小学数学应用题等量关系

合集下载

一年级等量关系式

一年级等量关系式

一年级等量关系式
在一年级数学中,等量关系式是指两个数或物体之间的关系,其中两个数或物体的量是相等的。

以下是一些一年级常见的等量关系式:1. 数字关系:
- 2 + 3 = 5
- 4 - 2 = 2
- 1 + 1 + 1 = 3
2. 物体的数量关系:
- 有3个苹果和2个橙子,总共有5个水果。

- 有4个红色球和4个蓝色球,总共有8个球。

- 有2本故事书和3本绘本,总共有5本书。

3. 长度关系:
- 5厘米 + 3厘米 = 8厘米
- 10厘米 - 4厘米 = 6厘米
4. 时间关系:
- 早上7点加上3小时等于中午10点。

- 下午4点减去2小时等于下午2点。

这些都是一年级学生可以学习和练习的等量关系式的例子。

等量关系练习题及答案.doc

等量关系练习题及答案.doc

等量关系练习题及答案方程指的是“含有未知数的等式”。

则列方程解应用题的关键是一一找出相等关系,找出了相等的关系,方程也就.....可以列出来了.找等量关系常见方式有:一、抓住数学术语找等量关系一般和差关系或倍数关系,常用“一共有”、“比??多”、“比??少”、“是??的几倍”、“比??的几倍多几”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程。

二、根据常见的数量关系找等量关系最常见的数量关系:1.速度X时间=路程2.单价X数量=总价关于打折的问题:打几折二原价X百分之几十3.工作效率X工作时间=工作总量习题:学校跑道是200米环形跑道,小明跑完5个圈共用了 4分钟,求他的平均速度。

3.小李30天一共跑了 45000米,小张平均每天跑的距离比小李多200米,问小张30天一共跑了多远?4.小王买了 6斤苹果,他给了老板50元,老板找回他 26元,求苹果的单价。

5.李先生买了 6支铅笔和2个文具盒,共花了 50元, 已知铅笔和文具盒的单价之和为15元,求文具盒的单价。

三、根据常用的计算公式找等量关系最常用的计算公式有:1.正方形周长=边长X正方形面积二边长X边长二22.长方形周长二X长方形面积=长乂宽习题:1.长方形的周长为60米,已知长是宽的1. 5倍, 求它的面积。

2.长方形的周长为20米,己知长比宽的2倍少2米,求它的面积。

7.己知三个连续奇数的和为105,求这三个奇数。

五、画图分析找等量关系1五年级列方程解应用题找等量关系经典练习整理:王宪纬一、译式法将题目中的关键性语句翻译成等量关系。

从关键语句中寻找等量关系。

1、关键句是“求和”句型的.例:先锋水果店运来苹果和梨共720千克,其中苹果是270。

运来的梨有多少千克?理解:720千克由两部分组成:一部分是苹果,一部分是梨子。

苹果+梨=0270 + x =02、关键句是“相差关系”句型。

关键词:比一个数多几,比一个数少几,例:小张买苹果用去7. 4元,比买橘子多用0. 6元, 每千克橘子多少元?理解:苹果与橘子相比较,多用了 0.6元。

应用题常用等量关系式

应用题常用等量关系式

应用题常用等量关系式一、行程问题:速度×时间=路程(一)相遇问题:1、同时出发(两段):甲的路程+乙的路程=总路程2、不同时出发(三段):先走的路程+甲的路程+乙的路程=总路程(二)追及问题:(快者的速度-慢者的速度)×追及所用的时间=两者相距的路程1、不同地点出发:慢者行驶的路程+两者相距的路程=快者行驶的路程2、同地不同时出发:慢着先走的路程+慢者后走的路程=快者走的路程(三)飞行、航行的速度问题:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度二、利润、利率问题:(一)利润问题:售价=标价×打折数利润=售价-进价利润率=(利润÷进价)×100℅=(售价-进价)÷进价×100﹪进价=利润÷利润率利润=进价×利润率售价-进价=进价×利润率=利润销售额=售价×销售量( 二)利率问题:利息=本金×利率×存期(年数、月数)本息和=本金+利息=本金+本金×利率×存期三、工程问题(一般把工作总量设为单位1)工作总量=工作效率×工作时间各工作量之和=总工作量各队合作工作效率=各队工作效率之和四、等积、等长问题长方形的周长=(长+宽)×2 长方形面积=长×宽正方形的周长=边长×4 正方形的面积=边长×边长圆的周长=πd=2πr 圆的面积=π r²长方体体积=长×宽×高圆柱体体积=底面积×高五、分段计费问题:应交缴费用=标准内费用+超标部分费用。

