锂电池电解液基础知识

合集下载

锂电离子电池电解液基本概念

锂电离子电池电解液基本概念
为了满足以上要求就需要在电解液生产过程中控制有 机溶剂和锂盐的纯度和水分等指标,以确保电解液 在电池工作时充分、有效的发挥作用。
有机溶剂的选择标准
1.有机溶剂对电极应该是惰性的,在电池的充放 电过程中不与正负极发生电化学反应,稳定性好
2.有机溶剂应该有较高的介电常数和较小的黏度 以使锂盐有足够高的溶解度,保证高的电导率
但是砜类的熔点高和黏度大,成为它的最大缺点。
常见溶剂的物理性质
有机溶剂 沸点 EC 248 DMC 90 EMC 108 DEC 127 PC 241.7 MPC 130
DMSO 189 GBL 206
熔点 闪点 黏度 相对介电常数
36 150 1.86
89.6
3 15 0.59
3.1
-55 23 0.65
常用锂盐
LiClO4 LiAsF6 LiBF4 LiPF6 LiCF3SO3 LiN(CF3SO2)2 LiC(SO2CF3)3 新型的硼酸锂盐
几种常用锂盐的简单性能对比
❖ LiBF4:低温性能比较好,但是价格昂贵和溶解度 比较低;
❖ LiPF6:综合性能比较好,缺点是易吸水水解,热 稳定性差;
3.熔点低、沸点高、蒸气压低,从而使工作温度 范围较宽
4.与电极材料有较好的相容性,电极在其构成的 电率、成本、环境因素等方面的考虑
锂离子电池所使用的有机溶剂
1.碳酸酯类 2.羧酸酯类 3.醚类有机溶剂 4.含硫有机溶剂
1 碳酸酯类
碳酸酯类溶剂具有较好的电化学稳定性、较高的闪点 和较低的熔点在锂离子电池中得到广泛的使用。碳酸 酯类的溶剂就其结构而言,主要分为两类: 1.环状碳酸酯 PC和EC 2.链状碳酸酯 DMC、EMC、DEC
3

锂离子电池电解液的基础(终极版)

锂离子电池电解液的基础(终极版)
6
2:1溶剂一一常规溶剂
Solvent Structure Mw Melting point (℃)
EC
PC DMC DEC EMC
。o
「y一�
88
36.4
。 。飞o一y「0
'o)l_o,,.

0)1...0
102 -48.8 90 4.6 118 -74.3
/气。人。 。/ 104 -53
Boiling point (℃) 248
14
3:1离子传导特性一一混合溶剂(1)
·通常一种溶剂难以同时满足高的介 电常数和低粘度的要求, 因此需要 采用混合溶剂体系: 一 种溶剂提供高的介电常数: 另 一种溶剂提供低的粘度。
·二兀溶剂体系的介电常数和粘度可 以按下式计算:
乌= (1 - x2) ε I + Xzζz 1/s =ηl (1-xv,,2
1.063 0.969 1.006
·环状碳酸醋类溶剂具有极高的介电常数, 但是粘度也大。 ·链状碳酸醋的介电常数低, 但是粘度也低。 ·为了满足工作温度范围、 电导率等多方面的要求, 通常是将介电常数高的环 状碳酸酷和粘度低的链状碳酸醋混合使用。
7
2:1溶剂一一选择碳酸醋类溶剂的理由
·电极体系:Li/Mn02 一次锺电池I ·电解液:LiCIOiPC-DME
3
1电解液的功能与要求一一基本要求
电解液的理想状态: 1)对铿离子来说是优良的导体, 对电子来说是绝缘体。 2)在电极表面除了发生锺离子的迁移之外, 不发生其它副反应。 3)不与其它电池组件发生反应。 4)化学稳定性好。 5)安全、 环保。
电解液的现状: 1)受限于有机溶剂和键盐的选择, 离子电导率一般在5~15mS/cm范围。 2)由于钮离子电池的正极具有很强的氧化性, 而负极具有很强的还原性, 电

锂电池电解液

锂电池电解液

锂电池电解液1.碳酸乙烯酯:分子式: C3H4O3透明无色液体(>35℃),室温时为结晶固体。

闪点:160℃;可作为锂电池电解液的优良溶剂2.碳酸丙烯酯分子式:C4H6O3闪点(°C):>230 ,按一般低毒化学品规定储运。

3.碳酸二乙酯分子式:C5H10O3闪点25℃稳定性:稳定;危险标记 7(易燃液体);用作溶剂及用于有机合成4.碳酸二甲酯:C3H6O3闪点17 ℃(OC)。

爆炸上限(V/V):20.5% [1] 爆炸下限(V/V):3.1% [1] 5.碳酸甲乙酯闪点23°C。

由于甲乙基的不平衡性,该产品不稳定,不适宜长期储存。

按易燃化学品规定储运6.六氟磷酸锂潮解性强;易溶于水、还溶于低浓度甲醇、乙醇、丙酮、碳酸酯类等有机溶剂。

暴露空气中或加热时分解。

暴露空气中或加热时六氟磷酸锂在空气中由于水蒸气的作用而迅速分解,放出PF5而产生白色烟雾。

7.五氟化磷五氟化磷在常温常压下为无色恶臭气体,其对皮肤、眼睛、粘膜有强烈刺激性。

是活性极大的化合物,在潮湿空气中会剧烈产生有毒和腐蚀性的氟化氢白色烟雾。

五氟化磷被用作聚合反应的催化剂。

危险标记 6(有毒气体,无机剧毒品) 主要用途用于发生气体,并用作聚合反应催化剂8.氢氟酸本品根据《危险化学品安全管理条例》受公安部门管制。

无色透明发烟液体。

为氟化氢气体的水溶液。

呈弱酸性。

有刺激性气味,具有极强的腐蚀性,能强烈地腐蚀金属、玻璃和含硅的物体。

如吸入蒸气或接触皮肤会造成难以治愈的灼伤。

但对塑料、石蜡、铅、金、铂不起腐蚀作用。

能与水和乙醇混溶。

锂离子电池中电解液的组成

锂离子电池中电解液的组成

1、电解液的组成电解液的基本功能:在正极和负极之间传递锂离子,但是对电子绝缘,保证电池的充放电能够顺利进行。

理想的电解液要求:1)对锂离子来说是优良的导体,对电子来说是绝缘体;2)在电极表面除了发生锂离子的迁移之外,不发生其他副反应;3)不与其他电池组件发生反应;4)化学稳定性好;安全、环保;电解液的组成:锂离子电池电解液的组成主要包括有机溶剂、锂盐、添加剂。

