18.2.1矩形的判定训练案
【素养目标】人教版数学八年级下册18.2.1.2 矩形的判定教案(表格式)

第2课时矩形的判定教学设计课题矩形的判定授课人素养目标1.理解并掌握矩形的判定方法.2.通过互逆命题提出猜想,验证矩形的判定定理,培养学生分析问题和解决问题的能力.3.使学生能应用矩形的判定方法进行证明和计算.教学重点矩形判定定理的理解与应用教学难点矩形的判定定理与性质定理的区别和联系.教学活动教学步骤师生活动活动一:创设情境,导入新课设计意图通过生活情境探究矩形的判定,这也是矩形的概念.【情境导入】同学们我们首先回忆一下:1.矩形的概念:有一个角是直角的平行四边形叫做矩形.2.矩形的性质:矩形的四个角都是直角;矩形的对角线相等.矩形的概念可以用于判定矩形,我们来看一看下面的一个例子:工人师傅做铝合金窗框,分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料,如图①,使AB=CD,EF=GH;(2)摆放成如图②所示的四边形,则这时窗框的形状是平行四边形,根据的数学道理是两组对边分别相等的四边形是平行四边形;(3)将直角尺靠窗框的一个角,如图③,调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时,如图④,说明窗框合格,这时窗框是矩形,根据的数学道理是有一个角是直角的平行四边形叫做矩形.概念可以判定矩形,比照平行四边形的判定,那矩形性质的逆命题是不是也可以用于矩形的判定呢?我们来看下.【教学建议】让学生根据生活情境,清晰地了解到矩形是由平行四边形的一个角转变成直角演变而来的,这是矩形的判定,也是它的概念.活动二:动手验证,探究新知设计意图通过置疑材料引发同学的思考,引导学生先想到平行四边形,再想到矩形.探究点1对角线相等的平行四边形是矩形如图,为了防蚊虫,数学老师为自己的宿舍门定制了一扇矩形形状的纱门.安装师傅上门安装时,数学老师只利用卷尺测量了两组对边的长度是否分别相等,又测量了两条对角线的长度是否相等,就犀利地指出该纱门不规正,要求重新制作.同学们想一想,数学老师是如何判断纱门不是矩形的?我们可以这么思考:1.为什么测量两组对边的长度是否分别相等?答:两组对边分别相等的四边形是平行四边形.2.为什么测量两条对角线的长度是否相等?答:由矩形的对角线相等的性质,我们猜测:对角线相等的平行四边形是矩形.下面我们来验证我们的判断:【教学建议】(1)让学生思考,教师总结矩形的判定定理.(2)提醒学生:对角线相等的四边形不一定是矩形,必须对角线互相平分且相等的四边形才是矩形,换句话说,这一条件必须建教学步骤师生活动设计意图利用逆向思维思考性质,让同学们在解决问题的过程中总结判定定理.已知:如图,四边形ABCD是平行四边形,且AC=BD.求证:四边形ABCD是矩形.证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.又AC=DB,BC=CB,∴△ABC≌△DCB(SSS),∴∠ABC=∠DCB.∵AB∥DC,∴∠ABC+∠DCB=180°.∴∠ABC=90°,∴四边形ABCD是矩形.归纳总结:对角线相等的平行四边形是矩形.几何语言:∵四边形ABCD是平行四边形,且AC=BD,∴四边形ABCD是矩形.【对应训练】教材P55练习.探究点2有三个角是直角的四边形是矩形前面我们研究了矩形的四个角,知道它们都是直角.它的逆命题成立吗?即四个角都是直角的四边形是矩形吗?进一步,至少有几个角是直角的四边形是矩形?我们一起来验证一下:已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.证明:∵∠A=∠B=∠C=90°,∴∠A+∠B=180°,∠B+∠C=180°.∴AD∥BC,AB∥CD.∴四边形ABCD是平行四边形.又∠A=90°,∴四边形ABCD是矩形.归纳总结:有三个角是直角的四边形是矩形.几何语言:∵∠A=∠B=∠C=90°,∴四边形ABCD是矩形.【对应训练】如图,在△ABC中,∠ACB=90°,D是AB的中点,DF,DE分别是△BDC,△ADC的角平分线.求证:四边形DECF是矩形.证明:∵∠ACB=90°,D是AB的中点,∴AD=CD=BD.∵DE是△ADC的角平分线,∴DE⊥AC.∴∠DEC=90°.同理得∠CFD=90°.又∠ACB=90°,∴四边形DECF是矩形.立在平行四边形的基础上.【教学建议】引导学生逆向思考,告诉学生要判定矩形只要知道三个角是直角就足够了,因为由四边形内角和定理,很容易知道第四个角也是直角.另外提醒学生:只有“有三个角是直角的四边形是矩形”这一判定定理是在四边形的基础上进行,另外两个判定方法均在平行四边形的基础上进行.活动三:运用新知,巩固提升设计意图巩固学生对矩形判定定理的掌握情况. 例(1)(教材P54例2)如图①,在ABCD中,对角线AC,BD相交于点O,且OA=OD,∠OAD=50°.求∠OAB的度数.(2)(教材P54例2变式题)如图②,已知ABCD的对角线AC,BD相交于点O,△AOB是等边三角形,AB=4 cm,求ABCD的面积.分析:(1)先证明ABCD是矩形,再根据矩形的四个内角均为90°,【教学建议】提醒学生:矩形的两条对角线将矩形分成两对全等的等腰三角形,在解题时常用到等腰三角形的性质.教学步骤师生活动即可求出∠OAB 的度数. (2) 先证明ABCD 是矩形,再结合勾股定理求相应线段长,进而求出面积.解:(1)∵四边形ABCD 是平行四边形,∴OA =OC =12AC ,OB =OD =12BD.又OA =OD ,∴AC =BD.∴四边形ABCD 是矩形. ∴∠DAB =90°.又∠OAD =50°,∴∠OAB =40°.