f3|>|f4|.如果要从这四个透镜中选取两个透镜,组成一架最简单的单筒望远镜,要求能看到放大倍数尽可能大的正立的像,则应选焦距为____的透镜作为物镜,应选焦距为____的透镜作为目镜.三、(20分,第1小题12分,第2小题8分)1.如图所示,电荷量为q1的正点电荷固定在坐标原点O处,电荷量为q2的正点电荷固定在x轴上,两电荷相距l.已知q2=2q1.(i)求在x轴上场强为零的P点的坐标.(ii)若把一电荷量为q0的点电荷放在P点,试讨论它的稳定性(只考虑q0被限制在沿x轴运动和被限制在沿垂直于x轴方向运动这两种情况).2.有一静电场,其电势U随坐标x的改变而变化,变化的图线如图1所示.试在图2中画出该静电场的场强E随x变化的图线(设场强沿x轴正方向时取正值,场强沿x轴负方向时取负值)四、(20分)一根长为L(以厘米为单位)的粗细均匀的、可弯曲的细管,一端封闭,一端开口,处在大气中,大气的压强与H厘米高的水银柱产生的压强相等,已知管长L>H.现把细管弯成L形,如图所示.假定细管被弯曲时,管长和管的内径都不发生变化.可以把水银从管口徐徐注入细管而不让细管中的气体泄出.当细管弯成L形时,以l表示其竖直段的长度,问l取值满足什么条件时,注入细管的水银量为最大值?给出你的论证并求出水银量的最大值(用水银柱的长度表示).五、(20分)一对正、负电子可形成一种寿命比较短的称为电子偶素的新粒子.电子偶素中的正电子与负电子都以速率v绕它们连线的中点做圆周运动.假定玻尔关于氢原子的理论可用于电子偶素,电子的质量m、速率v和正、负电子间的距离r的乘积也满足量子化条件.即式中n称为量子数,可取整数值1,2,3,…;h为普朗克常量.试求电子偶素处在各定态时的r和能量以及第一激发态与基态能量之差.六、(25分)如图所示,两个金属轮A1、A2,可绕通过各自中心并与轮面垂直的固定的光滑金属轴O1和O2转动,O1和O2相互平行,水平放置.每个金属轮由四根金属辐条和金属环组成,A1轮的辐条长为a1、电阻为R1,A2轮的辐条长为a2、电阻为R2,连接辐条的金属环的宽度与电阻都可以忽略.半径为a0的绝缘圆盘D与A1同轴且固连在一起.一轻细绳的一端固定在D边缘上的某点,绳在D上绕足够匝数后,悬挂一质量为m的重物P.当P下落时,通过细绳带动D 和A1绕O1轴转动.转动过程中,A1、A2保持接触,无相对滑动;两轮与各自细轴之间保持良好的电接触;两细轴通过导线与一阻值为R的电阻相连.除R和A1、A2两轮中辐条的电阻外,所有金属的电阻都不计.整个装置处在磁感应强度为B的匀强磁场中,磁场方向与转轴平行.现将P释放,试求P匀速下落时的速度.七、(25分)图示为一固定不动的绝缘的圆筒形容器的横截面,其半径为R,圆筒的轴线在O处.圆筒内有匀强磁场,磁场方向与圆筒的轴线平行,磁感应强度为B.筒壁的H处开有小孔,整个装置处在真空中.现有一质量为m、电荷量为q的带电粒子P以某一初速度沿筒的半径方向从小孔射入圆筒,经与筒壁碰撞后又从小孔射出圆筒.设:筒壁是光滑的,P与筒壁碰撞是弹性的,P与筒壁碰撞时其电荷量是不变的.若要使P与筒壁碰撞的次数最少,问:1.P的速率应为多少?2.P从进入圆筒到射出圆筒经历的时间为多少?八、(25分)图中正方形ABCD是水平放置的固定梁的横截面,AB是水平的,截面的边长都是l.一根长为2l的柔软的轻细绳,一端固定在A点,另一端系一质量为m的小球,初始时,手持小球,将绳拉直,绕过B点使小球处于C点.现给小球一竖直向下的初速度v0,使小球与CB边无接触地向下运动,当,分别取下列两值时,小球将打到梁上的何处?1.2.设绳的伸长量可不计而且绳是非弹性的.九、(25分)从赤道上的C点发射洲际导弹,使之精确地击中北极点N,要求发射所用的能量最少.假定地球是一质量均匀分布的半径为R的球体,R=6400km.已知质量为m的物体在地球引力作用下作椭圆运动时,其能量E与椭圆半长轴a的关系为式中M为地球质量,G为引力常量.1.假定地球没有自转,求最小发射速度的大小和方向(用速度方向与从地心O到发射点C的连线之间的夹角表示).2.若考虑地球的自转,则最小发射速度的大小为多少?3.试导出.参考答案及评分标准一、参考解答:1.线剪断前,整个系统处于平衡状态.此时弹簧S1的弹力F1=(m A+m B+m C)g (1) 弹簧S2的弹力F2=m C g (2)在线刚被剪断的时刻,各球尚未发生位移,弹簧的长度尚无变化,故F1、F2的大小尚未变化,但线的拉力消失.设此时球A、B、C的加速度的大小分别为a A、a B、a C,则有F1-m A g=m A a A(3)F2+m B g=m B a B(4)F2-m C g=m C a C(5)解以上有关各式得,方向竖直向上(6),方向竖直向下(7)a C=0 (8)2.开始时,磁铁静止不动,表明每一条磁铁受到另一条磁铁的磁力与它受到板的静摩擦力平衡.(i)从板突然竖直向下平移到停下,板和磁铁的运动经历了两个阶段.起初,板向下加速移动,板与磁铁有脱离接触的趋势,磁铁对板的正压力减小,并跟随板一起作加速度方向向下、速度向下的运动.在这过程中,由于磁铁对板的正压力减小,最大静摩擦力亦减小.向下的加速度愈大,磁铁的正压力愈小,最大静摩擦力也愈小.当板的加速度大到某一数值时,最大静摩擦力减小到小于磁力,于是磁铁沿着平板相向运动并吸在一起.接着,磁铁和板一起作加速度方向向上、速度向下的运动,直到停在A′B′处.在这过程中,磁铁对板的正压力增大,最大静摩擦力亦增大,因两磁铁已碰在一起,磁力、接触处出现的弹力和可能存在的静摩擦力总是平衡的,两条磁铁吸在一起的状态不再改变.(ii)从板突然竖直向上平移到停下,板和磁铁的运动也经历两个阶.起初,板和磁铁一起作加速度方向向上、速度向上的运动,在这过程中,正压力增大,最大静摩擦力亦增大,作用于每个磁铁的磁力与静摩擦力始终保持平衡,磁铁在水平方向不发生运动.接着,磁铁和板一起作加速度力减小,向下的加速度愈大,磁铁的正压力愈小,最大静摩擦力也愈小.当板的加速度大到某一数值时,最大静摩擦力减小到小于磁力,于是磁铁沿着平板相向运动并吸在一起.评分标准:(本题20分)1.10分.(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)式各1分,a A、a B的方向各1分.2.10分.(i)5分,(ii)5分.(必须正确说出两条形磁铁能吸引在一起的理由,才给这5分,否则不给分).二、参考答案1.(iii)2.f1,f4.评分标准:(本题20分)1.12分.(i)4分,(ii)4分,(iii)4分.2.8分.两个空格都填对,才给这8分,否则0分.三、参考解答:1.(i)通过对点电荷场强方向的分析,场强为零的P点只可能位于两点电荷之间.设P点的坐标为x0,则有(1)已知q2=2q1(2)由(1)、(2)两式解得(3)(ii)先考察点电荷q0被限制在沿x轴运动的情况.q1、q2两点电荷在P点处产生的场强的大小分别为方向沿x轴正方向方向沿x轴负方向由于处合场强的方向沿x轴的正方向,即指向P点.由以上的讨论可知,在x轴上,在P点的两侧,点电荷q1和q2产生的电场的合场强的方向都指向P点,带正电的点电荷在P点附近受到的电场力都指向P点,所以当q0>0时,P点是q0的稳定平衡位置.带负电的点电荷在P点附近受到的电场力都背离P点,所以当q0<0时,P点是q0的不稳定平衡位置.再考虑q0被限制在沿垂直于x轴的方向运动的情况.沿垂直于x轴的方向,在P点两侧附近,点电荷q1和q2产生的电场的合场强沿垂直x轴分量的方向都背离P点,因而带正电的点电荷在P点附近受到沿垂直x轴的分量的电场力都背离P点.所以,当q0>0时,P点是q0的不稳定平衡位置.带负电的点电荷在P点附近受到的电场力都指向P点,所以当q0<0时,P点是q0的稳定平衡位置.2.评分标准:(本题20分)1.12分.(i)2分.(ii)当q0被限制在沿x轴方向运动时,正确论证q0>0,P点是q0的稳定平衡位置,占3分;正确论证q0<0,P点是q0的不稳定平衡位置,占3分.(未列公式,定性分析正确的同样给分)当q0被限制在垂直于x轴的方向运动时,正确论证q0>0,P点是q0的不稳定平衡位置,占2分;正确论证q0<0,P点是q0的稳定平衡位置,占2分.2.8分.纵坐标标的数值或图线有错的都给0分.纵坐标的数值.图线与参考解答不同,正确的同样给分.四、参考解答:开始时竖直细管内空气柱长度为L,压强为H(以cmHg为单位),注入少量水银后,气柱将因水银柱压力而缩短.当管中水银柱长度为x时,管内空气压强p=(H+x),根据玻意耳定律,此时空气柱长度(1)空气柱上表面与管口的距离(2)开始时x很小,由于L>H,故即水银柱上表面低于管口,可继续注入水银,直至d=x(即水银柱上表面与管口相平)时为止.何时水银柱表面与管口相平,可分下面两种情况讨论.1.水银柱表面与管口相平时,水银柱未进入水平管此时水银柱的长度x≤l,由玻意耳定律有(H+x)(L-x)=HL (3)由(3)式可得x=L-H (4)由此可知,当l≥L-H时,注入的水银柱的长度x的最大值x max=L-H (5)2.水银柱表面与管口相平时,一部分水银进入水平管此时注入水银柱的长度x>l,由玻意耳定律有(H+l)(L-x)=HL (6)(7)(8)由(8)式得l<L-H,或L>H+l (9)(10)即当l<L-H时,注入水银柱的最大长度x<x max.