FISHER防喘振控制
离心式压缩机防喘振控制措施分析
离心式压缩机防喘振控制措施分析摘要:在化工企业生产过程中,离心式压缩机有着十分重要的作用和地位,其有着排气压力在,输送流量小的优势,但其在具体运行过程中也存在一定缺陷问题。
如喘振问题,发生喘振对压缩机会造成极大危害,所以,需要采取有效防控措施,以确保压缩机得以安全、稳定地运行。
有鉴于此,下文在充分结合相关文献研究以及自己多年工作实践经验情况下,先是对离心式压缩机喘振问题的成因展开了认真分析,进而探讨了几点离心式压缩机喘振防控的有效措施,以供借鉴。
关键词:离心式压缩机;防喘振;控制措施一、探析离心式压缩机发生喘振的原因通常生产装置运行中的压缩机在运作时,如果受到外部因素影响而致使流量减小并达到Qmin值时,则会致使压缩机流道发生旋转脱离问题。
如果气量继续减少,那么压缩机叶轮整体流道就会形成气体旋涡区,而此时压缩机出口压力则会发生及时降低。
而与此同时,与压缩机出口相互连接的管网系统压力并不断立刻降低,且管网内气体还会倒流到压缩机内。
当管网内压力比压缩机出口排气压力小时,气体就会停止倒流,此时压缩机就会向管网内进行排气。
但由于进气量不够,当压缩机出口管网恢复到一定压力时流道内就会发生旋涡。
在这种循环下,机组和管道内流量也会随着之出现周期性变化,机器进出口压力也会引发较大幅度脉动。
另外,因气体压缩机进出口部位发生倒流,与此同时还会有较大周期性气流声响以及大幅度振动现象。
喘振是离心式压缩机自身所固有的一种特性,其发生喘振的原因通常可以在对象特性方面找出来。
因压缩机压缩比和流量曲线上存在一个交点,当其在右面曲线上进行作业时,压缩机是处于稳定状态的。
如在曲线左面低流量范围内作业时,会受到气体所具有的可压缩性特征影响,而出现不稳定。
而如果流量降低到喘振线时,倘若压缩比降下,那么流量就会继续减少;再加上输出管线气体压力要比压缩机出口压力大,所以,已经被压缩气体就会迅速倒流到压缩机内,随后管线内压力会进一步减小,进而会致使气体流动方向发生反转,并最终引发周期性喘振。
高炉轴流风机防喘振控制系统优化及实验
高炉轴流风机防喘振控制系统优化及实验摘要:针对萍钢4#高炉鼓风机存在的问题,阐明了防喘振控制优化的方案,包括工况点沿防喘线精确控制,入口温度对喉部差压、出口压力的补偿,提出了控制优化的具体实施方法,优化达到了预期目标。
【关键词】轴流风机防喘振优化实施一、前言高炉鼓风机是高炉炼铁生产的关键动力设备,为确保鼓风机的安全稳定运行,在其控制系统中必须配备防喘振自动控制,并应兼顾高炉生产、机组安全、节能降耗等各方因素,高炉作为鼓风机供风的负载,炉内状况瞬息万变,鼓风阻力发生扰动,控制系统将使防喘振阀动作,就会在高炉意外崩料和风机喘振之间处于两难的境地,本文以萍乡钢铁公司4#高炉鼓风机的防喘振控制优化为例,阐述控制系统在防喘振调节过程中如何保证送风压力的稳定性,在安全运行前提下充分发挥风机能力,进而为高炉稳产、高产奠定基础。
二、存在的问题萍乡钢铁公司4#高炉采用AV45-13全静叶可调式轴流风机,由于防喘振控制侧重于保护鼓风机,加之防喘振控制品质不高,2010年投产以来,防喘振控制系统运行状况不甚理想,主要表现在以下几方面:1)防喘阀开度基本在10%左右,轴流风机经常处于放风状态,造成大量无谓能量损失,放风噪声污染严重。
2)防喘振的控制品质有待提高:一旦高炉路况不顺,鼓风阻力增大使风机工况点进入调节区时,通常是采用人工紧急干预打开防喘阀使工况点回到稳定工作区,保守的安全意识使工况点总是远离防喘振线。
3)不同入口温度对风机喘振性能有较大影响,采用固定的喘振性能曲线不能真实地反映风机喘振性能,一方面可能影响风机的安全、稳定运行,另一方面可能制约风机供风能力的充分发挥。
三、防喘振控制优化方案1.防喘振控制优化的先决条件为了实现防喘振控制的优化,必须借助于性能优良的PLC系统。
PLC的高速运算性能可使用户程序的扫描周期在10毫秒级,为有效克服鼓风阻力瞬变扰动成为可能;PLC丰富的运算和编程功能可以实现各种先进控制算法,达到预期的控制效果;PLC的高可靠性,实现风机控制系统的安全运行进而确保风机的安全可靠运行。
离心式压缩机的喘振及防喘振控制分析
设备运维离心式压缩机的喘振及防喘振控制分析张倩(青海盐湖工业股份有限公司化工分公司,青海格尔木816000)摘要:离心式压缩机和其他类型的压缩机相比较,它具有体积较小,流量比较大、正常状态下运行效率较高,最主要的是对它的维修及保养非常方便且简单等优点。
因此,在现代工业生产中已经广泛应用离心式压缩机。
但是,在实际应用中,由于离心式压缩机本身对气体的压力、流量发生的变化非常敏感,因此,在实际应用过程中离心式压缩机会发生喘振现象。
关键词:离心式压缩机;喘振;防㟨振;控制离心式压缩机发生喘振现象属于运行中的一种特殊形式,当正在运行中的离心式压缩机发生喘振时,气流很容易会发生严重的冲击,甚至于喘振严重时,离心式压缩机的内部零件会有不同程度的损坏,这也是导致压缩机正常运行中可能发生故障的原因之一。
因此,针对离心式压缩机运行中发生喘振现象,应釆取相应的有效措施加以控制,才能确保空心压缩机正常平稳的运行。
1离心式压缩机的工作原理离心式压缩机正常运行中的工作原理具体如下:压缩机在正常运行过程中,气体将会随着压缩机的叶轮而旋转,同时也会因受离心力的作用被甩出,大量的流进压缩机的扩压器中,在叶轮处形成一个真空地带,与此同时,一些末经处理的外界新鲜空气会逐渐流入叶轮中,通过叶轮不停的旋转,对气体不断的吸入又甩出,从而使气体可以保持连续不断的流动。
2离心式压缩机喘振出现的原因及影响因素2.1离心式压缩机出现喘振的原因第一,离心式压缩机系统受到的压力过大时,会造成喘振现象,具体原因有以下几点:(1)离心式压缩机在正常运行的状况下,突然停止工作,而压缩机内所存的气体未及时清空。
(2)压缩机管道出口处的逆止阀发生失灵现象,导致使用受阻。
(3)气体在阀门处聚集的容量过大,当气体进入压缩机的出口时,气体的流量发生了强烈的下降趋势,这种情况下,使压缩机的防喘系统没有足够的完成投自动的时间。
第二,空心式压缩机吸入的气体流量不足。
当压缩机正常运行过程中,吸入的气体流量如果低于喘振流量时,空心式压缩机的管道入口处的过滤器会出现异常。
FISHER防喘振阀典型气路及相关说明