(2)∵四边形ABCD 是平行四边形,∴AO =12AC ,BO =12BD.∵△AOB 是等边三角形,∴AO =BO =AB =4 cm .∴AC =BD =8 cm . ∴ABCD 是矩形.∴∠ABC =90°. 在Rt △ABC 中,∵AB =4 cm ,AC =8 cm , ∴BC =AC 2-AB 2=82-42=43(cm ). ∴矩形ABCD 的面积为4×43=163(cm 2). 【对应训练】1.依据所标数据,下列不一定是矩形的是( B )2.如图,在ABCD 中,对角线AC ,BD 相交于点O ,AC ⊥AB ,∠AOB =60°,E ,F 分别是OB ,OD 的中点,连接AE ,CE ,CF ,AF. (1)求证:四边形AECF 为矩形; (2)若AB =3,求矩形AECF 的面积. (1)证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD.∵E ,F 分别是OB ,OD 的中点,∴OE =12OB ,OF =12OD.∴OE =OF ,∴四边形AECF 是平行四边形.∵AC ⊥AB ,∠AOB =60°,∴∠BAO =90°,∠ABO =30°,∴OA =12OB =OE. ∴AC =EF ,∴AECF 为矩形.(2)解:由(1)得OA =OE =OC =OF ,∠AOB =60°,∠ABO =30°, ∴△OAE 是等边三角形,∠OFA =∠OAF =12∠AOB =30°=∠ABO.∴AE =OA ,AF =AB =3.在Rt △OAB 中,由勾股定理易得OA =3,∴AE =OA = 3. ∴矩形AECF 的面积=AF·AE =3 3.教学步骤 师生活动 活动四:随堂训解题方法:判定一个四边形是矩形时,首先要分清是在四边形的基础上还是在平行四边形的基础上判定,然后再根据已知条件选择合理的方法.注意:(1)对角线相等的四边形不一定是矩形(如等腰梯形). (2)对角线相等且互相平分的四边形是矩形.(3)两组对边分别平行且对角线相等的四边形是矩形.例1 如图,C 是BE 的中点,四边形ABCD 是平行四边形.(1)求证:四边形ACED 是平行四边形;(2)若AB =AE ,求证:四边形ACED 是矩形.证明:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,且AD =BC.∵C 是BE 的中点,∴BC =CE ,∴AD =CE.∵AD ∥CE ,∴四边形ACED 是平行四边形.(2)∵四边形ABCD 是平行四边形,∴AB =DC.∵AB =AE ,∴DC =AE. 又四边形ACED 是平行四边形,∴四边形ACED 是矩形. 例2 如图,ABCD 的四个内角的平分线分别相交于点E ,F ,G ,H.求证:四边形EFGH 是矩形.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC.∴∠DAB +∠ABC =180°. 又AE 平分∠DAB ,BG 平分∠ABC ,∴∠EAB +∠ABG =12×180°=90°.∴∠EFG =∠AFB =90°.同理可证∠AED =∠BGC =90°.∴四边形EFGH 是矩形.例3 如图,在△ABC 中,O 是AC 边上一个动点,过点O 作直线M N ∥BC ,设M N 交∠BCA 的平分线于点E ,交△BCA 的外角平分线于点F.练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:矩形的判定方法有哪几种? 【知识结构】【作业布置】1.教材P 60习题18.2第1,2,3,8,14题. 2.相应课时训练.板书设计18.2.1 矩形 第2课时 矩形的判定1.矩形的概念.2.矩形的判定定理1. 3.矩形的判定定理2.教学反思本节课的主要任务是探究矩形的三个判定方法,教学过程中应将矩形的判定与平行四边形的判定作比较,让同学之间相互交流,说出矩形与平行四边形的区别与联系,进而更好地掌握知识.教师安排对应的判定方法训练题巩固新知,学生需要根据已知条件灵活选用判定方法,提升分析问题和解决问题的能力.(1)求证:OE =OF ;(2)若CE =12,CF =5,求OC 的长;(3)当点O 在AC 上运动到什么位置,四边形AECF 是矩形?请说明理由.(1)证明:∵CF 平分∠ACD ,且M N ∥BD ,∴∠ACF =∠FCD =∠CFO ,∴OF =OC. 同理可证OC =OE ,∴OE =OF. (2)解:由(1)知OF =OC =OE ,∴∠OCF =∠OFC ,∠OCE =∠OEC ,∴∠OCF +∠OCE =∠OFC +∠OEC.又∠OCF +∠OCE +∠OFC +∠OEC =180°,∴∠ECF =∠OCF +∠OCE =90°.∴EF =CE 2+CF 2=122+52=13,∴OC =12EF =132.(3)解:当点O 运动到AC 的中点处时,四边形AECF 为矩形.理由如下:当点O 运动到AC 的中点处时,OA =OC.由(1)知OE =OF ,∴四边形AECF 为平行四边形.由(2)知∠ECF =90°,∴四边形AECF 为矩形.例1 如图,在ABCD 中,对角线AC 与BD 相交于点O ,且M ,N 分别为OA ,OC 的中点,连接并延长BM 至点E ,使EM =BM ,连接DE ,D N .(1)求证:△AMB ≌△C N D ;(2)若BD =2AB ,且AB =5,D N =4,求四边形DEM N 的面积.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,OA =OC.∴∠BAM =∠DC N又M ,N 分别为OA ,OC 的中点,∴AM =OM =12OA ,C N =O N =12OC.