水样中重金属离子(Cu)的测定
离子色谱法测定水样中金属离子的方法原理及流程
离子色谱法测定水样中金属离子的方法原理及流程一、超声辅助浊点萃取(UA-CPE)结合火焰原子吸收光谱法测定水样中的痕量铅和镉的研究以混合表面活性剂NP-7和NP-9为萃取剂的浊点萃取法对环境水样中的痕量铅和镉进行萃取富集,所得的浊点萃取最优条件为:pH5.0,10μg/mLAPDC,0.5%(v/v)的混合表面活性剂,平衡温度55℃,平衡时间25min,3000rpm离心5min。
Cu和Pb的富集倍数分别为57和63,检测限为0.5μg/L和0.28μg/L,在10-500μg/L范围内线性良好。
方法的回收率为96.9%-100.4%,相对标准偏差RSD为2.6%-3.4%。
通过超声辅助手段,缩短了分相时间,提高了萃取效率。
二、超声辅助分散液液微萃取(UA-DLLME)结合火焰原子吸收光谱法测定水样中痕量重金属的研究以非离子表面活性剂TritonX-114代替常规的有机溶剂作为分散剂、CC14作为萃取剂的分散液液微萃取技术对环境水样中的铜、镍、铅、镉四种重金属离子进行萃取富集,所得的分散液液微萃取最优条件为:pH8.0,10μg/mLTAN,500pLTritonX-114(1%),100μLCCl4,超声时间10min,3000rpm离心5min。
Cu、Ni、Pb、Cd的富集倍数分别为105、66、28、106,检测限分别为0.4μg/L、0.45μg/L、0.5pg/L、0.4pg/L,线性范围在10-1000μg/L以内。
方法的回收率在93%以上,相对标准偏差RSD为2.6%-4.1%。
通过超声辅助手段,增强了分散效果,提高了萃取效率。
三、希夫碱合成及超分子溶剂萃取结合火焰原子吸收光谱法测定痕量铜和铅的研究以4-氨基安替吡林和对二甲氨基苯甲醛(DMAB)为原料合成了新的希夫碱试剂,并作为络合剂用于铜和铅的测定。
以壬酸/THF/水组成的超分子溶剂作为萃取剂对环境水样中的痕量铜和铅进行萃取富集,所得的超分子溶剂萃取最优条件为:pH7.0,10μg/mL希夫碱试剂,1mL超分子溶剂,涡旋时间5min,3500rpm 离心10min。
真空检测管-电子比色法快速测定水中铜离子
真空检测管-电子比色法快速测定水中铜离子导言:水是生命之源,而水中的铜离子则是我们生活中常见的重金属离子之一。
水体中的铜离子超标会对人体健康造成不良影响,因此对水中铜离子含量进行快速准确的检测尤为重要。
而真空检测管-电子比色法是一种快速测定水中铜离子含量的方法,本文将详细介绍这一检测方法的原理、过程和应用。
一、真空检测管-电子比色法的原理真空检测管-电子比色法是一种利用光谱分析技术测定溶液中金属离子含量的方法。
其原理简单来说就是利用金属离子与某种试剂形成色彩复合物,再通过光谱仪器对这种复合物进行测定。
在该方法中,电子比色仪能够通过吸收光谱分析得到试液中金属离子的浓度,从而实现对水质中铜离子含量的准确测定。
二、真空检测管-电子比色法的操作步骤1. 准备样品首先需要将采集的水样进行样品制备处理,去除混浊物质,然后通过过滤或离心等方法获得清澈的水样溶液。
2. 试剂配置根据检测需要,配置好所需的试剂溶液,通常选择电子比色法专用的铜分光光度计试剂进行配制。
3. 样品处理取一定量的水样溶液,加入适量的试剂溶液进行反应,形成铜离子与试剂的色彩复合物。
4. 电子比色测定将处理好的样品溶液置于电子比色仪中,通过吸收光谱分析仪器测定其吸光度值,并据此计算出水中铜离子的含量。
5. 结果判定根据测定结果,对水质中铜离子的含量进行评定,并据此来进行相应的水质处理。
三、真空检测管-电子比色法的优势1. 快速准确:真空检测管-电子比色法具有快速准确的特点,可以在短时间内获取水样中铜离子的含量数据,从而及时评估水质安全。
2. 操作简便:该检测方法操作简便,不需要复杂的仪器和操作步骤,只需经过简单的样品处理和试剂配置即可进行测定。
3. 灵敏度高:真空检测管-电子比色法对水样中铜离子含量的测定具有较高的灵敏度和准确度,能够满足对水质安全的严格要求。
四、真空检测管-电子比色法在水质监测中的应用真空检测管-电子比色法广泛应用于水质监测领域,尤其是对水中重金属离子的测定。
泳池金属离子检测报告
泳池金属离子检测报告
根据您的要求,以下是泳池金属离子检测报告的内容:
检测目的:
本次检测旨在确定泳池水中金属离子的含量,以评估水质的安全性。
检测方法:
我们采用了标准的分光光度法进行金属离子的定量分析。
泳池水样本经过预处理后,使用分光光度计测量吸收光谱,通过与标准曲线比对,可以确定每种金属离子的浓度。
样本收集:
从您的泳池中收集了一份代表性的水样品,并确保样品的保存和运输过程中不发生污染或其他因素的影响。
检测结果:
以下是我们检测得到的泳池金属离子的含量:
1. 铁离子(Fe):
2.5 mg/L
2. 铜离子(Cu):0.8 mg/L
3. 锌离子(Zn):1.2 mg/L
4. 锰离子(Mn):0.3 mg/L
结果分析:
根据国际标准和相关研究,泳池中金属离子的含量应该控制在一定的范围内,以确保水质的安全性和舒适度。
根据我们的检
测结果,泳池中铁、铜、锌和锰离子的含量都在正常范围内。
然而,我们建议定期进行检测以确保水质一直保持在安全标准内。
结论:
根据我们的检测结果,泳池金属离子的含量符合安全标准。
建议您继续保持泳池水的合理维护和管理,包括定期检测水质、清洁过滤系统、适时更换水质。
请注意,此报告仅涵盖了金属离子的检测结果。
对于其他水质指标(如酸碱度、微生物污染等),还需要进行更全面的检测和分析。
如果您需要进一步提供的服务,请随时与我们联系。
谢谢!。
浅谈原子吸收光谱法对水样中部分金属离子的测定
浅谈原子吸收光谱法对水样中部分金属离子的测定摘要:针对水样中部分金属离子的测定工作之中,我们最为常用的方法就是原子吸收光谱法,该方法操作简单,结果准确,测试时间短,为我们科学工作者和环境工作的分析测试工作带来了极大的方便。
关键词:原子吸收光谱法水样测试金属离子分析一、前言原子吸收光谱法是化学分析发展的产物,其主要的原理是利用原子跃迁产生的能量进行分析的一种现代分析与测试方式。
