防喘振控制原理及方法
风机如何“防喘振”
风机如何“防喘振”一、喘振定义喘振,顾名思义就象人哮喘一样,风机出现周期性的出风与倒流,相对来讲轴流式风机更容易发生喘振,严重的喘振会导致风机叶片疲劳损坏。
流体机械及其管道中介质的周期性振荡,是介质受到周期性吸入和排出的激励作用而发生的机械振动。
例如,泵或压缩机运转中可能出现的喘振过程是:流量减小到最小值时出口压力会突然下降,管道内压力反而高于出口压力,于是被输送介质倒流回机内,直到出口压力升高重新向管道输送介质为止;当管道中的压力恢复到原来的压力时,流量再次减少,管道中介质又产生倒流,如此周而复始。
喘振的产生与流体机械和管道的特性有关,管道系统的容量越大,则喘振越强,频率越低。
一旦喘振引起管道、机器及其基础共振时,还会造成严重后果。
为防止喘振,必须使流体机械在喘振区之外运转。
在压缩机中,通常采用最小流量式、流量-转速控制式或流量-压力差控制式防喘振调节系统。
当多台机器串联或并联工作时,应有各自的防喘振调节装置。
二、风机喘振的现象1、风机抽出的风量时大时小,产生的风压时高时低,系统内气体的压力和流量也发生很大的波动。
2、风机的电动机电流波动很大,最大波动值有50A左右。
3、风机机体产生强烈的振动,风机房地面、墙壁以及房内空气都有明显的抖动。
4、风机发出“呼噜、呼噜”的声音,使噪声剧增。
5、风量、风压、电流、振动、噪声均发生周期性的明显变化,持续一个周期时间在8s左右。
三、喘振的原因根据对轴流式通风机做的大量性能试验来看,轴流式通风机的p-Q性能曲线是一组带有驼峰形状的曲线(这是风机的固有特性,只是轴流式通风机相对比较敏感),如左图所示。
当工况点处于B点(临界点)左侧B、C之间工作时,将会发生喘振,将这个区域划为非稳定区域。
发生喘振,说明其工况已落到B、C之间。
离心压缩机发生喘振,根本原因就是进气量减少并达到压缩机允许的最小值。
理论和实践证明:能够使离心压缩机工况点落入喘振区的各种因素,都是发生喘振的原因。
压缩机喘振
四、处理措施
由于此次喘振情况的发生是由于工艺系统波 动造成,而防喘振控制系统工作正常,波动 1分钟后系统即自动恢复正常,经厂领导同 意,将防喘振线复位,将防喘振各工作区恢 复原状。 另外,此次喘振发生时,机组未出现异常温 度、振动及位移波动情况,而且能够迅速恢 复正常,也可以验证K-2202防喘振控制系 统工作原理正确,可以承受一定范围的波动。
三、防喘振画面
在画面坐标系里有机组工作点位置,工作点状态和三条折线的显示。 坐标系的横坐标为 Hx(%),坐标系的纵坐标为Pd/Ps。h为入口差压, Ps为入口压力,Pd为出口压力。 三条折线,分别是红线(喘振线),蓝线(初始控制线),黄线(实 际控制线) 。各条线具体说明如下: 红线:喘振线 工作点进入喘振线(红线)左边,机组已进入喘振区。系统已提前迅 速将防喘振阀全打开,系统正常投用不会出现这种情况。 蓝线:初始控制线 初始控制线(蓝线)是由厂家提供的出厂防喘振线。 黄线:实际控制线 当机组在实际运行过程中,如果工作点进入喘振线左边,并在自动位 置时,为了今后机组控制更安全,防喘振线自动向右平移,最多校正 十次,画面记数显示校正次数。这种现象没发生时,实际控制线与初 始控制线重叠,由于这两条线重叠在画面上蓝线显示不出来。
防喘振调节有手动,半自动,全自动三种方式。 1 手动方式: 工作点进入喘振线左边,此时机组在危险区,人为输入阀位无 效。工作点进入喘振线右边,可人为输入阀位。 2 半自动方式: 防喘振阀实际输出取手动和自动输出的高值。即人为输入阀位 只能大于自动输出,否则人为输入阀不起作用。 3自动方式: 工作点进入实际防喘振线左边,在自动位置时,PID自动调节 开阀。工作点进入实际防喘振线右边,在自动位置时,PID自 动调节关阀。
防喘振工作原理
防喘振工作原理一、引言防喘振是对某些设备或结构在特定工作条件下产生喘振现象的防治措施。
喘振是指结构或装置在一定工作状态下,由于自身刚度、质量等特性与外界激励之间的相互作用引起的不稳定振动现象。
本文将探讨防喘振的工作原理。
二、喘振现象在一些工程设备或系统中,由于参数的变化或外界激励的作用,会导致系统产生振动。
当这种振动越大时,系统就会发生喘振现象。
喘振具有以下几个特点: 1. 喘振频率比系统固有频率低,通常在低频段出现。
2. 喘振振幅大,可能导致设备的破坏。
3. 喘振由非线性特性引起,常常在系统的临界工作状态下出现。
三、喘振的危害喘振对设备和结构会产生严重的危害,包括但不限于: 1. 振动加速度增大,可能导致设备疲劳破坏。
2. 噪音增大,影响工作环境。
3. 设备的正常工作受到干扰,降低工作效率。
四、防喘振的方法为了防止设备或结构发生喘振现象,需要采取相应的防措施。
常见的防喘振方法包括以下几种:4.1 增加系统阻尼通过增加系统的阻尼,可以有效减弱振动的幅值和频率,从而防止喘振的发生。
常见的增加阻尼的方法包括: - 在设备或结构中加装阻尼器,如液压阻尼器、摩擦阻尼器等。
- 调整工作参数,例如增加液体的黏度、调整风的流量等。
4.2 改变系统刚度改变系统的刚度也可以有效地防止喘振的发生。
常见的改变系统刚度的方法包括:- 更换材料,选择刚度更高或更低的材料。
- 修改结构形状,增加或减小结构的刚度。
- 调整设备的固定方式,例如改变螺栓的紧固力等。
4.3 控制激励源控制外界激励源也是防止喘振的一种方法。
常见的控制激励源的方法包括: - 减小激励源的幅值,例如降低电机的输出功率、减小风的速度等。
- 调整激励源的频率,将激励源的频率调整到系统的固有频率之外。
4.4 综合方法在实际工程中,往往需要综合运用多种防喘振方法,才能达到更好的效果。
