锂电池电解液详解

合集下载

锂电池电解液基础知识

锂电池电解液基础知识

锂离子电池电解液1 锂离子电解液概况电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。

电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。

有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。

自1991年锂离子电池电解液开发成功,锂离子电池很快进入了笔记本电脑、手机等电子信息产品市场,并且逐步占据主导地位。

目前锂离子电池电解液产品技术也正处于进一步发展中。

在锂离子电池电解液研究和生产方面,国际上从事锂离子电池专用电解液的研制与开发的公司主要集中在日本、德国、韩国、美国、加拿大等国,以日本的电解液发展最快,市场份额最大。

国内常用电解液体系有EC+DMC、EC+DEC、EC+DMC+EMC、EC+DMC+DEC等。

不同的电解液的使用条件不同,与电池正负极的相容性不同,分解电压也不同。

电解液组成为lmol/L LiPF6/EC+DMC+DEC+EMC,在性能上比普通电解液有更好的循环寿命、低温性能和安全性能,能有效减少气体产生,防止电池鼓胀。

EC/DEC、EC/DMC电解液体系的分解电压分别是4.25V、5.10V。

据Bellcore研究,LiPF6/EC+DMC与碳负极有良好的相容性,例如在Li x C6/LiMnO4电池中,以LiPF6/EC+DMC为电解液,室温下可稳定到4.9V,55℃可稳定到4.8V,其液相区为-20℃~130℃,突出优点是使用温度范围广,与碳负极的相容性好,安全指数高,有好的循环寿命与放电特性。

锂离子电池电解液成分比例

锂离子电池电解液成分比例

锂离子电池电解液成分比例【实用版】目录一、锂离子电池电解液的概述二、锂离子电池电解液的主要成分1.溶剂2.锂盐3.添加剂三、锂盐的种类及优缺点1.LiPF2.LiBFLiBOB3.LiDFOB4.LiTFSI5.LiFSI四、锂离子电池电解液的发展趋势正文一、锂离子电池电解液的概述锂离子电池电解液是锂离子电池的重要组成部分,其主要作用是在电池内部正负极之间传输离子,实现电能的储存和释放。

由于锂电池工作电压的原因,一般采用非水电解液体系作为锂电池的电解液。

二、锂离子电池电解液的主要成分锂离子电池电解液主要由三部分组成,分别是溶剂、锂盐和添加剂。

它们按一定比例在一定条件下调制而成。

三种原料质量占比分别为 80%-85%、10%-12%、3%-5%,成本占比也大致如此。

1.溶剂:溶剂是锂离子电池电解液的主要成分,其作用是溶解锂盐,使锂离子能够在电解液中顺利传输。

常用的溶剂有碳酸酯类、醚类等。

2.锂盐:锂盐是锂离子电池电解液中的关键成分,其质量直接影响着电池的性能。

理想的锂盐需要具有较小的缔合度,易于溶解于有机溶剂,保证电解液高离子电导率;阴离子有抗氧化性及抗还原性,还原产物利于形成稳定低阻抗 SEI 膜;化学稳定性好,不与电极材料、电解液、隔膜等发生有害副反应;制备工艺简单,成本低,无毒无污染。

3.添加剂:添加剂主要是用来改善电解液的性能,例如抗氧化、抗腐蚀、提高离子电导率等。

常用的添加剂有成膜添加剂、热稳定剂等。

三、锂盐的种类及优缺点不同的锂盐具有不同的性质和优缺点,下面对几种常用的锂盐进行介绍:1.LiPF:具有合适的溶解度和较高的离子电导率,能在 Al 箔集流体表面形成一层稳定的钝化膜,协同碳酸酯溶剂在石墨电极表面生成一层稳定的 SEI 膜。