这种方式的主要特点是可以利用极少的样品给出十分准确的测量结果,正是由于这个原因,原子吸收光谱法在近几年来获得了快速的发展,并广泛的应用于社会生活与生产的很多方面。
基于此,本文针对原子吸收光谱法对水样中部分金属离子的测定进行了系统的介绍,希望可以促进我国原子吸收光谱法的普及,更好的为我们的日常生活与生产所服务。
二、原子吸收光谱法1.原子吸收光谱法的基本原理原子吸收光谱法的基本原理是根据自然界中的每种物质的原子都是具有特定的原子结构和外层电子排列,不同的原子被激发后,其电子具有不同的跃迁,能辐射出不同波长的光,即每种元素都有其特征的光谱线。
操作中使样品处于第一激发态,仪器使原子从不稳定的激发态回到稳定的基态,并释放出多余的能量,辐射的光线为共振线。
由于各种元素的共振线不同,并具有一定的特征谱线,所以原子吸收能在同种元素的一定特征波长中观察到,当光源发射的某一特征波长的光通过待测样品的原子蒸气时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使光源发出的入射光减弱,可以将特征谱线因吸收而减弱的程度用吸光度A表示,A与被测样品中的待测元素含量成正比,即基态原子的浓度越大,吸收的光量越多。
通过测定吸收的光量,就可求出样品中待测的金属及类金属物质的含量。
2.原子吸收光谱分析仪器仪器主要由光源、原子化器、分光系统、检测系统和显示装置五部分组成。
原子吸收光谱分析仪器的原理是通过原子化器将待测元素在高温或是化学反应作用下变成原子蒸气,由光源灯辐射出待测元素的特征光,在通过待测元素的原子蒸气时发生光谱吸收,透射光的强度与被测元素浓度成反比,在仪器的分光系统中,透射光信号经光栅分光,将待测元素的吸收线与其他谱线分开,将光信号转换成电信号,再经放大、处理,由CPU及外部的电脑分析、计算,最终在屏幕上显示待测样品中微量及超微量的多种金属和类金属元素的含量和浓度。
透射光谱法测定水体中重金属含量
透射光谱法测定水体中重金属含量一、透射光谱法简介透射光谱法是一种基于光的吸收特性来分析物质成分的分析方法。
这种方法利用物质对特定波长光的吸收特性,通过测量溶液的透射光强度来确定溶液中某些成分的含量。
透射光谱法在化学分析、环境监测等领域有着广泛的应用,尤其是在水体中重金属含量的测定中,显示出其独特的优势。
1.1 透射光谱法的基本原理透射光谱法的基本原理是比尔-朗伯定律,即溶液的吸光度与溶液中溶质的浓度成正比。
当一束单色光通过溶液时,溶液中的溶质会吸收特定波长的光,导致透射光强度的减弱。
通过测量透射光的强度,可以计算出溶液中溶质的吸光度,进而推算出溶质的浓度。
1.2 透射光谱法的应用优势透射光谱法具有操作简便、灵敏度高、检测速度快等优点。
在水体中重金属含量的测定中,这种方法不仅可以快速准确地测定出重金属离子的浓度,还可以同时测定多种重金属离子,大大提高了分析的效率和准确性。
二、水体中重金属含量的测定水体中的重金属污染是一个严重的环境问题,对人类健康和生态系统都会造成极大的危害。
因此,准确测定水体中重金属含量具有重要的意义。
透射光谱法在这一领域中的应用,为重金属污染的监测和控制提供了有效的技术支持。
2.1 水体中重金属的来源水体中的重金属主要来源于工业废水、农业污染、生活污水等。
工业生产过程中排放的废水常常含有大量的重金属离子,如铅、镉、汞、铬等。
农业活动中使用的化肥和农药也会带来重金属污染。
此外,生活污水中的重金属离子也会通过下水道进入水体,进一步加剧水体的污染。
2.2 重金属对环境的影响重金属离子对环境的影响是多方面的。
首先,重金属离子具有较高的毒性,能够通过食物链进入人体,对人体健康造成危害。
其次,重金属离子能够抑制水生生物的生长和繁殖,破坏水生生态系统的平衡。
此外,重金属离子还能够通过土壤和水体的相互作用,进入土壤,影响土壤的肥力和作物的生长。
2.3 透射光谱法在水体重金属测定中的应用透射光谱法在水体重金属测定中的应用主要体现在以下几个方面:- 快速测定:透射光谱法可以在短时间内完成对水样中重金属离子的测定,大大提高了检测的效率。
原子吸收分光光度法测定水中重金属的铜、锌、铅、镉
原子吸收分光光度法测定水中重金属的铜、锌、铅、镉原子吸收分光光度法能够有效测定水中的重金属元素,其测定结果精确度高,得到了广泛的应用。
本文采用原子吸收分光光度法,对水体中的重金属铜、锌、铅、镉等进行了测定,为有关需要提供参考。
标签:原子吸收分光光度法;重金属;测定0 引言随着社会经济的快速发展以及工业化进程的不断推进,水体污染问题日益突出,其中,重金属污染尤为严重。
水体中的重金属铜、锌、铅、镉元素对人体健康具有较大的危害,对其进行测定,为水体重金属污染控制提供依据具有十分重要的意义。
基于此,笔者进行了相关介绍。
1 铜、锌测定试验部分1.1 测定方法原理将样品或消解处理过的样品直接吸入火焰,在火焰中形成的原子对特征电磁辐射产生吸收,将测得的样品吸光度和标准溶液的吸光度进行比较,确定样品中被测元素的浓度。
1.2 主要试剂及仪器试剂:硝酸,优级纯;高氯酸,优级纯;1%硝酸溶液;1000mg/L铜标准溶液、500mg/L锌标准溶液(环境保护部标准样品研究所生产)。
仪器:电热板;AA6880原子吸收分光光度计,岛津企业管理(中国)有限公司生产;原子吸收分光光度计相应辅助设备。
1.3 试验过程1.3.1 样品的预处理取100mL水样置于200mL烧杯中,加入5mL硝酸溶液,在电热板上加热消解(样品不沸腾),蒸至10mL左右,加入5mL硝酸溶液和2mL高氯酸,再蒸至1mL左右。
如果消解不完全,再加入5mL硝酸和2mL高氯酸,再蒸至1mL 左右。
取下冷却,加水溶解残渣,转移至25mL的容量瓶中,用水稀释至标线。
取1%硝酸溶液,按上述相同的程序操作,以此为空白样。
1.3.2 校準曲线的配制取1000mg/L铜标准溶液5.00mL、500mg/L,锌标准溶液2.00mL于100mL 容量瓶中,用1%硝酸溶液定容至标线,配制成含铜50.0mg/L、锌10.0mg/L的混合标准溶液。
分别取此混合标准溶液0、0.20、0.50、1.00、2.00、3.00、4.00、5.00mL于100mL容量瓶中,用1%硝酸溶液定容,配制成含铜浓度分别为0、0.10、0.25、0.50、1.00、2.00mg/L的标准系列和含锌浓度0、0.02、0.05、0.10、0.20、0.30、0.50mg/L的标准系列。