根据具体情况,选择合适的方法并进行组合应用。
五、防喘振工作原理防喘振的工作原理可以简单总结为:控制并调整系统的固有频率与外界激励的频率之间的关系,降低共振的可能性。
压缩机防喘振的3种控制方法
压缩机防喘振的3种控制方法
压缩机喘振是一种有害的现象,因为喘振可能导致压缩机损坏或减少其寿命。
因此,为了防止压缩机喘振,可以采取以下三种控制方法:
1. 变频控制方法
变频控制方法是通过改变压缩机的转速来防止喘振。
具体来说,当输入流量低于一定值时,压缩机将自动降低转速,从而防止喘振。
这种方法的好处是不会产生噪音和振动,而且可以在喘振之前避免发生。
但是,这种方法的缺点是成本较高,需要购买变频设备。
2. 放气控制方法
放气控制方法是通过对不合格气体进行放气来防止喘振。
具体来说,当气体浓度低于一定值时,压缩机将自动放气,从而防止喘振。
这种方法的好处是成本较低,但缺点是会产生一定的噪音和振动,而且需要人工干预。
3. 自动控制方法
自动控制方法是通过对压缩机的转速和气体浓度进行监测和自动调整来防止喘振。
具体来说,当输入流量低于一定值时,压缩机将自动降低转速,从而防止喘振。
当气体浓度低于一定值时,压缩机将自动放气,从而防止喘振。
这种方法的好处是既不会产生噪音和振动,又可以在喘振之前避免发生,而且成本相对较低。
综上所述,变频控制方法、放气控制方法和自动控制方法是防止压缩机喘振的三种有效方法。
根据具体情况选择合适的方法可以有效地避免喘振的发生,保证压缩机的正常运转。
压缩机喘振原因及预防措施
压缩机喘振原因及预防措施压缩机喘振原因及预防措施0 引言压缩机运行中一个特殊现象就是喘振。
防止喘振是压缩机运行中极其重要的问题。
许多事实证明,压缩机大量事故都与喘振有关。
喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。
喘振曾经造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废,这在国内外已经发生过了。
喘振在运行中是必须时刻提防的问题。
在运行时,喘振的迹象一般是首先流量大幅度下降,压缩机排量显著降低,出口压力波动,压力表的指针来回摆动,机组发生强烈振动并伴有间断低沉的吼声,好像人在于咳一般。
判断喘振除了凭人的感觉外,还可以根据仪表和运行参数配合性能曲线查出。
1 喘振发生的条件根据喘振原理可知,喘振在下述条件下发生:1.1 在流量小时,流量降到该转速下的喘振流量时发生压缩机特性决定,在转速一定的条件下,一定的流量对应于一定的出口压力或升压比,并在一定的转速下存在一个极限流量——喘振流量。
当流量低于这个喘振流量时压缩机便不能稳定运行,发生喘振。
上述流量,出口压力,转速和喘振流量综合关系构成压缩机的特性线,也叫性能曲线。
在一定转速下使流量大于喘振流量就不会发生喘振。
1.2 管网系统内气体的压力,大于一定转速下对应的最高压力是发生喘振如果压缩机与管网系统联合运行,当系统压力大大高出压缩机该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成恒高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流,造成压缩机喘振。
2 在运行中造成喘振的原因在运行中可能造成喘振的各种原因有:2.1 系统压力超高造成这种情况有:压缩机紧急停机,气体为此进行放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节,防喘系统未投自动等等。
压缩机防喘振控制
压缩机防喘振控制方法
压缩机防喘振的控制方法大致可分为固定极限 流量法和可变极限流量法,
1 . 固定极限流量法
固定极限流量是使压 缩机的入口流量保持控制线大于源自高转速下的临界流量,从而避免进
入喘振区运行,但在
低转速下效率太低,
能量浪费太大,
2 . 可变极限流量法
可变极限流量法是为 了减少压缩机的能量 损耗,在压缩机负荷 经常波动的场合采用,
4. 喘振的原因
当压缩机入口气体流量小于压缩机的最小流量 时,会导致压缩机排气管压力比机组内部压力 高,这时气体会发生瞬间倒流,压缩气体倒流又 使得排出侧气体压力降低,机组内部压力升高, 使气体流量恢复,直到出口压力升高,又重复上 述过程,这就是压缩机的喘振,
压缩机性能曲线的最高点就是喘振点,
离心压缩机特性
2. 喘振 当压缩机的负荷降低到一定程度时,气体排送会 发生往复运动的强烈振荡,从而导致机身的剧 烈振动,称为喘振,这是气体动力装置的一种特 性,
离心式压缩机与轴流式压缩机的比较
离心压缩机适用于中、小流量和中、高压力的 场合,流量约20~2000Nm3/min,大的可达 10000Nm3/min,单缸压比约 3.5~10,多缸排气 压力可高达90MPa以上,多变效率约为 76~83 %,
3. 压缩机的工作点
因为压缩机是串联在管路中,故当它正常工作 时,必须满足:
1 流过压缩机的气量必须等于流过管路的气量 指换算到同一状态下 ;
2 管端压力pe应与压缩机的排压相等,
因此,压缩机的工作点一定是在该压缩机的性 能曲线与管路特性曲线的交点上,
压缩机的工作点
性能曲线
工作点
管路特性曲线
压缩机的种类
2. 根据压缩机的压缩形式分,可分为往复式压 缩机、回转式压缩机、离心式压缩机和轴流式 压缩机,
防喘振控制方案
引言防喘振是在机械工程领域中一个重要的挑战,它涉及到防止机械系统发生喘振现象的控制方法和方案。
喘振是一种机械系统失稳的情况,会导致机械元件屈服、损坏甚至系统瘫痪。
因此,开发一种有效的防喘振控制方案对于提高机械系统的可靠性和工作效率至关重要。
