第18章平行四边形导学案8 18.2.1矩形的判定

合集下载

2023年人教版八年级数学下册第十八章《平行四边形的判定》导学案

2023年人教版八年级数学下册第十八章《平行四边形的判定》导学案

新人教版八年级数学下册第十八章《平行四边形的判定》导学案学科数学教学内容18.1.2.1平行四边形的判定年级802 执教授课时间自主学习目标在探索平行四边形的判别条件中,理解并掌握用对边、对角以及对角线来判定平行四边形的方法.合作学习目标会综合运用平行四边形的判定方法和性质来解决问题.合作探究目标培养用类比、逆向联想及运动的思维方法来研究问题.合作重点平行四边形的判定方法及应用.合作难点平行四边形的判定定理与性质定理的灵活应用合作关键平行四边形的判定方法及应用.教学流程教学素材教学环节教师行为学生活动引入课题前置诊断口述倾听一、温故知新,引入新课1.平行四边形的定义是什么?2.平行四边形的对边具有什么性质?写出这条性质定理.3.它的逆命题是什么?你认为它成立吗?创境引入设置问题情境,启发引导小组合作、交流。

展示答案出示学习目标展示目标口述学生倾听学习内容1动手操作,实验探究:每人拿出一条长20cm的线,想一想,能否将此线分成四段,然后首尾相连,构成一个平行四边形?已知:在四边形ABCD中,AB=CD,AD=BC.求证:四边形AB CD是平行四边形.分析成立的过程并推出平行四边形的判定1并得出结论导学1 巡视探讨、交流,自主合作巡视自主独立完成互动交流指导学生评价举手展示巩固达标巡视独立练习学习探索其他判定方法:导学2 提问教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。

我们发现了儿童有创造力,认识了儿童有创造力,就须进一步把儿童的创造力解放出来。

——好词好句内容2 并得出其他的结论及论证的过程 小组合作完成自主合作 评价 自学 互动交流 巡视 巩固达标巡视 举手展示 课堂 小结本节课学习了哪些内容? 小结质疑 合作与交流 P47练习1、2、3、4巩固拓展巡视自主,小组交流。

人教版八年级下册数学:第十八章《平行四边形》18.2.2《矩形的判定》导学案

人教版八年级下册数学:第十八章《平行四边形》18.2.2《矩形的判定》导学案

八年级下数学NO:6 主备人:银波审核人:授课人:第周星期第组学生预习评价:整理评价18.2.2《矩形的判定》一、知识点梳理:有一个角是的平行四边形叫做矩形;对角线的平行四边形是矩形;有三个角是的四边形是矩形。

二、知识点训练知识点(1)有一个角是直角的平行四边形是矩形1.如图,要使平行四边形ABCD成为矩形,需添加的条件是()A.AB=BCB.AC⊥BDC.∠ABC=90°D.∠1=∠2第1题第2题第3题2.如图,是一个平行四边形的活动框架,对角线是两根橡皮筋,若改变框架的形状,则α∠也随之变化,两条对角线长度也在发生改变.当α∠是度时,两条对角线长度相等.3.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件 ,使四边形ABCD为矩形。

4.如图所示,点E是□ABCD的边AB的中点,且EC=ED.求证:四边形ABCD是矩形.知识点(2)对角线相等的平行四边形是矩形5.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CDB.AD=BCC.AB=BCD.AC=BD6.用一把刻度尺来判定一个零件是矩形的方法是先测量两组对边是否相等,然后测量两条对角线是否相等,这样做的依据是 .7.如图所示,矩形ABCD的对角线相交于点O,E,F,G,H分别是AO,BO,CO,DO的中点,请问四边形EFGH是矩形吗?请说明理由.知识点(3)有三个角是直角四边形是矩形8.在判断“一个四边形门框是否为矩形”的数学活动课上,一个合作学习小组的4位同学分别拟定了如下的方案,其中正确的是( )A.测量对角线是否相等B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三个角是否都为直角9.已知:如图,□ ABCD 的四个内角的平分线分别交于点E,F,G,H.求证:四边形EFGH 是矩形.三、知识点整合训练10.在□ ABCD 中,对角线AC,BD 相交于点O,再添加一个条件,仍不能判定四边形ABCD 是矩形的是( )A.AB=ADB.OA=OBC.AC=BDD.DC ⊥BC11.如图,△ABC 中,AC 的垂直平分线分别交AC,AB 于点D,F,BE ⊥DF交DF 的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE 的面积是( ) A. 32 B. 33 D.4 C. 34ニ、填空题:12.如图,在四边形ABCD 中,对角线AC ⊥BD,垂足为O,点E,F,G,H 分别为边AD,AB,BC,CD 的中点若AC=8,BD=6,则四边形EFGH 的面积为 .三、解答题:13.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE 是矩形.。

18.2.1矩形的性质与判定 导学案 应用

18.2.1矩形的性质与判定  导学案  应用
(5)对角线相等且互相垂直的四边形是矩形;()
(6)对角线互相平分且相等的四边形是矩形;()
(7)对角线相等,且有一个角是直角的四边形是矩形;()
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;()
(9)两组对边分别平行,且对角线相等的四边形是矩形.( )
例题:例1.:已知□ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行交于点O,且AC=2AB。
求证:△AOB是等边三角形。(注意表达格式完整性与逻辑性)
拓展与延伸:本题若将“AC=2AB”改为“∠BOC=120°”,你能获得有关这个矩形的哪些结论?
五、畅谈收获(理一理)
六、堂清:
1.在矩形ABCD中,若AD=1,AB=,则该矩形的两条对角线所成的锐角是()
A.对角线相等B.四个角都相等
C.是轴对称图形D.对角线垂直
5、已知:如图,E为矩形ABCD内一点,且EB=EC。求证:EA=ED.
6、如图在矩形ABCD中,AE平分∠BAD,∠1=15度.
(1)求∠2的度数。(2)试说明:BO=BE。
七、作业(必做)课本60页练习第1题(选做)课本60页拓广探索第4题
探究二:1、除了上面制作矩形的方法外,还有其他的方法吗?请你画一个矩形;
2.交流画矩形的方法,得到矩形的判定方法;
3.证明矩形的判定方法:
已知:如图,
求证:
证明:
4.归纳:矩形判定方法:______________________________
_______________________________
练习:已知:如图,□ABCD的四个内角的平分线分别相交于点E、F、G、H.
求证:四边形EFGH是矩形.

18.2.1第2课时矩形的判定

18.2.1第2课时矩形的判定
B规律方法综合练
9.下列关于矩形的说法中正确的是( B ) A.对角线相等的四边形是矩形 B.矩形的对角线相等且互相平分 C.对角线互相平分的四边形是矩形 D.矩形的对角线互相垂直且平分
第2课时 矩形的判定
10.[2018·上海] 已知平行四边形 ABCD,下列条件中,不能判定
这个平行四边形为矩形的是( B )
图 18-2-24
第2课时 矩形的判定
解:(1)证明:∵E 是 AD 的中点,∴AE=DE. 又∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB, ∴△AEF≌△DEB. (2)四边形 ADCF 是矩形. 证明:∵AF∥CD,且 AF=CD,∴四边形 ADCF 是平行四边形. ∵△AEF≌△DEB,∴AF=BD, ∴BD=CD,即 AD 是△ABC 的中线. ∵AB=AC,∴AD⊥BC,∴∠ADC=90°, ∴四边形 ADCF 是矩形.
第2课时 矩形的判定
13.[2018·通辽] 如图 18-2-24,△ABC 中,D 是 BC 边上一点, E 是 AD 的中点,过点 A 作 BC 的平行线交 BE 的延长线于点 F, 且 AF=CD,连接 CF. (1)求证:△AEF≌△DEB; (2)若 AB=AC,试判断四边形 ADCF 的形状,并证明你的结论.
推出□ABCD 是矩形,那么这个条件可以是( B )
A.AB=BC
B.AC=BD
C.AC⊥BD
D.AB⊥BD
第2课时 矩形的判定
7.用一把刻度尺来判定一个零件是矩形的方法是先测量两组对边 是否分别相等,然后测量两条对角线是否相等,这样做的依据是 __两_组__对_边__分__别_相__等__的_四__边_形__是__平_行__四_边__形__,_对__角_线__相__等_的__平_行__四__边_形__是_矩__形___.

八年级数学下册 18.2.1《矩形》矩形的判定导学案新版新人教版

八年级数学下册 18.2.1《矩形》矩形的判定导学案新版新人教版

八年级数学下册 18.2.1《矩形》矩形的判定导学案新版新人教版18、2、1《矩形》矩形的判定学习目标1、熟悉矩形的判定方法,会判定一个四边形是菱形。

2、会用矩形的判定和性质进行有关的计算和证明。

3、经历探索矩形的判定的过程,发展合情推理的意识,培养严密的逻辑推理能力。

重点:综合运用矩形的判定和性质进行有关的计算和证明、难点:根据题目的条件合理运用判定方法证明矩形、时间分配旧知回顾2分钟、自主探知10分钟问题解决15分练习巩固10分课堂小结3分、学案(学习过程)导案(学法指导)学习过程一、回顾旧知:1、什么是矩形?(有一个角是直角的平行四边形是矩形)2、矩形有什么性质?边:对边平行且相等角:四个角都是直角对角线:对角线相等、3、如何判定一个平行四边形或四边形是矩形?(与研究平行四边形的判断方法类似,研究一下矩形的性质定理的逆命题,看看他们是否成立、)二、自主探知1、定义(判定1):有一个角是直角的平行四边形是矩形、2、思考:矩形的对角线相等,反过来,对角线相等的平行四边形是矩形吗?怎么证明?判定2:对角线相等的平行四边形是矩形、3、思考:矩形的四个角都是直角,它的逆命题成立吗?即四个角都是直角的四边形是矩形吗?进一步,至少有几个角是直角的四边形是矩形?判定3:有三个角是直角的四边形是矩形、三、问题解决:1、在 ABCD中,对角线AC,BD相交于点O,OA=OD, ∠OAD=500 求∠ OAB的度数解:∵四边形ABCD是平行四边形∴OA=OC= AC OB=OD= BD 又∵OA=OD, ∴ AC=BD、∴四边形ABCD是矩形∴ ∠DAB=900 又∵ ∠OAD=500 ∴ ∠OAB=4002、已知平行四边形ABCD的对角线AC,BD交于点O,△AOB是等边三角形,AB=4、(1)平行四边形ABCD是矩形吗?说明你的理由、(2)求这个平行四边形的面积四、课堂练习P551、4一、导课:1、复习矩形的性质、2、从研究问题的方法及逆命题的角度入手,去研究矩形的判定、二、自主探知1、教师引导解释强调矩形的定义:先判定是平行四边形在加一个直角。

