高中数学必修五参考习题
高中数学(人教版)必修五第二章数列综合测试卷
高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。
试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。
(完整版)高中数学必修五综合测试题 含答案
.绝密★启用前高中数学必修五综合考试卷第I 卷(选择题)一、单选题1.数列的一个通项公式是( )0,23,45,67⋯A .B . a n =n -1n +1(n ∈N *)a n =n -12n +1(n ∈N *)C .D .a n =2(n -1)2n -1(n ∈N *)a n =2n2n +1(n ∈N *)2.不等式的解集是( )x -12-x ≥0A .B .C .D . [1,2](-∞,1]∪[2,+∞)[1,2)(-∞,1]∪(2,+∞)3.若变量满足 ,则的最小值是( )x,y {x +y ≥0x -y +1≥00≤x ≤1x -3y A .B .C .D . 4-5-314.在实数等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( )A . 8B . -8C . ±8D . 以上都不对5.己知数列为正项等比数列,且,则( ){a n }a 1a 3+2a 3a 5+a 5a 7=4a 2+a 6=A . 1B . 2C . 3D . 46.数列前项的和为( )11111,2,3,4,24816n A . B . C .D .2122nn n ++21122n n n +-++2122n n n +-+21122n n n +--+7.若的三边长成公差为的 等差数列,最大角的正弦值为ΔABC a,b,c 232的面积为( )A .B .C .D .1541534213435348.在△ABC 中,已知,则B 等于( )a =2,b =2,A =450A . 30°B . 60°C . 30°或150°D . 60°或120°9.下列命题中正确的是( )A . a >b ⇒ac 2>bc 2B . a >b ⇒a 2>b 2C . a >b ⇒a 3>b 3D . a 2>b 2⇒a >b.10.满足条件,的的个数是 ( )a =4,b =32,A =45∘A . 1个B . 2个C . 无数个D . 不存在11.已知函数满足:则应满足( )f(x)=ax 2-c -4≤f(1)≤-1,-1≤f(2)≤5.f(3)A .B .C .D .-7≤f(3)≤26-4≤f(3)≤15-1≤f(3)≤20-283≤f(3)≤35312.已知数列{a n }是公差为2的等差数列,且成等比数列,则为( )a 1,a 2,a 5a2A . -2B . -3C . 2D . 313.等差数列的前10项和,则等于(){a n }S 10=15a 4+a 7A . 3B . 6C . 9D . 1014.等差数列的前项和分别为,若,则的值为( ){a n },{b n }n S n ,T nS nT n=2n3n +1a 3b 3A .B .C .D . 3547581219第II 卷(非选择题)二、填空题15.已知为等差数列,且-2=-1,=0,则公差={a n }a 7a 4a3d 16.在中,,,面积为,则边长=_________.△ABC A =60∘b =13c 17.已知中,,, ,则面积为_________.ΔABC c =3a =1acosB =bcosA ΔABC 18.若数列的前n 项和,则的通项公式____________{a n }S n =23a n +13{a n }19.直线下方的平面区域用不等式表示为________________.x -4y +9=020.函数的最小值是 _____________.y =x +4x -1(x >1)21.已知,且,则的最小值是______.x ,y ∈R +4x +y =11x +1y三、解答题22.解一元二次不等式(1) (2)-x 2-2x +3>0x 2-3x +5>0.(1)求边上的中线的长;BC AD (2)求△的面积。
高中数学必修五测试题 高二文科数学(必修五)
2014—2015学年度第一学期期中考试高二文科数学试题(A )(必修五)一、选择题(每题5分,共10小题)1.设a 、b 、c 、d∈R,且a >b,c >d,则下列结论正确的是( ) A .a+c >b+dB .a-c >b-dC .ac >bdD .a d >b c211两数的等比中项是( ) A .2B .-2C .±2D .以上均不是3.若三角形三边长的比为5∶7∶8,则它的最大角和最小角的和是( ) A .90°B .120°C .135°D .150°4.数列{a n }中,2n a 2n 29n 3=-++,则此数列最大项的值是( )A .103B .11088C .11038D .1085.若△ABC 的周长等于20,面积是BC 边的长是 ( ) A .5B .6C .7D .86.在数列{a n }中,a 1=1,a n a n-1=a n-1+(-1)n(n≥2,n∈N *),则35a a 的值是( ) A .1516B .158C .34 D .387.在△ABC 中,角A ,B 均为锐角,且cosA >sinB ,则△ABC 的形状是( ) A .直角三角形 B .锐角三角形C .钝角三角形D .等腰三角形8.在等差数列{a n }中,2(a 1+a 4+a 7)+3(a 9+a 11)=24,则此数列的前13项之和等于( ) A .13B .26C .52D .1569.数列222222235721,,,,122334(1)n n n +⋅⋅⋅⨯⨯⨯+的前n 项的和是 ( )A . 211n-B .211n+C .211(1)n ++ D .211(1)n -+ 10.已知不等式(x + y )(1x + ay)≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8二、填空题(每题5分,共5小题) 11.数列{a n }的通项公式a n =1n n ++,则103-是此数列的第 项.12. 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sin B =________.13. 已知点(x,y )满足x 0y 0x y 1≥⎧⎪≥⎨⎪+≤⎩,则u=y-x 的取值范围是_______.14.如图,在四边形ABCD 中,已知AD⊥CD,AD =10,AB =14,∠BDA=60°,∠BCD=135°,则BC 的长为______. 15.在△ABC 中,给出下列结论:①若a 2>b 2+c 2,则△ABC 为钝角三角形; ②若a 2=b 2+c 2+bc,则角A 为60°; ③若a 2+b 2>c 2,则△ABC 为锐角三角形; ④若A∶B∶C=1∶2∶3,则a∶b∶c=1∶2∶3. 其中正确结论的序号为 . 三、解答题(共6小题,共75分)16.(12分)已知不等式ax 2-3x+6>4的解集为{x|x<1或x>b}. (1)求a,b .(2)解不等式ax 2-(ac+b )x+bc<0.17.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且b sin A=3a cos B.(1)求角B的大小;(2)若b=3,sin C=2sin A,求a,c的值.18.(12分)设数列{a n}的前n项和为S n=2a n-2n.(1)求a3,a4; (2)证明:{a n+1-2a n}是等比数列;(3)求{a n}的通项公式.19.(12分)设函数()cosfθθθ=+,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(1)若点P的坐标为12⎛⎝⎭,求f(θ)的值;(2)若点P(x,y)为平面区域Ω:1,1,1x yxy+≥⎧⎪≤⎨⎪≤⎩上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.20.(13分)某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的 利润=售价-供货价格,问:(1)每套丛书定价为100元时,书商能获得的总利润是多少万元? (2)每套丛书定价为多少元时,单套丛书的利润最大?21.(本小题满分14分)已知数列{}n a 的各项排成如图所示的三角形数阵,数阵中每一行的第一个数1247,,,,a a a a ⋅⋅⋅构成等差数列{}n b ,n S 是{}n b 的前n 项和,且1151,15b a S ===(1)若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知916a =,求50a 的值; (2)设122111n n n nT S S S ++=++⋅⋅⋅+,求n T .参考答案1.设a 、b 、c 、d∈R,且a >b,c >d,则下列结论正确的是( ) (A )a+c >b+d (B )a-c >b-d (C )ac >bd (D )a d >b c1.【解析】选A .由不等式的可加性可知a+c >b+d, 而当a=2,b=1,c=-2,d=-3时,B 不一定成立, C ,D 中a 、b 、c 、d 符号不定,不一定成立. 2.11两数的等比中项是( )A .2B .-2C .±2D .以上均不是2.【解析】设等比中项为x ,则x 2=1)1)=4.所以x=±2.故应选C .答案:C3.若三角形三边长的比为5∶7∶8,则它的最大角和最小角的和是( ) (A )90° (B )120° (C )135° (D )150°3.【解析】选B .设三边长为5x,7x,8x ,最大的角为C ,最小的角为A .由余弦定理得:()()()2225x 8x 7x 1cosB ,25x 8x2+-==⨯⨯所以B=60°,所以A+C=180°-60°=120°.4.数列{a n }中,2n a 2n 29n 3=-++,则此数列最大项的值是( )(A )103 (B )11088 (C )11038(D )108 4.【解析】选D .根据题意结合二次函数的性质可得:22n 229a 2n 29n 32(n n)322929292(n )3.48=-++=--+⨯=--++∴n=7时,a n =108为最大值.5.若△ABC 的周长等于20,面积是103,A=60°,则BC 边的长是 ( ) A .5B .6C .7D .85.解析:由1sin 2ABC S bc A ∆=得1103sin 602bc =︒,则bc=40.又a+b+c=20,所以b+c=20-a .由余弦定理得()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-, 所以()2220120a a =--,解得a=7.答案:C6.在数列{a n }中,a 1=1,a n a n-1=a n-1+(-1)n(n≥2,n∈N *),则35a a 的值是( ) (A )1516 (B )158 (C )34 (D )386.【解析】选C .当n=2时,a 2·a 1=a 1+(-1)2,∴a 2=2; 当n=3时,a 3a 2=a 2+(-1)3,∴a 3=12; 当n=4时,a 4a 3=a 3+(-1)4,∴a 4=3;当n=5时,()5354455a 23a a a 1a .3a 4=+-∴=∴=,, 7.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 7.解析:cos sin()sin ,,22A AB A B ππ=->-都是锐角,则,,222A B A B C πππ->+<>,选C .答案:C8.在等差数列{a n }中,2(a 1+a 4+a 7)+3(a 9+a 11)=24,则此数列的前13项之和等于( ) (A )13 (B )26 (C )52 (D )1568.【解析】选B .∵2(a 1+a 4+a 7)+3(a 9+a 11)=6a 4+6a 10=24,∴a 4+a 10=4.()()1134101313a a 13a a S 26.22++∴===9.数列222222235721,,,,122334(1)n n n +⋅⋅⋅⨯⨯⨯+的前n 项的和是 ( )A . 211n -B . 211n +C . 211(1)n ++D . 211(1)n -+9.解析:因为22222111,(1)(1)n n a n n n n +==-++所以数列的前n项和2222222221111111111.1223(1)1(1)(1)n S n n n n =-+-+⋅⋅⋅+-=-=-+++ 答案:D10.已知不等式(x + y )(1x + ay )≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A .2B .4C .6D .810.解析:不等式(x +y )(1ax y+)≥9对任意正实数x ,y 恒成立,则1y axa x y+++≥1a +≥24(舍去),所以正实数a 的最小值为4,选B . 答案:B11.数列{a n }的通项公式a n是此数列的第 项.解析:因为a n ,所以n=9. 答案:91 4,则sin B=________12.设△ABC的内角A,B,C的对边分别为a,b,c,且a=1,b=2,cos C=.12.15 4[解析] 由余弦定理,得c2=a2+b2-2ab cos C=1+4-2×1×2×14=4,解得c=2,所以b=c,B=C,所以sin B=sin C=1-cos2C=154.13.已知点(x,y)满足x0y0x+y1≥⎧⎪≥⎨⎪≤⎩,则u=y-x的取值范围是_______.13.【解析】作出可行域如图,作出y-x=0,由A(1,0),B (0,1),故过B时u最大,u max=1,过A点时u最小,u min=-1.答案:[-1,1]14.如图,在四边形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135°,则BC的长为______.14.【解析】在△ABD中,设BD=x,则BA2=BD2+AD2-2BD·AD·cos∠BDA,即142=x2+102-2·10x·cos60°,整理得x2-10x-96=0,解之得x1=16,x2=-6(舍去).由正弦定理得BC BDsin CDB sin BCD ∠∠=,∴BC=16sin135︒·sin30°=.答案:15.在△ABC中,给出下列结论:①若a2>b2+c2,则△ABC为钝角三角形;②若a2=b2+c2+bc,则角A为60°;③若a2+b2>c2,则△ABC为锐角三角形;④若A∶B∶C=1∶2∶3,则a∶b∶c=1∶2∶3.其中正确结论的序号为.解析:在①中,cos A=2222b c abc+-<0,所以A为钝角,所以△ABC为钝角三角形,故①正确;在②中,b2+c2-a2=-bc,所以cos A=2222b c abc+-=-2bcbc=-12,所以A=120°,故②不正确;在③中,cos C=2222a b cab+->0,故C为锐角,但△ABC不一定是锐角三角形,故③不正确;在④中A∶B∶C=1∶2∶3,故A=30°,B=60°,C=90°,所以确.答案:①16.已知不等式ax2-3x+6>4的解集为{x|x<1或x>b}.(1)求a,b.(2)解不等式ax2-(ac+b)x+bc<0.【解】(1)因为不等式ax2-3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2-3x+2=0的两个实数根,且b>1.由根与系数的关系得31,21,b a b a ⎧+=⎪⎪⎨⎪⨯=⎪⎩解得1,2.a b =⎧⎨=⎩ (2)解不等式ax 2-(ac+b )x+bc<0,即x 2-(2+c )x+2c<0,即(x-2)(x-c )<0,所以①当c>2时,不等式(x-2)(x-c )<0的解集为{x|2<x<c};②当c<2时,不等式(x-2)(x-c )<0的解集为{x|c<x<2};③当c=2时,不等式(x-2)(x-c )<0的解集为∅.17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.17.解:(1)由b sin A =3a cos B 及正弦定理a sin A =b sin B,得 sin B =3cos B ,所以tan B =3,所以B =π3. (2)由sin C =2sin A 及a sin A =csin C,得c =2a . 由b =3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac ,将c =2a 代入得, a =3,c =23.18.(12分)设数列{a n }的前n 项和为S n =2a n -2n.(1)求a 3,a 4;(2)证明:{a n+1-2a n }是等比数列;(3)求{a n }的通项公式.(1)解:因为a 1=S 1,2a 1=S 1+2,所以a 1=2,S 1=2,由2a n =S n +2n 知:2a n+1=S n+1+2n+1=a n+1+S n +2n+1,得a n+1=S n+2n+1, ①所以a 2=S 1+22=2+22=6,S 2=8,a 3=S 2+23=8+23=16,S 3=24,a 4=S 3+24=40.(2)证明:由题设和①式得:a n+1-2a n =(S n +2n+1)-(S n +2n )=2n+1-2n =2n ,所以{a n+1-2a n }是首项为a 2-2a 1=2,公比为2的等比数列.(3)解:a n =(a n -2a n-1)+2(a n-1-2a n-2)+…+2n-2(a 2-2a 1)+2n-1a 1=(n+1)·2n-1.19. (12分)设函数()3sin cos f θθθ=+,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P (x,y ),且0≤θ≤π.(1)若点P 的坐标为13,22⎛⎫⎪ ⎪⎝⎭,求f (θ)的值;(2)若点P (x,y )为平面区域Ω: 1,1,1x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,试确定角θ的取值范围,并求函数f (θ)的最小值和最大值.解:(1)由点P 的坐标和三角函数的定义可得3sin ,21cos ,2θθ⎧=⎪⎪⎨⎪=⎪⎩所以31()3sin cos 3 2.2f θθθ=+=⨯+= (2)作出平面区域(即三角形区域ABC )如图,其中A (1,0),B (1,1),C (0,1),则0≤θ≤2π.又()cos 2sin .6f πθθθθ⎛⎫=+=+⎪⎝⎭. 故当62ππθ+=,即3πθ=时, max ()2f θ=; 当66ππθ+=,即θ=0时, min ()1f θ=.20.某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问:(1)每套丛书定价为100元时,书商能获得的总利润是多少万元?(2)每套丛书定价为多少元时,单套丛书的利润最大?20. 【解析】(1)每套丛书定价为100元时,销售量为15-0.1×100=5(万套),此时每套供货价格为30+105=32(元),故书商所获得的总利润为5×(100-32) =340(万元). (2)每套丛书售价定为x 元时,由150.1x 0x 0-⎧⎨⎩>>,得0<x <150. 依题意,单套丛书利润 P=x-(30+10150.1x -)=x-100150x--30, ∴P=-[(150-x )+100150x -]+120, ∵0<x <150,∴150-x >0,由(150-x )+100150x-≥)150x -=2×10=20, 当且仅当150-x =100150x-,即x=140时等号成立,此时P max =-20+120=100.答:(1)当每套丛书售价定为100元时,书商能获得总利润为340万元;(2)每套丛书售价定为140元时,单套丛书的利润取得最大值100元.21.(本小题满分14分)已知数列{}n a 的各项排成如图所示的三角形数阵,数阵中每一行的第一个数1247,,,,a a a a ⋅⋅⋅构成等差数列{}n b ,n S 是{}n b 的前n 项和,且1151,15b a S ===( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知916a =,求50a 的值;(Ⅱ)设122111n n n n T S S S ++=++⋅⋅⋅+,求n T . 20.(本小题满分12分)解:(Ⅰ){}n b 为等差数列,设公差为155,1,15,51015,1d b S S d d ==∴=+== 1(1)1.n b n n ∴=+-⨯= …………………………………………………………………………2分 设从第3行起,每行的公比都是q ,且0q >,2294,416,2,a b q q q ===……………………4分 1+2+3+…+9=45,故50a 是数阵中第10行第5个数,而445010102160.a b q ==⨯=……………………………………………………………………7分 (Ⅱ)12n S =++…(1),2n n n ++=…………………………………………………………8分 1211n n n T S S ++∴=++…21n S + 22(1)(2)(2)(3)n n n n =++++++…22(21)n n ++ 11112(1223n n n n =-+-+++++…11)221n n +-+ 1122().121(1)(21)n n n n n =-=++++友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。