FISHER防喘振阀典型气路及相关说明防喘振阀涡轮机离心压缩机防喘振阀的关键是在于可靠性和最佳性能。
其重要特点:一、保护压缩机1、阀门必须快开与完全可靠;2、阀门流量充分以防止起浪点;3、避免噪音和振动所产生的压缩机和管道损害。
二、起动和停车时的敏感控制1、阀门应随阶跃响应而活动,超调应限制在最小;2、阀门备有正反馈位置;3、阀门仪表附件调整简单。
典型气路图如下:描述:整个气路的功能在正常情况下实现精确的阀位控制,快开慢关;在紧急情况(失气、失电)下快速打开阀门以保护风机。
正常情况下,两个电磁阀带电,对三通电磁阀,1和2通;两通电磁阀,1和2断开。
这时经过过滤减压后的空气分成三路,一路经单向阀到四通,然后到2625、储气罐、377的F口;一路经三通电磁阀后,到377的SUP口,SUP口的气压压缩377内部弹簧,这样在377内部气路中,A口和B口通,D 口和E口通;另一路到DVC6020的SUP口,作为DVC的气源。
当控制信号(控制系统DCS/PLC输出到DVC6020的4-20MA信号)增大时,定位器A 口输出增大, B口输出减小;增大的A口气压经377AB口、快排阀后作用在汽缸(1061执行机构)上腔;B口的气压经377DE口作为气路放大器2625的输入信号,控制2625输出到汽缸(1061执行机构)下腔的压力;这时,汽缸活塞上部的压力》下部的压力+管道风压作用在碟板上的力,活塞往下运动,有铭牌上ACTION:PDTC可知,阀门开口度减小。
反之,控制信号减小,定位器A口输出减小,B口增大,这时由于有快排阀和气路放大器2625的作用,活塞快速往上运动,阀门实现快开。
当电磁阀失电,对三通电磁阀,1和3通,两通电磁阀1和2通;这时,377SUP口的压力经三通电磁阀3口卸掉,377在内部弹簧的作用下,气路发生转换,B口和C口通,E口和F口通;储气罐的气加上气源的气经377FE口后作为气路放大器2625的控制信号,由于这时储气罐的气压很高(等于减压阀出口压力),使2625全开,储气罐里的气和气源的气以最大流量经2625进入汽缸下腔,上腔的气经快排阀、两通电磁阀快速排向大气,阀门快速打开。
离心式压缩机的调节控制系统
离心式压缩机的调节控制系统摘要:离心式压缩机在石油化工、煤化工等工业生产中应用广泛,是重要的化工气体压缩运输设备,如裂解气压缩机、乙烯压缩机、丙烯压缩机、合成气压缩机及二氧化碳压缩机等,都是离心式压缩机。
如果因压缩机喘振、超速等原因引发联锁停机,会导致物料回流循环增加能耗或放火炬,造成重大经济损失和环境污染危害,因此,防止压缩机喘振对于保护压缩机高效运转和安全稳定运行意义重大。
本文对离心式压缩机的调节控制系统进行分析,以供参考。
关键词:离心式;压缩机;调节控制系统引言离心式压缩机是一种实现连续运输和高转速的节能设备,依靠高速旋转的叶片带动气体产生离心力并完成做功。
离心式压缩机的发展历程已有百年历史。
离心式压缩机的出现和发展晚于往复式压缩机,但目前在许多领域,已逐渐代替往复式压缩机而成为了主要的动力机械,特别是在重大化工生产、气体传输和液化等领域得到了广泛的应用。
1汽轮机的控制系统介绍发动机控制系统主要由转速器官、调节器和反馈机构组成。
在这四个组件中,速度控制机构(通常称为调节器)是整个控制系统的关键组件。
如果阀门不打开,变速器的速度将根据载荷变化。
控制系统感觉到转速的这种变化,阀门开口保持转速恒定,即功率调节。
高功率水轮机也是适应功率信号的。
除了设定速度之外,车轮还需要设定供给压力,因此必须记录供给压力的变化信号。
不同类型的涡轮具有不同的调节系统,调节系统的任务也不同。
同样的齿轮也可以用不同的调节系统操作,但仍必须满足操作要求。
2防喘振的控制系统2.1离心压缩机的调节离心压缩的校准和操作需要多种控制策略,包括进、出电流控制、进、出压力控制。
根据在特定工艺中设置的调整操作,流量和压力控制分为以下几个区域:(1)压力控制:改变压缩机流量,保持压力稳定性。
(2)恒定流量调节:改变压缩机压力以保持流量稳定。
(3)比例:保持压力(或流量)的比例。
要执行上述设置任务,可以控制离心压缩的流量和压力。
(1)转速控制:该方法调节最大值范围,成本低廉。
FISHER防喘阀使用指南_气动_
FISHER 防喘振阀使用指南(气动执行器)SINOPROCESS成都赛来控制工程有限公司前言FISHER防喘震阀使用指南是根据美国FISHER阀门售后服务工程师长期的现场经验而编写,分气动执行器和液动执行器两分册,本指南为气动执行器分册,希望用户能在安装,调试和使用前仔细阅读,如有不清楚请及时与我公司联系。
本指南的主要内容包括:一.FISHER阀门安装调试1.FISHER防喘阀安装调试的注意事项2.FISHER防喘阀的调试步骤二.FISHER防喘阀的接线图和气路图三.FISHER防喘阀典型气路及相关说明四.FISHER防喘阀部分附件的调试说明1.377和2625的调试2.DVC6020的调试3.3620系列定位器的校验4.4200系列电位传感器的调试5.HIM信号转换器的安装和使用指南如需要技术支持,请提供阀门的序列号,我公司将尽最大努力提供优质服务。
在此非常感谢贵公司使用FISHER阀门,我们真诚希望该指南能对您有较大的帮助。
一关于FISHER防喘震阀安装调试及使用时应注意的相关问题一关于FISHER防喘震阀安装调试及使用时应注意的相关问题1.由于阀门和执行机构的尺寸较大,重量也较大,因此在安装时,阀门和执行机构应整体吊装,以免损坏阀门和执行机构。
对较大的阀门最好让执行机构直立安装并做一支架对阀门执行机构进行支撑,支撑应该是在管道上,而不是直接支撑在地面上,并且阀门两边管道的支撑要离阀门较近,如此可减小阀门的震动,以免阀门因震动过大而产生不正常现象。
2.由于阀门控制气路比较复杂,控制管和相关的附件较多,因此在安装时要小心,避免损坏控制管和相关附件。
3.气源管不能使用易生锈的镀锌管或钢管,最好使用不锈钢管,并确保气源的清洁度和干燥度,以避免损坏阀门定位器。
对有储气罐的阀,需将储气罐及其管路进行固定,或使用软的耐压管,以免因震动使管接头脱落而使阀门失控。
4.调试前,首先应仔细阅读相关的资料,清楚各相关附件的用途和作用原理;然后将气路图及其说明与现场气路相对照,弄清阀门的工作原理。
FISHER防喘阀使用指南(气动)