八年级数学下册18平行四边形1821矩形1导学案新人教版

八年级数学下册18平行四边形1821矩形1导学案新人教版

18.2.1矩形(1)课型: 新授课 上课时间:课时: 1 学习目标:1、理解矩形的意义,知道矩形与平行四边形的区别与联系。

2、掌握矩形的性质定理,会用定理进行有关的计算与证明。

3、掌握直角三角形斜边上中线的性质与应用。

学习重点:矩形的性质及“直角三角形斜边上的中线等于斜边的一半” 学习难点:矩形性质的得出及灵活应用。

一、自学教材,明确目标阅读教材内容 二、研读教材,解读目标1. 叫做矩形。

矩形是 的平行四边形。

2.矩形是轴对称图形吗?它有几条对称轴? 3.从矩形的意义可以探究矩形具有的性质:(1)矩形具有平行四边形的一切性质吗?这些性质什么?(2)矩形与平行四边形比较又有其特殊的性质,这些特殊的性质是什么?(3)用几何语言表述矩形的所有性质:4.从矩形的性质可以说明:直角三角形斜边上的中线等于斜边的 如图,在Rt ΔABC 中,O 是斜边AC 的中点, 求证:OB=21AC 证明:B ACO5. 如图,在矩形ABCD中,AC与BD相交于点O,∠AOB=60O,AB=4㎝,求矩形对角线的长。

6. 教材练习:7.教材习题三、巩固训练,达成目标:1、由矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为1:3两部分,则该垂线与另一条对角线的夹角为()A、22.5°B、45°C、30°D、60°2、矩形的两条对角线的夹角为60°,较短的边长为4.5厘米,则对角线长为。

3、已知:如图2,矩形ABCD中,E是BC4、折叠矩形ABCD纸片,先折出折痕BD 上A′位置上,折痕为DG。

AB=2,BC=1。

求AG的长。

5、如图5A DB CF12EGA`D CB AC D6、如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在F 的位置,BF 交AD 于E ,AD=8,AB=4,求△BED 的面积。

7、在Rt ΔABC 中,∠C=90°,CD 是AB 边上的中线,∠A=30°,AC=5 3。

人教版八下数学18.2.1矩 形 课时2 矩形的判定教案+学案

人教版八下数学18.2.1矩 形  课时2 矩形的判定教案+学案

人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 矩形课时2矩形的判定教案【教学目标】知识与技能目标1.理解并掌握矩形的判定方法.2.使学生能应用矩形的定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.过程与方法目标1.从矩形性质定理的逆命题出发,提出猜想,发现结论,然后给出证明,进一步理解互逆命题的意义,体会矩形的性质与判定的区别与联系.2.让学生经历探索矩形判定定理的过程,理解并掌握矩形的判定方法,积累几何学习的经验,发展合情推理和演绎推理的能力.情感、态度与价值观目标在课堂活动中,通过观察、思考、猜想、证明,培养学生主动参与、乐于探究、勤于动手的学习习惯.【教学重点】矩形判定定理的运用.【教学难点】矩形判定方法的理解及应用.【教学准备】教师准备:教学中出示的教学插图和例题.学生准备:复习矩形的定义及其性质.【教学过程设计】一、情境导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分;2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究知识点一:有一个角是直角的平行四边形是矩形例1如图,在△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E.求证:四边形ADCE是矩形.解析:首先利用外角性质得出∠B=∠ACB=∠F AE=∠EAC,进而得到AE∥BC,即可得出四边形AEDB是平行四边形,再利用平行四边形的性质得出四边形ADCE是平行四边形,再根据AD是高即可得出四边形ADCE是矩形.证明:∵AB=AC,∴∠B=∠ACB.∵AE是△BAC的外角平分线,∴∠F AE =∠EAC.∵∠B+∠ACB=∠F AE+∠EAC,∴∠B=∠ACB=∠F AE=∠EAC,∴AE∥BC.又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD.又∵AB=AC,AD⊥BC,∴BD=DC,∴AE平行且等于DC,故四边形ADCE 是平行四边形.又∵∠ADC=90°,∴平行四边形ADCE是矩形.方法总结:平行四边形的判定与性质以及矩形的判定常综合运用,解题时利用平行四边形的判定得出四边形是平行四边形再证明其中一角为直角即可.知识点二:对角线相等的平行四边形是矩形例2如图,在平行四边形ABCD中,对角线AC、BD相交于点O,延长OA 到N,ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.解析:首先由平行四边形ABCD可得OA=OC,OB=OD.若ON=OB,那么ON=OD.而CM=AN,即ON=OM.由此可证得四边形NDMB的对角线相等且互相平分,即可得证.证明:∵四边形ABCD为平行四边形,∴AO=OC,OD=OB.∵AN=CM,ON=OB,∴ON=OM=OD=OB,∴MN=BD,∴四边形NDMB为矩形.方法总结:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.知识点三:有三个角是直角的四边形是矩形例3如图,▱ABCD各内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.解析:利用“有三个内角是直角的四边形是矩形”证明四边形EFGH是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∵AH,BH分别平分∠DAB与∠ABC,∴∠HAB=12∠DAB,∠HBA=12∠ABC,∴∠HAB+∠HBA=12(∠DAB+∠ABC)=12×180°=90°,∴∠H=90°.同理∠HEF=∠F=90°,∴四边形EFGH是矩形.方法总结:题设中隐含多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.探究点四:矩形的性质和判定的综合运用【类型一】矩形的性质和判定的运用例4如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.解析:(1)证明四边形EFGH对角线相等且互相平分;(2)根据题设求出矩形的边长CD和BC,然后根据矩形面积公式求得.(1)证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD.∵AE=BF=CG=DH,∴AO-AE=OB-BF=CO-CG=DO-DH,即OE=OF=OG=OH,∴四边形EFGH是矩形;(2)解:∵G是OC的中点,∴GO=GC.∵DG⊥AC,∴∠DGO=∠DGC=90°.又∵DG=DG,∴△DGC≌△DGO,∴CD=OD.∵F是BO中点,OF=2cm,∴BO=4cm.∵四边形ABCD是矩形,∴DO=BO=4cm,∴DC=4cm,DB=8cm,∴CB=DB2-DC2=43cm,∴S矩形ABCD=4×43=163(cm2).方法总结:若题设条件与这个四边形的对角线有关,要证明一个四边形是矩形,通常证这个四边形的对角线相等且互相平分.【类型二】矩形的性质和判定与动点问题例5如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?解析:(1)设经过t s时,四边形PQCD是平行四边形,根据DP=CQ,代入后求出即可;(2)设经过t′s时,四边形PQBA是矩形,根据AP=BQ,代入后求出即可.解:(1)设经过t s,四边形PQCD为平行四边形,即PD=CQ,所以24-t =3t,解得t=6;(2)设经过t′s,四边形PQBA为矩形,即AP=BQ,所以t′=26-3t′,解得t′=13 2.方法总结:①证明一个四边形是平行四边形,若题设条件与这个四边形的边有关,通常证这个四边形的一组对边平行且相等;②题设中出现一个直角时,常采用“有一角是直角的平行四边形是矩形”来判定矩形.三、教学小结师生一起归纳总结:矩形的判定方法分两类:从四边形来判定和从平行四边形来判定.常用的判定方法有三种:①矩形的定义:有一个角是直角的平行四边形是矩形;②矩形的判定定理:对角线相等的平行四边形是矩形;③矩形的判定定理:三个角都是直角的四边形是矩形.四、学习检测1.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BEB.DE⊥DCC.∠ADB=90°D.CE⊥DE 解析:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,AB=CD,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形.A.∵AB=BE,AB=CD,∴BE=CD,∴平行四边形DBCE为矩形,故本选项错误;B.∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不可能是矩形,故本选项正确;C.∵∠ADB=90°,∴∠EDB=90°,∴平行四边形DBCE为矩形,故本选项错误;D.∵CE⊥DE,∴∠CED=90°,∴平行四边形DBCE为矩形,故本选项错误.故选B.2.工人师傅在做门框或矩形零件时,常用测量平行四边形两条对角线是否相等来检测直角的精度,工人师傅依据的几何道理是.解析:工人师傅根据“对角线相等的平行四边形是矩形”,通过测量平行四边形两条对角线是否相等可判断做的门框或零件是否为矩形,进而判断直角的精度.故填对角线相等的平行四边形是矩形.3.如图,要使平行四边形ABCD成为矩形,应添加的条件是(只填一个). 解析:∵有一个角是直角的平行四边形叫做矩形,∴可填∠ABC=90°(或其余三个内角中的一个为90°);又∵对角线相等的平行四边形是矩形,∴可填“AC=BD”.故可填∠ABC=90°(答案不唯一).4.如图所示,矩形ABCD的对角线AC,BD相交于O,E,F,G,H分别是OA,OB,OC,OD 的中点.求证:四边形EFGH是矩形.证明:∵矩形ABCD的对角线AC,BD相交于O,∴AO=BO=CO=DO.又∵E,F,G,H分别是OA,OB,OC,OD的中点,∴EO=FO=GO=HO.∴四边形EFGH为平行四边形,EG=HF,∴四边形EFGH是矩形.【板书设计】18.2 特殊的平行四边形 18.2.1 矩形课时2 矩形的判定1.矩形的判定有一角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.矩形的性质和判定的综合运用3.学习检测【教学反思】在本节数学课的教学中,不仅要让学生掌握矩形判定的几种方法,更要注重学生在学习的过程中是否真正掌握了探究问题的基本思路和方法.教师在例题练习的教学中,若能适当地引导学生多做一些变式练习,类比、迁移地思考、做题,就能进一步拓展学生的思维,提高课堂教学的效率.人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 矩形课时2矩形的判定学案【学习目标】1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理;2.能应用矩形的判定解决简单的证明题和计算题.【学习重点】经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理.【学习难点】能应用矩形的判定解决简单的证明题和计算题.【自主学习】一、知识回顾1.矩形的定义是什么?2.矩形有哪些性质?二、新知探究知识点1:二次根式的乘法想一想 1.类比平行四边形的定义也是判定平行四边形的一种方法,那么矩形的定义也是判定矩形的一种方法.除了定义以外,判定矩形的方法还有没有呢?2.上节课我们已经知道“矩形的对角线相等”,反过来,小明猜想对角线相等的四边形是矩形,你觉得对吗?如果不对,你的猜想是什么?对角线_______的__________________是矩形.证一证已知:如图,在□ABCD中,AC,DB是它的两条对角线, AC=DB.求证:□ABCD是矩形.证明:∵AB = DC,BC = CB,AC = DB,∴△ABC______△DCB ,∴∠ABC______∠DCB.∵AB∥CD,∴∠ABC + ∠DCB =______°,∴∠ABC = _______°,∴□ ABCD是__________.思考数学来源于生活,事实上工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,窗框一定是矩形,你现在知道为什么了吗?要点归纳:矩形的判定定理:对角线相等的平行四边形是矩形.几何语言描述:在平行四边形ABCD中,∵AC=BD,∴平行四边形ABCD是矩形.【典例探究】例1如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.【跟踪练习】1.如图,在▱ABCD中,AC和BD相交于点O,则下面条件能判定▱ABCD是矩形的是( )A.AC=BDB.AC=BCC.AD=BCD.AB=AD2.如图,在平行四边形ABCD中, ∠1= ∠2中.此时四边形ABCD是矩形吗?为什么?知识点2:有三个角是直角的四边形是矩形想一想 1.上节课我们研究了矩形的四个角,知道它们都是直角,它的逆命题是什么?成立吗?2.至少有几个角是直角的四边形是矩形?猜测:有_____个角是直角的四边形是矩形.证一证已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.证明:∵∠A=∠B=∠C=90°,∴∠A+∠B=_______°,∠B+∠C=_______°,∴AD_____BC,AB_____CD.∴四边形ABCD是______________,∴四边形ABCD是________.思考一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?要点归纳:矩形的判定定理:有三个角是直角的四边形是矩形.几何语言描述:在四边形ABCD中,∵∠A=∠B=∠C=90°,∴四边形ABCD是矩形.【典例探究】例3如图,□ ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形EFGH为矩形.例4 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,求证:四边形ADCE为矩形.【跟踪练习】在判断“一个四边形门框是否为矩形”的数学活动课上,一个合作学习小组的4位同学分别拟定了如下的方案,其中正确的是( )A.测量对角线是否相等B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三个角是否都为直角三、知识梳理内容矩形的判定定义:有一个角是直角的平行四边形是矩形.判定定理:对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.四、学习过程中我产生的疑惑【学习检测】1.下列说法错误的是( )A.对角线相等的四边形是矩形B.对角线相等的平行四边形是矩形C.有一个角是直角的平行四边形是矩形D.有三个角是直角的四边形是矩形A(解析:根据矩形的判定方法进行判断.)2.在四边形ABCD中,AC和BD的交点为O,则下列条件中不能判定四边形ABCD是矩形的是( )A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠BAD=90°C.∠BAD=∠BCD,∠ABC+∠ADC=180°,∠AOB=∠BOCD.AB∥CD,AB=CD,∠BAD=90°C(解析:AB=CD,AD=BC,由两组对边分别相等的四边形是平行四边形,知四边形ABCD是平行四边形,又AC=BD,由对角线相等的平行四边形是矩形知▱ABCD是矩形,故A正确;AO=CO,BO=DO,故四边形ABCD是平行四边形,又∠BAD=90°,故平行四边形ABCD是矩形,故B正确;AB∥CD,AB=CD,故四边形ABCD是平行四边形,又∠BAD=90°,故平行四边形ABCD是矩形,故D正确.故选C.)3.如果平行四边形各内角的平分线能够围成一个四边形,则这个四边形是( )A.正方形B.矩形C.梯形D.平行四边形B(解析:平行四边形相邻两角的平分线相交成直角,根据有三个角是直角的四边形是矩形可判断.故选B.)4.如图所示,E,F,G,H分别是四边形ABCD的四边中点,要使四边形EFGH为矩形,则四边形ABCD应具备的条件是( )A.一组对边平行而另一组对边不平行B.对角线相等C.对角线互相垂直D.对角线互相平分C(解析:由三角形的中位线平行于第三边并且等于第三边的一半知四边形EFGH 是平行四边形,由四边形ABCD的对角线互相垂直可得∠EFG=90°,根据有一个角是直角的平行四边形是矩形可解答.故选C.)5.要从一张长40 cm,宽20 cm的矩形纸片中剪出长为18 cm,宽为12 cm的矩形纸片,则最多能剪出( )A.1个B.2个C.3个D.4个C(解析:在矩形纸片的长上依次截取三个12 cm,再在纸片的宽上截取一个18 cm,可知共3个.故选C.)6.下列各句判定矩形的说法是否正确?(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有三个角都相等的四边形是矩形;(5)有三个角是直角的四边形是矩形;(6)四个角都相等的四边形是矩形;(7)对角线相等,且有一个角是直角的四边形是矩形;(8)一组对角互补的平行四边形是矩形.7.如图,在四边形ABCD中,AB∥CD,∠BAD=90°,AB=5,BC=12,AC=13.求证:四边形ABCD是矩形.8.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,延长CD到点E,使得DE=CD.连接AE,BE,求证四边形ACBE为矩形.证明:∵在△ABC中,∠ACB=90°,CD为AB边上的中线,∴AD=BD.∵DE=CD,∴四边形ACBE为平行四边形,又∵∠ACB=90°,∴四边形ACBE为矩形.9.如图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.10.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,BD,DE交BC于点O.(1)求证△ABD≌△BEC;(2)若∠BOD=2∠A,求证四边形BECD是矩形.证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,BE∥CD.又∵AB=BE,∴BE=DC,∴四边形BECD为平行四边形,∴BD=EC.在△ABD与△BEC中,∴△ABD≌△BEC(SSS).(2)由(1)知四边形BECD为平行四边形,则OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD,∴OC+OB=OD+OE,即BC=ED,∴平行四边形BECD为矩形.11. 如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.12.如图,直线MN经过线段AC的端点A,点B,D分别在∠NAC和∠MAC的平分线AE,AF上,BD交AC于点O,如果O是BD的中点,当点O在AC的什么位置时,四边形ABCD是矩形?并说明理由.解:O是AC的中点时,四边形ABCD是矩形.理由如下:因为AO=CO,BO=DO,所以四边形ABCD是平行四边形,又∠F AC=∠MAC,∠CAE=∠CAN,所以∠F AE=∠F AC+∠CAE=(∠MAC+∠CAN)=×180°=90°,所以四边形ABCD是矩形.13. 如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从A出发沿A方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?14.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠ACD的平分线于点F.(1)求证OE=OF;(2)当点O运动到何处时,四边形AECF是矩形?说明理由.(1)证明:∵MN∥BC,∴∠OEC=∠BCE.∵CE平分∠BCA,∴∠BCE=∠OCE,∴∠OEC=∠OCE.∴OC=OE.同理可证OC=OF.∴OE=OF.(2)解:当点O运动到AC中点时,四边形AECF是矩形.理由如下:∵OA=OC,OE=OF,∴四边形AECF是平行四边形,又∠ACF=∠ACD,∠ACE=∠ACB,所以∠ECF=∠ACF+∠ACE=(∠ACD+∠ACB)=×180°=90°.∴四边形AECF是矩形.。