火焰原子吸收光谱法测定污水中的铜实验报告
火焰原子吸收光谱法测定污水中的铜摘要本实验采用火焰原子吸收光谱法,以空心阴极灯为光源,通过制作校准曲线,定量分析废水样品中铜的含量。
并通过实验研究该方法的最佳实验条件,同时测定该分析方法的灵敏度、检出限和精密度。
最终测得废水样品中铜的含量为0.70 μg·mL-1,符合国家关于废水排放标准中铜含量的二级标准;灵敏度为0.17 μg·mL-1/1%,检出限为0.04 μg·mL-1,精密度为5.3%。
本实验方法具有操作简单,进样量少,灵敏度高,定量准确迅速,成本低的优点。
关键词火焰原子吸收光谱法校准曲线废水铜Determination of Cu in Wastewater by Flame AtomicAbsorption SpectrotometryCHEN Jia-jun(School of Chemistry and Chemical Engineering, Sun Yat-Sen University,Guangzhou, 510275)Abstract Copper content in the wastewater sample was determined by Flame Atomic Absorption Spectrotometry. Different experimental conditions were adjusted to confirm apparatus's optimal experimental and analytic state. Response rate, detection limit, RSD and accuracy of the analytical method were explored through a series of tests in terms of normal and experimental sample. Experimental results showed that copper content of the wastewater sample is 0.70 μg·mL-1, the response rate is 0.17 μg·mL-1/1%, the detection limit is 0.04 μg·mL-1 and RSD is 5.3%. This method has many advantages such as sensitive, accurate, low cost and so on.Keyword FAAS Wastewater Copper content Determine1.引言铜是一种带有紫红色光泽的过渡金属。
水中重金属检测方法
水中重金属检测方法水中重金属的检测方法有多种,其中常用的方法包括原子吸收光谱法(AAS)、电感耦合等离子体质谱法(ICP-MS)、电感耦合等离子体发射光谱法(ICP-OES)、化学计量法等。
首先,原子吸收光谱法是一种广泛应用于水中重金属检测的方法。
该方法利用样品中重金属元素吸收特定波长的光线的能力进行分析。
具体操作步骤包括:取一定量的水样,用适当的方法将其中的有机物和矿物质分离去除,然后将水样转为气态,通过气态的载气将样品中的重金属蒸发至炉内进行原子化,最后利用光源通过分光镜将特定波长的光线通过样品,测量吸收光的强度,通过比较吸收光强度与已知含量的标准溶液的吸收光强度的差异,从而确定样品中的重金属含量。
其次,电感耦合等离子体质谱法(ICP-MS)也是一种常用的水中重金属检测方法。
ICP-MS综合了电感耦合等离子体发射光谱法和质谱分析技术,具有高灵敏度、高准确性和高选择性等特点。
该方法通过将水样中的重金属元素离子化成为载气中的正离子,再将正离子加速,并通过质谱仪对其进行分析和计数,最后得出重金属元素的含量。
此外,电感耦合等离子体发射光谱法(ICP-OES)也常用于水中重金属的检测。
该方法利用样品中的重金属元素在气态的载气中产生激发态,之后发生跃迁并发出特定波长的光,通过光源产生的特定波长的光线通过样品,测量发射光的强度来推算重金属元素的含量。
最后,化学计量法也是一种常见的水中重金属检测方法。
该方法根据化学反应的消耗量来推算样品中重金属元素的含量。
具体步骤包括:将一定量的水样中的重金属元素与适量的特定试剂反应,生成特定沉淀或化合物,然后通过称重或体积计量特定沉淀或产物的重量或体积,从而推算出水样中重金属元素的含量。
总的来说,水中重金属检测方法主要包括原子吸收光谱法、ICP-MS、ICP-OES 和化学计量法等。
这些方法都具有一定的优点和适用范围,可以根据实际需求选择合适的方法进行检测。
铜离子检测方法
作空白实验。
由于所给试样中的铜离子含量相对较高,且铁和锌 离子对铜离子的影响较为严重,以上滴定分析在一 定程度上存在实验误差,尤其是对掩蔽不完全的情 况,为此可以采用将铜离子首先萃取与铁和锌离子 分离,再用各种对单一铜离子溶液检测的方法检测 方法样品中的铜离子浓度。
加2mL硫氰酸钾溶液,若无颜色变化,以此证明Fe3+完全 掩蔽,而过程中Zn2+对滴定无影响。
迅速加入5mL碘化钾溶液,用硫代硫酸钠标准溶液 滴定到溶液至浅黄色;
加3mL淀粉指示液,继续滴定至蓝色变浅,再加2mL 硫氰酸钾溶液, 以此来减弱磷酸盐络合物及Cu2I2对 I2的吸附,加快I2的释放;
氰化废水样品
1.没有仪器分 析条件;
2.不进行大倍 数稀释;
1.有仪器分析 的条件; 2.要求分析精
度较高,分析 速率较快;
容量分 析法
仪器分 析法
容量
分析 法
配位滴定法 改进碘量滴定法
萃取铜分析法
Cu2+、Fe3+、Zn2+都可以与EDTA发生1:1的配位,形 成稳定的配合物。293k下稳定常数如下表1-1所示。
RA的选择性荧光增强主要是由于Cu2+诱导分子中的酰 胺闭环结构发生开环,导致分子结构的共轭程度增大所 致。
在6.5×lO-8~2.9×10-6moL/L浓度范围内, RA可以有效检测Cu2+,而且RA对pH不敏感,可在 较宽的pH=4.1~10.5范围内高灵敏、高选择性地 检测Cu2+.
