小学六年级数学下册各单元知识点
六年级下册数学第四单元知识点
六年级下册数学第四单元知识点一、分数的乘除法1. 分数乘法a. 分数乘以整数:分子乘以整数,分母不变。
b. 分数乘以分数:分子相乘的积作新分数的分子,分母相乘的积作新分数的分母。
c. 乘积为1的特殊分数:真分数相乘,积小于任何一个因数;假分数相乘,积可能大于或等于1。
2. 分数除法a. 分数除以整数:与分数乘法相反,除数为1除外。
b. 分数除以分数:将除数倒数,然后进行分数乘法运算。
c. 除法的性质:除以一个不为0的数等于乘以这个数的倒数。
3. 分数的混合运算a. 运算顺序:先乘除后加减,括号内的运算优先。
b. 分数的通分与约分:通分是将分母不同的分数转化为分母相同的分数,约分是将分子和分母同时除以公因数,简化分数。
二、小数的乘除法1. 小数乘法a. 小数乘以整数:按照整数乘法规则,最后将小数点放在结果适当的位置。
b. 小数乘以小数:将小数点移动相应的位数后,按照整数乘法规则计算,最后将小数点放回结果中。
2. 小数除法a. 小数除以整数:将除数变为小数形式,然后进行除法运算。
b. 小数除以小数:将除数变为整数形式,同时将被除数的小数点向右移动相同的位数,再进行除法运算。
3. 小数的四则混合运算a. 运算顺序:先乘除后加减,括号内的运算优先。
b. 小数的近似数:根据需要保留小数点后的位数,使用四舍五入法。
三、比例与百分数1. 比例的概念a. 比例的定义:两个比相等的式子称为比例。
b. 比例的性质:等比性质,交叉相乘相等。
2. 比例的应用a. 比例式的解法:通过交叉相乘求解未知项。
b. 比例在实际问题中的应用:如速度、比例分配等问题。
3. 百分数的概念与计算a. 百分数的定义:表示一个数是另一个数的百分之几。
b. 百分数的计算:将分数转换为百分数,或将百分数转换为小数进行计算。
四、几何图形的认识1. 平面图形a. 多边形的性质:边数、内角和外角的性质。
b. 圆的基本性质:圆周率、直径、半径、弦、弧等。
小学六年级下册数学重点知识点整理
小学六年级下册数学重点知识点整理六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如,把化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如,1/等于4 ,所以的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
人教版小学六年级数学下册知识点_数学知识点
人教版小学六年级数学下册知识点_数学知识点人教版小学六年级数学下册知识点一:比例1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7.比例的意义:表示两个比相等的式子叫做比例。
如:2:1=6:8.组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
例如:由3:2=6:4可知3×4=2×6;或者由x×1。
5=y×1。
2可知x:y=1.2:1.5。
10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
11.正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④y=5x,y和x成正比例,因为:y÷x=5(一定)。
六年级数学下册(1~3单元)重点知识归纳
六年级数学下册(1~3单元)重点知识归纳第一单元:负数1.(1)正、负数的读写方法:○1写正数时,加“+”号或省略“+”号两种形式都可以,但是读正数时,加“+”的,一定要读出“正”字;省略“+”号的,这个“正”字也要省略不读。
○2写负数时,一定要写出“一”号,读时也一定要读出“负”字。
(2)0既不是正数,也不是负数,它是正数与负数的分界点。
2.正、负数不能凭正、负号进行区分,比如“+(一3)”是一个负数,而一(一3)却是一个正数。
3.能表示出正数、0、负数的直线,我们把它叫做数轴。
4.(1)数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴。
(2)温度计也可以看作是一数轴。
5.(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)所有的负数都在0的左边,即负数都比0小;所有的正数都在0的右边,即正数都比0大。
因此,负数都比正数小。
(3)比较两个负数的大小,可以先比较与其对应的两个正数的大小,对应的正数大的那个负数反而小。
6.温馨提示:水结冰时的温度是0摄氏度,0在这里的意义不是表示“没有”,而是一个具体的数。
7.温馨提示:在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。
如果上升用正数表示,那么下降一定用负数表示。
8.负数与正数相加,如果负数中负号后面的数比正数大,那么得数为负数,式中负号后面的数减去正数得几,结果就是负几。
第二单元:圆柱与圆锥1.圆柱是由两个底面和一个侧面三部分组成的。
2.(1)圆柱的两个圆面叫做底面。