八年级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形 18.2.1.1 矩形的性质导学案 (新版)新人教版

八年级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形 18.2.1.1 矩形的性质导学案 (新版)新人教版

八年级数学下册第十八章平行四边形 18.2 特殊的平行四边形 18.2.1.1 矩形的性质导学案(新版)新人教版18、2、1、1 矩形的性质导学案学习目标1、理解矩形的概念,知道矩形与平行四边形的区别与联系;2、会证明矩形的性质,会用矩形的性质解决简单的问题;3、掌握直角三角形斜边中线的性质,并会简单的运用、重点:理解矩形的概念,知道矩形与平行四边形的区别与联系;掌握直角三角形斜边中线的性质,并会简单的运用、难点:会证明矩形的性质,会用矩形的性质解决简单的问题、一、自学释疑矩形的性质是什么?二、合作探究探究点1:矩形的性质思考因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?活动准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等、(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四个角度数和对角线的长度,并记录测量结果、ACBD∠BAD∠ADC∠ABC∠BCD橡皮擦课本桌子(2)根据测量的结果,你有什么猜想?猜想1 矩形的四个角都是_________、猜想2 矩形的对角线__________、证一证如图,四边形ABCD是矩形,∠B=90、求证:∠B=∠C=∠D=∠A=90、证明:∵四边形ABCD是矩形,∴∠B____∠D,∠C____∠A, AB____DC、∴∠B+∠C=_____、又∵∠B =90, ∴∠C =____、∴∠B=∠C=∠D=∠A =_____、如图,四边形ABCD是矩形,∠ABC=90,对角线AC与DB相较于点O、求证:AC=DB、证明:∵四边形ABCD是矩形,∴AB____DC,∠ABC=∠DCB=_____,在△ABC和△DCB中,∵AB=DC,∠ABC=∠DCB,BC= CB,∴△ABC____△DCB、∴AC____DB、思考请同学们拿出准备好的矩形纸片,折一折,观察并思考、矩形是不是轴对称图形?如果是,那么对称轴有几条?要点归纳:矩形除了具有平行四边形所有性质,还具有的性质有:1、矩形的四个角都是_______、矩形的对角线________、2、矩形是_________图形,它有_____条对称轴、几何语言描述:在矩形ABCD中,对角线AC与DB相交于点O、∠ABC=∠BCD=∠CDA=∠DAB =90,AC=DB、典例精析例1如图,在矩形ABCD中,E是BC上一点,AE=AD,DF⊥AE ,垂足为F、求证:DF=DC、例2如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,求△BED的面积、针对训练1、如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A、AB∥DCB、AC=BDC、AC⊥BDD、OA=OB2、如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的_________、3、如图,在矩形ABCD中,AE⊥BD于E,∠DAE:∠BAE =3:1,求∠BAE和∠EAO的度数、探究点2:直角三角形斜边上的中线的性质活动如图,一张矩形纸片,画出两条对角线,沿着对角线AC剪去一半、问题Rt△ABC中,BO是一条怎样的线段?它的长度与斜边AC有什么关系?猜想直角三角形斜边上的中线等于斜边的________、证一证如图,在Rt△ABC中,∠ABC=90,BO 是AC上的中线、证明:延长BO至D, 使OD=BO,连接AD、DC、∵AO=OC, BO=OD,∴四边形ABCD是____________、∵∠ABC=90,∴平行四边形ABCD是________,∴AC_______BD,∴BO=_____BD=_____AC、要点归纳:直角三角形的性质:直角三角形斜边上的_______等于斜边的________、典例精析例3 如图,在△ABC中,AD是高,E、F分别是AB、AC的中点、(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD、方法总结:当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解、例4 如图,已知BD,CE是△ABC不同边上的高,点G,F分别是BC,DE 的中点,试说明GF⊥DE、方法总结:在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题、针对训练如图,在△ABC中,∠ABC =90,BD是斜边AC上的中线、(1)若BD=3cm,则AC =_____cm;(2)若∠C =30 ,AB =5cm,则AC =_____cm, BD=_____cm、三、随堂检测1、矩形具有而一般平行四边形不具有的性质是 ( )A、对角线相等B、对边相等C、对角相等D、对角线互相平分2、若直角三角形的两条直角边分别5和12,则斜边上的中线长为 ( )B、6C、6、5D、不能确定3、若矩形的一条对角线与一边的夹角为40,则两条对角线相交的锐角是 ( )A、20B、40C、80D、104、如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=______cm、5、如图,△ABC中,E在AC 上,且BE⊥AC、D为AB中点,若DE=5,AE=8,则BE的长为______、我的收获_________________________________________________________ _________________________________________________________ ________________________参考答案随堂检测1、A2、C3、C4、2、5。

精品学案:18_2_1矩形的判定 (2)

精品学案:18_2_1矩形的判定 (2)

人教版八年级数学下册《第十八章平行四边形》导学案课题:18.2.1 矩形的判定◆【学习目标】1.会证明矩形的两个判定定理;2.会用矩形定义及判定定理判定一个平行四边形是否为矩形,并能能用它们解决问题;◆【学习重、难点】学习重点:矩形的判定定理及应用;学习难点:矩形的判定与性质的综合运用.◆【学习过程】第一环节自主学习旧知链接:矩形的性质: .新知自研:课本第54页到第55页练习上面的内容. 2.完成导学案自学指导的内容.导入新课:工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?自学指导:【学法指导1】自研课本54页例2以上内容,思考:1、思考一:动手操作与说明:有一个角是角的平行四边形是矩形.2、思考二:还有其它的方法把一个平行四边形变为矩形吗?能否从对角线的角度?由此得到:◆得到猜想:猜想:对角线的平行四边形是矩形。