2、有机溶剂理想溶剂的特点:1.介电常数高且黏度低;2.对锂盐有足够高的溶解度,保证高的电导率;3.沸点高且熔点低;4.化学稳定性好;电化学稳定性好;5.安全性和环境相容性;成本低;电解液中用的有机溶剂主要有以下几类:碳酸酯类、酸酸酯类、醚类有机溶剂、含硫有机溶剂。

2.1 常用碳酸酯类溶剂,如下表:碳酸酯类溶剂按结构可分为环状碳酸酯类和链状碳酸酯类。

环状碳酸酯类的溶剂具有极高的介电常数,但是黏度也较大;链状碳酸酯的介电常数低,但是黏度也低。

碳酸酯类溶剂的特点:碳酸酯类溶剂具有极高的介电常数;电化学稳定性好,氧化电位高;与石墨负电极相容性好,尤其是EC能够在石墨电极表面形成良好的SEI膜;环状碳酸酯和链状碳酸酯混合使用能满足锂电池工作温度、电导率等多方面的要求;绿色环保、低成本;2.2 新型溶剂——羧酸酯:2.3 新型溶剂——亚硫酸酯:3、锂盐理想的锂盐:易溶于有机溶剂且溶液的电导率高;阴离子具有较高的氧化和还原稳定性;化学稳定性好;电化学稳定性好;安全性好、环境友好;成本低;锂盐根据阴离子的不同,可分为无机锂盐和有机锂盐;3.1 常见的无机锂盐,如下表3.2 常见的有机锂盐,如下表平均离子迁移率:LiBF4> LiClO4> LiPF6 > LiAsF6> LiTf > LiImide解离常数:LiTf < LiBF4< LiClO4< LiPF6< LiAsF6< LiImideLiPF6的电导率较高;3.3 锂盐的优缺点LiPF6的优点:电导率高;电化学稳定性好;有效钝化铝箔;与石墨负极相容性好;成本较低。

一文读懂锂电池电解液

一文读懂锂电池电解液

一文读懂锂电池电解液在电解液这一块呢,我们要学习的一个核心的内容就是电化学(Electrochemistry)电化学那么废话不用多说,要真的深入的了解电解液还是要从最基础的机理来入手,结合电解液在锂电池中的作用可以知道有几点:1,电解液溶剂在化成时候参与成膜,有些添加剂比如VC也参与成膜2,充当锂离子移动的通道,运送锂离子到正负极之间。

表现上是这些作用,其实究其机理可以知道有关电荷转移(Charge transfer process),扩散传质(diffusion process)反应物和产物在电极静止液层中的扩散。

电极界面双电层充电(charging process of electric double layer),电荷的电迁移过程(migration process )主要是溶液中离子的电迁移过程,也称离子电导过程。

当电解液注入电池内部的时候,这个时候要引入一个概念,就是接触角(contact angle),不管是气体液体,还是固体,在接触的时候就会发生润湿现象,电解液注入电池内部,电池内部主要是正负极,隔膜等,那么就是液体接触固体,那么之间就会形成一个接触角θ,如果θ《90°,则液体较容易润湿固体,浸润性越好,然后电解液与极片浸润性好,那么在电池充放电过程中,效果就好。

如不是,则反之。

当化成开始的时候,之前都是物理的过程,这时候开始发生反应,电流通过电极时候,电化学反应开始,这时候就产生了界面上的反应物的消耗和产物的积累,出现了浓度差。

在电极通电的初期,扩散层很薄,浓度梯度很大,扩散传质速率很快,因此没有浓差极化出现/ 随着时间的推移,扩散层逐步向溶液内部发展,浓度梯度下降,扩散速率减慢,浓差极化慢慢变大。

这个时候就要引入等效电路来,因为在这个过程中,产生了两个电阻,一个是扩散阻抗Zw,一个是传荷电阻Rct,他们之间是串联关系,总的阻抗为法拉第阻抗。

那么电解液在这过程中,如何评价呢?我们知道一般的电解液中溶剂主要有环状碳酸酯(EC等)和线性碳酸酯(DMC等),一般来说环状碳酸酯的电化学动力学比线性碳酸酯的大,那么在选取溶剂的时候就要考虑到这点,有时候为了增大扩散速率就要多比例的线性碳酸酯。

锂离子电池电解液

锂离子电池电解液

锂离子电池电解液锂离子电池电解液是一种用于锂离子电池中的重要组成部分。

它是充放电过程中起到媒介和导电介质作用的液体。

锂离子电池电解液的质量和稳定性直接影响着锂离子电池的性能表现和安全性。

本文将介绍锂离子电池电解液的基本成分、特点、制备工艺和发展趋势。

锂离子电池电解液的基本成分包括有机溶剂、锂盐和添加剂。

有机溶剂一般采用碳酸酯、醚类、碳酸酯醚混合物等,它们具有较好的溶解性和电导率。

锂盐是电解液中的重要离子源,常见的有锂盐包括氯化锂、六氟磷酸锂、硫酸锂等。

添加剂主要用于改善电解液的性能,如增强电导率、提高锂离子迁移率、提高电池循环寿命等。

锂离子电池电解液具有较高的离解度和良好的电导率,能够提供足够的锂离子传输和储存能力。

此外,锂离子电池电解液还具有低的粘度、良好的能量储存和快速的离子传输速率等特点,使得锂离子电池具有高能量密度和快速充放电能力。

制备锂离子电池电解液的工艺主要包括溶剂处理、盐溶液配置和添加剂混合等步骤。

首先,通过对有机溶剂进行处理和纯化,去除其中的杂质和水份;然后将锂盐溶解于纯化后的有机溶剂中,配置成一定浓度的锂盐溶液;最后,根据需要,将添加剂逐一加入锂盐溶液中,并进行充分混合,以得到性能优良的锂离子电池电解液。