由上讨论表明,当l≥L-H时,可注入的水银量为最大,这时水银柱的长度为x max,即(5)式.评分标准:(本题20分)正确论证l≥L-H时,可注入的水银量最大,占13分.求出最大水银量占7分.若论证的方法与参考解答不同,只要正确,同样给分.五、参考解答:正、负电子绕它们连线的中点作半径为的圆周运动,电子的电荷量为e,正、负电子间的库仑力是电子作圆周运动所需的向心力,即(1)正电子、负电子的动能分别为E k+和E k-,有(2)正、负电子间相互作用的势能(3)电子偶素的总能量E=E k++E k-+E p(4)由(1)、(2)、(3)、(4)各式得(5)根据量子化条件,n=1,2,3, (6)(6)式表明,r与量子数n有关.由(1)和(6)式得与量子数n对应的定态r为n=1,2,3, (7)代入(5)式得与量子数n对应的定态的E值为n=1,2,3, (8)n=1时,电子偶素的能量最小,对应于基态.基态的能量为(9)n=2是第一激发态,与基态的能量差(10)评分标准:(本题20分)(2)式2分、(5)式4分,(7)式、(8)式各5分,(10)式4分.六、参考解答:P被释放后,细绳的张力对D产生机械力矩,带动D和A1作逆时针的加速转动.通过两个轮子之间无相对运动的接触,A1带动A2作顺时针的加速转动.由于两个轮子的辐条切割磁场线,所以在A1产生由周边沿辐条指向轴的电动势,在A2产生由轴沿辐条指向周边的电动势,经电阻R构成闭合电路.A1、A2中各辐条上流有沿电动势方向的电流,在磁场中辐条受到安培力.不难看出,安培力产生的电磁力矩是阻力矩,使A1、A2加速转动的势头减缓.A1、A2从起始的静止状态逐渐加速转动,电流随之逐渐增大,电磁阻力矩亦逐渐增大,直至电磁阻力矩与机械力矩相等,D、A1和A2停止作加速转动,均作匀角速转动,此时P匀速下落,设其速度为v,则A1的角速度(1)A1带动A2转动,A2的角速度ω2与A1的角速度ω1之间的关系为ω1a1=ω2a2(2)A1中每根辐条产生的感应电动势均为(3)轴与轮边之间的电动势就是A1中四条辐条电动势的并联,其数值见(3)式.同理,A2中,轴与轮边之间的电动势就是A2中四条辐条电动势的并联,其数值为(4)A1中,每根辐条的电阻为R1,轴与轮功之间的电阻是A1中四条辐条电阻的并联,其数值为(5)A2中,每根辐条的电阻为R2,轴与轮功之间的电阻是A2中四条辐条电阻的并联,其数值为(6)A1轮、A2轮和电阻R构成串联回路,其中的电流为(7)以(1)至(6)式代入(7)式,得(8)当P匀速下降时,对整个系统来说,重力的功率等于所有电阻的焦耳热功率之和,即(9)以(8)式代入(9)式得(10)评分标准:(本题25分)(1)、(2)式各2分,(3)、(4)式各3分,(5)、(6)、(7)式各2分,(9)式6分,(10)式3分.七、参考解答:1.如图1所示,设筒内磁场的方向垂直纸面指向纸外,带电粒子P带正电,其速率为v.P从小孔射入圆筒中因受到磁场的作用力而偏离入射方向,若与筒壁只发生一次碰撞,是不可能从小孔射出圆筒的.但与筒壁碰撞两次,它就有可能从小孔射出.在此情形中,P在筒内的路径由三段等长、等半径的圆弧HM、MN和NH组成.现考察其中一段圆弧MN,如图2所示.由于P沿筒的半径方向入射,OM和ON均与轨道相切,两者的夹角(1)设圆弧的圆半径为r,则有(2)圆弧对轨道圆心O′所张的圆心角(3)由几何关系得(4)解(2)、(3)、(4)式得(5)2.P由小孔射入到第一次与筒壁碰撞所通过的路径为s=βr (6)经历时间为(7)P从射入小孔到射出小孔经历的时间为t=3t1(8)由以上有关各式得(9)评分标准:(本题25分)1.17分.(1)、(2)、(3)、(4)式各3分,(5)式5分.2.8分.(6)、(7)、(8)、(9)式各2分.八、参考解答:小球获得沿竖直向下的初速度v0后,由于细绳处于松弛状态,故从C点开始,小球沿竖直方向作初速度为v0、加速度为g的匀加速直线运动.当小球运动到图1中的M点时,绳刚被拉直,匀加速直线运动终止,此时绳与竖直方向的夹角为α=30°.在这过程中,小球下落的距离(1)细绳刚拉直时小球的速度v1满足下式:(2)在细绳拉紧的瞬间,由于绳的伸长量可不计而且绳是非弹性的,故小球沿细绳方向的分速度v1cosα变为零,而与绳垂直的分速度保持不变,以后小球将从M点开始以初速度(3)在竖直平面内作圆周运动,圆周的半径为2l,圆心位于A点,如图1所示.由(1)、(2)、(3)式得(4)当小球沿圆周运动到图中的N点时,其速度为v,细绳与水平方向的夹角为θ,由能量关系有(5)用F T表示绳对小球的拉力,有(6)1.设在θ=θ1时(见图2),绳开始松弛,F T=0,小球的速度v=u1.以此代入(5)、(6)两式得(7)(8)由(4)、(7)、(8)式和题设v0的数值可求得θ1=45° (9)(10)即在θ1=45°时,绳开始松弛.以N1表示此时小球在圆周上的位置,此后,小球将脱离圆轨道从N1处以大小为u1,方向与水平方向成45°角的初速度作斜抛运动以N1点为坐标原点,建立直角坐标系N1xy,x轴水平向右,y轴竖直向上.若以小球从N1处抛出的时刻作为计时起点,小球在时刻t的坐标分别为(11)(12)由(11)、(12)式,注意到(10)式,可得小球的轨道方程:(13)AD面的横坐标为(14)由(13)、(14)式可得小球通过AD所在竖直平面的纵坐标y=0 (15)由此可见小球将在D点上方越过,然后打到DC边上,DC边的纵坐标为(16)把(16)式代入(13)式,解得小球与DC边撞击点的横坐标x=1.75l (17)撞击点与D点的距离为△l=x-2lcos45°=0.35l(18)2.设在θ=θ2时,绳松弛,F T=0,小球的速度v=u2,以此代替(5)、(6)式中的θ1、u1,得(19)(20)以代入(4)式,与(19)、(20)式联立,可解得θ2=90°(21)(22)(22)式表示小球到达圆周的最高点处时,绳中张力为0,随后绳子被拉紧,球速增大,绳中的拉力不断增加,拉力和重力沿绳子的分力之和等于小球沿圆周运动所需的向心力,小球将绕以D点为圆心,l为半径的圆周打到梁上的C点.评分标准:(本题25分)(3)式2分,(5)、(6)式各1分,(9)、(10)式各3分,得出小球不可能打在AD边上,给3分.得出小球能打在DC边上,给2分,正确求出小球打在DC边上的位置给2分,求出(21)、(22)式各占3分,得出小球能打在C点,再给2分.如果学生直接从抛物线方程和y=-(2lsin45°-l)=-(-1)l求出x=1.75l,同样给分.不必证明不能撞击在AD边上.九、参考解答:1.这是一个大尺度运动,导弹发射后,在地球引力作用下将沿椭圆轨道运动.如果导弹能打到N点,则此椭圆一定位于过地心O、北极点N和赤道上的发射点C组成的平面(此平面是C点所在的子午面)内,因此导弹的发射速度(初速度v)必须也在此平面内,地心O是椭圆的一个焦点.根据对称性,注意到椭圆上的C、N两点到焦点O的距离相等,故所考察椭圆的长轴是过O点垂直CN的直线,即图上的直线AB,椭圆的另一焦点必在AB上.已知质量为m的物体在质量为M的地球的引力作用下作椭圆运动时,物体和地球构成的系统的能量E(无穷远作为引力势能的零点)与椭圆半长轴a的关系为(1)要求发射的能量最少,即要求椭圆的半长轴a最短.根据椭圆的几何性质可知,椭圆的两焦点到椭圆上任一点的距离之和为2a,现C点到一个焦点O的距离是定值,等于地球的半径R,只要位于长轴上的另一焦点到C的距离最小,该椭圆的半长轴就最小.显然,当另一焦点位于C到AB的垂线的垂足处时,C到该焦点的距离必最小.由几何关系可知(2)设发射时导弹的速度为v,则有(3)解(1)、(2)、(3)式得(4)因(5)比较(4)、(5)两式得(6)代入有关数据得v=7.2km/s (7)速度的方向在C点与椭圆轨道相切.根据解析几何知识,过椭圆上一点的切线的垂直线,平分两焦点到该点连线的夹角∠OCP.从图中可看出,速度方向与OC的夹角(8)2.由于地球绕通过ON的轴自转,在赤道上C点相对地心的速度为(9)式中R是地球的半径,T为地球自转的周期,T=24×3600s=86400s,故v C=0.46km/s(10)C点速度的方向垂直于子午面(图中纸面).位于赤道上C点的导弹发射前也有与子午面垂直的速度v C,为使导弹相对于地心速度位于子午面内,且满足(7)、(8)两式的要求,导弹相对于地面(C点)的发射速度应有一大小等于v C、方向与v C相反的分速度,以使导弹在此方向相对于地心的速度为零,导弹的速度的大小为(11)代入有关数据得v′=7.4km/s(12)它在赤道面内的分速度与v C相反,它在子午面内的分速度满足(7)、(8)两式.3.质量为m的质点在地球引力作用下的运动服从机械能守恒定律和开普勒定律,故对于近地点和远地点有下列关系式(13)(14)式中v1、v2分别为物体在远地点和近地点的速度,r1、r2为远地点和近地点到地心的距离.将(14)式中的v1代入(13)式,经整理得(15)注意到r1+r2=2a (16)得(17)因(18)由(16)、(17)、(18)式得(19)评分标准:(本题25分)1.14分.(2)式6分,(3)式2分,(6)、(7)式共4分,(8)式2分.2.6分.(11)式4分,(12)式2分.3.5分.(13)、(14)式各1分,(19)式3分.。