(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。
(3)底面的特征:圆柱底面是完全相同的两个圆。
3.(1)圆柱周围的面叫做侧面。
(2)特征:圆柱的侧面是曲面。
4.(1)圆柱两个底面之间的距离叫做圆柱的高。
(2)一个圆柱有无数条高。
5.把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。
小学六年级数学下册知识点(可编辑打印思维导图)
4、按比例分配:
表示两个比相等的式子叫做比例。组成比例的四个数,叫做比例的项。两端的两项叫 做外项,中间的两项叫做内项。
5、比例的意义:
在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。
6、比例的基本性质:
(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式 子,它有四项(即两个内项和两个外项)。
)
14、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两 地之间的公路长多少千米?(用比例的知识解答)
15、一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每 小时需要行驶多少千米?(用比例的知识解答)
16、一块长方形试验田,长80米,宽60米,用1:2000的比例尺画出这块试验田的平面 图。
11、把一个底面半径是5cm,高是10cm的圆柱体切削成若干等份,拼成一个近似的长方形,在这个切拼过程中,(
)没有发生变化,表面积增加了( )平方厘米。
12、一个圆锥的体积是12立方米,底面积是9平方米,高是几米?
13、思考题:一个圆柱体和一个圆锥体积相等,底面半径的比是3:2,圆锥与圆柱高的比是(
示x×y=k(一定)
9、成反比例的量:
关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就 成正比例;如果积一定,就成反比例。
10、判断两种量成正比例还是成反比例的方法:
一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
11、比例尺:
(1)数值比例尺和线段比例尺 (2)缩小比例尺和放大比例尺
(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比 的后项。比的前项除以后项所得的商,叫做比值。
六年级下册数学书知识点
六年级下册数学书知识点六年级下册数学书知识1第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。
3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。
4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。
圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。
圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
5、圆柱的体积:一个圆柱所占空间的大小。
6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。
六年级下册数学重点知识笔记
六年级下册数学重点知识笔记
以下是六年级下册数学的一些重点知识笔记:
1. 负数:理解负数的概念,掌握正负数的读写方法,能用正负数表示日常生活中的问题。
2. 比例:理解比例的概念,掌握比例的基本性质,能应用比例的知识解决简单的问题。
3. 圆柱和圆锥:掌握圆柱和圆锥的各部分名称及特征,理解圆柱的侧面积和表面积的计算方法,掌握圆柱的体积的计算方法。
4. 比例尺:理解比例尺的概念,掌握计算方法,能根据比例尺计算图上距离和实际距离。
5. 正比例和反比例:理解正比例和反比例的概念,能判断两个量是否成正比例或反比例,能用正反比例解决简单的问题。
6. 统计:掌握扇形统计图和折线统计图的绘制方法,能根据数据选择合适的统计图进行描述。
7. 数学广角:通过实例使学生初步学会用假设法进行逻辑推理,体会假设法在解决实际问题中的应用。
以上仅为基础内容,具体的教学重点可能会有所不同,建议以教学大纲为准。
小学苏教版六年级下册数学知识点总结
苏教版六年级(下册)数学知识点总结第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。
(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。
)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。
上下底面是两个完全相同的圆形;侧面是一个曲面。
②圆柱的高:上下底面之间的距离。
圆柱有无数条高,每条高相等。
③圆锥由一个底面和一个侧面组成。
底面是一个圆形;侧面是一个曲面。
④圆锥的高:圆锥的定点到底面圆心的距离。
圆锥只有一条高。