但热稳定性较差,易发生分解反应。

2.LiBFLiBOB:具有较高的电导率、较宽的电化学窗口和良好的热稳定性,成膜性能好,可直接参与 SEI 膜的形成。

3.LiDFOB:具有较高的溶解度和电导率,与电池正极有很好相容性,能在 Al 箔表面形成一层钝化膜并抑制电解液氧化。

锂电池电解液

锂电池电解液

锂电池电解液1.碳酸乙烯酯:分子式: C3H4O3透明无色液体(>35℃),室温时为结晶固体。

闪点:160℃;可作为锂电池电解液的优良溶剂2.碳酸丙烯酯分子式:C4H6O3闪点(°C):>230 ,按一般低毒化学品规定储运。

3.碳酸二乙酯分子式:C5H10O3闪点25℃稳定性:稳定;危险标记 7(易燃液体);用作溶剂及用于有机合成4.碳酸二甲酯:C3H6O3闪点17 ℃(OC)。

爆炸上限(V/V):20.5% [1] 爆炸下限(V/V):3.1% [1] 5.碳酸甲乙酯闪点23°C。

由于甲乙基的不平衡性,该产品不稳定,不适宜长期储存。

按易燃化学品规定储运6.六氟磷酸锂潮解性强;易溶于水、还溶于低浓度甲醇、乙醇、丙酮、碳酸酯类等有机溶剂。

暴露空气中或加热时分解。

暴露空气中或加热时六氟磷酸锂在空气中由于水蒸气的作用而迅速分解,放出PF5而产生白色烟雾。

7.五氟化磷五氟化磷在常温常压下为无色恶臭气体,其对皮肤、眼睛、粘膜有强烈刺激性。

是活性极大的化合物,在潮湿空气中会剧烈产生有毒和腐蚀性的氟化氢白色烟雾。

五氟化磷被用作聚合反应的催化剂。

危险标记 6(有毒气体,无机剧毒品) 主要用途用于发生气体,并用作聚合反应催化剂8.氢氟酸本品根据《危险化学品安全管理条例》受公安部门管制。

无色透明发烟液体。

为氟化氢气体的水溶液。

呈弱酸性。

有刺激性气味,具有极强的腐蚀性,能强烈地腐蚀金属、玻璃和含硅的物体。

如吸入蒸气或接触皮肤会造成难以治愈的灼伤。

但对塑料、石蜡、铅、金、铂不起腐蚀作用。

能与水和乙醇混溶。

锂离子电池电解液简介

锂离子电池电解液简介

锂离子电池电解液简介一、电解液概况电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。

电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。

有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。

二、电解液组成2.1有机溶剂有机溶剂是电解液的主体部分,电解液的性能与溶剂的性能密切相关。

锂离子电池电解液中常用的溶剂有碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)等,一般不使用碳酸丙烯酯(PC)、乙二醇二甲醚(DME)等主要用于锂一次电池的溶剂。

PC用于二次电池,与锂离子电池的石墨负极相容性很差,充放电过程中,PC 在石墨负极表面发生分解,同时引起石墨层的剥落,造成电池的循环性能下降。

但在EC 或EC+DMC复合电解液中能建立起稳定的SEI膜。

通常认为,EC与一种链状碳酸酯的混合溶剂是锂离子电池优良的电解液,如EC+DMC、EC+DEC等。

相同的电解质锂盐,如LiPF6或者LiC104,PC+DME体系对于中间相炭微球C-MCMB材料总是表现出最差的充放电性能(相对于EC+DEC、EC+DMC体系)。

但并不绝对,当PC与相关的添加剂用于锂离子电池,有利于提高电池的低温性能。

2.2 电解质锂盐LiPF6是最常用的电解质锂盐,是未来锂盐发展的方向。

尽管实验室里也有用LiClO4,、LiAsF6等作电解质,但因为使用LiC104 的电池高温性能不好,再加之LiCl04本身受撞击容易爆炸,又是一种强氧化剂,用于电池中安全性不好,不适合锂离子电池的工业化大规模使用。

剖析锂电池电解液成分介绍及优势

剖析锂电池电解液成分介绍及优势

剖析锂电池电解液成分介绍及优势锂电池的一般是由正极材料、负极材料、电解液和隔膜组成,电解液是锂电池包重要组成部分,是电池中锂离子传输的载体,“神秘“的电解液到底是什么呢?小编通过搜寻各方资料整理了关于锂电池电解液成分及优势的相关知识,接下来就听小编来一一解析。

一、锂电池电解液成分介绍1.碳酸乙烯酯:分子式C3H4O3透明无色液体(>35℃),室温时为结晶固体.沸点:248℃/760mmHg,243-244℃/740mmHg;闪点:160℃;密度:1.3218;折光率:1.4158(50℃);熔点:35-38℃;本品是聚丙烯腈、聚氯乙烯的良好溶剂。

可用作纺织上的抽丝液;也可直接作为脱除酸性气体的溶剂及混凝土的添加剂;在医药上可用作制药的组分和原料;还可用作塑料发泡剂及合成润滑油的稳定剂;在电池工业上,可作为锂电池电解液的优良溶剂。

2.碳酸丙烯酯:分子式C4H6O3无色无气味,或淡黄色透明液体,溶于水和四氯化碳,与***,丙酮,苯等混溶。

是一种优良的极性溶剂。

本产品主要用于高分子作业、气体分离工艺及电化学.特别是用来吸收天然气、石化厂合成氨原料其中的二氧化碳,还可用作增塑剂、纺丝溶剂、烯烃和芳烃萃取剂等。

本品应储存于阴凉、通风、干燥处,远离火源,按一般低毒化学品规定储运。

3.碳酸二乙酯:分子式CH3OCOOCH3无色液体,稍有气味;蒸汽压1.33kPa/23.8℃;闪点25℃(可燃液体能挥发变成蒸气,跑入空气中.温度升高,挥发加快。

当挥发的蒸气和空气的混合物与火源接触能够闪出火花时,把这种短暂的燃烧过程叫做闪燃,把发生闪燃的最低温度叫做闪点.闪点越低,引起火灾的危险性越大.);熔点-43℃;沸点125.8℃;溶解性:不溶于水,可混溶于醇、酮、酯等多数有机溶剂;密度:相对密度(水=1)1.0;相对密度(空气=1)4.07;稳定性:稳定;危险标记7(易燃液体);主要用途:用作溶剂及用于有机合成。

二、锂电池电解液的优势电解液在锂电池包正、负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。

锂电池中电解液含量

锂电池中电解液含量

锂电池中电解液含量【实用版】目录1.锂电池电解液的概述2.锂电池电解液的成分及其作用3.锂电池电解液的制备方法4.锂电池电解液的安全注意事项5.结论正文一、锂电池电解液的概述锂电池电解液是锂电池的重要组成部分,其主要作用是在电池内部正负极之间传导离子,从而实现电能的储存和释放。