∴AM =C N .在△AMB 和△C N D 中,⎩⎪⎨⎪⎧AM =CN ,∠BAM =∠DCN ,AB =CD ,∴△AMB ≌△C N D(SAS ).(2)解:∵△AMB ≌△C N D ,∴BM =D N ,∠ABM =∠CD N .∵BM =EM ,∴D N =EM.∵AB ∥CD ,∴∠ABO =∠CDO.∴易得∠MBO =∠N DO.∴EM ∥D N .∴四边形DEM N 是平行四边形.∵四边形ABCD 是平行四边形,∴BD =2OB.∵BD =2AB ,∴AB =OB. 又M 是AO 的中点,∴BM ⊥AO.∴∠EM N =90°.∴四边形DEM N 是矩形.∵AB =5,D N =BM =4,∴AM =AB 2-BM 2=52-42=3.由(1)知OM =AM =12OA ,O N =C N =12OC ,OA =OC ,∴M N =OM +O N =2AM =6.∴矩形DEM N 的面积为M N ·D N =6×4=24.例2 如图,ABCD 的对角线AC ,BD 相交于点E ,G 为AD 的中点,CG 的延长线交BA 的延长线于点F ,连接FD.(1)求证:AB =AF ;(2)若AG =AB ,∠BCD =120°,判断四边形ACDF 的形状,并证明你的结论.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∴∠AFG =∠DCG. ∵G 为AD 的中点,∴AG =DG.又∠AGF =∠DGC ,∴△AGF ≌△DGC ,∴AF =DC ,∴AB =AF.(2)解:四边形ACDF 是矩形.证明:∵AF =CD ,AF ∥CD ,∴四边形ACDF 是平行四边形.∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°.∵AB=AG=AF,∴△AFG是等边三角形,∴AG=FG.∵△AGF≌△DGC,∴FG=CG.∵AG=DG,∴易得AD=CF,∴四边形ACDF是矩形.。
八年级数学下册:18.2.1矩形的判定学案

课题:18.2.1矩形的判定学习目标:1、理解矩形判定的探究过程。
2、掌握矩形判定定理的应用。
教学重点:矩形的判定定理教学难点:定理的证明方法及运用一.预习导学矩形的定义及性质:预习P53-P54,完成下列问题:1.下列说法错误的是()(A)有一个内角是直角的平行四边形是矩形(B)矩形的四个角都是直角,并且对角线相等(C)对角线相等的平行四边形是矩形(D)有两个角是直角的四边形是矩形2.平行四边形内角平分线能够围成的四边形是()(A)梯形(B)矩形(C)正方形(D)不是平行四边形3.如图,E,F,G,H分别是四边形ABCD四条边的中点,要使四边形EFGH 为矩形,四边形ABCD应具备的条件是().(A)一组对边平行而另一组对边不平行;(B)对角线相等(C)对角线互相垂直; (D)对角线互相平分4.矩形的判定方法:(作图、证明)二、课堂导学5、已知□ABCD的对角线AC,BD交于点O,△AOB是等边三角形,AB=4cm.(1)平行四边形是矩形吗?说明你的理由.(2)求这个平行四边形的面积.6、如图,以△ABC的三边为边,在BC•的同侧分别作3•个等边三角形,•即△ABD、△BCE、△ACF.请回答问题并说明理由:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?二次备课教案:三、自主检测1.在□ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC,求证:四边形AFCE是矩形2如图,BO是Rt△ABC斜边上的中线,延长BO至点D,使BO=DO,连结AD,CD,•则四边形ABCD是矩形吗?请说明理由.3.如图所示,在四边形ABCD中,∠A=∠ABC=90°,BD=CD,E是BC的中点,求证:•四边形ABED是矩形.4.如图所示,在平行四边形ABCD中,M是BC的中点,∠MAD=∠MDA,求证:四边形ABCD是矩形.5、如图,M、N分别是平行四边形ABCD对边AD、BC的中点,且AD=2AB,求证,四边形PMQN是矩形。
八年级数学下册 18.2.1《矩形》矩形的判定导学案(新版)新人教版

八年级数学下册 18.2.1《矩形》矩形的判定导学案(新版)新人教版18、2、1《矩形》矩形的判定学习目标:1、理解并掌握矩形的判定方法、2、能熟练应用矩形的性质、判定等知识进行有关证明和计算、重点:会证明矩形的判定定理难点:会运用矩形的三种判定方法解决相关问题。
学习过程:一、自主探究探究一:下面给大家介绍一下工人制作窗框的过程、1、先截出两对符合规格的铝合金窗料如图,使AB=CD,EF=GH2、摆成四边形(如第2个图),这时窗框的形状是平行四边形,依据的数学道理是_________________________是平行四边形、3、将直角尺紧靠窗框的一个角(如第3个图),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时,说明窗框合格,这时窗框是矩形,依据的数学道理是__________________________ 是矩形、探究二:1、除了上面制作矩形的方法外,还有其他的方法吗?请你画一个矩形;、交流画矩形的方法,得到矩形的判定方法;(自学教材54页)矩形的判定定理(1)__________________________________几何语言:∵_______________________________∴_______________________________矩形的判定定理(2)__________________________________几何语言:∵_______________________________∴_______________________________证明矩形的判定定理(1)已知:求证:证明:证明矩形的判定定理(2)已知:求证:证明:探究三:二、典例展示三、巩固练习。