第 41 届全国中学生物理竞赛预赛试题解答及评分标准2024
第41届全国中学生物理竞赛预赛试题解答及评分标准(2024年9月7日9:00-12:00)一. 选择题(本题60分,含5小题,每小题12 分。
在每小题给出的4个选项中,有的小题只有一项符合题意,有的小题有多项符合题意。
将符合题意的选项前面的英文字母写在答题纸对应小题后面的括号内。
全部选对的给 12分,选对但不全的给6分,有选错或不答的给0分。
)1.B C2. D3. A4. BD5. B二. 填空题(本题100 分,每小题20分,每空10分。
请把答案填在答题纸对应题号后面的横线上。
只需 给出结果,不需写出求得结果的过程。
6.ch G ,0ch ε 7. 0.875,0.125 8. 2g τ,竖直向上 9. 153.310⨯ Hz ,103.710⨯Hz 10.073150p S ,0p S N μ≥三. 计算题(本题 240分,共6小题,每小题40 分。
计算题的解答应写出必要的文字说明、方程式和重 要的演算步骤, 只写出最后结果的不能给分。
有数值计算的, 答案中必须明确写出数值,有单位的必须写出 单位。
) 11. (1)(1.1)如题解图11a ,由牛顿第二定律知,硬币受到的静摩擦力 f ma =①由力平衡条件知,硬币受到的支撑力 N mg = ② 以硬币重心为支点,由力矩平衡条件有fh Nd = ③由①②③式得d a g h= ④ (1.2)静摩擦力大小满足f N μ≤ ⑤由①②⑤式得a g μ≤ ⑥ 可见加速度超过g μ时硬币将滑动。
(2)(2.1)如题解图11b ,设高铁在圆轨道上转动的角速度为ω,以硬币和桌面的接触点为支点,由力矩平衡条件得2(sin cos )(cos sin )mg h d m R h d θθωθθ+=− ⑦mgN fa 题解图11a题解图11b由⑦式得cos sin 0h d θθ−>因此ω=⑧(2.2)仍如题解图11b ,设硬币受到桌面的支撑力为N ',静摩擦力为f '(解题图中只画了静摩擦力斜向上的情形)。
全国高中物理竞赛初赛试题及标准答案
7.(10分)在寒冷地区,为了防止汽车挡风玻璃窗结霜,可用通电电阻加热.图示为10根阻值皆为3Ω的电阻条,和一个内阻力0.5Ω的直流电源,现在要使整个电路中电阻条上消耗的功率最大,
i.应选用根电阻条.
ii.在图中画出电路连线.
8.(10分)已知:光子有质量,但无静止质量,在重力场中也有重力势能.若从地面上某处将一束频率为ν的光射向其正上方相距为d的空间站,d远小于地球半径,令空间站接收到动光的频率为ν’,则差ν’-ν=,已知地球表面附近的重力加速度为g.
14.(20分)由双原子分子构成的气体,当温度升高时,一部分双原子分子会分解成两个单原子分子,温度越高,被分解的双原子分子的比例越大,于是整个气体可视为由单原子分子构成的气体与由双原子分子构成的气体的混合气体.这种混合气体的每一种成分气体都可视作理想气体.在体积V=0.045m3的坚固的容器中,盛有一定质量的碘蒸气,现于不同温度下测得容器中蒸气的压强如下:
13.(20分)电荷量分别为q和Q的两个带异号电荷的小球A和B(均可视为点电荷),质量分别为m和M.初始时刻,B的速度为0,A在B的右方,且与B相距L0,A具有向右的初速度v0,并还受到一向右的作用力f使其保持匀速运动,某一时刻,两球之间可以达到一最大距离.
高中物理竞赛初赛试题
全国第31届中学生物理竞赛预赛试题一、选择题.本题共5小题,每小题6分,在每小题给出的4个选项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内,全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于A.αB.α1/3C.α3D.3α2.按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为lcm3的较重的合金块,杆上有表示液体密度数值的刻度.当秤砣放在Q点处时秤杆恰好平衡,如图所示,当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度.下列说法中错误的是A.密度秤的零点刻度在Q点B.秤杆上密度读数较大的刻度在较小的刻度的左边C.密度秤的刻度都在Q点的右侧D.密度秤的刻度都在Q点的左侧3.一列简谐横波在均匀的介质中沿z轴正向传播,两质点P1和P2的平衡位置在x轴上,它们相距60cm,当P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为24 m/s,则该波的频率可能为A.50Hz B.60HzC.400Hz D.410Hz4.电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动方式,电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用钢、铝和硅制成的形状、大小和横截面积均相同的三种环;当电流突然接通时,它们所受到的推力分别为F1、F2和F3.若环的重力可忽略,下列说法正确的是A.F1>F2>F3B.F2>F3 >F1C.F3 >F2> F1D.F1=F2=F35.质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰.假设B球的质量m B可选取为不同的值,则A.当m B=m A时,碰后B球的速度最大B.当m B=m A时,碰后B球的动能最大C.在保持m B>m A的条件下,m B越小,碰后B球的速度越大D.在保持m B<m A的条件下,m B越大,碰后B球的动量越大二、填空题.把答案填在题中的横线上,只要给出结果,不需写出求得结果的过程.6.(10分)用国家标准一级螺旋测微器(直标度尺最小分度为0.5mm,丝杆螺距为0.5mm,套管上分为50格刻度)测量小球直径.测微器的初读数如图(a)所示,其值为_____mm,测量时如图(b)所示,其值为_____mm,测得小球直径d=___________mm.7.(10分)为了缓解城市交通拥问题,杭州交通部门在禁止行人步行的十字路口增设“直行待区”(行人可从天桥或地下过道过马路),如图所示.当其他车道的车辆右拐时,直行道上的车辆可以提前进入“直行待行区”;当直行绿灯亮起时,可从“直行待行区”直行通过十字路口.假设某十字路口限速50km/h,“直行待行区”的长度为12m,从提示进入“直行待行区”到直行绿灯亮起的时间为4s.如果某汽车司机看到上述提示时立即从停车线由静止开始匀加速直线运动,运动到“直行待行区”的前端虚线处正好直行绿灯亮起,汽车总质量为1.5t,汽车运动中受到的阻力恒为车重的0.1倍,则该汽车的行驶加速度为_________;在这4s内汽车发动机所做的功为_____________(取g=10m/s2)8.(10分)如图所示,两个薄透镜L1和L2共轴放置,已知L1的焦距f1=f,L2的焦距f2=―f,两透镜间的距离也是f,小物体位于物面P上,物距u1=3f.(1)小物体经过这两个透镜成的像在L2的_____边,到L2的距离为________,是______像(填“实”或“虚”)、_______像(填“正”或“倒”),放大率为___________.(2)现把两个透镜位置调换,若还要使给定的原物体在原像处成像,两透镜作为整体应沿光轴向______边移动距离_________.这个新的像是______(填“实”或“虚”)、______像(填“正”或“倒”),放大率为__________.9.(10分)图中所示的气缸壁是绝热的.缸内隔板A是导热的,它固定在缸壁上.活塞B是绝热的,它与缸壁的接触是光滑的,但不漏气.B的上方为大气.A与B之间以及A与缸底之间都盛有n mol的同种理想气体,系统在开始时处于平衡状态.现通过电炉丝E对气体缓慢加热,在加热过程中,A、B之间的气体经历____过程.A以下气体经历____过程;气体温度每上升1K,A、B之间的气体吸收的热量与A以下气体净吸收的热量之差等于_____.已知普适气体常量为R.10.(10分)字宙空间某区域有一磁感应强度大小为B=1.0×10-9T的均匀磁场,现有一电子绕磁力线做螺旋运动.该电子绕磁力线旋转一圈所需的时间间隔为_____s;若该电子沿磁场方向的运动速度为1.0×10-2c(c为真空中光速的大小),则它在沿磁场方向前进1.0×10-3光年的过程中,绕磁力线转了_____圈. 已知电子电荷量为1.60×10 -19C,电子质量为9.11×10-31kg.三、计算题,计算题的解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后结果的不能得分.有数值计算的,答案中必须明确写出数值和单位.11.(15分)如图所示,一水平放置的厚度为t折射率为n的平行玻璃砖,下表面镀银(成反射镜).一物点A位于玻璃砖的上方距玻璃砖的上表面为h处.观察者在A点附近看到了A点的像.A点的像到A点的距离等于多少?不考虑光经玻璃砖上表面的反射.12.(20分)通常电容器两极板间有多层电介质,并有漏电现象.为了探究其规律性,采用如图所示的简单模型,电容器的两极板面积均为A.其间充有两层电介质l和2,第1层电介质的介电常数、电导率(即电阻率的倒数)和厚度分别为ε1、σ1和d1,第2层电介质的则为ε2、σ2和d2.