锂电池电解液一般由溶剂、电解质和添加剂组成,其中电解质是电解液的核心成分,其质量和性能直接影响到锂电池的性能和安全性。

二、锂电池电解液的成分及其作用1.溶剂:溶剂是锂电池电解液的主要成分之一,其作用是溶解电解质和其他添加剂,形成一个能够传导离子的溶液。

常见的溶剂有环己酮、甲醇、乙醇等。

2.电解质:电解质是锂电池电解液中起传导离子作用的物质,其种类繁多,常见的有六氟磷酸锂(LiPF6)、四氯化碳(CCl4)等。

3.添加剂:添加剂是为了改善锂电池电解液的性能而添加的一些物质,如抗凝剂、抗氧化剂、阻燃剂等。

三、锂电池电解液的制备方法1.配料:将电解质、溶剂和添加剂按照一定的比例混合在一起。

2.搅拌:将混合好的物料进行充分搅拌,使其形成一个均匀的溶液。

3.静置:将搅拌好的溶液静置一段时间,让其中的气泡逸出。

4.过滤:将静置后的溶液进行过滤,去除其中的杂质。

5.灌装:将过滤后的溶液灌装到电池外壳中,制成锂电池电解液。

四、锂电池电解液的安全注意事项1.锂电池电解液是强碱性的,遇水分解,因此在使用和储存过程中要注意防潮。

2.锂电池电解液挥发后重新在人体的表面溶解后分解出氢氧化锂,可能使人不舒服,甚至损伤眼睛,因此在使用和储存过程中要注意防护。

3.锂电池电解液遇大量水时,可能由于快速分解放热而爆炸,因此在使用和储存过程中要注意远离火源和热源。

4.在制备锂电池电解液时,要注意使用防护设备,如口罩、眼镜、手套等。

五、结论锂电池电解液是锂电池中不可或缺的组成部分,其质量和性能直接影响到锂电池的性能和安全性。

锂电池电解液简介演示

锂电池电解液简介演示
作用
在充电和放电过程中,电解液通 过可逆的锂离子迁移实现电能的 储存和释放。
电解液的构成
01
02
03
04
成分
电解液主要由有机溶剂、锂盐 和其他添加剂组成。
有机溶剂
通常采用碳酸酯类有机溶剂, 如碳酸乙烯酯(EC)、碳酸丙烯
酯(PC)等。
锂盐
核心成分,通常为锂离子盐, 如LiPF6、LiBF4等。
添加剂
06
相关案例及实践应用展示
案例一:某公司新型电解液研发成果展示
总结词
成果显著、具有突破性
VS
详细描述
该公司成功研发出一款新型锂电池电解液 ,具有高能量密度、长寿命、环保等优点 ,为锂电池行业带来了突破性的成果。
案例二
总结词
强强联合、性能卓越
详细描述
该公司将新型电池材料与新型电解液结合应 用,产生了强强联合的效果,电池性能得到 了显著提升。
动力电池领域对电解液的导电性能、 热稳定性和化学稳定性有较高的要求 ,以确保电池的安全和可靠运行。
储能领域
储能电站、储能系统等储能领域中,锂电池电解液作为关键 材料之一,承担着储存和释放电能的任务。
储能领域对电解液的循环寿命、安全性和成本有较高的要求 ,以确保储能系统的长期稳定运行和经济效益。
其他领域
特性
高电化学稳定性、低粘度、高离子导 电性、对电极材料兼容性好等。
添加剂电解液
常用添加剂
阻燃剂、过氧化稳定性、增强抗氧化性等。
特殊电解液
特殊类型
高温电解液、低温电解液、凝胶型电解液、固体电解质等。
特性
适应特殊环境要求、提高安全性、降低成本等。
为改善电解液性能而添加的成 分,如稳定剂、防过充剂、阻

锂电池电解液概述(范本模板)

锂电池电解液概述(范本模板)

锂离子电池电解液概述一、锂离子电池电解液电解液是锂离子电池四大关键材料之一,号称锂离子电池的血液,是锂离子电池获得高压、高比能等优点的保证.电解液主要由高纯度有机溶剂、电解质锂盐、必要添加剂等原料,在一定条件下,按一定比例配制而成.1.1有机溶剂有机溶剂一般用高介电常数溶剂于低粘度溶剂混合使用。

常用的电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质。

锂离子电池电解液中常用的有机溶剂有碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸丙烯酯(PC)、丙烯酸乙酯(EA)、丙烯酸甲酯(MA)等。

有机溶剂在使用前必须严格控制质量,溶剂的纯度于稳定电压之间有密切联系,有机溶剂的水分,对于配制合格电解液起着决定作用。

水分降低至10—6之下,能降低六氟磷酸锂的分解、减缓SEI膜的分解、防止气涨等.利用分子筛吸附、常压或减压蒸馏、通入惰性气体的方法,可以使水分含量达到要求。

为了获得具有高离子导电性的溶液,以便锂离子在其中快速移动,溶剂一般采用混合材料,如碳酸乙烯酯(EC)+碳酸二甲酯(DMC),碳酸乙烯酯(EC)+碳酸二乙酯(DEC).1.2电解质锂盐电解质锂盐占电解液成本最大,约占到电解液成本的40%左右。

LiPF6是最常用的电解质锂盐,其对负极稳定,电导率高,放电容量大,内阻小,充放电速度快。

但对水分和HF及其敏感,易发生反应,其操作应在干燥气氛(如手套箱)中进行,不耐高温,80℃~100℃发生分解反应,生成五氟化磷和氟化锂。

从成本、安全性等多方面考虑,六氟磷酸锂具有突出的离子电导率、较优的氧化稳定性和较低的环境污染等优点,是目前首选的锂离子电池电解质,也是商业化锂离子电池采用的主要电解质.除此之外还有LiBF4、LiPF6、LiBOB、LiFSI、LiPF2、LiTDI 等一系列安全性高、循环性能好的锂盐电解质体系得到关注。