18.2.1矩形的性质和判定(教案)

一、教学内容
本节课选自高中数学教材选修18.2.1节“矩形的性质和判定”。教学内容主要包括以下两部分:
1.矩形的性质:讨论矩形的定义及基本性质,如对边平行且相等、对角线互相平分且相等、四个角都是直角等。
2.矩形的判定:学习如何判断一个四边形是否为矩形,包括以下几种情况:
在新课讲授中,我尝试通过案例分析和重点难点解析来帮助学生深入理解矩形的概念。我发现,通过具体的例子和图形展示,学生们更容易接受和理解这些几何性质。然而,我也意识到,对于一些学生来说,将理论知识应用到实际问题中仍然是一个挑战。
实践活动环节,分组讨论和实验操作非常受欢迎,学生们积极参与,热烈讨论。但在小组讨论中,我也注意到有些小组在解决问题时,思路不够清晰,需要更多的引导。这可能是因为他们对矩形性质的应用还不够熟练,或者是团队合作和交流能力还有待提高。
3.提升数学抽象和模型构建能力,通过矩形的性质和判定在实际问题中的应用,培养学生将现实问题转化为数学模型的能力。
4.增强数学运算和数据处理能力,让学生在解决矩形相关问题时,熟练运用几何知识和数学符号进行推导和计算。
5.培养团队合作和交流表达能力,通过小组讨论和课堂展示,提高学生在数学学习中的沟通与合作能力。
同学们,今天我们将要学习的是“18.2.1矩形的性质和判定”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过哪些物体或图形是矩形的?”(如桌子、书本等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索矩形的性质和判定的奥秘。
三、教学难点与重点
1.教学重点
(1)矩形的定义及性质:理解矩形的定义,掌握矩形的对边平行且相等、对角线互相平分且相等、四个角都是直角等基本性质。
人教版八年级下册数学学案:18.2.1矩形的判定

1 / 5矩形的判定【抽测】已知:如图所示矩形ABCD 中,,那么两条对角线所成锐角 ∠AOB为什么?【学习目标】1、理解并掌握矩形的判定方法。
2、应用矩形的定义、判定等知识,解决简单的证明题。
【自主学习】阅读教材:第107-109页。
1、知识点一:探究“对角线相等的平行四边形是矩形。
” 如图在□ABCD 中,对角线AC 、BD 相交于O ,如果AC=BD 求证:□ABCD 是矩形。
证明:□ABCD 是平行四边形∴AB=CD ,AB ∥( ) ∴∠ABC+∠DCB=180︒ 在△ABC 和△DCB 中= ==∴△ABC ≌△DCB ( ) ∴∠ABC=∠DCB∴∠ABC= ︒∴□ABCD 是矩形 ( )2、知识点二:探究“三个角都是直角的四边形是矩形。
”逻辑证明“有三个角是直角的四边形...是矩形。
” 已知: 在四边形ABCD 中∠A=∠B=∠C=90︒ 求证:四边形ABCD 矩形 证明:∵∠A+∠B+∠C+∠D= ︒ 而∠A=∠B=∠C=90︒∴ ∠D= ︒B A2 / 5∴ = = =∴四边形ABCD 是 平行四边形 ( ) ∴四边形ABCD 矩形 ( )归纳:矩形的判定方法:1.(定义) ;2. ;3. 。
【小试牛刀】1、 如图,□ABCD 中,AB= 6,BC= 8,AC= 10 , 求证 : □ABCD 是矩形。
2、已知:□ABCD 的AC 、BD 对角线相交于O ,△AOB 是等边三角形,AB=4cm, 求这个平行四边形的面积。
3、 如果平行四边形四个内角的平分线能够围成一个四边形,那么这个四边形是矩形.【专题提升】Rt ΔABC 中∠C=90°,AC=6,BC=8,E 为AB 上一BAB DF CB3 / 5动点,ED ⊥BC 于D ,EF ⊥AC 于F 求DF 的最小值。
【当堂反馈】1、填空。
(1)、某天邻居张大爷想为他家的厨房做扇新门,小明随做木匠的爸爸一起来到张大爷家,小明爸爸说:“我先测测这个门框是否变形。
人教版八下数学18.2.1矩 形 课时2 矩形的判定教案+学案

人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 矩形课时2矩形的判定教案【教学目标】知识与技能目标1.理解并掌握矩形的判定方法.2.使学生能应用矩形的定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.过程与方法目标1.从矩形性质定理的逆命题出发,提出猜想,发现结论,然后给出证明,进一步理解互逆命题的意义,体会矩形的性质与判定的区别与联系.2.让学生经历探索矩形判定定理的过程,理解并掌握矩形的判定方法,积累几何学习的经验,发展合情推理和演绎推理的能力.情感、态度与价值观目标在课堂活动中,通过观察、思考、猜想、证明,培养学生主动参与、乐于探究、勤于动手的学习习惯.【教学重点】矩形判定定理的运用.【教学难点】矩形判定方法的理解及应用.【教学准备】教师准备:教学中出示的教学插图和例题.学生准备:复习矩形的定义及其性质.【教学过程设计】一、情境导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分;2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究知识点一:有一个角是直角的平行四边形是矩形例1如图,在△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E.求证:四边形ADCE是矩形.