本文将介绍一种针对喘振问题的控制方案。
首先,我们将了解喘振的原因和影响。
然后,我们将介绍一种常用的防喘振方法,并讨论其优缺点。
最后,我们将提出一种新的防喘振控制方案,并介绍其原理和应用。
喘振的原因和影响喘振是由于机械系统在特定条件下出现的不稳定振动。
它通常发生在高速旋转机械中,例如发动机、离心泵等。
喘振的主要原因是机械系统的刚度和阻尼与激励力之间的相互作用。
当激励力的频率接近机械系统的固有频率时,机械系统的能量会被不断地输入,导致系统发生不稳定的振动。
喘振的影响非常严重。
首先,喘振会导致机械系统的一些零部件失效,例如轴承的磨损或破坏。
其次,喘振会降低机械系统的工作效率,并且会产生噪音和震动。
最重要的是,喘振会导致机械系统的整体性能下降,甚至可能引发事故。
常用的防喘振方法目前,有多种常用的防喘振方法,例如增加机械系统的刚度、增加阻尼、改变工作条件等。
以下是其中三种常见的方法:1.增加机械系统的刚度:增加机械系统的刚度可以提高其固有频率,从而使其远离激励力的频率范围。
这可以通过增加构件的截面积、采用更高强度的材料等方式实现。
2.增加阻尼:增加阻尼可以减小机械系统的振动幅值,并提高系统的稳定性。
这可以通过在机械系统中引入阻尼元件、调整阻尼器的参数等方式实现。
3.改变工作条件:改变工作条件可以改变机械系统的固有频率。
例如,改变旋转速度、负载或工作温度等参数,可以使系统的固有频率远离激励力的频率区域。
然而,这些方法各自存在一些限制和问题。
增加刚度和阻尼会增加机械系统的成本和重量,并且可能引入其他不稳定性。
同时,改变工作条件可能会影响机械系统的工作性能和使用寿命。
新的防喘振控制方案为了克服上述常用方法的限制,我们提出了一种新的防喘振控制方案,该方案结合了主动振动控制和参数优化的方法。
喘振原因及常用解决办法
喘振是透平式压缩机也叫叶片式压缩机在流量减少到一定程度时所发生的一种非正常工况下的振动;离心式压缩机是透平式压缩机的一种形式,喘振对于离心式压缩机有着很严重的危害离心式压缩机发生喘振时,典型现象有:1压缩机的出口压力最初先升高,继而急剧下降,并呈周期性大幅波动;2压缩机的流量急剧下降,并大幅波动,严重时甚至出现空气倒灌至吸气管道;3拖动压缩机的电机的电流和功率表指示出现不稳定,大幅波动;4机器产生强烈的振动,同时发出异常的气流噪声; 5离心机在极端部分负荷、冷却有问题时会发生目前来说解决喘振常用的方法:①在压气机上增加放气活门,使多余的气体能够排出;②使用可调节式叶片;③确保压气机足够流量;喘振的内部原因当气体流量减少到一定程度时,压缩机内部气流的流动方向与叶片的安装方向发生严重偏离,使进口气流角与叶片进口安装角产生较大的正冲角,从而造成叶道内叶片凸面气流的严重脱离;此外,对于离心式压缩机的叶轮而言,由于轴向涡流等的存在和影响,更极易造成叶道里的速度不均匀,上述气流脱离现象进一步加剧;气流脱离现象严重时,叶道中气体滞流,压力突然下降,引起叶道后面的高压气流倒灌,以弥补流量的不足和缓解气流脱离现象,并可使之暂恢复正常;但是,当将倒灌进来的气体压出时,由于流量缺少补给,随后再次重复上述现象;这样,气流脱离和气流倒灌现象周而复始地进行,使压缩机产生一种低频高振幅的压力脉动,机器也强烈振动,并发出强烈的噪声,管网有周期性振荡振幅大频率低并伴有周期性吼叫声,压缩机振动强烈机壳轴承均有强烈振动并发出强烈的周期性的气流声,由于振动强烈轴承液体润滑条件会遭到破坏,轴瓦会烧坏转子与定子会产生摩擦碰撞密封元件将严重破坏;离心式压缩机在生产运行过程中有时会突然产生强烈振动气体介质的流量和压力也出现大幅度脉动并伴有周期性沉闷的呼叫声以及气流波动在管网中引起的呼哧呼哧的强噪声这种现象通称为压缩机的喘振工况,压缩机不能在喘振工况长时间运行一旦压缩机进入喘振工况操作人员应立即采取调节措施降低出口压力或增加入口流量使压缩机工况点脱离喘振区实现压缩机的稳定运行;从上述分析可以看出喘振不仅与叶轮流道中气体的旋转脱离有关而且与管网容量有密切关系管网容量愈大喘振的振幅也愈大,振频愈低管网容量愈小则喘振的振幅就小喘振频率愈高这就是喘振的内部原因;。
防喘振原理
防喘振原理
防喘振是指在空气动力学中,由于流体在某些条件下受到激励而出现的振动现象。
在飞机、桥梁、建筑物等工程结构中,防喘振是一个非常重要的问题,因为它可能导致结构的破坏甚至崩溃。
因此,了解防喘振的原理对于工程设计和安全至关重要。
防喘振的原理可以通过空气动力学和结构动力学的角度来解释。
在空气动力学中,防喘振通常是由于空气流动引起的压力脉动而产生的。
当空气流体通过某些结构或设备时,会产生压力的波动,这种波动会对结构产生作用力,从而引起结构的振动。
而在结构动力学中,防喘振则是由于结构本身的固有频率与外部激励频率相吻合而产生的共振现象。
为了防止防喘振的发生,可以采取一系列措施。
首先,可以通过改变结构的形状或者表面的细节来改变空气流动的方式,从而减小压力脉动的产生。
其次,可以通过在结构上添加防喘振装置,如阻尼器或者质量块,来改变结构的固有频率,使其与外部激励频率不吻合,从而减小共振的可能性。
此外,还可以通过控制空气流动的速度和方向,来减小压力脉动的幅度,从而减小对结构的作用力。
总之,防喘振是一个复杂而重要的问题,需要结合空气动力学和结构动力学的知识来进行分析和解决。
只有深入了解防喘振的原理,才能有效地预防和控制这一现象,从而保障工程结构的安全和稳定。
防喘振工作原理
防喘振工作原理
防喘振是一种能够有效地防止管道系统发生喘振的措施。
喘振是指管道系统在流体通过的过程中出现的一种非正常震动,这种震动会对管道和设备造成严重的损坏。
因此,必须采取措施来防止喘振的发生。
