1平行四边形及其性质1导学案
平行四边形的性质1
是的,走在生活的风雨旅程中,当你羡慕别人住着高楼大厦时,也许瑟缩在墙角的人,正羡慕你有一18.1.1平行四边形的性质(一)学习目标:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.学习重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 学习难点:运用平行四边形的性质进行有关的论证和计算.学习过程:一、自主预习(8分钟)1.由__ _条线段首尾顺次连接组成的多边形叫四边形;四边形有 _条边,_ __个角,四边形的内角和等于_____度;2.如图AB 与BC 叫_ __边, AB 与CD 叫__ _边;∠A 与∠B 叫_ __角,∠D 与∠B 叫_ __角;3多边形中不相邻顶点的连线叫对角线,如图四边形ABCD 中对角线有__ _条,它们是___ ___自学课本P41~P43,1.有两组对边__________________的四边形叫平形四边形,平行四边形用“______”表示,平行四边形ABCD 记作__________。
2.如图□ABCD 中,对边有______组,分别是___________________,对角有_____组,分别是_________________,对角线有______条,它们是___________________。
的边、角各有什么关系吗?并证明你的结论。
结论:二、合作探究1、证明上面的结论。
已知:如图ABCD ,求证:AB =CD ,CB =AD ,∠B =∠D ,∠BAD =∠BCD .分析:作ABCD 的对角线AC ,它将平行四边形分成△ABC 和△CDA ,证明这两个三角形是的,走在生活的风雨旅程中,当你羡慕别人住着高楼大厦时,也许瑟缩在墙角的人,正羡慕你有一全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)写出证明过程:2、例习题分析:讲解例1(教材P42例1)知识点识记:平行线间的距离定义:两条平行线中,一条直线上任意一点到另外一条直线的距离。
平行四边形的性质(1)
里辛一中初三数学导学案二、【自主学习探究新知】探究一:平行四边形的有关概念及记法(1)平行四边形的概念:两组对边分别_____的四边形.(2)四边形ABCD是平行四边形,记作“___ ___”.(3)平行四边形的对角线:平行四边形_______的两个顶点连成的线段.跟踪训练:如图,AD∥ EF ∥ BC,AB∥ GH∥ DC,图中的平行四边形有_个,探究二:平行四边形的性质旋转平行四边形,探究对称性和角的关系已知:四边形ABCD 是平行四边形。
求证:AB=CD ,BC=AD ,∠B=∠D例题:已知:在 ABCD 中,E ,F 是对角线 AC 上的两点,并且 AE = CF.求证:BE = DF跟踪训练:在 平行四边形ABCD 中,已知∠A=52 ° ,求其余三个角的度数。
CDBA平行四边形的性质:(1)平行四边形的中心对称性:平行四边形是中心对称图形,其对称中心为两条_______的交点. (2)对边:平行四边形的对边_____, (3)对角:平行四边形的对角_____.从最简单的做起宁可少些,但要好些! 三、【课堂达标】利用平行四边形的性质进行计算1.▱ABCD的周长为32cm,△ABC的周长为20cm,则AC的长为( )A.13cmB.4cmC.3cmD.2cm2.(2013·黔西南州中考)已知▱ABCD中,∠A+∠C=200°,则∠B的度数是( )A.100°B.160°C.80°D.60°第2题图第4题图3.在▱ABCD中,若∠C=∠B+∠D,则∠A= .4.在▱ABCD中,∠B=45°,对角线AC=2cm,且AC⊥BC,则▱ABCD的周长为.5.如图,在▱ABCD中,AE平分∠BAD交DC于点E,AD=5cm,AB=8cm,求EC的长.利用平行四边形的性质进行证明1.(2013·南充中考)下列图形中,∠2>∠1的为( )2.已知ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是( )3.如图,四边形ABCD是平行四边形,点E,F分别是DB,BD延长线上的点,且BE=DF,求证:AE∥CF.4.已知:在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF,EG,AG,∠1=∠2.(1)若CF=2,AE=3,求BE的长.(2)求证:∠CEG=1∠AGE.2四、【课堂总结】。
《18.1平面四边行的性质(1)》导学案(定稿)
§18.1《平行四边形的性质(第1课时)》导学案学校 班级 姓名 座号一、学习目标理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质; 运用平行四边形的性质进行有关的计算与证明、进而解决简单的问题; 了解两条平行线之间距离的意义,能度量两条平行线之间的距离. 二、学习重点理解并掌握平行四边形的概念及其性质. 三、学习难点在平行四边形性质的探索过程中体会转化思想,提高合情推理和演绎推理能力. 四、学前准备卡片数张、平行四边形卡纸、两个全等的三角形卡纸、图钉、剪刀、三角尺 五、学习过程(一)先学先知环节1.与生活情景对话,揭示主题(1)有一块形状如图所示的玻璃,不小心把EDF 部分打碎了,现在只测得AE=60cm 、BC=80cm ,∠B=60°且AE ∥BC 、AB ∥CF ,你能根据测得的数据计算出DE 的长度和∠D 的度数吗?你的猜想是: .(2)平行四边形是一种很特殊的四边形,你能举出生活中常见的平行四边形的 一些例子吗?说说平行四边形是如何区别于一般的四边形的呢?你的知识储备有: .2.与教材文本对话,解读概念(学生自主阅读教材第72-74页 )(1)请在你的卡纸上,作一个平行四边形(参照P72页试一试,剪下备用) (2)通过作图,概括定义:__________________________叫做平行四边形. (3)平行四边形的表示:如图所示, 平行四边形ABCD 记作: ;对边有: ;对角有: . (4)理解定义的双重性: 具备条件:______________的四边形,才是平行四边形;反过来,平行四边形一定具有的性质是 . 几何语言表述: 如上右图所示,① ∵ AB ∥CD AD ∥BC ∴四边形ABCD 是平行四边形; ② ∵ 四边形ABCD 是平行四边形 ∴AB ∥CD AD ∥BC.B ADC(5)通过探索,你还得到平行四边形的边、角的哪些性质呢?用几何语言表述. 如图所示,∵四边形ABCD 是平行四边形 ∴ ; ∴ ;∴ . 3.与题组检测对话,即学即用(1)已知□ABCD 中,∠A=40°,则∠B= ,∠C= ,∠D= ; (2)在□ABCD 中,∠A+∠C=100°, 则∠A= ,∠D= ; (3)在□ABCD 中,∠A:∠B=1:2,则∠A= ,∠D= ; (4)在□ABCD 中,AB=5, BC=8,则CD= ,AD= ; (5)已知□ABCD 的周长为60cm ,则AB+BC= ; 若AB :BC=2:3,则AB= ______,BC= ;(6)如图,在□ABCD 中,已知AC=3cm ,△ABC 的周长=8cm ,则平行四边形的周长为_______cm .(二)交流展示环节1.与探究活动对话,探索性质(合作探究平行四行边的数量关系、角的数量关系)第 小组合作学习记录板(1)利用所画的平行四边形的性质:你们小组选择的方法是:○度量 ○平移 ○旋转 ○折叠 ○拼图 ○其他(2)你们小组利用的学具有: ; (3)探索过程汇报展示:(4)你们探究的结论有: .AD CBAB CD(以上部分,请同学们先自学本节内容,并独立完成,上交组长检查)2.与演绎推理对话,理解性质问题:你能用已学的知识,通过演绎推理,证明上述探索的结论吗?并提出相异构想. 已知: 求证: 证明:(备用图)3.与例题改编对话,提升技能(1)例2 如图,在□ABCD 中, AB=8,周长等于24,求其余三条边的长.(2)改编训练如图,已知□ABCD 中,∠DAB 的平分线AE 交CD 于E ,且AB =8,EC =3, 求□ABCD 的周长.BA DCAD CBBA DCBA DCCDA BE4.与实践探索对话,拓展知识(1)阅读教材P75页“试一试”,给了你什么启发呢?(2)请你在作业纸中任画两条平行直线m和n,用直角三角尺的一条直角边紧贴直线n;并沿着n平移,观察三角尺的另一条直角边与直线m交点处的刻度会改变吗?请概括你的发现.(3)若在直线m上任取两点A、C,过A作AB⊥n于B,过C作CD⊥n于D,测量AB、CD的长度,你有什么发现?试用平行四边形的性质定理加以说明.(4)概括:①平行线的又一个性质:;②两条平行线之间的距离的意义: .(5)如图,直线m∥n,点B、C是直线n上的两个定点,点A是直线m上的一个动点,那么在点A移动的过程中,△ABC的面积将().A、逐渐变大B、逐渐变小C、保持不变D、无法确定5.与总结收获对话,升华知识(三)课外作业与综合实践1.必做题:课本P75练习:第2、3题;P80 18.1习题:第3题、第5题2.实践与探索题:如图,甲、乙两户的承包田被折线ABC分割,给耕种带来许多不便,他们想把这条分割线改成直线,并且保持两户农田面积不变,道路的一端仍为A,问应该怎么改?画出示意图,并说明理由。
初中数学 九年级上导学案(青岛泰山版)
初中数学九年级上导学案(青岛泰山版) 第1章特殊四边形1.1 平行四边形及其性质学习目标:1、知道平行四边形的概念;2、掌握平行四边形边和角之间的位置关系和数量关系3、通过操作、观察、培养动手和归纳能力,在观察、操作、推理、归纳的过程中发展合情推理能力。
重点、难点:平行四边形的性质及推理。
导学过程:一、情境导入1、想一想我们实际生活中,哪些物体的形状是平行四边形?2、在小学时,我们已经学习了平行四边形,哪位同学说一说,什么叫做平行四边形?二、自主学习自学课本第4也内容,完成下列问题:1、怎样用符号表示平行四边形?2、看下图,我们知道平行四边形是由边和角组成,找一找□ABCD中的对边、对角、邻边、邻角、对角线。
三、合作交流根据平行四边形定义很容易得到两组对边平行,那么根据图形、平行四边形还有什么特征呢?进一步启发学生平行四边形的特征与边、角、对角线有什么关系?归纳并证明:四、随堂练习1、已知□ABCD,根据下列条件填空:⑴已知∠A=50°,则∠B= _____,∠C= _____,∠D= _____。
⑵已知∠A+∠C=200°,则∠A= _____,∠B= _____。
⑶已知AB=3,BC=5,则□ABCD的周长= _______。
2、已知□ABCD中,AC、BD为两条对角线,图中有哪些相等的线段,哪些相等的角。
3、完成课本中例1、例2.五、课堂小结:六:课外拓展1、把两个完全重合且三边都不相等的三角形按不同的方法拼成平行四边形,你能拼成几个平行四边形?(看谁拼的又快又多又好2、有一张平行四边形的纸片你能把它剪成面积相等的两块三角形纸片吗?你能把它剪成面积相等的4块三角形纸片吗?七、巩固检测:(A教材P6中1、P7中练习1、习题1.1中1(B教材P6中2、P7中练习2、习题1.1中51.2 平行四边形的判定学习目标1.经历探索、猜想、证明的过程,进一步发展推理论证的能力。
2.能运用综合法证明平行四边形判定定理。
2023年春八下数学 18-1-3 平行四边形的判定(1) 导学案(人教版)