现在两极板加一直流电压U,,电容器处于稳定状态.(1)画出等效电路图;(2)计算两层电介质所损耗的功率;(3)计算两介质交界面处的净电荷量;提示:充满漏电电介质的电容器可视为一不漏电电介质的理想电容和一纯电阻的并联电路.13. (20分)如图所示,一绝缘容器内部为长方体空胶,其长和宽分别为a和b,厚度为d,其两侧等高处装有两根与大气相通的玻璃管(可用来测量液体两侧的压强差).容器内装满密度为ρ的导电液体,容器上下两端装有铂电极A和C,这样就构成了一个液体电阻,该液体电阻置于一方向与容器的厚度方向平行的均匀恒定的磁感应强度为B的磁场中,并通过开关K接在一电动势为ε、内阻为r的电池的两端,闭合开关.若稳定时两侧玻璃管中液面的高度差为h,求导电液体的电导率σ.重力加速度大小为g.14.(20分)lmol的理想气体经历一循环过程l—2—3—1,如p—T图示所示.过程l—2是等压过程,过程3—1是通过p—T图原点的直线上的一段,描述过程2—3的方程为 c1p2 + c2p =T,式中c1和c2都是待定的常量,p和T分别是气体的压强和绝对温度.已知,气体在状态l的压强、绝对温度分别为p1和T1.气体在状态2的绝对温度以及在状态3的压强和绝对湿度分别为T2以及p3和T3.气体常量R也是已知的.(1)求常量c1和c2的值;(2)将过程l—2—3—1在p—V图示上表示出来;(3)求该气体在一次循环过程中对外做的总功.15. (20分)一个ω介子飞行时衰变成静止质量均为m的三个π介子,这三个π介子的动量共面.已知:衰变前后介子运动的速度都远小于光在真空中的速度c;衰变后的三个π介子的动能分别为T1、T2和T3,且第一、二个π介子飞行方向之间的夹角为θl,第二、三个π介子飞行方向之间的夹角为θ2(如图所示);介子的动能等于介子的能量与其静止时的能量(即其静止质量与c2的乘积)之差.求ω介子在衰变前的辨阀的飞行方向(用其飞行方向与衰变后的第二个介子的飞行方向的夹角即图中的φ角表示)及其静止质量.16. (25分)一圈盘沿顺时针方向绕过圆盘中心O并与盘面垂直的固定水平转轴以匀角速度ω=4.43rad/s 转动.圆盘半径r=1.00m ,圆盘正上方有一水平天花板.设圆盘边缘各处始终有水滴被甩出.现发现天花板上只有一点处有水.取重力加速度大小g=9. 80m/s 2.求(1)天花板相对于圆盘中心轴O 点的高度;(2)天花板上有水的那一点的位置坐标,参考答案及评分标准一、1. (D) 2. (C) 3. (AD) 4. (A) 5. (BCD)二、6. 0.022~0.024mm (3分);3.772~3.774mm(3分);3.748~3.752mm(4分) (若有效位数错,无分)7. 1.5m/s 2(5分);4.5×104J(5分)8. (1)右,f ,实,倒,1 (每空1分) (2)左,2f ,实,倒,1 (每空1分)9. 等压(2分);等容(2分);nR(6分)10. 3.6×10-2(5分);8.8×107(5分)三、11. (15分) 由折射定律得:sin θi = sin θd …①由几何关系得:x 1=htan θi …②,x 2=htan θd …③,H=2(x 1+x 2)tan(900―θi )…④,H 为物A 到像A /的距离,在小角度近似下有:tan θi ≈sin θi ,tan θd ≈sin θd ,tan(900―θi )≈1 sin θi…⑤,联立以上各式得:H=2(h+t n) …⑥ 评分标准:①式3分,②③④式各2分,⑤⑥各3分12. (20分)(1)等效电路如图所示(2)等效电容C 1和C 2为:C 1=ε1A d 1,C 2=ε2A d 2…① 等效电阻R 1和R 2为: R 1=d 1σ1 A ,R 2=d 2σ2 A…② 两层电介质所消粍的功率为:P=U 2 R 1+R 2=U 2A σ1σ2 d 1σ2+d 2σ1…③ (3)没两层介质各自上下界面之间的电压分别为U 1和U 2,上层介质界面上的电荷为:Q 1=C U 1=ε1A d 1·UR 1R 1+R 2=ε1σ2AU d 1σ2+d 2σ1…④,下层介质界面上的电荷为:Q 2=ε2σ1AU d 1σ2+d 2σ1…⑤ 两层介质交界面处的净电荷量为:Q=Q 1―Q 2=(ε1σ2―ε2σ1)AU d 1σ2+d 2σ1…⑥ 评分标准:第(1)问4分(可不标字母、箭头),第(2)问9分,①②③式各3分,第(3)问7分,④⑤式各2分,⑥式3分13. (20分)沿着电流I 的方向液柱长度为a ,该液柱受到的安培力大小为:F 安=BIa …① 液柱两侧面受到的由压强差产生的压力大小为:F P =ρghad …②水平方向上二力平衡,有:F 安= F P …③,由欧姆定律得:ε=I(R+r) …④,式中R=a σbd…⑤ 由以上各式解得:σ =ρgha b(B ε―r ρghd)…⑥ 评分标准:①式4分,②③④⑤式各3分,⑥式4分14. (20分)(1)设气体在状态i(i=1、2和3)下的压强、体积和绝对温度分别为p i 、V i 和T i ,由题设条件有: c 1p 22 + c 2p 2 =T 2 …①,c 1p 32 + c 2p 3 =T 3 …②由此解得:c 1=T 2p 3―T 3p 2 p 22p 3―p 32p 2=T 2p 3―T 3p 1 p 12p 3―p 32p 1 …③,c 1=T 2p 32―T 3p 22 p 2p 32―p 22p 3=T 2p 32―T 3p 12p 1p 33―p 12p 3…④ (2)利用气体状态方程pV=RT ,以及V 1=R T 1p 1,V 2=R T 2p 2,V 3=R T 3p 3…⑤ 可将过程2―3的方程为:p V 2―V 3 p 2―p 3=V+V 2p 3―V 3p 2 p 2―p 3…⑥ 可见,在p ―V 图上过程2―3是以(p 2,V 2)和(p 3,V 3) 为状态端点的直线段,过程3―1是通过原点直线上的一段,因而描述其过程的方程为:p T=c 3 …⑦,式中c 3是一常量,利用气体状态方程pV=RT ,可将过程3—1的方程改写为:V=R c 3=V 3=V 1 …⑧,这是以(p 3,V 1)和(p 1,V 1)为状态端点的等容降压过程.综上所述,过程1―2―3―1在p ―V 图上是一直角三角形,如图所示.(3)气体在一次循环过程中对外做的总功为:W=―12(p 3―p 1)( V 2―V 1) …⑨ 利用气体状态方程pV=RT 和⑤式,上式即W=―12R(T 2―T 1)(p 3p 1―1) …⑩ 评分标准:第(1)问8分,①②③④式各2分;第(2)问10分,⑤⑥式各2分,过程1―2―3―1在p ―V 上的图示正确得6分;第(3)问2分,⑩式2分.15. (20分)以第二个π介子的飞行方向为x轴,以事件平面为x―y平面,设衰变前ω介子和衰变后三个π介子的动量大小分别为Pω、P1、P2和P3,衰变前后粒子在x和y方向的动量分别守恒,有:Pωcosφ= P1cosθ1+P2+ P3cosθ2 …⑴,―Pωsinφ= ―P1sinθ1+ P3sinθ2 …⑵衰变前后粒子的总能量守恒,有:mωc2+Tω=(mc2+T1)+( mc2+T2)+( mc2+T3) …⑶,式中左端和右端三个括号内的分别是衰变前ω介子的总能量(静能和动能之和)和衰变后三个π介子的总能量,动能可由动量和静质量表示:Tω=pω22mω…⑷,T1=p122m…⑸,T2=p222m…⑹,T3=p322m…⑺分别由⑤⑥⑦式得p1=2mT1…⑻,p2=2mT2…⑼,p3=2mT3…⑽联立①②⑧⑨⑩式得:φ=arctanT1sinθ1―T3sinθ2T1cosθ1+T2+ T3cosθ2…⑾Pω2=2m(T1+T2+T3)+4m T1T3cos(θ1+θ2)+T1T2cosθ1+T2T3cosθ2] …⑿由③④式得:2mω2c2―2mω(3mc2+T1+T2+T3)+2m(T1+T2+T3)+4m[T1T3cos(θ1+θ2)+T1T2cosθ1+T2T3 cosθ2]=0 …⒀其解为mω=32m+12c2(T1+T2+T3)+[32m+12c2(T1+T2+T3)]2―Pω22c2…⒁式中pω2由⑿式给出。
全国中学生(高中)物理竞赛初赛试题(含答案)
全国中学生(高中)物理竞赛初赛试题(含答案)一、选择题1. 下列哪个物理量在单位时间内保持不变?A. 加速度B. 速度C. 力D. 动能答案:B解析:速度是物体在单位时间内移动的距离,因此在单位时间内保持不变。
2. 一个物体在水平面上做匀速直线运动,下列哪个力是物体所受的合力?A. 重力B. 支持力C. 摩擦力D. 合力为零答案:D解析:物体做匀速直线运动时,所受的合力为零,即所有力的矢量和为零。
3. 下列哪个物理现象是光的折射?A. 镜子成像B. 光在水中的传播速度变慢C. 彩虹D. 光在空气中的传播速度变快答案:C解析:彩虹是光的折射现象,光在通过水滴时发生折射,形成七彩的光谱。
4. 下列哪个物理量是描述物体旋转状态的?A. 速度B. 加速度C. 角速度D. 力答案:C解析:角速度是描述物体旋转状态的物理量,表示物体在单位时间内旋转的角度。
5. 下列哪个物理现象是光的干涉?A. 镜子成像B. 光在空气中的传播速度变慢C. 彩虹D. 双缝干涉答案:D解析:双缝干涉是光的干涉现象,光通过两个狭缝后发生干涉,形成明暗相间的条纹。