锂离子电池电解液的发展趋势主要体现在提高电解液的安全性、提高锂离子电池的能量密度和延长电池的循环寿命等方面。

为了提高安全性,研究人员致力于开发具有更低易燃性和更高抗热辐射性的电解液。

为了提高能量密度,需要开发更高容量的锂盐和有机溶剂,以提供更多的能量储存。

同时,还需要改进添加剂的性能,以增强电解液的稳定性和抗氧化性,延长电池的使用寿命。

综上所述,锂离子电池电解液作为锂离子电池的重要组成部分,对锂离子电池的性能和安全性具有重要影响。

随着科技的不断进步和人们对高性能电池的需求不断增加,锂离子电池电解液的研究和开发将会越来越重要。

通过持续的创新和改进,相信未来锂离子电池电解液将会更加安全、高效和可靠,为各种领域的电子设备和交通工具提供更好的能源解决方案。

锂电池电解液详解ppt课件

锂电池电解液详解ppt课件

H2O+ (CH2OCO2Li)2
Li2CO3 + CO2 + 2CH2OH
DMC+ e-+Li+
CH3OCO2Li + CH3*
CH3*+H+ +e-
36
1MLiPF6多元有机体系中的电导率
37
3. 4 安全特性
关注要点
1. 可燃性 2. 过充、过放、短路问题 3. 电解液氧化还原反应的放热、热失控问题 4. 高温下电极/电解液反应导致的热失控、爆炸
38
四) 电解液使用的若干问题
H2O, HF的影响
消耗电解质
LiPF6
LiF + PF5
清水冲洗。
46
贮存及运输条件
应处于干燥通风的环境中,避免曝晒、雨淋,严禁烟火。
小型容器
大型容器
47
气体生成问题
1,预充化成阶段生成的气体 2,正常使用时生成的气体 3,过充时生成的气体
48
1)预充、化成生成的气体
2EC+2e-+2Li+
2PC+2e-+2Li+ + CH3CH2=CH2
(CH2OCO2Li)2 + CH2=CH2 CH3CH(OCO2Li)CH2(OCO2Li)
2.4.2 过充电保护添加剂
具有氧化还原电对:邻位和对位二甲氧基取代苯; 聚合增加内阻,阻断充电 ,如联苯、环己基苯 等等
2.4.3 稳定剂
与H2O或HF作用,降低H2O与LiPF6的作用
2.4.4 改善高低温性能的添加剂 2.4.5 导电添加剂
与锂离子或者锂盐阴离子作用,减小Li+与阴离子间的相互作用,增 加Li+迁移数,减小阴离子迁移数和降低阴离子电化学活性

锂电池电解液培训资料

锂电池电解液培训资料

02
各国政府制定的相关法规和标准,如我国《危险化学品安全管
理条例》等。
行业标准
03
相关行业协会制定的规范和标准,如锂电池行业协会制定的电
解液使用规范等。
05 未来发展趋势与挑战
技术创新与突破方向
新型电解液材料研发
探索新型的电解质材料,以提高锂电池的能量密度、循环寿命和 安全性。
电解液生产工艺改进
碳酸酯类电解液
最常见的电解液类型,具有高电导率、低粘度等特点,广泛应用 于消费电子产品和电动汽车等领域。
醚酯类电解液
具有较高的电导率和较低的粘度,适用于高能量密度锂电池,但易 燃易爆,安全性较差。
氟代碳酸酯类电解液
具有较高的电导率和稳定性,对环境友好,但成本较高,且合成难 度较大。
02 电解液的制造工艺与技术
THANKS FOR WATCHING
感谢您的观看
优化电解液的生产工艺,降低成本,提高产量和产品质量。
电解液回收与再利用技术
研究电解液的回收和再利用技术,降低环境污染,实现可持续发展 。
市场发展机遇与挑战
1 2
新能源汽车市场的增长
随着新能源汽车市场的不断扩大,锂电池电解液 的需求量也将持续增长。
市场竞争加剧
随着新进入者的增多,锂电池电解液市场的竞争 将更加激烈。
电解液在锂电池中的作用
电导介质
电解液是离子传输的媒介,能够确保 锂离子在正负极之间快速、有效地传 输,从而提高锂电池的充放电性能。
阻燃剂
调节电池性能
电解液的种类和组成对锂电池的电化 学性能、循环寿命、安全性能等具有 重要影响。
电解液具有一定的阻燃性,有助于提 高锂电池的安全性能。
电解液的种类与特点

锂电池电解液知识详解(干货分享)

锂电池电解液知识详解(干货分享)

锂电池电解液知识详解(干货分享)动力电池是电动汽车的关键部件,其性能直接决定了电动车的续航里程、环境适应性等关键参数。

当前主流动力电池为锂离子电池,具有能量密度高、体积小、无记忆效应、循环寿命长等优点,但仍然存在续航里程不足的问题。

电极材料决定了电池的能量密度,而电解液基本决定了电池的循环、高低温和安全性能。

锂电池电解液主要由锂盐、溶剂和添加剂三类物质组成。

电解液基本构成变化不大,创新主要体现在对新型锂盐和新型添加剂的开发,以及锂离子电池中涉及的界面化学过程及机理深入理解等方面。

锂盐锂盐的种类众多,但商业化锂离子电池的锂盐却很少。

理想的锂盐需要具有如下性质:(1)有较小的缔合度,易于溶解于有机溶剂,保证电解液高离子电导率;(2)阴离子有抗氧化性及抗还原性,还原产物利于形成稳定低阻抗SEI膜;(3)化学稳定性好,不与电极材料、电解液、隔膜等发生有害副反应;(4)制备工艺简单,成本低,无毒无污染不同种类的锂盐介绍LiPF6LiPF6是应用最广的锂盐。

LiPF6的单一性质并不是最突出,但在碳酸酯混合溶剂电解液中具有相对最优的综合性能。

LiPF6有以下突出优点:(1)在非水溶剂中具有合适的溶解度和较高的离子电导率;(2)能在Al箔集流体表面形成一层稳定的钝化膜;(3)协同碳酸酯溶剂在石墨电极表面生成一层稳定的SEI膜。