知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。
①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。
长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。
②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。
正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。
所以圆柱的侧面积公式S=Ch或者S=2πrh或者S=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2=2πrh+2πr2用乘法分配率得圆柱的表面积公式S表=2πr(h+r)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。
六年级下册数学各单元知识点归纳
六年级下册数学各单元知识点归纳负数的由来是为了表示相反意义的两个量,例如盈利亏损、收入支出等。
负数包括负整数、负分数和负小数,数字前面加负号“-”表示。
正数包括正整数、正分数和正小数,数字前面可以加正号“+”,也可以省略不写。
负数小于零,数轴上左边的数为负数,正数大于零,数轴上右边的数为正数。
比较两个数大小可以利用数轴或正负数含义,正数之间比较大小,数字大的就大,负数之间比较大小,数字大的反而小。
折扣是指商品现价与原价的百分比,例如八折就是80%,六折五就是65%。
解决打折问题需要将折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
成数是指十分之几,例如一成就是10%,八成五就是85%。
解决成数问题也需要将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
税率是指纳税的比率,根据国家税法的规定,个人或集体收入的一部分需要缴纳给国家。
利率是指借贷或储蓄的利息比率。
解决税率和利率问题需要将百分数转化为分数或小数,然后按照求一个数的百分之几的解题方法进行解答。
2、纳税的意义在于税收是国家财政收入的主要来源之一,通过收取税款可以用于发展经济、科技、教育、文化和国防安全等事业。
3、应纳税额是指需要缴纳的税款金额。
4、税率是指应纳税额与各种收入的比率。
5、应纳税额的计算方法为总收入乘以税率,而收入额则为应纳税额除以税率。
2、利率是指存款的利息与本金的比值。
3、储蓄的意义在于将暂时不用的钱存入银行或信用社,既可以支持国家建设,又可以使个人用钱更加安全和有计划,并增加一些收入。
4、本金是指存入银行的钱,而利息则是取款时银行多支付的钱。
5、利率的计算公式为利息等于本金乘以利率乘以时间,而利率则为利息除以时间除以本金乘以100%。
7、在计算利息时,如果需要缴纳利息税,则税后利息等于利息减去利息的应纳税额,即利息乘以(1-利息税率)。
人教版六年级数学下册第1-3单元易错知识点
第一单元知识要点负数的定义1、以前所学的所有数(0除外)都是正数,正数前面的“+”是可以省略不写的。
2、负数的定义:在正数前面加上“-”就是负数。
例:-16,-500,-0.4,…3、负数前面必定有“-”。
4、0既不是正数,也不是负数。
负数的作用1、负数是在人为规定正方向的前提下出现的。
2、负数常用来表示和正数意义相反的量。
3、在选择用正数还是负数表示时,首先看是否规定了正方向。
例:零上5°用+5℃表示;零下5°用-5℃表示。
收入2000元用+2000元表示;支出500元用-500元表示。
负数的读法和写法1、读法:在所读数的前面加上“负”。
例:+6.3读作正六点三。
2、写法:在所写数的前面加上“-”。
例:负三写作 -3。
认识数轴1、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。
2、正方向:根据题意要求确定正方向,一般以向上或向右为正方向。
3、原点:也就是数字0所在的位置,一般根据表示数字的分布情况来确定,如果需要表示的正负数差不多相等时原点在数轴中间;如果正数比负数多得多原点偏左;如果负数比正数多得多原点偏右。
4、单位长度:由所要表示多的大小来决定刻度之间距离的大小,如果数字偏大刻度距离可以适当小一些,如果数字偏小刻度距离可以适当大一些。
单位长度不一定每个刻度只能表示1。
例:用数轴表示数1、在已给数轴上表示数:根据数字在对应的刻度上描点表示。
2、对于非整数的表示:将刻度进一步细分如32,需要将0—1之间线段分为3等份则2等份处为该数。
3、对于负数的表示:负数都在0的左面,正数都在0的右面。
例:+3.5在3和4中间,而-3.5在-3和-4中间。
4、数轴上,从左到右的顺序就是数从小到大的顺序。
0是正数和负数的分界点,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。
负号后面的数越大,这个数就越小。
例:-8<-6。
第二单元知识要点一.圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。