◆证明猜想:(请写出完整的证明过程)已知:四边形ABCD是平行四边形,且.求证:四边形ABCD是矩形.证明:◆得到定理:矩形的判定定理1: .定理的几何语言表示:∵ ,∵ 四边形ABCD是矩形.3、思考三:对角线互相平分且相等的四边形是矩形吗?为什么?4、工人师傅做门窗或矩形零件时,测量两组对边是否分别相等是为了验证:再测量它们的两条对角线是否相等是为了验证:【自研自探】阅读P54 的“思考”,的内容:◆得到猜想:有的平行四边形是矩形。

◆证明猜想:(请写出完整的证明过程)已知:如图,在四边形ABCD中,,求证:四边形ABCD是矩形.证明:◆得到定理:矩形的判定定理2: .定理的几何语言表示:∵∵ 四边形ABCD是矩形.5、归纳总结矩形判定的方法.(完成在随堂笔记处)【例题导析】自研教材54例2,思考:已知:四边形ABCD是,AC、BD是四边形ABCD的,∵OAD= ,OA= .【我会分析】由平行四边形的性质可得OA=OC= ,OB=OD= ;再结合OA=OD,可得;即可判定四边形ABCD为矩形.【理思路】1、例题中运用到了哪些知识点:2、例题的处理思路:第二环节合作探究·启迪智慧对子学习相互检查导学内容的完成书写情况并给出等级评定.小组群学在小组长的带领下:A、通过动手操作,猜想得到判定矩形的方法;B、用所学过知识验证以上的猜想要求组员会证明;C、交流例题的已知的条件和所求问题,理清解题思路,关注解题格式;D、在组长的主持下,根据本组的展示内容学科组长做好分工,完成版面设计,做好展示前的预演.第三环节展示提升·质疑评价方案预设1:主题:定理推导①根据“思考”猜想判定一个四边形是矩形的方法.②用所学的知识验证以上的猜想.③归纳矩形的判定的方法并会用符号语言表示.方案预设2:主题:例题导析①读题→分析题意→总结此类问题的解题过程;②明确解题的依据.第四环节自主测评·追求卓越1.学生总结交流本节课的学习收获,进行课堂小结.2.安排学生爬板下面习题,其他同学独立完成.【自主测评】1、数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组4位同学拟定的方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量三个角是否为直角2、如图,四边形ABCD是平行四边形,两条对角线交于点O,下列条件中,不能判定平行四边形ABCD为矩形的是()A.∠ABC=∠BCD B.∠ABC=∠ADCC.AO=BO D.AO=DO3、如图,□ABCD的对角线AC、BD相交于点O,△OAB是等边三角形,且AB=4,求□ABCD 的面积.4、(拓展题)如图,四边形ABCD中,∵A=∵BCD=90°,BC=CD,CE∵AD与AB交于E.求证:AE=CE.【随堂笔记】矩形的判定方法:方法1:定义:有个角是角的四边形叫矩形. 方法2:有是直角的四边形是矩形;方法3:的平行四边形是矩形.。

人教版2019八年级(下册)数学第十八章平行四边形18.2.1矩形第2课时矩形的判定导学案

人教版2019八年级(下册)数学第十八章平行四边形18.2.1矩形第2课时矩形的判定导学案

18.2.1 矩形第2课时矩形的判定一、新课导入1.导入课题工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?(板书课题)2.学习目标(1)能推导归纳判定一个四边形是矩形的几种方法.(2)能选取适当的判定方法判定一个四边形是矩形.3.学习重、难点重点:矩形的判定方法的探究.难点:矩形的性质与判定的综合运用.二、分层学习1.自学指导(1)自学内容:P53最后二行至P54例2前的内容.(2)自学时间:10分钟.(3)自学要求:用已学的矩形意义和性质推导出矩形的判定方法.(4)自学参考提纲:①按定义:有一个角是直角的平行四边形是矩形.②“矩形的对角线相等”的逆命题是对角线相等的平行四边形是矩形,这个命题成立吗?请给予证明.③有三个角是直角的四边形是矩形.④判断:a.对角线相等的四边形是矩形.(×)b.对角线相等且互相平分的四边形是矩形.(√)2.自学:结合自学指导自主学习.3.助学(1)师助生:①明了学情:关注学生是否能完成对两个判定定理的推导,命题证明存在的障碍在哪里?②差异指导:指导学生依据矩形定义完成两个定理的论证及证明一个四边形是矩形的方法步骤.(2)生助生:同桌之间相互研讨.4.强化归纳矩形的三种判定方法及几何推理格式:方法1:有一个角是直角的平行四边形是矩形;方法2:有三个角是直角的四边形是矩形;方法3:对角线相等的平行四边形是矩形.1.自学指导(1)自学内容:P 54至P55例2.(2)自学时间:5分钟.(3)自学方法:边看例题,边思考解题思路及解答过程中的每步依据.(4)自学参考提纲:①课本中求∠OAB 的度数的思路是:50()OAD OAB DAB OAD ∠=︒∠=−−−−−→∠∠-求∠DAB 的度数→证明∠DAB=90°→证明四边形ABCD 是矩形.②(证明)解答第一步推理运用了平行四边形的性质:对角线互相平分.第二步由OA=OD 得到AC=BD 的依据是等量代换.第三步由AC=BD 得到四边形ABCD 是矩形的依据是对角线相等的平行四边形是矩形.③完成课本P 55练习第2题,参照例2的思路写出解答过程.2.自学:结合自学参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生是否理解例2的解题思路和步骤,存在的困难在哪里.②差异指导:对练习第2题的条件进行分析,猜测有什么结论.(2)生助生:学生之间相互交流帮助.4.强化(1)矩形的判定方法.(2)由条件到问题之间的联系如何分析.三、评价1.学生自我评价(围绕三维目标):各组学生代表介绍自己的学习方法、收获及困惑.2.教师对学生的评价:(1)表现性评价:点评学生课堂学习中的态度、学习方式、成果及不足之处.(2)纸笔评价:评价作业.3.教师的自我评价(教学反思).本节课通过观察、探究,让学生掌握矩形的三个判定方法:(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形.教学过程中应将矩形的判定与平行四边形的判定作比较,让同学之间相互交流,说出矩形与平行四边形的区别与联系,进而更好地掌握知识.在本节课的教学中,教师应最大限度地将课堂交给学生,提高学生学习的积极性与主动性.(时间:12分钟满分:100分)一、基础巩固(50分)1.(20分)下列判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形.(×)(2)四个角都相等的四边形是矩形.(√)(3)对角线相等的四边形是矩形.(×)(4)对角线互相平分,且有一个角是直角的四边形是矩形. (√)2.(10分)下列四边形中不一定是矩形的是(C)A.有三个角是直角的四边形B.四个角都相等的四边形C.一组对边平行且对角相等的四边形D.对角线相等且互相平分的四边形3.(20分)如图:(1)当AC=BD 是矩形;(2)当∠ABC=∠BCD=∠CDA=90°时,四边形ABCD是矩形.二、综合应用(20分)4.已知平行四边形ABCD的对角线AC,BD交于点O,△AOB是等边三角形,AB=4cm.(1)这个平行四边形是矩形吗?说明你的理由;(2)求这个平行四边形的面积.解:(1)是.∵△AOB是等边三角形,∴AO=BO,又∵AO=12AC,BO=12BD.(平行四边形的性质)∴AC=BD.是矩形.(2))2144.2ABCD S cm =⨯⨯= 三、拓展延伸(30分)5.如图,在△ABC 中,D 在AB 边上,AD=BD=CD ,DE ∥AC ,DF ∥BC.求证:四边形DECF 是矩形. 证明:∵AD=BD=CD ,∴△ABC 为直角三角形,∠FCE=90°,∵DE ∥AC,DF ∥BC,∴四边形DECF 为平行四边形,又∵∠FCE=90°,∴平行四边形DECF 是矩形.。

18.2.1矩形的判定(教案)-2022-2023学年八年级下册数学(人教版)

18.2.1矩形的判定(教案)-2022-2023学年八年级下册数学(人教版)
难点解析:对于不同形状的四边形,选择合适的判定方法进行判断,需要学生具备一定的观察能力和推理能力。
举例:分析不同四边形,指导学生如何选择合适的判定方法。
(2)矩形性质的应用拓展:在解决实际问题时,学生需要将矩形的性质与其他几何知识相结合,进行问题拓展。
难点解析:在解决问题时,如何将矩形的性质与其他几何知识综合运用,提高问题解决的深度和广度。
五、教学反思
在今天的教学过程中,我注意到同学们对矩形的判定这一部分内容表现出很大的兴趣。通过导入新课环节,我尝试将矩形的实际应用与同学们的日常生活相结合,从而激发他们的学习兴趣。在讲授新课的过程中,我尽力将矩形的定义和判定方法讲解得清晰易懂,同时通过案例分析,使同学们对矩形在实际中的应用有了更深刻的理解。
举例:通过具体例子,讲解如何利用直角、对角线相等和互相平分等条件判断矩形。
(3)矩形性质的应用:运用矩形的性质解决实际问题,如求矩形的面积、周长等。
举例:给出实际问题,引导学生运用矩形性质进行求解。
2.教学难点
(1)矩形判定方法的灵活运用:学生在掌握判定方法的基础上,需要学会灵活运用这些方法解决不同的问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解矩形的基本概念。矩形是一种特殊的平行四边形,具有对边平行且相等、四个角都是直角的特点。它在几何学中非常重要,广泛应用于日常生活和工程建筑等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过分析长方形窗户的形状和特点,了解矩形在实际中的应用,以及它如何帮助我们解决问题。
18.2.1矩形的判定(教案)-2022-2023学年八年级下册数学(人教版)
一、教学内容
本节课选自人教版八年级下册数学第18章第二小节“18.2.1矩形的判定”。教学内容主要包括以下三个方面:

18.2.1 矩形的判定导学案

18.2.1 矩形的判定导学案

班级 小组 姓名课题: 18.2.1 矩形的判定第1课时【学习目标】:(1)掌握矩形的判定方法。

(2)会运用矩形的判定定理解决有关问题。

【学习重点】:矩形的判定方法【学习过程】:合理应用矩形的判定定理解决问题学习任务一:矩形的判定方法一(矩形的定义):有 _________________的________________叫做矩形。

应用格式:∵ 四边形ABCD 是______四边形 且_____=______ ∴ □ ABCD 是矩形学习任务二:矩形的判定方法二两条对角线相等的平行四边形是_________。

利用右图证明你猜想的结论。

已知:如右图,在□ ABCD 中, AC=BD求证:四边形ABCD 是_________ 证明:由上写出矩形的判定方法二:_____________________________ 应用格式:∵ 四边形ABCD 是______四边形 _____=______ ∴ □ ABCD 是矩形学习任务三:矩形的判定方法三(猜想)有三个角是直角的四边形是矩形吗?为什么?B CDA(证明)利用右图证明你猜想的结论。