小学应用题常用等量关系式

小学应用题常用等量关系式

常用的等量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数7、被除数÷除数=商被除数÷商=除数商×除数=被除数8、总数÷总份数=平均数9、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间10、追击问题追击路程=速度差×追击时间追击时间=追击路程÷速度差速度差=追击路程÷追击时间11、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量12、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)13. 行程问题解题关键及规律:同时同地相背而行:路程=速度和×时间。

同时相向而行:相遇时间=速度和×时间同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。

同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。

14. 流水问题:船速:船在静水中航行的速度。

水速:水流动的速度。

顺水速度:船顺流航行的速度。

五年级列方程解应用题找等量关系

五年级列方程解应用题找等量关系

列方程解应用题找等量关系(1)以总路程为等量关系建立方程例题:两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时?解:设快车小时行X千米数量关系:快车4小时行的+慢车4小时行的=总路程列方程:4X+60×4=536(2)以总量为等量关系建立方程例题:甲、乙两个粮仓一共有粮6800包,甲是乙的3倍,两仓各有多少包?解:设乙仓有粮X包,则甲仓有粮3X包数量关系:甲粮仓的包数+乙粮仓的包数=总共的包数列方程:X+3X=6800(3)以相差数为等量关系建立方程例题:化肥厂三月份用水420吨,四月份用水380吨,四月份比三月份节约水费60元,这两个月各付水费多少元?解:设每吨水费X元数量关系:三月份的水费一四月份的水费=节约的水费列方程:420X一380X=60(4)从事情变化的结果找等量关系。

例如:共有1428个网球,每5个装一筒,装完后还剩3个,一共装了多少筒?解:设一共装了x筒等量关系:网球总个数-装了的个数=剩下的个数列方程:1428-5x=3(5)从关键句中找等量关系。

例如:足球上黑色的皮都是五边形的,白色的皮都是六边形的.白色皮共有20块,比黑色皮的2倍少4块.共有多少块黑色皮?解:设黑色皮有x块数量关系:黑色皮块数×2-4=白色皮块数列方程:2x-4=20(6)从常见的数量关系中找等量关系。

例如:学校买回椅子4把,桌子2张,椅子单价22元,共花198元,求桌子的单价是多少?解:设桌子的单价是x元等量关系:椅子总价+桌子的总价 = 一共花的钱列方程:22×4+2x=198(7)从公式中找等量关系。

例如:用120厘米长的铁丝,围成一个长方形,要使长是42厘米,宽应该是多少厘米?解:设宽应该是x厘米等量关系:(长+宽)×2=长方形周长列方程:(x+42)×2=120(8)从隐蔽条件中找等量关系。

例如:笼子里关了一些鸡和兔子,已知它们的腿加起来共有48条,并且鸡的只数和兔子的只数相同,那么鸡和兔子各有多少只?解:设鸡和兔各有X只,等量关系:鸡的腿数+兔的腿数 =总腿数隐藏条件:鸡和2条腿,兔有4条腿列方程:2x+4x=48。

应用题等量关系专项练习

应用题等量关系专项练习

实用文档应用题等量关系专项练习一、从事情变化的结果找等量关系。

例1:共有1428个网球,每5个装一筒,装完后还剩3个,一共可以装多少筒?例2:一辆公共汽车上有乘客38人,在火车站有12人下车,又上来一些人,这时车上有乘客54人。