解析:首先利用外角性质得出∠B=∠ACB=∠F AE=∠EAC,进而得到AE∥BC,即可得出四边形AEDB是平行四边形,再利用平行四边形的性质得出四边形ADCE是平行四边形,再根据AD是高即可得出四边形ADCE是矩形.证明:∵AB=AC,∴∠B=∠ACB.∵AE是△BAC的外角平分线,∴∠F AE =∠EAC.∵∠B+∠ACB=∠F AE+∠EAC,∴∠B=∠ACB=∠F AE=∠EAC,∴AE∥BC.又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD.又∵AB=AC,AD⊥BC,∴BD=DC,∴AE平行且等于DC,故四边形ADCE 是平行四边形.又∵∠ADC=90°,∴平行四边形ADCE是矩形.方法总结:平行四边形的判定与性质以及矩形的判定常综合运用,解题时利用平行四边形的判定得出四边形是平行四边形再证明其中一角为直角即可.知识点二:对角线相等的平行四边形是矩形例2如图,在平行四边形ABCD中,对角线AC、BD相交于点O,延长OA 到N,ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.解析:首先由平行四边形ABCD可得OA=OC,OB=OD.若ON=OB,那么ON=OD.而CM=AN,即ON=OM.由此可证得四边形NDMB的对角线相等且互相平分,即可得证.证明:∵四边形ABCD为平行四边形,∴AO=OC,OD=OB.∵AN=CM,ON=OB,∴ON=OM=OD=OB,∴MN=BD,∴四边形NDMB为矩形.方法总结:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.知识点三:有三个角是直角的四边形是矩形例3如图,▱ABCD各内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.解析:利用“有三个内角是直角的四边形是矩形”证明四边形EFGH是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∵AH,BH分别平分∠DAB与∠ABC,∴∠HAB=12∠DAB,∠HBA=12∠ABC,∴∠HAB+∠HBA=12(∠DAB+∠ABC)=12×180°=90°,∴∠H=90°.同理∠HEF=∠F=90°,∴四边形EFGH是矩形.方法总结:题设中隐含多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.探究点四:矩形的性质和判定的综合运用【类型一】矩形的性质和判定的运用例4如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.解析:(1)证明四边形EFGH对角线相等且互相平分;(2)根据题设求出矩形的边长CD和BC,然后根据矩形面积公式求得.(1)证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD.∵AE=BF=CG=DH,∴AO-AE=OB-BF=CO-CG=DO-DH,即OE=OF=OG=OH,∴四边形EFGH是矩形;(2)解:∵G是OC的中点,∴GO=GC.∵DG⊥AC,∴∠DGO=∠DGC=90°.又∵DG=DG,∴△DGC≌△DGO,∴CD=OD.∵F是BO中点,OF=2cm,∴BO=4cm.∵四边形ABCD是矩形,∴DO=BO=4cm,∴DC=4cm,DB=8cm,∴CB=DB2-DC2=43cm,∴S矩形ABCD=4×43=163(cm2).方法总结:若题设条件与这个四边形的对角线有关,要证明一个四边形是矩形,通常证这个四边形的对角线相等且互相平分.【类型二】矩形的性质和判定与动点问题例5如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?解析:(1)设经过t s时,四边形PQCD是平行四边形,根据DP=CQ,代入后求出即可;(2)设经过t′s时,四边形PQBA是矩形,根据AP=BQ,代入后求出即可.解:(1)设经过t s,四边形PQCD为平行四边形,即PD=CQ,所以24-t =3t,解得t=6;(2)设经过t′s,四边形PQBA为矩形,即AP=BQ,所以t′=26-3t′,解得t′=13 2.方法总结:①证明一个四边形是平行四边形,若题设条件与这个四边形的边有关,通常证这个四边形的一组对边平行且相等;②题设中出现一个直角时,常采用“有一角是直角的平行四边形是矩形”来判定矩形.三、教学小结师生一起归纳总结:矩形的判定方法分两类:从四边形来判定和从平行四边形来判定.常用的判定方法有三种:①矩形的定义:有一个角是直角的平行四边形是矩形;②矩形的判定定理:对角线相等的平行四边形是矩形;③矩形的判定定理:三个角都是直角的四边形是矩形.四、学习检测1.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BEB.DE⊥DCC.∠ADB=90°D.CE⊥DE 解析:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,AB=CD,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形.A.∵AB=BE,AB=CD,∴BE=CD,∴平行四边形DBCE为矩形,故本选项错误;B.∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不可能是矩形,故本选项正确;C.∵∠ADB=90°,∴∠EDB=90°,∴平行四边形DBCE为矩形,故本选项错误;D.∵CE⊥DE,∴∠CED=90°,∴平行四边形DBCE为矩形,故本选项错误.故选B.2.