FISHER防喘振阀使用指南(气动执行器)SINOPROCESS成都赛来控制工程有限公司前言FISHER防喘震阀使用指南是根据美国FISHER阀门售后服务工程师长期的现场经验而编写,分气动执行器和液动执行器两分册,本指南为气动执行器分册,希望用户能在安装,调试和使用前仔细阅读,如有不清楚请及时与我公司联系。
本指南的主要内容包括:一.FISHER阀门安装调试1.FISHER防喘阀安装调试的注意事项2.FISHER防喘阀的调试步骤二.FISHER防喘阀的接线图和气路图三.FISHER防喘阀典型气路及相关说明四.FISHER防喘阀部分附件的调试说明1.377和2625的调试2.DVC6020的调试3.3620系列定位器的校验4.4200系列电位传感器的调试5.HIM信号转换器的安装和使用指南如需要技术支持,请提供阀门的序列号,我公司将尽最大努力提供优质服务。
在此非常感谢贵公司使用FISHER阀门,我们真诚希望该指南能对您有较大的帮助。
一关于FISHER防喘震阀安装调试及使用时应注意的相关问题一关于FISHER防喘震阀安装调试及使用时应注意的相关问题1.由于阀门和执行机构的尺寸较大,重量也较大,因此在安装时,阀门和执行机构应整体吊装,以免损坏阀门和执行机构。
对较大的阀门最好让执行机构直立安装并做一支架对阀门执行机构进行支撑,支撑应该是在管道上,而不是直接支撑在地面上,并且阀门两边管道的支撑要离阀门较近,如此可减小阀门的震动,以免阀门因震动过大而产生不正常现象。
2.由于阀门控制气路比较复杂,控制管和相关的附件较多,因此在安装时要小心,避免损坏控制管和相关附件。
3.气源管不能使用易生锈的镀锌管或钢管,最好使用不锈钢管,并确保气源的清洁度和干燥度,以避免损坏阀门定位器。
对有储气罐的阀,需将储气罐及其管路进行固定,或使用软的耐压管,以免因震动使管接头脱落而使阀门失控。
4.调试前,首先应仔细阅读相关的资料,清楚各相关附件的用途和作用原理;然后将气路图及其说明与现场气路相对照,弄清阀门的工作原理。
离心式压缩机防喘振控制方案(精)
学号:学生姓名:指导教师:年月5.5~6cm摘要离心式压缩机是生产过程中十分重要的气体输送设备,喘振现象是离心式压缩机的固有特性,是离心式压缩机工作在小流量时的不稳定流动状态,它对工业生产有很大的危害。
解决离心式压缩机的喘振问题,对提高压缩机运行的质量和效率具有重要意义。
如果采用合适控制方法,会提高压缩机的生产效益。
论文首先介绍了压缩机防喘振控制的国内外发展现状和意义,在综合各种现有的压缩机防喘振控制系统解决方案的情况下,基于对离心式压缩机防喘振控制方案研究的目的,本文介绍了离心式压缩机工作的基本原理,并对其喘振特性和防喘振控制系统进行了具体分析,主要运用可变极限流量法,设计了基于8051单片机的离心压缩机防喘振控制系统。
设计内容主要包括:整体设计方案,单片机控制系统的硬件电路设计和软件设计。
单片机控制系统的硬件电路设计主要包括检测电路,A/D转换电路,D/A转换电路,显示电路,报警电路,驱动电路等几个部分。
软件设计采用的是模块化程序设计方法,主要程序模块包括压力和流量循环采样模块,A/D以及D/A转换程序模块,中断程序模块等。
软件设计力求简洁,运用子程序,使程序具有易扩展、可修改移植的优点。
本设计最终目的是使压缩机脱离喘振的危险,也为离心压缩机防喘振控制系统进一步深入研究创造条件。
关键词:离心式压缩机;防喘振;8051;PIDIAbstractCentrifugal compressor is a very important equipment of gas carrying in industrial production process, Surge phenomenon, which is the inherent characteristic of centrifugal compressor, is defined as the instability flow condition when centrifugal compressors works in little flow, and does great harm to industrial production. It has great significance to improve the quality and efficiency of centrifugal compressor in operation by solving the problem of surge. If some proper method is taken, the compressor will get much better profit.First, this thesis introduces the development and significance of centrifugal compressor anti-surge control both at home and abroad. By the comprehensive consideration of various anti-surge control system applied in centrifugal compressor presently, based on carrying out the objective that the anti-surge control of centrifugal compressor is implemented, the fundamental of work of the centrifugal compressor is introduced, and the speciality of surge and the anti-surge control system is particular analyzed. This thesis uses the method of the alterable limited flow. This article describes design of the anti-surge control of centrifugal compressor based on single chip microcomputer.Its