人教版高中数学必修五数列知识点及习题详解
人教版数学高中必修5数列习题及知识点第二章 数列1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ).A .667B .668C .669D .6702.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ).A .33B .72C .84D .1893.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ).A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 54.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则 |m -n |等于( ).A .1B .43C .21D . 83 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ).A .81B .120C .168D .1926.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ).A .4 005B .4 006C .4 007D .4 0087.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ).A .-4B .-6C .-8D . -108.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S =( ). A .1 B .-1 C .2 D .21 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则212b a a 的值是( ). A .21 B .-21 C .-21或21 D .41 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).A .38B .20C .10D .9二、填空题11.设f (x )=221+x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为 .12.已知等比数列{a n }中,(1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6= .(2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6= .(3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= .13.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 . 14.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项之和为 .15.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .16.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)= ;当n >4时,f (n )= .三、解答题17.(1)已知数列{a n }的前n 项和S n =3n 2-2n ,求证数列{a n }成等差数列.(2)已知a 1,b 1,c 1成等差数列,求证a c b +,b a c +,cb a +也成等差数列. 18.设{a n }是公比为 q 的等比数列,且a 1,a 3,a 2成等差数列.(1)求q 的值;(2)设{b n }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的大小,并说明理由.19.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n n 2+S n (n =1,2,3…). 求证:数列{nS n }是等比数列. 20.已知数列{a n }是首项为a 且公比不等于1的等比数列,S n 为其前n 项和,a 1,2a 7,3a 4成等差数列,求证:12S 3,S 6,S 12-S 6成等比数列.第二章 数列参考答案一、选择题1.C解析:由题设,代入通项公式a n =a 1+(n -1)d ,即2 005=1+3(n -1),∴n =699.2.C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{a n }的公比为q (q >0),由题意得a 1+a 2+a 3=21,即a 1(1+q +q 2)=21,又a 1=3,∴1+q +q 2=7.解得q =2或q =-3(不合题意,舍去),∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84.3.B .解析:由a 1+a 8=a 4+a 5,∴排除C .又a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8.4.C解析:解法1:设a 1=41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,而方程x 2-2x +m =0中两根之和为2,x 2-2x +n =0中两根之和也为2,∴a 1+a 2+a 3+a 4=1+6d =4,∴d =21,a 1=41,a 4=47是一个方程的两个根,a 1=43,a 3=45是另一个方程的两个根. ∴167,1615分别为m 或n , ∴|m -n |=21,故选C . 解法2:设方程的四个根为x 1,x 2,x 3,x 4,且x 1+x 2=x 3+x 4=2,x 1·x 2=m ,x 3·x 4=n .由等差数列的性质:若γ+s =p +q ,则a γ+a s =a p +a q ,若设x 1为第一项,x 2必为第四项,则x 2=47,于是可得等差数列为41,43,45,47, ∴m =167,n =1615, ∴|m -n |=21.5.B解析:∵a 2=9,a 5=243,25a a =q 3=9243=27, ∴q =3,a 1q =9,a 1=3,∴S 4=3-13-35=2240=120. 6.B解析:解法1:由a 2 003+a 2 004>0,a 2 003·a 2 004<0,知a 2 003和a 2 004两项中有一正数一负数,又a 1>0,则公差为负数,否则各项总为正数,故a 2 003>a 2 004,即a 2 003>0,a 2 004<0.∴S 4 006=2+006400641)(a a =2+006400420032)(a a >0, ∴S 4 007=20074·(a 1+a 4 007)=20074·2a 2 004<0, 故4 006为S n >0的最大自然数. 选B .解法2:由a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,同解法1的分析得a 2 003>0,a 2 004<0,∴S 2 003为S n 中的最大值.∵S n 是关于n 的二次函数,如草图所示,∴2 003到对称轴的距离比2 004到对称轴的距离小,∴20074在对称轴的右侧. 根据已知条件及图象的对称性可得4 006在图象中右侧零点B 的左侧,4 007,4 008都在其右侧,S n >0的最大自然数是4 006.7.B解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6,又由a 1,a 3,a 4成等比数列,∴(a 1+4)2=a 1(a 1+6),解得a 1=-8,∴a 2=-8+2=-6.8.A(第6题)解析:∵59S S =2)(52)(95191a a a a ++=3559a a ⋅⋅=59·95=1,∴选A . 9.A解析:设d 和q 分别为公差和公比,则-4=-1+3d 且-4=(-1)q 4,∴d =-1,q 2=2, ∴212b a a -=2q d -=21. 10.C解析:∵{a n }为等差数列,∴2n a =a n -1+a n +1,∴2n a =2a n ,又a n ≠0,∴a n =2,{a n }为常数数列,而a n =1212--n S n ,即2n -1=238=19,∴n =10.二、填空题11.23.解析:∵f (x )=221+x , ∴f (1-x )=2211+-x =x x 2222⋅+=xx 22221+, ∴f (x )+f (1-x )=x 221++x x 22221+⋅=x x 222211+⋅+=x x 22)22(21++=22. 设S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6),则S =f (6)+f (5)+…+f (0)+…+f (-4)+f (-5),∴2S =[f (6)+f (-5)]+[f (5)+f (-4)]+…+[f (-5)+f (6)]=62,∴S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=32.12.(1)32;(2)4;(3)32.解析:(1)由a 3·a 5=24a ,得a 4=2,∴a 2·a 3·a 4·a 5·a 6=54a =32.(2)9136)(324222121=⇒⎩⎨⎧=+=+q q a a a a , ∴a 5+a 6=(a 1+a 2)q 4=4.(3)2=+=+++=2=+++=4444821843214q qS S a a a S a a a a S ⇒⎪⎩⎪⎨⎧⋅⋅⋅, ∴a 17+a 18+a 19+a 20=S 4q 16=32.13.216. 解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与38,227同号,由等比中项的中间数为22738⋅=6,∴插入的三个数之积为38×227×6=216. 14.26.解析:∵a 3+a 5=2a 4,a 7+a 13=2a 10,∴6(a 4+a 10)=24,a 4+a 10=4,∴S 13=2+13131)(a a =2+13104)(a a =2413⨯=26. 15.-49.解析:∵d =a 6-a 5=-5,∴a 4+a 5+…+a 10 =2+7104)(a a =25++-755)(d a d a =7(a 5+2d )=-49.16.5,21(n +1)(n -2). 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f (k )=f (k -1)+(k -1).由f (3)=2,f (4)=f (3)+3=2+3=5,f (5)=f (4)+4=2+3+4=9,……f (n )=f (n -1)+(n -1),相加得f (n )=2+3+4+…+(n -1)=21(n +1)(n -2). 三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数. 证明:(1)n =1时,a 1=S 1=3-2=1,当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5,n =1时,亦满足,∴a n =6n -5(n ∈N*).首项a 1=1,a n -a n -1=6n -5-[6(n -1)-5]=6(常数)(n ∈N*),∴数列{a n }成等差数列且a 1=1,公差为6.(2)∵a 1,b 1,c 1成等差数列, ∴b 2=a 1+c1化简得2ac =b (a +c ). a c b ++c b a +=ac ab a c bc +++22=ac c a c a b 22+++)(=ac c a 2+)(=2++2)()(c a b c a =2·bc a +, ∴a c b +,b a c +,cb a +也成等差数列. 18.解:(1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q ,∵a 1≠0,∴2q 2-q -1=0,∴q =1或-21. (2)若q =1,则S n =2n +21-)(n n =23+2n n . 当n ≥2时,S n -b n =S n -1=22+1-))((n n >0,故S n >b n . 若q =-21,则S n =2n +21-)(n n (-21)=49+-2n n . 当n ≥2时,S n -b n =S n -1=4-11-)0)((n n , 故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n =10时,S n =b n ;当n ≥11时,S n <b n .19.证明:∵a n +1=S n +1-S n ,a n +1=nn 2+S n , ∴(n +2)S n =n (S n +1-S n ),整理得nS n +1=2(n +1) S n , 所以1+1+n S n =n S n 2. 故{nS n }是以2为公比的等比数列. 20.证明:由a 1,2a 7,3a 4成等差数列,得4a 7=a 1+3a 4,即4 a 1q 6=a 1+3a 1q 3, 变形得(4q 3+1)(q 3-1)=0,∴q 3=-41或q 3=1(舍). 由3612S S =qq a q q a ----1)1(121)1(3161=1213q +=161; 6612S S S -=612S S -1=qq a q q a ----1)1(1)1(61121-1=1+q 6-1=161; 得3612S S =6612S S S -. ∴12S 3,S 6,S 12-S 6成等比数列.数列基础知识点和方法归纳1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+-等差中项:x A y ,,成等差数列2A x y ⇔=+前n 项和()()11122n n a a n n n S na d +-==+ 性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为a d a a d -+,,(4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --= (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值. 当100a d <>,,由100n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 nd S S =-奇偶,1+=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有 )()12(12为中间项n n n a a n S -=-,n a S S =-偶奇,1-=n n S S 偶奇. 2. 等比数列的定义与性质 定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=. 等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(要注意!) 性质:{}n a 是等比数列(1)若m n p q +=+,则mn p q a a a a =·· (2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q .注意:由n S 求n a 时应注意什么?1n =时,11a S =;2n ≥时,1n n n a S S -=-.。
人教A版高中数学必修五必修五 综合测试题 (第三套).docx
必修五 综合测试题 (第三套)一.选择题:1. 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A . 15B . 30 C. 31 D. 642. 若全集U=R,集合M ={}24x x >,S =301x xx ⎧-⎫>⎨⎬+⎩⎭,则()U M S I ð=( ) A.{2}x x <- B. {23}x x x <-≥或 C. {3}x x ≥ D. {23}x x -≤<3. 若1+2+22+ (2)>128,n ÎN*,则n 的最小值为( ) A. 6 B. 7 C. 8 D. 9 4. 在ABC V 中,60B =o ,2b ac =,则ABC V 一定是( )A 、等腰三角形B 、等边三角形C 、锐角三角形D 、钝角三角形 5. 若不等式022>++bx ax的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是( )A.-10B.-14C. 10D. 14 6. 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是( )A .14B .16C .18D .207.已知12=+y x ,则y x 42+的最小值为( ) A .8 B .6 C .22 D .238. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是( ) A.42n +B.42n -C.24n +D.33n +9. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有( )A .3,12min max ==z zB .,12max=z z 无最小值C .z z ,3min=无最大值 D .z 既无最大值,也无最小值10.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则实数a 的取值范围是( ) A .11a -<< B .02a << C .1322a -<< D .3122a -<< 二填空题: 11. 在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a =______第1个 第2个 第3个12.在⊿ABC 中,5:4:21sin :sin :sin=C B A ,则角A =13.某校要建造一个容积为83m ,深为2m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为 元。