但是LiPF6热稳定性较差,易发生分解反应,副反应产物会破坏电极表面SEI膜,溶解正极活性组分,导致循环容量衰减。

LiBF4LiBF4是常用锂盐添加剂。

与LiPF6相比,LiBF4的工作温度区间更宽,高温下稳定性更好且低温性能也较优。

LiBOBLiBOB具有较高的电导率、较宽的电化学窗口和良好的热稳定性。

其最大优点在于成膜性能,可直接参与SEI膜的形成。

LiDFOB结构上LiDFOB是由LiBOB和LiBF4各自半分子构成,综合了LiBOB成膜性好和LiBF4低温性能好的优点。

与LiBOB相比,LiDFOB在线性碳酸酯溶剂中具有更高溶解度,且电解液电导率也更高。

锂电池电解液基础知识

锂电池电解液基础知识

较好,但含有有毒的 As,使用受到限制; LiBF 6 化学及热稳定性不好且导电率不 高,虽然 LiPF6 会发生分解反应,但具有较高的离子导电率,因此目前锂离子电 池基本上是使用 L iPF6。目前商用锂离子电池所用的电解液大部分采用 LiPF6 的 EC/DMC ,它具有较高的离子导电率与较好的电化学稳定性。
3. 2 固体电解液
用 金 属 锂 直 接 用 作 阳极 材 料 具 有 很 高 的 可逆 容 量 , 其 理 论 容 量 高 达 3862mAh·g-1,是石墨材料的十几倍,价格也较低,被看作新一代锂离子电池最 有吸引力的阳极材料, 但会产生枝晶锂。 采用固体电解质作为离子的传导可抑制 枝晶锂的生长, 使得金属锂用作阳极材料成为可能。 此外使用固体电解质可避免 液态电解液漏液的缺点, 还可把电池做成更薄 (厚度仅为 0.1mm )、能量密度更高、 体积更小的高能电池。 破坏性实验表明固态锂离子电池使用安全性能很高, 经钉 穿、加热 ( 200℃)、短路和过充 (600%) 等破坏性实验,液态电解质锂离子电池会 发生漏液、爆炸等安全性问题,而固态电池除内温略有升高外 (<20℃ )并无任何 其它安全性问题出现。固体聚合物电解质具有良好的柔韧性、成膜性、稳定性、 成本低等特点,既可作为正负电极间隔膜用又可作为传递离子的电解质用。
LiPF 对负极稳定,放电容量大 ,电导率高 ,内阻小 ,充放电速度快,但对水分 和 HF 酸极其敏感,易于发生反应,只能在干燥气氛中操作 (如环境水分小于 20x10 的手套箱内 ),且不耐高温, 80℃~ IO0℃发生分解反应, 生成五氟化磷和氟化锂, 提纯困难, 因此配制电解液时应控制 LiPF6 溶解放热导致的自分解及溶剂的热分 解。国内生产的 LiPF 百分含量一般能够达标,但是 HF 酸含量太高,无法直接 用于配制电解液,须经提纯。过去 LiPF 依赖进口,但现在国内有一些厂家也能 提供质量好的产品, 如汕头市金光高科有限公司、 天津化工设计研究院、 山东肥 城市兴泰化工厂等。国外生产的 LiPF 质量较好,配制成电解液,水分和 HF 酸 含量稳定 ,电解液不会变粘发红。

锂离子电池电解液成分比例

锂离子电池电解液成分比例

锂离子电池电解液成分比例
摘要:
I.锂离子电池电解液概述
- 锂离子电池的工作原理
- 电解液的作用
II.锂离子电池电解液成分
- 溶剂
- 锂盐
- 添加剂
III.锂离子电池电解液成分比例
- 溶剂的比例
- 锂盐的比例
- 添加剂的比例
IV.锂离子电池电解液比例对电池性能的影响
- 电解液比例对电池容量的影响
- 电解液比例对电池循环寿命的影响
- 电解液比例对电池安全性能的影响
V.结论
正文:
锂离子电池电解液是锂离子电池的重要组成部分,它的主要功能是在电池正负极之间传输锂离子,从而实现电池的充放电。

电解液的成分及其比例对电
池的性能有着重要的影响。

锂离子电池电解液主要由溶剂、锂盐和添加剂组成。

溶剂是电解液的主要成分,通常占到电解液总量的80%-85%,它负责携带锂离子在电池内部传输。

锂盐是电解液中锂离子的来源,其比例通常在10%-12% 之间。

添加剂是为了改善电解液的性能而添加的,其比例在3%-5% 之间。

锂离子电池电解液成分的比例对电池性能有着重要的影响。

首先,电解液中溶剂的比例决定了电池的容量。

溶剂越多,电池容量越大,但电解液的电导率会降低,从而影响电池的充放电速度。

其次,锂盐的比例决定了电池的充放电次数。

锂盐越多,电池的充放电次数越多,但电池容量会降低。

最后,添加剂的比例对电池的性能也有重要影响。

适量的添加剂可以改善电解液的电导率和稳定性,从而提高电池的性能。

总的来说,锂离子电池电解液成分的比例对电池的容量、充放电次数和安全性都有着重要的影响。

锂离子电池电解液成分比例

锂离子电池电解液成分比例

锂离子电池电解液成分比例摘要:一、锂离子电池电解液的概述二、锂离子电池电解液的主要成分三、锂离子电池电解液成分的比例四、锂离子电池电解液的创新与发展五、锂离子电池电解液的应用正文:一、锂离子电池电解液的概述锂离子电池电解液是锂离子电池的核心组成部分,它的主要作用是在电池内部传递锂离子,从而实现电能的储存和释放。

锂离子电池电解液一般采用非水电解液体系,主要由溶剂、锂盐和添加剂组成。

二、锂离子电池电解液的主要成分1.溶剂:溶剂是锂离子电池电解液的主要成分之一,它的主要作用是溶解锂盐和添加剂,以便于锂离子在电解液中传递。

溶剂的质量占比一般在80% 到85% 之间。

2.锂盐:锂盐是锂离子电池电解液的另一重要成分,它的主要作用是提供锂离子。

锂盐的质量占比一般在10% 到12% 之间。

3.添加剂:添加剂是锂离子电池电解液的辅助成分,它的主要作用是改善电解液的性能,例如提高电解液的离子电导率、抗氧化性等。

添加剂的质量占比一般在3% 到5% 之间。

三、锂离子电池电解液成分的比例锂离子电池电解液中,溶剂、锂盐和添加剂的质量占比分别为80% 到85%、10% 到12% 和3% 到5%。

这三种成分的比例对锂离子电池的性能有着重要的影响。

四、锂离子电池电解液的创新与发展在锂离子电池电解液的研究与开发过程中,人们一直在寻找具有更高离子电导率、更好的抗氧化性和抗还原性、更稳定的化学性质以及更简单和低成本的制备工艺的新型锂盐和添加剂。

这些创新有望进一步提高锂离子电池的性能。

五、锂离子电池电解液的应用锂离子电池电解液广泛应用于各种锂离子电池产品中,例如手机、笔记本电脑、电动汽车等。

锂电池电解液基础知识

锂电池电解液基础知识

锂离子电池电解液1 锂离子电解液概况电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。

电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。

有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。

自1991年锂离子电池电解液开发成功,锂离子电池很快进入了笔记本电脑、手机等电子信息产品市场,并且逐步占据主导地位。

目前锂离子电池电解液产品技术也正处于进一步发展中。

在锂离子电池电解液研究和生产方面,国际上从事锂离子电池专用电解液的研制与开发的公司主要集中在日本、德国、韩国、美国、加拿大等国,以日本的电解液发展最快,市场份额最大。