在火车站上车的有多少人?二、从关键句中找等量关系。

例3:一个足球有白色皮20块,比黑色皮的2倍少4块,黑色皮有多少块?例4:小明今年比妈妈小24岁,妈妈的年龄正好是小明的3倍,小明和妈妈各几岁?三、从常见的数量关系中找等量关系。

例5:学校买回椅子4把,桌子2张,椅子单价22元,共花198元,求桌子的单价是多少?例6:一辆汽车每小时行68千米,另一辆汽车每小时行98千米。

两辆汽车同时从相距498千米的两个车站相向开出,几小时两车相遇?四、从公式中找等量关系。

例7:(第75页第4题)一幅画长是宽的2倍,做画框共用了1.8米的木条,求这幅画的面积是多少?设未知数,找等量关系,列等量关系式。

1、买3支钢笔比买5支圆珠笔要多花0.9元。

每支圆珠笔的价钱是0.6元,每支钢笔多少钱?2、甲乙两辆汽车同时从相距237千米的两个车站相向开出,经过3小时两车相遇,甲车每小时行38千米,乙车每小时行多少千米?3、东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷?1、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?2、四年级共有学生200人,课外活动时,80名女生都去跳绳。

男生分成5组去踢足球,平均每组多少人?3、食堂运来150千克大米,比运来的面粉的3倍少30千克。

食堂运来面粉多少千克?4、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。

平均每行梨树有多少棵?5、一块三角形地的面积是840平方米,底是140米,高是多少米?6、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。

每件大人衣服用2.4米,每件儿童衣服用布多少米?7、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁? 8、一辆时速是50千米的汽车,需要多少时间才能追上2小时前的一辆时速为40千米汽车?三、先分析数量间的关系,写出合理的等量关系式,再列方程解答。

找等量关系解应用题

找等量关系解应用题

设:这该电视机的标价是x元,则打折后的售价是0.8x元,依题意得
0.8x=(1+10%)×2 000
解得
x=2 750
答:该电视机的标价为2 750元.
方案问题: 例:某班将买一些乒乓球和乒乓球拍,现了解情况如下,甲、乙两家出售同样品牌的乒乓
球和乒乓球拍,乒乓球拍每副定价40元,乒乓球每盒10元,经洽谈后,甲店每买一副球拍赠一
(1/20)x+(3/100+1/25)(16-x)=1 (1/20)x+(7/100)(16-x)=1
(1/20) x +(112/100)-(7/100)x=1 (7/100-1/20)x=(112/100)-1 (2/100)x=(12/100) x=(12/100)×(100/2) x=6
甲乙最短合作:16-6=10(天) 答:甲乙最短合作10天
解:设:可以航行x千米 x/4=18+5 x=72+20 x=92 答:这只客船4小时可以行驶92千米
分配问题: 例:某生产车间有60人生产太阳眼镜,1名工人每天可生产镜片200 片或镜架50个,应该如何分配工人生产镜片和镜架,才能使每天生 产的产品配套?
解:设每天有x个工人生产镜片,(60-x)个工人生产镜架,一副眼 镜有一个镜架,2片镜片,故可以设方程为200x=(60-x)*50*2 方程两边同时除以100
解:设A,B两地间的路程为x km, 根据题意,得
解得 答:A,B两地间的路程是420 km.
行程问题: 例:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走 12天,快马几天可以追上慢马? 解:设快马X天可以追上慢马,依题意得:
240=150(X+12) X=20 答:快马20天可以追上慢马。

五年级数学找等量关系的应用题

五年级数学找等量关系的应用题

五年级数学找等量关系的应用题一、应用题及解析。

1. 学校买了18个篮球和20个足球,共付了490元,每个篮球14元,每个足球多少元?- 等量关系:18个篮球的总价+20个足球的总价 = 490元。

- 设每个足球x元。

- 解析:已知篮球个数为18,每个篮球14元,所以篮球总价为18×14元;足球个数为20,每个足球x元,足球总价为20x元。

根据等量关系可列方程18×14 +20x=490,252+20x = 490,20x=490 - 252,20x = 238,解得x = 11.9元。

2. 果园里有苹果树和梨树共300棵,苹果树的棵数是梨树的2倍,苹果树和梨树各有多少棵?- 等量关系:苹果树的棵数+梨树的棵数 = 300棵,苹果树的棵数 = 梨树的棵数×2。