人教版初中数学八年级下册18.1.3 平行四边形的判定(1) 导学案一、学习目标:1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.重点:掌握平行四边形的判定定理.难点:综合运用平行四边形的性质与判定解决问题.二、学习过程:课前自测平行四边形的性质:边:_____________________________;∵ _______________________________∴ _______________________________角:_____________________________;∵ _______________________________∴ _______________________________对角线:_____________________________;∵ _______________________________∴ _______________________________自主学习思考:反过来,对边相等,或对角相等,或对角线互相平分的四边形是平行四边形吗?也就是说,平行四边形的性质定理的逆命题成立吗?逆命题1:____________________________________________.逆命题2:____________________________________________.逆命题3:____________________________________________.逆命题1:(证明过程)如图,在四边形ABCD中,AB=CD,AD=CB.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理1:_________________________________________. 几何符号语言:∵ _______________________,∴ _________________________.逆命题2:(证明过程)如图,在四边形ABCD中,∠A=∠C,∠B=∠D.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理2:_________________________________________. 几何符号语言:∵ _______________________,∴ _________________________.逆命题3:(证明过程)如图,在四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理3:_________________________________________.几何符号语言:∵ _______________________,∴ _________________________.典例解析例1.如图,以△ABC的各边向同侧作正三角形,即等边△ABD、等边△ACE、等边△BCF,连接DF,EF.求证:四边形AEFD是平行四边形.【针对练习】如图,将□ABCD的四边DA,AB,BC,CD分别延长至点E,F,G,H,使得AE=CG,BF=DH,连接EF,FG,GH,HE.求证:四边形EFGH为平行四边形.例2.如图,四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.【针对练习】如图,在□ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.求证:四边形AFCE是平行四边形.例3.如图,□ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.【针对练习】变式1:若E、F继续移动至OA、OC的延长线上,仍使AE=CF,则结论还成立吗?为什么?变式2:问题中AE=CF,过点O作一直线分别交AB、CD于G、H,则四边形GFHE 是平行四边形吗?为什么?达标检测1.下面给出四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是( )A.1:2:3:4B.2:3:2:3C.2:3:3:2D.1:2:2:32.如图,在四边形ABCD中,AB=CD,BC=AD.若∠D=120°,则∠C的度数为( )A.60°B.70°C.80°D.90°3.如图,在□ABCD中,对角线AC、BD交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE= ∠CBF;④∠ABE= ∠CDF.其中不能判定四边形DEBF是平行四边形的有( )A.0个B.1个C.2个D.3个4.四边形ABCD中,AB=9cm,BC=6cm,CD=9cm,当AD=____cm时,四边形ABCD 是平行四边形.5.如图,在□ABCD中,点E,F分别在边AD,BC上,且BE//DF,若AE=5,则CF=_____.6.如图,线段AB,CD相交于点O,且图上各点把线段AB,CD四等分,这些点可以构成平行四边形的个数是_____.7.如图,在□ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,求证:四边形KLMN为平行四边形.8.如图,在□ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.9.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.10.如图,AC是平行四边形ABCD的一条对角线,BM⊥AC于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.。
6.1平行四边形的性质(1)学案
6.1平行四边形的性质(1)学案学习目标:1、明确平行四边形及相关概念.2、探究并理解平行四边形的对称性及边、角的性质.3、能运用平行四边形的性质解决简单的几何问题学习重点:探究平行四边形的性质.学习难点:性质的探究及运用.学习过程:一、导入新课1、下面的图片中,有你熟悉的哪些图形?2、观察图形,说出下列图形边的位置有什么特征?二、收获新知1、认识平行四边形定义:的四边形叫平行四边形.特征:表示方法:平行四边形ABCD记作:读作:几何语言:练习:找找看:如图:在□ABCD中,EF∥AB.①则图中有__个平行四边形;②若GH∥AD,EF与GH交于点O,则图中有__个平行四边形.2、深入了解平行四边形:在□ABCD中,邻边有:邻角有:对边有:对角有:对角线:平行四边形中连成的线段叫做平行四边形的对角线.与都是□ABCD的对角线.3、探究平行四边形的性质探究1:在□ABCD中,对角线AC与BD交于点O,将□ABCD绕点O旋转,旋转后的图形能与□ABCD完全重合吗?这说明了什么?平行四边形的性质性质1:平行四边形是,其是对角线的交点.探究2:在□ABCD中(1)对边AB与CD,AD与BC有怎样的位置关系?你是怎样知道的?(2)对边AB与CD,AD与BC有怎样的数量关系?为什么?平行四边形的性质性质2:平行四边形的两组对边,平行四边形的两组对边.几何语言:探究3:在□ABCD中(1)对角∠A与∠C,∠B与∠D的大小有怎样的关系?为什么?(2)对边AB与CD,AD与BC有怎样的数量关系?为什么?平行四边形的性质性质3:平行四边形的两组对角,平行四边形的邻角.几何语言:三、学以致用1、在□ABCD中,已知∠A=60°,BC=3,你能得出哪些结论?2、在□ABCD中,∠A:∠B:∠C:∠D的值可以是( )A.1∶2∶3∶4B.1∶2∶2∶1C.2∶2∶1∶1D.1∶2∶1∶23、四边形ABCD和四边形ACEB都是平行四边形,请你找出图中相等的线段和角.相等的线段:相等的角:4、在□ABCD中,E,F是对角线AC上的两点,并且AE=CF.求证:BE=DF.四、课堂小结请你在课后把本节课所学的知识分类整理在下面.五、课后作业A组1.如图1,在□ABCD中,下列各式不一定正确的是( )A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°图1 图22.如图2,已知在平行四边形ABCD中,AB=4 cm,AD=7 cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=___________ cm.3.□ABCD中,∠A比∠B大20°,则∠C的度数为( )A.60°B.80°C.100°D.120°4.如图3,在□ABCD中,点E、F在对角线BD上,且BE=DF,求证:AE=CF.图35.如图4,在□ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:∠BAE=∠DCF.图4B组1.在□ABCD中,已知AB,BC,CD三条边的长度分别为(x+3)CM,(x-4)CM,16CM,这个平行四边形的周长是多少?2.如图5,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G.(1)求证:AF=GB;(2)请你在已知条件的基础上再添加一个条件,使得△EFG是等腰直角三角形,并说明理由.图5。
平行四边形的定义、性质—导学设计
平行四边形的定义、性质导学设计保和镇初级中学程丹本节选自华东师范大学出版义务教育教科书《数学》八年级下册第十八章第一节第一课时的内容.一、教材分析1、教材的地位与作用平行四边形的性质是在学生掌握了平行线、三角形及简单图形的平移等几何知识的基础上进一步认识学习更复杂的平面几何图形.平行四边形及其性质是本节的重点,又是本章的重点.学习它不仅是对已学平行线、三角形等知识的综合应用和深化,提升推理探究能力,又是下一步学习矩形、菱形、正方形等特殊平行四边形的基础,起着承上启下的作用.2、学情分析本班学生基础知识中等,主动学习的积极性较高,具备一定的自主学习的能力.学生在小学阶段已经对平行四边形有了初步、直观的认识,为平行四边形性质的研究提供了一定的认知基础,八年级学生正处在试验几何向论证几何的过渡阶段,对于严密的推理论证还有所欠缺,而利用动手操作来实现探究活动,对学生较适宜,而且有一定的吸引力,可进一步调动学生的求知欲,发挥学生的主体地位.3、导学目标根据课程标准的要求,我确定了三维导学目标:(1)知识目标:掌握平行四边形的定义及性质;(2)能力目标:学会“观察—归纳—猜想—证明—应用”的思维过程;培养学生直观想象、逻辑推理等数学核心素养;(3)情感目标:通过对平行四边形性质的研究,培养学生主动探索、勇于发现的求知精神,养成细心观察、认真分析、善于总结的良好思维习惯.4、导学重点和难点重点:平行四边形边角性质的证明和应用;难点:平行四边形性质的探究,即如何添加辅助线将平行四边形问题转化为三角形问题的思想方法.【设计意图】本着课程标准,为了本章后面的学习,首先必须掌握平行四边形的定义,其次平行四边形的边角性质和应用是学习平行四边形的灵魂,所以我确立平行四边形边角性质的证明和应用为导学的重点.将不熟悉的平行四边形转化为学过的三角形来解决,这是数学中的“化规”思想,这对学生能力要求比较高,所以我确立平行四边形性质的探究,即如何添加辅助线将平行四边形问题转化为三角形问题的思想方法为难点.二、导学方法1、导法引导探究式为主,讲练结合法为辅.【设计意图】学习平行四边形的性质是在小学的基础上学习的,因此我采用引导探究式为主,讲练结合法为辅的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现和提出问题、分析和解决问题.2、学法观察猜想法、合作交流法、探究学习法、总结归纳法.【设计意图】本节课主要是引导学生通过实践操作以及严格的逻辑推理得出平行四边形的性质,要求学生在教师的引导下解决问题,让学生观察,分析,归纳,推理,因此,我将学法设置为探究学习法.3、导学手段粉笔、两个全等的三角形、两个全等的平行四边形和多媒体教学.【设计意图】为了提高课堂效率,节约课堂时间,增强课堂趣味性,我采用了粉笔、实物模型和多媒体教学的导学手段.三、导学过程为了突出重点,突破难点,我将教学过程设置为以下七个环节.(一)创设情境先让学生感受古希腊数学家、哲学家毕达哥拉斯说的一句话,让学生知道本节课的重点在于探讨知识的形成过程.由弗赖登塔尔的数学教育必须面向社会现实,必须联系日常生活实际,因而我会展示生活中的平行四边形,由学生观察它们的形状,在头脑中对平行四边形有一个初步的认识.【设计意图】为学习新知识创设问题情境,激发学生的求知欲,从而形成初步印象.