已知:如右图,在四边形ABCD 中,∠A=90°,∠C=90°,∠B=90°求证:四边形ABCD 是_________由上写出矩形的判定方法三:__________________________应用格式: ∵在四边形ABCD 中,∠A=∠B=∠C=90°∴四边形ABCD 是____形学习任务四:矩形判定方法的应用1.如图,在四边形ABCD 中,对角线AC,BD 相交于点O, AD∥BC, ∠D=90°,若能再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是_________(写出一种情况即可)并说明理由。

(先独立思考,再合作交流,看哪个小组想出的方法多)理由:课堂小结:1.你能谈谈你这节课的收获吗?2.对于矩形的判定方法你想提醒同学们注意什么问题?要求:1.导入:2-3分钟2.自主学习(13-15分钟)3.交流展示(22-25分钟)4.巩固测评(5分钟)5.总结2分钟BDCDA B。

20年春人教版八年级数学《第18章平行四边形》导学案

20年春人教版八年级数学《第18章平行四边形》导学案

20年春人教版八年级数学《第18章平行四边形》导学案18.1.1 平行四边形的性质第1课时平行四边形的边、角特征学习目标:1.掌握平行四边形的对边相等、对角相等的两条性质;2.根据平行四边形的性质进行简单的计算和证明;3.经历“实验—猜想—验证—证明”的过程,发展学生的思维水平.重点:掌握平行四边形的对边相等、对角相等的两条性质.难点:根据平行四边形的性质进行简单的计算和证明.一、知识回顾1.平行四边形的定义是什么?如何表示一个平行四边形?2.如图,DC∥GH ∥AB,DA∥EF∥CB,图中的平行四边形有多少个?将它们表示出来.一、要点探究探究点1:平行四边形的边、角的特征量一量1.画一个平行四边形ABCD,用尺子等工具度量它的四条边,并记录下数据,你能发现AB与DC,AD 与BC之间的数量关系吗?2.再用量角器等工具度量它的四个角,并记录下数据,你能发现∠A与∠C,∠B与∠D之间的数量关系吗?思考你发现了什么规律?证一证已知:四边形ABCD是平行四边形.求证:AD=BC,AB=CD,∠BAD=∠BCD,∠ABC=∠ADC.证明:如图,连接AC.∵四边形ABCD是平行四边形,∴AD___BC,AB___CD,∴∠1___∠2,∠3___∠4.又∵AC是△ABC和△CDA的公共边,∴△ABC____△CDA,∴AD___BC,AB___CD,∠ABC___∠ADC.∵∠BAD=∠1+∠4,∠BCD=∠2+∠3,∴∠BAD___∠BCD.思考不添加辅助线,你能否直接运用平行四边形的定义,证明其对角相等?自主学课堂探要点归纳:平行四边形的对边____________;平行四边形的对角___________.典例精析例1如图,在平行四边形ABCD中.(1)若∠A =32°,求其余三个角的度数.(2)连接AC,已知平行四边形ABCD的周长等于20 cm,AC=7cm,求△ABC的周长.变式题(1)在平行四边形ABCD中,∠A:∠B=2:3,求各角的度数.(2)若平行四边形ABCD的周长为28cm,AB:BC=3:4,求各边的长度.方法总结:已知平行四边形的边角的比例关系求其他边角时,常会用到方程思想,结合平行四边形的性质列方程.例2如图,在平行四边形ABCD中,E,F是对角线AC上的两点,并且AE=CF,求证:BE=DF.针对训练1.如图,在平行四边形ABCD中.(1)若∠A=130°,则∠B=______ ,∠C=______ ,∠D=______.(2)若AB=3,BC=5,则它的周长= ______.(3)若∠A+ ∠C= 200°,则∠A=_____,∠B=______.2.如图,在平行四边形ABCD中,若AE平分∠DAB,AB=5cm,AD=9cm,则EC=_________.3.剪两张对边平行的纸条随意交叉叠放在一起,重合部分构成了一个四边形,转动其中一张纸条,线段AD 和BC的长度有什么关系?为什么?探究点2:平行线间的距离想一想:如图,若m // n,作AB // CD // EF,分别交m于A、C、E,交n于B、D、F.由________________________易知四边形ABCD,CDEF均为__________________.由平行四边形的性质得AB______CD_______EF.填一填:如图,在平行四边形ABCD中,DE⊥AB,BF⊥CD,垂足分别是E,F.求证:DE=BF.证明:∵四边形ABCD是平行四边形,∴∠A_____∠C,AD______CB.又∠AED= ∠CFB=90°,∴△ADE____△CBF(_____),∴AE_____CF.要点归纳:1.两条平行线之间的任何平行线段都__________.2.两条平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的_________.3.两条平行线间的距离__________.典例精析例3 如图,AB∥CD,BC⊥AB,若AB=4cm,S△ABC=12cm2,求△ABD中AB边上的高.二、课堂小结平行四边形内容定义两组对边分别平行的四边形1.判断题(对的在括号内填“√”,错的填“×”):(1)四平行四边形两组对边分别平行且相等 ( )(2)平行四边形的四个内角都相等 ( )(3)平行四边形的相邻两个内角的和等于180° ( )(4)如果平行四边形相邻两边长分别是2cm和3cm,那么周长是10cm ( )(5)在平行四边形ABCD中,如果∠A=42°,那么∠B=48° ( )(6)在平行四边形ABCD中,如果∠A=35°,那么∠C=145°( )2.在平行四边形ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()A .45° B. 55° C. 65° D. 75°3.如图,D、E、F 分别在△ABC的边AB、BC、AC上,且DE∥AC,DF∥BC,EF∥AB,则图中有_____个平行四边形.4.如图,直线AE//BD,点C在BD上,若AE=5,BD=8,△ABD的面积为16,则△ACE的面积为____________.5.已知在平行四边形ABCD中,DE平分∠ADC,BF平分∠ABC.求证:AE=CF.6.有一块形状如图所示的玻璃,不小心把EDF部分打碎了,现在只测得AE=60cm,BC=80cm,∠B=60°且AE∥BC、AB∥CF,你能根据测得的数据计算出DE的长度和∠D的度数吗?7.如图,在△ABC中,AD平分∠BAC,点M,E,F分别是AB,AD,AC上的点,四边形BEFM是平行四边形.求证:AF=BM.第十八章平行四边形18.1.1 平行四边形的性质第2课时平行四边形的对角线的特征学习目标:1.掌握平行四边形对角线互相平分的性质;2.经历对平行四边形性质的猜想与证明的过程,渗透转化思想,体会图形性质探究的一般思路.重点:掌握平行四边形对角线互相平分的性质.难点:经历对平行四边形性质的猜想与证明的过程,渗透转化思想,体会图形性质探究的一般思路.一、知识回顾1.你能说出平行四边形边、角的特征吗?平行四边形对边互相___________;平行四边形对边__________;平行四边形对角__________.二、要点探究探究点1:平行四边形的对角线的性质猜一猜如图,在□ABCD中,连接AC,BD,并设它们相交于点O. OA与OC,OB与OD有什么关系?证一证已知:如图,□ABCD的对角线AC、BD相交于点O.求证:OA=OC,OB=OD.证明:∵四边形ABCD是平行四边形,∴ AD___BC,AD___BC,∴∠1___∠2,∠3___∠4,∴△AOD___△COB(______),∴ OA____OC,OB____OD.要点归纳:平行四边形的性质:平行四边形的对角线互相_________.应用格式:∵四边形ABCD是平行四边形,∴ OA=OC,OB=OD.典例精析例1如图,已知平行四边形ABCD的周长为60cm,对角线AC、BD相交于点O,△AOB的周长比△DOA 的周长长5cm,求这个平行四边形各边的长.方法总结:平行四边形被对角线分成四个小三角形,相邻两个三角形的周长之差等于邻边边长之差.变式题如图,在平行四边形ABCD中,对角线AC、BD相交于点O,平行四边形ABCD的周长是100cm,△AOB与△BOC的周长的和是122cm,且AC:DB= 2:1,求AC和BD的长.课堂探例2如图,平行四边形ABCD 的对角线AC,BD 交于点O.点O 作直线EF,分别交AB,CD 于点E ,F.求证:OE=OF.变式题请判断下列图中,OE=OF 还成立么?方法总结:过平行四边形的对角线交点作直线与平行四边形的一组对边或对边的延长线相交,得到线段总相等. 1.如图,平行四边形ABCD 的对角线AC ,BD 交于点O ,若AD=16,AC=24,BD=12,则△OBC 的周长为 ( ) A.26 B.34 C.40 D.522.如图,在□ABCD 中,对角线AC 和BD 相交于点O ,△AOB 的周长为15,AB=6,则对角线AC 、BD 的长度的和是 ( )A.9B.18C.27D.363.如图,平行四边形ABCD 中,AC 、BD 交于O 点,点E 、F 分别是AO 、CO 的中点,试判断线段BE 、DF的关系并证明你的结论.探究点2:平行四边形的面积例3 如图,平行四边形ABCD中,DE⊥AB于E,DF⊥BC于F,若平行四边形ABCD的周长为48,DE=5,DF=10,求平行四边形ABCD的面积.方法总结:已知平行四边形的高DE,DF,根据“等面积法”及平行四边形性质列方程求解.例4平行四边形的对角线分平行四边形ABCD为四个三角形,它们的面积有怎样的关系呢?方法总结:平行四边形的对角线分平行四边形为四个面积相等的三角形,且都等于平行四边形面积的四分之一.相对的两个三角形全等.例5如图,AC,BD交于点O,EF过点O,平行四边形ABCD被EF所分的两个四边形面积相等吗?变式题如图,AC,BD交于点O,EF过点O,平行四边形ABCD被EF所分的两个四边形面积相等吗?面积.1.如图,ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A. 10B. 14C. 20D. 222.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠ABO=∠CDO B.∠BAD=∠BCDC.AO=CO D.AC⊥BD3.在□ABCD中,AC=24,BD=38,AB=m, 则m的取值范围是 ( )A. 24<m<39B.14<m<62C.7<m<31D.7<m<124.如图,□ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16B.14C.12D.105.如图,平行四边形ABCD的面积为20,对角线AC,BD相交于点O,点E,F分别是AB,CD上的点,且AE=DF,则图中阴影部分的面积为_______.8.如图,已知O是平行四边形ABCD的对角线的交点,AC=24,BD=18,AB=16,求△OCD的周长及AD 边的取值范围.第十八章平行四边形18.1.2 平行四边形的判定第1课时平行四边形的判定(1)学习目标:1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.重点:经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路.难点:掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.一、知识回顾1.平行四边形的定义是什么?有什么作用?2.除了两组对边分别平行,平行四边形还有哪些性质?3.平行四边形上面的三条性质的逆命题各是什么?三、要点探究探究点1:两组对边分别相等的四边形是平行四边形猜一猜将两长两短的四根细木条用小钉固定在一起,任意拉动,所得的四边形是平行四边形吗?证一证已知:四边形ABCD中,AB=DC,AD=BC.求证:四边形ABCD是平行四边形.证明:连接AC,在△ABC和△CDA中,AB=CD ,AC=CA,∴△ABC_____△CDA(________).BC=DA,∴∠1____∠4 , ∠ 2_____∠3,∴AB_____CD , AD_____BC,∴四边形ABCD是________________.自主学课堂探要点归纳:平行四边形的判定定理:两组对边分别_________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AB=CD,AD=BC,∴四边形ABCD是_________________.典例精析例1如图,在Rt△MON中,∠MON=90°.求证:四边形PONM是平行四边形.例2如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.针对训练如图, AD⊥AC,BC⊥AC,且AB=CD,求证:四边形ABCD是平行四边形.探究点2:两组对角分别相等的四边形是平行四边形猜一猜对于两组对角分别相等的四边形的形状你的猜想是什么?证一证已知:四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.证明:∵∠A+∠C+∠B+∠D=_______°,又∵∠A=∠C,∠B=∠D,∴___∠A+___∠B=_______°,即∠A+∠B=______°,∴ AD_____BC.同理得 AB_____CD,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:两组对角分别________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵∠A=______,∠B=______,∴四边形ABCD是_______________.典例精析例3 如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.针对训练1.判断下列四边形是否为平行四边形:2.能判定四边形ABCD是平行四边形的条件:∠A:∠B:∠C:∠D的值为()A. 1:2:3:4B. 1:4:2:3C. 1:2:2:1D. 3:2:3:2探究点3:对角线互相平分的四边形是平行四边形猜一猜如图,将两根细木条AC、BD的中点重叠,用小钉固定在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD.转动两根木条,四边形ABCD一直是一个平行四边形吗?证一证已知:四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明:在△AOB和△COD中,OA=OC,∠AOB=∠COD,∴△AOB______△COD(________).OB=OD,∴∠BAO_____∠OCD , ∠ ABO_____∠CDO,∴AB_____CD , AD_____BC,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:对角线互相________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AO_____CO,DO_____BO,∴四边形ABCD是______________.典例精析例4(教材P46例3变式题)如图,AC是平行四边形ABCD的一条对角线,BM⊥AC于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.例5昨天李明同学在生物实验室做实验时,不小心碰碎了实验室的一块平行四边形的实验用的玻璃片,只剩下如图所示部分,他想回家去割一块赔给学校,带上玻璃剩下部分去玻璃店不安全,于是他想把原来的平行四边形重新在纸上画出来?然后带上图纸去就行了,可原来的平行四边形怎么给它画出来呢(A,B,C为三顶点,即找出第四个顶点D)?(请用多种方法)针对训练1.根据下列条件,不能判定四边形为平行四边形的是()A.两组对边分别相等B.两条对角线互相平分C.两条对角线相等D.两组对边分别平行2.如图,在四边形ABCD中,AC与BD交于点O.如果AC=8cm,BD=10cm,那么当AO=_____cm,BO=_____cm时,四边形ABCD是平行四边形.二、课堂小结内容平行四边形的判定(1)定义法:两组对边分别平行的四边形叫平行四边形.两组对边分别相等的四边形是平行四边形.两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形.1.判断对错:(1)有一组对边平行的四边形是平行四边形. ( )(2)有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形( )(3)对角线互相平分的四边形是平行四边形()(4)一条对角线平分另一条对角线的四边形是平行四边形( )(5)有一组对角相等且一组对边平行的四边形是平行四边形( )2.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD3.