六年级数学下册第一单元
六年级数学下册第一单元知识点总结一、数的认识1. 正数与负数概念:大于零的数叫做正数,小于零的数叫做负数,零既不是正数也不是负数。
性质:正负数在数轴上的表示是相对的,正数位于零点的右侧,负数位于零点的左侧。
举例:+5是正数,-3是负数,0既不是正数也不是负数。
2. 整数与小数概念:整数包括正整数、零和负整数,小数是由整数部分、小数点和小数部分组成的数。
性质:整数和小数都可以进行加、减、乘、除运算(除数不为零)。
举例:10、0、-5是整数;3.14、0.5、2.01是小数。
3. 分数与百分数概念:分数表示整体的一部分,由分子、分母和分数线组成;百分数表示一个数是另一个数的百分之几。
性质:分数和百分数都可以进行加、减、乘、除运算(分母不为零)。
举例:3/4表示一个整体被分为四份,取其中的三份;50%表示一个数是另一个数的一半。
二、数的运算1. 四则运算概念:四则运算包括加法、减法、乘法和除法。
性质:加法满足交换律和结合律,乘法也满足交换律和结合律,减法和除法分别是加法和乘法的逆运算。
举例:2+3=5,5-2=3,2×3=6,6÷2=3。
2. 运算顺序概念:在进行四则运算时,需要遵循一定的运算顺序,即先乘除后加减,有括号则先算括号内的运算。
性质:运算顺序的遵循可以确保运算结果的准确性。
举例:计算(2+3)×4时,应先进行括号内的加法运算得到5,再乘以4得到20。
三、数的比较与大小1. 整数的大小比较概念:整数的大小可以通过比较它们的数值来确定。
性质:正数大于零,零小于正数,负数小于零,正数大于负数。
举例:5>3,0<5,-2<-1。
2. 小数的大小比较概念:小数的大小比较首先比较整数部分,整数部分大的小数就大;整数部分相同,再比较小数部分。
性质:小数的大小比较与整数的类似,但需要考虑小数部分。
举例:3.14>3.01,2.5=2.50(虽然末尾多了个零,但大小不变)。
(完整版)北师大版小学数学六年级下册知识点汇总
北师大版小学数学六年级(下册)知识点第一单元、圆柱和圆锥一、面的旋转1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
3、圆锥的特征:(1)圆锥的底面是一个圆。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
二、圆柱的表面积1、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。
(如果不是沿高剪开,有可能还会是平行四边形)2、圆柱的侧面积=底面周长×高,用字母表示为:S 侧=ch 。
3、圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S 侧=ch ;(2)已知底面直径和高,求侧面积,可运用公式:S 侧=πdh ;(3)已知底面半径和高,求侧面积,可运用公式:S 侧=2πrh4、圆柱表面积的计算方法:如果用S 侧表示一个圆柱的侧面积,S 底表示底面积,d 表示底面直径,r 表示底面半径,h 表示高,那么这个圆柱的表面积为:S 表=S 侧+2S 底 或 S 表=πdh+2π)2d (² 或S 表=2πrh+2πr 25、圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
三、圆柱的体积1、圆柱的体积:一个圆柱所占空间的大小。
2、圆柱的体积=底面积×高。
如果用V 表示圆柱的体积,S 表示底面积,h 表示高,那么V =Sh 。
3、圆柱体积公式的应用:(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V =Sh 。
(2)已知圆柱的底面半径和高,求体积,可用公式:V =πr 2 h ;(3)已知圆柱的底面直径和高,求体积,可用公式:V =π(d ÷2)2 h ;(4)已知圆柱的底面周长和高,求体积,可用公式:V =π(C ÷π÷2)2 h ; 、圆柱形容器的容积=底面积×高,用字母表示是V =Sh 。
人教版小学数学六年级下册1-6单元知识点思维导图
人教版小学数学六年级下册16单元知识点思维导图一、数与代数1. 分数分数的意义和性质分数加减法分数乘除法分数混合运算2. 小数小数的意义和性质小数加减法小数乘除法小数混合运算3. 比和比例比的意义和性质比例的意义和性质比例尺比例应用题二、空间与图形1. 角角的度量角的分类角的画法2. 三角形三角形的性质三角形的分类三角形的画法3. 四边形四边形的性质四边形的分类四边形的画法4. 圆圆的性质圆的画法圆的周长和面积三、统计与概率1. 数据的收集和整理调查法抽样调查数据整理2. 数据的表示条形统计图折线统计图扇形统计图3. 数据的分析平均数中位数众数4. 概率概率的定义概率的计算概率应用题四、实践与综合应用1. 实践活动数学游戏数学实验数学探究2. 综合应用解决实际问题的能力综合应用题数学建模五、数的扩展1. 负数负数的意义负数的加减法负数的乘除法负数与正数的运算2. 分数和小数的四则混合运算分数和小数的混合运算分数和小数的四则运算顺序分数和小数的四则运算技巧3. 分数和小数的应用分数和小数的实际应用分数和小数的应用题分数和小数的单位换算六、图形的扩展1. 