工人师傅在做门框或矩形零件时,常用测量平行四边形两条对角线是否相等来检测直角的精度,工人师傅依据的几何道理是.解析:工人师傅根据“对角线相等的平行四边形是矩形”,通过测量平行四边形两条对角线是否相等可判断做的门框或零件是否为矩形,进而判断直角的精度.故填对角线相等的平行四边形是矩形.3.如图,要使平行四边形ABCD成为矩形,应添加的条件是(只填一个). 解析:∵有一个角是直角的平行四边形叫做矩形,∴可填∠ABC=90°(或其余三个内角中的一个为90°);又∵对角线相等的平行四边形是矩形,∴可填“AC=BD”.故可填∠ABC=90°(答案不唯一).4.如图所示,矩形ABCD的对角线AC,BD相交于O,E,F,G,H分别是OA,OB,OC,OD 的中点.求证:四边形EFGH是矩形.证明:∵矩形ABCD的对角线AC,BD相交于O,∴AO=BO=CO=DO.又∵E,F,G,H分别是OA,OB,OC,OD的中点,∴EO=FO=GO=HO.∴四边形EFGH为平行四边形,EG=HF,∴四边形EFGH是矩形.【板书设计】18.2 特殊的平行四边形 18.2.1 矩形课时2 矩形的判定1.矩形的判定有一角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.矩形的性质和判定的综合运用3.学习检测【教学反思】在本节数学课的教学中,不仅要让学生掌握矩形判定的几种方法,更要注重学生在学习的过程中是否真正掌握了探究问题的基本思路和方法.教师在例题练习的教学中,若能适当地引导学生多做一些变式练习,类比、迁移地思考、做题,就能进一步拓展学生的思维,提高课堂教学的效率.人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 矩形课时2矩形的判定学案【学习目标】1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理;2.能应用矩形的判定解决简单的证明题和计算题.【学习重点】经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理.【学习难点】能应用矩形的判定解决简单的证明题和计算题.【自主学习】一、知识回顾1.矩形的定义是什么?2.矩形有哪些性质?二、新知探究知识点1:二次根式的乘法想一想 1.类比平行四边形的定义也是判定平行四边形的一种方法,那么矩形的定义也是判定矩形的一种方法.除了定义以外,判定矩形的方法还有没有呢?2.上节课我们已经知道“矩形的对角线相等”,反过来,小明猜想对角线相等的四边形是矩形,你觉得对吗?如果不对,你的猜想是什么?对角线_______的__________________是矩形.证一证已知:如图,在□ABCD中,AC,DB是它的两条对角线, AC=DB.求证:□ABCD是矩形.证明:∵AB = DC,BC = CB,AC = DB,∴△ABC______△DCB ,∴∠ABC______∠DCB.∵AB∥CD,∴∠ABC + ∠DCB =______°,∴∠ABC = _______°,∴□ ABCD是__________.思考数学来源于生活,事实上工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,窗框一定是矩形,你现在知道为什么了吗?要点归纳:矩形的判定定理:对角线相等的平行四边形是矩形.几何语言描述:在平行四边形ABCD中,∵AC=BD,∴平行四边形ABCD是矩形.【典例探究】例1如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.【跟踪练习】1.如图,在▱ABCD中,AC和BD相交于点O,则下面条件能判定▱ABCD是矩形的是( )A.AC=BDB.AC=BCC.AD=BCD.AB=AD2.如图,在平行四边形ABCD中, ∠1= ∠2中.此时四边形ABCD是矩形吗?为什么?知识点2:有三个角是直角的四边形是矩形想一想 1.上节课我们研究了矩形的四个角,知道它们都是直角,它的逆命题是什么?成立吗?2.至少有几个角是直角的四边形是矩形?猜测:有_____个角是直角的四边形是矩形.证一证已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.证明:∵∠A=∠B=∠C=90°,∴∠A+∠B=_______°,∠B+∠C=_______°,∴AD_____BC,AB_____CD.∴四边形ABCD是______________,∴四边形ABCD是________.思考一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?要点归纳:矩形的判定定理:有三个角是直角的四边形是矩形.几何语言描述:在四边形ABCD中,∵∠A=∠B=∠C=90°,∴四边形ABCD是矩形.【典例探究】例3如图,□ ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形EFGH为矩形.例4 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,求证:四边形ADCE为矩形.【跟踪练习】在判断“一个四边形门框是否为矩形”的数学活动课上,一个合作学习小组的4位同学分别拟定了如下的方案,其中正确的是( )A.测量对角线是否相等B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三个角是否都为直角三、知识梳理内容矩形的判定定义:有一个角是直角的平行四边形是矩形.判定定理:对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.四、学习过程中我产生的疑惑【学习检测】1.