防喘振的原理是通过改变管道系统的特性来改善流体的运动状态。
具体来说,就是在管道系统的设计和安装中引入特殊的装置,例如阻尼器、管道弯曲等,使得流体在过程中受到的阻力增加,从而减少流体的振荡。
防喘振的装置通常包括几种类型:
1. 带有阻尼器的管子或机器。
阻尼器是一种装置,它可以通过引入阻力来限制管道中的流体速度。
这种装置可以减轻管道系统的压力波,并防止流体振荡。
2.弯曲管。
弯曲管可以使流体的方向和速度变化,从而减少压力波和振荡的发生。
弯曲管通常被称为“膝部”,由复杂的几何形状设计得出来。
3.声源排除器。
声源排除器是一种通过引入反相声波来抵消管道系统
内噪声和振荡的装置。
这种技术利用了波浪在两个介质之间相遇时产生的干涉效应。
总体而言,防喘振是一种非常有效的措施,可以使管道系统更加健康和可靠。
然而,这种解决方案并不适用于所有情况,因为每个管道系统都是不同的,需要根据实际情况进行设计和优化。
通过正确的设计和安装,防喘振装置可以有效地保护管道系统和设备,并提高系统的效率和可靠性。
防喘振的方案
防喘振的方案引言:喘振是指在流体管道或者工艺系统中,由于流体的振动引起的管壁或者设备结构的共振现象,进而导致管道或设备的振动幅值明显增大的一种现象。
喘振可能引起管道的破裂、设备的故障,甚至导致事故的发生。
因此,防止喘振的发生对于保障工业设备和工作人员的安全至关重要。
本文将介绍一些防喘振的方案,帮助读者了解如何避免喘振带来的危害。
1. 全面考虑系统设计在设计工艺系统时,应全面考虑喘振的可能性,并在设计初期就针对防喘振进行规划。
首先,应合理设计管道、设备和支撑结构的尺寸和布置,尽量避免共振频率的出现。
其次,采用合适的减振措施,如安装减震器、减振垫等,可以有效地消除共振现象,防止喘振的发生。
2. 减小流体的速度梯度流体的速度梯度是引起振动的主要原因之一。
在设计流体传输系统时,应尽量减小流体的速度梯度,以降低振动的可能性。
可以采用合理的管道直径和流体的运行速度,以控制流体的速度梯度。
此外,还可以在管道中增加节流装置、调压阀等,来调节流体的速度,在一定程度上减小振动的发生。
3. 定期检查和维护定期的检查和维护对于防止喘振的发生至关重要。
通过定期检查流体管道、设备和支撑结构的状态,可以及时发现潜在的问题,提前采取措施加以修复,防止其进一步发展成喘振。
此外,定期维护设备和管道的正常运行状态,确保其处于正常的工作状态,也是防止喘振的重要手段。
4. 合理使用减振器材减振器材是防喘振的重要工具之一。
在选择和使用减振器材时,应根据实际情况合理选择,并进行正确的安装和调试。
常见的减振器材有减振垫、减震器、减振吸振器等,可以有效地降低振动的幅值,减小喘振的发生概率。
5. 使用合适的材料和工艺合适的材料和工艺可以有效地减小振动的传播和扩大。
在工艺系统的设计和建设过程中,应选择合适的材料和工艺,如选择适当的软管材料、防振管道材料等。
此外,合理的施工工艺和安装方法也能够降低振动的传播,减小喘振的危害。
结论:防喘振是确保工业设备和工作人员安全的关键步骤之一。
工艺空气压缩机的喘振及预防(三篇)
工艺空气压缩机的喘振及预防工艺空气压缩机是工业生产中常见的设备之一,其主要作用是将环境空气压缩成高压气体供给生产过程中所需的能源。
然而,在使用过程中,有时会出现喘振现象,严重影响设备的正常运行。
本文将详细介绍工艺空气压缩机喘振的原因及预防措施。
一、喘振的原因1.系统失稳:系统失稳是造成工艺空气压缩机喘振的主要原因之一。
工艺空气压缩机的压缩比一般比较高,当压缩比过高时,系统失去稳定性,容易引起振动。
2.过流现象:过流现象是指空气压缩机运行过程中,过度增加系统的流量。
当系统的气流量明显超过设计工况时,气流的动能将会增大,导致系统不稳定。
3.系统泄漏:系统泄漏是喘振的常见原因之一。
当系统中存在泄漏现象时,将会引起气流的变化,导致系统压力和温度的不稳定,从而诱发喘振。
4.系统阻力不平衡:系统阻力不平衡也是喘振的一个重要因素。
当系统不同部分的阻力不平衡时,将会导致气流的分布不均匀,从而引起系统的不稳定。
5.气源压力波动:气源压力波动是导致工艺空气压缩机喘振的一个主要原因。
当进气口的气体压力波动较大时,将会引起系统的紊乱和不稳定。
二、喘振的预防措施1.选择合适的压缩机:在购买工艺空气压缩机时,应根据实际需求选择合适的型号和规格。
压缩机的功率和排气量应与生产工艺的需求相匹配,避免过大或过小的情况发生。
2.增加系统的稳定性:通过增加系统的稳定性来预防喘振。
可采取的方法包括增加系统的负反馈,提高反馈控制系统的带宽,优化系统的控制算法等。
3.控制系统的总能量:在运行过程中,应更加注重控制系统的总能量,避免气体的过度压缩或过流现象的发生。
通常可以通过调整进气口的开度和调整压缩机的运行参数来实现。
4.加强系统的泄漏检测和修复:定期对系统进行泄漏检测,及时发现和修复泄漏现象。
可以通过检查气体管道、阀门和接口等部位进行泄漏检测,并采取相应的修复措施。
5.优化系统的通风和降温:保持压缩机周围的通风良好,有效降低设备及系统的温度。
离心式压缩机防喘振控制方案教案资料
离心式压缩机防喘振控制方案教案资料离心式压缩机的喘振问题是指在运行过程中出现压比过大或出现流量脉动等现象,导致振荡、噪音和设备损坏。
离心式压缩机的喘振问题是由于压缩机与系统间动态过程的不协调而引起的。
为了防止离心式压缩机的喘振问题,可以采取以下控制方案。
1.增加系统阻尼增加系统阻尼是防止压缩机喘振的一种常用方法。
可以通过增加系统的阻尼器或减震器来利用机械的阻尼效应来消除或减小振动。
通过增加系统的阻尼,可以降低系统中的共振频率,从而减小振动的幅值。