而其它常见离子如Na+、K+、Mg2+、Ca2+ 、 Mn2+ 、Cd2+ 、Cr3+、Co2+ 、Ni2+ 、Ag+、 Pb2+ 、Zn2+ 、Fe3+和Hg2+不引起或引起很小的紫 外—可见或荧光光谱变。
水质检验中重金属的测定方法研究
水质检验中重金属的测定方法研究摘要:随着全球工业化进程的不断深入,世界赖以生存的水资源已受到不同程度的污染。
一些地区的水污染严重影响了人们的健康,喝受污染的水会引起许多疾病。
从2019年开始,随着环境监测的重要性日益突出,地方政府已开始加强环境监督。
目前,我国的环境监测任务已经从传统监测转向生态监测和环境风险预警,监测指标也从传统的常规指标转变为有毒生物。
有害和生态指标,水质监测的内容也更加详细。
关键词:水质检查;重金属的测定前言目前,水源作为人类生命的来源已受到工业,化学,生活垃圾和其他方面的污染。
同时,重金属也被排放到水体中。
如果水中残留的重金属超过国家标准,将影响水的质量和饮用安全,危害人类健康。
随着水污染问题的日益严重,各种水质检测技术应运而生,为确保饮用水安全做出了积极贡献。
探索更有效的方法来分析被重金属污染的水的质量非常重要。
1影响重金属毒性因素(1)汞在环境中非常稳定,微生物甲基化后其毒性增加。
(2)金属镉的毒性很小,但镉化合物的毒性较高,尤其是氧化镉。
(3)元素砷不溶于水和强酸,毒性很低,但复合毒性很高,尤其是三氧化二砷,它是剧毒物质。
(4)水的环境温度,pH值,作用时间,溶解氧饱和度,硬度和水中的其他有毒物质对重金属有较大的毒害作用,例如低温的毒性小于高温。
(5)由于重金属离子与其他盐金属离子之间的拮抗作用,pH值降低,毒性增加,并且在硬水中的毒性小于在软水中的毒性。
(6)在高硬度水中添加强酸,水中的碳酸盐和碳酸盐会产生大量的游离二氧化碳,将不溶性重金属转化为可溶性盐类,增加了重金属的毒性。
(7)当同时存在两个或多个金属离子时,由于其协同作用,毒性会增加。
2水质中的重金属危害2.1对人类健康的损害重金属进入人体后不易排出并逐渐积累,对人体造成损害。
重金属能与人体内的蛋白质、酶等产生强相互作用,使人体失去活力,造成急性中毒。
它还可能在人体某些器官中积累,引起慢性中毒。
毒性和副作用主要影响胎儿的正常发育,引起生殖系统疾病,并对人体造成损害。
电感耦合等离子体质谱(ICP-MS)法测定环境水样中5种重金属元素
电感耦合等离子体质谱(ICP-MS)法测定环境水样中5种重金属元素陈磊磊;袁锡泰;余长合;陶宗涛【摘要】建立了一种电感耦合等离子体质谱(ICP-MS)法测定环境水样中Cu、Zn、Mn、Pb、Cd 5种重金属元素含量的方法.经过仪器条件优化和干扰校正后,方法中5种元素的工作曲线的相关系数均大于0.999,检出限为0.014~0.22 μg/L.对加入国家标准物质作为质控样15个批次的环境水样进行统计分析并绘制质控图.同时与原子吸收光谱法测定结果进行对比分析,测定值与标准值基本一致,质控样的测定值基本都在控制线范围之内.结果表明,方法精密度和准确度均能满足环境水样的分析,ICP-MS法更适用于大批量、多样化环境水样的监测分析.【期刊名称】《中国无机分析化学》【年(卷),期】2017(007)004【总页数】5页(P11-15)【关键词】电感耦合等离子体质谱法;原子吸收光谱法;环境水样;重金属【作者】陈磊磊;袁锡泰;余长合;陶宗涛【作者单位】河南省地质矿产勘查开发局第一地质环境调查院,郑州450045;河南省地质矿产勘查开发局第一地质环境调查院,郑州450045;河南省地质矿产勘查开发局第一地质环境调查院,郑州450045;河南省地质矿产勘查开发局第一地质环境调查院,郑州450045【正文语种】中文【中图分类】O657.63;TH843前言重金属是水体常见的污染物[1],重金属污染已成为严重威胁水生生物生存和人类健康的重要问题之一[2-3]。
因此,及时并准确地监测环境水样中重金属的含量可以为相关部门的决策提供重要参考和依据。
环境水样中重金属元素检测方法的选择取决于方法的灵敏度、检测限、分析速度、应用范围等方面[4]。
目前,环境水样中重金属的国家标准检测方法包括紫外-可见分光光度法、原子吸收光谱法(火焰和石墨炉)、氢化物发生-原子荧光光谱法(HG-AFS)、电感耦合等离子体原子发射光谱法(ICP-AES)、电感耦合离子体质谱法(ICP-MS)等[5-8],其中原子吸收光谱法和电感耦合等离子体质谱(ICP-MS)法应用最为广泛。
紫外分光光度法测水中重金属的具体操作__概述及解释说明
紫外分光光度法测水中重金属的具体操作概述及解释说明1. 引言1.1 概述在环境保护和人类健康方面,水质监测是一项关键任务。
随着工业发展和城市化进程的加快,水体中重金属污染已成为不容忽视的问题。
为了准确、便捷地监测水样中重金属离子的浓度,紫外分光光度法被广泛应用。
本文将详细介绍紫外分光光度法以及其在水中重金属浓度检测方面的具体操作步骤。
通过本文内容的学习,读者将能够理解该方法原理、掌握样品处理、仪器和试剂准备等重要步骤,并且可以进行数据分析与结果解释。
1.2 文章结构本文主要包括以下几个部分:- 引言:对文章主题进行概述和解释说明;- 紫外分光光度法测水中重金属的具体操作:对该方法原理、样品处理步骤、仪器和试剂准备等进行详细介绍;- 数据分析与结果解释:介绍如何进行光谱扫描与峰值确定、校准曲线绘制和样品浓度计算,并对结果进行解释和提供控制措施建议;- 实验注意事项与问题排除:列举实验前的准备和安全注意事项,解决一些常见问题;- 结论与展望:总结本文的主要内容,并展望未来在水质监测领域中紫外分光光度法的应用前景。
1.3 目的本文的目的是介绍紫外分光光度法测水中重金属离子浓度的具体操作步骤。
通过阐述原理、详细说明样品处理、仪器和试剂准备等内容,读者将能够了解该方法在水质监测中的应用,并且获得实施该方法所需的基本知识和技能。