如图,在四边形ABCD中,(1)如果AB∥CD,AD∥BC,那么四边形ABCD是 __________.(2)如果∠A:∠B:∠ C:∠D=a:b:a:b(a,b为正数),那么四边形ABCD是__________.(3)如果AD=6cm,AB=4cm,那么当BC=_______cm,CD=_____cm时,四边形ABCD为平行四边形.4.如图,五边形ABCDE是正五边形,连接BD、CE,交于点P.求证:四边形ABPE是平行四边形.5.如图,已知E,F,G,H分别是平行四边形ABCD的边AB,BC,CD,DA上的点,且AE=CG,BF=DH.求证:四边形EFGH是平行四边形.当堂检第2题图第3题图6.如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 的中点.求证: (1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.7. 学校买了四棵树,准备栽在花园里,已经栽了三棵(如图),现在学校希望这四棵树能 组成一个平行四边形,你觉得第四棵树应该栽在哪里?第十八章 平行四边形18.1.2 平行四边形的判定第2课时 平行四边形的判定(2)学习目标:1.掌握“一组对边平行且相等的四边形是平行四边形”的判定方法.2.会进行平行四边形的性质与判定的综合运用.重点:“一组对边平行且相等的四边形是平行四边形”的判定方法. 难点:平行四边形的性质与判定的综合运用.一、知识回顾1.上节课我们学习了判定一个四边形为平行四边形的方法有哪几种?四、要点探究探究点1:一组对边平行且相等的四边形是平行四边形想一想我们知道,两组对分别平行或相等的是平行四边形.如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢?对于这个问题,有以下两种猜想:猜想1:一组对边相等的四边形是平行四边形;猜想2:一组对边平行的四边形是平行四边形.这两种猜想对吗?如果不对,你能举出反例吗?活动如图,将线段AB向右平移BC长度后得到线段CD,连接AD,BC,由此你能猜想四边形ABCD的形状吗?猜一猜经历了上面的活动,你现在能猜出,一组对边满足什么条件的四边形是平行四边形吗?一组对边平__________________的四边形是平行四边形.证一证如图,在四边形ABCD中,AB=CD且AB∥CD,求证:四边形ABCD是平行四边形.证明:连接AC.∵AB∥CD,∴∠1=∠2.在△ABC和△CDA中,AB=CD,∠1=∠2,∴△ABC_____△CDA(________).AC=CA,∴ BC=DA.又∵AB= CD,∴四边形ABCD是________________.要点归纳:平行四边形的判定定理:一组对边________________的四边形是平行四边形.几何语言描述:在四边形ABCD中,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.典例精析例1如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,AE=DF,∠A=∠D,AB=DC.求证:四边形BFCE是平行四边形.课堂探变式题如图,点C是AB的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)求证:四边形CBED是平行四边形.针对训练1.已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的选法是()A.AB∥CD,AB=CDB.AB∥CD,BC∥ADC.AB∥CD,BC=ADD.AB=CD,BC=AD2.四边形AEFD和EBCF都是平行四边形,求证:四边形ABCD 是平行四边形.探究点2:平行四边形的性质与判定的综合运用典例精析例2 如图,△ABC中,BD平分∠ABC,DF∥BC,EF∥AC,试问BF与CE相等吗?为什么?例3如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.求证:四边形BCED′是平行四边形.方法总结:此题利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,再结合平行四边形的判定及性质进行解题.针对训练1.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种B.4种C.5种D.6种2.如图,在▱ABCD中,E,F分别是AB,CD的中点,连接DE,EF,BF,写出图中除▱ABCD以外的所有的平行四边形.二、课堂小结件,这个条件不可以是()A.AF=CE B.AE=CFC.∠BAE=∠FCD D.∠BEA=∠FCE2.已知四边形3:2,则较大边的长度是()A.8cm B.10cmC.12cm D.14cm3.如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有____个.4.如图,点E,C在线段BF上,BE=CF,∠B=∠DEF,∠ACB=∠F,求证:四边形ABED为平行四边形.当堂检平行四边形的判定(2)平行四边形的性质与判定的综合运用一组对边平行且相等的四边形是平行四边形.第1题图第3题图5. 如图,△ABC 中,AB=AC=10,D 是BC 边上的任意一点,分别作DF ∥AB 交AC 于F ,DE ∥AC 交AB 于E ,求DE+DF 的值.能力提升6.如图,在四边形ABCD 中,AD ∥BC ,AD=12cm ,BC=15cm ,点P 自点A 向D 以1cm/s 的速度运动,到D 点即停止.点Q 自点C 向B 以2cm/s 的速度运动,到B 点即停止,点P ,Q 同时出发,设运动时间为t(s).(1)用含t 的代数式表示:AP=_____; DP=________; BQ=________;CQ=________;(2)当t 为何值时,四边形APQB 是平行四边形? (3)当t 为何值时,四边形PDCQ 是平行四边形?第十八章 平行四边形18.1.2 平行四边形的判定第3课时 三角形的中位线学习目标:1.理解三角形中位线的概念,掌握三角形的中位线定理;2.能利用三角形的中位线定理解决有关证明和计算问题.重点:理解三角形中位线的概念,掌握三角形的中位线定理. 难点:能利用三角形的中位线定理解决有关证明和计算问题.一、知识回顾1.平行四边形的性质和判定有哪些?边:①AB ∥CD,AD____BC ②AB=CD,AD____BC 平行四边形ABCD ③AB ∥CD,AB_____CD角:∠BAD____∠BCD ,∠ABC____∠ADC对角线:AO____CO,DO____BO自主学课堂探性 质判 定五、要点探究探究点1:三角形的中位线定理概念学习 三角形中位线:连接三角形两边中点的线段.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,连接DE.则线段DE 就称为△ABC 的中位线.想一想 1.一个三角形有几条中位线?你能在△ABC 中画出它所有的中位线吗?2.三角形的中位线与中线有什么区别?猜一猜 如图,DE 是△ABC 的中位线,DE 与BC 有怎样的位置关系,又有怎样的数量关系? 猜想:三角形的中位线________三角形的第三边且________第三边的________.量一量 度量一下你手中的三角形,看看是否有同样的结论? 证一证 如图,在△ABC 中,点D,E 分别是AB,AC 边的中点.1.2DE BC DE BC =求证:∥,分析:证法1:证明:延长DE 到F ,使EF=DE .连接AF 、CF 、DC . ∵AE=EC ,DE=EF ,∴四边形ADCF 是_______________. ∴CF ∥AD ,CF=AD ,∴CF_____BD ,CF_____BD ,∴四边形BCFD 是________________, ∴DF_____BC ,DF_______BC , 12DE DF =又∵,∴DE_____BC ,DE=______BC. 证法2:证明:延长DE 到F ,使EF=DE .连接FC .∵∠AED=∠CEF ,AE=CE ,∴△ADE_____△CFE .∴∠ADE=∠_____,AD=_______, ∴CF______AD,∴BD______CF.∴四边形BCFD 是___________________. ∴DF_______BC. 12DE DF =又∵,倍长DE 至F DF 与AC 互相平分构造全等 三角形 角、边相等平行四边形线段相等、平行∴DE_____BC ,DE=______BC.要点归纳:三角形中位线定理:三角形的中位线平行于三角形的第三边且等于第三边的一半.符号语言:△ABC 中,若D 、E 分别是边AB 、AC 的中点, 12=.DE BC DE BC 则,重要结论:①中位线DE 、EF 、DF 把△ABC 分成四个全等的三角形;有三组共边的平行四边形,它们是四边形ADFE 和BDEF ,四边形BFED 和CFDE ,四边形ADFE 和DFCE.②顶点是中点的三角形,我们称之为中点三角形;中点三角形的周长是原三角形的周长的一半.面积等于原三角形面积的四分之一. 典例精析例1如图,在△ABC 中,D 、E 分别为AC 、BC 的中点,AF 平分∠CAB ,交DE 于点F.若DF =3,求AC的长.例2 如图,在四边形ABCD 中,AB=CD ,M 、N 、P 分别是AD 、BC 、BD 的中点,∠ABD=20°,∠BDC=70°,求∠PMN 的度数.例3 如图,在△ABC 中,AB =AC ,E 为AB 的中点,在AB 的延长线上取一点D ,使BD =AB ,求证:CD =2CE.方法总结:恰当地构造三角形中位线是解决线段倍分关系的关键.1. 如图,△ABC 中,D 、E 分别是AB 、AC 中点. (1) 若DE=5,则BC=________.(2) 若∠B=65°,则∠ADE=_________°. (3) 若DE+BC=12,则BC=_________.2. 如图,A ,B ,并分别找出AC 和BC 的中点M ,N ,如果测得MN=20m ,那么A ,B 两点间的距离为______m . 探究点2:三角形的中位线的与平行四边形的综合运用 例4 如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 中点.求证:四边形EFGH 是平行四边形.方法总结:顺次连结四边形四条边的中点,所得的四边形是平行四边形.变式题 如图,E 、F 、G 、H 分别为四边形ABCD 四边之中点.求证:四边形EFGH 为平行四边形.例5 如图,等边△ABC 的边长是2,D 、E 分别为AB 、AC 的中点,延长BC 至点F ,使CF=12BC ,连接CD和EF .(1)求证:DE=CF ; (2)求EF 的长.EGFHBC D A针对训练1.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为 ( )A.8B.10C.12D.162.如图,▱ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,求△DOE的周长.二、课堂小结()当堂检三角形的中位线定理的应用三角形的中位线定理三角形中位线平行于第三边,并且等于它的一半三角形的中位线A.1B.2C.4D.82.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2B.3C.4D.53.如图,点 D、E、F 分别是△ABC 的三边AB、BC、AC的中点.(1)若∠ADF=50°,则∠B=____________°;(2)已知三边AB、BC、AC分别为12、10、8,则△ DEF的周长为_____________.4.在△ABC中,E、F、G、H分别为AC、CD、 BD、 AB的中点,若AD=3,BC=8,则四边形EFGH的周长是______________.5. 如图,在△ABC中,AB=6cm,AC=10cm,AD平分∠BAC,BD⊥AD于点D,BD的延长线交AC于点F,E为BC的中点,求DE的长.6.如图,E为▱ABCD中DC边的延长线上一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于O,连接OF,判断AB与OF的位置关系和大小关系,并证明你的结论.7.如图,在四边形ABCD中,AC⊥BD,BD=12,AC=16,E,F分别为AB,CD的中点,求EF的长.第1题图第2题图第3题图第十八章平行四边形18.2.1 矩形第1课时矩形的性质学习目标:1.理解矩形的概念,知道矩形与平行四边形的区别与联系;2.会证明矩形的性质,会用矩形的性质解决简单的问题;3.掌握直角三角形斜边中线的性质,并会简单的运用.重点:理解矩形的概念,知道矩形与平行四边形的区别与联系;掌握直角三角形斜边中线的性质,并会简单的运用.难点:会证明矩形的性质,会用矩形的性质解决简单的问题.一、知识回顾1.平行四边形是什么?它有哪些性质?2.你还记得长方形是什么吗?二、新知预习1.如图,现有一个活动的平行四边形,使它的一个内角变化,当内角变化为90°时,这是我们学过的哪个图形?2.自主学习:(1)矩形的定义:有一个角是直角的平行四边形叫做_________,也就是长方形.(2)矩形是特殊的平行四边形,平行四边形_________是矩形.三、自学自测1.矩形是常见的图形,你能举出一些生活中的实例吗?2.矩形是特殊的平行四边形,你能根据平行四边形的性质,说出3条矩形的性质吗?四、我的疑惑____________________________________________________________六、要点探究探究点1:矩形的性质思考因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?活动准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四个角度数和对角线的长度,并记录测量结果.AC BD∠BAD∠ADC∠ABC∠BCD 橡皮擦课本桌子(2)根据测量的结果,你有什么猜想?猜想1 矩形的四个角都是_________.猜想2 矩形的对角线__________.证一证如图,四边形ABCD是矩形,∠B=90°.求证:∠B=∠C=∠D=∠A=90°.证明:∵四边形ABCD是矩形,∴∠B____∠D,∠C____∠A, AB____DC.∴∠B+∠C=_____°.又∵∠B = 90°,∴∠C =____°.∴∠B=∠C=∠D=∠A =_____°.如图,四边形ABCD是矩形,∠ABC=90°,对角线AC与DB相较于点O.求证:AC=DB.证明:∵四边形ABCD是矩形,∴AB____DC,∠ABC=∠DCB=_____°,在△ABC和△DCB中,∵AB=DC,∠ABC=∠DCB,BC= CB,∴△ABC____△DCB.∴AC____DB.思考请同学们拿出准备好的矩形纸片,折一折,观察并思考.矩形是不是轴对称图形?如果是,那么对称轴有几条?要点归纳:矩形除了具有平行四边形所有性质,还具有的性质有:课堂探1.矩形的四个角都是_______.矩形的对角线________.2.矩形是_________图形,它有_____条对称轴.几何语言描述:在矩形ABCD中,对角线AC与DB相交于点O.∠ABC=∠BCD=∠CDA=∠DAB =90°,AC=DB.典例精析例1如图,在矩形ABCD中,E是BC上一点,AE=AD,DF⊥AE ,垂足为F.求证:DF=DC.例2如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,求△BED的面积.针对训练1.如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BDC.AC⊥BD D.OA=OB2.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD 面积的_________.3.如图,在矩形ABCD中,AE⊥BD于E,∠DAE:∠BAE=3:1,求∠BAE和∠EAO的度数.第1题图第2题探究点2:直角三角形斜边上的中线的性质活动 如图,一张矩形纸片,画出两条对角线,沿着对角线AC 剪去一半.问题 Rt △ABC 中,BO 是一条怎样的线段?它的长度与斜边AC 有什么关系? 猜想 直角三角形斜边上的中线等于斜边的________.证一证 如图,在Rt △ABC 中,∠ABC=90°,BO 是AC 上的中线.1.2BO AC =求证:证明:延长BO 至D, 使OD=BO,连接AD 、DC.∵AO=OC, BO=OD ,∴四边形ABCD 是____________. ∵∠ABC=90°,∴平行四边形ABCD 是________, ∴AC_______BD ,∴BO=_____BD=_____AC.要点归纳:直角三角形的性质:直角三角形斜边上的_______等于斜边的________. 典例精析例3 如图,在△ABC 中,AD 是高,E 、F 分别是AB 、AC 的中点. (1)若AB =10,AC =8,求四边形AEDF 的周长; (2)求证:EF 垂直平分AD.。