高中数学必修五三角函数知识点+练习题含答案解析(很详细)
高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。
2020年高中数学北师大版必修五达标练习:第1章 §4 数列在日常经济生活中的应用 Word版含解析.doc
[A 基础达标]1.某工厂总产值月平均增长率为p ,则年平均增长率为( ) A .p B .12p C .(1+p )12D .(1+p )12-1解析:选D.设原有总产值为a ,年平均增长率为r ,则a (1+p )12=a (1+r ),解得r =(1+p )12-1,故选D.2.某种产品计划每年降低成本q %,若三年后的成本是a 元,则现在的成本是( ) A .a 3q % B .a ·(q %)3 C .a (1-q %)3D .a(1-q %)3解析:选D.设现在的成本为x 元,则x (1-q %)3=a ,所以x =a(1-q %)3,故选D.3.某工厂2012年年底制订生产计划,要使工厂的总产值到2020年年底在原有基础上翻两番,则总产值年平均增长率为( ) A .214-1 B .215-1 C .314-1D .315-1解析:选A.设2012年年底总产值为a ,年平均增长率为x ,则a (1+x )8=4a ,得x =214-1,故选A.4.某企业2015年12月份产值是这年1月份产值的p 倍,则该企业2015年度的产值月平均增长率为( ) A.12p B .12p -1 C.11p -1D .11p解析:选C.设2015年1月份产值为a ,则12月份的产值为pa ,假设月平均增长率为r ,则a (1+r )11=pa ,所以r =11p -1.故选C.5.某人为了观看2014世界杯,从2007年起,每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并约定每年到期存款均自动转为新的一年定期,到2014年将所有的存款及利息全部取回,则可取回的钱的总数(元)为( ) A .a (1+p )7 B .a (1+p )8 C.ap[(1+p )7-(1+p )] D.ap[(1+p )8-(1+p )]解析:选D.2007年存入的a 元到2014年所得的本息和为a (1+p )7,2008年存入的a 元到2014年所得的本息和为a (1+p )6,依次类推,则2013年存入的a 元到2014年的本息和为a (1+p ),每年所得的本息和构成一个以a (1+p )为首项,1+p 为公比的等比数列,则到2014年取回的总额为a (1+p )+a (1+p )2+…+a (1+p )7=a (1+p )[1-(1+p )7]1-(1+p )=ap [(1+p )8-(1+p )].6.小王每月除去所有日常开支,大约结余a 元.小王决定采用零存整取的方式把余钱积蓄起来,每月初存入银行a 元,存期1年(存12次),到期取出本金和利息.假设一年期零存整取的月利率为r ,每期存款按单利计息.那么,小王存款到期利息为________元. 解析:由题意知,小王存款到期利息为12ar +11ar +10ar +…+2ar +ar =12(12+1)2ar =78ar . 答案:78ar7.某人买了一辆价值10万元的新车,专家预测这种车每年按10%的速度折旧,n 年后这辆车的价值为a n 元,则a n =________,若他打算用满4年时卖掉这辆车,他大约能得到________元.解析:n 年后这辆车的价值构成等比数列{a n },其中,a 1=100 000×(1-10%),q =1-10%,所以a n =100 000×(1-10%)n ,所以a 4=100 000×(1-10%)4=65 610(元). 答案:100 000×(1-10%)n 65 6108.有这样一首诗:“有个学生资性好,一部《孟子》三日了,每日添增一倍多,问君每日读多少?”(注:《孟子》全书约34 685字,“一倍多”指一倍),由此诗知该君第二日读了________字.解析:设第一日读的字数为a ,由“每日添增一倍多”得此数列是以a 为首项,公比为2的等比数列,可求得三日共读的字数为a (1-23)1-2=7a =34 685,解得a =4 955,则2a =9 910,即该君第二日读的字数为9 910. 答案:9 9109.某银行设立了教育助学贷款,其中规定一年期以上贷款月均等额还本付息(利息按月以复利计算).如果贷款10 000元,两年还清,月利率为0.457 5%,那么每月应还多少钱呢? 解:贷款10 000元两年到期时本金与利息之和为:10 000×(1+0.457 5%)24 =10 000×1.004 57524(元). 设每月还x 元,则到期时总共还 x +1.004 575x +…+1.004 57523x =x ·1-1.004 575241-1.004 575.于是x ·1-1.004 575241-1.004 575=10 000×1.004 57524. 所以x ≈440.91(元). 即每月应还440.91元.10.甲、乙两超市同时开业,第一年的全年销售额为a 万元,由于经营方式不同,甲超市前n 年的总销售额为a 2(n 2-n +2)万元,乙超市第n 年的销售额比前一年销售额多a ⎝⎛⎭⎫23n -1万元.(1)求甲、乙两超市第n 年销售额的表达式;(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年? 解:(1)设甲、乙两超市第n 年的销售额分别为a n ,b n .则有a 1=a ,当n ≥2时, a n =a 2(n 2-n +2)-a2[(n -1)2-(n -1)+2]=(n -1)a ,所以a n =⎩⎪⎨⎪⎧a ,n =1,(n -1)a ,n ≥2.b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =⎣⎡⎦⎤3-2⎝⎛⎭⎫23n -1a (n ∈N +).(2)易知b n <3a ,所以乙超市将被甲超市收购, 由b n <12a n ,得⎣⎡⎦⎤3-2⎝⎛⎭⎫23n -1a <12(n -1)a .所以n +4⎝⎛⎭⎫23n -1>7,所以n ≥7,即第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.[B 能力提升]11.某商场今年销售计算机5 000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约多少年可以使总销售量达到30 000台?(结果保留到个位)(参考数据:lg 1.1≈0.041,lg 1.6≈0.204)( ) A .3年 B .4年 C .5年D .6年解析:选C.设大约n 年可使总销售量达到30 000台,由题意知:每年销售量构成一个等比数列,首项为a 1=5 000台,公比q =1.1,S n =30 000,所以由30 000=5 000(1-1.1n )1-1.1⇒1.1n=1.6⇒n =lg 1.6lg 1.1≈5,故选C.12.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x 的值等于________.解析:由已知(c -a )是(b -c )和(b -a )的等比中项,即(c -a )2=(b -c )(b -a ),把c =a +x (b -a )代入上式,得x 2(b -a )2=[b -a -x (b -a )](b -a ),即x 2(b -a )2=(1-x )(b -a )2,因为b >a ,b -a ≠0,所以x 2=1-x ,即x 2+x -1=0,解得x =-1±52,因为0<x <1,所以最佳乐观系数x 的值等于 -1+52.答案: -1+5213.祖国大陆允许台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作试验区和台湾农民创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务,某台商到大陆一创业园投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元,设f (n )表示前n 年的纯收入.求从第几年开始获取纯利润?(f (n )=前n 年的总收入-前n 年的总支出-投资额) 解:由题意,知每年的经费是以12为首项,4为公差的等差数列.设纯利润与年数的关系为f (n ),则f (n )=50n -⎣⎡⎦⎤12n +n (n -1)2×4-72=-2n 2+40n -72.获取纯利润就是要求f (n )>0,故有-2n 2+40n -72>0,解得2<n <18. 又n ∈N +,知从第三年开始获利.14.(选做题)某林场为了保护生态环境,制定了植树造林的两个五年计划,第一年植树16a 亩,以后每年植树面积都比上一年增加50%,但从第六年开始,每年植树面积都比上一年减少a 亩.(1)求该林场第六年植树的面积;(2)设前n (1≤n ≤10且n ∈N +)年林场植树的总面积为S n 亩,求S n 的表达式.解:(1)该林场前五年的植树面积分别为16a ,24a ,36a ,54a ,81a .所以该林场第六年植树面积为80a 亩.(2)设第n 年林场植树的面积为a n 亩, 则a n =⎩⎪⎨⎪⎧⎝⎛⎭⎫32n -1×16a ,1≤n ≤5,n ∈N +,(86-n )a ,6≤n ≤10,n ∈N +.所以当1≤n ≤5时,S n =16a +24a +…+⎝⎛⎭⎫32n -1×16a=16a ⎣⎡⎦⎤1-⎝⎛⎭⎫32n1-32=32a ⎣⎡⎦⎤⎝⎛⎭⎫32n-1.当6≤n ≤10时,S n =16a +24a +36a +54a +81a +80a +…+(86-n )a =211a +80a +…+(86-n )a =211a +[80a +(86-n )a ](n -5)2=211a +(166a -na )(n -5)2.所以所求S n 的表达式为S n =⎩⎨⎧⎣⎡⎦⎤⎝⎛⎭⎫32n-1×32a ,1≤n ≤5,n ∈N +,211a +(166a -na )(n -5)2,6≤n ≤10,n ∈N +.。
高中数学必修五同步练习题库:基本不等式(选择题:较难)
基本不等式(选择题:较难)1、若正数满足,且的最小值为18,则的值为()A.1 B.2 C.4 D.92、,动直线过定点A,动直线过定点,若与交于点(异于点),则的最大值为A. B. C. D.3、若函数在定义域上单调递增,则实数的取值范围为()A. B. C. D.4、若,,,则的最小值是A. B. C. D.5、如右图所示,已知点是的重心,过点作直线与两边分别交于两点,且,则的最小值为()A.2 B. C. D.6、若,,,则的最小值是A. B. C. D.7、已知实数满足,则的最大值为()A.1 B.2 C.3 D.48、如图,已知抛物线的焦点为,直线过且依次交抛物线及圆于点四点,则的最小值为()A. B. C. D.9、已知,则的最小值为()A. B. C. D.10、已知等差数列的公差,且成等比数列,若,为数列的前项和,则的最小值为()A.3 B.4 C. D.11、半圆的直径AB=4, O为圆心,C是半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值是()A.2 B.0 C. D.12、抛物线的焦点为,已知点为抛物线上的两个动点,且满足,过弦的中点作准线的垂线,垂足为,则的最大值为()A.1 B. C.2 D.13、抛物线的焦点为F,准线为,是抛物线上的两个动点,且满足.设线段的中点在上的投影为,则的最大值是()A. B. C. D.14、已知,且满足,那么的最小值为()A.3﹣ B.3+2 C.3+ D.415、曲线()在点处的切线的斜率为2,则的最小值是()A.10 B.9 C.8 D.16、函数的值域为()A. B. C. D.17、,动直线过定点A,动直线过定点,若与交于点 (异于点),则的最大值为A. B. C. D.18、抛物线的焦点为,设,是抛物线上的两个动点,,则的最大值为()A. B. C. D.19、已知等差数列的公差,且,,成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.20、已知等差数列的等差,且成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.21、定义:分子为1且分母为正整数的分数称为单位分数,我们可以把1拆为若干个不同的单位分数之和,如:,,,依此类推,可得:,其中,设,,则的最小值为()A. B. C. D.22、设且,则的最小值是A. B. C. D.23、已知,则的最小值是A.6 B.5 C. D.24、设正实数满足.则当取得最大值时,的最大值为() A.0 B. C.1 D.325、已知函数,若,,使得,则实数的取值范围是()A.(-∞,1] B.[1,+∞) C.(-∞,2] D.[2,+∞)26、已知等差数列的等差,且成等比数列,若,为数列的前项和,则的最小值为()A. B. C. D.27、已知偶函数是定义在上的可导函数,其导函数为.当时,恒成立.设,记,,,则,,的大小关系为()A. B. C. D.28、已知函数,则不等式成立的概率是()A. B. C. D.29、在中,角所对的边分别为,若,则当角取得最大值时,的周长为()A. B. C. D.30、锐角三角形ABC的三边长成等差数列,且,则实数的取值范围是()A. B. C. D.(6,7]31、若,,,则的最小值为()A. B. C. D.32、在平面直角坐标系中,已知抛物线的焦点为是抛物线上位于第一象限内的任意一点,是线段上的点,且满足,则直线的斜率的最大值为()A. B. C. D.33、已知函数,若不等式对任意实数恒成立,则实数的取值范围是()A. B. C. D.34、正项等比数列{a n}中,存在两项a m,a n(m,n)使得a m a n=16a12,且a7=a6+2a5,则+的最小值为()A.5 B.6 C.7 D.835、已知圆的半径为1,为该圆上四个点,且,则的面积最大值为()A.2 B.1 C. D.36、长方体中,,,,点是平面上的点,且满足,当长方体的体积最大时,线段的最小值是( )A. B. C.8 D.37、若直线过点,则的最小值等于()A.6 B.3 C.7 D.438、若直线和直线相交于一点,将直线绕该点依逆时针旋转到与第一次重合时所转的角为,则角就叫做到的角,,其中分别是的斜率,已知双曲线:的右焦点为,是右顶点,是直线上的一点,是双曲线的离心率,,则的最大值为()A. B. C. D.39、中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为()A. B. C. D.40、若正数满足则的最小值是()A. B. C. D.41、已知函数,对任意的,恒成立,则的最小值为()A.3 B.2 C.1 D.042、已知为双曲线上不同三点,且满足(为坐标原点),直线的斜率记为,则的最小值为()A.8 B.4 C.2 D.143、中,为的中点,点在线段(不含端点)上,且满足,则的最小值为()A. B. C.6 D.844、圆:和圆:有三条公切线,若,,且,则的最小值为()A.1 B.3 C.4 D.545、在中,角,,的对边分别为,,,且,则角的最大值为()A. B. C. D.46、抛物线的焦点为,设,是抛物线上的两个动点,,则的最大值为()A. B. C. D.47、抛物线的焦点为,设,是抛物线上的两个动点,,则的最大值为()A. B. C. D.48、设正实数,满足,,不等式恒成立,则的最大值为()A. B. C. D.49、定义:分子为1且分母为正整数的分数称为单位分数,我们可以把1拆为若干个不同的单位分数之和,如:,,,依此类推,可得:,其中,设,,则的最小值为()A. B. C. D.50、已知函数(且)的图象恒过定点,若点在直线上,其中,则的最小值为()A.3 B.C.4 D.851、若正实数满足,且不等式恒成立,则实数的取值范围是()A. B.C. D.52、已知,二次三项式对于一切实数恒成立,又,使成立,则的最小值为()A.1 B. C.2 D.53、已知,二次三项式对于一切实数恒成立,又,使成立,则的最小值为()A.1 B. C.2 D.54、设均为正实数,且,则的最小值为()A.4 B. C.9 D.1655、已知是内的一点,且,若的面积分别为,则的最小值为()A. B. C. D.56、已知直线ax+by=1(其中a,b为非零实数),与圆x+y2=1相交于A,B两点,O为坐标原点,且△AOB为直角三角形,则+的最小值为()A.4 B.2 C.5 D.857、设,则的最小值为()A.2 B.3 C.4 D.58、设,对于使成立的所有常数M中,我们把M的最小值1叫做的上确界.若,且,则的上确界为()A. B. C. D.59、已知x>0,由不等式x+≥2=2,x+=≥3=3,…,可以推出结论:x+≥n+1(n∈N*),则a=().A.2n B.3n C.n2 D.n n60、已知关于的不等式的解集是,且,则的最小值是()A. B.2 C. D.161、下列推理正确的是()A.如果不买彩票,那么就不能中奖.因为你买了彩票,所以你一定中奖B.因为a>b,a>c,所以a-b>a-cC.若a>0,b>0,则+≥D.若a>0,b<0,则62、对任意正数x,y不等式恒成立,则实数的最小值是 ()A.1 B.2 C.3 D.463、已知,且,成等比数列,则xy( )A.有最大值e B.有最大值 C.有最小值e D.有最小值64、对于函数y=f(x)(x∈I),y=g(x)(x∈I),若对任意x∈I,存在x0使得f(x)≥f(x0),g(x)≥g(x0)且f(x0)=g(x0),则称f(x),g(x)为“兄弟函数”,已知f(x)=x2+px+q,g(x)=是定义在区间上的“兄弟函数”,那么函数f(x)在区间上的最大值为()A. B.2 C.4 D.65、已知f(x)=log2(x-2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值为()A.5 B.7 C.8 D.966、设第一象限内的点满足约束条件,若目标函数的最大值为40,则的最小值为()A. B. C.1 D.467、定义域为的函数的图象的两个端点为,是图象上任意一点,其中,向量,若不等式恒成立,则称函数在上“阶线性近似”. 若函数上“阶线性近似”,则实数的取值范围为( ) A. B. C. D.68、不等式x2+2x<+对任意a,b∈(0,+∞)恒成立,则实数x的取值范围是( )A.(-2,0) B.(-∞,-2)∪(0,+∞)C.(-4,2) D.(-∞,-4)∪(2,+∞)69、已知矩形ABCD的面积为8,当矩形ABCD周长最小时,沿对角线AC把△ACD折起,则三棱锥D-ABC外接的球表面积等于().A.8π B.16π C.48π D.不确定的实数70、在直角坐标系中,定义两点之间的“直角距离”为,现给出四个命题:①已知,则为定值;②用表示两点间的“直线距离”,那么;③已知为直线上任一点,为坐标原点,则的最小值为;④已知三点不共线,则必有.A.②③ B.①④ C.①② D.①②④参考答案1、B2、B3、D4、B5、C6、B7、B8、B9、C10、B11、D12、D13、D14、B15、B16、C17、B18、D19、B20、B21、D22、A23、C24、C25、A26、B27、B28、B29、C30、C31、A32、D33、D34、B35、B36、B37、A38、C39、B40、D41、A42、B43、D44、A45、A46、D47、D48、C49、D50、D51、B52、D53、D54、D55、B56、A57、C58、D59、D.60、A61、D62、A63、C64、B65、B66、B67、C68、C69、B70、C【解析】1、由题意,应用基本不等式可得令则方程,所以是方程的根,所以选B.点睛:(1)应用基本不等式构造关于的不等式.(2)换元法将不等式转化为一元二次不等式.(3)结合二次函数图像知是一元二次方程的根.2、由题意可得:A(1,0),B(2,3),且两直线斜率之积等于﹣1,∴直线x+my﹣1=0和直线mx﹣y﹣2m+3=0垂直,则|PA|2+|PB|2=|AB|2=10≥.即.故选B.点睛:含参的动直线一般都隐含着过定点的条件,动直线,动直线l2分别过A(1,0),B(2,3),同时两条动直线保持垂直,从而易得|PA|2+|PB|2=|AB|2=10,然后借助重要不等式,得到结果.3、函数的定义域为,,由已知有,所以对于恒成立,恒成立,所以,而,当且仅当时等号成立,所以,选D.点睛:本题主要考查用导数研究函数的单调性,基本不等式等,属于中档题。