contents mainly include: Completion of the design plan, hardware circuit design, software design, and etc.. The hardware circuit design of one-chip computer control system mainly includes A/D&D/A change circuit, detection circuit, display circuit, etc.. Adopt the module to design program in software design, procedure module mainlyincludes flow and pressure circulation module, interrupt program module, conversion program module of A/D&D/A. Software design strives to be succinct, using the subprogram in a large amount, it will make the procedure apt to expand and be revised easily.The last aim of this scheme is to make the centrifugal compressor break away from the danger of surge, and it will create conditions for further study of centrifugal compressor anti-surge control system.Key words:centrifugal compressor;anti-surge;8051;PIDII目录摘要 (I)Abstract .............................................................................................................................. . (II)第1章绪论 (1)1.1 本课题的研究意义 (1)1.1.1 前言 (1)1.1.2 离心压缩机防喘振的重要作用 (2)1.1.3 离心压缩机防喘振控制系统的研究意义 (2)1.2 离心压缩机防喘振控制系统的国内外研究现状及趋势 (3)1.3 本课题主要研究内容 (4)第2章离心压缩机防喘振控制系统整体方案设计 (5)2.1 离心压缩机工作原理 (5)2.2 喘振现象 (6)2.3 影响喘振因素 (7)2.5 喘振控制技术及防喘振控制要点 ...........................................................................102.6 防喘振控制要点 .......................................................................................................12第3章离心压缩机防喘振控制系统设计 (14)3.1 系统总体设计思想 ...................................................................................................143.2 系统的设计框图及工作原理 ...................................................................................16第4章控制系统的硬件设计 (19)4.1 单片机控制器的选型及引脚功能 ...........................................................................194.1.1 微处理器的选择 (19)4.1.2 8051的引脚功能 (19)4.2 8051存储器扩展电路的设计 ...................................................................................224.2.1 外接数据存储器6264的性能指标及引脚 (22)4.2.2 6264与8051的接口电路 (24)4.2.3 外接程序存储器2732的性能指标及引脚 (25)4.2.4 2732与8051的接口电路 (26)4.3 检测变送装置的选择及转换电路 ...........................................................................274.3.1 检测变送装置的选择 (27)4.3.2 转换电路的设计 (29)4.4 A/D转换接口电路设计 (30)4.4.1 ADC0809主要性能指标 (30)I4.4.2 ADC0809引脚功能 (31)4.4.3 ADC0809与8051接口电路 (32)4.5 D/A转换接口电路的设计 ........................................................................................334.5.1 DAC0832主要性能指标 (33)4.5.2 DAC0832的引脚功能 (34)4.5.3 DAC0832与8051接口电路 (35)4.7 报警电路 ...................................................................................................................354.8 LED显示电路 ...........................................................................................................364.9 