2.优化压比控制策略合理的压比控制策略也可以有效地防止压缩机的喘振问题。
一种常用的方法是在压比过大的情况下,采取相应的控制策略来限制流量以降低压比,从而避免喘振的发生。
可以根据实际情况,合理设置压比限制或控制机组内压力的变化范围。
3.合理设计压缩机系统合理的设计压缩机系统也是防止喘振问题的重要措施。
首先,需要合理选择压缩机的型号和参数,确保其操作范围内能够稳定工作。
其次,需要合理设计系统的布局和管道连接,避免过长或过短的管道。
此外,还需要对系统进行严格的工程检验和调试,确保设计要求的达成。
4.定期维护检查定期维护检查对于防止离心式压缩机的喘振问题也非常重要。
通过定期检查压缩机的工作状态、阀门的操作情况以及管道的泄漏等问题,及时发现并解决潜在的问题,可以有效地减小喘振的风险。
总之,离心式压缩机的喘振问题是一个需要注意的技术问题,需要从系统阻尼、压比控制、系统设计和定期维护等多个方面进行综合考虑和控制。
通过合理的控制措施和工作维护,可以有效地消除离心式压缩机的喘振问题,确保系统的稳定和安全运行。
防喘振控制原理及方法
4.2 离心压缩机防喘振控制4.2.1 离心压缩机的喘振1.离心压缩机喘振现象及原因离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。
此时可看到气体出口压力表、流量表的指示大幅波动。
随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。
如不及时 采取措施,将使压缩机遭到严重破坏。
例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。
下面以图 4.2-1 所示为离心压缩机的特性曲线来说明喘振现象的原因。
离心压缩机的特性曲线显示压缩机压缩比与进口容积流量间的关系。
当转速n 一定时,曲线上点c 有最大压缩比,对应流量设为P Q ,该点称为喘振点。
如果工作点为B 点,要求压缩机流量继续下降,则压缩机吸入流量P Q Q < ,工作点从C 点突跳到D 点,压缩机出口压力C P 从突然下降到D P ,而出口管网压力仍为C P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线 也下降到D P ,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到A Q 。
因流量A Q 大于B 点的流量,因此压力憋高到B P ,而流量的继续下降,又使压缩机重复上述过程,出现工作点从B A D C B →→→→的反复循环,由于这种循环过程极迅速,因此也称为“飞动”。
由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。
2.喘振线方程喘振是离心压缩机的固有特性。
离心压缩机的喘振点与被压缩机介质的特性、转速等有关。
将不同转速下的喘振点连接,组成该压缩机的喘振线。
实际应用时,需要考虑安全余量。
喘振线方程可近似用抛物线方程描述为:θ2121Q b a p p += (4.2-1)式中,下标1表示入口参数;p 、Q 、θ分别表示压力、流量和温度;b a 、是压缩机系数,由压缩机厂商提供。
大型压缩机防喘振控制及喘振保护方案
0引 言
近几年 , 随着 工厂 规模 的扩大 , 所 需 的 压 缩 机 的 能力也越来越大 , 压 缩 机 是 保 证 工 厂 正 常 运 行 的 核 心 设备, 而 压 缩 机 喘 振 控 制 的 精 确 性 及 喘 振 保 护 的 可 靠 性 是保 证 压 缩 机 正 常 运 行 的 重 要 因 素 。 因 此 , 本 文研 究 设 计 了一 种 大 型 压 缩 机 防 喘 振 控 制 及 喘振 保 护 方 案。
: :
\
nI GV p  ̄
S M 1 0  ̄ — — 、
图3 防 喘振 控 制基 本逻 辑 图 防 喘振 控 制 和 H I C手 动 控 制 组 成 。3 个 控 制器 通 过 大 选选择器输出到防喘振控制阀门。 F I C防 喘振 控 制 器 为 一个 闭 环 的 P I 控制器 , 控 制
系 统 解 决 方 案
大型压 缩机 防喘振控 制及喘振保 护方案
陈 丽。 俞杭 生
( 林德 工程 ( 杭州) 有 限公 司 , 杭州 3 1 0 0 0 0 )
摘 要 : 介 绍 了 一 种 压 缩 机 防 喘 振 控 制 方 案 的 基 本 原 理 和 具 体 实施 策 略 , 阐 述 了 喘 振 保 护 器 的 工 作 原 理 和 具 体
控制器输 出命令关 闭防喘振阀 门, 使得压缩 机运行在
最优 点 。当 V — P V < V — S P , 表 示 压 缩 机 已经 进 入 喘 振
区. 这 时 防喘振控制 器控制 阀 门打开 , 增 大 压 缩 机 的
喘振的原因及解决方法有哪些
喘振的原因及解决方法有哪些喘振是一种常见的故障,那么喘振是什么原因造成的呢?下面是店铺精心为你整理的喘振的原因及解决方法,一起来看看。
喘振的原因烟风道积灰堵塞或烟风道挡板开度不足引起系统阻力过大。
(我们有碰到过但不多);两风机并列运行时导叶开度偏差过大使开度小的风机落入喘振区运行(我们常碰到的情况是风机导叶执行机构连杆在升降负荷时脱出,使两风机导叶调节不同步引起大的偏差);风机长期在低出力下运转。
喘振的解决方法风机在喘振区工作时,流量急剧波动,产生气流的撞击,使风机发生强烈的振动,噪声增大,而且风压不断晃动,风机的容量与压头越大,则喘振的危害性越大。