八年级数学第十八章18.2.1矩形的判定1

八年级数学第十八章18.2.1矩形的判定1

19.2.1矩形的判定
知识回顾:
1、矩形的定义 有一个角是直角的平行四边形叫矩形
2、矩形的性质 对边:对边平行且相等。 对角:四个角相等,都是直角。 对角线:互相平分且相等。
3、矩形的判定?
1、在四边形ABCD中,若 ∠A=∠B=∠C=90º,那么四边形 ABCD是否为矩形?为什么。
A
D
B
C
2、在平行四边形ABCD中,已知
根据它们的对话,你能肯定谁的门一定是 矩形。
4、已知:矩形的对角线ABCD的对角线
AC、BD相交于点O,点E、F、G、H分别
在OA、OB、OC、OD上,且AE=BF=CG=DH
求证:四边形EFGH是矩形
变式:矩形的对 A
角线ABCD的对角线 AC、BD相交于点O,
E O
D H
如E、F、G、H分别
是AO、BO、CO、
DO的中点,四边形B

GC
EFGH还是矩形吗?
5、已知:如图,平行四边形ABCD的
四个内角的平分线分别相交于E、F、
G、H,求证:四边形 EFGH为矩形.
A F
G H
D
A
PM
D
B
E
C
E B
FC N
O
变式:已知:AD∥BC,ME、NE、MF、
NF分别为角平分线。求证:四边
形ABCD为矩形
Hale Waihona Puke 思考:平行四边形ABCD中,对角线AC、 BD相交于点O,点P是四边形外一点, 且PA⊥PC,PB⊥PD,垂足为P。
AC=BD,那么四边形ABCD是否为
矩形?为什么。
A
D
O
B
C
矩形的判定

八年级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形 18.2.1.2 矩形的判定导学案 (新版)新人教版

八年级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形 18.2.1.2 矩形的判定导学案 (新版)新人教版

18.2.1.2 矩形的判定学习目标1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理;2.能应用矩形的判定解决简单的证明题和计算题.重点:经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理.难点:能应用矩形的判定解决简单的证明题和计算题.一、自学释疑矩形的判定在使用过程中,应该注意些什么?二、合作探究探究点1:对角线相等的平行四边形是矩形想一想 1.类比平行四边形的定义也是判定平行四边形的一种方法,那么矩形的定义也是判定矩形的一种方除了定义以外,判定矩形的方法还有没有呢?2.上节课我们已经知道“矩形的对角线相等”,反过来,小明猜想对角线相等的四边形是矩形,你觉得对吗?如果不对,你的猜想是什么?对角线_______的__________________是矩形.证一证已知:如图,在□ABCD中,AC,DB是它的两条对角线, AC=DB.求证:□ABCD是矩形.证明:∵AB = DC,BC = CB,AC = DB,∴△ABC______△DCB ,∴∠ABC______∠DCB.∵AB∥CD,∴∠ABC + ∠DCB =______°,∴∠ABC = _______°,∴□ ABCD是__________.思考数学来源于生活,事实上工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,窗框一定是矩形,你现在知道为什么了吗?要点归纳:矩形的判定定理:对角线相等的平行四边形是矩形.几何语言描述:在平行四边形ABCD中,∵AC=BD,∴平行四边形ABCD是矩形.典例精析例1如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是AO、BO、CO、DO 上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.针对训练1.如图,在▱ABCD中,AC和BD相交于点O,则下面条件能判定▱ABCD是矩形的是()A.AC=BDB.AC=BCC.AD=BCD.AB=AD2.如图,在平行四边形ABCD中, ∠1= ∠2中.此时四边形ABCD是矩形吗?为什么?探究点2:有三个角是直角的四边形是矩形想一想 1.上节课我们研究了矩形的四个角,知道它们都是直角,它的逆命题是什么?成立吗?2.至少有几个角是直角的四边形是矩形?猜测:有_____个角是直角的四边形是矩形.证一证已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.证明:∵∠A=∠B=∠C=90°,∴∠A+∠B=_______°,∠B+∠C=_______°,∴AD_____BC,AB_____CD.∴四边形ABCD是______________,∴四边形ABCD是________.思考一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板.为什么?要点归纳:矩形的判定定理:有三个角是直角的四边形是矩形.几何语言描述:在四边形ABCD中,∵∠A=∠B=∠C=90°,∴四边形ABCD是矩形.典例精析例3 如图,□ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形 EFGH 为矩形.例4 如图,在△AB C中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,求证:四边形ADCE为矩形.针对训练在判断“一个四边形门框是否为矩形”的数学活动课上,一个合作学习小组的4位同学分别拟定了如下的方案,其中正确的是()A.测量对角线是否相等B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三个角是否都为直角三、随堂检测1.下列各句判定矩形的说法是否正确?(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有三个角都相等的四边形是矩形;(5)有三个角是直角的四边形是矩形;(6)四个角都相等的四边形是矩形;(7)对角线相等,且有一个角是直角的四边形是矩形;(8)一组对角互补的平行四边形是矩形.2.如图,直线EF∥MN,PQ交EF、MN于A、C两点,AB、CB、CD、AD分别是∠EAC、∠MCA、∠ ACN、∠CAF的平分线,则四边形ABCD是()A.梯形B.平行四边形C.矩形D.不能确定3.如图,在四边形ABCD中,AB∥CD,∠BAD=90°,AB=5,BC=12,AC=13.求证:四边形ABCD是矩形.4.如图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ON=OB,再延长OC至M,使CM=AN.求证:四边形NDMB为矩形.5.如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.我的收获__________________________________________________________________________ ________________________________________________________________参考答案随堂检测1.(1)×(2)√(3)×(4)×(5)√(6)√(7)×(8)√2. C3. 证明:四边形ABCD中,AB∥CD,∠BAD=90°,∴∠ADC=90°. 又∵△ABC中,AB=5,BC=12,AC=13,满足132=52+122,即222.+=AB BC AC∴△ABC是直角三角形,且∠B=90°,∴四边形ABCD是矩形.4. 证明:∵四边形ABCD为平行四边形,∴AO=OC,OD=OB.∵AN=CM,ON=OB,∴ON=OM=OD=OB,∴四边形NDMB为平行四边形,MN=BD,∴平行四边形NDMB为矩形.5. 证明:∵AB=AC,AD⊥BC,∴∠B=∠ACB,BD=DC.∵AE是∠BAC的外角平分线,∴∠FAE=∠EAC.∵∠B+∠ACB=∠FAE+∠EAC,∴∠B=∠ACB=∠FAE=∠EAC,∴AE∥CD.又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且相等BD.又∵BD=DC,∴AE平行且等于DC,故四边形ADCE是平行四边形.又∵∠ADC=90°,∴平行四边形ADCE是矩形.。