空间图形立体图形的性质立体图形的分类立体图形的画法2. 几何图形的变换平移旋转轴对称3. 图形与坐标坐标系坐标系的运用坐标与图形的关系七、数学思维与解决问题1. 数学思维归纳推理演绎推理类比推理2. 解决问题的策略图解法代入法换元法3. 数学与生活的联系数学在生活中的应用数学与科学技术的联系数学与艺术的融合八、数学文化1. 数学历史古代数学近现代数学数学家的故事2. 数学趣闻数学谜语数学游戏数学趣题3. 数学与艺术数学的美数学与音乐数学与绘画九、数学实验与探究1. 实验工具尺规作图计算工具2. 实验方法观察法实验法探究法3. 实验案例测量实验计算实验推理实验十、数学学习与评价1. 学习方法预习听课复习练习2. 学习评价自我评价同伴评价教师评价家长评价3. 学习反思成功经验失败教训改进措施成长记录。
六年级下核心考点清单
六年级下核心考点清单
六年级下核心考点清单:
1. 小学数学知识的巩固和运用:加减乘除的运算技巧、分数、百分数、小数、单位换算等。
2. 图形的认识和性质:平行四边形、长方形、正方形、三角形、圆等图形的性质、面积和周长的计算。
3. 数据的处理和分析:图表的读取和分析、统计图的制作和解读、平均数的计算等。
4. 代数的初步学习:代数式的认识和运算、方程的解法、一元一次方程的解法等。
5. 几何图形的绘制和变换:几何图形的画法、图形的平移、旋转和翻折等基本变换。
6. 时、空和形的关系:时间的计算和换算、空间的方位和位置、立体图形的认识和展开等。
7. 逻辑思维和问题解决:逻辑思维的训练、问题解决的方法和策略、应用题的解题思路等。
8. 数学语言和表达:数学语言的运用、数学步骤和过程的书写、数学问题的表述等。
这些是六年级下学期数学的核心考点,学生需要掌握这些知识和技能,才能够顺利完成六年级的数学学习。
六年级下册数学知识点(全面)
第一单元:负数1、负数:负数是数学术语,指小于0的实数,如-3。
任何正数前加上负号都等于负数。
在数轴线上,负数都在0的左侧,所有的负数都比自然数小。
负数用负号“-”标记,如-2,-5.33,-45,-0.6等。
2、正数:大于0的数叫正数(不包括0)。
若一个数大于零(>0),则称它是一个正数。
正数的前面可以加上正号“+”来表示。
正数有无数个,其中分正整数,正分数和正无理数。
3、正数的几何意义:数轴上0右边的数叫做正数。
4、0既不是整数,也不是负数。
5、数轴:规定了原点,正方向和单位长度的直线叫数轴。
所有的实数都可以用数轴上的点来表示。
也可以用数轴来比较两个实数的大小。
6、数轴的三要素:原点、单位长度、正方向。
第二单元:百分数(二)1、折扣:商品按原定价格的百分之几出售,叫做折扣。
通称“打折”。
几折就表示十分之几,也就是百分之几十。
例如八折=108=0.8=80﹪,六折五=0.65=65﹪。
2、成数:农业收成,经常用“成数”来表示。
现广泛应用于表示各行各业的发展变化情况。
一成是十分之一,也就是10%。
三成五就是十分之三点五,也就是35%。
3、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来源之一。
国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
(3)应纳税额:缴纳的税款叫做应纳税额。
(4)税率:应纳税额与各种收入的比率叫做税率。
(5)应纳税额的计算方法:应纳税额 = 总收入 × 税率4、利率(1)存款分为活期、整存整取和零存整取等方法。
(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
(3)本金:存入银行的钱叫做本金。
(4)利息:取款时银行多支付的钱叫做利息。
(5)利率:利息与本金的比值叫做利率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学下册各单元知识点:第二单元圆柱和圆锥
1、认识圆柱和圆锥,掌握它们的基本特征。
认识圆柱的底面、侧面和高。
认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×πr2
7、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×h
8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×h
(进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。
这种取近似值的方法叫做进一法。
)
9、圆锥只有一个底面,底面是个圆。
圆锥的侧面是个曲面。
10、从圆锥的顶点到底面圆心的距离是圆锥的高。
圆锥只有一条高。
(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。
)
11、把圆锥的侧面展开得到一个扇形。
12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷3
13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。