故风机产生喘振应具备下述条件:a)风机的工作点落在具有驼峰形Q-H性能曲线的不稳定区域内;b)风道系统具有足够大的容积,它与风机组成一个弹性的空气动力系统;c)整个循环的频率与系统的气流振荡频率合拍时,产生共振。
旋转脱流与喘振的发生都是在Q-H性能曲线左侧的不稳定区域,所以它们是密切相关的,但是旋转脱流与喘振有着本质的区别。
旋转脱流发生在图5-18所示的风机Q-H性能曲线峰值以左的整个不稳定区域;而喘振只发生在Q-H性能曲线向右上方倾斜部分。
旋转脱流的发生只决定叶轮本身叶片结构性能、气流情况等因素,与风道系统的容量、形状等无关。
旋转对风机的正常运转影响不如喘振这样严重。
风机在运行时发生喘振,情况就不相同。
喘振时,风机的流量、全压和功率产生脉动或大幅度的脉动,同时伴有明显的噪声,有时甚至是高分贝的噪声。
喘振时的振动有时是很剧烈的,损坏风机与管道系统。
所以喘振发生时,风机无法运行。
防止喘振的措施1)使泵或风机的流量恒大于QK。
如果系统中所需要的流量小于QK时,可装设再循环管或自动排出阀门,使风机的排出流量恒大于QK. ;2)如果管路性能曲线不经过坐标原点时,改变风机的转速,也可能得到稳定的运行工况。
通过风机各种转速下性能曲线中最高压力点的抛物线,将风机的性能曲线分割为两部分,右边为稳定工作区,左边为不稳定工作区,当管路性能曲线经过坐标原点时,改变转速并无效果,因此时各转速下的工作点均是相似工况点。
工艺空气压缩机的喘振及预防范文
工艺空气压缩机的喘振及预防范文工艺空气压缩机是工业生产过程中常用的设备之一,其功效在于提供所需的压缩空气。
然而,在实际使用过程中,有时候会出现喘振现象,这对设备的正常运行和生产效率都会造成不利的影响。
因此,了解喘振的原因,并采取预防措施是非常重要的。
一、喘振的原因:1. 设备内部压力不稳定:设备内部的压力过高或过低都会导致喘振现象的发生。
例如,若压缩机的排气压力超过了设定的阀门压力,就会引起气体压缩过程中的喘振。
2. 气流不均匀:系统内部的气流不均匀也会引起喘振现象。
例如,气流在管道中存在突然变窄或变宽的情况,就会导致气体的流动不稳定,从而引起喘振。
3. 过载运行:设备长时间的过载运行也是造成喘振的重要原因之一。
过载运行会导致设备的负荷过大,进而导致设备内的压力不稳定,从而引起喘振。
二、喘振的预防措施:1. 设备维护保养:定期对设备进行维护保养是预防喘振的重要措施之一。
例如,定期检查和清洁设备内部的管道、阀门等,以确保设备正常工作,并消除可能引起喘振的问题。
2. 压力控制:恰当地控制设备内的压力,避免过高或过低的压力出现,可以有效地预防喘振。
例如,定期检查和调整设备的阀门压力,确保在设备正常工作范围内。
3. 管道设计优化:合理设计和布置管道,避免气流不稳定的情况出现,也是预防喘振的重要措施之一。
例如,避免管道中存在过多的弯曲和分支,以保证气流的均匀流动。
4. 过载保护装置的安装:安装过载保护装置是预防喘振的有效手段之一。
当设备负荷超过预定值时,过载保护装置会自动停机,避免设备长时间运行过载,从而减少喘振的发生。
三、喘振的处理方法:1. 减小负荷:当设备出现喘振现象时,可以适当减小设备的负荷,以降低设备压力,从而减少喘振的发生。
2. 检查管道:检查设备内部的管道和阀门是否存在堵塞或漏气等问题,并及时进行处理。
3. 检查压力控制装置:检查设备内的压力控制装置是否正常工作,若存在问题,及时修复或更换。
压缩机防喘振的两种方法
压缩机防喘振的两种方法压缩机防喘振的两种方法 (1)一、离心式压缩机喘振的原因 (1)二、防喘振自控系统的可行性分析 (1)三、防喘振自控系统的几种实现方法 (2)1.固定极限流量法 (2)2.可变极限流量法 (2)四、防喘振控制系统的实现方法 (3)五、结束语 (5)一、离心式压缩机喘振的原因喘振是离心式压缩机的固有特性。
产生喘振的原因首先得从对象特性上找。
从图1中可见压缩机的压缩比P2/P1与流量Q的曲线上都有一个P2/P1值的最高点。
在此点右面的曲线上工作,压缩机是稳定的。
在曲线左面低流量范围内,由于气体的可压缩性,产生了一个不稳定状态。
当流量逐渐减小到喘振线时,一旦压缩比下降,使流量进一步减小,由于输出管线中气体压力高于压缩机出口压力,被压缩了的气体很快倒流入压缩机,待管线中压力下降后,气体流动方向又反过来,周而复始便产生喘振。
喘振时压缩机机体发生振动并波及到相邻的管网,喘振强烈时,能使压缩机严重破坏。
二、防喘振自控系统的可行性分析为使压缩机安全有效和经济运行,在低负荷下操作时,其气量应始终保持在喘振区右边并留有一定的安全裕量,一般控制线位于超过喘振极限流量的5%—10%之处。
只要保证压缩机吸人流量大于临界吸入量Qp,系统就会工作在稳定区,不会发生喘振。
即在生产降负荷时,须将部分出口气体,经出口旁路阀返回到入口或将部分出口气放空,保证系统工作在稳定区。
三、防喘振自控系统的几种实现方法目前常采用两类防喘振方法,即固定极限流量(或称最小流量)法与可变极限流量法1.固定极限流量法固定极限流量的防喘振控制系统,就是使压缩机的流量始终保持大于某一定值流量,如图1中的Qp,从而避免进入喘振区运行。
此法优点是控制系统简单,使用仪表较少。
缺点是当压缩机转速降低,处在低负荷运行时,防喘振控制系统投用过早,回流量较大,能耗较大。
2.可变极限流量法在压缩机负荷有可能通过调速来改变的场合,因为不同转速工况下,极限喘振流量是一个变数,它随转速的下降而变小,所以最合理的防喘振控制方法,应是留有适当的安全裕量,使防喘振调节器沿着喘振极限流量曲线右侧的一条安全控制线工作,这便是可变极限流量法。
防喘振阀工作原理
防喘振阀工作原理
防喘振阀是一种用来防止管道系统中出现水锤现象的设备。
在管道中输送液体时,当管道中的阀门突然关闭时,液体会因为惯性而继续流动,导致管道中产生压力波,进而引起水锤现象。