高中数学必修五同步练习题库:一元二次不等式及其解法(选择题:一般)
一元二次不等式及其解法(选择题:一般)1、不等式组的解集是()A. B. C. D.或2、关于的不等式的解集为,且,则()A. B. C. D.3、已知不等式的解集为,则不等式的解集为()A. B.C. D.4、若不等式对一切恒成立,则实数取值的集合为()A. B. C. D.5、已知不等式的解集为,则不等式的解集为( ) A. B.C. D.6、已知集合则 ( )A. B. C. D.7、关于的不等式()的解集为,且,则()A. B. C. D.8、已知不等式对任意,恒成立,则实数的取值范围是()A. B. C. D.9、不等式对于恒成立,则的取值范围是()A. B. C. D.10、对于任意实数,不等式恒成立,则实数的取值范围是( ) A. B. C. D.11、对于任意实数,不等式恒成立,则实数的取值范围是( ) A. B.(-∞,2] C. D.12、若关于的不等式的解集为,则实数的值是()A.1 B.2 C.3 D.413、若二次不等式在区间[2,5]上有解,则的取值范围是A. B. C. D.14、不等式的解集是()A. B.C. D.15、不等式的解为()A. B. C. D.16、已知不等式的解集是,则的值为()A. B. C. D.17、不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是( )A. B. C. D.18、关于的不等式的解集为,则不等式的解为()A. B. C. D.19、若不等式的解集为,则的值为 ( )A. B. C. D.20、不等式的解集是()A. B. C. D.21、对于任意实数x,不等式( a-2)x2-2(a-2)x-4<0恒成立,则实数a的取值范围是( )A.(-∞,2) B.(-∞,2]C.(-2,2) D.(-2,2]22、若不等式的解集为,则的值为 ( )A. B. C. D.23、设集合P={m|-1<m≤0,Q={m∈R|mx2+4mx-4<0对任意实数x成立,则下列关系中成立的是()A.P Q B.Q P C.P=Q D.P∩Q=φ24、若实数,且,满足,,则代数式的值为()A.-20 B.2 C.2或-20 D.2或2025、若实数,且满足,,则代数式的值为()A.-20 B.2 C.2或-20 D.2或2026、已知关于的不等式对任意恒成立,则有( )A. B. C. D.27、若为的解集,则的解集为()A.或 B.C. D.或28、若对任意实数x∈R,不等式恒成立,则实数m的取值范围是()A.[2,6] B.[-6,-2] C.(2,6) D.(-6,-2)29、用表示非空集合中的元素个数,定义,若,,且,则的取值范围是( ) A.或 B.或C.或 D.或30、已知集合,,则()A. B. C. D.31、已知方程组的解为非正数,为非负数,则的取值范围是()A. B. C. D.32、已知集合,,则A. B. C. D.33、已知集合,,则A. B. C. D.34、已知函数的值域为,若关于的不等式的解集为,则实数的值为( )A.6 B.7 C.9 D.1035、不等式组的解集是()A. B. C. D.或36、若“”是“不等式成立”的一个充分不必要条件,则实数的取值范围是()A. B. C. D.37、不等式的解集是()A. B. C. D.38、已知,则()A. B. C. D.39、若关于x的不等式ax2+bx+2<0的解集为,则a﹣b的值是()A.﹣14 B.﹣12 C.12 D.1440、对任意实数x,若不等式恒成立,则实数m的取值范围是()A. B. C. D.41、若不等式的解集为,则的值为 ( )A. B. C. D.42、不等式ax2+bx+2>0的解集是,则a-b等于()A.-10 B.10 C.-14 D.1443、当时,不等式恒成立,则k之的取值范围是()A. B. C. D.(0,4)44、若不等式和不等式的解集相同,则、的值为()A.=﹣8 =﹣10 B.=﹣4 =﹣9C.=﹣1 =9 D.=﹣1 =245、若{x|2<x<3}为x2+ax+b<0的解集,则bx2+ax+1>0的解集为()A.{x|x<2或x>3} B.{x|2<x<3}C. D.46、当时,不等式恒成立,则的取值范围是A. B.C. D.47、若不等式x2-kx+k-1>0对x∈(1,2)恒成立,则实数k的取值范围是()A.(-∞,2] B.(1,+∞) C.(-∞,2) D.[1,+∞)48、函数的定义域是()A.{x|x<-4或x>3} B.{x|-4<x<3}C.{x|x≤-4或x≥3} D.{x|-4≤x≤3}49、当|x|≤1时,函数y=ax+2a+1的值有正也有负,则实数a的取值范围是()A.a≥- B.a≤-1C.-1<a<- D.-1≤a≤-50、不等式的解集为()A.或 B. C. D.或51、当x∈R时,不等式kx2-kx+1>0恒成立,则k的取值范围是()A.(0,+∞) B.[0,+∞) C.[0,4) D.(0,4)52、已知关于x的不等式ax2-x+b≥0的解集为[-2,1],则关于x的不等式bx2-x+a≤0的解集为()A.[-1,2] B.[-1, ] C.[-,1] D.[-1,-]53、若关于的不等式的解集不是空集,则实数的取值范围是( )A.[2,+∞) B.(-∞,-6] C.[-6,2] D.(-∞,-6]∪[2,+∞)54、已知不等式的解集为,则不等式的解集为( ) A. B.C. D.55、若关于x的不等式在区间内有解,则实数a的取值范围是()A. B. C. D.56、不等式的解集为A. B. C.R D.57、当|x|≤1时,函数y=ax+2a+1的值有正也有负,则实数a的取值范围是()A.a≥- B.a≤-1C.-1<a<- D.-1≤a≤-58、二次函数的部分对应值如下表:则一元二次不等式的解集是A. B.C. D.59、对于任意实数,不等式恒成立,则实数的取值范围是()A. B. C. D.60、若关于的不等式的解集为,且,则()A. B. C. D.61、已知关于x的不等式ax2-x+b≥0的解集为[-2,1],则关于x的不等式bx2-x+a≤0的解集为()A.[-1,2] B.[-1, ] C.[-,1] D.[-1,-]62、不等式的解集是 ( )A. B.C. D.63、若关于的不等式在区间上有解,则实数的取值范围为()A. B. C. D.64、设,=,C U A=,则m的取值范围是()A.[0, ) B.{0} (,+)C.(-,0] D.( -,0] (,+)65、关于x的不等式ax-b>0的解集是(1,+),则关于x的不等式(ax+b)(x-2)>0的解集是()A.(1,2) B.(-1,2)C.(-,-1)(2,+) D.(-,1)(2,+)66、当x>0时,若不等式x2+ax+4≥0恒成立,则a的最小值为()A.-2 B.2 C.-4 D.467、若关于的不等式在区间上有解,则实数的取值范围为()A. B. C. D.68、若关于的不等式在区间上有解,则实数的取值范围为()A. B. C. D.69、函数的定义域为_______________.70、关于x的不等式的解集中,恰有个整数,则a的取值范围是()A. B. C. D.参考答案1、C2、A3、B4、D5、B6、C.7、A8、B9、A10、C11、D12、A13、A14、D15、C16、A17、B18、C19、B20、A21、D22、B23、C24、A25、A26、A27、D28、A29、D30、B31、D32、A33、A34、C35、C36、D37、D38、B39、A40、A41、B42、A43、C44、B45、D46、C47、A48、C49、C50、C51、C52、C53、D54、B55、A56、A57、C58、C59、A60、D61、C62、B63、A64、A65、C66、C67、A68、A69、70、D【解析】1、求解不等式:可得:;求解不等式:可得:;据此可得不等式组的解集是.本题选择C选项.点睛:解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.2、试题分析:原不等式等价于,,所以不等式的解集为:,所以,解得,故选A.考点:一元二次不等式3、由题意可知的两个根为,不等式即为,解不等式得解集为.考点:三个二次之间的关系.4、当时,恒成立;当时,有解得,所以.考点:不等式恒成立问题.5、试题分析:由已知可得是方程的两根.由根与系数的关系可知,,.代入不等式解得.考点:本题考查一元二次不等式的解法.6、试题分析:解得,,故选C.考点:1.一元二次不等式的解法;2.集合的运算.7、试题分析:由得,,所以.所以选A. 考点:1.含参的二次不等式的解法.8、不等式等价于,令,由得在上是减函数,时,取最大值,故选B.9、不等式对于恒成立,(1)时,不等式成立;当时,,;综上可知:的取值范围是.10、,即时,恒成立,时,则有,解得,故选C.11、首先讨论当二次项系数为0时,即a=2时,原不等式为-4<0,恒成立;当时,该函数是二次函数,则要求开口向下,判别式小于零,,且两种情况并到一起,得到a的范围为。
高中数学必修5课后习题答案(共10篇)
高中数学必修5课后习题答案(共10篇)高中数学必修5课后习题答案(一): 人教版高一数学必修5课后习题答案课本必修5,P91练习2,P93习题A组3和B组3,全部都是线性规划问题, 生产甲乙两种适销产品,每件销售收入分别为3000元,2023元。
甲乙产品都需要A、B两种设备上加工,每台A、B设备上加工1件甲设备工时分别为1h,2h,加工乙设备工时2h,1h,A、B两种设备每月有效使用台时数分别为400h和500h,如何安排生产可使收入最大?2.电视台应某企业之约播放两套电视剧,其中,连续剧甲每次播放时间为80分钟,其中广告时间为1分钟,收视观众为60万;连续剧乙每次播放时间为40分钟,广告时间1分钟,收视观众20万。
已知和电视台协议,要求电视台每周至少播放6分钟广告,二电视台每周只能为该企业提供不多于320分钟的节目时间。
如果你是电视台制片人,电视台每周应播映两套连续剧各多少次,才能获得更高的收视率?P91练习 2 答案:解设每月生产甲商品x件,生产乙商品y件,每月收入z元,目标函数z=3X+2y,需要满足的条件是:x+2y≤400 2X+y≤500 x≥0 y≥0作图略作直线z=3x+2y,当直线经过A点时,z 取最大值解方程组{x+2y=400 2x+y=500 可取点A 《200,100》所以z的最大值为800高中数学必修5课后习题答案(二): 高一人教版数学必修5课后习题答案知道下列各项·写出同项公式1,√2/2,1/2,√2/4 1/4关于数列问题1,√2/2=1*√2/2,1/2=1*(√2/2)^2,√2/4=1*(√2/2)^31/4=1*(√2/2)^4……所以是以首项为1,公比为√2/2的等比数列An=(√2/2)^(n-1)高中数学必修5课后习题答案(三): 高中数学必修5课后习题1.1A组第一第二题答案要有步骤解三角形A=70° B=30° c=20cm b=26cm c=15cm C=23° a=15cm,b=10cm,A=60° b=40cm,c=20cm,C=25°1.180°--70° --30° =80°所以角C=80°然后用正弦定理2.还是正弦定理3.还是正弦定理4.还是正弦定理很简单的正弦定理a比上sinA=b比上sinB=c比上sinCa是边长,A是角高中数学必修5课后习题答案(四): 数学必修五课后习题答案数学必修五第五页(也可能是第四页)课后习题答案,要有解题过程,大神们呐,帮帮我吧参考书里没有解题过程!2在三角形ABC中,已知下列条件,解三角形(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°画图题2个题做法基本一样比如第1小题,先根据已知角度画出已知角B,然后以角点B为圆心,以20为半径画圆弧,和B的某一线相交一点C,再以该点为圆心,以11cm为半径画圆弧,和B角的另一角边相交,这样得到A点,到此,三角形就画好了.高中数学必修5课后习题答案(五): 数学必修5练习x^2-(2m+1)x+m^2+m分析x -(2m+1)x+m +m高中数学必修5课后习题答案(六): 高一数学必修5解三角形正弦定理课后练习B组第一题(1) a=2RsinA,b=2RsinB,c=2RsinC; (2) sinA :sinB :sinC = a :b :c;高中数学必修5课后习题答案(七): 高二数学必修5答案,人民教育出版社的,习题2—3A的练习题,P51页,急用,我的同学瞧不起我,我非要做个全对不可,可我数学一点都不好,我不想就这样被同学踩在脚底下,希望谁有答案,帮忙写一下,拜托了,我先拿30分,不够的话,再说.看看这个,参考参考.高中数学必修5课后习题答案(八): 高中数学必修5第三章不等式复习参考题答案【高中数学必修5课后习题答案】有本书叫《中学教材全解》,是陕西出版社的金星教育那上面有详细的解答准确度很高同时发几个网址,看有没有你需要的高中数学必修5复习题及答案(A组)人教版高中数学必修模块(1-5)全部精品课件集高中数学必修5课后习题答案(九): 高一数学作业本必修5的题目..11.(1)已知x>0,y>0.且(1/x)+(9/y)=1.求x+y的最大值.(2)已知x【高中数学必修5课后习题答案】11.(1) (1/x+1/y)*(x+y)=1+9+9x/y+y/x=10+9x/y+y/x9x/y+y/x>=2√9x/y*y/x1/x+9/y>=16(2)y=4x-5+1/(4x-5)+3>=2√(4x-5)*1/(4x-5)+3>=5(3)跟第一题是一样的,就是除以xy,答案是18高中数学必修5课后习题答案(十): 人教版数学必修5习题2.2B组1答案求高中数学必修5的40页B组第一题的答案.(1)从表看出,基本是一个等差数列,d=2023,a2023=a2023+8d=0.26x10^5,在加上原有的9x10^5,答案为:9.26x10^5.(2)2023年底,小于8x10^5hm略。
北京市西城区教辅资料-学习探究诊断-高中数学(必修5)第二章-数列
北京市西城区教辅资料-学习探究诊断-高中数学必修五全册练习和参考答案第二章:数列测试三 数列Ⅰ 学习目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数.2.理解数列的通项公式的含义,由通项公式写出数列各项.3.了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项.Ⅱ 基础训练题一、选择题1.数列{a n }的前四项依次是:4,44,444,4444,…则数列{a n }的通项公式可以是( ) (A)a n =4n (B)a n =4n (C)a n =94(10n-1) (D)a n =4×11n2.在有一定规律的数列0,3,8,15,24,x ,48,63,……中,x 的值是( ) (A)30 (B)35 (C)36 (D)42 3.数列{a n }满足:a 1=1,a n =a n -1+3n ,则a 4等于( ) (A)4 (B)13 (C)28 (D)43 4.156是下列哪个数列中的一项( ) (A){n 2+1} (B){n 2-1} (C){n 2+n } (D){n 2+n -1} 5.若数列{a n }的通项公式为a n =5-3n ,则数列{a n }是( ) (A)递增数列 (B)递减数列 (C)先减后增数列 (D)以上都不对 二、填空题6.数列的前5项如下,请写出各数列的一个通项公式:(1)n a ,,31,52,21,32,1 =________;(2)0,1,0,1,0,…,a n =________.7.一个数列的通项公式是a n =122n n .(1)它的前五项依次是________; (2)0.98是其中的第________项.8.在数列{a n }中,a 1=2,a n +1=3a n +1,则a 4=________. 9.数列{a n }的通项公式为)12(3211n a n (n ∈N *),则a 3=________.10.数列{a n }的通项公式为a n =2n 2-15n +3,则它的最小项是第________项. 三、解答题11.已知数列{a n }的通项公式为a n =14-3n .(1)写出数列{a n }的前6项; (2)当n ≥5时,证明a n <0.12.在数列{a n }中,已知a n =312 n n (n ∈N *).(1)写出a 10,a n +1,2n a ; (2)7932是否是此数列中的项?若是,是第几项?13.已知函数xx x f 1)(,设a n =f (n )(n ∈N +). (1)写出数列{a n }的前4项;(2)数列{a n }是递增数列还是递减数列?为什么?测试四 等差数列Ⅰ 学习目标1.理解等差数列的概念,掌握等差数列的通项公式,并能解决一些简单问题. 2.掌握等差数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等差关系,并能体会等差数列与一次函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=a n -2,则a 100等于( ) (A)98 (B)-195 (C)-201 (D)-1982.数列{a n }是首项a 1=1,公差d =3的等差数列,如果a n =2008,那么n 等于( ) (A)667 (B)668 (C)669 (D)670 3.在等差数列{a n }中,若a 7+a 9=16,a 4=1,则a 12的值是( ) (A)15 (B)30 (C)31 (D)644.在a 和b (a ≠b )之间插入n 个数,使它们与a ,b 组成等差数列,则该数列的公差为( )(A)n a b (B)1 n a b (C)1 n a b (D)2n ab 5.设数列{a n }是等差数列,且a 2=-6,a 8=6,S n 是数列{a n }的前n 项和,则( ) (A)S 4<S 5 (B)S 4=S 5 (C)S 6<S 5 (D)S 6=S 5 二、填空题6.在等差数列{a n }中,a 2与a 6的等差中项是________.7.在等差数列{a n }中,已知a 1+a 2=5,a 3+a 4=9,那么a 5+a 6=________. 8.设等差数列{a n }的前n 项和是S n ,若S 17=102,则a 9=________.9.如果一个数列的前n 项和S n =3n 2+2n ,那么它的第n 项a n =________.10.在数列{a n }中,若a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),设{a n }的前n 项和是S n ,则S 10=________. 三、解答题11.已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.求数列{a n }的通项公式.12.等差数列{a n }的前n 项和为S n ,已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n .13.数列{a n }是等差数列,且a 1=50,d =-0.6.(1)从第几项开始a n <0;(2)写出数列的前n 项和公式S n ,并求S n 的最大值.Ⅲ 拓展训练题14.