二、填空题1. 物体在匀速直线运动时,所受的合力为零,即所有力的矢量和为零。
这个原理称为__________。
答案:牛顿第一定律解析:牛顿第一定律指出,物体在不受外力作用时,将保持静止或匀速直线运动状态。
2. 光在真空中的传播速度为__________m/s。
答案:3×10^8解析:光在真空中的传播速度是一个常数,为3×10^8m/s。
3. 下列哪个物理现象是光的衍射?A. 镜子成像B. 光在水中的传播速度变慢C. 彩虹D. 光通过狭缝后发生弯曲答案:D解析:光通过狭缝后发生弯曲的现象称为光的衍射,是光波与障碍物相互作用的结果。
4. 物体在匀速圆周运动时,所受的向心力大小为__________。
答案:mv^2/r解析:物体在匀速圆周运动时,所受的向心力大小为mv^2/r,其中m为物体质量,v为物体速度,r为圆周半径。
第二十九届全国高中物理竞赛初赛试题及标准答案
第29届全国中学生物理竞赛预赛试卷本卷共16题,满分200分.一、选择题.本题共5小题,每小题6分.在每小题给出的4个选项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.下列说法中正确的是A.水在0℃时密度最大.B.一个绝热容器中盛有气体,假设把气体中分子速率很大的如大于v A的分子全部取走,则气体的温度会下降,此后气体中不再存在速率大于v A的分子.C.杜瓦瓶的器壁是由两层玻璃制成的,两层玻璃之间抽成真空,抽成真空的主要作用是既可降低热传导,又可降低热辐射.D.图示为一绝热容器,中间有一隔板,隔板左边盛有温度为T的理想气体,右边为真空.现抽掉隔板,则气体的最终温度仍为T.2.如图,一半径为R电荷量为Q的带电金属球,球心位置O固定,P为球外一点.几位同学在讨论P点的场强时,有下列一些说法,其中哪些说法是正确的?A.若P点无限靠近球表面,因为球表面带电,根据库仑定律可推知,P点的场强趋于无穷大.B.因为在球内场强处处为0,若P点无限靠近球表面,则P点的场强趋于0C.若Q不变,P点的位置也不变,而令R变小,则P点的场强不变.D.若保持Q不变,而令R变大,同时始终保持P点极靠近球表面处,则P点的场强不变.3.图中L为一薄凸透镜,ab为一发光圆面,二者共轴,S为与L平行放置的屏,已知这时ab可在屏上成清晰的像.现将透镜切除一半,只保留主轴以上的一半透镜,这时ab在S上的像A.尺寸不变,亮度不变.B.尺寸不变,亮度降低.C.只剩半个圆,亮度不变.D.只剩半个圆,亮度降低.4.一轻质弹簧,一端固定在墙上,另一端连一小物块,小物块放在摩擦系数为μ的水平面上,弹簧处在自然状态,小物块位于O处.现用手将小物块向右移到a处,然后从静止释放小物块,发现小物块开始向左移动.A.小物块可能停在O点.B.小物块停止以后所受的摩擦力必不为0C.小物块无论停在O点的左边还是右边,停前所受的摩擦力的方向和停后所受摩擦力的方向两者既可能相同,也可能相反.D.小物块在通过O点后向右运动直到最远处的过程中,速度的大小总是减小;小物块在由右边最远处回到O点的过程中,速度的大小总是增大.5.如图所示,一内壁光滑的圆锥面,轴线OO’是竖直的,顶点O在下方,锥角为2α,若有两个相同的小珠(均视为质点)在圆锥的内壁上沿不同的圆轨道运动,则有:A.它们的动能相同.B.它们运动的周期相同.C.锥壁对它们的支撑力相同.D.它们的动能与势能之比相同,设o点为势能零点.二、填空题和作图题.把答案填在题中的横线上或把图画在题中指定的地方.只要给出结果,不需写出求得结果的过程.6.(6分)铀238(92 U )是放射性元素,若衰变时依次放出α,β,β,α,α,α,α,α,β,β,α,β,β,α粒子,最终形成稳定的核Pb YX ,则其中 X = , Y = .7.(10分)在寒冷地区,为了防止汽车挡风玻璃窗结霜,可用通电电阻加热.图示为10根阻值皆为3Ω的电阻条,和一个内阻力0.5Ω的直流电源,现在要使整个电路中电阻条上消耗的功率最大,i .应选用根电阻条.ii .在图中画出电路连线.8.(10分)已知:光子有质量,但无静止质量,在重力场中也有重力势能.若从地面上某处将一束频率为ν的光射向其正上方相距为d 的空间站,d 远小于地球半径,令空间站接收到动光的频率为ν’,则差ν’-ν= ,已知地球表面附近的重力加速度为g .9.(10分)图中所示两物块叠放在一起,下面物块位于光滑水平桌面上,其质量为m ,上面物块的质量为M ,两物块之间的静摩擦系数为μ.现从静止出发对下面物块施以随时间t 变化的水平推力F =γt ,γ为一常量,则从力开始作用到两物块刚发生相对运动所经过的时间等于 ,此时物块的速度等于 .10.(16分)图中K 是密封在真空玻璃管内的金属电极,它受光照射后能释放出电子;W 是可以透光的窗口,光线通过它可照射到电极K 上;C 是密封在真空玻璃管内圆筒形的收集电极,它能收集K 所发出的光电子.R 是接在电池组E (电压足够高)两端的滑动变阻器,电极K 通过导线与串联电池组的中心端O 连接;G 是用于测量光电流的电流计.已知当某一特定频率的单色光通过窗口照射电极K 时,能产生光电子.当滑动变阻器的滑动接头处在某一点P 时,可以测到光电流,当滑动头向右移动时,G 的示数增大,使滑动头继续缓慢向右不断移动时,电流计G 的示数变化情况是: .当滑动变阻器的滑动接头从P 点缓慢向左不断移动时,电流计G 的示数变化情况是: .若测得用频率为ν1的单色光照射电极K 时的遏止电压为V 1,频率为ν2的单色光照射电极时的遏止电压为V 2,已知电子的电荷量为e ,则普朗克常量h = ,金属电极K 的逸出功W 0= .三、计算题.计算题的解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后结果的不能得分.有数值计算的,答案中必须明确写出数值和单位.11.(18分)如图所示,一根跨越一固定的水平光滑细杆的柔软、不可伸长的轻绳,两端各系一个质量相等的小球A 和B ,球A 刚好接触地面,球B 被拉到与细杆同样高度的水平位置,当球B 到细杆的距离为L 时,绳刚好拉直.在绳被拉直时释放球B ,使球B 从静止开始向下摆动.求球A 刚要离开地面时球B 与其初始位置的高度差.12.(20分)一段横截面积S =1.0mm 2的铜导线接入直流电路中,当流经该导线的电流I =1.0A 时,该段铜导线中自由电子定向运动的平均速度u 为多大?已知,每个铜原子有一个“自由电子”,每个电子的电荷量e = 1.6 ×10-19C ;铜的密度ρ=8.9g /cm 3,铜的摩尔质量μ=64g /mol .阿伏枷德罗常量N 0=6.02×1023mol -1.13.(20分)电荷量分别为q 和Q 的两个带异号电荷的小球A 和B (均可视为点电荷),质量分别为m 和M .初始时刻,B 的速度为0,A 在B 的右方,且与B 相距L 0,A 具有向右的初速度v 0,并还受到一向右的作用力f 使其保持匀速运动,某一时刻,两球之间可以达到一最大距离.i .求此最大距离.ii .求从开始到两球间距离达到最大的过程中f 所做的功.14.(20分)由双原子分子构成的气体,当温度升高时,一部分双原子分子会分解成两个单原子分子,温度越高,被分解的双原子分子的比例越大,于是整个气体可视为由单原子分子构成的气体与由双原子分子构成的气体的混合气体.这种混合气体的每一种成分气体都可视作理想气体.在体积V =0.045m 3的坚固的容器中,盛有一定质量的碘蒸气,现于不同温度下测得容器中蒸气的压强如下:试求温度分别为1073K 和1473K 时该碘蒸气中单原子分子碘蒸气的质量与碘的总质量之比值.已知碘蒸气的总质量与一个摩尔的双原子碘分子的质量相同,普适气体常量R =8.31J ·mol -1·K -115.(20分)图中L 是一根通电长直导线,导线中的电流为I .一电阻为R 、每边长为2a的导线方框,其中两条边与L 平行,可绕过其中心并与长直导线平行的轴线OO ’转动,轴线与长直导线相距b ,b >a ,初始时刻,导线框与直导线共面.现使线框以恒定的角速度ω转动,求线框中的感应电流的大小.不计导线框的自感.已知电流I 的长直导线在距导线r 处的磁感应强度大小为k rI ,其中k 为常量.16.(20分)一质量为m =3000kg 的人造卫星在离地面的高度为H =180 km 的高空绕地球作圆周运动,那里的重力加速度g =9.3m ·s -2.由于受到空气阻力的作用,在一年时间内,人造卫星的高度要下降△H=0.50km .已知物体在密度为ρ的流体中以速度v 运动时受到的阻力F 可表示为F =21ρACv 2,式中A 是物体的最大横截面积,C 是拖曳系数,与物体的形状有关.当卫星在高空中运行时,可以认为卫星的拖曳系数C =l ,取卫星的最大横截面积A =6.0m 2.已知地球的半径为R 0=6400km .试由以上数据估算卫星所在处的大气密度.。
高中物理竞赛初赛试题