水锤会导致管道中的设备和管路受到损害,甚至引发爆炸事故,因此需要采用防喘振阀进行控制。
防喘振阀的工作原理是:当管道中的阀门关闭时,防喘振阀会迅速开启,将管道中的液体引入阀内,使其自由扩张,从而消除管道中的压力波。
一旦管道中的压力波被消除,防喘振阀便会迅速关闭,保持管道的正常工作状态。
防喘振阀通常由一个主阀和一个阀芯组成。
当管道中的液体流经主阀时,阀芯会受到流体作用力,从而迅速打开。
一旦液体中断或流量减少,阀芯会迅速关闭,避免管道中产生水锤现象。
总之,防喘振阀是一种非常重要的管道控制设备,可以有效地保护管道系统和相关设备不受水锤现象的影响。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2 离心压缩机防喘振控制4.2.1 离心压缩机的喘振1.离心压缩机喘振现象及原因离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。
此时可看到气体出口压力表、流量表的指示大幅波动。
随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。
如不及时 采取措施,将使压缩机遭到严重破坏。
例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。
下面以图 4.2-1 所示为离心压缩机的特性曲线来说明喘振现象的原因。
离心压缩机的特性曲线显示压缩机压缩比与进口容积流量间的关系。
当转速n 一定时,曲线上点c 有最大压缩比,对应流量设为P Q ,该点称为喘振点。
如果工作点为B 点,要求压缩机流量继续下降,则压缩机吸入流量P Q Q < ,工作点从C 点突跳到D 点,压缩机出口压力C P 从突然下降到D P ,而出口管网压力仍为C P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线 也下降到D P ,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到A Q 。
因流量A Q 大于B 点的流量,因此压力憋高到B P ,而流量的继续下降,又使压缩机重复上述过程,出现工作点从B A D C B →→→→的反复循环,由于这种循环过程极迅速,因此也称为“飞动”。
由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。
2.喘振线方程喘振是离心压缩机的固有特性。
离心压缩机的喘振点与被压缩机介质的特性、转速等有关。
将不同转速下的喘振点连接,组成该压缩机的喘振线。
实际应用时,需要考虑安全余量。
喘振线方程可近似用抛物线方程描述为:θ2121Q b a p p += (4.2-1)式中,下标1表示入口参数;p 、Q 、θ分别表示压力、流量和温度;b a 、是压缩机系数,由压缩机厂商提供。
喘振线可用图4.2-2 表示。
当一台离心压缩机用于压缩不同介质气体时,压缩机系数会不同。
管网容量大时,喘振频率低,喘振的振幅大;反之,管网容量小时,喘振频率高,喘振的振幅小。
图4.2-2 离心压缩机的喘振线3.振动、喘振和阻塞喘振是离心压缩机在入口流量小于喘振流量时离心压缩机出现的流量脉动现象。
震动是高速旋转设备固有特性。
旋转设备高速运转到某一转速时,是转轴强烈震动的现象。
它是因旋转设备具有自由振动频率(称为自由振动频率),转速到该自由有振动频率的倍数时,出现的谐振(这是的谐振称为谐振频率),造成转轴振动。
振动发生在自由振动频率的倍数,转速继续升高或降低时,这这种振动会消失。
压缩机流量过大时,气体流速接近或达到音速,压缩机叶轮对气体所做功全部用于克服振动损失,气体压力不再升高的现象,这种现象称为阻塞现象。
离心压缩机的工作区、喘振区域阻塞区如图4.2-3所示,图4.2-3 离心压缩机的工作区、图中也给出了压缩机的最大和最小转速。
喘振区与阻塞区4.2.2 离心压缩机防喘振控制系统的设计要防止离心式压缩机发生喘振,只需要工作转速下的吸入流量大于喘振点的流量PQ。
因此,当所需的流量小于喘振点的流量时,例如生产负荷下降时,需要将出口的流量旁路返回到入口,或将部分出口气体放空,以增加入口流量,满足大于喘振点流量的控制要求。
防止离心式压缩机发生喘振的控制方案有两种:固定极限流量(最小流量)法和可变极限流量法。
图4。
2-4 固定流量极限防喘振控制1.固定极限线流量防喘振控制该控制方案的控制策略是假设在最大转速下,离心压缩机的喘振点流量PQ为(已经考虑安全余量),如果能够使压缩机入口流量总是大于该临界流量PQ,则能保证离心压缩机不发生喘振。
控制方案适当入口流量小于该临界流量PQ时,打开旁路控制阀,使出口的部分气体返回到入口,使入口流量大于PQ为止。
如图 4.2-4 所示为固定极限流量防喘振控制系统的结构示意图。
固定极限流量防喘振控制具有结构简单、系统可靠性高、投资少等优点,但当转速较低时,流量的安全余量较大,能量浪费较大。
适用于固定转速的离心压缩机防喘振控制。
固定极限流量防喘振控制与流体输送控制中旁路控制方案的区别见表1-1表1-1 防喘振控制与旁路控制的区别项目旁路流量控制固定极限流量防喘振控制检测点位置来自管网或送管网的流量压缩机的入口流量控制方法控制出口流量,流量过大时开旁路阀控制入口流量,流量过小时开旁路阀正常时阀的开度正常时,控制阀有一定开度正常时,控制阀关闭积分饱和正常时,偏差不会长期存在,无积分饱和偏差长期存在,存在积分饱和问题2.可变极限流量防喘振控制该控制方案根据不同的转速,采用不同的喘振点流量(考虑安全余量)作为控制依据。