记数列{a n }的前n 项和为S n ,若3a n +1=3a n +2(n ∈N *),a 1+a 3+a 5+…+a 99=90,求S 100.测试五 等比数列Ⅰ 学习目标1.理解等比数列的概念,掌握等比数列的通项公式,并能解决一些简单问题. 2.掌握等比数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等比关系,并能体会等比数列与指数函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=2a n ,则a 4等于( )(A)83 (B)24 (C)48 (D)542.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5等于( ) (A)33 (B)72 (C)84 (D)189 3.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于( )(A)4(B)23 (C)916 (D)3 4.在等比数列{a n }中,若a 2=9,a 5=243,则{a n }的前四项和为( ) (A)81 (B)120 (C)168 (D)1925.若数列{a n }满足a n =a 1q n -1(q >1),给出以下四个结论: ①{a n }是等比数列; ②{a n }可能是等差数列也可能是等比数列; ③{a n }是递增数列; ④{a n }可能是递减数列.其中正确的结论是( ) (A)①③ (B)①④ (C)②③ (D)②④ 二、填空题6.在等比数列{a n }中,a 1,a 10是方程3x 2+7x -9=0的两根,则a 4a 7=________. 7.在等比数列{a n }中,已知a 1+a 2=3,a 3+a 4=6,那么a 5+a 6=________. 8.在等比数列{a n }中,若a 5=9,q =21,则{a n }的前5项和为________. 9.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________.10.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q =________. 三、解答题11.已知数列{a n }是等比数列,a 2=6,a 5=162.设数列{a n }的前n 项和为S n .(1)求数列{a n }的通项公式; (2)若S n =242,求n .12.在等比数列{a n }中,若a 2a 6=36,a 3+a 5=15,求公比q .13.已知实数a ,b ,c 成等差数列,a +1,b +1,c +4成等比数列,且a +b +c =15,求a ,b ,c .Ⅲ 拓展训练题14.在下列由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于q ,每列上的数从上到下都成等差数列.a ij 表示位于第i 行第j 列的数,其中a 24=81,a 42=1,a 54=5.(1)求q 的值;(2)求a ij 的计算公式.测试六 数列求和Ⅰ 学习目标1.会求等差、等比数列的和,以及求等差、等比数列中的部分项的和. 2.会使用裂项相消法、错位相减法求数列的和.Ⅱ 基础训练题一、选择题1.已知等比数列的公比为2,且前4项的和为1,那么前8项的和等于( ) (A)15 (B)17 (C)19 (D)21 2.若数列{a n }是公差为21的等差数列,它的前100项和为145,则a 1+a 3+a 5+…+a 99的值为( ) (A)60 (B)72.5 (C)85 (D)1203.数列{a n }的通项公式a n =(-1)n -1·2n (n ∈N *),设其前n 项和为S n ,则S 100等于( ) (A)100 (B)-100 (C)200 (D)-200 4.数列)12)(12(1n n 的前n 项和为( )(A)12 n n (B)122 n n (C)24 n n (D)12 n n5.设数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2=a n +3(n =1,2,3,…),则S 100等于( ) (A)7000 (B)7250 (C)7500 (D)14950 二、填空题 6.nn11341231121 =________.7.数列{n +n21}的前n 项和为________. 8.数列{a n }满足:a 1=1,a n +1=2a n ,则a 21+a 22+…+a 2n =________. 9.设n ∈N *,a ∈R ,则1+a +a 2+…+a n =________. 10.n n 21813412211=________. 三、解答题11.在数列{a n }中,a 1=-11,a n +1=a n +2(n ∈N *),求数列{|a n |}的前n 项和S n .12.已知函数f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n (n ∈N *,x ∈R ),且对一切正整数n 都有f (1)=n 2成立.(1)求数列{a n }的通项a n ;(2)求13221111 n n a a a a a a .13.在数列{a n }中,a 1=1,当n ≥2时,a n =12141211 n ,求数列的前n 项和S n .Ⅲ 拓展训练题14.已知数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12.(1)求数列{a n }的通项公式;(2)令b n =a n x n (x ∈R ),求数列{b n }的前n 项和公式.测试七 数列综合问题Ⅰ 基础训练题一、选择题1.等差数列{a n }中,a 1=1,公差d ≠0,如果a 1,a 2,a 5成等比数列,那么d 等于( ) (A)3 (B)2 (C)-2 (D)2或-2 2.等比数列{a n }中,a n >0,且a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5等于( ) (A)5 (B)10 (C)15 (D)20 3.如果a 1,a 2,a 3,…,a 8为各项都是正数的等差数列,公差d ≠0,则( ) (A)a 1a 8>a 4a 5 (B)a 1a 8<a 4a 5 (C)a 1+a 8>a 4+a 5 (D)a 1a 8=a 4a 54.一给定函数y =f (x )的图象在下列图中,并且对任意a 1∈(0,1),由关系式a n +1=f (a n )得到的数列{a n }满足a n +1>a n (n ∈N *),则该函数的图象是( )5.已知数列{a n }满足a 1=0,1331n n n a a a (n ∈N *),则a 20等于( ) (A)0 (B)-3(C)3(D)23 二、填空题6.设数列{a n }的首项a 1=41,且.,,41,211为奇数为偶数n a n a a n nn 则a 2=________,a 3=________. 7.已知等差数列{a n }的公差为2,前20项和等于150,那么a 2+a 4+a 6+…+a 20=________. 8.某种细菌的培养过程中,每20分钟分裂一次(一个分裂为两个),经过3个小时,这种细菌可以由1个繁殖成________个.9.在数列{a n }中,a 1=2,a n +1=a n +3n (n ∈N *),则a n =________.10.在数列{a n }和{b n }中,a 1=2,且对任意正整数n 等式3a n +1-a n =0成立,若b n 是a n 与a n +1的等差中项,则{b n }的前n 项和为________. 三、解答题11.数列{a n }的前n 项和记为S n ,已知a n =5S n -3(n ∈N *).(1)求a 1,a 2,a 3;(2)求数列{a n }的通项公式; (3)求a 1+a 3+…+a 2n -1的和. 12.已知函数f (x )=422x (x >0),设a 1=1,a 21 n ·f (a n )=2(n ∈N *),求数列{a n }的通项公式.13.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.(1)求公差d 的范围;(2)指出S 1,S 2,…,S 12中哪个值最大,并说明理由.Ⅲ 拓展训练题14.甲、乙两物体分别从相距70m 的两地同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m . (1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?15.在数列{a n }中,若a 1,a 2是正整数,且a n =|a n -1-a n -2|,n =3,4,5,…则称{a n }为“绝对差数列”.(1)举出一个前五项不为零的“绝对差数列”(只要求写出前十项); (2)若“绝对差数列”{a n }中,a 1=3,a 2=0,试求出通项a n ; (3)*证明:任何“绝对差数列”中总含有无穷多个为零的项.测试八 数列全章综合练习Ⅰ 基础训练题一、选择题1.在等差数列{a n }中,已知a 1+a 2=4,a 3+a 4=12,那么a 5+a 6等于( ) (A)16 (B)20 (C)24 (D)36 2.在50和350间所有末位数是1的整数和( ) (A)5880 (B)5539 (C)5208 (D)48773.若a ,b ,c 成等比数列,则函数y =ax 2+bx +c 的图象与x 轴的交点个数为( ) (A)0 (B)1 (C)2 (D)不能确定 4.在等差数列{a n }中,如果前5项的和为S 5=20,那么a 3等于( ) (A)-2 (B)2 (C)-4 (D)45.若{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( ) (A)4012 (B)4013 (C)4014 (D)4015 二、填空题6.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =________. 7.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和S 20=________. 8.数列{a n }的前n 项和记为S n ,若S n =n 2-3n +1,则a n =________.9.等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则1074963a a a a a a =________.10.设数列{a n }是首项为1的正数数列,且(n +1)a 21 n -na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________. 三、解答题11.设等差数列{a n }的前n 项和为S n ,且a 3+a 7-a 10=8,a 11-a 4=4,求S 13.12.已知数列{a n }中,a 1=1,点(a n ,a n +1+1)(n ∈N *)在函数f (x )=2x +1的图象上.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n ;(3)设c n =S n ,求数列{c n }的前n 项和T n .13.已知数列{a n }的前n 项和S n 满足条件S n =3a n +2.(1)求证:数列{a n }成等比数列; (2)求通项公式a n .14.某渔业公司今年初用98万元购进一艘渔船,用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.(1)写出该渔船前四年每年所需的费用(不包括购买费用);(2)该渔船捕捞几年开始盈利(即总收入减去成本及所有费用为正值)?(3)若当盈利总额达到最大值时,渔船以8万元卖出,那么该船为渔业公司带来的收益是多少万元?Ⅱ 拓展训练题 15.已知函数f (x )=412x (x <-2),数列{a n }满足a 1=1,a n =f (-11 n a )(n ∈N *).(1)求a n ;(2)设b n =a 21 n +a 22 n +…+a 212 n ,是否存在最小正整数m ,使对任意n ∈N *有b n <25m 成立?若存在,求出m 的值,若不存在,请说明理由.16.已知f 是直角坐标系平面xOy 到自身的一个映射,点P 在映射f 下的象为点Q ,记作Q=f (P ).设P 1(x 1,y 1),P 2=f (P 1),P 3=f (P 2),…,P n =f (P n -1),….如果存在一个圆,使所有的点P n (x n ,y n )(n ∈N *)都在这个圆内或圆上,那么称这个圆为点P n (x n ,y n )的一个收敛圆.特别地,当P 1=f (P 1)时,则称点P 1为映射f 下的不动点.若点P (x ,y )在映射f 下的象为点Q (-x +1,21y ). (1)求映射f 下不动点的坐标;(2)若P 1的坐标为(2,2),求证:点P n (x n ,y n )(n ∈N *)存在一个半径为2的收敛圆.北京市西城区教辅资料-学习探究诊断-高中数学必修五全册练习和参考答案第二章 数列测试三 数列一、选择题1.C 2.B 3.C 4.C 5.B 二、填空题6.(1)12n a n (或其他符合要求的答案) (2)2)1(1n n a (或其他符合要求的答案)7.(1)2625,1716,109,54,21 (2)7 8.67 9.15110.4提示:9.注意a n 的分母是1+2+3+4+5=15.10.将数列{a n }的通项a n 看成函数f (n )=2n 2-15n +3,利用二次函数图象可得答案. 三、解答题11.(1)数列{a n }的前6项依次是11,8,5,2,-1,-4;(2)证明:∵n ≥5,∴-3n <-15,∴14-3n <-1, 故当n ≥5时,a n =14-3n <0.12.(1)31,313,31092421102 n n a n n a a n n ; (2)7932是该数列的第15项. 13.(1)因为a n =n -n1,所以a 1=0,a 2=23,a 3=38,a 4=415;(2)因为a n +1-a n =[(n +1)11n ]-(n -n1)=1+)1(1 n n又因为n ∈N +,所以a n +1-a n >0,即a n +1>a n .所以数列{a n }是递增数列.测试四 等差数列一、选择题1.B 2.D 3.A 4.B 5.B 二、填空题6.a 4 7.13 8.6 9.6n -1 10.35 提示:10.方法一:求出前10项,再求和即可;方法二:当n 为奇数时,由题意,得a n +2-a n =0,所以a 1=a 3=a 5=…=a 2m -1=1(m ∈N *).当n 为偶数时,由题意,得a n +2-a n =2,即a 4-a 2=a 6-a 4=…=a 2m +2-a 2m =2(m ∈N *).所以数列{a 2m }是等差数列. 故S 10=5a 1+5a 2+2)15(5 ×2=35. 三、解答题11.设等差数列{a n }的公差是d ,依题意得.242344,7211d a d a 解得 .2,31d a ∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +1. 12.(1)设等差数列{a n }的公差是d ,依题意得.5019,30911d a d a 解得 .2,121d a ∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +10.(2)数列{a n }的前n 项和S n =n ×12+2)1( n n ×2=n 2+11n , ∴S n =n 2+11n =242,解得n =11,或n =-22(舍).13.(1)通项a n =a 1+(n -1)d =50+(n -1)×(-0.6)=-0.6n +50.6.解不等式-0.6n +50.6<0,得n >84.3. 因为n ∈N *,所以从第85项开始a n <0.(2)S n =na 1+2)1( n n d =50n +2)1( n n ×(-0.6)=-0.3n 2+50.3n .由(1)知:数列{a n }的前84项为正值,从第85项起为负值, 所以(S n )max =S 84=-0.3×842+50.3×84=2108.4.14.∵3a n +1=3a n +2,∴a n +1-a n =32, 由等差数列定义知:数列{a n }是公差为32的等差数列. 记a 1+a 3+a 5+…+a 99=A ,a 2+a 4+a 6+…+a 100=B , 则B =(a 1+d )+(a 3+d )+(a 5+d )+…+(a 99+d )=A +50d =90+3100. 所以S 100=A +B =90+90+3100=21331. 测试五 等比数列一、选择题1.B 2.C 3.A 4.B 5.D 提示:5.当a 1=0时,数列{a n }是等差数列;当a 1≠0时,数列{a n }是等比数列; 当a 1>0时,数列{a n }是递增数列;当a 1<0时,数列{a n }是递减数列. 二、填空题6.-3 7.12 8.279 9.216 10.-2 提示:10.分q =1与q ≠1讨论.当q =1时,S n =na 1,又∵2S n =S n +1+S n +2,∴2na 1=(n +1)a 1+(n +2)a 1, ∴a 1=0(舍).当q ≠1,S n =q q a n 1)1(1.又∵2S n =S n +1+S n +2,∴2×q q a n 1)1(1=qq a q q a n n 1)1(1)1(2111,解得q =-2,或q =1(舍).三、解答题11.(1)a n =2×3n -1; (2)n =5. 12.q =±2或±21. 13.由题意,得.15)1()4)(1(,22c b a b c a b c a ,解得 852c b a ,或1511c b a .14.(1)设第4列公差为d ,则161381165252454a a d . 故a 44=a 54-d =41161165 ,于是q 2=414244 a a .由于a ij >0,所以q >0,故q =21. (2)在第4列中,a i 4=a 24+(i -2)d =i i 161)2(16181 .由于第i 行成等比数列,且公比q =21, 所以,a ij =a i 4·q j -4=j j i i )21()21(1614 . 测试六 数列求和一、选择题1.B 2.A 3.B 4.A 5.C 提示:1.因为a 5+a 6+a 7+a 8=(a 1+a 2+a 3+a 4)q 4=1×24=16, 所以S 8=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)=1+16=17. 2.参考测试四第14题答案.3.由通项公式,得a 1+a 2=a 3+a 4=a 5+a 6=…=-2,所以S 100=50×(-2)=-100.4.)121121(21)5131(21)311(21)12)(12(1531311 n n n n12)]121121()5131()311[(21n nn n . 5.由题设,得a n +2-a n =3,所以数列{a 2n -1}、{a 2n }为等差数列, 前100项中奇数项、偶数项各有50项,其中奇数项和为50×1+24950 ×3=3725,偶数项和为50×2+24950 ×3=3775, 所以S 100=7500. 二、填空题 6.11 n 7.1212)1( n n n 8.31(4n -1) 9.)1,0(,11)1(,1)0(,11a a aa a n a n 且 10.n n n22121提示: 6.利用n n nn 111化简后再求和.8.由a n +1=2a n ,得21 nn a a ,∴221n n a a =4,故数列{a 2n }是等比数列,再利用等比数列求和公式求和.10.错位相减法.三、解答题11.