驱动电路 ...................................................................................................................374.10 复位电路 .................................................................................................................394.11 电源电路 .................................................................................................................39第5章系统的软件设计 (41)5.1 控制算法的确定 .......................................................................................................415.2 PID算法简介 ............................................................................................................415.3 算法的具体操作 .......................................................................................................445.4 系统的软件设计 .......................................................................................................455.4.1 程序内存的划分 (45)5.4.2 主程序模块 (47)5.4.3 A/D转换模块 (48)5.4.4 比较算法控制子程序 (49)5.4.5 D/A转换子程序 (49)第6章结论与建议 (51)参考文献 ............................................................................................................................ 52 致谢 .................................................................................................. 错误!未定义书签。
防喘振控制原理及方法
4.2 离心压缩机防喘振控制4.2.1 离心压缩机的喘振1.离心压缩机喘振现象及原因离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。
此时可看到气体出口压力表、流量表的指示大幅波动。
随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。
如不及时 采取措施,将使压缩机遭到严重破坏。
例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。
下面以图 4.2-1 所示为离心压缩机的特性曲线来说明喘振现象的原因。
离心压缩机的特性曲线显示压缩机压缩比与进口容积流量间的关系。
当转速n 一定时,曲线上点c 有最大压缩比,对应流量设为P Q ,该点称为喘振点。
如果工作点为B 点,要求压缩机流量继续下降,则压缩机吸入流量P Q Q < ,工作点从C 点突跳到D 点,压缩机出口压力C P 从突然下降到D P ,而出口管网压力仍为C P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线 也下降到D P ,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到A Q 。
因流量A Q 大于B 点的流量,因此压力憋高到B P ,而流量的继续下降,又使压缩机重复上述过程,出现工作点从B A D C B →→→→的反复循环,由于这种循环过程极迅速,因此也称为“飞动”。
由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。
2.喘振线方程喘振是离心压缩机的固有特性。
离心压缩机的喘振点与被压缩机介质的特性、转速等有关。
将不同转速下的喘振点连接,组成该压缩机的喘振线。
实际应用时,需要考虑安全余量。
喘振线方程可近似用抛物线方程描述为:θ2121Q b a p p += (4.2-1)式中,下标1表示入口参数;p 、Q 、θ分别表示压力、流量和温度;b a 、是压缩机系数,由压缩机厂商提供。
离心式压缩机组防喘振控制及应用
离心式压缩机组防喘振控制及应用中国石油天然气第七建设工程有限公司山东青岛 266300摘要:本文以揭阳石化空压站压缩机为例阐述了离心式压缩机喘振控制原理、操作点算法、防喘振控制功能及防喘振系统的调试与应用,对今后进行机组调试有着借鉴意义。
关键字:防喘振控制;操作点;性能曲线压缩机是石油化工装置的核心设备,其安全平稳运行对安全生产起着至关重要的作用,防止喘振是压缩机运行中极其重要的问题,许多事实证明,压缩机的大量事故都与喘振有关。
一、喘振的定义及发生的条件:1:喘振,顾名思义就像人哮喘一样,严重的喘振会导致风机叶片疲劳损坏。
喘振的产生与流体机械和管道的特性有关,管道系数容量越大,则喘振越强,喘振引起管道,机器及基础共振时,就会造成严重后果。
为防止喘振,就必须使流体机械在喘振区之外运转。
理论和实践证明,能够使离心压缩机工况点落入喘振区的各种因素,都是发生喘振的原因。
2:压缩机喘振的条件:压缩机发生喘振的根本原因就是进气量减少并达到压缩机允许的最小值。
①压缩机特性决定了转速一定的条件下,流量对应于出口压力或升压比,并且在一定的转速下存在一个喘振流量。
当压缩机运行中实际流量低于这个喘振流量时压缩机便发生喘振。