国内常用电解液体系有EC+DMC、EC+DEC、EC+DMC+EMC、EC+DMC+DEC等。

不同的电解液的使用条件不同,与电池正负极的相容性不同,分解电压也不同。

电解液组成为lmol/L LiPF6/EC+DMC+DEC+EMC,在性能上比普通电解液有更好的循环寿命、低温性能和安全性能,能有效减少气体产生,防止电池鼓胀。

EC/DEC、EC/DMC电解液体系的分解电压分别是4.25V、5.10V。

据Bellcore研究,LiPF6/EC+DMC与碳负极有良好的相容性,例如在Li x C6/LiMnO4电池中,以LiPF6/EC+DMC为电解液,室温下可稳定到4.9V,55℃可稳定到4.8V,其液相区为-20℃~130℃,突出优点是使用温度范围广,与碳负极的相容性好,安全指数高,有好的循环寿命与放电特性。

锂电池电解液培训资料PPT(共 30张)

锂电池电解液培训资料PPT(共 30张)

1、SEI(solid electrolyte interface) 成 膜添加剂
有机成膜添加剂-硫代有机溶剂
硫代有机溶剂是重要的有机成膜添加剂,包括亚硫酰基添加剂和磺酸酯
添加剂。ES(ethylene sulfite, 亚硫酸乙烯酯)、PS(propylene sulfite, 亚硫 酸丙烯酯)、DMS(dimethylsulfite, 二甲基亚硫酸酯)、DES(diethyl sulfite, 二乙基亚硫酸酯)、DMSO(dimethyl sulfoxide, 二甲亚砜)都是常用的亚硫酰 基添加剂 ,亚硫酰基添加剂还原分解形成SEI膜的主要成分是无机盐Li2S、 Li2SO3 或Li2SO4 和有机盐ROSO2Li, 碳负极界面的成膜能力大小依次 为:ES>PS>>DMS>DES,链状亚硫酰基溶剂不能用作PC基电解液的添 加剂,因为它们不能形成有效的SEI 膜,但可以与EC溶剂配合使用,高粘 度的EC 具有强的成膜作用,可承担成膜任务,而低粘度的DES 和DMS 可 以保证电解液优良的导电性磺酸酯是另一种硫代有机成膜添加剂,不同体 积的烷基磺酸酯如1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯、甲基磺酸乙酯和 甲基磺酸丁酯具有良好的成膜性能和低温导电性能,是近年来人们看好的 锂离子电池有机电解液添加剂
在PC 基电解液中加入10%的1,2-三氟乙酸基乙烷[1,2-bis(trifluoracetoxy)-ethane, 简称BTE]后,电极在1.75V(vs.Li/Li+)发生成膜反应, 可有效抑制PC 溶剂分子的还原共插反应,并允许锂可逆地嵌入与脱嵌,提高 碳负极的循环效率。氯甲酸甲酯、溴代丁内酯的使用也可以使碳负极的不可 逆容量降低60%以上。
乙酰胺及其衍生物和含氮芳香杂环化合物,如对二氮(杂)苯与间二氮(杂)苯 及其衍生物[26]等具有相对较大的分子量可避免配体的共插,在有机电解 液中添加适量的这类物质,能够明显改善电池性能;

锂离子电池电解液知识课件

锂离子电池电解液知识课件
性能指标
评价电解液性能的主要指标包括电导率、稳定性、闪点、粘 度等。其中,电导率决定了离子传输的速度和效率,稳定性 则关乎电池的安全性能和使用寿命。
02
离子池解液
锂离子电池电解液的特性与要求
特性
高电导率、稳定性好、低黏度、 低蒸发率、低凝固点等。
具有良好的化学和电化学稳定 性,能够传递锂离子,并且对电 极材料无腐蚀作用。
VS
遵守法规
生产和使用锂离子电池电解液应遵守相关 法规和标准,确保其安全、环保和质量可 靠。
04
解液的市与 景
电解液的市场需求与规模
市场需求
随着电动汽车、移动设备等领域的快速发展,对锂离子电池的需求持续增长,进而带动电解液市场的 需求。
市场规模
全球电解液市场规模不断扩大,预计未来几年将继续保持增长态势。
锂离子电池电解液的种类与优缺点
01
02
03
种类
锂盐电解液、有机溶剂电 解液、固态电解质等。
优点
高能量密度、长寿命、环 保等。
缺点
易燃易爆、对温度敏感、 成本高等。
锂离子电池电解液的应用与发展趋势
应用
手机、笔记本电脑、电动汽车、储能 系统等。
发展趋势
提高能量密度和安全性、降低成本、 开发新型电解质材料等。
电解液的毒性
锂离子电池电解液含有有机溶剂和电解质盐,对人体和环境有一定的毒性。
处理方法
应按照相关规定和标准处理废弃的电解液,避免随意排放和丢弃;同时,应积极研发环保型的电解液,降低对环 境的危害。
电解液的安全与环保标准及法规
国际和国内标准
国际电工委员会(IEC)、美国保险商试 验所(UL)等国际机构以及中国、欧盟 等国家和地区都制定了关于锂离子电池 电解液的安全和环保标准及法规。

技术培训-电解液

技术培训-电解液

1.1*10-5
6.7*10-6
20℃[(mol/l)-2s-1]
8.5*10-5
4.4*10-5
4.0*10-5
1.6*10-5
30℃[(mol/l)-2s-1]
2.2*10-4
1.6*10-4
7.8*10-5
6.7*10-5
20µL水在不同体系50H后的对比
Density of electrolyt e(g/l) Density after addition of 20µl of water Change of desity in 50h after water added(%) 0.285 0.096 0.406 0.367
有机成膜添加剂有机成膜添加剂 卤代有机成膜添加剂
卤代有机成膜添加剂包括氟代、氯代和溴代有机化合物。这类添加剂借 助卤素原子的吸电子效应提高中心原子的得电子能力,使添加剂在较高的电 位条件下还原并有效钝化电极表面卤代EC、三氟乙基膦酸[tris(2,2,2trifluoroethyl)phosphite, 简称TTFP]、氯甲酸甲酯、溴代丁内酯及氟代乙酸基 乙烷等都是这类添加剂[23~25]。 在PC 基电解液中加入10%的1,2-三氟乙酸基乙烷[1,2-bis(trifluoracetoxy)-ethane, 简称BTE]后,电极在1.75V(vs.Li/Li+)发生成膜反应, 可有效抑制PC 溶剂分子的还原共插反应,并允许锂可逆地嵌入与脱嵌,提高 碳负极的循环效率。氯甲酸甲酯、溴代丁内酯的使用也可以使碳负极的不可 逆容量降低60%以上。
低沸点的有机阻燃剂[33~35]如三甲基磷酸酯(trimethyl phosphate,简称TMP),在受热的情况下首先气化: TMP(l)⎯→ TMP(g) ⎯ (1) 气态TMP 分子受热分解释放出阻燃自由基(如P·自由基): TMP(g) ⎯→ P· (2) 生成的阻燃自由基有捕获体系中氢自由基的能力: P·+ H·⎯→ PH (3) 从而阻止碳氢化合物燃烧或爆炸的链式反应的发生。