由题意,得a n +1-a n =2,所以数列{a n }是等差数列,是递增数列.∴a n =-11+2(n -1)=2n -13,由a n =2n -13>0,得n >213. 所以,当n ≥7时,a n >0;当n ≤6时,a n <0.当n ≤6时,S n =|a 1|+|a 2|+…+|a n |=-a 1-a 2-…-a n =-[n ×(-11)+2)1( n n ×2]=12n -n 2; 当n ≥7时,S n =|a 1|+|a 2|+…+|a n |=-a 1-a 2-…-a 6+a 7+a 8+…+a n =(a 1+a 2+…+a n )-2(a 1+a 2+…+a 6) =n ×(-11)+2)1( n n ×2-2[6×(-11)+256 ×2]=n 2-12n +72.S n = )7(,7212)6(,1222n n n n n n (n ∈N *).12.(1)∵f (1)=n 2,∴a 1+a 2+a 3+…+a n =n 2. ①所以当n =1时,a 1=1;当n ≥2时,a 1+a 2+a 3+…+a n -1=(n -1)2 ② ①-②得,a n =n 2-(n -1)2=2n -1.(n ≥2) 因为n =1时,a 1=1符合上式. 所以a n =2n -1(n ∈N *). (2))12)(12(153131********* n n a a a a a a n n)121121(21)5131(21)311(21 n n )]121121()5131()311[(21 n n 12)1211(21n nn . 13.因为)2(212211)211(1214121111n a n n n n . 所以)212()212()212(11221 n n n a a a S)212121()1(2112 n n112122211)211(2112 n n n n .14.(1)a n =2n ;(2)因为b n =2nx n ,所以数列{b n }的前n 项和S n =2x +4x 2+…+2nx n . 当x =0时,S n =0;当x =1时,S n =2+4+…+2n =2)22(n n =n (n +1); 当x ≠0且x ≠1时,S n =2x +4x 2+…+2nx n ,xS n =2x 2+4x 3+…+2nx n +1;两式相减得(1-x )S n =2x +2x 2+…+2x n -2nx n +1, 所以(1-x )S n =2x x x n 1)1(-2nx n +1,即x nx x x x S n n n 12)1()1(212. 综上,数列{b n }的前n 项和)1(,12)1()1(2)1(),1(12x xnx x x x x n n S n n n测试七 数列综合问题一、选择题1.B 2.A 3.B 4.A 5.B 提示:5.列出数列{a n }前几项,知数列{a n }为:0,-3,3,0,-3,3,0….不难发现循环规律,即a 1=a 4=a 7=…=a 3m -2=0; a 2=a 5=a 8=…=a 3m -1=-3;a 3=a 6=a 9=…=a 3m =3. 所以a 20=a 2=-3. 二、填空题6.41;21 7.85 8.512 9.23n 2-23n +2 10.2[1-(31)n ]三、解答题11.(1)643,163,43321a a a . (2)当n =1时,由题意得a 1=5S 1-3,所以a 1=43; 当n ≥2时,因为a n =5S n -3, 所以a n -1=5S n -1-3;两式相减得a n -a n -1=5(S n -S n -1)=5a n , 即4a n =-a n -1. 由a 1=43≠0,得a n ≠0. 所以411 n n a a (n ≥2,n ∈N *).由等比数列定义知数列{a n }是首项a 1=43,公比q =-41的等比数列. 所以.)41(431n n a (3)a 1+a 3+…+a 2n -1=)1611(541611)1611(43n n . 12.由a 21 n ·f (a n )=2,得242221n n a a , 化简得a 21 n -a 2n =4(n ∈N *).由等差数列定义知数列{a 2n }是首项a 21=1,公差d =4的等差数列. 所以a 2n =1+(n -1)×4=4n -3.由f (x )的定义域x >0且f (a n )有意义,得a n >0. 所以a n =34 n .13.(1)06011201213211301112211211113112d a d a d a S d a S ,又a 3=a 1+2d =12 a 1=12-2d ,∴030724d d ,故724 <d <-3.(2)由(1)知:d <0,所以a 1>a 2>a 3>…>a 13.∵S 12=6(a 1+a 12)=6(a 6+a 7)>0,S 13=213(a 1+a 13)=13a 7<0, ∴a 7<0,且a 6>0,故S 6为最大的一个值. 14.(1)设第n 分钟后第1次相遇,依题意有2n +2)1( n n +5n =70, 整理得n 2+13n -140=0.解得n =7,n =-20(舍去). ∴第1次相遇是在开始运动后7分钟.(2)设第n 分钟后第2次相遇,依题意有2n +2)1( n n +5n =3×70, 整理得n 2+13n -420=0.解得n =15,n =-28(舍去). ∴第2次相遇是在开始运动后15分钟.15.(1)a 1=3,a 2=1,a 3=2,a 4=1,a 5=1,a 6=0,a 7=1,a 8=1,a 9=0,a 10=1.(答案不唯一)(2)因为在绝对差数列{a n }中,a 1=3,a 2=0,所以该数列是a 1=3,a 2=0,a 3=3,a 4=3,a 5=0,a 6=3,a 7=3,a 8=0,….即自第1项开始,每三个相邻的项周期地取值3,0,3,所以,0,3,3332313n n n aa a (n =0,1,2,3,…).(3)证明:根据定义,数列{a n }必在有限项后出现零项,证明如下:假设{a n }中没有零项,由于a n =|a n -1-a n -2|,所以对于任意的n ,都有a n ≥1,从而 当a n -1>a n -2时,a n =a n -1-a n -2≤a n -1-1(n ≥3); 当a n -1<a n -2时,a n =a n -2-a n -1≤a n -2-1(n ≥3); 即a n 的值要么比a n -1至少小1,要么比a n -2至少小1. 令c n =),(),(212221212n n n n n n a a a a a a (n =1,2,3,…).则0<c n ≤c n -1-1(n =2,3,4,…).由于c 1是确定的正整数,这样减少下去,必然存在某项c n <0, 这与c n >0(n =1,2,3,…)矛盾,从而{a n }必有零项.若第一次出现的零项为第n 项,记a n -1=A (A ≠0),则自第n 项开始,每三个相邻的项周期地取值0,A ,A ,即,,,023133A aA a a k n k n k n (k =0,1,2,3,…). 所以绝对差数列{a n }中有无穷多个为零的项.测试八 数列全章综合练习一、选择题1.B 2.A 3.A 4.D 5.C 二、填空题6.3·2n -3 7.180 8.a n = )2(,42)1(,1n n n 9.7610.a n =n 1(n ∈N *)提示:10.由(n +1)a 21 n -na 2n +a n +1a n =0,得[(n +1)a n +1-na n ](a n +1+a n )=0,因为a n >0,所以(n +1)a n +1-na n =0,即11n na a n n , 所以nn n a a a a a a a n n n 11322112312 .三、解答题 11.S 13=156.12.(1)∵点(a n ,a n +1+1)在函数f (x )=2x +1的图象上,∴a n +1+1=2a n +1,即a n +1=2a n .∵a 1=1,∴a n ≠0,∴nn a a 1=2, ∴{a n }是公比q =2的等比数列,∴a n =2n -1.(2)S n =1221)21(1 n n . (3)∵c n =S n =2n -1,∴T n =c 1+c 2+c 3+…+c n =(2-1)+(22-1)+…+(2n -1)=(2+22+…+2n )-n =n n21)21(2=2n +1-n -2. 13.当n =1时,由题意得S 1=3a 1+2,所以a 1=-1;当n ≥2时,因为S n =3a n +2, 所以S n -1=3a n -1+2;两式相减得a n =3a n -3a n -1, 即2a n =3a n -1.由a 1=-1≠0,得a n ≠0.所以231n n a a(n ≥2,n ∈N *). 由等比数列定义知数列{a n }是首项a 1=-1,公比q =23的等比数列. 所以a n =-(23)n -1. 14.(1)设第n 年所需费用为a n (单位万元),则a 1=12,a 2=16,a 3=20,a 4=24. (2)设捕捞n 年后,总利润为y 万元,则y =50n -[12n +2)1( n n ×4]-98=-2n 2+40n -98. 由题意得y >0,∴2n 2-40n +98<0,∴10-51<n <10+51. ∵n ∈N *,∴3≤n ≤17,即捕捞3年后开始盈利. (3)∵y =-2n 2+40n -98=-2(n -10)2+102, ∴当n =10时,y 最大=102.即经过10年捕捞盈利额最大,共盈利102+8=110(万元). 15.(1)由a n =f (-11 n a ),得411221 nn a a (a n +1>0), ∴{21n a }为等差数列,∴21na =211a +(n -1)·4. ∵a 1=1,∴a n =341 n (n ∈N *).(2)由1815411412122221n n n a a a b n n n n , 得b n -b n +1=)981281()581281(981581141 n n n n n n n )98)(28(7)58)(28(3n n n n∵n ∈N *,∴b n -b n +1>0,∴b n >b n +1(n ∈N *),∴{b n }是递减数列. ∴b n 的最大值为451423221a ab . 若存在最小正整数m ,使对任意n ∈N *有b n <25m成立, 只要使b 1=254514m即可,∴m >970. ∴对任意n ∈N *使b n <25m成立的最小正整数m =8.16.(1)解:设不动点的坐标为P 0(x 0,y 0),由题意,得0000211y y x x ,解得21x ,y 0=0, 所以此映射f 下不动点为P 0(21,0). (2)证明:由P n +1=f (P n ),得n n n n y y x x 21111,所以x n +1-21=-(x n -21),y n +1=21y n . 因为x 1=2,y 1=2, 所以x n -21≠0,y n ≠0, 所以21,1212111n n n n y y x x . 由等比数列定义,得数列{x n -21}(n ∈N *)是公比为-1, 首项为x 1-21=23的等比数列, 所以x n -21=23×(-1)n -1,则x n =21+(-1)n -1×23.同理y n =2×(21)n -1.所以P n (21+(-1)n -1×23,2×(21)n -1).设A (21,1),则|AP n |=212])21(21[)23( n .因为0<2×(21)n -1≤2, 所以-1≤1-2×(21)n -1<1,所以|AP n |≤1)23(2 <2. 故所有的点P n (n ∈N *)都在以A (21,1)为圆心,2为半径的圆内,即点P n (x n ,y n )存在一个半径为2的收敛圆.单元测试二 数列一、选择题1.在等差数列{a n }中,若a 2=3,a 6=11,则a 4等于( ) (A)5 (B)6 (C)7 (D)9 2.在正项等比数列{a n }中,若a 4a 5=6,则a 1a 2a 7a 8等于( ) (A)6 (B)12 (C)24 (D)363.等差数列{a n }的公差不为零,首项a 1=1,a 2是a 1和a 5的等比中项,则数列{a n }的公差等于( ) (A)1 (B)2 (C)-1 (D)-2 4.若数列{a n }是公比为4的等比数列,且a 1=2,则数列{log 2a n }是( ) (A)公差为2的等差数列 (B)公差为lg2的等差数列(C)公比为2的等比数列 (D)公比为lg2的等比数列 5.等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,则S 12等于( ) (A)8 (B)10 (C)12 (D)146.{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,用S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( ) (A)21 (B)20 (C)19 (D)187.如果数列{a n }(a n ∈R )对任意m ,n ∈N *满足a m +n =a m ·a n ,且a 3=8,那么a 10等于( ) (A)1024 (B)512 (C)510 (D)256 8.设f (n )为正整数n (十进制)的各数位上的数字的平方之和,例如f (123)=12+22+32=14.记a 1=f (2009),a k +1=f (a k ),k =1,2,3,…则a 2009等于( ) (A)85 (B)16 (C)145 (D)58 二、填空题9.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________.10.在等差数列{a n }中,a 2,a 11是方程x 2-3x -5=0的两根,则a 5+a 8=________.11.设等比数列{a n }的公比21q ,前n 项和为S n ,则44a S =________.12.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则a 5=______;前8项的和S 8=______.(用数字作答)13.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________.14.设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=________. 三、解答题15.在等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }前n 项和S n .16.设等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ; (2)若a 1-a 3=3,求S n .17.已知三个数成等差数列,它们的和为30,如果第一个数减去5,第二个数减去4,第三个数不变,则所得三个数组成等比数列,求这三个数.18.已知函数f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n (x ∈R ,n ∈N *),且对一切正整数n 都有f (1)=n 2成立.(1)求数列{a n }的通项a n ;(2)求13221111 n n a a a a a a .19.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2.(1)设b n =a n +1-2a n ,证明数列{b n }是等比数列;(2)求数列{a n }的通项公式.单元测试二 数列一、选择题1.C 2.D 3.B 4.A 5.D 6.B 7.A 8.D二、填空题9.13 10.3 11.15 12.16,255 13.-9 14.3三、解答题15.解:设{a n }的公差为d ,则05316)6)(2(1111d a d a d a d a , 即 d a d da a 41612812121, 解得 ,2,81d a 或,2,81d a . 因此S n =-8n +n (n -1)=n (n -9),或S n =8n -n (n -1)=-n (n -9).16.解:(1)依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2),由于a 1≠0,故2q 2+q =0,又q ≠0,从而q =21. (2)由已知可得a 1-a 1(21 )2=3, 故a 1=4,从而S n =])21(1[38)21(1])21(1[4n n . 17.解:设这三个数为a -d ,a ,a +d ,则(a -d )+a +(a +d )=30,解得a =10.又由(a -d -5)(a +d )=(a -4)2,解得d =2,或-7.所以三个数为8,10,12,或17,10,3.18.解:(1)由题意,得a 1+a 2+a 3+…+a n =n 2. ①所以当n =1时,a 1=1;当n ≥2时,a 1+a 2+a 3+…+a n -1=(n -1)2 ②①-②得,a n =n 2-(n -1)2=2n -1.(n ≥2)因为n =1时,a 1=1符合上式,所以a n =2n -1(n ∈N *). (2))12)(12(153131********* n n a a a a a a n n )121121(21)5131(21)311(21 n n )]121121()5131()311[(21 n n 12)1211(21n n n . 19.解:(1)由a 1=1及S n +1=4a n +2,得a 1+a 2=4a 1+2,a 2=3a 1+2=5,∴b 1=a 2-2a 1=3. 由S n +1=4a n +2, ……………①得当n ≥2时,有S n =4a n -1+2 ……………② ①-②得a n +1=4a n -4a n -1,∴a n +1-2a n =2(a n -2a n -1), 又因为b n =a n +1-2a n ,∴b n =2b n -1,所以{b n }是首项b 1=3,公比为2的等比数列. (2)由(1)可得b n =a n +1-2a n =3·2n -1,所以432211 n n n n a a , 所以数列{n n a 2}是首项为21,公差为43的等差数列. 所以n n a 2=414343)1(21 n n ,a n =(3n -1)·2n -2.。
(完整版)高中数学必修5综合测试题及答案(3份),推荐文档
(1)求∠B 的大小;
(2)若 a =4, S 5 3 ,求 b 的值。
建议收藏下载本文,以便随时学习! 2、数列an的通项为 an = 2n 1, n N * ,其前 n 项和为 Sn ,则使 Sn >48 成立的 n 的最小值为(
)
A.7
B.8
C.9
D.10
3、若不等式 8x 9 7 和不等式 ax 2 bx 2 0 的解集相同,则 a 、 b 的值为( )
22.一辆货车的最大载重量为30 吨,要装载 A 、 B 两种不同的货物,已知装载 A 货物每吨收入 40 元, 装载 B 货物每吨收入 30 元,且要求装载的 B 货物不少于 A 货物的一半.请问 A 、 B 两种不同的货物分别
装载多少吨时,载货得到的收入最大?并求出这个最大值.
建议收藏下载本文,以便随时学习!
20、解关于 x 的不等式 ax2-(a+1)x+1<0.
23.数列{an}的前 n 项和为 Sn , Sn 2an 3n ( n N * ).
B.a = 60,c = 48,B = 100° D.a = 14,b = 16,A = 45°
13.若 0 x 2 ,则 x(8 3x) 的最大值为______________.
C. ( , 2]
D. ( , 4) 3
2. m , 2n 的等差中项为 4, 2m , n 的等差中项为 5,则 m , n 的等差中项为( )
9
A.8
B.-8
C.±8
D.