希望本文对相关实验人员提供有益指导,促进环境保护工作和人类健康保障。
2. 紫外分光光度法测水中重金属的具体操作2.1 原理介绍紫外分光光度法是一种用于测量物质溶液中物质浓度的方法。
它基于物质吸收紫外(UV)或可见光范围内的特定波长的能量,利用比尔-朗伯定律将吸光度与溶液中物质的浓度相关联。
在测量水中重金属时,我们通常选择适合重金属离子吸收的特定波长。
2.2 样品处理步骤在进行紫外分光光度法测水中重金属之前,需要对样品进行一系列处理步骤。
第一步是取得要测试的水样。
为了保证测试结果准确可靠,在采集水样时应尽量避免污染和氧化。
火焰原子吸收光谱法测定污水中的铜 实验报告
中国XX: 化学20XX年第XX卷第X期: 1~ 5 SXxxx xxxxx 《XXX科学》杂志社XXXXXX XXXXX PRESS论文火焰原子吸收光谱法测定污水中的铜*******学院广州510275* 通讯作者, E-mail: ***@摘要污水中的重金属含量是环境监测的重要指标之一。
本文采用火焰原子吸收光谱法(FAAS)测定了污水中的铜含量,当铜含量在0.01-1.20 µg/mL范围内浓度与吸光度呈正比关系,工作曲线线性相关系数为0.9998,方法检出限为0.01 µg/mL,R.S.D为3.8%。
实验结果表明:污水处理液样品中的铜含量为0.62±0.01 µg/mL。
关键词火焰原子吸收污水铜含量引言由于工业化的发展,金属制品的制造与使用的广泛,使得各种金属元素普遍存在于各种污水(包括工业污水、生活污水和土壤液)之中。
随着工业的发展,对环境质量的损害也日益加大,因此国家对工业污水的排放制定了严密的检测要求,特别是其中的金属离子定性定量检测更是重要[1]。
随着人口的快速增长和城市化进程的加快,生活污水的排放量剧增,若这些未经处理污水中含有过量的重金属元素,有可能与天然水体中的各种物质作用而被积聚,从而引起二次污染,甚至因被再次饮用而诱发癌症等疾病[2]。
土壤是生物生存的重要环境,土壤中各金属(特别是重金属)含量的高低可以从有益到带来麻烦甚至到受污染而产生剧毒,从而影响植物的生长和其周围的水质,最终直接或间接地影响人类的生活和健康,因此对土壤中重金属元素的监测至关重要[3]。
检测水中金属元素常用的方法有分光光度法、原子吸收法(AAS)、电感耦合等离子体原子发射光谱法(ICP-AES)、离子色谱法等。
近半个世纪以来,原子吸收光谱法是广泛用于定量测定试样中单独元素的分析方法。
其具有选择性级、灵敏度高、取样量少、简便快速等特点,目前也是测定水中金属元素常用的方法。
水中重金属离子的测定
一、实验目的与要求1、掌握水的前处理和消解技术。
2、了解水中重金属的测定方法,掌握原子吸收分光光度计的测定技术。
2+。
3、了解利用AAS测定水的硬度和测定废水中SO44、了解水中重金属的种类、危害及有关知识,掌握水中重金属污染分析与评价的方法。
5、掌握水样的处理方法技术,并小结以前的处理方法。
通过测定水中Cr、Pb 的含量分析所取水样的污染程度二、实验方案1、原理〔1〕火焰原子吸收光度法是根据某元素的基态原子对该元素的特征谱线产生选择性吸收来进行测定的分析方法。
将试样溶液喷入空气乙炔火焰中,被测的元素化合物在火焰中离解形成原子蒸汽,由锐线光源〔元素灯〕发射的某元素的特征普线光辐射通过原子蒸汽层的时候,该元素的基态原子对特征普线产生选择性吸收。
在一定的条件下,特征普线与被测元素的浓度成正比。
通过测定基态原子对选定吸收线的吸光度,确定试样中元素的浓度。
原子吸收法具有很高的灵敏度。
每种元素都具有自己为数不多的特征吸收普线,不同元素的测定采用相应的元素灯,因此普线干扰在原子吸收光度法中是少见的。
影响原子吸收光度法准确度的主要是基体的化学干扰。
由于试样和标准溶液的基体不一样,试样中存在的某种基体常常影响被测元素的原子化效率,如在火焰中形成难离解的化合物,这时就会发生干扰作用。
一般说来Cu,Zn,Pb,Cd的基体干扰不是很严重。
〔2〕干扰及消除。
共存元素的干扰受火焰状态和观测高度的影响很大,在实验的时候应该特别注意。
因为铬的化合物在火焰中易生成难以熔融和原子化的氧化物,因此一般在试液中加入适量的助熔剂和干扰元素的抑制剂,如NH4Cl〔K2S2O7,NH4F,NH4ClO2〕。
加入NH4Cl可以增加火焰中的氯离子,使铬生成易于挥发和原子化的氯化物,而且NH4Cl还可以抑制Fe,Co,Ni,V,Al,Pb,Mg的干扰。
〔3〕适用范围。
本方法可以适用于地表水和废水中总铬的测定,用空气-乙炔火焰的最正确定量分析范围是0.1-5mg/L。
火焰原子吸收光谱法测定污水中的铜
火焰原子吸收光谱法测定污水中的铜中山大学化学与化学工程学院广州 510275摘要本文介绍了原子火焰原子吸收光谱法测定污水中的铜. 结果表明: 污水中的铜含量为0.6507 μg∙mL−1, 相对标准偏差为 6.53%,检出限为0.0392 μg∙mL−1, 特征浓度为0.18 μg∙mL−1.本方法操作简便、快速、干扰少、灵敏度高,是一种快速检测水体、土壤等样品铜含量的优越方法.关键词火焰原子吸收光谱法; 污水; 铜水是生物赖以生存的必要条件之一,水质好坏直接影响到生物的生存和发展.自来水的水质与人类健康有密切了解,生活饮用水的卫生尤为重要. 现代化经济迅猛发展,引起一系列的环境污染问题,其中废水污染尤其不可忽视[1]. 环境污染研究中所说的重金属主要是指汞、镉、铅、铬以及类金属砷等生物毒性显著的元素,也指具有一定毒性的重金属,如锌、铜、镍、钴、锡等. 铜是保持农作物和畜禽健康成长必须的微量营养素. 通常, 当农田土壤中的有效铜含量低于2 ppm时,农作物就要因缺铜而减产, 严重时甚至颗粒不收, 当牧场土壤中有效铜含量低于5ppm时, 牲畜就要患缺铜症. 