锂电池电解液详解

锂电池电解液详解

锂电池电解液详解动力电池是电动汽车的关键部件,其性能直接决定了电动车的续航里程、环境适应性等关键参数。

当前主流动力电池为锂离子电池,具有能量密度高、体积小、无记忆效应、循环寿命长等优点,但仍然存在续航里程不足的问题。

电极材料决定了电池的能量密度,而电解液基本决定了电池的循环、高低温和安全性能。

锂电池电解液主要由锂盐、溶剂和添加剂三类物质组成。

电解液基本构成变化不大,创新主要体现在对新型锂盐和新型添加剂的开发,以及锂离子电池中涉及的界面化学过程及机理深入理解等方面。

锂盐锂盐的种类众多,但商业化锂离子电池的锂盐却很少。

理想的锂盐需要具有如下性质:(1)有较小的缔合度,易于溶解于有机溶剂,保证电解液高离子电导率;(2)阴离子有抗氧化性及抗还原性,还原产物利于形成稳定低阻抗SEI膜;(3)化学稳定性好,不与电极材料、电解液、隔膜等发生有害副反应;(4)制备工艺简单,成本低,无毒无污染不同种类的锂盐介绍LiPF6LiPF6是应用最广的锂盐。

LiPF6的单一性质并不是最突出,但在碳酸酯混合溶剂电解液中具有相对最优的综合性能。

LiPF6有以下突出优点:(1)在非水溶剂中具有合适的溶解度和较高的离子电导率;(2)能在Al箔集流体表面形成一层稳定的钝化膜;(3)协同碳酸酯溶剂在石墨电极表面生成一层稳定的SEI膜。

但是LiPF6热稳定性较差,易发生分解反应,副反应产物会破坏电极表面SEI膜,溶解正极活性组分,导致循环容量衰减。

LiBF4LiBF4是常用锂盐添加剂。

与LiPF6相比,LiBF4的工作温度区间更宽,高温下稳定性更好且低温性能也较优。

LiBOBLiBOB具有较高的电导率、较宽的电化学窗口和良好的热稳定性。

其最大优点在于成膜性能,可直接参与SEI膜的形成。

LiDFOB结构上LiDFOB是由LiBOB和LiBF4各自半分子构成,综合了LiBOB成膜性好和LiBF4低温性能好的优点。

与LiBOB相比,LiDFOB在线性碳酸酯溶剂中具有更高溶解度,且电解液电导率也更高。

锂离子电池电解液成分比例

锂离子电池电解液成分比例

锂离子电池电解液成分比例
摘要:
I.锂离子电池电解液概述
- 锂离子电池的工作原理
- 电解液的作用
II.锂离子电池电解液成分
- 溶剂
- 锂盐
- 添加剂
III.锂离子电池电解液成分比例
- 溶剂的比例
- 锂盐的比例
- 添加剂的比例
IV.锂离子电池电解液比例对电池性能的影响
- 电解液比例对电池容量的影响
- 电解液比例对电池循环寿命的影响
- 电解液比例对电池安全性能的影响
V.结论
正文:
锂离子电池电解液是锂离子电池的重要组成部分,它的主要功能是在电池正负极之间传输锂离子,从而实现电池的充放电。

电解液的成分及其比例对电
池的性能有着重要的影响。

锂离子电池电解液主要由溶剂、锂盐和添加剂组成。

溶剂是电解液的主要成分,通常占到电解液总量的80%-85%,它负责携带锂离子在电池内部传输。

锂盐是电解液中锂离子的来源,其比例通常在10%-12% 之间。

添加剂是为了改善电解液的性能而添加的,其比例在3%-5% 之间。

锂离子电池电解液成分的比例对电池性能有着重要的影响。

首先,电解液中溶剂的比例决定了电池的容量。

溶剂越多,电池容量越大,但电解液的电导率会降低,从而影响电池的充放电速度。

其次,锂盐的比例决定了电池的充放电次数。

锂盐越多,电池的充放电次数越多,但电池容量会降低。

最后,添加剂的比例对电池的性能也有重要影响。

适量的添加剂可以改善电解液的电导率和稳定性,从而提高电池的性能。

总的来说,锂离子电池电解液成分的比例对电池的容量、充放电次数和安全性都有着重要的影响。

锂离子电池电解液详细构成

锂离子电池电解液详细构成

锂离子电池电解液详细构成
锂离子电池电解液主要由三部分组成,主要为溶剂、锂盐、添加剂。

1.溶剂:在锂电池电解液成分中,溶剂的作用主要是用来溶解锂盐。

电解液中的溶剂主要有环状碳酸酯(PC、EC);链状碳酸酯(DEC、DMC、EMC);羧酸酯类(MF、MA、EA、MA、MP等)。

2.锂盐:优质的锂盐对于锂电池的能量密度、功率密度、宽电化学窗
口、循环寿命、安全性能等方面都有着较大的影响。

锂盐中常含有的元素有LiPF6、LiClO4、LiBF4等。

3.添加剂:锂电池电解液成分添加剂的种类主要有成膜添加剂、导电
添加剂、阻燃添加剂、过充保护添加剂、控制电解液中H2O和HF含量的添加剂、改善低温性能的添加剂、多功能添加剂。

如需获取更具体的信息,建议咨询电池制造领域的专业人员或查阅相关文献资料。

锂电池电解液主要成分详细介绍

锂电池电解液主要成分详细介绍

锂电池电解液主要成分详细介绍
锂电池电解液是锂离子电池中非常重要的组成部分,因为它能够影响电池的性能和寿命。

锂电池电解液主要包含以下几种主要成分:
1. 锂盐:锂电池电解液中含有锂盐,其中最常见的是锂离子电池中使用的锂盐是LiPF6,或者是其他锂盐,如LiBF4、LiClO4或LiAsF6等。