8
x 4y 3 0 8、目标函数 z 2x y ,变量 x, y 满足 3x 5y 25 ,则有( )
x 1
17、在 R 上定义了运算“ ”: x y x(1 y) ;若不等式 x ax a 1 对任意实数 x 恒成立,
高中数学必修五解答题综合100题(附答案)
必修5解答题综合100题一、解答题1、在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab 的取值范围.2、在△ABC 中,已知a =23,b =6,A =30°,解三角形.3、在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .4、△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C 的值;(2)设BA ·BC = 23,求a+c 的值.5、在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C .6、如图,在山脚测得出山顶的仰角为,沿倾斜角为的斜坡向上走米到,在处测得山顶的仰角为,求证:山高A P a βaB B Pγ7、如图,为测量河对岸A、B两点的距离,在河的这边测出CD的长为32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A、B两点间的距离.8、如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知铁塔BC部分的高为h,求山高CD.9、江岸边有一炮台高30 m,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.()()sin sinsin-a ahaγβγ-=10、轮船A 和轮船B 在中午12时离开海港C ,两艘轮船的航行方向之间的夹角为,轮船A 的航行速度是25 n mile/h ,轮船B 的航行速度是15 n mile/h ,下午2时两船之间的距离是多少?11、在△ABC 中,D 为边BC 上一点,BD =12DC ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,求∠BAC .12、如图,一艘船以32.2n mile/h 的速度向正北航行.在A处看灯塔S在船的北偏东的方向,30 min后航行到B处,在B处看灯塔在船的北偏东的方向,已知距离此灯塔6.5n mile 以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?120206513、一架飞以326km/h 的速度,沿北偏东的航向从城市A 出发向城市B 飞行,18min 以后,飞机由于天气原因按命令改飞另一个城市C ,问收到命令时飞机应该沿什么航向飞行,此时离城市C 的距离是多少?14、在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且cos A =45.(1)求sin 2 B +C2+cos 2A 的值; (2)若b =2,△ABC 的面积S =3,求a .15、已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.7565 2016、已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.17、如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2.(1)求cos ∠CBE 的值; (2)求AE .18、(本题满分12分)在△ABC 中,BC =a ,AC =b ,a ,b 是方程02322=+-x x 的两个根,且()1cos 2=+B A 。
高中数学必修五同步练习题库:一元二次不等式及其解法(填空题:一般)
一元二次不等式及其解法(填空题:一般)1、设的解集为,则实数的取值范围是______.2、已知是定义在上的奇函数.当时,,则不等式的解集为___________.3、已知关于的不等式的解集为,则等于.4、设函数f(x)=则不等式f(x)>f(1)的解集是 .5、不等式组的解集是 .6、若关于的不等式的解集,则的值为_________.7、已知关于的方程有两根,且,求实数的取值范围__________.8、在,三个内角、、所对的边分别为、、,若内角、、依次成等差数列,且不等式的解集为,则__________9、关于x的方程x2-2tx+t-1=0的两个根中的一个根在(-2,0)内,另一根在(1,2)内,则实数t的取值范围是________.10、不等式的解集为________.11、设关于的不等式的解集为,已知,则实数的取值范围是________.12、已知,,若,则的值是___________13、下列命题正确命题的序号是:___________.①三角形中,若,则;②的解集是;③是数列的前项和,若,则;④是数列的前项和,若,则数列是等比数列.14、不等式的解集为__________.15、若不等式对一切恒成立,则的取值范围是_______.16、若关于的不等式的解集为,则的值为__________.17、不等式的解集为________.18、若不等式的解集为{x|2<x<3},则不等式的解集为________。
19、若不等式的解集为,则不等式的解集为__________.20、关于的不等式的解集是,则的取值范围是__________.21、已知不等式的解是,则=________,=________。
22、关于的不等式的解集,则的值为_________.23、已知函数()的值域为,若关于的不等式的解集为,则实数的值为__________.24、已知是定义在上的奇函数.当时,,则不等式的解集为___________.25、若关于的不等式的解集为,则的取值范围为__________.26、已知是定义在上的奇函数.当时,,则不等式的解集为___________.27、在中,三内角所对的边分别是,若依次成等比,则的取值范围是________.28、已知关于x的不等式x2-4x≥m对任意x∈(0,1]恒成立,则有( )A.B.C.D.29、若不等式0<ax2+bx+c<1的解集为(0,1),则实数a的取值范围是_________。
高中数学必修五试卷(含答案)
必修五阶段测试四(本册综合测试)时间:120分钟满分:150分、选择题(本大题共12小题,每小题5分,共60分) 3x — 11. 不等式右广1的解集是()1 1且lg (a + b )=— 1,则匚+匚的最小值是()a bS n 为等差数列{a n }的前n 项和,若a 1= 1, a 3= 5, S k +2 — S k = 36,贝U k 的值为()D . a|c|>b|c|A . 12的最大项,贝U n °=()3W xW2B. x4wx<2C/2 . (2017 存瑞中学质检)△ ABC 中,a = 1 , B =45 °A . 4,33 .若a<0 ,则关于 A . x>5a 或 x< — a3x>2 或 x w4D . {x|x<2}&ABC =2,则厶ABC 外接圆的直径为(C . 5,22 2 x 的不等式x — 4ax — 5a >0的解为( )B . x> — a 或 x<5a D . 6,2C . — a<x<5aD . 5a<x<—aA.|10C . 40D . 80a ,b ,c € R , a>b ,则下列不等式成立的是210 .设全集 U = R , A = {x|2(x — 1) <2} , B = {x|lo g2(x 2+ x+1)> - lo g 2(x 2+ 2)},则图中阴影部分表示的集合为 ()a > 0,b > 0, 7.已知等差数列{ a n }的公差为d (d ^ 0),且a 3+ a 6 + a 10 + 玄仁=32,若 a m = 8,贝U m 的值为( &若变量x ,y 满足约束条件rx + y w 8,2y — x w 4,x > 0, y > 0,且z = 5y — x 的最大值为a ,最小值为b ,则a — b 的值是A . 48B . 30C . 24D . 169.设{a n }是等比数列,公比q = 2, S n 为{a n }的前 n 项和,记 T n = 17S n 'n (n €a n + 1N ),设Tn o 为数列{T n }A . {x|1w x<2} B. {x|x》1} C. {x|0<x w 1} D. {xX< 1}11 •在等比数列{a n}中,已知a2= 1,则其前三项的和S3的取值范围是()A . ( — 3 —1]B . (— s, 0] U [1 ,+s )C. [3,+s ) D . (— s,—1] U [3 ,+s )112. (2017 •西朔州期末)在数列{a n}中,a1 = 1, a*+1 = a*+ n+ 1,设数列匸的前n项和为Si,若S n<ma n对一切正整数n恒成立,则实数m的取值范围为()A . (3,+s )B . [3 ,+s )C . (2 ,+s )D . [2 ,+s )二、填空题(本大题共4小题,每小题5分,共20分)13. _______________________ (2017福建莆田二十四中期末)已知数列{ a n}为等比数列,前n项的和为S n,且a5= 4S4 + 3, a6= 4S s + 3,则此数列的公比q= .14. _______________________________________________________________________ (2017唐山一中期末)若x>0, y>0, x+ 2y+ 2xy= 8,贝U x+ 2y的最小值是 ___________________________________ .15. 如右图,已知两座灯塔A和B与海洋观察站C的距离都等于3a km,灯塔A在观察站C的北偏东20°.灯塔B在观察站C的南偏东40°则灯塔A与灯塔B的距离为_______________ .16. _______________________ 已知a, b, c 分别为△ ABC 三个内角A, B, C 的对边,a = 2,且(2 +b)(sinA —sinB) = (c—b)sinC, 则厶ABC面积的最大值为.三、解答题(本大题共6小题,共70分)17. (10分)(2017山西太原期末)若关于x的不等式ax2+ 3x—1>0的解集是,x舟<x<1(1) 求a的值;(2) 求不等式ax2—3x+ a2+ 1>0的解集.~~118. (12分)在厶ABC中,内角A, B, C的对边分别为a, b, c,且a>c.已知BA BC= 2, cosB = 3, b = 3.求:(1)a 和c 的值;(2)cos(B—C)的值.119. (12分)(2017辽宁沈阳二中月考)在厶ABC中,角A, B, C的对边分别为a, b, c,且cosA = 3.B+ C(1) 求sin2—2 + cos2A 的值;(2) 若a = .3,求bc的最大值.20. (12分)(2017长春^一高中期末)设数列{a n}的各项都是正数,且对于n € N*,都有a? + a2 + a3+- +a n = S 2,其中S n 为数列{a n }的前n 项和.(1)求 a 2;⑵求数列{a n }的通项公式.x + 2y w 2n ,21.(12分)已知点(x , y)是区域x >0, (n € N +)内的点,目标函数 z = x + y , z 的最大值记作Z n .,y > 0若数列{a n }的前n 项和为S n , a i = 1,且点(S n , a n )在直线z n = x + y 上.(1)证明:数列{a n — 2}为等比数列; ⑵求数列{S n }的前n 项和T n .22. (12分)某投资商到一开发区投资 72万元建起一座蔬菜加工厂,第一年共支出 12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入 50万元.设f(n)表示前n 年的纯利润总和(f(n)=前n 年的总收入一前n 年的总支出一投资额).(1) 该厂从第几年起开始盈利?(2) 若干年后,投资商为开发新项目,对该厂有两种处理方法:①年平均纯利润达到最大时,以 48万元出售该厂;②纯利润总和达到最大时,以16万元出售该厂,问哪种方案更合算?答案与解析1. B 由> 1,可得空——1> 0,所以3x — 1 —(2— x 碁0,即皱—> 0,所以炉—3【x— 3 4戶0,2 — x2 — x2— x 2 — x|x — 2 工 0,3解得4< x <2.故选B.1 .•1+1= 10;+〔 1 . 1 a b (a + b)=当a = b =気时,"=”成立,故选 C.、 5— 15. A T a i = 1, a 3= 5,…公差 d = -2~ = 2, ••• a n = 1 + 2(n — 1) = 2n — 1,S k +2 — S k = a k +2 + a k +1 = 2(k + 2) — 1 + 2(k + 1) — 1 = 4k + 4 = 36, • k = 8,故选 A. 6. C •- a >b , #7>o , • T+VT +V 故选 C.7.B 由等差数列的性质知, a 3 + a 6 + a io + a i3 = 4比=32,•- a $= 8.又 a m = 8, • m = 8.& C如图所示,当直线 z = 5y — x 经过A 点时z 最大,即a = 16,经过C 点时z 最小,即b =— 8, • a — b = 24,故选C.列{「}的最大项为T 2,则n 0= 2,故选A.2210. A 由 2(x — 1) <2,得(x — 1) <1.解得 0<x<2.122•- A = {x|0<x<2} •由 log?(x + x + 1)> — Iog 2(x + 2), 得 log 2(x 2 + x + 1)<log 2 (x 2 + 2). x 2+ x + 1>0, 则』x 2+ 2>0,解得x<1..^2 + x + 1<x ?+ 2.• B = {x|x<1} . • ?u B = {x|x > 1}. •••阴影部分表示的集合为 (?u B) n A = {x|1< x<2}.111. D 设数列{a n }的公比为q ,则a 2= a i q = 1, • q = T ,a i• S 3= a i + a 2+ a 3= a i + a i q + a i q 2= a i + 1 + ~,当 a i >0 时,S 3》1 + 2 1 a i •- = 3,当且仅当 a i = 1 时,9. A S n =a i; —V = a i (2n — 1),2 — 1V), a n +1 = a 1 2 ,n = 2时取等号,.••数取等号;当a i <0时,S 3< 1-2 = - 1,当且仅当a i =- 1时,取等号故S 3的取值范围是(一a, — 1] U [3 ,+^ ). 12. D a 1= 1, a n +1 一 a n = n + 1,a n = (a n — a n - 1)+ (a n -1 一 a n -2)+ …+ 但2一 a 1)+ a 1=(n — 1 + 1) + (n — 2+ 1) + …+ (1 + 1) + 1 =n + (n — 1) + (n — 2) + …+ 2+ 1 = n 1,当n = 1时,也满足上式,丄=2 = 2p 一丄、 a n n(n + 1) W n + 1 丿'T S n<m 对一切正整数n 恒成立,••• m >2,故选D. 13. 5解析:由题可得 a 5— a 6= 4S 4— 4S 5=— 4a 5,--a 6 = 5a5,・• q = 5.14. 4解•/ x + 2y + 2xy = 8,x + 2y 2又 2xyw —,i'x + 2y \ • x + 2y + —丿》8,• 4(x + 2y)2+ x + 2y -8 > 0, • x + 2y > 4,当且仅当x = 2y = 2时,等号成立. • x + 2y 的最小值为4.15.3a km解析:由题意知,/ ACB = 120°• AB 2= 3a 2+ 3a 2-2 . 3a x . 3acos120°= 9a 2, • AB = 3a km. 16. .3--a n =n n + 121—2+ 2 - 3+•••+ 2 2 3 1―丄=n n + 1丄)n + 1 )解析:由正弦定理及(2 + b)(sinA —sinB)= (c — b)sinC ,得(2 + b)(a — b) = (c — b)c ,又 a = 2, • b 2 + c 2— a 2= be.由余弦定理得 沁=畫 J= 2bi = 1,- A = 60°又 22= b 2+ c 2— 2bccos60°= b 2+ c 2— bc > 2bc — bc , • bc < 4.当且仅当b = c 时取等号.11{3 • &ABC =^bcsinA W4 x _23= .3.ax 2 + 3x — 1 = 0的两个实数根为 舟和1,1 3 1 1• 1+1=—a 且 2x 1=—a 解得••• a 的值为一2,⑵由(1)可知,不等式为一 2x 2- 3x + 5>0 ,即即 2x 2 + 3x — 5<0, •.•方程 2x 2 + 3x — 5 = 0 的两根为 x 1 = 1, x 2=— 2 由余弦定理,得 a 2+ c 2= b 2+ 2accosB. 又 b = 3,所以 a 2+ c 2 = 9 + 2 x 2= 13.ac^ 6, 解;2+ c 2= 13,得 a=2,c= 3或 a=3,c= 2.因 a>c ,所以 a = 3, c = 2.c 2,2.2 4.2sinC=b sinB = 3X 3 =9 .是 cos(B 一 C )=cosBcos C +sinBsinc =1x 9+竽x节=筹19. 解:(1)在厶ABC 中,T cosA = 3,2B + C1 2 1 2 1• sin — + cos2A =尹—cos(B + C)] + 2cos A — 1 =尹 + cosA) + 2cos A — 1 =—- ⑵由余弦定理知a 2= b 2+ c 2— 2bccosA ,⑵在△ ABC 中, sin B =訪—cos 2B =因a = b>c ,所以 C 是锐角,因此 cosC = 1 — sin 2c=7 9.17.解:(1)依题意,可知方程 a =— 2,•不等式ax 2— 3x + a 2+ 1>0的解集为5<x<118.解:⑴由BA BC = 2 得 cacosB = 2,1又 cosB = 3 所以 ac = 6.由正弦定理,得—1••• be 的最大值为9420. 解:(1)在已知式中,当 n = 1 时,a 3 = a f ,: a^o , • a i = 1, 当 n 》2 时,a 3+ a ; + a 3+…+ a *= £,① a 3 + a 3 + a 3 +…+ a : i = i ,②①一②得 a ¥= a n (2a i + 2a 2+…+ 2a n -1+ a n ). -a n>0 , • a n =2a 1+ 2a 2+…+2a n - 1+a n,即 a n = 2S n — a n ,•- a 2= 2(1 + a 2)— a 2,解得 a 2=— 1 或 a 2= 2,T a n >0a 2= 2.2 *(2)由(1)知 a n = 2S n — a n (n € N ),③ 当 n 》2 时,a 2-1 = 2S n -1 — a n -1,④③一④得 a :— a 2—1 = 2(S n — S n -1)— a n+a n - 1= 2a n— a n+a n - 1= a n+a n - 1.Ta n+a n -1>0 ,• a n—為-1= 3 ,•数列{a n }是等差数列,首项为 1 ,公差为21.解:(1)证明:由已知当直线过点(2n,0)时,冃标函数取得最大值,故 z n =2n.•方程为x + y = 2n. -(S n , a n)在直线 Z n =x+y上,…S n+a n= 2n •①• S n -1 + a n -1 = 2(n — 1), n A 2•②由①一②得,2a n — a n —1 = 2, n A 2. • a n —1 = 2a n — 2, n A 2.3•数列{a n — 2}是以一1为首项,1为公比的等比数列. (2)由(1)得 a n- 2=—2 * 1,• a n= 2— ~ ° 1T Sn+a n= 2n,「・ S n=2n—a n=2n— 2+f ° 19• 3= b 2 + e 22 4A2be—3be =3be ,3当且仅当b =c =2时,等号成立,1,可得a n = n ・又T= ^^ = 1, n A 2, a 1 — 2=— 1a n -1—42a n— 2—22(a n — 2) 21—触n 2n — 2 1 —2 2 -1 n —1=—n - +T =n— n+2—1 .1—2--T n = 0 +=[0 + 2 + …+ (2n — 2)] + + 2 + …+ 2n -2 +- nfn — 122. 解:由题意知 f(n)= 50n — 12n +(1)由f(n)>0,即一2n 2+ 40n — 72>0,解得2<n<18.由n € N +知,该厂从第3年起开始盈利.fL < 40 — 2X 12= 16. n 因此方案①共获利 16X 6+ 48= 144(万元),此时n = 6.方案②:f(n) = — 2(n — 10)2 + 128.从而方案②共获利 128 + 16= 144(万元)•比较两种方案,获利都是144万元,但由于第一方案只需 6年,而第②种方案需要 10年,因此,选择第①种方案更合算.2. C T S ^ABC =gacsinB = 2,• J x 1X 〒c = 2 ,• c = 42,• b 2= c 2 + a 2— 2accosB = 32 + 1 — 2x 1 x 4 2^^" = 25,• b = 5,.••外接圆的直径为SinB = 5 * * * * = 5.2,故选C. 23. B (x + a)(x — 5a)>0. ■/ a<0, /• — a>5a. ••• x> — a 或 x<5a ,故选 B.14. C 若 lg(a + b) = — 1,则 a + b =石,4 — 72=— 2n 2+ 40n — 72.(2)方案①:年平均纯利润 号=40-2n +36,••• n + 36 > 2 n n x 36n 12,当且仅当n = 6时取等号,。
高中数学必修五同步练习题库:一元二次不等式及其解法(填空题:较易)