- 设梨树有x棵,则苹果树有2x棵。

- 解析:根据第一个等量关系可列方程x+2x = 300,3x=300,解得x = 100,则梨树有100棵,苹果树有2×100 = 200棵。

3. 一辆汽车从甲地开往乙地,已经行驶了3小时,每小时行驶x千米,还剩120千米到达乙地,甲乙两地相距300千米,求汽车的速度。

- 等量关系:汽车已经行驶的路程+还剩的路程 = 甲乙两地的距离,汽车已经行驶的路程 = 速度×时间。

- 已知已经行驶了3小时,设速度为x千米/小时。

- 解析:根据等量关系可列方程3x+120 = 300,3x=300 - 120,3x = 180,解得x = 60千米/小时。

4. 某工厂有男工和女工共480人,男工人数是女工人数的1.4倍,男工和女工各有多少人?- 等量关系:男工人数+女工人数 = 480人,男工人数 = 女工人数×1.4。

- 设女工人数为x人,则男工人数为1.4x人。

- 解析:根据第一个等量关系列方程x + 1.4x=480,2.4x = 480,解得x = 200人,男工人数为1.4×200 = 280人。

六年级三重等量关系的应用题

六年级三重等量关系的应用题

六年级三重等量关系的应用题
1、学校图书室原有故事书1400本,新买故事书840本,新买故事书是原有故事书的几分之几?
2、学校图书室原有故事书1400本,新买的故事书是原有做事书的3/4,新买故事书多少本?
3、学校图书室新买故事书840本,是原有故事书的3/4,图书室原有故事书多少本?
4、小李30天一共跑了45000米,小张平均每天跑的距离比小李多200米,问小张30天一共跑了多远?
5、小王买了6斤苹果,他给老板50元,老板找回他26元,求苹果的单价?
6、李先生买了6支铅笔和2个文具盒,共花了50元,已知铅笔和文具盒的单价之和为15元,求文具盒的单价?
7、甲打字员平均每分钟能打80个字,照这样的速度一份稿件需要大1.2小时,而甲、乙两位打字员的打字效率的比是4:5,如果这份稿件让乙打字员来打要多少小时?
8、光明养鸡场今年养鸡2400只,比去年增加1/5,去年养鸡多少只?
9、光明养鸡场去年养鸡2000只,今年比去年增加1/5,今年养鸡多少只?
10、向阳村上午割水稻36亩,下午比上午少割1/4,上午割了多少亩?
11、向阳村下午割水稻27亩,下午比上午少割1/4,上午割了多少亩?
12、两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时?
13、服装厂要做984套衣服,已经做了120套,剩下的要在12天内完成平均每天要做多少套?。

四年级下册数学等量关系

四年级下册数学等量关系

四年级下册数学等量关系一、等量关系的概念。

1. 定义。

- 在数学中,等量关系就是表示两个量或者表达式之间具有相等关系的语句。

例如在等式3 + 2=5中,3 + 2和5之间就存在等量关系。

- 在四年级下册的数学学习中,等量关系更多地体现在解决实际问题当中。

比如在购物场景中,如果一个笔记本3元,买了5个笔记本,总共花费15元,那么就有等量关系“笔记本的单价×数量 = 总价”,即3×5 = 15。

2. 作用。

- 等量关系是解决数学问题,特别是列方程解应用题的关键。

通过找出题目中的等量关系,我们可以将实际问题转化为数学方程,从而求解未知量。

例如在行程问题中,已知速度和时间求路程,根据等量关系“速度×时间=路程”,如果速度是每小时60千米,时间是3小时,设路程为x千米,就可以列出方程60×3 = x。