(二)自主预习1、研读课本72-73页,看图回答下列问题:记作: ;读作:.平行四边形中相对的边称为,相对的角称为.相邻的边称为 ,相邻的角称为 .平行四边形不相邻的两个顶点连成的线段叫它的 .请用几何语言描述平行四边形的定义? .2、尝试练习如图,在□ABCD 中,//EF AD ,//GH CD ,图中的平行四边形有 个,它们是 . 在课本165页的格点图中画一个平行四边形,观察这个四边形,除了“两组对边分别平行”以外,它的边、角之间有什么关系吗?度量一下,是不是和你的猜想一致?【设计意图】通过学生阅读课本上的基本知识,完成自主学习,即锻炼了学生自主学习的能力,又培养了学生独立解决问题的能力.(三)探究学习问题探究一拿出准备好的两个全等的三角形纸片,并将它们相等的一组边重合,可以得到四边形吗?你有几种方案?在你拼出的四边形中有平行四边形吗?你能结合平行四边形的定义给出合理的解释吗?问题探究二你能验证猜想吗?方法一:利用两个全等的平行四边形验证你的猜想并回答下列问题:1、平行四边形是 图形(选填“轴对称”、“中心对称”),若是轴对称图形,找出它的对称轴,若是中心对称图形,找出它的对称中心;2、将两个形状大小完全一样的□ABCD 和□A B C D ''''重合在一起,沿着对角线交点O ,将其中一个旋转180°,你有什么发现?方法二:利用逻辑推理证明你的猜想已知:如图,□ABCD求证:AB CD =,BC AD =,B D ∠=∠,A C ∠=∠.B【设计意图】波利亚主张数学教育主要目的之一是发展学生的发现问题、解决问题的能力,教会学生思考.因而通过师生共同探究,让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.通过问题探究一,可以让学生知道平行四边形是可以由两个全等的三角形组成的,这为问题探究二中的“利用逻辑推理证明猜想”埋下了伏笔;通过问题探究二的方法一旋转平行四边形,直观感受平行四边形是中心对称图形,并得到平行四边形的边角关系;通过问题探究二的方法二,用严格的逻辑推理证明平行四边形的边角关系,体现了数学严格的逻辑推理,也为今后平行四边形问题的解决提供了方法——转化成三角形来解决.(四)归纳总结【设计意图】根据奥苏贝尔的“良好的认知结构”,为了让学生对本节课的内容有一个系统性的认识,我将本节课的知识点设计成表格的形式,帮助学生理清知识结构,构建自己的知识系统.(五)尝试练习1、在□ABCD 中,50B ∠=︒,则A ∠= ,C ∠= ;D ∠= .2、在□ABCD 中,3AB cm =,5BC cm =,则AD = ,CD = .3、在□ABCD 中, 120A C ∠+∠=︒,B ∠= ;D ∠= .4、已知□ABCD 的周长为32,4AB =,则BC = .5、在□ABCD 中,4B A ∠=∠,则C ∠= .6、已知:在□ABCD 中,E ,F 是对角线AC 上的两点,并且AE=CF ,求证:BE=DF .7、(选做)已知平行四边形的一个内角的平分线与平行四边形的一边相交,并把此边分成两线段的比为2:3,此平行四边形的周长为32,求此平行四边形相邻两边的长.【设计意图】让陈述性知识转化为程序性知识,增强学生对平行四边形的性质的理解与运用,提高解决实际问题的能力.7题为选做题,这也体现了课标要求“让不同的学生在数学上得到不同的发展”.(六)课堂小结根据奥苏贝尔的“良好的认知结构”,为了让学生对本节课的内容有一个系统性的认识,我会先让学生回忆本节课所学的内容,然后再根据实际情况进行补充,主要从平行四边形的定义、平行四边形的边角性质及对称性三个方面进行小结.1、平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形.2、平行四边形的性质⎧⎪⎨⎪⎩边:对边平行且相等;角:对角相等,邻角互补;对称性:中心对称图形.(七)布置作业根据课程标准,我将分层布置作业,必做题为了对本节课所学的知识进行巩固,熟练运用平行四边形的性质;思考题是为了提高学有余力的学生的发展,培养独立思考、自主学习的能力,同时也为下节课平行四边形的性质(2)做准备.必做题:练习册 课时1 平行四边形的性质(1);思考题:学案的尝试练习第7题.【设计意图】注重学生的个体差异,使不同的学生在数学上得到不同的发展.四、 板书设计为了突出重点与难点,层次分明,美观大方,我将板书设计如下:五、导学反思在课前一天放学前,将导学案发到学生手中,让学生提前感知学习目标,以导学案为指引对课堂学习内容进行自主预习;按照导学案上面的问题看书,找出知识的重点和难点,以问题带动知识点,将知识点预习中发现的问题带进课堂,这一过程就是培养学生正确的自学方法,是培养学生自主学习能力的手段.数学课程标准明确指出—教师应向学生提供充分从事数学活动的机会,引导学生大胆观察,积极思考.为了充分上好本节课,我制作了形象直观的实物模型,突出重点、分散难点,实现了本节课的学习目标.在以后的教学当中,我还应大胆对教材进行重新组合,设置更为合理的教学环节,来促进学生对新知识的构建.采用“独学—对学—群学”及学生讲解的导学模式,体现了“教师为主导,学生为主体”的课标思想,发挥学生的主观能动性,同时还可以提高学生的学习兴趣,加深度知识的理解与应用.课堂是一门不完美的艺术,本节课也存在一些不足之处,请各位老师给予批评指正.。
平行四边形的性质导学案
平行四边形的性质导学案[学习目标]知识与技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力。
过程与方法:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力。
情感态度与价值观:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性.[学习重点与难点]重点:理解并掌握平行四边形的概念及其性质.难点:运用平移、旋转的图形变换思想探究平行四边形的性质.[学习过程]一、导入新课问题(1)同学们,你们留意观察过阳光透过长方形窗口投在地面上的影子是什么形状吗?问题(2)爱动脑筋的小钢观察到平行四边形影子有一种对称的美,他说只要量出一个内角的度数,就能知道其余三个内角的度数;只需测出一组邻的边长,便能计算出它的周长,这是为什么呢?通过本节课的学习,大家就能明白其中的道理.今天,我们来共同研究平行四边形及其性质.二、新知学习活动一:拼图游戏.问题1:你能利用手中两张全等的三角形纸板拼出四边形吗?问题2:观察拼出的这个四边形的对边有怎样的位置关系?说说你的理由.①平行四边形的定义:这个定义包含两层意义:①②。
②平行四边形的表示:平行四边形用符号“”表示,平行四边形ABCD记作“ ABCD”。
读作“平行四边形ABCD”。
练习:观察课本图16.1.1,哪些是平行四边形呢?问题3:根据定义画一个平行四边形。
(可参照课本探索)步骤:1:2:3:活动二:开放探究平行四边形的性质.活动要求:大家先看清要求,再动手操作,结论写在记录板上平行四边形的性质:A.从边看:B.从角看:C.从对角线看:三、精练反馈1.解决课前提出的实际问题某时刻小刚用量角器量出地面上平行四边形影子的一个内角是60°,就说知道了其余三个内角的度数;又用直尺量出一组邻边的长分别是40cm和55cm,便胸有成竹的说能够计算出这个平行四边形的周长.你知道小刚是如何计算的吗?这样计算的根据是什么?2.如图(1),在ABCD中,已知A=40 ,求其它各个内角的度数。
1.1平行四边形及其性质导学案
3.1.1«平行四边形的性质»导学案学习目标:1.知识与技能:了解四边形的有关概念,掌握平行四边形的概念和边、角的性质,能运用这些性质解答有关问题。
2.过程与方法:通过联想三角形的概念,归纳抽象四边形的有关概念和平行四边形的有关概念,通过观察、猜想和合情推理,获得平行四边形的边、角的性质定理,初步了解研究四边形的途径和方法,体会图形变换和转化思想。
3.情感态度和价值观:在自主探索、观察、推理过程中,体验探索的乐趣,感受推理的重要性与作用,培养探索意识和推理能力,形成良好的学习习惯。
学习重点、难点1重点:平行四边形的概念和性质。
2难点:平行四边形性质的推导和运用。
一、创设情境导入新课1、出示一张图形,观察,同学们说说它是什么图形?2、我们教室里那些物体的形状是四边形?二、自主学习预习交流1、自学内容:课本P68页的内容。
2、自学要求:四边形的有关概念、平行四边形的定义、平行四边形的表示方法以及读法3、自学方法:同学们自主完成后小组讨论交流4、自学反馈:请同学们填一填:(1)叫做四边形。
(2)叫做四边形的边;叫做四边形的顶点。
(3)四边形ABCD如果具备如下性质:这样的四边形叫做凸四边形。
(4)在四边形中,叫做四边形的对角线。
(5)四边形叫做对角,叫做对边。
(6)叫做平行四边形。
三、合作交流探究新知问题:平行四边形的对边有什么关系?对角有什么关系?的四条边的长度,四个角的大小。
由此你能对平行四边形的对边关系、对角关系作出什么猜想?我猜想平行四边形的对边平行四边形的对角。
这些猜想对吗?探究:怎么能证明你猜想的结论呢?画出图形让学生自己探索。
教师及时指导,点拨。
结论(板书):平行四边形对边相等,平行四边形对角相等。
四、应用迁移 巩固提高1.例题.一块平行四边形的草地,其中草地的一边为5m ,相邻的另一边为7m ,求这块平行四边形草地的周长。
解:2.动脑筋:如图12//L L ,AB∥CD那么AB与CD相等?为什么?结论:夹在两条平行线间的平行线段相等五、当堂训练能力提升C1.已知 ,根据下列条件填空:(1,则∠B= _____,∠C= _____,∠D= _____。
学案《平行四边形》导学案精品1人教数学五上(最新)
平行四边形预习指南:结合生活实际认识平行四边形,发现并归纳出平行四边形的特征,认识平行四边形的底和高,会正确画出平行四边形的高,知道平行四边形具有不稳定性。
1.下面哪一组是平行线?2.想一想,如果把两组平行线交叉在一起,会形成什么图形呢?3.教材第64-65页例1、2。
(1)认识平行四边形。
①小组合作。
利用三角尺、量角器、直尺等学具研究平行四边形的特征。
②小组汇报交流。
通过用直尺测量知道相对的边( );通过把直尺和一条边重合,再将三角尺的的直角边和直尺相邻的一条边重合,最后让三角尺慢慢沿直尺平移,发现能与对边重合,说明这两条对边是( )的;用量角器测量四个角发现:对角( )。
③归纳总结。
平行四边形两组对边( )且( ),对角( )。
④定义。
两组对边分别( )的四边形叫做平行四边形。
(2)平行四边形的特征。
用四根硬纸条订成一个长方形,捏住对角向两边拉就形成一个( )形,这个过程说明平行四边形其有( )的特点。
(3)平行四边形的底和高。
从平行四边形一条边上的一点向( )引一条垂线,这点和( )之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的( )。
(如图)4.下面哪些图形是平行四边形?画出每个平行四边形的高。
每日口算12×15=101×7=32×6=0×500=48×5= 220×5=106×5=40×18=25×8=84×5=参考答案1.①③④2.平行四边形3.(1)②相等平行相等③平行相等相等④平行(2)平行四边易变形(3)对边对边底4.第1、2、4个图形是平行四边形。
画图略每日口算:180 707 192 0 240 1100 530 720200 4202方程的意义和等式的性质(1)预习指南:理解方程的意义并会判断一个式子是否为方程。
知道方程与等式的关系,并能用方程表示简单的数量关系。
导学案 平行四边形的性质