由于极限流量(喘振点流量)变化,因此,称为可变极限流量的方喘振控制。
可变极限流量防喘振控制系统是根据模型计算设定值的控制系统。
离心压缩机的防喘振保护曲线如图4.2-2所示,也可用模型描述为如果θ2121Q b a p p +<,则说明流量大于喘振点处的流量,工况安全;如果θ2121Q b a p p +>,则说明明流量小于喘振点处的流量,工况处于危险状态。
采用差压法测量入口流量,则有Mp ZR p p K Q d d 1111θγ== (4.2-2) 式中1K 、Z 、R 、1M 分别为流量常数、压缩系数、气体常数和相对分子质量,d p 是入口流量对应的差压。
因此,可以得到喘振模型)(1221ap p bK n p d -≥ (4.2-3) 式中,)(ZR M n =,当被压缩介质确定后,该项是常数;当节流装置确定后,1K 确定;a 和b 式与压缩机有关的系数,当压缩机确定后,它们也确定。
式(4.2-3)表明,当入口节流装置测量得到的差压大于上述计算时,压缩机处于安全运行状态,旁路阀关闭。
反之,当差压小于该计算值时,应打开旁路控制阀,增加入口流量。
上述计算值被用于作为防喘振控制器的设定值,因此,称为根据模型计算设定值的控制系统。
图4.2-5所示为防喘振控制系统的结构。
图中PY 1是加法器,完成 21ap p - 的运算,PY 2时乘法器,完成)(21ap p -与)(21bK n 的相乘运算,其输出作为防 图4。
2-5 可变极限流量防喘振控制 喘振控制器FC 的设定值。
PT 1和PT 2是绝对压力变送器,测量离心压缩机的入口和出口压力,P d T 是入口流量测量用的差压变送器,其输出作为防喘振控制器FC 的测量值。
可变极限控制系统是随动控制系统。
测量值是入口节流装置测得的差压值d p ,设定值是根据喘振模型计算得到的)()]([1221ap p bK n - ,当测量值大于设定值时,表示入口流量大于极限流量,因此,旁路阀关闭;当测量值小于设定值时,则打开旁路阀,保证压缩机入口流量大于极限流量,从而防止压缩机喘振的发生。
实施该控制方案时注意事项如下:(1)可变极限流量防喘振控制系统是随动控制系统,为了使离心压缩机发生喘振时及时打开旁路阀,控制阀流量特性宜采用线性特性或快开特性,控制阀比例度宜较小,当采用积分控制作用时,由于控制器的偏差长期存在,应考虑防积分饱和问题。
(2)采用常规仪表实施离心压缩机的防喘振控制系统时,应考虑所用仪表的量程,进行相应的转换和设置仪表系数;采用计算机或DCS 实施时,可以直接根据计算式计算设定值,并能自动转换为标准信号。
(3)为了使防喘振控制系统及时动作,在采用起动仪表示时,应缩短连接到控制阀的信号传输管线,必要时可设置继动器或放大器,对信号进行放大。
(4)防喘振控制阀两端有较高压差,不平衡力大,并在开启时造成噪声、汽蚀等,为此,防喘振控制阀应选用消除不平衡力的影响、噪声及具有快开慢关特性的控制阀。
(5)可以有多中实施方案,例如,可将)12ap p p d -作为测量值,将21bK n 作为设定值;或将1p p d 作为测量值,将]))][(([1221a p p bK n -作为设定值等;应根据工艺过程的特点确定实施方案。
通常,应将计算环节设置在控制回路外,以避免引入非线性特性。
(6)根据压缩机的特性,有时可简化计算,例如,有些压缩机的0=a ,或1=a 等,这时,模型可简化为:当0=a 时 221p bK n p d ≥ (4.2-4) 当1=a 时 )(1221p p bK n p d -≥ (4.2-5) 4.2.3 测量出口流量的可变极限流量防喘振控制有些应用场合,例如,压缩机入口压力较低,压缩比有较大时,在压缩机入口安装节流装置造成的压降可能是压缩机为达到所需出口压力而需增加压缩机的级数,使投资成本提高。
这时,为防止喘振的发生,可将测量流量的节流装置安装在出口管线,组成可变极限流量防喘振的变型控制系统。
该控制系统是基于同一压缩机出口的质量流量应等于入口的质量流量。
问题的提出:入口流量无法测量(如无安装位置、入口压力低不允许大的压损等)。
图 4。
2-6 可变极限流量防喘振控制变型依据:出口处测得的重量流量和入出测得的重量流量时相等的设入口和出口孔板的校正系数K 1和K 2相等。
特点:采用孔板测量出口流量,可允许较大的压力损失可用于高压缩比的场合需要考虑出口和入口温度(重度变化)的影响有些场合,计算式可更简化。
4.2.3 离心压缩机串并联时的方喘振控制离心压缩机可以串联运行或并联运行,但这将增加运行操作的复杂性,并使能量消耗增大,因此,并不推荐使用,仅当工艺压力或流量不能满足要求时才不得不采用。
这时,串并联运行的防喘振控制系统要比单台压缩机的防喘振控制系统复杂,即操作系统需要协调。
离心压缩机串联运行时的防喘振控制1.压缩机串联运行时的变极限流量的防喘振控制当一台离心压缩机的出口压力不能满足生产要求时,需要量太或两台以上的离心压缩机串联运行。
串联运行与多级压缩相似。
图4.2-7 所视为离心压缩机串联运行时采用的一种可变极限流量防喘振控制的控制方案。
图 4.2-7 压缩机串联运行时的变极限流量的防喘振控制图中,PY1、PY2时加法器,PY3是低选器,PY4、PY5是乘法器。
P1T、P2T和P3T 是压力变送器,P d1T、P d2T测量流量的差压变送器,F1C、F2C是防喘振控制器。
与单台压缩机的防喘振控制相同,对压缩机1和压缩机2都采用可变极限防喘振控制,将计算机的设定值送防喘振控制器,为了减少旁路阀,增加了一台低选器,只要其中任一台压缩机出现喘振,都通过低选器,是旁路阀打开。
防喘振控制器选用正作用,旁路控制阀选用气关型。