锂盐的作用是提供锂离子来实现电池的化学反应。

2. 有机溶剂:电解液中含有一种有机溶剂,通常是碳酸酯类、醚类、烷基碳酸类等。

这些溶剂的目的是提供离子传递的介质和溶解锂盐。

3. 添加剂:锂电池电解液中还含有一些添加剂,如抗氧化剂、抗腐蚀剂、稳定剂等。

这些添加剂有助于保护电池的电化学稳定性和耐久性。

4. 润湿剂:电池中有涉及多个组件,润湿剂用于在多层薄膜基板间形成均匀的润湿液膜,有助于电池的稳定及延长使用寿命。

以上是锂电池电解液主要成分的明细,它对锂电池的性能及电化学特性有着重要影响。

锂离子电池电解液成分比例

锂离子电池电解液成分比例

锂离子电池电解液成分比例摘要:一、锂离子电池电解液的概述二、锂离子电池电解液的主要成分三、锂离子电池电解液成分的比例四、锂离子电池电解液的创新与发展五、锂离子电池电解液的应用正文:一、锂离子电池电解液的概述锂离子电池电解液是锂离子电池的核心组成部分,它的主要作用是在电池内部传递锂离子,从而实现电能的储存和释放。

锂离子电池电解液一般采用非水电解液体系,主要由溶剂、锂盐和添加剂组成。

二、锂离子电池电解液的主要成分1.溶剂:溶剂是锂离子电池电解液的主要成分之一,它的主要作用是溶解锂盐和添加剂,以便于锂离子在电解液中传递。

溶剂的质量占比一般在80% 到85% 之间。

2.锂盐:锂盐是锂离子电池电解液的另一重要成分,它的主要作用是提供锂离子。

锂盐的质量占比一般在10% 到12% 之间。

3.添加剂:添加剂是锂离子电池电解液的辅助成分,它的主要作用是改善电解液的性能,例如提高电解液的离子电导率、抗氧化性等。

添加剂的质量占比一般在3% 到5% 之间。

三、锂离子电池电解液成分的比例锂离子电池电解液中,溶剂、锂盐和添加剂的质量占比分别为80% 到85%、10% 到12% 和3% 到5%。

这三种成分的比例对锂离子电池的性能有着重要的影响。

四、锂离子电池电解液的创新与发展在锂离子电池电解液的研究与开发过程中,人们一直在寻找具有更高离子电导率、更好的抗氧化性和抗还原性、更稳定的化学性质以及更简单和低成本的制备工艺的新型锂盐和添加剂。

这些创新有望进一步提高锂离子电池的性能。

五、锂离子电池电解液的应用锂离子电池电解液广泛应用于各种锂离子电池产品中,例如手机、笔记本电脑、电动汽车等。

对锂离子电池电解液的全方位解析

对锂离子电池电解液的全方位解析

近年来,现代社会的快速发展呼唤着先进的储能,以满足日益增长的能源供应和发电需求。

作为最有前途的储能系统之一,二次电池受到了广泛关注。

电解液是二次电池的重要组成部分,其成分与二次电池的电化学性能密切相关。

锂离子电池电解液主要由溶剂、添加剂和锂盐组成,在一定条件下,根据特性需要,按特定比例制备。

近日,河北科技大学陈爱兵教授与清华大学教授等从作用机理和失效机理方面分析了锂离子电池液体电解质的优势和目前存在的问题,总结了溶剂、锂盐和添加剂的研究进展,分析了锂离子电池电解质的未来发展趋势和要求,指出了先进锂离子电池电解质发展的新兴机遇。

图1、锂离子电池的应用锂离子电池原理图2、可充电锂离子电池的示意图。

LIBs的故障包括容量衰减、内阻增加、速率性能降低、气体产生、液体泄漏、短路和热失控,这些故障是由电池在使用或储存过程中的一系列复杂的化学和物理相互作用引起的(图3).一些副作用来自于有机电解质在高温下的不稳定性,,这就需要改进溶剂、锂盐和添加剂来延迟失效过程。

锂沉淀等失效现象,将严重影响LIB的性能。

对失效现象的深入分析,有利于提高锂离子电池的性能。

图3、电池热失控的诱因。

锂离子二次电池电解液锂离子二次电池因其高平均工作电压、低自放电率和长循环寿命而受到高度重视。

早期阶段的电池的电解质大多使用水作为溶剂系统。

基于水电解质的锂离子电池由于其安全性、环保性和低成本而引起了越来越多的关注。

水溶剂对各种类型的盐类具有良好的溶剂化性,溶剂化的离子会与水分子形成一个溶剂化的壳结构。

水包盐(WIS)电解质,如使用超浓缩的有机锂(Li)盐,对水性锂离子电池有吸引力。

Pan等人,通过使用定制的单粒子模型分析循环伏安法和电压分布,阐明了锂离子在不同浓度的LiFePO4作为活性电极的水溶液中的热力学和动力学行为。

这些基本认识对高浓度水电解质的开发具有重要价值。

目前,水基锂离子电池的发展仍然面临着许多挑战。

因此,非水电解质系统作为锂离子电池的电解质已经出现。

锂电池电解液基础知识

锂电池电解液基础知识

锂离子电池电解液1 锂离子电解液概况电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。

电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。

有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。

自1991年锂离子电池电解液开发成功,锂离子电池很快进入了笔记本电脑、手机等电子信息产品市场,并且逐步占据主导地位。

目前锂离子电池电解液产品技术也正处于进一步发展中。

在锂离子电池电解液研究和生产方面,国际上从事锂离子电池专用电解液的研制与开发的公司主要集中在日本、德国、韩国、美国、加拿大等国,以日本的电解液发展最快,市场份额最大。