第16章 平行四边形的认识§16.1 平行四边形的性质课时一 平行四边形的性质(一)【学习目标】1. 理解平行四边形的概念及表示方式.2. 理解平行四边形在边、角上的性质并能简单应用.【课前导习】1. 有两组对边 的四边形叫做平行四边形,用几何语言表述为:如图,在四边形ABCD 中,若 ∥ , ∥ ,则四边形ABCD是平行四边形,记为 .2.平行四边形的对边 ,用数学语言表述为: ABCD 中, = , =3. 平行四边形的对角 ,邻角 ,用几何语言表述为:在 ABCD 中,∠ =∠ ,∠ =∠ ,∠ +∠ =1800(互补的角只写出一对就行了)4. ABCD 中,6=AB ,4=AD ,则=BC ,=DC ,平行四边形ABCD 的 周长为 .5. ABCD 中,∠A=400,则∠C= 0,∠B= 0.6. ABCD 中,已知AB =8,周长等于24,则=DC ,=AD . 【主动探究】概念有两组对边分别平行的四边形叫做平行四边形找一找你能从图16.1.1所示的图形中找出平行四边形吗?图16.1.1试一试中绕着它的对角线AC 、BD 的交点O ,旋转180°之后看能否与原来的位置重合?你能通过操作过程中,发现些什么样的结论?概括平行四边形是 图形,对角线的交点O 就是 .平行四边形的 相等, 相等.例题讲解例1 中,已知∠A =40°,求其他各个内角的度数.例2 中,已知AB =8,周长等于24,求其余三条边的长.【当堂训练】1.在平行四边形ABCD 中,3AB =,5BC =,则平行四边形ABCD 的周长是 。
2. 在平行四边形ABCD 中,A ∠比B ∠多050,则C ∠= ,D ∠= 。
3. 平行四边形ABCD 的周长是10厘米,三角形ABC 的周长是8厘米,则对角线AC 的长是( )A 、2厘米B 、3厘米C 、4厘米D 、5厘米4. 平行四边形的两个邻角的角平分线相交所成的角是( )A 、锐角B 、直角C 、 钝角D 、不能确定5.一个平行四边形的一边长为9,对角线的长不可能是下列选项中的( )A 、5和6B 、10和12 C、10和20 D、2和18 6. 如图,在平行四边形ABCD 中,ABC ∠角平分线BE 交ADE 点,5=AB ,3=ED ,则平行四边形ABCD 的周长为( A 、16 B 、20 C 、26 D 、307. 如图,在 ABCD 中,AE 垂直于CD ,E 是垂足.如果055B ∠=,那么D ∠与DAE ∠分别等于多少度?8. 在 ABCD 中,A ∠与B ∠的度数之比为2:3,求这个平行四边形各个内角的度数.【回学反馈】1. 如图,在平行四边形ABCD 中,0115ADC ∠=, 021CAD ∠=, 求ABC ∠与CAB∠的度数.2. 如图,平行四边形ABCD 的周长是80厘米,对角线AC 与BD 相交于O ,AOB ∆的周长比AOD ∆的周长小20厘米,求这个平行四边形的各边的长。
刘新明 平行四边形的性质1导学案
2014年八年级数学上册平行四边形的性质导学案设计:刘新明1平行四边形的性质1 导学案荣成市第三十一中学 数学组 刘新明伟大的成绩和辛勤的劳动是成正比的,有一分劳动就有一分收获。
日积月累,从少到多,奇迹就可以被创造出来。
一、学习目标 我要学会:1、平行四边形的定义和性质。
2、会利用性质解决实际问题。
我要争取突破的困难:能用多种方法验证猜想。
以往的知识储备:平行线、三角形全等的知识。
二、课前准备智能袋:直尺、量角器、两个全等的三角形、两个相同的平行四边形和图钉 (一)引入图形,导出概念1、平行四边的定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形用“”表示,图1平行四边形ABCD 可记作:____ 。
在 ABCD 中(图1),边AB 、CD 是它的一组对边,边______是另一组对边;边AB 、BC 是它的一组邻边,邻边还有:________;∠A 和∠C 是它的一组对角,另一组对角是________;∠A 和∠B 是它的一组邻角,邻角还有__________。
(二)实践探究,感悟新知 活动一:问题一:你能利用手中的两张全等三角形纸板拼出四边形吗?(记录图形)问题二:结合平行四边形的定义指出以上的图形中,哪些是平行四边形? 问题三:根据定义画一个平行四边形。
活动二:根据平行四边形的定义,我们能够根据两组对边分别平行来判断一个四边形是否是平行四边形,那么平行四边形也就具有两组对边分别平行的性质,那么平行四边形还有没有其它的性质呢?让我们动手去探索发现吧! 1、量一量:用直尺、量角器测量如图 ABCD 的边、角。
AB= ____;DC=____; AD=____ ;BC= ____ ;OB=____ ;OD= ____ ; OA=____ ;OC= ____ ;∠A= ____;∠C=____; ∠B=____;∠D=____;2、猜一猜:仔细分析上面的测量结果,你能发现平行四边形的对边与对角有而,我们需推理证明猜想的正确性,你能完成证明吗?已知:如图,在 ABCD 中求证: AB=CD,AD=BC, ∠A=∠C, ∠B+∠D=180°证明:(友情提示:平行四边形的问题可以转化成全等三角形的问题) 4、理一理:请用图形、文字、符号三种语言整理平行四边形的性质。
第十九章四边形全章导学案
第十九章四边形平行四边形及其性质(1)主备人:初审人:终审人:【导学目标】1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.【导学重点】平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.【导学难点】运用平行四边形的性质进行有关的论证和计算.【学法指导】类比延伸、自主探究.【课前准备】查资料理解平行四边形.【导学流程】一、呈现目标、明确任务1.平行四边形的定义.2.平行四边形性质1 平行四边形的对边相等.3.平行四边形性质2 平行四边形的对角相等.二、检查预习、自主学习1.平行四边形的定义:的四边形叫做平行四边形.通过观察或者度量填写下列空格2.平行四边形的性质1:边的性质:AB‖;BC‖,AB= ;BC=.即:平行四边形对边.3.平行四边形的性质2: 角的性质:∠A= ,∠B= .即:平行四边形对角.三、教师引导例1 如图,小明用一根36厘米长的绳子围成一个平行四边形场地,其中AB边长为8厘米,其它三边长各是多少?这是平行四边形性质的实际应用,题目比较简单,目的就是让学生能运用平行四边形的性质进行有关的计算,可以让学生来解答.四、问题导学、展示交流如图,在平行四边形ABCD中,AE=CF.求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.五、点拨升华、当堂达标1.填空:(1)在□ABCD中,∠A= ,则∠B= ,∠C= ,∠D= .(2)如果□ABCD中,∠A—∠B=240,则∠A= ,∠B= ,∠C= ,∠D= .(3)如果□ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图,在□ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.六、布置预习预习下一节,完成练习2题.【教后反思】平行四边形及其性质(2)主备人:初审人:终审人:【导学目标】1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.【导学重点】平行四边形对角线互相平分的性质,以及性质的应用.【导学难点】综合运用平行四边形的性质进行有关的论证和计算.【学法指导】类比延伸、自主探究.【课前准备】查资料理解平行四边形的性质.【导学流程】一、呈现目标、明确任务1.平行四边形的性质.2.平行四边形的性质的应用.二、检查预习、自主学习1. 的四边形叫做平行四边形.平行四边形对边平行且;平行四边形对角.2.展示预习成果,小组内进行交流.三、动手操作学生在纸上画两个全等的□ABCD 和□EFGH ,并连接对角线AC 、BD 和EG 、HF ,设它们分别交于点O .把这两个平行四边形落在一起,在点O 处钉一个图钉,将 □ABCD 绕点O 旋转 ,观察它还和□EFGH 重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.四、问题导学、展示交流 例2 在□ABCD 中,AB =10,AD =8,AC ⊥BC ,求BC ,CD ,AC ,OA 的长以及□ABCD 的面积. 讨论上面的问题.五、点拨升华、当堂达标1.已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF ,AE =CF ,BE =DF .证明:在 □ABCD 中,∵AB ∥CD ,∴∠1=∠2.∠3=∠4.又∵OA =OC (平行四边形的对角线互相平分), ∴△AOE ≌△COF (ASA ).∴OE =OF ,AE =CF (全等三角形对应边相等). ∵四边形ABCD 是平行四边形, ∴AB =CD (平行四边形对边相等). ∴AB —AE =CD —CF . 即 BE =FD . 2.完成练习1题. 六、布置预习预习《配套练习》“平行四边形(1)(2)”中的选择填空题. 【教后反思】平行四边形的判定(1)主备人: 初审人: 终审人:【导学目标】1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题. 【导学重点】平行四边形的判定方法及应用.【导学难点】平行四边形的判定定理与性质定理的灵活应用. 【学法指导】问题导学、自主学习.【课前准备】如何判定一个四边形是平行四边形. 【导学流程】一、呈现目标、明确任务平行四边形判定方法1 两组对边分别相等的四边形是平行四边形. 平行四边形判定方法2 对角线互相平分的四边形是平行四边形. 二、检查预习、自主学习1.根据定义,什么样的四边形是平行四边形?2.根据判定,什么样的四边形是平行四边形?3.口头交流预习成果. 三、教师引导小明的父亲手中有一些木条,他想通过适当的操作,钉制一个平行四边形框架,你能帮他想出一些办法来吗?1.你能适当选择手中的硬纸板条搭建一个平行四边形吗? (1)用两长两短的四根;(2)用一长一短的两根先问做一个框架,图(1). 2.你怎样验证你搭建的四边形一定是平行四边形?图(2).四、问题导学、展示交流判定定理一:两组对边分别相等的四边形是平行四边形. 判定定理二:对角线互相平分的四边形是平行四边形. 五、点拨升华、当堂达标1.例3 已知:如图□ABCD 的对角线AC 、BD 交于点O ,E 、F 是AC 上的两点,并且AE =CF .求证:四边形BFDE 是平行四边形. 提示:可证明三角形全等. 2.完成练习2题.3.在□ABCD 中,对角线AC 与BD 交于O 点,已知点E 、F分别是DBAO、OC的中点,求证:四边形BFDE是平行四边形.4.如图,在□ABCD中,点E、F是对角线AC上的两点,且AE=CF,求证:四边形BFDE是平行四边形.六、布置预习预习下一节,弄懂两个定理,完成练习2题.【教后反思】平行四边形的判定(2)主备人:初审人:终审人:【导学目标】1.掌握用一组对边平行且相等来判定平行四边形的方法.2.会综合运用平行四边形的五种判定方法和性质来证明问题.【导学重点】平行四边形各种判定方法及其应用.【导学难点】平行四边形的判定定理与性质定理的综合应用.【学法指导】问题导学、自主学习.【课前准备】明确平行四边形的判定方法.【导学流程】一、呈现目标、明确任务1.(定义法)两组对边分别平行的四边形叫做平行四边形;√2.两组对边分别相等的四边形是平行四边形;√3.两组对角分别相等的四边形是平行四边形;√4.对角线互相平分的四边形是平行四边形.√5.一组对边平行且相等的四边形是平行四边形.二、检查预习、自主学习判定定理:一组对边平行且相等的四边形是平行四边形用几何语言表示:∵_________//____________________=____________∴四边形ABCD是____________.三、自主探究1.取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?2.已知:如图,□ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.四、点拨升华、当堂达标1.