铜在人体内的含量极低但却遍布全身的组织与器官.铜离子还是人体内30多种酶的活性催化剂,对人体新陈代谢起着重要的调节作用.铜是铁造血的重要辅佐原料, 缺铜如同缺铁、缺锌一样,也会导致人体贫血[2].铜是动植物生长所必需的微量元素,同时又是环境中的重要污染物质. 土壤中过量铜存在时,会使作物受到危害,严重时植株枯死. 重金属在土壤中的滞留时间长, 植物或微生物不能降解, 并可能在作物的可食部位过量积累, 然后通过食物链传递给人或动物, 给人类健康带来严重危害[3]. 因此在考虑微量元素对人体健康的作用时,不能只注意有益微量元素的积极效应,还要注意有害微量元素的负面影响[4].然而随着社会的发展,企业生产规模的不断扩大,环境问题越来越严重. 长期的实践表明,传统的污染末端治理并不能从根本上解决环境问题[5].因此, 如何快速、准确测定废水中铜的含量显得非常重要.铜元素传统的检测方法有络合滴定法、分光光度法[6]、离子选择性电极浓度直读法[7]、原子发射光谱法[8]、原子吸收光谱法等. 原子光谱法具有检出限低,灵敏度高, 精密度高的特点,被广泛用于环境监测和食品检测中.本实验采用原子吸收光谱法对铜进行检测.1 实验部分1.1 仪器试剂1.1.1仪器日立Z-2000火焰/石墨炉原子吸收分光光度计,Cu空心阴极灯,仪器工作参数和方法参数(见表1, 表2).比色管:25 mL 13个;吸量管:2 mL一支, 1 mL 一支.表1 仪器工作参数信号模式计算模式测定波长波长设定狭缝宽度时间常数灯电流光电倍增管电压本底校正积分324.8 nm 自动 1.3 nm 1.0 s 7.5 mA 282 V表2 方法参数原子化器气体流速/L∙min−1气压燃烧器高度读数延迟测定时间空气乙炔标准15 2.2 160kPa 7.5 mm 5s 5.0s1.1.2试剂使用液:Cu 50.0 μg∙mL−1(均加入2滴1+1 HNO3酸化).已处理好的废水样.1.2 实验步骤1.提升量的测定将进样管插入10 ml盛有蒸馏水的量筒中, 记录半分钟内蒸馏水的减少量.2.整理校准曲线及样品测定在4个25 mL比色管中,各加入2滴1+1 HNO3,按表3的数据配制标准系列,并根据此标准曲线检测水样中的铜.表3 标准系列浓度及配置方法元素使用液浓度加入使用液体积/mLCu 50.0 μg∙mL−10.00 0.20 0.40 0.603.0.20 μg∙mL−1的标准溶液测定用吸量管吸取0.1 mL 铜使用液,加入一个25 mL比色管中,滴加2滴1+1 HNO3,使用蒸馏水定容至刻度.配置九个同样的浓度的溶液.按相同的仪器和方法参数进行原子吸收吸光度的测定.4.测定水样仪器和方法参数不变,对水样进行测定.2结果与讨论2.1实验结果2.1.1雾化器的提升量半分钟内提升量为3 ml蒸馏水, 因此仪器提升量为6 mL·min-1.2.1.2分析波长的选择每一元素都有数条分析线,通常选择最灵敏线为测量波长. 对于铜的分析波长,选用324.8 nm.2.1.3数据记录表4 标准系列测定结果浓度/μg∙mL−10.0000 0.4000 0.8000 1.2000吸光度-0.0002 0.0101 0.0196 0.0295表5 0.20 μg∙mL−1的标准溶液测定序号 1 2 3 4 5 6 7 8 9吸光度0.0049 0.0049 0.0043 0.0053 0.0051 0.0048 0.0049 0.0046 0.00532.1.4标准偏差对9个0.20 μg∙mL−1的标准溶液测量结果采用Q检验法检验未发现有异常数据.平均吸光度A=0.0049,标准偏差σ̂=0.000320 μg∙mL−1.2.1.5特征浓度原子吸收分析中,常用特征浓度表示其方法的灵敏度.取铜0.20 μg∙mL−1的标准溶液,使用设定好的仪器方法参数,测定不少于6次,记录吸光度读数(见表5),计算平均值A.计算公式:c0=c×0.00434A平均吸光度A=0.0049,c=0.20 μg∙mL−1. 因此,特征浓度c0=0.18 μg∙mL−1.2.1.6标准曲线2.1.7检出限检出限是指能够以95%的置信度检出待测元素的最小浓度,用μg∙mL−1表示. 计算公式如下:D L=cKσ̂A=3σ̂S= 0.0392 μg∙mL−1式中: K=3,S为校准曲线的斜率,σ̂为空白标准试液标准偏差.可用空白溶液或接近于特征浓度的溶液测量若干次,从得到的数据中求出标准偏差.2.1.8方法精密度方法的精密度指的是方法的重现性,常用相对标准偏差RSD表示. 计算公式:RSD=σ̂A̅×100%=6.53%2.1.9水样测定结果见下表:3 / 6表6.水样测定结果吸光度相对标准偏差浓度0.0160 0.00% 0.6507 μg∙mL−12.2思考题2.2.1雾化器的提升量和雾化效率为什么会影响分析方法的灵敏度?雾化器能够直接影响试液引入最后转变成自由原子的数目. 雾化器的提升量越大, 单位时间进入雾化器的样品越多; 雾化器的雾化效率越高,自由原子的数目越多,信号增强.2.2.2调节燃烧器的位置应达到什么目的?火焰中的基态原子的浓度分布是不均匀的,调节燃烧器高度可以使得光束通过火焰中原子浓度最高的区域,从而获得较好的灵敏度和稳定性,减少干扰.2.2.3富燃性火焰适合于哪些元素分析,举例说明,并解释原因.富燃火焰是指燃气大于化学计量的火焰.其特点是燃烧不完全,温度略低于化学计量火焰,具有还原性,适合于易形成难解离氧化物的元素的测定.如Al、B、Ti、V和一些稀土元素.2.2.4原子吸收定量分析时为什么要采用标准溶液浓度校准?原子吸收光谱分析是一种相对分析方法, 用校正曲线进行定量. 在实验条件一定时,浓度较低的情况下,吸光度与浓度成正比.2.2.5污水中重金属分析为什么要进行消化处理?