全国第31届中学生物理竞赛预赛试题一、选择题.本题共5小题,每小题6分,在每小题给出的4个选项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内,全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于A.αB.α1/3C.α3D.3α2.按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为lcm3的较重的合金块,杆上有表示液体密度数值的刻度.当秤砣放在Q点处时秤杆恰好平衡,如图所示,当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度.下列说法中错误的是A.密度秤的零点刻度在Q点B.秤杆上密度读数较大的刻度在较小的刻度的左边C.密度秤的刻度都在Q点的右侧D.密度秤的刻度都在Q点的左侧3.一列简谐横波在均匀的介质中沿z轴正向传播,两质点P1和P2的平衡位置在x轴上,它们相距60cm,当P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为24 m/s,则该波的频率可能为A.50Hz B.60HzC.400Hz D.410Hz4.电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动方式,电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用钢、铝和硅制成的形状、大小和横截面积均相同的三种环;当电流突然接通时,它们所受到的推力分别为F1、F2和F3.若环的重力可忽略,下列说法正确的是A.F1>F2>F3B.F2>F3 >F1C.F3 >F2> F1D.F1=F2=F35.质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰.假设B球的质量m B可选取为不同的值,则A.当m B=m A时,碰后B球的速度最大B.当m B=m A时,碰后B球的动能最大C.在保持m B>m A的条件下,m B越小,碰后B球的速度越大D.在保持m B<m A的条件下,m B越大,碰后B球的动量越大二、填空题.把答案填在题中的横线上,只要给出结果,不需写出求得结果的过程.6.(10分)用国家标准一级螺旋测微器(直标度尺最小分度为0.5mm,丝杆螺距为0.5mm,套管上分为50格刻度)测量小球直径.测微器的初读数如图(a)所示,其值为_____mm,测量时如图(b)所示,其值为_____mm,测得小球直径d=___________mm.7.(10分)为了缓解城市交通拥问题,杭州交通部门在禁止行人步行的十字路口增设“直行待区”(行人可从天桥或地下过道过马路),如图所示.当其他车道的车辆右拐时,直行道上的车辆可以提前进入“直行待行区”;当直行绿灯亮起时,可从“直行待行区”直行通过十字路口.假设某十字路口限速50km/h,“直行待行区”的长度为12m,从提示进入“直行待行区”到直行绿灯亮起的时间为4s.如果某汽车司机看到上述提示时立即从停车线由静止开始匀加速直线运动,运动到“直行待行区”的前端虚线处正好直行绿灯亮起,汽车总质量为1.5t,汽车运动中受到的阻力恒为车重的0.1倍,则该汽车的行驶加速度为_________;在这4s内汽车发动机所做的功为_____________(取g=10m/s2)8.(10分)如图所示,两个薄透镜L1和L2共轴放置,已知L1的焦距f1=f,L2的焦距f2=―f,两透镜间的距离也是f,小物体位于物面P上,物距u1=3f.(1)小物体经过这两个透镜成的像在L2的_____边,到L2的距离为________,是______像(填“实”或“虚”)、_______像(填“正”或“倒”),放大率为___________.(2)现把两个透镜位置调换,若还要使给定的原物体在原像处成像,两透镜作为整体应沿光轴向______边移动距离_________.这个新的像是______(填“实”或“虚”)、______像(填“正”或“倒”),放大率为__________.9.(10分)图中所示的气缸壁是绝热的.缸内隔板A是导热的,它固定在缸壁上.活塞B是绝热的,它与缸壁的接触是光滑的,但不漏气.B的上方为大气.A与B之间以及A与缸底之间都盛有n mol的同种理想气体,系统在开始时处于平衡状态.现通过电炉丝E对气体缓慢加热,在加热过程中,A、B之间的气体经历____过程.A以下气体经历____过程;气体温度每上升1K,A、B之间的气体吸收的热量与A以下气体净吸收的热量之差等于_____.已知普适气体常量为R.10.(10分)字宙空间某区域有一磁感应强度大小为B=1.0×10-9T的均匀磁场,现有一电子绕磁力线做螺旋运动.该电子绕磁力线旋转一圈所需的时间间隔为_____s;若该电子沿磁场方向的运动速度为1.0×10-2c(c为真空中光速的大小),则它在沿磁场方向前进1.0×10-3光年的过程中,绕磁力线转了_____圈. 已知电子电荷量为1.60×10 -19C,电子质量为9.11×10-31kg.三、计算题,计算题的解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后结果的不能得分.有数值计算的,答案中必须明确写出数值和单位.11.(15分)如图所示,一水平放置的厚度为t折射率为n的平行玻璃砖,下表面镀银(成反射镜).一物点A位于玻璃砖的上方距玻璃砖的上表面为h处.观察者在A点附近看到了A点的像.A点的像到A点的距离等于多少?不考虑光经玻璃砖上表面的反射.12.(20分)通常电容器两极板间有多层电介质,并有漏电现象.为了探究其规律性,采用如图所示的简单模型,电容器的两极板面积均为A.其间充有两层电介质l和2,第1层电介质的介电常数、电导率(即电阻率的倒数)和厚度分别为ε1、σ1和d1,第2层电介质的则为ε2、σ2和d2.现在两极板加一直流电压U,,电容器处于稳定状态.(1)画出等效电路图;(2)计算两层电介质所损耗的功率;(3)计算两介质交界面处的净电荷量;提示:充满漏电电介质的电容器可视为一不漏电电介质的理想电容和一纯电阻的并联电路.13. (20分)如图所示,一绝缘容器内部为长方体空胶,其长和宽分别为a和b,厚度为d,其两侧等高处装有两根与大气相通的玻璃管(可用来测量液体两侧的压强差).容器内装满密度为ρ的导电液体,容器上下两端装有铂电极A和C,这样就构成了一个液体电阻,该液体电阻置于一方向与容器的厚度方向平行的均匀恒定的磁感应强度为B的磁场中,并通过开关K接在一电动势为ε、内阻为r的电池的两端,闭合开关.若稳定时两侧玻璃管中液面的高度差为h,求导电液体的电导率σ.重力加速度大小为g.14.(20分)lmol的理想气体经历一循环过程l—2—3—1,如p—T图示所示.过程l—2是等压过程,过程3—1是通过p—T图原点的直线上的一段,描述过程2—3的方程为 c1p2 + c2p =T,式中c1和c2都是待定的常量,p和T分别是气体的压强和绝对温度.已知,气体在状态l的压强、绝对温度分别为p1和T1.气体在状态2的绝对温度以及在状态3的压强和绝对湿度分别为T2以及p3和T3.气体常量R也是已知的.(1)求常量c1和c2的值;(2)将过程l—2—3—1在p—V图示上表示出来;(3)求该气体在一次循环过程中对外做的总功.15. (20分)一个ω介子飞行时衰变成静止质量均为m的三个π介子,这三个π介子的动量共面.已知:衰变前后介子运动的速度都远小于光在真空中的速度c;衰变后的三个π介子的动能分别为T1、T2和T3,且第一、二个π介子飞行方向之间的夹角为θl,第二、三个π介子飞行方向之间的夹角为θ2(如图所示);介子的动能等于介子的能量与其静止时的能量(即其静止质量与c2的乘积)之差.求ω介子在衰变前的辨阀的飞行方向(用其飞行方向与衰变后的第二个介子的飞行方向的夹角即图中的φ角表示)及其静止质量.16. (25分)一圈盘沿顺时针方向绕过圆盘中心O并与盘面垂直的固定水平转轴以匀角速度ω=4.43rad/s 转动.圆盘半径r=1.00m ,圆盘正上方有一水平天花板.设圆盘边缘各处始终有水滴被甩出.现发现天花板上只有一点处有水.取重力加速度大小g=9. 80m/s 2.求(1)天花板相对于圆盘中心轴O 点的高度;(2)天花板上有水的那一点的位置坐标,参考答案及评分标准一、1. (D) 2. (C) 3. (AD) 4. (A) 5. (BCD)二、6. 0.022~0.024mm (3分);3.772~3.774mm(3分);3.748~3.752mm(4分) (若有效位数错,无分)7. 1.5m/s 2(5分);4.5×104J(5分)8. (1)右,f ,实,倒,1 (每空1分) (2)左,2f ,实,倒,1 (每空1分)9. 等压(2分);等容(2分);nR(6分)10. 