在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.2.完成习题19.1中1—4题. 五、布置预习预习习题19.1中1—5题,书面完成5题. 【教后反思】平行四边形的判定(3)主备人: 初审人: 终审人:【导学目标】1.学习三角形的中位线定理.2.学习平行线间的距离. 【导学重点】三角形的中位线定理.【导学难点】三角形的中位线定理定理的综合应用. 【学法指导】问题导学、自主学习. 【课前准备】明确平行四边形的判定方法. 【导学流程】一、呈现目标、明确任务1.三角形的中位线平行于三角形的一边,且等于这边的一半.2.平行线间的距离.二、检查预习、自主学习①三角形中位线:连结三角形两边中点的线段叫做三角形中位线.②三角形中位线定理:三角形中位线______于三角形第三边,且等于它的_____. 三、自主探究1.例4 如课本P88页图,点D 、E 分别为△ABC 边AB 、AC 的中点,求证:DE ∥BC 且DE =21BC .提示:通过三角形全等,把要证明的内容转化到一个平行平行四边FF形中,利用平行四边形的性质使问题得到解决.用两种方法证明,图形如右图.2.阅读P89页课文,理解平行线间的距离与证明过程,并讨论、证明:夹在两条平行线间的平行线段相等.四、点拨升华、当堂达标1.将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?2.在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.(可以用多种方法证明.)3.完成习题19.1中7,8题.7题,重点根据平行关系找所有的平行四边形,再找线段之间的关系.8题,重点展示运用了什么定理.五、布置预习预习习题19.1中的剩余题目,书面完成6题.【教后反思】练习课主备人:初审人:终审人:【导学目标】1.能灵活运用平行四边形的五种判定方法.2.体会平行四边形在生活中的应用.【导学重点】做练习.【导学难点】平行四边形的五种判定方法的灵活运用.【学法指导】小组讨论.【课前准备】平行四边形的判定方法.【导学流程】一、呈现目标、明确任务能灵活运用平行四边形的五种判定方法.二、检查预习、自主学习展示预习成果.重点说说每题的思路. 三、教师引导例:如图,在□ABCD 中,已知∠BAE =∠FCD . 求证:(1)∠FAE =∠FCE ,∠AFC =∠AEC .(2)四边形AECF 为平行四边形. 四、问题导学、展示交流讨论完成习题19.1中6,9,10,13题. 6题,重点证明四边形EBFD 是平行四边形. 9题,要先判定四边形ABCD 是平行四边形. 五、点拨升华、当堂达标 口头证明第11题,或让学生讲解. 六、布置预习1.讨论14题.2.预习矩形,完成练习1,2题. 【教后反思】矩形(1)主备人: 初审人: 终审人:【导学目标】1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系. 2.会初步运用矩形的概念和性质来解决有关问题. 【导学重点】矩形的性质. 【导学难点】矩形的性质的灵活应用. 【学法指导】类比延伸、自主学习. 【课前准备】找些矩形的物体,认识矩形. 【导学流程】一、呈现目标、明确任务1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系. 2.会初步运用矩形的概念和性质来解决有关问题. 二、检查预习、自主学习 1. 平行四边形的特征 如图,在□ABCD 中,①∵四边形ABCD 是平行四边形 ∴ AB ∥ ,AD ∥ AB = , AD =②∵四边形ABCD 是平行四边形∴∠A=∠,∠B=∠③∵四边形ABCD是平行四边形∴AO= = ,BO= = .三、教师引导什么是矩形?举一些例子.四、互动探究1.探究在平行四边形的活动框架上,用橡皮筋做出两条对角线,通过∠α的变化,改变这个平行四边形的的形状,两条对角线的长度怎样变化?当∠α变为直角时,平行四边形成为一个矩形,这时它的其他内角是什么样的角?对角线的长度有什么关系?2.阅读P95页课文,理解定理:直角三角形斜边上的中线等于斜边的一半.五、点拨升华、当堂达标1.已知:矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.2.已知:如图,矩形ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.3.完成练习3题.4.完成习题19.2中1,2题.六、布置预习预习下一节,弄懂两个判定,完成练习2题.【教后反思】矩形(2)主备人:初审人:终审人:【导学目标】1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.【导学重点】矩形的判定.【导学难点】矩形的判定及性质的综合应用.【学法指导】类比延伸、自主探究.【课前准备】尝试判定矩形.【导学流程】一、呈现目标、明确任务 1.掌握矩形的判定方法.2.能运用矩形的判定方法解决有关问题. 二、检查预习、自主学习1.矩形的判定,课本中讲到了哪几种?2.证明:对角线相等的平行四边形是矩形. 三、教师引导1.下列各句判定矩形的说法是否正确?为什么? (1)有一个角是直角的四边形是矩形; (2)有四个角是直角的四边形是矩形; (3)四个角都相等的四边形是矩形; (4)对角线相等的四边形是矩形;(5)对角线相等且互相垂直的四边形是矩形; (6)对角线互相平分且相等的四边形是矩形;(7)对角线相等,且有一个角是直角的四边形是矩形; (8)一组邻边垂直,一组对边平行且相等的四边形是矩形; (9)两组对边分别平行,且对角线相等的四边形是矩形. 2.完成练习2题.四、问题导学、展示交流如图,O 是矩形ABCD 的对角线AC 与BD 的交点,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 上的一点,且AE =BF =CG =DH .求证:四边形EFGH 是矩形. 五、点拨升华、当堂达标1.完成习题19.2中3,4题.2.如图,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,且∠1=∠2,它是一个矩形吗?为什么? 六、布置预习预习《配套练习》“特殊的平行四边形(1)(2)”中选择填空题.【教后反思】菱形(1)主备人: 初审人: 终审人:【导学目标】1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算. 3.通过运用菱形知识解决具体问题,提高分析能力和观察能力. 【导学重点】DCBA菱形的性质1、2.【导学难点】菱形的性质及菱形知识的综合应用.【学法指导】类比、延伸.【课前准备】搜集实物理解菱形.【导学流程】一、呈现目标、明确任务1.了解菱形与平行四边形的关系.2.初步认识菱形的特征.二、检查预习、自主学习1.什么是菱形?2.根据探究结果,说说菱形有哪些性质.三、教师引导讨论:知道菱形的两条对角线的长,能求出它的面积吗?试试看.四、问题导学、展示交流讨论课本P98页例2(题略).这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.五、点拨升华、当堂达标1.完成练习2题.2.完成习题19.2中5,6题.3.如图,在菱形ABCD中,∠BAD=2∠B,试说明△ABC是等边三角形.六、布置预习1.预习下一节,弄懂菱形的判定,完成练习1题.2. 完成《配套练习》“特殊的平行四边形(3)”中选择填空题.【教后反思】菱形(2)主备人:初审人:终审人:【导学目标】1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.AB 【导学重点】菱形的两个判定方法. 【导学难点】判定方法的证明方法及运用. 【学法指导】类比延伸 自主探索. 【课前准备】查阅资料理解菱形的判定方法. 【导学流程】一、呈现目标、明确任务 1.菱形的判定. 2.解决问题.二、检查预习、自主学习 全班展示练习1的预习成果.三、互动探究1.用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?2.怎样画一个菱形呢?四、问题导学、展示交流菱形判定方法1 对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形,(2)两条对角线互相垂直.通过教材P99下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形.五、点拨升华、当堂达标1.已知:如图□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F . 求证:四边形AFCE 是菱形.2.如图,在□ABCD 中,对角线AC 平分∠DAB ,这个四边形是菱形吗?简述理由.3.如下图,O 是矩形ABCD 对角线的交点,DE //AC ,CE //BD ,试说明四边形OCED 是菱形.3.如上页图,△ABC 的平分线AD被EF 垂直平分,且E 、F 分别在AB 、AC 上,四边形AEDF 是菱形吗?为什么?EDA A4.如图,AE//BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD,求证:四边形ABCD是菱形.六、布置预习预习下一节,弄懂正方形的所有判定定理,完成《配套练习》“特殊的平行四边形(4)”中选择填空题.正方形主备人:初审人:终审人:【导学目标】1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.2.理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.【导学重点】正方形的定义及正方形与平行四边形、矩形、菱形的联系.【导学难点】正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.【学法指导】类比延伸.【课前准备】查资料理解正方形,找实物帮助理解.【导学流程】一、呈现目标、明确任务了解正方形与平行四边形的关系;认识正方形的特征.二、检查预习、自主学习1、正方形的定义:矩形是的平行四边形,菱形是平行四边形,而有一个角是直角,且有一组邻边相等的是正方形.2、正方形的性质:(在旁边空白处画一个正方形,并能过观察或度量归纳正方形的特征)(1)边:.(2)角:.(3)对角线:.三、教师引导做一做并讨论:用一张长方形的纸片(如图所示)折出一个正方形.如果一一块木板呢?四、问题导学、展示交流①对角线相等的菱形是正方形吗?为什么?②对角线互相垂直的矩形是正方形吗?为什么?③对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?④能说“四条边都相等的四边形是正方形”吗?为什么?⑤说“四个角相等的四边形是正方形”对吗?五、点拨升华、当堂达标1.例4 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.2.已知:正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG 交OA于F.求证:OE=OF.3.如图,以等边△ABC的边AC为一边,向外作正方形ACDE,试说明∠DBE=30°.4. △ABC中,∠ACB=90°,CD平分∠ACB,DE⊥B C,DF⊥AC,垂足分别为E、F.求证:四边形CFDE是正方形.六、布置预习预习习题19.2中剩余题目,书面完成13题.【教后反思】练习课主备人:初审人:终审人:【导学目标】1.熟练掌握平行四边形、矩形、菱形、正方形的性质.2.熟练掌握平行四边形、矩形、菱形、正方形的判定. 【导学重点】做练习.【导学难点】灵活运用特殊平行四边形的性质和判定解决问题.【学法指导】类比、联想.【课前准备】特殊平行四边形的性质和判定.