国内常用电解液体系有EC+DMC、EC+DEC、EC+DMC+EMC、EC+DMC+DEC等。

不同的电解液的使用条件不同,与电池正负极的相容性不同,分解电压也不同。

电解液组成为lmol/L LiPF6/EC+DMC+DEC+EMC,在性能上比普通电解液有更好的循环寿命、低温性能和安全性能,能有效减少气体产生,防止电池鼓胀。

EC/DEC、EC/DMC电解液体系的分解电压分别是4.25V、5.10V。

据Bellcore研究,LiPF6/EC+DMC与碳负极有良好的相容性,例如在Li x C6/LiMnO4电池中,以LiPF6/EC+DMC为电解液,室温下可稳定到4.9V,55℃可稳定到4.8V,其液相区为-20℃~130℃,突出优点是使用温度范围广,与碳负极的相容性好,安全指数高,有好的循环寿命与放电特性。

锂电池电解液详解

锂电池电解液详解
LiPF3(C2F5)3, Li(C4F9SO2)(CF3SO2)N等 LiBOB 等
备注 应用最广 不稳定,电导率低 高温或高电压危险 有毒
腐蚀集流体
合成困难或价格昂贵 成膜性能好,溶解度 低
解离常数大小为LiN(CF3SO2)2 > LiAsF6 > LiPF6> LiClO4> LiBF4>LiCF3SO3 离子导电性大小为LiAsF6 > LiPF6> LiN(CF3SO2)2 > LiClO4 > LiBF4> LiCF3SO3 热稳定性顺序为LiAsF6~ LiCF3SO3 > LiBF4 > LiClO4 ~ LiN(CF3SO2)2> LiPF6
a) 固体反应体系和液体电解质 b) 液体和气体反应体系和固体电解质
电解质窗口的响应能级和电极中的电化学位的关系
关注要点
1. 有机溶剂氧化电位 通常alkyl carbonates > esters > ethers
2. 钝化活性物质表面SEI膜
3. 抗氧化与抗还原能力的平衡
3. 3 工作温度区间
电解液基础知识讲座
刘道坦 2007.1.19
主要内容
1. 锂离子电池电解液简介 2. 电解液的基本组成及成分性质 3. 电解液的设计 4. 电解液使用的若干问题
一)锂离子电池电解液简介
1. 1 前言
那是 一个夏 意初起 的夜晚 ,那是 我第一 次倾听 你并茂 声情的 夜晚, 那个夜 晚, 思 绪 在 你 款 款情深 的声音 里缓缓 地流动 ……整 个夜晚 都沉静 在你清 澈如水 的音韵
2ROCO2Li+H2O HF+ROLi Li2CO3+2HF ROCO2Li+2HF

锂离子电池电解液详解

锂离子电池电解液详解

锂电池培训-电解液一、电解液基础知识二、电解液添加剂知识三、电解液主盐四、电解液国内外厂家介绍一、电解液基础知识电解液为溶解有锂盐LiPF6、LiAsF6、LiBOB等的有机溶液;电解液的主要功能使为锂离子提供一个自由脱嵌的环境。

二、电解液添加剂知识⏹依非水电解液添加剂的作用机制分类:⏹1、SEI(solid electrolyte interface) 成膜添加剂⏹2、导电添加剂⏹3、阻燃添加剂⏹4、过充电保护添加剂⏹5、控制电解液中水和HF含量的添加剂⏹6、改善低温性能的添加剂⏹7、多功能添加剂1、SEI(solid electrolyte interface) 成膜添加剂有机成膜添加剂-硫代有机溶剂⏹硫代有机溶剂是重要的有机成膜添加剂,包括亚硫酰基添加剂和磺酸酯⏹添加剂。

ES(ethylene sulfite, 亚硫酸乙烯酯)、PS(propylene sulfite, 亚硫酸丙烯酯)、DMS(dimethylsulfite, 二甲基亚硫酸酯)、DES(diethyl sulfite,二乙基亚硫酸酯)、DMSO(dimethyl sulfoxide, 二甲亚砜)都是常用的亚硫酰基添加剂,亚硫酰基添加剂还原分解形成SEI膜的主要成分是无机盐Li2S、Li2SO3 或Li2SO4 和有机盐ROSO2Li,碳负极界面的成膜能力大小依次为:ES>PS>>DMS>DES,链状亚硫酰基溶剂不能用作PC基电解液的添加剂,因为它们不能形成有效的SEI 膜,但可以与EC溶剂配合使用,高粘度的EC 具有强的成膜作用,可承担成膜任务,而低粘度的DES 和DMS 可以保证电解液优良的导电性磺酸酯是另一种硫代有机成膜添加剂,不同体积的烷基磺酸酯如1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯、甲基磺酸乙酯和甲基磺酸丁酯具有良好的成膜性能和低温导电性能,是近年来人们看好的锂离子电池有机电解液添加剂有机成膜添加剂-卤代有机成膜添加剂卤代有机成膜添加剂包括氟代、氯代和溴代有机化合物。