下列说法错误的是( )A.对角线相等的四边形是矩形B.对角线相等的平行四边形是矩形C.有一个角是直角的平行四边形是矩形D.有三个角是直角的四边形是矩形A(解析:根据矩形的判定方法进行判断.)2.在四边形ABCD中,AC和BD的交点为O,则下列条件中不能判定四边形ABCD是矩形的是( )A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠BAD=90°C.∠BAD=∠BCD,∠ABC+∠ADC=180°,∠AOB=∠BOCD.AB∥CD,AB=CD,∠BAD=90°C(解析:AB=CD,AD=BC,由两组对边分别相等的四边形是平行四边形,知四边形ABCD是平行四边形,又AC=BD,由对角线相等的平行四边形是矩形知▱ABCD是矩形,故A正确;AO=CO,BO=DO,故四边形ABCD是平行四边形,又∠BAD=90°,故平行四边形ABCD是矩形,故B正确;AB∥CD,AB=CD,故四边形ABCD是平行四边形,又∠BAD=90°,故平行四边形ABCD是矩形,故D正确.故选C.)3.如果平行四边形各内角的平分线能够围成一个四边形,则这个四边形是( )A.正方形B.矩形C.梯形D.平行四边形B(解析:平行四边形相邻两角的平分线相交成直角,根据有三个角是直角的四边形是矩形可判断.故选B.)4.如图所示,E,F,G,H分别是四边形ABCD的四边中点,要使四边形EFGH为矩形,则四边形ABCD应具备的条件是( )A.一组对边平行而另一组对边不平行B.对角线相等C.对角线互相垂直D.对角线互相平分C(解析:由三角形的中位线平行于第三边并且等于第三边的一半知四边形EFGH 是平行四边形,由四边形ABCD的对角线互相垂直可得∠EFG=90°,根据有一个角是直角的平行四边形是矩形可解答.故选C.)5.要从一张长40 cm,宽20 cm的矩形纸片中剪出长为18 cm,宽为12 cm的矩形纸片,则最多能剪出( )A.1个B.2个C.3个D.4个C(解析:在矩形纸片的长上依次截取三个12 cm,再在纸片的宽上截取一个18 cm,可知共3个.故选C.)6.下列各句判定矩形的说法是否正确?(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有三个角都相等的四边形是矩形;(5)有三个角是直角的四边形是矩形;(6)四个角都相等的四边形是矩形;(7)对角线相等,且有一个角是直角的四边形是矩形;(8)一组对角互补的平行四边形是矩形.7.如图,在四边形ABCD中,AB∥CD,∠BAD=90°,AB=5,BC=12,AC=13.求证:四边形ABCD是矩形.8.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,延长CD到点E,使得DE=CD.连接AE,BE,求证四边形ACBE为矩形.证明:∵在△ABC中,∠ACB=90°,CD为AB边上的中线,∴AD=BD.∵DE=CD,∴四边形ACBE为平行四边形,又∵∠ACB=90°,∴四边形ACBE为矩形.9.如图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.10.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,BD,DE交BC于点O.(1)求证△ABD≌△BEC;(2)若∠BOD=2∠A,求证四边形BECD是矩形.证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,BE∥CD.又∵AB=BE,∴BE=DC,∴四边形BECD为平行四边形,∴BD=EC.在△ABD与△BEC中,∴△ABD≌△BEC(SSS).(2)由(1)知四边形BECD为平行四边形,则OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD,∴OC+OB=OD+OE,即BC=ED,∴平行四边形BECD为矩形.11. 如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.12.如图,直线MN经过线段AC的端点A,点B,D分别在∠NAC和∠MAC的平分线AE,AF上,BD交AC于点O,如果O是BD的中点,当点O在AC的什么位置时,四边形ABCD是矩形?并说明理由.解:O是AC的中点时,四边形ABCD是矩形.理由如下:因为AO=CO,BO=DO,所以四边形ABCD是平行四边形,又∠F AC=∠MAC,∠CAE=∠CAN,所以∠F AE=∠F AC+∠CAE=(∠MAC+∠CAN)=×180°=90°,所以四边形ABCD是矩形.13. 如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从A出发沿A方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?14.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠ACD的平分线于点F.(1)求证OE=OF;(2)当点O运动到何处时,四边形AECF是矩形?说明理由.(1)证明:∵MN∥BC,∴∠OEC=∠BCE.∵CE平分∠BCA,∴∠BCE=∠OCE,∴∠OEC=∠OCE.∴OC=OE.同理可证OC=OF.∴OE=OF.(2)解:当点O运动到AC中点时,四边形AECF是矩形.理由如下:∵OA=OC,OE=OF,∴四边形AECF是平行四边形,又∠ACF=∠ACD,∠ACE=∠ACB,所以∠ECF=∠ACF+∠ACE=(∠ACD+∠ACB)=×180°=90°.∴四边形AECF是矩形.。
人教版八年级数学下册18.2.1矩形的判定优秀教学案例