【导学流程】一、呈现目标、明确任务运用特殊平行四边形的性质和判定解决问题.二、检查预习、自主学习展示预习成果,可由学生讲解.三、教师引导判断下列命题是真命题还是假命题?假命题请举出反例.(1)四条边相等且四个角也相等的四边形是正方形;E(2)四个角相等且对角线互相垂直的四边形是正方形;(3)对角线互相垂直平分的四边形是正方形;(4)对角线互相垂直且相等的四边形是正方形;四、问题导学、展示交流在△ABC中,∠C=90°,∠A、∠B的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CFDE是正方形.五、点拨升华、当堂达标讨论习题19.2中8—12题.8题,可以考虑四角,为此可以考虑剪掉的形状和剩余的外围形状.9题,先按比例求角的大小.10题,可以考虑所有边长,也可以同时考虑边和角.六、布置预习1.小组讨论剩余题目.2.预习梯形,弄懂性质,完成练习1题.【教后反思】梯形(1)主备人:初审人:终审人:【导学目标】1.探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质.2.能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力.3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.【导学重点】等腰梯形的性质及其应用.【导学难点】解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线). 【学法指导】类比延伸.【课前准备】查资料理解梯形.【导学流程】一、呈现目标、明确任务能够运用梯形的有关概念和性质进行有关问题的论证和计算.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题.二、检查预习、自主学习1.梯形: 的四边形叫做梯形. 3.等腰梯形:两腰______的梯形是等腰梯形. 3.直角梯形:有一个角是_______的梯形是直角梯形. 三、教师引导右图中,有你熟悉的图形吗?它们有什么共同的特点? 一组对边平行而另一组对边不平行的四边形叫做梯形. 这里,梯形与平行四边形的区别和联系;上、下底的概念是由底的长短来定义的,而并不是指位置来说的.四、问题导学、展示交流1.等腰梯形是轴对称图形吗?对称轴在哪里?有那些相等的线段?2. 梯形ABCD 中,AB =DC ,则梯形ABCD 的四个内角之间存在什么关系?借助右图说明理则由.3.例1课本P107页,题略.4.如图,梯形ABCD 中,AD ∥BC ,∠B=70°,∠C=40°,AD =6cm ,BC =15cm .求CD 的长.可按照右图添加辅助线. 五、点拨升华、当堂达标1.完成练习2题.2.完成《配套练习》“梯形(1)”中选择填空题. 六、布置预习预习本节剩余内容,弄懂梯形的判定,完成练习3题.梯形(2)主备人: 初审人: 终审人:【导学目标】1.掌握“同一底上两底角相等的梯形是等腰梯形”这个判定方法及其证明. 2.能够运用等腰梯形的性质和判定方法进行有关的论证和计算.3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题. 【导学重点】找实物,查资料理掌握等腰梯形的判定方法并能运用. 【导学难点】添加辅助线,把梯形的问题转化成平行四边形或三角形问题. 【学法指导】等腰梯形判定方法的运用. 【课前准备】类比延伸解梯形.CEF【导学流程】一、呈现目标、明确任务梯形的判定.二、检查预习、自主学习1.等腰梯形是的对称轴有___条.2.已知:梯形ABCD中,AB=DC,则梯形ABCD的四个内角之间存在什么关系?请说明理由.3.在图中画出等腰梯形的对角线AC与BD,请问AC与BD之间存在什么关系?你能说明理由吗?4.展示预习成果.三、教师引导前面所学的特殊四边形的判定基本上是性质的逆命题.等腰梯形同一底上两个角相等的逆命题是什么?命题:同一底上的两个角相等的梯形是等腰梯形.这个命题是否成立?怎样证明?四、问题导学、展示交流自学课本P108页的例2.五、点拨升华、当堂达标1.证明:对角线相等的梯形是等腰梯形.已知:如图,梯形ABCD中,对角线AC=BD.求证:梯形ABCD是等腰梯形.2.完成习题19.3中1—4题.六、布置预习1.预习习题19.3中剩余题目,书面完成2题.2.完成《配套练习》“梯形(2)”中选择填空题.【教后反思】练习课主备人:初审人:终审人:【导学目标】复习梯形的性质和判定.【导学重点】做练习.【导学难点】灵活运用所学知识解决问题.【学法指导】类比、推理.【课前准备】梯形的性质和判定. 【导学流程】一、呈现目标、明确任务 复习梯形的性质和判定.二、检查预习、自主学习展示预习成果,重点说说解题思路. 三、问题导学、展示交流 1.如图,在梯形ABCD 中,若△AOB ,△COD 是等腰三角形,则梯形ABCD (填“是”或“不是”)等腰梯形,理由是: . 2.如图,△ABC 中,AB =AC ,DE ∥BC .则四边形DBCE ,(填“是”或“不是”)等腰梯形,理由是: .3.如图,在梯形ABCD 中,AD ∥BC ,AD =AB ,BC =BD ,∠A =120°,则 ∠ABC =∠C =∠ADC = .4.如图,在梯形ABCD 中,BC ∥AD ,DE ∥AB ,DE =DC ,∠A =100°,试求梯形其他三个内角的度数,请问此时ABCD 为等腰梯形吗?说说你的理由.四、点拨升华、当堂达标讨论习题19.3中5—8题. 五、布置预习1.讨论剩余题目,重点完成9题.2.预习P117页“中点四边形”,任选一图形进行证明. 【教后反思】中点四边形及梯形的中位线主备人: 初审人: 终审人:【导学目标】1.在画图了解中点四边形的特征,掌握决定中点四边形形状的主要因素.2.理解梯形中位线概念,掌握梯形中位线性质并能解决有关问题. 【导学重点】理解梯形中位线概念,掌握梯形中位线性质并能解决有关问题. 【导学难点】在画图了解中点四边形的特征,掌握决定中点四边形形状的主要因素. 【学法指导】BC。
《平行四边形的性质(边角特征)》精品导学案 人教版八年级数学下册导学案(精品)
18.1.1 平行四边形的性质第1课时平行四边形的边、角特征学习目标:1.能熟练复述平行四边形的对边相等、对角相等的两条性质.2.会根据平行四边形的性质进行简单的计算和证明.学习重点:掌握平行四边形的对边相等、对角相等的两条性质.自主研习一、课前检测二、温故知新举例说明生活中平行四边形的例子三、预习导航〔预习教材41-43页, 标出你认为重要的关键词〕1.什么叫做平行四边形?如何表示右图中的平行四边形?文字语言:符号语言:文字语言:符号语言:4.________________________________________叫做这两条平行线之间的距离.四、自学自测1.如图, DC∥GH ∥AB, DA∥EF∥CB, 图中的平行四边形有多少个?将它们表示出来.2.在上题的条件下, 从图中找出三组相等的线段和角.五、我的疑惑〔反思〕探究点拨一、要点探究探究点1:平行四边形的边、角的特征量一量1.根据平行四边形的定义,请画一个平行四边形ABCD.用尺子等工具度量它的四条边, 并记录下数据, 你能发现AB与DC, AD与BC之间的数量关系吗?2.再用量角器等工具度量它的四个角, 并记录下数据, 你能发现∠A与∠C, ∠B与∠D之间的数量关系吗?思考你发现了什么规律?证一证:四边形ABCD是平行四边形.求证:AD=BC,AB=CD,∠BAD=∠BCD,∠ABC=∠ADC.证明:如图, 连接AC.∵四边形ABCD是平行四边形,∴AD___BC, AB___CD,∴∠1___∠2, ∠3___∠4.又∵AC是△ABC和△CDA的公共边,∴△ABC____△CDA,∴AD___BC, AB___CD, ∠ABC___∠ADC.∵∠BAD=∠1+∠4, ∠BCD=∠2+∠3,∴∠BAD___∠BCD.思考不添加辅助线, 你能否直接运用平行四边形的定义, 证明其对角相等?要点归纳:平行四边形的对边___________;平行四边形的对角___________.几何语言表示:即学即练:□ABCD中,∠A:∠B=2:3,求各角的度数.□ABCD的周长为28cm,AB:BC=3:4,求各边的长度.探究点2:平行线间的距离想一想:如图,假设m // n,作 AB // CD // EF, 分别交 m于A、C、E, 交 n于B、D、F.由________________________易知四边形ABDC, CDFE均为__________________.由平行四边形的性质得AB______CD_______EF.填一填:如图, 在□ABCD中, DE⊥AB, BF⊥CD, 垂足分别是E, F.求证:DE=BF.证明:∵四边形ABCD是平行四边形,∴∠A_____∠C, AD______CB.又∠AED= ∠CFB=90°,∴△ADE____△CBF〔_____〕,∴DE_____BF.要点归纳:1.两条平行线之间的任何平行线段都__________.2.两条平行线间的距离:两条平行线中, 一条直线上任意一点到另一条直线的__________________.3.两条平行线间的距离__________.=12cm2, 求△ABD中AB边上即学即练:3.如图, AB∥CD, BC⊥AB, 假设AB=4cm, S△ABC的高.二、精讲点拨例1如图, 在□ABCD中.〔1〕假设∠BAD =32°,求其余三个角的度数.〔2〕连接AC, □ABCD的周长等于20 cm, AC=7cm, 求△ABC的周长.例2如图, 在□ABCD中,E, F是对角线AC上的两点, 并且BE∥DF.求证: BE=DF.方法总结:三、变式训练1.如图, 在□ABCD中, 假设AE平分∠DAB, AD=5cm,AB=9cm,那么EC=_______.2.剪两张对边平行的纸条随意交叉叠放在一起, 重合局部构成了一个四边形,转动其中一张纸条, 线段AD和BC的长度有什么关系?为什么?四、课堂小结平行四边形内容定义性质其它结论星级达标★1.判断题:(1)平行四边形的两组对边分别平行且相等 ( )(2)平行四边形的四个内角都相等 ( )(3)平行四边形的相邻两个内角的和等于180° ( )(4)如果平行四边形相邻两边长分别是2cm和3cm, 那么周长是10cm ( )(5)在平行四边形ABCD中, 如果∠A=35°, 那么∠C=145°( )★2.在□ABCD 中, M 是BC 延长线上的一点, 假设∠A=135°, 那么∠MCD 的度数是〔 〕A .45°B . 55°C . 65°D . 75°★3.DE ∥AC,DF ∥BC,EF ∥AB, 那么图中有____个平行四边形. ★4.如图, 直线AE//BD,点C 在BD 上,假设AE=5, BD=8,△ABD 的面积为16, 那么△ACE 的面积为_________.★★5.:如图, 在□ABCD 中, ∠ABC 的平分线BE 交AD 于点E, ∠ADC 的平分线DF 交BC 于点F .求证:ED=BF .★★6.有一块形状如下图的玻璃, 不小心把EDF 局部打碎了, 现在只测得AE=60cm, BC=80cm, ∠B=60°且AE ∥BC 、AB ∥CF,你能根据测得的数据计算出DE 的长度和∠D 的度数吗?★★★7.如图, 在□ABCD 中,点E 是BC 边的中点, 连接AE 并延长与DC 的延长线交于F.〔1〕求证:CF=CD.〔2〕假设AF 平分∠BAD,连接DE, 试判断DE 与AF 的位置关系, 并说明理由. 我的反思〔收获, 缺乏〕 分层作业必做(教材 智慧学习 配套) 选做参考答案:即学即练:1.试题分析:根据平行四边形的边和角的性质解答.详解:在□ABCD 中,AD ∥BC, ∴∠A+∠B=180°,又∵∠A:∠B=2:3,∴∠A=52×180°=72°, ∠B=53×180°=108°. :根据平行四边形的边的性质解答.详解:在□ABCD 中,AD=BC, AB=CD.