锂电池电解液分类

锂电池电解液分类

锂电池电解液分类
锂电池电解液主要分为有机电解液和无机电解液两大类。

有机电解液是指由溶解锂盐的有机溶剂构成的电解液。

其中较常见的有机溶剂有碳酸酯类、醚类和混合溶剂等。

有机电解液具有较好的溶解性和导电性能,电池容量较高,但安全性相对较差,容易发生热失控和燃烧等问题。

无机电解液是指由溶解锂盐的无机溶剂构成的电解液。

常见的无机溶剂有甲酸锂、硫酸锂和磷酸锂等。

无机电解液具有较好的热稳定性和安全性,但电导率较低,容量较小,用于低功率的应用较为常见。

目前,大多数商用锂电池采用的是有机电解液,因其具有较高的能量密度和电导率。

但随着技术的发展,无机电解液正在逐渐得到重视,并在某些特定应用中得到应用,如高温环境下、高功率要求的应用领域。

锂电池中电解液含量

锂电池中电解液含量

锂电池中电解液含量(实用版)目录1.锂电池电解液的概述2.锂电池电解液的成分及其作用3.锂电池电解液的配制方法4.锂电池电解液的注意事项5.结论正文一、锂电池电解液的概述锂电池电解液是锂电池的重要组成部分,其主要作用是在电池的正负极之间传导离子,从而实现电池的充放电功能。

锂电池电解液通常由溶剂、盐和添加剂组成,其中溶剂负责溶解盐,盐则负责传导离子,添加剂则用于提高电解液的性能。

二、锂电池电解液的成分及其作用1.溶剂:锂电池电解液中的溶剂主要有 EC(碳酸乙烯酯)、DMC(二甲基碳酸酯)等,其作用是溶解盐,使盐能够在溶液中形成离子,从而实现电导。

2.盐:锂电池电解液中的盐主要有 LiClO4、LiPF6 等,其作用是在溶液中形成离子,并负责在电池的正负极之间传导离子。

3.添加剂:锂电池电解液中的添加剂主要有 LiBOB(双(三甲基硅氧基)锂)、LiDFOB(双(二甲基硅氧基)锂)等,其作用是提高电解液的稳定性、离子传导性能和耐电压性能。

三、锂电池电解液的配制方法1.将溶剂、盐和添加剂按一定比例混合在一起,搅拌均匀,即可得到锂电池电解液。

2.在配制过程中,需要注意以下几点:a.所有配料必须干燥,否则会影响电解液的性能;b.配制过程必须在干燥空气中进行,以防止电解液吸湿;c.配制好的电解液需要存放在密封的容器中,并存放在干燥处。

四、锂电池电解液的注意事项1.锂电池电解液是强碱性的,遇水分解,因此需要密封保存;2.锂电池电解液挥发后重新在人体的表面溶解后分解出氢氧化锂,可能使人不舒服,浓度较高时有可能损伤眼睛;3.锂电池电解液遇大量水时,可能由于快速分解放热而爆炸,因此需要特别注意安全。