二、常见的等量关系类型(人教版四年级下册)1. 四则运算中的等量关系。

- 加法等量关系。

- 加数+加数 = 和。

例如a + b=c,那么a=c - b,b=c - a。

在实际问题中,如小明有3颗糖,小红有2颗糖,他们一共有5颗糖,这里3+2 = 5,如果知道总数5和其中一个加数3,就可以用5 - 3求出另一个加数2。

- 减法等量关系。

- 被减数 - 减数=差。

由此可以得到被减数 = 差+减数,减数 = 被减数 - 差。

例如在一个减法算式8 - 3 = 5中,8是被减数,3是减数,5是差,如果知道差5和减数3,就可以用5+3求出被减数8。

- 乘法等量关系。

- 因数×因数 = 积。

如果a×b = c,那么a = c÷b,b = c÷a。

例如,每排有4个座位,一共有5排,总座位数就是4×5 = 20个。

如果知道总座位数20和排数5,就可以用20÷5求出每排的座位数4。

- 除法等量关系。

- 被除数÷除数 = 商。

六年级上册数学等量关系应用题

六年级上册数学等量关系应用题

六年级上册数学等量关系应用题
1.小明和小李一起做了一个数学题,小明做了2/5,小李做了3/5,两人所做的总量是100道题,那么小明和小李分别做了多少道题?
解:设小明做了x道题,小李做了y道题。

由题意得:
x+y=100(总量为100)
2/5x+3/5y=100(小明做了2/5,小李做了3/5)
解得:x=40,y=60。

所以小明做了40道题,小李做了60道题。

2.甲乙两家餐馆合作做了一次促销活动,两家餐馆的销售额之比是3:7,总销售额为10000元,那么甲乙两家餐馆的销售额分别是多少?
解:设甲餐馆的销售额为3x,乙餐馆的销售额为7x。

由题意得:
3x+7x=10000(总销售额为10000元)
解得:x=1000。

所以甲餐馆的销售额为3x=3000元,乙餐馆的销售额为7x =7000元。

3.一辆汽车从A地到B地行驶了120公里,速度为60公里/小时;从B地到C地行驶了80公里,速度为40公里/小时。

那么整个行程的平均速度是多少?
解:设整个行程的平均速度为v。

由题意得:
120/60+80/40=(120+80)/v
解得:v=48公里/小时。

所以整个行程的平均速度是48公里/小时。

小学应用题常用等量关系式

小学应用题常用等量关系式

常用的等量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数7、被除数÷除数=商被除数÷商=除数商×除数=被除数8、总数÷总份数=平均数9、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间10、追击问题追击路程=速度差×追击时间追击时间=追击路程÷速度差速度差=追击路程÷追击时间11、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量12、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)13. 行程问题解题关键及规律:同时同地相背而行:路程=速度和×时间。

同时相向而行:相遇时间=速度和×时间同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。

同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。

14. 流水问题:船速:船在静水中航行的速度。

水速:水流动的速度。

顺水速度:船顺流航行的速度。

小学生如何寻找等量关系列方程

小学生如何寻找等量关系列方程

小学生如何寻找等量关系列方程等量关系是表示数量间的相等关系。

列方程解应用题时,思路的重点是找出等量关系,这样就比较容易列出方程了。

1、根据题目中的关键句找等量关系。

这种方法一般适用于和差关系、倍数关系的应用题,在题中常有这样的提示:“一共有”、“比……多(少)”、“是……的几倍”、“比……的几倍多(少)”等。

在解题时,可根据这些关键字词来找等量关系,按叙述的顺序列出方程。

◆例如:星期天,妈妈上街买了一些水果,妈妈买20个苹果,买苹果的个数是西瓜的3倍多1个,西瓜有多少个?这道题的关键句是:苹果的个数是西瓜的3倍多1个,从中可以找出等量关系:西瓜×3-1=苹果的个数。

设西瓜的个数为ⅹ,就可以列方程为:3X-1=20◆又如:小红在假日里折纸花71朵,是小军折叠的朵数的3倍还多2朵,小军折叠了多少朵?紧扣题中的关键句“是小军折的朵数的3倍还多2朵”,我们即可以来列出等量关系式:小军折叠的朵数×3+2=小红折叠的朵数。