∵□ABCD 的周长为28cm,∴AB+BC=14cm,又∵AB:BC=3:4,∴AB=CD=73×14=6cm, BC=AD=74×14=8cm. :根据三角形的面积求出ABC △的边AB 上的高BC , 再根据平行线间的距离相等解答.第2题图 第3题图 第4题图详解:1141222ABCS AB BC BC=⋅=⨯⋅=,解得:6BC=,∵AB∥CD, ∴点D到AB边的距离等于BC的长度,∴ABD△中AB边上的高等于6cm.例1 试题分析:根据平行四边形的边和角的性质解答.详解:〔1〕在□ABCD中, ∠BAD=∠BCD,∠B=∠D.∵∠BAD =32°,∴∠BCD =32°.∵AD∥BC, ∴∠BAD +∠B=180°,∴∠B=∠D=148°.〔2〕在□ABCD中,AD=BC, AB=CD.∵□ABCD的周长为20cm,∴AB+BC=10cm,∴△ABC的周长=AB+BC+AC=10+7=17cm.例2 试题分析:先证BC=AD, ∠ACB=∠DAC, ∠CEB=∠AFD, 根据AAS证出△BEC≌△DFA, 从而得出BE=DF.证明:∵四边形ABCD是平行四边形,∴BC=AD, BC∥AD,∴∠ACB=∠DAC,∵BE∥DF, ∴∠BEC=∠AFD,∴△CBE≌△ADF, ∴BE=DF.变式训练:1.解:如图, 在平行四边形ABCD中, 那么AB∥CD, AB=CD.∴∠2=∠3,又AE平分∠BAD, 即∠1=∠3, ∴∠1=∠2, 即DE=AD,又AD=5cm, AB=9cm,∴EC=CD-DE=9-5=4cm.:首先可判断重叠局部为平行四边形, 然后由平行四边形的性质来进行判断.详解:∵四边形ABCD是用两张对边平行的纸条交叉重叠地放在一起而组成的图形,即AB∥CD, AD∥BC, ∴四边形ABCD是平行四边形.∴AD=BC.星级达标:1、〔1〕√〔2〕×〔3〕√〔4〕√〔5〕×2、试题分析:此题考查平行四边形的性质、邻补角定义等知识, 根据平行四边形对角相等, 求出∠BCD, 再根据邻补角的定义求出∠MCD 即可. 详解:∵四边形ABCD 是平行四边形, ∴∠A=∠BCD=135°,∴∠MCD=180°-∠BCD =180°-135°=45°.应选:A .3、试题解析:图中的平行四边形有□ADFE , □BDEF , □C EDF , 共三个, 故答案为3.4、试题分析:过点A 作AF ⊥BD 于点F, 由△ABD 的面积为16可求出AF 的长, 再由AE ∥BD 可知AF 为△ACE 的高, 由三角形的面积公式即可得出结论. 详解:过点A 作AF ⊥BD 于点F, ∵△ABD 的面积为16, BD=8, ∴12BD•AF=12×8×AF=16, 解得AF=4, ∵AE ∥BD,∴AF 的长是△ACE 的高, ∴S △ACE =12×AE×4=12×5×4=10.故答案为:10. 5、试题分析:根据平行四边形的性质及角平分线定义得到ABE AEB ∠=∠, 进而推出AE=AB, 同理CF CD =, 再根据线段的和差证明即可. 详解:四边形ABCD 是平行四边形, ∴AD ∥BC , AB CD =, AD BC =,AEB CBE ∴∠=∠,BE 平分ABC ∠, ABE CBE ∴∠=∠,ABE AEB ∴∠=∠, AE AB ∴=,同理:CF CD =.AE CF ∴=, AD AE BC CF ∴-=-, ED BF ∴=.6、试题分析:首先利用定义可判断四边形ABCD 为平行四边形, 然后利用平行四边形边和角的性质来进行计算即可.详解:∵AE ∥BC 、AB ∥CF,∴四边形ABCD 为平行四边形.∴AD=BC, ∠D=∠B.又∵AE=60cm, BC=80cm, ∠B=60°, ∴DE=80-60=20cm, ∠D=60°.7、试题分析:〔1〕根据平行四边形的性质可得到AB ∥CD, 从而可得到AB ∥DF, 根据平行线的性质可得到两组内错角相等, 点E 是BC 的中点, 从而可根据AAS 来判定△BAE ≌△CFE, 根据全等三角形的对应边相等可证得AB=CF, 进而得出CF=CD;〔2〕利用全等三角形的判定与性质得出AE=EF, 再利用角平分线的性质以及等角对等边求出DA=DF, 利用等腰三角形的性质求出即可.〔1〕证明:∵四边形ABCD是平行四边形,∴AB∥CD, AB=CD.∵点F为DC的延长线上的一点, ∴AB∥DF,∴∠BAE=∠CFE, ∠ECF=∠EBA,∵E为BC中点, ∴BE=CE,那么在△BAE和△CFE中,,∴△BAE≌△CFE〔AAS〕,∴AB=CF, ∴CF=CD;〔2〕解:DE⊥AF,理由:∵AF平分∠BAD, ∴∠BAF=∠DAF,∵∠BAF=∠F, ∴∠DAF=∠F, ∴DA=DF,∴△ADF为等腰三角形.又由〔1〕知△BAE≌△CFE, ∴AE=EF,∴DE⊥AF.第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A.y:正方形的面积, x:这个正方形的周长B.y:等边三角形的周长, x:这个等边三角形的边长C.y:圆的面积, x:这个圆的直径D.y:一个正数的平方根, x:这个正数3.以下关系式中, y不是..x的函数的是()A.y=x B.y=x2+1C.y=|x|D.|y|=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( ) 9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 二、拓展提升13.在国内投寄本埠平信应付邮资如下表: 信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B两种树的混合林, 需要购置这两种树苗2 000棵, 种植A, B两种树苗的相关信息如下表:品种价格(单位:元/棵) 成活率劳务费(单位:元/棵)A1595% 3B2099% 4设购置A种树苗x棵, 造这片树林的总费用为y元, 解答以下问题:(1)写出y与x之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?第26章反比例函数实际问题与反比例函数2一、根底稳固1.某工厂现有原材料100吨, 每天平均用去x吨, 这批原材料能用y天, 那么y与x之间的函数表达式为〔〕A.y=100x B.y=C.y=+100D.y=100﹣x2.如图, 市煤气公司方案在地下修建一个容积为104m3的圆柱形煤气储存室, 那么储存室的底面积S〔单位:m2〕与其深度d〔单位:m〕的函数图象大致是〔〕A.B.C.D.3.甲、乙两地相距s〔单位:km〕, 汽车从甲地匀速行驶到乙地, 那么汽车行驶的时间y〔单位:h〕关于行驶速度x〔单位:km/h〕的函数图象是〔〕A.B.C.D.4.教室里的饮水机接通电源就进入自动程序, 开机加热每分钟上升10℃, 加热到100℃, 停止加热,水温开始下降, 此时水温〔℃〕与开机后用时〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机.饮水机关机后即刻自动开机, 重复上述自动程序.水温y〔℃〕和时间x〔min〕的关系如图.某天张老师在水温为30℃时, 接通了电源, 为了在上午课间时〔8:45〕能喝到不超过50℃的水, 那么接通电源的时间可以是当天上午的〔〕A.7:50B.7:45C.7:30D.7:205.在温度不变的条件下, 通过一次又一次地对汽缸顶部的活塞加压, 测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强, 如下表:那么可以反映y与x之间的关系的式子是〔〕体积x〔mL〕100 80 60 40 20压强y〔kPa〕60 75 100 150 300A.y=3 000x B.y=6 000x C.y=D.y=6.随着私家车的增加, 交通也越来越拥挤, 通常情况下, 某段公路上车辆的行驶速度〔千米/时〕与路上每百米拥有车的数量x〔辆〕的关系如下图, 当x≥8时, y与x成反比例函数关系, 当车速度低于20千米/时, 交通就会拥堵, 为防止出现交通拥堵, 公路上每百米拥有车的数量x应该满足的范围是〔〕A.x<32 B.x≤32 C.x>32 D.x≥327.如图, 在平面直角坐标系中, 函数y=〔k>0, x>0〕的图象与等边三角形OAB的边OA, AB分别交于点M, N, 且OM=2MA, 假设AB=3, 那么点N的横坐标为〔〕A.B.C.4D.68.如图, 反比例函数y1=〔k1>0〕和y2=〔k2<0〕中, 作直线x=10, 分别交x轴, y1=〔k1>0〕和y2=〔k2<0〕于点P, 点A, 点B, 假设=3, 那么=〔〕A.B.3C.﹣3D.9.直线y=x+3与x轴、y轴分别交于A, B点, 与y=〔x<0〕的图象交于C、D两点, E是点C关于点A的中心对称点, EF⊥OA于F, 假设△AOD的面积与△AEF的面积之和为时, 那么k =〔〕A.3B.﹣2C.﹣3D.﹣10.如图, 点A、B在双曲线〔x<0〕上, 连接OA、AB, 以OA、AB为边作▱OABC.假设点C恰落在双曲线〔x>0〕上, 此时▱OABC的面积为〔〕A.B.C.D.411.某物体对地面的压强P〔Pa〕与物体和地面的接触面积S〔m2m2时, 该物体对地面的压强是Pa.12.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示, 售价是销量的反比例函数〔统计数据见下表〕.该运动鞋的进价为180元/双, 要使该款运动鞋每天的销售利润到达2400元, 那么其售价应定为元.售价x〔元/双〕200 240 250 400销售量y〔双〕30 25 24 1513.小刚同学家里要用1500W的空调, 家里保险丝通过的最大电流是10A, 额定电压为220V, 那么他家最多还可以有只50W的灯泡与空调同时使用.14.在一个可以改变体积的密闭容器内装有一定质量的某种气体, 当改变容器的体积时, 气体的密度也会随之改变, 密度ρ〔单位:kg/m3〕与体积v〔单位:m3〕满足函数关系式〔k为常数, k≠0〕其图象如下图过点〔6, 1.5〕, 那么k的值为.15.小丁在课余时间找了几副度数不同的老花镜, 让镜片正对太阳光, 上下移动镜片, 直到地上的光斑最小, 此时他测量了镜片与光斑的距离, 得到如下数据:老花镜的度数x/度…100 125 200 250 …镜片与光斑的距离y/m… 1 …m, 那么这副老花镜为度.16.为预防传染病, 某校定期对教室进行“药熏消毒〞, 药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与燃烧时间x〔分钟〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃烧完, 此时教室内每立方米空气含药量为6mgmg时, 对人体方能无毒害作用, 那么从消毒开始, 至少需要经过分钟后, 学生才能回到教室.二、拓展提升17.近似眼镜片的度数y〔度〕是镜片焦距x〔cm〕〔x>0〕的反比例函数, 调查数据如表:眼镜片度数y〔度〕400 625 800 1000 (1250)镜片焦距x〔cm〕25 16 10 (8)〔1〕求y与x的函数表达式;〔2〕假设近视眼镜镜片的度数为500度, 求该镜片的焦距.18.y〔毫克/百毫升〕与时间x〔时〕成正比例;1.5小时后〔包括1.5小时〕y与x成反比例.根据图中提供的信息, 解答以下问题:〔1〕写出一般成人喝半斤低度白酒后, y与x之间的函数关系式及相应的自变量取值范围;〔2〕按国家规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞, 不能驾车上路.参照上述数学模型, 假设某驾驶员晚上21:00在家喝完半斤低度白酒, 第二天早上7:00能否驾车去上班?请说明理由.19.