锂电池技术培训-电解液

锂电池技术培训-电解液

锂电池培训-电解液一、电解液基础知识二、电解液添加剂知识三、电解液主盐四、电解液国内外厂家介绍一、电解液基础知识电解液为溶解有锂盐LiPF6、LiAsF6、LiBOB等的有机溶液;电解液的主要功能使为锂离子提供一个自由脱嵌的环境。

二、电解液添加剂知识⏹依非水电解液添加剂的作用机制分类:⏹1、SEI(solid electrolyte interface) 成膜添加剂⏹2、导电添加剂⏹3、阻燃添加剂⏹4、过充电保护添加剂⏹5、控制电解液中水和HF含量的添加剂⏹6、改善低温性能的添加剂⏹7、多功能添加剂1、SEI(solid electrolyte interface) 成膜添加剂有机成膜添加剂-硫代有机溶剂⏹硫代有机溶剂是重要的有机成膜添加剂,包括亚硫酰基添加剂和磺酸酯⏹添加剂。

ES(ethylene sulfite, 亚硫酸乙烯酯)、PS(propylene sulfite, 亚硫酸丙烯酯)、DMS(dimethylsulfite, 二甲基亚硫酸酯)、DES(diethyl sulfite,二乙基亚硫酸酯)、DMSO(dimethyl sulfoxide, 二甲亚砜)都是常用的亚硫酰基添加剂,亚硫酰基添加剂还原分解形成SEI膜的主要成分是无机盐Li2S、Li2SO3 或Li2SO4 和有机盐ROSO2Li,碳负极界面的成膜能力大小依次为:ES>PS>>DMS>DES,链状亚硫酰基溶剂不能用作PC基电解液的添加剂,因为它们不能形成有效的SEI 膜,但可以与EC溶剂配合使用,高粘度的EC 具有强的成膜作用,可承担成膜任务,而低粘度的DES 和DMS 可以保证电解液优良的导电性磺酸酯是另一种硫代有机成膜添加剂,不同体积的烷基磺酸酯如1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯、甲基磺酸乙酯和甲基磺酸丁酯具有良好的成膜性能和低温导电性能,是近年来人们看好的锂离子电池有机电解液添加剂有机成膜添加剂-卤代有机成膜添加剂卤代有机成膜添加剂包括氟代、氯代和溴代有机化合物。

锂离子电池电解液知识

锂离子电池电解液知识

电解液的组成与作用—添加剂


控制电解液中水和HF含量的添加剂 有机电解液中存在痕量的水和HF对性能优 良的SEI膜的形成是有一定作用的,但水和 酸(HF)的含量过高,不仅会导致LiPF6的分 解,而且会破坏SEI膜 Al2O3、MgO、BaO和锂或钙的碳酸盐、 乙醇胺、碳化二亚胺类化合物、LiH、LiR、 含Si-N键的化合物、弱碱性阴离子树脂等

羧酸酯类有机溶剂 环状羧酸酯
• γ-丁内酯(γ-BL),在一次锂电池中得到应用, 遇水易分解,而且还具有较大的毒性。

链状羧酸酯
• 甲酸甲酯(MF)、乙酸甲酯(MA)、丙酸甲 酯(MP)和丙酸乙酯(EP)
电解液的组成与作用—有机溶剂

其它有机溶剂 含硫有机溶剂
• 如亚硫酸乙烯酯(ES)、亚硫酸丙烯酯 (PS)、亚硫酸二甲酯(DMS)和亚硫酸二 乙酯(DES)。
电解液的组成与作用—电解质

几种锂盐在溶剂体系中的特性变化规律 • 氧化稳定性(在EC/DMC中) • LiPF6> LiClO4>LiBF4>LiAsF6>LiN(SO2CF3)2&gPF6>LiClO4≈LiN(SO2CF3)2>LiBF4>L iCF3SO3 • 热稳定性:LiCF3SO3>LiN(SO2CF3)2> LiASF6>LiBF4>LiPF6 • 离子间缔合作用:LiCF3SO3 >LiBF4> LiClO4>LiPF6> LiN(SO2CF3)2 >LiASF6(在PC或 EC基电解液中)

有机溶剂的要求
• (1)适中的粘度和介电常数; • (2)较高的闪点和沸点与尽可能低的熔点; • (3)较宽的电化学稳定窗口; • (4)具有良好的热稳定性,使用温度尽可 能的宽; • (5)良好的化学和电化学稳定性,与电池 内的活性物质不发生反应; • (6)良好的安全性和环境相容性。