这些流量、出口压力、转速和喘振流量的综合关系构成压缩机的特性线,也叫性能曲线。
在一定转速下使流量大于喘振流量就不会发生喘振。
②如果压缩机与系统管网联合运行,当系统压力大大高出压缩机在该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成很高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流;入口气源减少或切断,压缩机都可能发生喘振。
③机械部件损坏或者部件安装不全,安装位置不准或者脱落,会形成各级之间或各段之间串气,可能引起喘振;过滤器阻力太大,逆止阀失效或破坏,也都会引起喘振。
④实际操作中升速升压过快,降速之前未首先降压可能导致喘振。
升速、升压要缓慢均匀,降速之前应先采取卸压措施,⑤工况改变,运行点落入喘振区。
防喘振优化
高炉风机防喘振先进与优化控制应用软件高炉鼓风机是炼铁过程中的核心动力设备,对于整个钢铁企业而言,高炉鼓风机的稳定运行与高炉的产量、效益、安全息息相关,防喘振控制作为高炉风机控制中最重要的一环,其控制效果合理、完善与否,在很大程度上决定了能否充分发挥鼓风机的潜能,安全、稳定、高效地运行,以保证高炉炉况顺行所必需的风源。
一、目前炼铁行业高炉风机防喘振控制技术现状及普遍存在的问题1.“保风机”与“保高炉”之间的矛盾:轴流压缩机防喘振控制的基本原理是根据压缩机在不同静叶角度下的流量与极限排气压力的对应关系,计算出不同工况下的排气压力设定值,当由于工艺阻力过大的增加,实际工况超过设定(接近喘振)时,通过调节防喘振阀,来减小压缩机出口的气体输出阻尼,使工况点回到安全区域,避免喘振可能造成的危害。
在防喘振控制回路中,由于缺少完备的数学算法,在工况点接近喘振线时,“保风机”和“保高炉”往往成为一对不可调和的矛盾。
防喘振动作的速度主要由调节器的增益值来决定,在调试过程中,往往对增益值如何设定感到两为其难:如增大数值,防喘振阀在动作时打开过快、过大势必会产生较大的流量和压力波动,这种波动是高炉正常生产过程中无法接受的。
如减小数值,又不能保证在工况点上升较快的情况下保证风机不进入喘振区。
这一矛盾难以解决的根本原因主要有以下两点:1.从保护工艺和保护风机两个不同角度出发,对防喘振调节动作的速度的要求本身就具有一定的矛盾性;2.轴流风机防喘振控制是以风机内部流量(入口差压)和排气压力为调节对象,二者的变化都具有极强的瞬时性,而信号测量、计算输出、执行机构动作都不可避免会产生一定的时间滞后,在这样一个瞬时性非常强的闭环控制回路里,以滞后的测量信号为计算依据,采用常规的PID运算,很难避免过调和振荡现象。
由于这一原因,目前普遍应用的防喘振控制回路设计的出发点基本上都是侧重于保护风机本体,对如何在保护风机的同时又保护高炉的正常生产缺少必要的手段。
防喘振控制原理及方法
4.2 离心压缩机防喘振控制4.2.1 离心压缩机的喘振1.离心压缩机喘振现象及原因离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。
此时可看到气体出口压力表、流量表的指示大幅波动。
随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。
如不及时 采取措施,将使压缩机遭到严重破坏。
例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。
下面以图 4.2-1 所示为离心压缩机的特性曲线来说明喘振现象的原因。
离心压缩机的特性曲线显示压缩机压缩比与进口容积流量间的关系。
当转速n 一定时,曲线上点c 有最大压缩比,对应流量设为P Q ,该点称为喘振点。
如果工作点为B 点,要求压缩机流量继续下降,则压缩机吸入流量P Q Q < ,工作点从C 点突跳到D 点,压缩机出口压力C P 从突然下降到D P ,而出口管网压力仍为C P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线 也下降到D P ,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到A Q 。
因流量A Q 大于B 点的流量,因此压力憋高到B P ,而流量的继续下降,又使压缩机重复上述过程,出现工作点从B A D C B →→→→的反复循环,由于这种循环过程极迅速,因此也称为“飞动”。
由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。
2.喘振线方程喘振是离心压缩机的固有特性。
离心压缩机的喘振点与被压缩机介质的特性、转速等有关。
将不同转速下的喘振点连接,组成该压缩机的喘振线。
实际应用时,需要考虑安全余量。
喘振线方程可近似用抛物线方程描述为:θ2121Q b a p p += (4.2-1)式中,下标1表示入口参数;p 、Q 、θ分别表示压力、流量和温度;b a 、是压缩机系数,由压缩机厂商提供。
气动防喘振阀使用指导手册
目录1. 概述 (4)1.1.适用范围 (4)1.2.防喘振阀的功能 (4)1.3.防喘振阀的组成 (5)1.4.防喘振阀的分类 (5)1.5.防喘振阀的规格及技术参数...................... 错误!未定义书签。
2. 安装 (8)2.1.安装前的检查 (8)2.2.防喘振阀安装到管线上的一般要求 (8)2.3.仪表气源管路的连接 (10)2.4.电气线路的连接 (10)2.5.分体式定位器的安装说明 (11)3. 工作原理 (12)3.1.弹簧薄膜执行机构防喘振阀的气动控制原理 (13)3.2.气缸式执行机构气动控制原理 (14)3.3.20”以上通径防喘振阀气动控制原理 (15)4. 调试 (16)4.1.主要控制附件介绍及调试 (16)4.2.防喘振阀的调试 (25)5. 使用 (26)5.1.安装防喘振阀的管线振动问题 (26)5.2.使用防喘振阀长期在小开度下(﹤20%)进行风压调节的问题 (27)5.3.手动操作 (28)6. 拆卸、组装 (32)6.1.拆卸 (32)6.2.组装 (32)7. 常见故障及排除 (32)气动防喘振阀使用指导手册3 / 448.常用备件及调试工具 (34)附录1 375现场通讯器(手操器)校验的使用指南 ............................................................................. 35 附录2 HIM 的使用指南 (41)标识符号说明:危险 警告 注意提示1.概述1.1.适用范围本手册适用于FISHER的气动防喘振阀的安装、调试、使用、维护指导。