教室里的饮水机接通电源就进入自动程序, 开机加热时每分钟上升10℃, 加热到100℃停止加热, 水温开始下降, 此时水温y〔℃〕与开机后用时x〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机, 饮水机关机后即刻自动开机, 重复上述自动程序.假设在水温为30℃时接通电源, 水温y〔℃〕与时间x〔min〕的关系如下图:〔1〕分别写出水温上升和下降阶段y与x之间的函数关系式;〔2〕怡萱同学想喝高于50℃的水, 请问她最多需要等待多长时间?20.某地建设一项水利工程, 工程需要运送的土石方总量为360万米3.〔1〕写出运输公司完成任务所需的时间y〔单位:天〕与平均每天的工作量x〔单位:万米3〕之间的函数关系式;〔2〕当运输公司平均每天的工作量15万米3, 完成任务所需的时间是多少?〔3〕为了能在150天内完成任务, 平均每天的工作量至少是多少万米3?21.蓄电池的电压为定值.使用此蓄电池作为电源时, 电流Ⅰ〔单位:A〕与电阻R〔单位:Ω〕是反比例函数关系, 它的图象如下图.〔1〕求这个反比例函数的表达式;〔2〕如果以此蓄电池为电源的用电器的电流不能超过8A, 那么该用电器的可变电阻至少是多少?22.某公司用100万元研发一种市场急需电子产品, 已于当年投入生产并销售, 生产这种电子产品的本钱为4元/件, 在销售过程中发现:每年的年销售量y〔万件〕与销售价格x〔元/件〕的关系如下图, 其中AB为反比例函数图象的一局部, 设公司销售这种电子产品的年利润为s〔万元〕.〔1〕请求出y〔万件〕与x〔元/件〕的函数表达式;〔2〕求出第一年这种电子产品的年利润s〔万元〕与x〔元/件〕的函数表达式, 并求出第一年年利润的最大值.23.为预防传染病, 某校定期对教室进行“药熏消毒〞.药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与药物在空气中的持续时间x〔m〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃完, 此时教室内每立方米空气含药量为8mg.根据以上信息解答以下问题:〔1〕分别求出药物燃烧时及燃烧后y关于x的函数表达式mg时, 对人体方能无毒害作用, 那么从消毒开始, 在哪个时段消毒人员不能停留在教室里?mg 的持续时间超过20分钟, 才能有效杀灭某种传染病毒.试判断此次消毒是否有效, 并说明理由.第四单元第1课函数二、根底稳固1.一般地, 如果在一个变化过程中有两个变量x 和y , 并且对于变量x 的每一个值, 变量y 都有________的值与它对应, 那么我们称y 是x 的________, 其中________是自变量. 2.下面选项中给出了某个变化过程中的两个变量x 和 y , 其中y 不是..x 的函数的是( )A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( ) 9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________.10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 三、拓展提升13.在国内投寄本埠平信应付邮资如下表:(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:(1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?。
平行四边形及其性质(1)
青岛版数学九年级上册学案1.1平行四边形及其性质(1)学习目标:1、理解并掌握平行四边形的定义2、掌握平行四边形的性质定理1及性质定理23、提高综合运用知识的能力学习重点:平行四边形的定义,对角、对边相等的性质,以及性质的应用.学习难点:运用平行四边形的性质进行有关的论证和计算.预习指导:1、在四边形中,最常见、价值最大的是平行四边形,生活中也常见平行四边形的实例,如_______________________________________________________等,都是平行四边形。
2、____________________________________是平行四边形。
3、平行四边形的性质是:_________________________________________.学习过程:一、学习新知1、平行四边形的定义(1)定义:________________________________________叫做平行四边形。
(2)几何语言表述: ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形(3)定义的双重性: 具备__________________的四边形,才是平行四边形,反过来,平行四边形就一定具有性质。
(4)平行四边形的表示:平行四边形ABCD记作_________,读作___________.2、平行四边形的性质平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?已知:如图ABCD,求证:AB=CD,CB=AD.分析:要证AB=CD,CB=AD.我们可以考虑只要证明四条线段所在的两个三角形全等,因此我们可以作辅助线__________________,它将平行四边形分成_________和__________,我们只要证明这两个三角形全等即可得到结论.证明:总结:本题提供了证明线段相等的方法,也体现了数学中的转化思想。
在上题中你能证明∠B=∠D, ∠BAD=∠BCD吗?利用我们学过的方法试一试。
八年级数学6.1平行四边形性质(1)导学案
八年级数学:平行四边形性质(1)预习学案一、预习目标1.掌握平行四边形有关概念;2.探索并掌握平行四边形的性质,并能简单应用;3.在探索活动过程中发展学生的探究意识。
二、知识回顾:1、小学时我们已经知道的平行四边形的概念:______________________2、什么是中心对称?__________________________________________三、1、自主学习阅读135页前两段,回答:平行四边形的定义、平行四边形的对角线的定义、平行四边形的表示方法以及读法练习:(1)如图所示:四边形ABCD是平行四边形,记作读作平行四边形有条对角线。
(2)请同学们举出自己身边存在的平行四边形的例子。
2、活动探究:(1)平行四边形是中心对称图形吗?如果是找出它的对称中心并验证你的结论。
(2)你还发现平行四边形的那些性质?平行四边形的对边_____________、对角____________3、证明:(1)已知:如图,如图,四边形ABCD是平行四边形.求证:AB=CD,BC=DA.(2)证明:平行四边形的对角相等.4、典型例题:已知:如图6-3,在ABCD 中, E ,F 是对角线AC 上的两点,且AE=CF .求证:BE =DF .5、议一议:(1)如果已知平行四边形一个内角的度数,能确定其它三个内角的度数吗?说说你的理由。
(2)、变换角的度数,试一试。
6、尝试练习:练习1 如图:四边形ABCD 是平行四边形。
(1)求∠ADC 、∠BCD 度数(2)边AB 、BC 的长度。
练习2如图,在平行四边形ABCD中,E、F过AC中点O交AD于E、F,试说明OE=OF拓展:如图在平行四边形ABCD 中,AB,BC,CD 的长度分别是2x+1,3x, x+4, 则 平行四边形 ABCD 的周长为_______.四:反思:通过预习你有哪些收获?还有哪些困惑?A B C D E FO。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创设情境:做一做:
将两张全等的三角形纸片,设法找到某一边的中点,记作点 O,将上层的 三角形纸片绕点 O 旋转 180 度,下层的三角形纸片保持不动,此时:
课 内 探 究
(1)两张纸片拼成了怎样的图形? (2)这个图形中有哪些相等的角?有没有互相平行的线段? (3)用简洁的语言刻画这个图形的特征,并与同伴交流.
平行四边形及其性质导学案(1)
编号:
01
课题 平行四边形及其性质 课型 新授 学习目标: 知识与技能:理解平行四边形的概念,掌握平行四边形的边、角性质,并能初步用其来解决实际
问题. 过程与方法:经历探索平行四边形的概念和性质的过程,发展学生探究意识。
情感态度:让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发
中,EF∥BC, GH∥AB, EF 与 GH 相交于点 O,则图 中共有___个平行四边形. D F
(2) (2)课本第 6 页练习 1 (3) (3)课本第 7 页习题第 1 题
(4)在平行四边形 ABCD 中,若∠A:∠B=2:3,求∠C、∠D 的度数 1、在□ABCD 中,E、F 过 AC 中点 O,交 AD、BC 于 E、F,求证:OE=OF. D E O A F B C
2、自学课本例 1
巩固提升: 1.填空: (1)平行四边形___平行,___相等,___相等;
2.如图,四边形 ABCD 是平行四边形,求: (1)∠ADC,∠BCD 的度数; (2)边 AB,BC 的长度
A
B 5 6°
C
D
25
课堂小结:
谈谈本节课的收获
达标检测: (1)如下图□ABCD
A E B H G O C
4.推理:(如何证明上述结论?)
证明:连结 AC ∵四边形 ABCD 是平行四边形 ∴ (平行四边形定义) ∴ (两直线平行,内错角相等) ∵AC=AC ∴△ABC≌△CDA(ASA) ∴ ∠B=∠D ∵∠1=∠3, ∠2=∠4 ∴∠1+∠4=∠2+∠3(等式性质 即 ∴ AD=CB,AB=CD,∠DAB=∠BCD,∠B=∠D 点拨:解决四边形问题的常用方法:转化为三角形的问题 5、几何语言: 性质 1:平行四边形对边相等. ∵四边形 ABCD 是平行四边形 ∴ 性质 2:平行四边形对角相等. ∵四边形 ABCD 是平行四边形 ∴ 6、有效训练,精讲点拨: (1、 )例题:小明用一根 36 米长的绳子围成了一个平行四边形的场地, 其中一条边 AB 长 8 米,其他三条边各长多少? (师生共同完成此题,并重点强调平行四边形性质的几何表述如: )
课 后 延 伸
O
2、平行四边形有哪些性质?请你继续探索并写出来,看谁写的多。
教 ( 学 ) 后 反 思
ቤተ መጻሕፍቲ ባይዱ
交流展示:
活动一 定义探究: 1、观察质疑:平行四边形如何区别于一般的四边形.
(2)归纳定义:________________________________________叫做平行四 边形。 (3) 定义的双重性: 具备__________________的四边形, 才是平行四边形, 反过来,平行四边形就一定具有性质。 (4)几何语言表述: ① ∵ AB∥CD AD∥BC 边形 ∴四边形 ABCD 是平行四
现、积极思考、合作学习的学习态度.
重点:平行四边形的性质 难点:理解并应用平行四边形的性质
内容设计 温故知新: 1、 “三角形的全等” 经常用于几何证明, 试说出证明三角形全等的几种方法。
个性备课
课 前 准 备
2、我们运用三角形的全等可以解决好多数学问题,如:证 证 相等。
相等,
3、平行四边形是特殊的四边形,生活中也常见平行四边形的实例,如 等
②∵四边形 ABCD 是平行四边形 ∴AB∥CD,AD∥BC
(5)平行四边形的表示:平行四边形 ABCD 记作_________,读作___________.
活动二
探究性质:
1.平行四边形的性质 由定义可知平行四边形的对边平行 2、质疑: 平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分 别平行外,还有什么特殊的性质呢 (提示:仿照三角形的学习方法从边和角去探索 第一步:猜想边和角之间的数量关系(对边相等,对角相等) 第二步:小组合作学习探索:画平行四边形,用测量、旋转、平移、推 理等方法验证上面的猜想.) 3、归纳 平行四边形的对边相等 平行四边形的对角相等