锂电离子电池电解液基本概念

锂电离子电池电解液基本概念
氧化的石墨在EC、EMC等电解液中能够迅速形成稳定的 SEI膜,从而减少电极的不可逆损失。
电解液组成对SEI膜的稳定性影响
电解液的组成在很大程度上决定了SEI膜的 化学组成。化学组成不同,膜的结构和性质 必然不同,因此电解液的组成是影响SEI膜 性质的关键。
杂质对SEI膜的稳定性影响
锂离子电池电解液对纯度要求很高,杂质往 往对电极电化学性能产生显著的影响。 H2O HF 正极溶解的阳离子
SEI膜的结构
有关SEI膜的导Li+机理目前有两种假设:
1.液相中的Li+到达SEI膜界面,借助SEI膜 锂盐组分发生阳离子互换传递 2.液相中的Li+去溶剂化后直接穿越SEI膜 微孔向电极本体迁移
SEI膜的形成是碳负极与电解液相互作用的结 果,其稳定性取决于电极和电解液的性质。 1.电极界面性质对SEI膜的稳定性影响 2.电解液组成对SEI膜稳定性的影响 3.电解液中杂质的影响 4.温度的影响 5.电流密度的影响
3
醚类有机溶剂
醚类有机溶剂介电常数低,黏度较小,但 是醚类的性质活泼,抗氧化性不好,故不 常用作锂离子电池电解液的主要成分,一 般做为碳酸酯的共溶剂或添加剂使用来提 高电解液的电导率.
4 含硫有机溶剂
含硫溶剂中最有可能在锂离子电池中使用的是砜类。 但是大部分砜类室温下为固体,只有与其它溶剂混 合才能构成液体电解液。此外砜类溶剂一般具有非 常高的稳定性和库仑效率,有利于提高电池的安全 性和循环性能。
保护——溶剂化的锂离子也在碳负极表面获得电子 而发生还原分解反应,这样的过程同样有锂盐和气 体生成,但是生成的锂盐电介质会沉积在碳负极表 面形成钝化膜,阻止溶剂嵌入还原。
关于碳负极表面的SEI膜,必须明确以下4个 方面: 1.SEI膜的形成机制 2.SEI膜的结构与形成SEI膜的反应 3.SEI膜的结构和导Li+机理 4.SEI膜的电极界面稳定性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锂离子电池电解液1 锂离子电解液概况电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂离子电池的“血液”,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。

电解液一般由高纯度的有机溶剂、电解质锂盐(六氟磷酸锂,LiFL6)、必要的添加剂等原料,在一定条件下,按一定比例配制而成的。

有机溶剂是电解液的主体部分,与电解液的性能密切相关,一般用高介电常数溶剂与低粘度溶剂混合使用;常用电解质锂盐有高氯酸锂、六氟磷酸锂、四氟硼酸锂等,但从成本、安全性等多方面考虑,六氟磷酸锂是商业化锂离子电池采用的主要电解质;添加剂的使用尚未商品化,但一直是有机电解液的研究热点之一。

自1991年锂离子电池电解液开发成功,锂离子电池很快进入了笔记本电脑、手机等电子信息产品市场,并且逐步占据主导地位。

目前锂离子电池电解液产品技术也正处于进一步发展中。

在锂离子电池电解液研究和生产方面,国际上从事锂离子电池专用电解液的研制与开发的公司主要集中在日本、德国、韩国、美国、加拿大等国,以日本的电解液发展最快,市场份额最大。

国内常用电解液体系有EC+DMC、EC+DEC、EC+DMC+EMC、EC+DMC+DEC等。

不同的电解液的使用条件不同,与电池正负极的相容性不同,分解电压也不同。

电解液组成为lmol/L LiPF6/EC+DMC+DEC+EMC,在性能上比普通电解液有更好的循环寿命、低温性能和安全性能,能有效减少气体产生,防止电池鼓胀。

EC/DEC、EC/DMC电解液体系的分解电压分别是4.25V、5.10V。

据Bellcore研究,LiPF6/EC+DMC与碳负极有良好的相容性,例如在Li x C6/LiMnO4电池中,以LiPF6/EC+DMC为电解液,室温下可稳定到4.9V,55℃可稳定到4.8V,其液相区为-20℃~130℃,突出优点是使用温度范围广,与碳负极的相容性好,安全指数高,有好的循环寿命与放电特性。

2 电解液组成2.1有机溶剂有机溶剂是电解液的主体部分,电解液的性能与溶剂的性能密切相关。

锂离子电池电解液中常用的溶剂有碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)等,一般不使用碳酸丙烯酯(PC)、乙二醇二甲醚(DME)等主要用于锂一次电池的溶剂。

PC用于二次电池,与锂离子电池的石墨负极相容性很差,充放电过程中,PC在石墨负极表面发生分解,同时引起石墨层的剥落,造成电池的循环性能下降。

但在EC或EC+DMC复合电解液中能建立起稳定的SEI膜。

通常认为,EC与一种链状碳酸酯的混合溶剂是锂离子电池优良的电解液,如EC+DMC、EC+DEC等。

相同的电解质锂盐,如LiPF6或者LiC104,PC+DME体系对于中间相炭微球C-MCMB材料总是表现出最差的充放电性能(相对于EC+DEC、EC+DMC体系)。

但并不绝对,当PC与相关的添加剂用于锂离子电池,有利于提高电池的低温性能。

有机溶剂在使用前必须严格控制质量,如要求纯度在99.9%以上,水分含量必须达到10*l0 -6以下。

溶剂的纯度与稳定电压之间有密切联系纯度达标的有机溶剂的氧化电位在5V左右,有机溶剂的氧化电位对于研究防止电池过充、安全性有很大意义回。

严格控制有机溶剂的水分,对于配制合格电解液有着决定性影响。

水分降至10*l0-6之下,能降低LiPF6的分解、减缓SEI膜的分解、防止气涨等。

利用分子筛吸附、常压或减压精馏、通入惰性气体的方法,可以使水分含量达到要求。

2.2 电解质锂盐LiPF6是最常用的电解质锂盐,是未来锂盐发展的方向。

尽管实验室里也有用LiClO4,、LiAsF6等作电解质,但因为使用LiC104 的电池高温性能不好,再加之LiCl04本身受撞击容易爆炸,又是一种强氧化剂,用于电池中安全性不好,不适合锂离子电池的工业化大规模使用。

LiPF 对负极稳定,放电容量大,电导率高,内阻小,充放电速度快,但对水分和HF酸极其敏感,易于发生反应,只能在干燥气氛中操作(如环境水分小于20x10 的手套箱内),且不耐高温,80℃~IO0℃发生分解反应,生成五氟化磷和氟化锂,提纯困难,因此配制电解液时应控制LiPF6溶解放热导致的自分解及溶剂的热分解。

国内生产的LiPF百分含量一般能够达标,但是HF酸含量太高,无法直接用于配制电解液,须经提纯。

过去LiPF 依赖进口,但现在国内有一些厂家也能提供质量好的产品,如汕头市金光高科有限公司、天津化工设计研究院、山东肥城市兴泰化工厂等。

国外生产的LiPF 质量较好,配制成电解液,水分和HF酸含量稳定,电解液不会变粘发红。

2.3添加剂添加剂的种类繁多,不同的锂离子电池生产厂家对电池的用途、性能要求不一,所选择的添加剂的侧重点也存在差异。

一般来说,所用的添加剂主要有三方面的作用:(1)改善SEI膜的性能在锂离子电池电解液中加入苯甲醚或其卤代衍生物,能够改善电池的循环性能,减少电池的不可逆容量损失。