设小军折叠的朵数为ⅹ,则有ⅹ×3+2=712、用公式、常见数量关系式作等量关系。

每份数×份数=总数结余=收入-支出已生产的量+还需生产量=生产总量单价×数量=总价工作效率×工作时间=工作总量或工作效率和×工作时间=工作总量速度×时间=路程或速度和×时间=路程等等◆例如:甲、乙两人加工520个零件,甲每小时加工5个,乙每小时加工8个,两人合做几小时完成?根据工程问题等量关系式:工作效率[和]×工作时间=工作总量设两人合做X小时完成,列方程:(5+8)X=520◆在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。

如:一个梯形的面积是30平方分米,它的上底是4分米,下底是8分米。

求梯形的高。

梯形的面积公式作为等量关系即:“(上底+下底)×高÷2=梯形的面积”列出方程:设梯形的高为X分米,(4+8)X÷2=303、根据生活的经验找出等量关系列方程◆例如:我有10块糖,吃了几块后,又买来4块,现在我有11块糖,我吃了几块?本题的等量关系:原来的糖数-吃的糖数+又买来的糖数=现在的糖数。

数学应用题等量关系

数学应用题等量关系

应用题常用等量关系一、分母为总数的“率”
及格率=及格人数
总人数
×100% 合格率=
合格产品数
产品总数
×100%
出勤率=
实际出勤人数
应该出勤的人数
×100%
二、分母为原来基数的“率”
增产率=增加的产量
原来的产量
×100% 增长率=
增长的数
原来的基数
×100%
三、销售问题
盈利(利润)=售价-成本
盈利率(利润率)=盈利
成本
×100%=
-
售价成本
成本
×100%
售价=成本+盈利=成本+成本×盈利率=成本×(1+盈利率)
折后价=原售价×折扣
注:可以把亏损理解成盈利为负
四、储蓄问题
利息=本金×利率×期数
本利和=本金+利息
注:利率一般为年利率和月利率;利率和期数一定要对应;列方程时务必分清利息与本利和五、行程问题
速度=路程
时间
路程=时间×速度时间=
路程
速度
注:记得单位换算,通常是分钟和小时之间的换算
六、一些小技巧
➢勿死记硬背,理解记忆核心公式,变形情况可借助等式性质➢圈划关键词和关键语句,找等量关系;
➢若题干较长或背景复杂,可借助图表分析,如相遇问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一般运算规则
1 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3 速度×时间=路程路程÷速度=时间路程÷时间=速度
4 单价×数量=总价总价÷单价=数量总价÷数量=单价
5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6 加数+加数=和和-一个加数=另一个加数
7 被减数-减数=差被减数-差=减数差+减数=被减数
8 因数×因数=积积÷一个因数=另一个因数
9 被除数÷除数=商被除数÷商=除数商×除数=被除数
小学数学图形计算公式
1 正方形 C周长 S面积 a边长
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2 正方体 V:体积 a:棱长
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3 长方形 C周长 S面积 a边长
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4 长方体 V:体积 s:面积 a:长 b: 宽 h:高
表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
体积=长×宽×高 V=abh
5 三角形 s面积 a底 h高
面积=底×高÷2 s=ah÷2
三角形高=面积×2÷底三角形底=面积×2÷高
6 平行四边形 s面积 a底 h高
面积=底×高 s=ah
7 梯形 s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圆形 S面积 C周长∏ d=直径 r=半径
周长=直径×∏=2×∏×半径 C=∏d=2∏r
面积=半径×半径×∏
9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
侧面积=底面周长×高表面积=侧面积+底面积×2
体积=底面积×高体积=侧面积÷2×半径
10 圆锥体 v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
小学奥数公式
和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题的公式
和÷(倍数-1)=小数小数×倍数=大数 (或者和-小数=大数) 差倍问题的公式
差÷(倍数-1)=小数小数×倍数=大数 (或小数+差=大数) 植树问题的公式
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题的公式
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题的公式
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题的公式
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题的公式
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题的公式
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)。

相关文档
最新文档