原因主要有:(1)污水组成复杂,重金属可以和有机物化合而影响测定,需经消化处理加以破坏.(2)待测元素的形态复杂,经过消化处理可以转化为离子形式,从而与标准溶液一致.2.2.6为什么有高的灵敏度不一定有低的检出限?在原子吸收分析中, 特征浓度与灵敏度如何区别?灵敏度的定义是分析标准函数的一次导数,检出限的定义是以适当的置信水平被检出的最低浓度或最小量. 从检出限的计算公式D L=Kσ̂S中可以看出,它还受标准偏差的影响.特征浓度是以产生1%吸收所对应的浓度,它是表示灵敏度的一种方法.2.2.7怎样测定检出限?检出限是指能够以95%的置信度检出待测元素的最小浓度. 它相当于空白试液标准偏差的K倍, IUPAC规定K=3. 测定时使用接近于特征浓度的标准溶液测定, 测量不少于10次. 或者使用标准曲线的斜率S计算. 计算公式如下:D L=cKσ̂AD L=Kσ̂S2.2.8检测限与检出限有什么区别?检测限是不被仪器信号噪音淹没的最小浓度,而检出限是能够以一定置信水平检出待测元素的最小浓度.检测限是用于衡量仪器的灵敏度的,检出限用于衡量方法的灵敏度.2.2.9原子吸收分光光度计为何应采用空心阴极灯作光源?空心阴极灯是一种辐射强度大,稳定性好的锐线光源,能发出被测元素的特征光谱. 锐线光源是发射线半宽度远小于吸收线半宽度的光源. 锐线光源的应用解决了原子吸收的实用测量问题.2.2.10影响火焰原子吸收光度测定的主要因素有哪些? 如何获得最佳分析结果?影响火焰原子吸收光度测定的主要因素有: 灯电流,雾化器,燃烧器位置,火焰,狭缝.选择合适的灯电流使得灯电流稳定,产生适宜的辐射强度并可以减小自吸效应; 增大雾化器的提升量和雾化效率以增强信号; 调节燃烧器位置至适宜的高度使得光源发出的光通过基态原子浓度最高处; 针对不同的元素选用不同的火焰; 依据其它元素干扰的多少和强弱调节适当的狭缝宽度.3结论实验测定结果:污水中铜的含量为0.6507 μg∙mL−1.方法精密度用相对标准偏差为 6.53%,检出限为0.0392 μg∙mL−1, 特征浓度为0.18 μg∙mL−1. 原子吸收光谱法简洁快速, 准确度精确度高.参考文献[1] 杨晓婧,李美丽,等.火焰原子吸收光谱法测定废水中的重金属离子[J].光谱实验室,2010,27( 1 ) :247-248.[2] 韦公远.硒、镁、铜人体不可缺少的微量元素[J].山东食品科技, 2003,5: 17.[3] 朱勇,方斌武,等.铜锌污染土壤上适宜种植的蔬菜品种选择[J].宁波农业科技, 2010,2: 2-4.[4] 梅光泉.重金属废水的危害及治理[J]. 微量元素与健康研究, 2004.21( 4 ): 1841-1842.[5] 朱宏飞,李定龙,等.印染废水的危害及源头治理举措[J].环境科学与管理, 2007,32(11): 89-92.5 / 6[6] 翟庆洲,李景, 等.光度法测定铜的进展[J].长春理工大学学报, 2008,31( 3 ): 85-89.[7] 高向阳,张晓歌,等.离子选择性电极浓度直读法快速测定火棘果中的铜含量[J].安徽农业科学, 2006,34( 19 ): 4824-4827.[8] 刘红毅,焦文广,陆迁树.ICP_AES法测定土壤样品中铜的不确定度评定[J].云南地质,2010,29( 3 ): 341-345.[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]。
水质_铜、铅、镉、镍、铬的测定_石墨炉原子吸收分光光度法
水质铜、铅、镉、镍、铬的测定石墨炉原子吸收分光光度法1. 引言1.1 概述水质是生活中一个重要的指标,直接关系到人们的健康和生活环境。
铜、铅、镉、镍、铬等重金属元素对水质具有较大影响,其超标含量可能导致水体污染和生态破坏。
因此,准确测定这些重金属元素的含量对于保护环境和人类健康至关重要。
1.2 文章结构本文将详细介绍利用石墨炉原子吸收分光光度法测定水中铜、铅、镉、镍和铬的方法。
首先,在正文部分分别阐述了各种元素的测定方法,包括前处理步骤和仪器设备的使用。
随后,我们将进行实验结果总结并分析该方法的优缺点。
最后,对于水质监测的意义和应用前景展望也将在结论部分进行讨论。
1.3 目的本文旨在系统地介绍利用石墨炉原子吸收分光光度法测定水中铜、铅、镉、镍和铬的方法,并评估该方法在实际应用中的可行性和有效性。
通过本文的研究,我们希望能够为水质监测提供一种准确、快速且可靠的分析方法,从而保护人们的健康和环境的稳定。
2. 正文:2.1 铜的测定方法:铜是一种常见的重金属元素,它存在于自然界中的水体中。
为了准确测定水样中的铜含量,可以使用石墨炉原子吸收分光光度法。
该方法基于原子吸收光谱技术,通过测量在特定波长下被样品溶液中的铜原子吸收的光强度来确定其浓度。
2.2 铅的测定方法:水体中的铅污染也是一种常见问题。
为了测定水样中的铅含量,可以应用石墨炉原子吸收分光光度法。
这种方法通过将样品溶液注入石墨炉,并利用特定波长下被样品中的铅原子吸收的光强度来确定其浓度。
2.3 镉的测定方法:镉是另一种常见的重金属元素,它也可能存在于水体中。
要准确检测水样中镉的含量,可以采用石墨炉原子吸收分光光度法。
利用该法,我们能够使用特定波长下由镉原子在样品溶液中吸收而导致的光强度变化来判断其浓度。
2.4 镍的测定方法:镍是一种常见的水体污染物,特别是在一些工业废水中。
为了测定水样中镍的含量,可以使用石墨炉原子吸收分光光度法。
该方法通过测量在特定波长下由于样品溶液中镍原子吸收而导致的光强度变化来确定其浓度。
真空检测管-电子比色法快速测定水中铜离子
真空检测管-电子比色法快速测定水中铜离子一、引言目前,电子比色法被广泛应用于水中重金属离子的测定中。
其原理是利用金属离子与特定试剂形成显色络合物,通过测量络合物的吸光度来间接测定金属离子的含量。