黄文煌对其机理做了研究,发现苯甲醚与溶剂的还原产物发生反应,生成的LiOCH,利于电极表面形成高效稳定的SEI膜,从而改善电池的循环性能。

电池的放电平台能够衡量电池在3.6V以上所能释放的能量,一定程度上反映电池的大电流放电特性。

在实际操作中,我们发现,向电解液中加入苯甲醚,能够延长电池的放电平台,提高电池的放电容量。

(2)降低电解液中的微量水和HF酸如前所述,锂离子电池对电解液中的水和酸要求非常严格。

碳化二亚胺类化合物能阻止LiPF6水解成酸,另外,一些金属氧化物如Al2O3,、MgO、BaO、Li2CO3、CaCO3等被用来清除HF,但是相对于LiPF6的水解而言除酸速度太慢,而且难于滤除干净。

(3)防止过充电、过放电电池生产厂家对电池耐过充放性能的要求非常迫切。

传统防过充电通过电池内部的保护电路,现在希望向电解液中加入添加剂,如咪唑钠圈、联苯类、咔唑类等化合物阴,该类化合物正处于研究阶段。

3锂离子电池电解液种类3.1液体电解液电解质的选用对锂离子电池的性能影响非常大,它必须是化学稳定性能好尤其是在较高的电位下和较高温度环境中不易发生分解,具有较高的离子导电率(> 10-3 S/cm ) ,而且对阴阳极材料必须是惰性的、不能侵腐它们。

由于锂离子电池充放电电位较高而且阳极材料嵌有化学活性较大的锂,所以电解质必须采用有机化合物而不能含有水。

但有机物离子导电率都不好,所以要在有机溶剂中加入可溶解的导电盐以提高离子导电率。

目前锂离子电池主要是用液态电解质,其溶剂为无水有机物如EC、PC、DMC、DEC,多数采用混合溶剂,如EC/DMC 和PC/DMC 等。

导电盐有LiClO 4、LiPF6、LiBF6、LiAsF6等,它们导电率大小依次为LiAsF6> LiPF6> LiClO 4>LiBF6。

LiClO4因具有较高的氧化性容易出现爆炸等安全性问题,一般只局限于实验研究中;LiAsF6离子导电率较高易纯化且稳定性较好,但含有有毒的As,使用受到限制;LiBF6化学及热稳定性不好且导电率不高,虽然LiPF6会发生分解反应,但具有较高的离子导电率,因此目前锂离子电池基本上是使用L iPF6。

目前商用锂离子电池所用的电解液大部分采用LiPF6的EC/DMC,它具有较高的离子导电率与较好的电化学稳定性。

3. 2固体电解液用金属锂直接用作阳极材料具有很高的可逆容量,其理论容量高达3862mAh·g-1,是石墨材料的十几倍,价格也较低,被看作新一代锂离子电池最有吸引力的阳极材料,但会产生枝晶锂。

采用固体电解质作为离子的传导可抑制枝晶锂的生长,使得金属锂用作阳极材料成为可能。

此外使用固体电解质可避免液态电解液漏液的缺点,还可把电池做成更薄(厚度仅为0.1mm )、能量密度更高、体积更小的高能电池。

破坏性实验表明固态锂离子电池使用安全性能很高,经钉穿、加热( 200℃)、短路和过充(600%) 等破坏性实验,液态电解质锂离子电池会发生漏液、爆炸等安全性问题,而固态电池除内温略有升高外(<20℃)并无任何其它安全性问题出现。

固体聚合物电解质具有良好的柔韧性、成膜性、稳定性、成本低等特点,既可作为正负电极间隔膜用又可作为传递离子的电解质用。

固体聚合物电解质一般可分为干形固体聚合物电解质(SPE)和凝胶聚合物电解质(GPE)。

SPE 固体聚合物电解质主要还是基于聚氧化乙烯(PEO),其缺点是离子导电率较低,在100℃下只能达到10-40cm。

在SPE 中离子传导主要是发生在无定形区,借助聚合物链的移动进行传递迁移。

PEO容易结晶是由于其分子链的高规整性,而晶形化会降低离子导电率。

因此要想提高离子导电率一方面可通过降低聚合物的结晶度,提高链的可移动性,另一方面可通过提高导电盐在聚合物中的溶解度。

利用接枝、嵌段、交联、共聚等手段来破坏高聚物的结晶性能,可明显地提高其离子导电率。

此外加入无机复合盐也能提高离子导电率。

在固体聚合物电解质中加入高介电常数低相对分子质量的液态有机溶剂如PC 则可大大提高导电盐的溶解度,所构成的电解质即为GPE 凝胶聚合物电解质,它在室温下具有很高的离子导电率,但在使用过程中会发生析液而失效。

凝胶聚合物锂离子电池已经商品化。

4 锂离子电池电解液具备条件锂离子电池采用的电解液是在有机溶剂中溶有电解质锂盐的离子型导体。

一般作为实用锂离子电池的有机电解液应该具备以下性能:(1)离子电导率高,一般应达到10-3~2*10-3S/cm;锂离子迁移数应接近于1;(2)电化学稳定的电位范围宽;必须有0~5V的电化学稳定窗口;(3)热稳定好,使用温度范围宽;(4)化学性能稳定,与电池内集流体和恬性物质不发生化学反应;(5)安全低毒,最好能够生物降解。

适合的溶剂需其介电常数高,粘度小,常用的有烷基碳酸盐如PC,EC等极性强,介电常数高,但粘度大,分子间作用力大,锂离于在其中移动速度慢。

而线性酯,如DMC(二甲基碳酸盐)、DEC(二乙基碳酸盐)等粘度低,但介电常数也低,因此,为获得具有高离子导电性的溶液,一般都采用PC+DEC,EC+DMC 等混合溶剂。

这些有机溶剂有一些味道,但总体来说,都是能符合欧盟的RoHS, REACH要求的,是毒害性很小、环保有好性的材料。

目前开发的无机阴离子导电盐主要有LiBF4,LiPF6,LiAsF6三大类,它们的电导率、热稳定性和耐氧化性次序如下:电导率:LiAsF6≥LiPF6>LiClO4>LiBF4热稳定性:LiAsF6>LiBF4>LiPF6耐氧化性:LiAsF6≥LiPF6≥LiBF4>LiClO4LiAsF6有非常高的电导率、稳定性和电池充电放电率,但由于砷的毒性限制了它的应用。

相关文档
最新文档