五、结论锂电池电解液是锂电池中不可或缺的组成部分,其性能直接影响着锂电池的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15.1
18.4
90.1
3
90
21.7
-3.0
3.7
3.104
1.073
0.59
15.1
3.6
118.1
-43
127
25
-3.0
3.7
2.8
0.975
0.75
16
2.6
乙基甲基碳酸酯 EMC
104.1
-55
108
23
-3.0
3.7
2.957
1.0
0.65
2. 4 添加剂
用量少,见效快
特点:
(1) 较少用量即能改善电池的一种或几种性能; (2) 对电池性能无副作用,不与电池中其它材料发生副反应; (3) 与有机溶剂有较好的相溶性,甚至能完全溶于其中; (4) 价格相对较低; (5) 无毒性或毒性较小。
red ox
3.2
碳酸乙烯酯 Ethylene carbonate EC 丙稀碳酸酯 propylene PC 二甲基碳酸酯 DMC 二乙基碳酸酯 DEC
88.6
37
248
160
-3.0
89.78 20/oC 65
1.321
1.9
16.4
102
-49
242
128
-3.0
3.6
1.204
2.5
2. 2 锂盐
分类 分子式 备注 应用最广 不稳定,电导率低 高温或高电压危险
LiPF6
无机阴离子盐 LiBF4 LiClO4
LiAsF6
LiCF3SO3,LiN(C2F5SO2)2, LiC(CF3SO2)3 LiN(CF3SO2)2等 LiPF3(C2F5)3, Li(C4F9SO2)(CF3SO2)N等 LiBOB 等
1,离子电导率高 2,电化学稳定的电位范围宽 3,热稳定性好,工作温度范围宽 4,化学稳定性好,与集流体及活性物质不反应 5,无毒,无环境污染 6,价格便宜
二 、电解液的基本组成及成分性质
2.1 简介
锂盐(提供载流子:Li+) 电解液 有机溶剂(解离锂盐、提供Li+传输介质) 添加剂(少量使用,改善性能)
贮存及运输条件
应处于干燥通风的环境中,避免曝晒、雨淋,严禁烟火。
小型容器
大型容器
气体生成问题
1,预充化成阶段生成的气体 2,正常使用时生成的气体 3,过充时生成的气体
1)预充、化成生成的气体
2EC+2e-+2Li+ 2PC+2e-+2Li+ + CH3CH2=CH2 H2O+ (CH2OCO2Li)2 DMC+ e-+Li+ CH3*+H+ +e2CH3* (CH2OCO2Li)2 + CH2=CH2 CH3CH(OCO2Li)CH2(OCO2Li)
2.6
乙基甲基碳酸酯 EMC
104.1
-55
108
23
-3.0
3.7
2.957
1.0
0.65
电解液燃烧试验
使用方法和注意事项
1. 2. 3. 4.
作业场所保持空气干燥和通风良好。 吸湿性强,干燥环境下(水份小于20ppm)打开使用。 易燃,严禁一切明火,防高温,防静电。 操作中安全防护措施要齐全,一旦沾染,即刻用大量 清水冲洗。
一些常见电解质锂盐的物理化学性能
名称 结构 分子量 /g 溶点 /℃ 在溶剂中的 分解温度 /℃ 是否腐蚀 铝箔
LiBF4 LiPF6 LiAsF6
LiClO4 Li+CF3SO3简称LiTf -
93.9 151.9 195.9
106.4 155.9 286.9
293 200 340
236 >300 234b
从消防观点来说,液体闪点就是可能引起火灾的最低温度
常用有机溶剂的物理化学性质
电解液成分 Composition 分子量 熔点 /oC 沸点 /oC 闪点 oC 氧化还原窗 口 Vs. SCE 介电常数 /F.m-1 密度 g.cm3
粘度 /cp
DN
AN
结构图
red ox
3.2
碳酸乙烯酯 Ethylene carbonate EC 丙稀碳酸酯 propylene PC 二甲基碳酸酯 DMC 二乙基碳酸酯 DEC
Li2CO3 + CO2 + 2CH2OH CH3OCO2Li + CH3* CH4
CH3CH3 Li2CO3 + CO
2CO2 + 2e- + 2Li+
2)正常充放电电压范围内生成的气体
气体生成通常与酯交换有关:
主体成分与预充阶段基本一致,正常情况下没有太大变化
常用有机溶剂
2. 醚 ether
二甲醚DME, 四氢呋喃THF 等
3. 酯 ester
甲基已酸酯 MA 甲基丙酸酯 MP等
常用碳酸酯有机溶剂的物理化学性质
电解液成分 Composition 分子量 熔点 /oC 沸点 /oC 闪点 oC 氧化还原窗 口 Vs. SCE 介电常数 /F.m-1 密度 g.cm-3 粘度 /cp DN AN 结构图
石墨电极循环伏安图
(a)不含 VC
b) 含 5% VC
首次充电过程中先于溶剂化锂离子插层建立起优良的SEI 膜,允许锂离子自 由进出电极而溶剂分子无法穿越,从而阻止溶剂分子对电极的破坏,提高电 极的嵌脱锂容量和循环寿命
Comparison of the Rsei–E plots for the Li/graphite cells without and with vinylene carbonate, which were recorded during the first cycle.
手套箱
科研环境
生产环境
烘箱
电解液的可燃性
闪点:在规定试验条件下,液体或固体表面能产生闪燃的最低温度
闪点测定法分开口杯和闭口杯两种。 一般轻质油多用闭口杯法。重质油多用开口杯法。 开杯法比闭杯法测定结果高约10~30℃。 闪点是保证安全的指标,油品预热时温度不许达到闪点,一般不超 过闪点的2/3。
1MLiPF6在不同二元有机溶剂中的电导率
锂盐浓度对电导率的影响
20oC时不同锂盐在PC:DME(1:1, V/V)中的电导率
3.2. 电化学稳定性
电化学窗口
a) 固体反应体系和液体电解质
b) 液体和气体反应体系和固体电解质
电解质窗口的响应能级和电极中的电化学位的关系
关注要点
1. 有机溶剂氧化电位 通常alkyl carbonates > esters > ethers
2.4.2 过充电保护添加剂
具有氧化还原电对:邻位和对位二甲氧基取代苯; 聚合增加内阻,阻断充电 ,如联苯、环己基苯 等等
2.4.3 稳定剂
与H2O或HF作用,降低H2O与LiPF6的作用
2.4.4 改善高低温性能的添加剂 2.4.5 导电添加剂
与锂离子或者锂盐阴离子作用,减小Li+与阴离子间的相互作用,增 加Li+迁移数,减小阴离子迁移数和降低阴离子电化学活性
电解液基础知识讲座
刘道坦 2007.1.19
主要内容
1. 锂离子电池电解液简介 2. 电解液的基本组成及成分性质 3. 电解液的设计 4. 电解液使用的若干问题
一)锂离子电池电解液简介
1. 1 前言
Cu Al
LiMO2
Carbon
锂离子电池的工作原理
电解液的环境
1. 2 电解液的分类
1.3 有机电解液的性能要求
r
阿佛加德罗常数 离子的电荷 真空介电常数 溶剂的比介电常数 离子半径
溶剂介电常数越高,锂离子与阴离子间距 离越大,它们相互作用力就越弱, 越容易解离,自由锂离子数就越多
r
越大,锂离子溶剂化自由能越负, 越容易解离,小于 20时,锂盐解 离较少,
介电常数越大,极性越大,溶剂-溶剂作用越强,溶液粘度越高, 越不利于锂离子的传输
四) 电解液使用的若干问题

H2O, HF的影响
LiPF6
PF5+H2O
LiF + PF5
2HF+POF3 LiF+LixPOFy
消耗电解质
POF3 + ne- + nLi+
PF5 + ne- + nLi+
H2O + e- + Li+ 2ROCO2Li+H2O
LiF + LixPFy
LiOH+ 1/2H2 Li2CO3+CO2+2ROH LiF+ROH LiF+H2CO3 nLiF+ROH+H2CO3+ROH
锂电极表面SEI膜的生成过程示意图
负极表面的SEI膜FTIR光谱分析
正极表面的SEI膜FTIR光谱分析
气体添加剂;CO2, SO2等 无机成膜添加剂
成 膜 添 加 剂
固体添加剂;Li2CO3 等
碳酸酯
VC:碳酸亚乙烯酯等
有机成膜添加剂
硫代有机溶
ES
亚硫酸乙烯酯等
卤代有机成 膜添加剂
卤代EC 氯甲酸甲酯 等
88.6
37
248
160
-3.0
89.78 20/oC 65
1.321
1.9
16.4
பைடு நூலகம்
102
-49
242
128
-3.0
3.6
1.204
2.5
15.1
18.4
90.1
3
90
21.7
相关文档
最新文档