一元二次不等式及其解法(填空题:较易)1、已知关于x的不等式x2-(4a+2)x+3a2+2a≤0(a>-1)的解集中恰好含有3个整数解,则a的取值范围是.2、不等式的解集是_________.3、已知关于的不等式的解集为(2,),则的解集为.4、函数的定义域为___________.5、若关于x的不等式x2+ax-2<0的解集{x|-2<x<1},则a =_____.6、已知函数,则不等式的解集是__________.7、已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是.8、若关于的一元二次方程有两个不相等的实数根,则的取值范围是________。
9、若函数的两个零点是-2和3,则不等式的解集是________.10、已知不等式的解集为,则_______.11、不等式的解集是_______________12、若不等式的解集为,则不等式的解集为__________.13、若方程的两根分别为和1,则不等式的解集为__________.14、若关于x的不等式ax2﹣6x+a2<0的解集是(1,m),则m= .15、不等式的解集为________16、不等式的解集为_____17、不等式的解为_____________18、不等式的解集是_____________.19、如果关于的不等式的解集为,则实数的取值范围是___.20、集合,,则___________.21、不等式的解集是______.22、不等式的解集是___________.23、已知不等式组的解集是不等式的解集的子集,则实数的取值范围是.24、不等式的解集是 .25、若关于的不等式解集不是空集,则实数的取值范围是________.26、设关于的一元二次不等式的解集为,则.27、二次不等式的解集是全体实数,则的取值范围是 .28、已知当时,恒成立,则实数的取值范围是 .29、若关于的不等式的解集为,则实数的取值范围是.30、不等式的解集是 .31、若对任意实数恒成立,求x的取值范围_________32、不等式<a的解集是{x|a<x<0},则a=____.33、若不等式的解集为,则__________ .34、已知不等式的解集为,则不等式的解集为 .35、对任意不等式恒成立, 则实数的取值范围是.36、不等式的解集为______.37、不等式ax2+4x+a>1﹣2x2对一切x∈R恒成立,则实数a的取值范围是.38、(1)的解集是;(2)的解集是 .39、关于的不等式的解集为,则的取值范围为_________.40、二次不等式的解集为或,则关于的不等式的解集为_________.41、关于的不等式的解集是,则的取值范围是______.42、已知函数的值域为,若关于的不等式的解集为,则实数的值为________.43、关于的不等式的解集为,则.44、若不等式的解集为,则_______.45、已知,不等式恒成立,则的取值范围为__________.46、已知函数,如果不等式的解集是,则不等式的解集是 .47、已知函数,如果不等式的解集是则不等式的解集是___________48、不等式的解集为.49、不等式的解集为,则。
人教B版高中数学必修五 1.1正弦定理和余弦定理(5必修)
1.1正弦定理和余弦定理(数学5必修)1.2应用举例1.3实习作业[基础训练A 组]一、选择题(六个小题,每题5分,共30分)1.在△ABC 中,若0030,6,90===B a C ,则b c -等于()A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是()A .A sinB .A cosC .A tanD .Atan 1 3.在△ABC 中,角A 、B 均为锐角,且,sin cos B A >则△ABC 的形状是()A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长=()A .2B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 等于()A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最大角与最小角的和是()A .090B .0120C .0135D .0150二、填空题(五个小题,每题6分,共30分)1. 在Rt △ABC 中,C=090,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C=7∶8∶13,则C=_____________。
5.在△ABC 中,,26-=AB ∠C=300,则AC+BC 的最大值是________。
三、解答题(四个小题,每题10分,共40分)1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
高中数学必修五,均值不等式题型归纳,练习题
第二节 均值不等式题型87、利用均值不等式求函数最值❖ 知识点摘要:1. 均值不等式:如果+∈R b a ,,则ab b a 2≥+(当且仅当b a =时取“=”)。
2. 均值不等式特例:21,0≥+a a a >;2≥+ab b a (b a ,同号)。
3. 均值不等式变形: ①2)(222b a b a +≥+(沟通两和b a +与两平方和22b a +的不等关系式); ②222b a ab +≤(沟通两积ab 与两平方和22b a +的不等关系式); ③22⎪⎭⎫ ⎝⎛+≤b a ab (沟通两积ab 与两和b a +的不等关系式)。
4. 不等式串: 2211222b a b a ab b a +≤+≤≤+(+∈R b a ,),既: 调和平均值≤几何平均值≤算数平均值≤平方平均值。
5. 均值定理:已知+∈R y x ,, 如果S y x =+(定值),则4222S y x xy =⎪⎭⎫ ⎝⎛+≤(当且仅当y x =时取“=”),即“和为定值,积有最大值”; 如果P xy =(定值),则P xy y x 22=≥+(当且仅当y x =时取“=”),即“积为定值,和有最小值”。
87.1.利用均值不等式求函数的最值,要注意条件的验证❖ 典型例题精讲精练:1. (2010·重庆)已知0>t ,则函数tt t y 142+-=的最小值为 。
2. (2004·湖北)已知25≥x ,则函数4254)(2-+-=x x x x f 有( ) A .最大值45 B .最小值45 C .最大值1 D .最小值13. (2008·重庆)函数1)(+=x x x f 的最大值为 。
4. (2010·山东)对任意实数0>x ,a x x x ≤++132恒成立,求a 的范围是 。
87.2、“1”的变换5. (2007·上海)若+∈R y x ,,且14=+y x ,则xy 的最大值是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8. 在右侧程序框图中,输入5n =,按程序运行后输出的结果是(****A .3 B .4 C .5 D.619.(本小题满分14分)在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N .(Ⅰ)证明数列{}n a n -是等比数列; (Ⅱ)求数列{}n a 的前n 项和n S ;(Ⅲ)证明不等式14n n S S +≤,对任意n ∈*N 皆成立.5.设数列{}n a 是等差数列,其前n 项和为n S ,若62a =,530S =,则8S =( ) A .31B .32C .33D .3417.(本小题满分12分)设数列{}n a 是等差数列,{}n b 是各项均为正数的等比数列,且1135531,19,9a b a b a b ==+=+=(1)求数列{}{},n n a b 的通项公式;(2)若11,n n n n n n C a b S a a +=+⋅为数列{}nC 的前n 项和,求nS .18.(本小题满分12分)从集合{1,2,3,4,5}A =中任取三个元素构成三元有序数组123(,,)a a a ,规定123a a a <<(1)从所有三元有序数组中任选一个,求它的所有元素之和等于10的概率;(2)定义三元有序数组123(,,)a a a 的“项标距离”为31||ii d a i ==-∑,(其中121)nin i xx x x ==+++∑L ,从所有三元有序数组中任选一个,求它的“项标距离”d 为偶数的概率;6.公差不为0的等差数列{n a }的前21项的和等于前8项的和.若80k a a +=,则k = A .20 B .21 C .22 D .2318. (满分14分)数列}{n a 是公差为正数的等差数列,2a 、5a 且是方程027122=+-x x 的两根,数列}{n b 的前n 项和为n T ,且)(211*∈-=N n b T n n , (1)求数列}{n a 、}{n b 的通项公式;(2)记n n n b a c ⋅=,求数列}{n c 的前n 项和n S1 .(天津市十二区县重点中学2013届高三毕业班联考(一)数学(理)试题)在钝角△ABC中,已知AB=3, AC=1,∠B=30°,则△ABC 的面积是( )A .23B .43 C .23 D .43 9.已知等比数列{n a }中,各项都是正数,且22a ,112a ,33a+=( )A .4B .2C .36D .1210.已知实数x ,y 满足11020x x x ⎧⎪⎨⎪⎩≥-y +≥-y-2≤,若z ax y =+的最小值为3,则a 的值为 ( )A .3B .-3C .-4D .4 17.(本小题满分12分) 设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且cosB =45,b =2. (Ⅰ)当A =6π时,求a 的值; (Ⅱ)当△ABC 的面积为3时,求a +c 的值.2 .(2012-2013-2天津一中高三年级数学第四次月考检测试卷(理))在ABC ∆中,角,,A B C所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A.2BC .12D .12-3 .(天津市耀华中学2013届高三第一次月考理科数学试题)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,,1+2cos(B+C)=0,则BC 边上的高等于( )A-1 B+1C .D4.(天津市滨海新区五所重点学校2013届高三联考试题数学(理)试题)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,其中120,1A b ==o ,且ABC ∆面积为,则sin sin a bA B+=+( )AB .3C .D .1、在∆ABC 中,,,A B C ∠∠∠所对的边分别为a, b,c,已知B ∠=3π,则∆ABC 的面积为A . B.2 C. 2D.5.(天津市天津一中2013届高三上学期第二次月考数学理试题)在∆ABC 中,tanA 是以-4为第三项,4为第七项的等差数列的公差,tanB 是以13为第三项,9为第六项的等比数列的公比,则这个三角形是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对6.(天津市天津一中2013届高三上学期第三次月考数学理试题)△ABC 的三个内角C B A ,,所对的边分别为c b a ,,,a A b B A a 2cos sin sin 2=+,则=ab( )A .32B .22C .3D .27.(天津市耀华中学2013届高三第一次月考理科数学试题)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若222+=2012a b c ,则(+)tan A tan BtanC tan A tan B g 的值为 ;17、2a ,5a 是方程2x 02712=+-x 的两根, 数列{}n a 是公差为正的等差数列,数列{}n b 的前n 项和为n T ,且n T 211-=n b ()*∈N n . (1)求数列{}n a ,{}n b 的通项公式;(2)记n c =n a n b ,求数列{}n c 的前n 项和n S .8 .(天津市新华中学2012届高三上学期第二次月考理科数学)已知正项等比数列{a n }满足:765=2a a a +,若存在两项,n m a a 14a =,则nm 41+的最小值为 ( )A .23 B .35 C .625D .不存在9 .(天津市新华中学2012届高三上学期第二次月考理科数学)等差数列{a n }中,如果147=39a a a ++,369=27a a a ++,数列{a n }前9项的和为( )A .297B .144C .99D .6610 .(天津市天津一中2013届高三上学期第二次月考数学理试题)若∆ABC 的三个内角成等差数列,三边成等比数列,则∆ABC 是( )A .直角三角形B .等腰直角三角形C .等边三角形D .钝角三角形6.阅读下面的程序框图,运行相应的程序,则输出i 的值为 A .3 B .4 C .5 D .6 7.等比数列}{n a 中,若2a 、4a 是方程045x 2=+-x 的两个 实数根,则8a 的值为( )A .16B .16±C . 64D .64±11 .(天津市新华中学2013届高三第三次月考理科数学)设n S 是等差数列{a n }的前n 项和,5283()S a a =+,则53a a 的值为 ( )A .1B .1C .3D .513 .(天津耀华中学2013届高三年级第三次月考理科数学试卷)已知等比数列{a n }的首项为1,若1234,2,a a a 成等差数列,则数列⎭⎬⎫⎩⎨⎧n a 1的前5项和为 ( )A .1631 B .2C .1633 D .3316 8.数列{n a }满足a 1=1,a 2=1,n a =1n a -+2n a -(n ∈N ﹡,n ≥3).从该数列的前15项中随机抽取一项,则它是3的倍数的概率为 A .215 B .15 C .415 D .31017.(本小题满分12分)已知各项为正数的等差数列{n a }的前n 项和为n S ,a 1,a 2,S 3成等比数列,且a 3=5. (1)求数列{n a }的通项公式;(2)若数列{n b }满足1n b +n S -1n n b S +=1n S +n S ,n ∈N ﹡,且b 1=2,求数列{n b }的通项公式.14.(天津市十二区县重点中学2013届高三毕业班联考(一)数学(理)试题)设等比数列{}n a 的前n 项和为n S ,已知122()n n a S n N *+=+∈.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在n a 与1n a +之间插入n 个数,使这2n +个数组成公差为n d 的等差数列, 设数列1n d ⎧⎫⎪⎨⎬⎪⎭⎩的前n 项和n T ,证明:1516nT <. 11.已知数列1111{},{}1,2,,{}n n n n n n a nb a b a b a a n N b b +++==-==∈满足则数列的前10项的和为A .94(41)3- B .104(41)3- C .91(41)3-D .101(41)3-18.(本小题满分12分)继“三鹿奶粉”,“瘦肉精”,“地沟油”等事件的发生之后,食品安全问题屡屡发生,引起了国务院的高度重视.为了加强食品的安全,某食品安检部门调查一个海水养殖场的养殖鱼的有关情况,安检人员从这个海水养殖场中不同位置共捕捞出生长了一年的100 条鱼,称得每条鱼的重量(单位:kg ),并将所得数据进行统计得下表.已知鱼正常生 长的速度为1.0~1.2kg /年,规定:若超过正常生长速度的鱼所占比重大于15%, 则认为所饲养的鱼有问题,否则认为所饲养的鱼没有问题.(Ⅰ)根据数据统计表,估计数据落在[1.20,1,30)中的概率约为多少,并判断此养殖场所饲养的鱼是否存在问题?(Ⅱ)上面捕捞的100条鱼中间,从重量在[1.00,1.05)和[1.25,1.30)的鱼中,任取2条鱼来检测,求恰好所取得鱼重量在[1.00,1.05)和[1.25,1.30)各有1条的概率.17. (本小题满分10分)已知等差数列{}n a 中,21920,28a a a =-+=-. (I )求数列{}n a 的通项公式;(II )若数列{}n b 满足2log n n a b =,设12n n T b b b =L ,且1n T =,求n 的值.10.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若22a b +=20142c ,则2tan tan tan (tan tan )A BC A B ⋅+的值为A .0B .1C .2013D .201416.若数列}{n a 满足}*1112()1nn n n a a a n N a ++==∈-数列满足,,则该数列的前2013项的乘积______. 17. (本小题满分12分)如图,A 、B 是海面上位于东西方向相距)33(5+海里 的两个观测点。
现位于A 点北偏东45°,B 点北偏西60° 的D 点有一艘轮船发出求救信号。
位于B 点南偏西60° 且与B 相距203海里的C 点的救援船立即前往营救, 其航行速度为30海里/小时。
求救援船直线到达D 的 时间和航行方向。
18、设公比大于零的等比数列{}n a 的前n 项和为n S ,且11=a , 245S S =,数列{}n b 的前n 项和为n T ,满足11=b ,n n b n T 2=,*∈N n .(Ⅰ)求数列{}n a 、{}n b 的通项公式;(Ⅱ)设))(1(λ-+=n n n nb S C ,若数列{}n C 是单调递减数列,求实数λ的取值范围.已知当5x =时,二次函数2()f x ax bx c =++取得最小值,等差数列{}n a 的前n 项和()n S f n =,27a =-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)数列{}n b 的前n 项和为,n T 且2n n n a b =,证明92nT -≤. 17.(本小题满分12分)60°45°BAC D60°设△ABC 所对的边分别为,,a b c ,已知12,3,cos 4a b C ===-. (Ⅰ)求c ; (Ⅱ)求cos()A C -.18.(本小题满分12分)某地9月份(30天)每天的温差T 数据如下:5 7 5 5 10 7 7 8 56 8 5 6 97 5 6 10 7 6 10 5 6 5 6 6 97 8 9当温差57T ≤<时为“适宜”天气,79T ≤<时为“比较适宜”天气,9T ≥时为“不适宜”天气.(Ⅰ)求这30天的温差T 的众数与中位数; (Ⅱ)分别计算该月“适宜”天气、“比较适宜”天气、“不适宜”天气的频率;(Ⅲ)从该月“不适宜”天气的温差T 中, 抽取两个数,求所抽两数都是10的概率.20.(本小题满分12分)2n 个正数排成n 行n 列,如下所示:1,1a 1,2a …1,n a 2,1a 2,2a …2,n a. . . . . . . . .,1n a ,2n a …,n n a其中i,j a 表示第i 行第j 列的数. 已知每一行中的数依次都成等差数列,每一列中的数依次都成等比数列,且公比均为q ,1,16,a =-2,43,a =2,13a =-. (Ⅰ)求2,23,3,a a ; (Ⅱ)设数列{},2(1)≤≤k k n a 的和为n T ,求n T .16.(本小题满分12分)在ABC ∆中,已知45A =o ,4cos 5B =. (Ⅰ)求sin C 的值;(Ⅱ)若10BC =,D 为AB 的中点,求AB ,CD 的长.18.(本小题满分12分)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +==L ,,,,求数列{}n b 的前n 项和T .(17)(本小题满分12分)设数列{}n a 满足211233333n n n a a a a -++++=…,a ∈*N . (Ⅰ)求数列{}n a 的通项; (Ⅱ)设n nnb a =,求数列{}n b 的前n 项和n S .19.在数列}{n a 和等比数列}{n b 中,01=a ,23=a ,1*2()n a n b n N +=∈.(Ⅰ)求数列{}n b 及}{n a 的通项公式;(Ⅱ)若n n n b a c ⋅=,求数列{}n c 的前n 项和n S .11.一个学校高三年级共有学生600人,其中男生有360人,女生有240人,为了调查高三学生的复习状况,用分层抽样的方法从全体高三学生中抽取一个容量为50的样本,应抽取女生 人. 12.在面积为1的正方形ABCD 内部随机取一点P ,则PAB ∆的面积大于14的概率是_________. 18.(本题满分12分)在等差数列{}n a 中,31=a ,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11=b ,公比为q ,且222212,S q b S b =+=. (Ⅰ)求n a 与n b ; (Ⅱ)数列{}n c 满足nn S c 1=,求{}n c 的前n 项和n T .4.已知等差数列{}n a 中,4274=+a a ,则前10项和=10S ( ) A. 420 B. 380C. 210D. 14017.(本小题满分12分)已知函数2()2cos sin 2f x x x =- (1)求函数()f x 的最小正周期和值域;(2)已知ABC ∆的内角C B A ,,所对的边分别为c b a ,,,若2,2==b a ,且,12=⎪⎭⎫⎝⎛A f 求ABC ∆的面积.19.(本小题满分12分)市民李生居住在甲地,工作在乙地,他的小孩就读的小学在丙地,三地之间的道路情况如图所示.假设工作日不走其它道路,只在图示的道路中往返,每次在路口选择道路是随机的.同一条道路去程与回程是否堵车互不影响.假设李生早上需要先开车送小孩去丙地小学,再返回经甲地赶去乙地上班,(1)写出李生可能走的所有路线;(比如DDA 表示走D 路从甲到丙,再走D 路回到甲,然后走A 路到达乙);(2)假设从丙地到甲地时若选择走道路D 会遇到拥堵,并且从甲地到乙地时若选择走道路B也会遇到拥堵,其它方向均通畅,但李生不知道相关信息,那么从出发到回到上班地没有遇到过拥堵的概率是多少?19.⑴李生可能走的所有路线分别是:DDA ,DDB ,DDC ,DEA ,DEB ,DEC ,EEA ,EEB , EEC ,EDA ,EDB ,EDC 共12种情况。