最新课标RJ人教版 八年级数学 下册第二学期(导学案)第十八章 平行四边形 18.2.1 第2课时 矩形的判定

最新课标RJ人教版  八年级数学 下册第二学期(导学案)第十八章 平行四边形  18.2.1 第2课时 矩形的判定

18.2 特殊的平行四边形18.2.1 矩形第2课时 矩形的判定学习目标:1、学习矩形的判定定理,解决简单的证明题和计算题,进一步培养分析能力;2、培养综合应用知识分析解决问题的能力.重难点:掌握矩形的判定定理 学习过程:一、复习旧知二、探究新知1、探究归纳矩形的判定定理,并用模式表示:(1)你能确定有三个角是直角的四边形是矩形吗?(自己探究)。

判定定理1(从四边形⇒矩形):有三个角是直角的四边形是矩形。

几何语言: 在四边形ABCD 中,∵ ∴(2)我们知道矩形的定义:有一个角是直角的平行四边形叫做矩形。

由此这个定义可以作为一个判定吗?判定定理2(从平行四边形⇒矩形):有一个角是直角(900)的平行四边形是矩形。

几何语言: 在平行四边形ABCD 中, ∵ 或 或 或 ∴(3)矩形的对角线 ,对角线相等的平行四边形是矩形吗?(证明你的回答) 证明:判定定理3(从平行四边形⇒矩形):对角线相等的平行四边形是矩形。

几何语言: 在平行四边形ABCD 中, ∵ ∴A BD A BD DCDC【归纳总结】矩形的判定方法:1、有一个角是 的平行四边形是矩形;2、四个角都是 的四边形是矩形;3、对角线 的四边形是矩形。

或者说,对角线 的平行四边形是矩形三、课堂练习思考:下列命题是否正确,正确的加以证明,不正确的通过举反例或画图加以说明(1)有一个角是直角的四边形是矩形 (2)对角线互相平分且又相等的四边形是矩形 (3)四个角都相等的四边形是矩形 四、课堂小结(1)证明四边形是矩形的方法:一般先证明它是平行四边形,然后再证明一个直角或者对角线相等 (2)证明平行四边形是矩形的方法: 一般可在角上找条件,也可在对角线上找条件。

判定方法 : 从角的条件看 、 ( 种)从对角线的条件看 。

五、课后作业1、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).A 、测量对角线是否相互平分B 、测量两组对边是否分别相等C 、测量一组对角是否都为直角D 、测量其中三个角是否都为直角 2、如图,已知ABCD 的对角线AC 、BD 相交于O ,△ABO 是等边三角形,AB=4cm ,求这个平行四边形的面积六、课后反思。

新人教版八年级数学下册《十八章 平行四边形 18.2 特殊的平行四边形 18.2.1矩形 矩形的性质》教案_2

新人教版八年级数学下册《十八章 平行四边形  18.2 特殊的平行四边形  18.2.1矩形  矩形的性质》教案_2

A B C D 18.2.1 矩形(一)一、教学目标:1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.3.渗透运动联系、从量变到质变的观点.二、重点、难点1.重点:矩形的性质.2.难点:矩形的性质的灵活应用.1、课堂引入(1).什么叫平行四边形?两组对边分别平行的四边形叫做平行四边形 .(2).平行四边形有哪些性质?①边: 对边平行且相等.②角: 对角相等,邻角互补.③对角线: 互相平分.(3)我们都知道三角形具有稳定性,平行四边形是否也具有稳定性?思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(拉动过程如图)。

推动平行四边形的一角,在这个变化过程中,你有没有发现一种熟悉的、特殊的平行四边形?(小学学过的长方形)引出本课题及矩形定义.2、新课讲解(1)矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).矩形是我们最常见的图形之一,你能列举出生活中有关矩形的例子吗?(书桌面、教科书的封面等)(2)矩形的一般性质: 矩形是一个特殊的平行四边形,具有平行四边形所有的性质。

(3)合作探究:矩形除了具有平行四边形的所有性质外,还有哪些特殊性质呢?从边、角、对角线三个方面考虑。

(学生利用度量、折叠、剪拼等方法小组合作操作、讨论)操作,思考、交流、归纳后得到矩形的性质的猜想.猜想1:矩形的四个角都是直角.猜想2:矩形的对角线相等.问题:你会证明这两个猜想吗?求证:矩形的四个角都是直角. 已知:如图,四边形ABCD 是矩形,求证:∠A=∠B=∠C=∠D=90°证明: ∵四边形ABCD 是矩形∴ ∠A=90°又 矩形ABCD 是平行四边形 ∴ ∠A=∠C ∠B = ∠D∠A +∠B = 180°∴ ∠A=∠B=∠C=∠D=90°即矩形的四个角都是直角求证:矩形的对角线相等已知:如图,四边形ABCD 是矩形求证:AC = BD证明:在矩形ABCD 中∠ABC = ∠DCB = 90°又∵AB = DC , BC = CB∴△ABC ≌△DCB∴AC = BD即矩形的对角线相等结论:矩形特殊的性质:从角上看:矩形的四个角都是直角.从对角线上看:矩形的两条对角线相等.从边、角、对角线比较平行四边形与矩形的性质。

八年级数学 第十八章 平行四边形 18.2.1 矩形 第2课时 矩形的判定

八年级数学 第十八章 平行四边形 18.2.1 矩形 第2课时 矩形的判定

12/5/2021
第十页,共十一页。
内容 总结 (nèiróng)
第2课时 矩形的判定(pàndìng)。A.AB=CD B.AC=BD。C.互相平分 D.互相平分且相等。C.∠ADB=90° D.CE⊥DE。9.用一把刻度尺来判定(pàndìng)一个零件是矩形的方法是先测量两组对边是否分别相等,然后测量两条
12/5/2021
第五页,共十一页。
9.用一把刻度尺来判定一个(yī ɡè)零件是矩形的方法是先测量两组对边是否分别相等,然后测量 两条对角线是否相等,这样做的依据是 对角线相等的平行四边形是矩形 . 10.已知在四边形ABCD中,AD∥BC,AC=BD,如果添加一个条件,即可判定该四边形是矩形,那么所添 加的这个条件可以是 AD=BC或AB∥CD .
(A)
A.∠BAC=∠ABDB.∠BAC=∠DAC
C.∠BAC=∠DCA
D.∠BAC=∠ADB
8.如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,连接(liánjiē)EB,EC,DB,添加一个条件,不能
使四边形DBCE成为矩形的是( B )
A.AB=BE
B.BE⊥DC
C.∠ADB=90° D.CE⊥DE
4.如图,▱ABCD中,对角线AC,BD相交于点O,OA=3,若要使平行四边形ABCD为矩形,则OB的长度为
(B)
A.4 B.3
C.2
D.1
12/5/2021
第三页,共十一页。
5.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是( B )
A.AO=OC
B.AC=BD
12/5/2021
第八页,共十一页。
15.如图,DB∥AC,DB= AC,12E是AC的中点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小结:判定一个图形是矩形的方法:
(1)平行四边形+ 矩形 (2)平行四边形+ 矩形 (3)四边形+ 矩形
第8课时——矩形的判定
一、教学目标:
1、掌握矩形的判定方法。

2、能运用矩形的判定方法解决有关问题。

二、教学重点:矩形的判定
教学重点:熟练矩形的判定并利用它的判定解决问题 三、教学过程 (一)复习导入:
矩形的性质:(1)对边 且 。

(2)四个角都是 。

(3)对角线 且
(二)讲授新课:
1、定义:有一个角是 的平行四边形是矩形。

几何语言,如图∵ ABCD 中,∠A = °,
∴ ABCD 是
2、对角线相等的平行四边形是矩形。

几何语言:如图∵ ABCD 中,______=_______
∴ ABCD 是 。

3、有三个角是直角的四边形是矩形。

几何语言:如图 在四边形ABCD 中
∵∠ =∠ =∠ = °
∴四边形ABCD 是 。

4、例题 如图,O 是矩形ABCD 的对角线AC 与BD 的交点,E 、F 、G 、H 分别是AO 、
BO 、CO 、DO 上的一点,且AE =BF =CG =DH . 求证: 四边形EFGH 是矩形. 证明:
A B D
C
O
A
B D
C
A
D
B
(三)、课堂练习:
1、如右图,已知四边形ABCD 中,OA =OB =OC =OD =5cm , 则四边形ABCD 是 。

理由: 。

2、如图,中,AB=6,BC=8,AC=10,求证:四边形ABCD 是矩形
3、如图,四边形ABCD 是平行四边形,AC,BD 相交于点O ,且∠1=∠2,它是一个矩形吗?为什么?
4.如图,的对角线AC ,BD 相交于点O ,⊿AOB 是等边三角形,且AB=4cm, 求的面积(精确到0.01c ㎡)
(四)课堂小结
这节课我们学习了什么内容?有什么收获?你还有什么疑问吗? (五)作业 (六)反思
ABCD ABCD ABCD A B D
C
O
2
1
O
D
C
B
A。

相关文档
最新文档