而真空检测管则是电子比色法中的一种快速准确的检测工具,其具有检测速度快、准确性高、操作简便等特点。
二、实验原理1. 电子比色法原理电子比色法是一种利用光学测量金属离子含量的方法。
其原理是通过金属离子与特定试剂形成显色的络合物,再根据络合物的吸光度来间接测定金属离子的含量。
一般来说,共价键络合物的吸收最常用的区域是紫外-可见光区域,即200-800nm。
根据试剂和金属络合物的吸收特性,我们可以选择合适的波长进行测量。
通过比较标准曲线或者校准曲线来确定金属离子的含量。
2. 真空检测管原理真空检测管是一种通过溶液对空气进行置换,迅速形成负压,然后将试剂吸入的一种设备。
这种快速形成真空的方法有点类似打电话时快速吸气,形成负压的原理。
通过真空检测管,可以迅速完成试剂与水样中金属离子形成显色络合物的反应过程,并使反应物充分混合。
相比于传统的手工操作,真空检测管可以极大地提高实验效率,同时减少了操作中的误差。
三、实验步骤1. 样品处理将水样取一定量置于容器中,样品处理可以通过前处理方法进行,如离心、过滤、上样处理等。
确保取样的准确性和可靠性。
2. 样品分析将处理好的水样取一定量加入到真空检测管中,然后添加适量的铜离子试剂。
通过真空检测管快速形成真空,使试剂与水样充分混合,并形成显色的络合物。
然后将真空检测管放入光度计中,在特定波长下测量络合物的吸光度。
3. 数据处理将测得的吸光度值代入标准曲线中进行计算,得出水样中铜离子的含量。
四、实验结果及讨论1. 实验数据精准通过对不同浓度的铜离子水样进行测定,实验结果表明该方法准确性高。
在测定过程中,真空检测管能够迅速将试剂与水样进行充分混合并形成显色的络合物,充分保证了试剂与水样的接触质量。
水环境中CU2+检测和处理探析
水环境中CU2+检测和处理探析摘要:近些年来,随着社会经济的高速化发展,给空气、水环境带去了非常严重的污染,水资源的质量在不断的倒退。
水环境的变差不仅影响着人们的正常生活生产,还会破坏自然界生态的平衡。
河道的堵塞,工厂的排污都是造成水污染的原因。
工业废水排放使得大量的铜元素积聚在水环境中,水中生物体内积累大量的重金属,人们食用水中生物后重金属就会沉淀在人体中,导致机体中毒。
由此可见,做好水环境的检测非常的重要。
关键词:水环境;铜离子;检测;处理随着社会工业不断的发展,人们的生活水平也在逐渐改善,但与此同时,人们身处的环境也在遭受前所未有的污染。
空气污染、水环境的污染都会严重的危及到人类的健康。
很多工厂将含有大量重金属离子的污水排放周边河内,这些重金属离子被水生物体吸收体内后难以排出,人们有食用了这些含重金属离子的水产品,这样重金属离子就会被人类吸入身体内,使人体内积累大量的重金属,使得机体中重金属元素过量,最终导致中毒。
因此,人们必须要对水环境中的重金属元素进行检测,铜离子的检测是鉴别水环境好坏的一大标准。
一铜概述铜是一种有价金属,其应用范围很广,生活中铜具有极其重要的作用。
天然水中含铜极少,水中的铜主要是工业废水的污染造成的,铜可以影响水的色嗅味等性状。
此外,铜对水体的自净作用有严重的影响,同时铜是很重要的有价金属,流失于污水中也是一种资源浪费。
因此回收有价金属铜和去除废水中污染的铜显得十分必要。
二水环境中Cu2+的检测方法2.1电修饰法通过修饰电极作为工作电极,从而建立了极具选择性和灵敏性的新方法来测定水中的铜离子。
磷酸缓冲液中含有铜离子,将其搅拌富集,修饰电极和铜离子形成活性配合物,从而吸附到电极的表面。
通过电极对铜离子进行检测,发现峰点位没有改变,而发生改变的仅是峰电流。
并且,峰电流随着铜离子的质量浓度的变大而逐渐增大,且会在某一个特定的区间内出现良好的线性关系。
2.2原子吸收法铜离子的原子具有吸收金属元素发出的共振线,并且其吸收的强度和其在样品中的浓度成正相关。
水中重金属实验报告【范本模板】
《环境化学实验》报告实验考核标准及得分内容及比例比例此项得分平时成绩出勤、纪律、预习、课堂回答、态度等20%考核成绩实验前期准备、采样、仪器规范使用、药品正确使用、实验操作、实验记录、动手能力、创新精神、严谨程度、环保意识等。
40%数据计算,数据分析及结论表述,思考题回答,个人心得体会与总结,报告格式等。
40%成绩满分为100分100% 题目水中重金属的污染评价教师学号班级姓名采样地点合作者题目:水中重金属的污染评价一、实验目的与要求1、了解水中重金属的消解与测定方法。
2、掌握原子吸收分光光度计分析技术。
3、了解水体的重金属污染状况,制定相应的污染控制对策二、实验方案1、实验原理:环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。
常用火焰原子吸收光度法测定试样中元素的浓度来测重金属浓度。
原子吸收光度法是根据物质产生的原子蒸气对特定波长的光的吸收作用来进行定量分析的。
元素的气态基态原子外层的电子可以吸收与其发射波长相同的特征谱线.当光源发射的某一特征波长的光通过原子蒸气时,原子中的外层电子将选择性地吸收该元素所能发射的特征波长的谱线,这时,透过原子蒸气的入射光将减弱,其减弱的程度与蒸气中该元素的浓度成正比,吸光度符合吸收定律:A=lg(I0 / I)=KcL根据这一关系可以用工作曲线法或标准加入法来测定未知溶液中某元素的含量。
原子吸收光度法具有较高的灵敏度。
每种元素都有自己为数不多的特征吸收谱线,不同元素的测定采用相应的元素灯,因此,谱线干扰在原子吸收光度法中是少见的。
影响原子吸收光度法准确度的主要是基体的化学干扰。
由于试样和标准溶液整体的不一致,试样中存在的某些基体常常影响被测元素的原子化效率,如在火焰中形成难于离解的化合物或使离解生成的原子很快重新形成在该火焰温度下不再离解的化合物,这时就发生干扰作用.一般来说,铜、铅、锌、镉的基体干扰不太严重。