1.引导学生总结本节课所学的内容,包括矩形的定义、性质和判定方法。
在学生掌握矩形的判定方法后,我设计了一系列练习题,让学生在练习中巩固知识。同时,我注重引导学生将所学知识与生活实际相结合,提高学生的应用能力。最后,我进行了课堂小结,强调本节课的重点和难点,确保学生能够扎实掌握矩形的性质和判定方法。
二、教学目标
(一)知识与技能
1.理解矩形的定义,掌握矩形的性质,包括对角线相等、四个角都是直角等。
2.组织学生进行互评和自我评价,让学生在评价中,提高自己的学习能力。
3.教师对学生的学习情况进行评价,给予肯定和鼓励,激发学生的学习积极性。
在反思与评价环节,我注重培养学生的自我反思和评价能力。通过引导学生对自己的学习过程进行反思,让学生总结经验,提高自己的学习能力。同时,我组织学生进行互评和自我评价,培养学生的评价能力。最后,我对学生的学习情况进行评价,给予肯定和鼓励,激发学生的学习积极性。
3.设计一些拓展性问题,激发学生的思维,如“矩形的对角线有什么特殊性质?”等,提高学生的思维能力。
问题导向环节的设计,让学生在解决问题的过程中,主动探索矩形的性质和判定方法。通过问题的引导,激发学生的思考,培养学生的解决问题的能力。
(三)小组合作
1.组织学生进行小组讨论,让学生在合作交流中,共同探索矩形的性质和判定方法。
(二)过程与方法
1.培养学生的观察能力,通过观察矩形的性质和判定方法,培养学生的抽象思维能力。
2.培养学生的动手操作能力,通过实际操作,让学生体验矩形的性质和判定方法。
3.培养学生的合作交流能力,通过分组讨论,让学生学会与他人合作,共同解决问题。
在教学过程中,我注重引导学生参与课堂,鼓励学生积极思考,培养学生的观察能力和动手操作能力。同时,我组织学生进行分组讨论,让学生在合作交流中,共同探索矩形的性质和判定方法。
18.2.1《矩形的性质》教案

-举例:分析不同类型的四边形,让学生学会运用判定方法判断矩形。
-矩形的周长与面积计算:掌握矩形周长和面积的计算公式,并能够熟练运用。
-举例:通过实际计算题,让学生掌握矩形周长和面积的计算方法。
2.教学难点
-解决实际问题时矩形知识的应用:将矩形知识应用于解决生活中的实际问题。
-难点解析:学生可能在实际问题中难以发现矩形的应用场景,需要通过具体实例和实际操作,培养学生的数学应用意识。
一段弧长等于半径的圆心角叫做平角,所以平角等于180°,推导如下:”接下来请写一个教学设计(包含教学目标、教学重点、教学难点、教学过程),要求教学设计能体现教学重难点的解决。教学设计:
此外,在矩形判定方法的教授中,我发现学生们在面对具体题目时,判定方法的选择和应用还不够熟练。这说明我在这一部分的讲解和练习还需要加强。接下来的课程中,我会多设计一些典型的例题,让学生们在实际操作中熟练掌握判定方法。
在实践活动环节,分组讨论进行得比较顺利,学生们能够积极参与,提出自己的观点。但在实验操作环节,我发现有些学生在使用工具方面还存在一定的困难。针对这一问题,我计划在接下来的课程中,增加一些关于几何工具使用技巧的讲解和练习。
18.2.1《矩形的性质》教案
一、教学内容
《矩形的性质》(教材18.2.1章节)
1.矩形的定义及特征
-矩形的概念:四边形中,四个角都是直角的平行四边形称为矩形。
-矩形的性质:对边平行且相等,对角线相等且互相平分。
2.矩形的判定方法
-有一个角是直角的平行四边形是矩形。
-对角线互相平分且相等的四边形是矩形。
-矩形性质的理解与应用:理解矩形的对角线性质,并能够应用于解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题
1、判定一个四边形是矩形的方法:
(1)矩形的定义:有一个角是________的_________是矩形;
(2)有三个角是__________的四边形是矩形;
(3)对角线______的__________是矩形.
2.已知四边形ABCD是平行四边形,请你添上一个条件:_________,使得平行四边形ABCD 是矩形.
3.在四边形ABCD中,∠BAC=90°,AB∥CD,请你添上一个条件:_________,使得四边形ABCD是矩形.
4.在坐标系中,A(-2,0),B(-2,3),C(3,0),若使以点A,B,C,D为顶点的四边形是矩形,则符合条件的点D的坐标是________.
二、选择题
5.矩形的三个顶点坐标分别是(-2,-3),(1,3),(-2,-4),那么第四个顶点坐标是() A.(1,-4) B.(-8,-4) C.(1,-3) D.(3,-4)
6.下列检查一个门框是否为矩形的方法中正确的是()
A.测量两条对角线,是否相等
B.测量两条对角线,是否互相平分
C.用曲尺测量门框的三个角,是否都是直角
D.用曲尺测量对角线,是否互相垂直
7.平行四边形的四个内角角平分线相交所构成的四边形一定是()
A.一般平行四边形 B.一般四边形 C.对角线垂直的四边形 D.矩形
8.已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点
A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为。
三、解答题
9.某学校正准备做长120cm,宽30cm的长条形桌面,现只有长80cm,宽45cm的木板,请你为该校设计不同的拼接方案,使拼出来的桌面符合要求(只要求画出裁剪、•拼接图
形,并标上尺寸).
10..已知:如图,BC是等腰△BED底边ED上的高,四边形ABEC是平行四边形.
求证:四边形ABCD是矩形.
11.□ABCD中,对角线AC、BD相交于点O,点P是四边形外一点,且PA⊥PC,PB⊥PD,垂足为P。
求证:四边形ABCD为矩形
、。