3.6×10-2(5分);8.8×107(5分)三、11. (15分) 由折射定律得:sin θi = sin θd …①由几何关系得:x 1=htan θi …②,x 2=htan θd …③,H=2(x 1+x 2)tan(900―θi )…④,H 为物A 到像A /的距离,在小角度近似下有:tan θi ≈sin θi ,tan θd ≈sin θd ,tan(900―θi )≈1 sin θi…⑤,联立以上各式得:H=2(h+t n) …⑥ 评分标准:①式3分,②③④式各2分,⑤⑥各3分12. (20分)(1)等效电路如图所示(2)等效电容C 1和C 2为:C 1=ε1A d 1,C 2=ε2A d 2…① 等效电阻R 1和R 2为: R 1=d 1σ1 A ,R 2=d 2σ2 A…② 两层电介质所消粍的功率为:P=U 2 R 1+R 2=U 2A σ1σ2 d 1σ2+d 2σ1…③ (3)没两层介质各自上下界面之间的电压分别为U 1和U 2,上层介质界面上的电荷为:Q 1=C U 1=ε1A d 1·UR 1R 1+R 2=ε1σ2AU d 1σ2+d 2σ1…④,下层介质界面上的电荷为:Q 2=ε2σ1AU d 1σ2+d 2σ1…⑤ 两层介质交界面处的净电荷量为:Q=Q 1―Q 2=(ε1σ2―ε2σ1)AU d 1σ2+d 2σ1…⑥ 评分标准:第(1)问4分(可不标字母、箭头),第(2)问9分,①②③式各3分,第(3)问7分,④⑤式各2分,⑥式3分13. (20分)沿着电流I 的方向液柱长度为a ,该液柱受到的安培力大小为:F 安=BIa …① 液柱两侧面受到的由压强差产生的压力大小为:F P =ρghad …②水平方向上二力平衡,有:F 安= F P …③,由欧姆定律得:ε=I(R+r) …④,式中R=a σbd…⑤ 由以上各式解得:σ =ρgha b(B ε―r ρghd)…⑥ 评分标准:①式4分,②③④⑤式各3分,⑥式4分14. (20分)(1)设气体在状态i(i=1、2和3)下的压强、体积和绝对温度分别为p i 、V i 和T i ,由题设条件有: c 1p 22 + c 2p 2 =T 2 …①,c 1p 32 + c 2p 3 =T 3 …②由此解得:c 1=T 2p 3―T 3p 2 p 22p 3―p 32p 2=T 2p 3―T 3p 1 p 12p 3―p 32p 1 …③,c 1=T 2p 32―T 3p 22 p 2p 32―p 22p 3=T 2p 32―T 3p 12p 1p 33―p 12p 3…④ (2)利用气体状态方程pV=RT ,以及V 1=R T 1p 1,V 2=R T 2p 2,V 3=R T 3p 3…⑤ 可将过程2―3的方程为:p V 2―V 3 p 2―p 3=V+V 2p 3―V 3p 2 p 2―p 3…⑥ 可见,在p ―V 图上过程2―3是以(p 2,V 2)和(p 3,V 3) 为状态端点的直线段,过程3―1是通过原点直线上的一段,因而描述其过程的方程为:p T=c 3 …⑦,式中c 3是一常量,利用气体状态方程pV=RT ,可将过程3—1的方程改写为:V=R c 3=V 3=V 1 …⑧,这是以(p 3,V 1)和(p 1,V 1)为状态端点的等容降压过程.综上所述,过程1―2―3―1在p ―V 图上是一直角三角形,如图所示.(3)气体在一次循环过程中对外做的总功为:W=―12(p 3―p 1)( V 2―V 1) …⑨ 利用气体状态方程pV=RT 和⑤式,上式即W=―12R(T 2―T 1)(p 3p 1―1) …⑩ 评分标准:第(1)问8分,①②③④式各2分;第(2)问10分,⑤⑥式各2分,过程1―2―3―1在p ―V 上的图示正确得6分;第(3)问2分,⑩式2分.15. (20分)以第二个π介子的飞行方向为x轴,以事件平面为x―y平面,设衰变前ω介子和衰变后三个π介子的动量大小分别为Pω、P1、P2和P3,衰变前后粒子在x和y方向的动量分别守恒,有:Pωcosφ= P1cosθ1+P2+ P3cosθ2 …⑴,―Pωsinφ= ―P1sinθ1+ P3sinθ2 …⑵衰变前后粒子的总能量守恒,有:mωc2+Tω=(mc2+T1)+( mc2+T2)+( mc2+T3) …⑶,式中左端和右端三个括号内的分别是衰变前ω介子的总能量(静能和动能之和)和衰变后三个π介子的总能量,动能可由动量和静质量表示:Tω=pω22mω…⑷,T1=p122m…⑸,T2=p222m…⑹,T3=p322m…⑺分别由⑤⑥⑦式得p1=2mT1…⑻,p2=2mT2…⑼,p3=2mT3…⑽联立①②⑧⑨⑩式得:φ=arctanT1sinθ1―T3sinθ2T1cosθ1+T2+ T3cosθ2…⑾Pω2=2m(T1+T2+T3)+4m T1T3cos(θ1+θ2)+T1T2cosθ1+T2T3cosθ2] …⑿由③④式得:2mω2c2―2mω(3mc2+T1+T2+T3)+2m(T1+T2+T3)+4m[T1T3cos(θ1+θ2)+T1T2cosθ1+T2T3 cosθ2]=0 …⒀其解为mω=32m+12c2(T1+T2+T3)+[32m+12c2(T1+T2+T3)]2―Pω22c2…⒁式中pω2由⑿式给出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014第31届全国中学生物理竞赛预赛试题及参考答案与评分标准一、选择题.本题共5小题,每小题6分,在每小题给出的4个选项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内,全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于A.αB.α1/3C.α3D.3α2.按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为lcm3的较重的合金块,杆上有表示液体密度数值的刻度.当秤砣放在Q点处时秤杆恰好平衡,如图所示,当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度.下列说法中错误的是A.密度秤的零点刻度在Q点B.秤杆上密度读数较大的刻度在较小的刻度的左边C.密度秤的刻度都在Q点的右侧D.密度秤的刻度都在Q点的左侧3.一列简谐横波在均匀的介质中沿z轴正向传播,两质点P1和P2的平衡位置在x轴上,它们相距60cm,当P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为24 m/s,则该波的频率可能为A.50Hz B.60HzC.400Hz D.410Hz4.电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动方式,电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用钢、铝和硅制成的形状、大小和横截面积均相同的三种环;当电流突然接通时,它们所受到的推力分别为F1、F2和F3.若环的重力可忽略,下列说法正确的是A.F1>F2>F3B.F2>F3 >F1C.F3 >F2> F1D.F1=F2=F35.质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰.假设B球的质量m B可选取为不同的值,则A.当m B=m A时,碰后B球的速度最大B.当m B=m A时,碰后B球的动能最大C.在保持m B>m A的条件下,m B越小,碰后B球的速度越大D.在保持m B<m A的条件下,m B越大,碰后B球的动量越大二、填空题.把答案填在题中的横线上,只要给出结果,不需写出求得结果的过程.6.(10分)用国家标准一级螺旋测微器(直标度尺最小分度为0.5mm,丝杆螺距为0.5mm,套管上分为50格刻度)测量小球直径.测微器的初读数如图(a)所示,其值为_____mm,测量时如图(b)所示,其值为_____mm,测得小球直径d=___________mm.7.(10分)为了缓解城市交通拥问题,杭州交通部门在禁止行人步行的十字路口增设“直行待区”(行人可从天桥或地下过道过马路),如图所示.当其他车道的车辆右拐时,直行道上的车辆可以提前进入“直行待行区”;当直行绿灯亮起时,可从“直行待行区”直行通过十字路口.假设某十字路口限速50km/h,“直行待行区”的长度为12m,从提示进入“直行待行区”到直行绿灯亮起的时间为4s.如果某汽车司机看到上述提示时立即从停车线由静止开始匀加速直线运动,运动到“直行待行区”的前端虚线处正好直行绿灯亮起,汽车总质量为1.5t,汽车运动中受到的阻力恒为车重的0.1倍,则该汽车的行驶加速度为_________;在这4s内汽车发动机所做的功为_____________(取g=10m/s2)8.(10分)如图所示,两个薄透镜L1和L2共轴放置,已知L1的焦距f1=f,L2的焦距f2=―f,两透镜间的距离也是f,小物体位于物面P上,物距u1=3f.(1)小物体经过这两个透镜成的像在L2的_____边,到L2的距离为________,是______像(填“实”或“虚”)、_______像(填“正”或“倒”),放大率为___________.(2)现把两个透镜位置调换,若还要使给定的原物体在原像处成像,两透镜作为整体应沿光轴向______边移动距离_________.这个新的像是______(填“实”或“虚”)、______像(填“正”或“倒”),放大率为__________.9.(10分)图中所示的气缸壁是绝热的.缸内隔板A是导热的,它固定在缸壁上.活塞B是绝热的,它与缸壁的接触是光滑的,但不漏气.B的上方为大气.A与B之间以及A与缸底之间都盛有n mol的同种理想气体,系统在开始时处于平衡状态.现通过电炉丝E对气体缓慢加热,在加热过程中,A、B之间的气体经历____过程.A以下气体经历____过程;气体温度每上升1K,A、B之间的气体吸收的热量与A以下气体净吸收的热量之差等于_____.已知普适气体常量为R.10.(10分)字宙空间某区域有一磁感应强度大小为B=1.0×10-9T的均匀磁场,现有一电子绕磁力线做螺旋运动.