详细介绍防喘振阀的各组成部分的结构、功能、调试方法;防喘振阀的工作原理;常见故障分析及排出;常用备件列表。
1.2.防喘振阀的功能什么是风机的喘振轴流压缩机在运行过程中,因系统负荷降低而使风机进口流量降低,当流量降低到一定程度时,其气体排出量会产生强烈的振荡,从而使机身出现剧烈振动的现象,它是轴流压缩机性能反常的运行状态,应避免出现并及时消除。
防喘振控制技术在小型离心压缩机上的应用实践研究
机械与设备2017年5期︱317︱防喘振控制技术在小型离心压缩机上的应用实践研究肖东升昆明冶研新材料股份有限公司(曲靖生产区),云南 曲靖 655000摘要:经济飞速发展下,带动机械技术的突飞猛进,在实践工作使用的机器设备上的小型离心压缩机是机械科技研究的重要内容,研究这内容可以为小型离心压缩机的在使用过程中可以更顺畅带来技术上的支持,本文就主要分析了防喘控制技术在小型离心压缩机上的实践工作,本文分析的防喘控制技术是新研究出的控制系统,对实践中用这一系统对小型离心式压缩机进行技术上的改造,分析整个个改造的过程,检验改造结果。
关键词:防喘振控制技术;小型离心压缩机;应用中图分类号:V233.95 文献标识码:B 文章编号:1006-8465(2017)05-0317-02工程机械技术的发展下,带动了各种机械技术的进步。
现今的,一种应用在小型离心压缩机上的控制系统,对推动机械技术进步有着一定的意义,防喘振控制技术在小型离心压缩机上的应用实践工作中,氮气型压缩机工作组在正常的生产阶段,入口中的导流叶片还有防喘控制阀的阀门自始至终都是自动进行控制的方式,这样就有了两方面的优点,保证了机组工作的安全运行,在调节品质方面对生产工艺进行了提高,免于放空形成的浪费。
1 实践应用分析 对一些氮气压缩机进行研究分析,压缩机设备在氮气压缩机运行中的配套系统是比较传统的控制系统,这种控制系统在保证压缩机安全的运行上主要应用的又是入口倒流叶片进行手动的控制和放空阀来进行的手动控制方式。
在避免工作机组出现喘振问题上,要放空阀维持在百分之三十上下度的开度,要维持这一状态主要缘由就是这种控制系统缺少对防喘振这一功能的专门控制工作和算法。
没有进行这种装置的配备就是因为这种控制技术一般都是掌握在国外的机械制造公司的,想要进行引进就必须花费大量的资金。
(1)离心式氮气压缩机在工作过程中的不足之处 第一点就是应用进口生产的导叶阀的手动进行控制,在确保后续工艺压力上是难以得到稳定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pd
100%
D
A
Pd
A C B
D 0 100%
Qs
DPo
A C B
D
0 100%源自DPcA C BD
Performance curves are usually very flat near surge操作曲线靠近喘振线 Even small changes in compressor pressure differential cause large flow changes压缩机压差的微小变化也会引起较 大的流量变化 The speed of approaching surge is high; in only 0.4 seconds, DPO dropped by 14%, with a 2% change in DPc 到达喘振线的时 间为0.4秒。
hr DEV < 0
DEV = 0
- Operating Point
DEV > 0 qr
[File Name or Event] Emerson Confidential 27-Jun-01, Slide 7
2
Surge margin Or Surge Control Line SCL
The approach to surge is fast快速到达喘振点
• Flow and Pressure Transmitters流量及压力变送器 • Piping Layout配管布置 • Antisurge Control Valve防喘振控制阀
[File Name or Event] Emerson Confidential 27-Jun-01, Slide 4
[File Name or Event] Emerson Confidential 27-Jun-01, Slide 9
Flow Measuring Devices流量测量装置
Selection Criteria: Repeatability & Minimal Delays 选择原则:重复性及最小 延迟 Knowing the flow is essential to determine distance between Operating Point and SCL 流量是决定操作点与SCL 间距的关键参数
Process & Compressor Control过程及压缩机控制
– – – – – – –
[File Name or Event] Emerson Confidential 27-Jun-01, Slide 2
Objectives of Anti-Surge Control 防喘振控制的目标
0
[File Name or Event] Emerson Confidential 27-Jun-01, Slide 8
Managing the high speed of approaching surge处理到达喘振线的高速
Increase overall system speed of response wherever feasible 尽可能 的提高系统的响应速度
hr
CCC’s Method CCC的方法 – The antisurge controller must provide a distance to SLL that is invariant of change in inlet conditions防喘振控制器必须提供到SLL的距离,该距离不随入口 条件变化 – Non-linearity in the SLL can be accommodated using a function based on piecewise characterization通过分段特性提供非线性的SLL – This will lead to safer control yet reducing the surge control margin which means 这使实现安全控制的同时减小喘振控制的边缘:
The Surge Control Line (SCL)喘振控制线 Distance between Operating Point and SCL操作点与SCL间距
• • Maximize the Compressor Operating Zone压缩机操作区最大化 Minimize the Surge Margin减少喘振边缘
– Transmitters变送器 – System Volumes系统体积 – Valves阀门
• DVC ODV Tier
• Optimized Actuation System优化的执行机构系统
Specialized Control Responses特定的控制响应
– Automated open loop (Recycle Trip)自动的开环控制 – Adaptive surge control line – closed loop control 变化的喘振控制线闭环控制 – Control loop decoupling控制回路解耦
机控制要解决的主要问题
机的性能特性图最大化
– Maximize the Compressor Performance Map使压缩
– Location of Surge Limit Line喘振线的位置 – High Speed of Approaching Surge达到喘振的速度 – Control Loop Considerations控制回路的考虑
•Develop Surge Control Line
•Develop Control Actions to maximize operating zone
Actual available operating zone
Minimum speed
Qs,
[File Name or Event] Emerson Confidential 27-Jun-01, Slide 5
•
CCC parameter: DEV = d - surge margin • Benefit: One standard surge parameter in the plant. No operator confusion好处:工厂中只有一个标准的喘振参数。
DEV > 0 DEV = 0 DEV < 0 Good Recycle Line Bad
• • • Flow and Pressure Transmitters流量及压力变送器 Piping Layout配管布置 Antisurge Control Valve防喘振控制阀
Basic Antisurge Control System基本的防喘振控制系统
– – – – Surge Control Line - PI Control - Closed Loop Control传振控制线-PI控制-闭环控制 Surge Testing喘振测试 Recycle Trip - Open Loop Control循环测试-开环控制 Tight Shut-off Line-严密关断线
Blow-off or recycle放弃或在循环 Discharge Throttling出口流量调节 Suction Throttling入口流量调节 Adjustable guide vanes可调节的导向叶片 Speed Variation速度变化 Interacting Antisurge and Performance Loops防喘振回路及性能回路的关联 Loop Decoupling回路解耦
vol
Location of the Surge Limit Line (SLL)
喘振线的位置
Basics – The better we can measure the distance to surge, the closer we can operate to it without taking risk目的是准 确找出喘振线的位置,以使操作尽量接近喘振线 – The Surge Limit Line (SLL) is not a fixed line. The SLL changes depending on the compressor inlet conditions: Tsuction, Psuction, Mol. Weight, ratio of specific heats, k喘 振线不是固定线。位置取决于压缩机入口的温度压力, 气体的分子量,及绝热系数。 – Most compressor OEM’s use a prediction大多数的压 缩机厂上使用预测。
Maximizing theCompressor Performance Map
使压缩机的性能特性图最大化
Compressor Risking Surge Recycle Valve is Open
Rprocess,2
Operating Point 2
Rc
Adding control margins
Anti-Surge Control 防喘振控制
Compressor Control压缩机控制
Objectives of Antisurge Control防喘振控制的目标 Major Challenges of Compressor Control压缩机控制要解决的主要问题
– – – – Maximize the Compressor Performance Map使压缩机的性能特性图最大化 Location of Surge Limit Line喘振线的位置 High Speed of Approaching Surge达到喘振的速度 Control Loop Considerations控制回路的考虑