该电子绕磁力线旋转一圈所需的时间间隔为_____s;若该电子沿磁场方向的运动速度为1.0×10-2c(c为真空中光速的大小),则它在沿磁场方向前进1.0×10-3光年的过程中,绕磁力线转了_____圈. 已知电子电荷量为1.60×10 -19C,电子质量为9.11×10-31kg.三、计算题,计算题的解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后结果的不能得分.有数值计算的,答案中必须明确写出数值和单位.11.(15分)如图所示,一水平放置的厚度为t折射率为n的平行玻璃砖,下表面镀银(成反射镜).一物点A位于玻璃砖的上方距玻璃砖的上表面为h处.观察者在A点附近看到了A点的像.A点的像到A点的距离等于多少?不考虑光经玻璃砖上表面的反射.12.(20分)通常电容器两极板间有多层电介质,并有漏电现象.为了探究其规律性,采用如图所示的简单模型,电容器的两极板面积均为A.其间充有两层电介质l和2,第1层电介质的介电常数、电导率(即电阻率的倒数)和厚度分别为ε1、σ1和d1,第2层电介质的则为ε2、σ2和d2.现在两极板加一直流电压U,,电容器处于稳定状态.(1)画出等效电路图;(2)计算两层电介质所损耗的功率;(3)计算两介质交界面处的净电荷量;提示:充满漏电电介质的电容器可视为一不漏电电介质的理想电容和一纯电阻的并联电路.13. (20分)如图所示,一绝缘容器内部为长方体空胶,其长和宽分别为a和b,厚度为d,其两侧等高处装有两根与大气相通的玻璃管(可用来测量液体两侧的压强差).容器内装满密度为ρ的导电液体,容器上下两端装有铂电极A和C,这样就构成了一个液体电阻,该液体电阻置于一方向与容器的厚度方向平行的均匀恒定的磁感应强度为B的磁场中,并通过开关K接在一电动势为ε、内阻为r的电池的两端,闭合开关.若稳定时两侧玻璃管中液面的高度差为h,求导电液体的电导率σ.重力加速度大小为g.14.(20分)lmol的理想气体经历一循环过程l—2—3—1,如p—T图示所示.过程l—2是等压过程,过程3—1是通过p—T图原点的直线上的一段,描述过程2—3的方程为 c1p2 + c2p =T,式中c1和c2都是待定的常量,p和T分别是气体的压强和绝对温度.已知,气体在状态l的压强、绝对温度分别为p1和T1.气体在状态2的绝对温度以及在状态3的压强和绝对湿度分别为T2以及p3和T3.气体常量R也是已知的.(1)求常量c1和c2的值;(2)将过程l—2—3—1在p—V图示上表示出来;(3)求该气体在一次循环过程中对外做的总功.15. (20分)一个ω介子飞行时衰变成静止质量均为m的三个π介子,这三个π介子的动量共面.已知:衰变前后介子运动的速度都远小于光在真空中的速度c;衰变后的三个π介子的动能分别为T1、T2和T3,且第一、二个π介子飞行方向之间的夹角为θl,第二、三个π介子飞行方向之间的夹角为θ2(如图所示);介子的动能等于介子的能量与其静止时的能量(即其静止质量与c2的乘积)之差.求ω介子在衰变前的辨阀的飞行方向(用其飞行方向与衰变后的第二个介子的飞行方向的夹角即图中的φ角表示)及其静止质量.16. (25分)一圈盘沿顺时针方向绕过圆盘中心O并与盘面垂直的固定水平转轴以匀角速度ω=4.43rad/s转动.圆盘半径r=1.00m,圆盘正上方有一水平天花板.设圆盘边缘各处始终有水滴被甩出.现发现天花板上只有一点处有水.取重力加速度大小g=9. 80m/s 2.求(1)天花板相对于圆盘中心轴O 点的高度;(2)天花板上有水的那一点的位置坐标,参考答案与评分标准一、1. (D) 2. (C) 3. (AD) 4. (A) 5. (BCD)二、6. 0.022~0.024mm (3分);3.772~3.774mm(3分);3.748~3.752mm(4分) (若有效位数错,无分)7. 1.5m/s 2(5分);4.5×104J(5分)8. (1)右,f ,实,倒,1 (每空1分) (2)左,2f ,实,倒,1 (每空1分)9. 等压(2分);等容(2分);nR(6分)10. 3.6×10-2(5分);8.8×107(5分)三、11. (15分) 由折射定律得:sin θi = sin θd …①由几何关系得:x 1=htan θi …②,x 2=htan θd …③,H=2(x 1+x 2)tan(900―θi )…④,H 为物A 到像A /的距离,在小角度近似下有:tan θi ≈sin θi ,tan θd ≈sin θd ,tan(900―θi )≈1 sin θi…⑤,联立以上各式得:H=2(h+t n) …⑥ 评分标准:①式3分,②③④式各2分,⑤⑥各3分12. (20分)(1)等效电路如图所示(2)等效电容C 1和C 2为:C 1=ε1A d 1,C 2=ε2A d 2…① 等效电阻R 1和R 2为: R 1=d 1σ1 A ,R 2=d 2σ2 A…② 两层电介质所消粍的功率为:P=U 2 R 1+R 2=U 2A σ1σ2 d 1σ2+d 2σ1…③ (3)没两层介质各自上下界面之间的电压分别为U 1和U 2,上层介质界面上的电荷为:Q 1=C U 1=ε1A d 1·UR 1R 1+R 2=ε1σ2AU d 1σ2+d 2σ1…④, 下层介质界面上的电荷为:Q 2=ε2σ1AU d 1σ2+d 2σ1…⑤两层介质交界面处的净电荷量为:Q=Q 1―Q 2=(ε1σ2―ε2σ1)AU d 1σ2+d 2σ1…⑥ 评分标准:第(1)问4分(可不标字母、箭头),第(2)问9分,①②③式各3分,第(3)问7分,④⑤式各2分,⑥式3分13. (20分)沿着电流I 的方向液柱长度为a ,该液柱受到的安培力大小为:F 安=BIa …① 液柱两侧面受到的由压强差产生的压力大小为:F P =ρghad …②水平方向上二力平衡,有:F 安= F P …③,由欧姆定律得:ε=I(R+r) …④,式中R=a σbd…⑤ 由以上各式解得:σ =ρgha b(B ε―r ρghd)…⑥ 评分标准:①式4分,②③④⑤式各3分,⑥式4分14. (20分)(1)设气体在状态i(i=1、2和3)下的压强、体积和绝对温度分别为p i 、V i 和T i ,由题设条件有: c 1p 22 + c 2p 2 =T 2 …①,c 1p 32 + c 2p 3 =T 3 …②由此解得:c 1=T 2p 3―T 3p 2 p 22p 3―p 32p 2=T 2p 3―T 3p 1 p 12p 3―p 32p 1 …③,c 1=T 2p 32―T 3p 22 p 2p 32―p 22p 3=T 2p 32―T 3p 12p 1p 33―p 12p 3…④ (2)利用气体状态方程pV=RT ,以及V 1=R T 1p 1,V 2=R T 2p 2,V 3=R T 3p 3…⑤ 可将过程2―3的方程为:p V 2―V 3 p 2―p 3=V+V 2p 3―V 3p 2 p 2―p 3…⑥ 可见,在p ―V 图上过程2―3是以(p 2,V 2)和(p 3,V 3) 为状态端点的直线段,过程3―1是通过原点直线上的一段,因而描述其过程的方程为:p T=c 3 …⑦,式中c 3是一常量,利用气体状态方程pV=RT ,可将过程3—1的方程改写为:V=R c 3=V 3=V 1 …⑧,这是以(p 3,V 1)和(p 1,V 1)为状态端点的等容降压过程.综上所述,过程1―2―3―1在p ―V 图上是一直角三角形,如图所示.(3)气体在一次循环过程中对外做的总功为:W=―12(p 3―p 1)( V 2―V 1) …⑨ 利用气体状态方程pV=RT 和⑤式,上式即W=―12R(T 2―T 1)(p 3p 1―1) …⑩ 评分标准:第(1)问8分,①②③④式各2分;第(2)问10分,⑤⑥式各2分,过程1―2―3―1在p ―V 上的图示正确得6分;第(3)问2分,⑩式2分.15. (20分)以第二个π介子的飞行方向为x轴,以事件平面为x―y平面,设衰变前ω介子和衰变后三个π介子的动量大小分别为Pω、P1、P2和P3,衰变前后粒子在x和y方向的动量分别守恒,有:Pωcosφ= P1cosθ1+P2+ P3cosθ2 …⑴,―Pωsinφ= ―P1sinθ1+ P3sinθ2 …⑵衰变前后粒子的总能量守恒,有:mωc2+Tω=(mc2+T1)+( mc2+T2)+( mc2+T3) …⑶,式中左端和右端三个括号内的分别是衰变前ω介子的总能量(静能和动能之和)和衰变后三个π介子的总能量,动能可由动量和静质量表示:Tω=pω22mω…⑷,T1=p122m…⑸,T2=p222m…⑹,T3=p322m…⑺分别由⑤⑥⑦式得p1=2mT1…⑻,p2=2mT2…⑼,p3=2mT3…⑽联立①②⑧⑨⑩式得:φ=arctanT1sinθ1―T3sinθ2T1cosθ1+T2+ T3cosθ2…⑾Pω2=2m(T1+T2+T3)+4m T1T3cos(θ1+θ2)+T1T2cosθ1+T2T3cosθ2] …⑿由③④式得:2mω2c2―2mω(3mc2+T1+T2+T3)+2m(T1+T2+T3)+4m[T1T3cos(θ1+θ2)+T1T2cosθ1+T2T3 cosθ2]=0 …⒀其解为mω=32m+12c2(T1+T2+T3)+[32m+12c2(T1+T2+T3)]2―Pω22c2…⒁式中pω2由⑿式给出。